Science.gov

Sample records for adsorbed oxygen ions

  1. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  3. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  4. Mimetite Formation from Goethite-Adsorbed Ions.

    PubMed

    Kleszczewska-Zębala, Anna; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Borkiewicz, Olaf J

    2016-06-01

    Bioavailability of arsenic in contaminated soils and wastes can be reduced to insignificant levels by precipitation of mimetite Pb5(AsO4)3Cl. The objective of this study is to elucidate mechanisms of the reaction between solution containing lead ions and arsenates adsorbed on synthetic goethite (AsO4-goethite), or arsenate ions in the solution and goethite saturated with adsorbed Pb (Pb-goethite). These reactions, in the presence of Cl, result in rapid crystallization of mimetite. Formation of mimetite is faster than desorption of AsO4 but slower than desorption of Pb from the goethite surface. Slow desorption of arsenates from AsO4-goethite results in heterogeneous precipitation and formation of mimetite incrustation on goethite crystals. Desorption of lead from Pb-goethite is at least as fast as diffusion and advection of AsO4 and Cl in suspension allowing for homogeneous crystallization of mimetite in intergranular solution. Therefore, the mechanism of nucleation is primarily driven by the kinetics of constituent supply to the saturation front, rather than by the thermodynamics of nucleation. The products of the reactions are well documented using microscopy methods such as scanning electron microscopy, electron backscattered diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy. PMID:27329315

  5. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  6. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process. PMID:23412572

  7. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  8. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent.

    PubMed

    Niu, Yaolan; Ying, Diwen; Li, Kan; Wang, Yalin; Jia, Jinping

    2016-10-01

    Functional PET fiber (PET-AA-CS) was prepared by oxygen-plasma pretreatment and grafting of acrylic acid (AA) and low-molecular-weight chitosan (LMCS) on the polyethylene glycol terephthalate (PET) substrate. This adsorbent was targeted for quick removal of metal ion in river pollutions with an easy recycling of the fiber after emergency processing. The fabricated PET-AA-CS was characterized by the scanning electron microscope (SEM), contact angle, fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) to look into its morphology, surface functional groups, and adsorption mechanism of copper ions from the aqueous solution. The overall adsorption process of copper ions on the PET-AA-CS was pH-dependent with an optimal pH value of 5.0, at which a maximum capacity of 68.97 mg g(-1) was obtained. The result of fitting also shows that adsorption process follows the Langmuir isotherm and pseudo-second-order model. Moreover, the material shows good stability during 5 cycles of adsorption and desorption, and also shows no significant effect of co-existing ions including Ca(2+), Mg(2+), K(+), Cl(-), and et al. In general, PET-AA-CS developed in this study shows significant benefit of eco-friend and cost-efficiency for fast removal of copper ions in potential river metal pollutions comparing with traditional adsorbents. PMID:27470942

  9. CO-oxidation model with superlattice ordering of adsorbed oxygen. I. Steady-state bifurcations

    NASA Astrophysics Data System (ADS)

    James, E. W.; Song, C.; Evans, J. W.

    1999-10-01

    We analyze a model for CO oxidation on surfaces which incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed immobile oxygen on a square lattice of adsorption sites. The superlattice ordering derives from an "eight-site adsorption rule," wherein diatomic oxygen adsorbs dissociatively on diagonally adjacent empty sites, provided that none of the six additional neighboring sites are occupied by oxygen. A "hybrid" formalism is applied to implement the model. Highly mobile adsorbed CO is assumed randomly distributed on sites not occupied by oxygen (which is justified if one neglects CO-CO and CO-O adspecies interactions), and is thus treated within a mean-field framework. In contrast, the distribution of immobile adsorbed oxygen is treated within a lattice-gas framework. Exact master equations are presented for the model, together with some exact relationships for the coverages and reaction rate. A precise description of steady-state bifurcation behavior is provided utilizing both conventional and "constant-coverage ensemble" Monte Carlo simulations. This behavior is compared with predictions of a suitable analytic pair approximation derived from the master equations. The model exhibits the expected bistability, i.e., coexistence of highly reactive and relatively inactive states, which disappears at a cusp bifurcation. In addition, we show that the oxygen superlattice ordering produces a symmetry-breaking transition, and associated coarsening phenomena, not present in conventional Ziff-Gulari-Barshad-type reaction models.

  10. Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules.

    PubMed

    Wang, Hui; Shi, Chuntai; Hu, Jun; Han, Sungho; Yu, Clare C; Wu, R Q

    2015-08-14

    A major obstacle to using superconducting quantum interference devices (SQUIDs) as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be O_{2} molecules adsorbed on the surface. Using density functional theory calculations, we find that an O_{2} molecule adsorbed on an α-alumina surface has a magnetic moment of ~1.8 μ_{B}. The spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic XY spins on a square lattice find 1/f magnetization noise, consistent with flux noise in Al SQUIDs. PMID:26317742

  11. Oxygen release from nanobubbles adsorbed on hydrophobic particles

    NASA Astrophysics Data System (ADS)

    Zhao, Wanchen; Hu, Xiutao; Duan, Juan; Liu, Ting; Liu, Minghuan; Dong, Yaming

    2014-07-01

    On the hydrophobic particles, the carrying capacity of nano/microbubbles and the quantity of oxygen released in the hypoxic environment are still unknown while the bubbles blow out. This is very important to the biological and medical systems. Here, an experiment was designed and the change of the dissolved oxygen in a solution was monitored. The results indicated that the concentrations of dissolved oxygen in hypoxic environment changed dramatically, especially when the ultrasound vibration was applied. Furthermore, the amount of oxygen release also implied the quantity dependence of nano/microbubbles on the sizes and the hydrophobicity of the particles.

  12. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  13. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  14. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  15. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  16. Hemoglobin-mimetic oxygen adsorbent prepared via self-assembly of cysteinyl bolaamphiphiles.

    PubMed

    Lee, Chaemyeong; Kim, Min-Chul; Lee, Sang-Yup

    2016-06-01

    In this study, a novel cysteinyl bolaamphiphilic molecule was synthesized and its self-assembled planar suprastructure was applied as a biomimetic matrix to create a hemoglobin-mimetic oxygen adsorbent that exploits the ability of cysteine thiols to bind hemin. Self-assembly of the cysteinyl bolaamphiphilic molecule exposed cysteine thiols on its surface in the presence of β-mercaptoethanol, known to reduce disulfide bonds, without which, helically coiled structures were generated. The self-assembled planar structure was used as a soft matrix to create a hemoglobin-mimetic oxygen adsorbent. The surface-exposed cysteine thiols were used to attach hemin, producing a hemin-bound, planar structure mimicking hemoglobin. This hemoglobin mimic strongly adsorbed oxygen and remained stable up to 50°C. The cysteinyl bolaamphiphile self-assembled structure provided a biomimetic platform that allowed for the association of biological substances in a manner similar to natural proteins. PMID:26970824

  17. Oxygen Photochemistry on TiO2(110): Recyclable, Photoactive Oxygen Produced by Annealing Adsorbed O2

    SciTech Connect

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2011-11-03

    Photon-stimulated reactions between chemisorbed and physisorbed oxygen on TiO2(110) are investigated. Experiments using O2 isotopologues show that UV irradiation results in the exchange of atoms between chemisorbed and physisorbed oxygen. Annealing chemisorbed oxygen to {approx}350 K maximizes these exchange reactions, while dissociatively adsorbing oxygen on TiO2(110) at 300 - 350 K does not lead to reactions with physisorbed O2. After annealing to 350 K, the exchange products photodesorb in the plane perpendicular to the bridge-bonded oxygen rows at an angle of 45{sup o}. In contrast, the chemisorbed O2 photodesorbs normal to the surface. Remarkably, the chemisorbed species is stable under multiple cycles of UV irradiation with physisorbed O2. The active atoms in the chemisorbed species can be changed from 18O to 16O and then back to 18O via the exchange reactions. The results show that annealing oxygen adsorbed on TiO2(110) to {approx}350 K produces a stable chemical species with interesting photochemical properties. Possible forms for the photoactive species include O2 adsorbed in a bridging oxygen vacancy or tetraoxygen.

  18. EFFECT OF DISSOLVED OXYGEN ON PHENOLS BREAKTHROUGH FROM GAC ADSORBERS

    EPA Science Inventory

    This study demonstrates that molecular oxygen plays an important role in the adsorption of organic compounds from water by activated carbon. It was determined that the adsorptive capacity of granular activated carbon (GAC) for o-cresol can increase by almost 200% as a result of...

  19. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L.

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  20. CO-oxidation model with superlattice ordering of adsorbed oxygen. I. Steady-state bifurcations

    SciTech Connect

    James, E.W.; Song, C.; Evans, J.W.

    1999-10-01

    We analyze a model for CO oxidation on surfaces which incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed immobile oxygen on a square lattice of adsorption sites. The superlattice ordering derives from an {open_quotes}eight-site adsorption rule,{close_quotes} wherein diatomic oxygen adsorbs dissociatively on diagonally adjacent empty sites, provided that none of the six additional neighboring sites are occupied by oxygen. A {open_quotes}hybrid{close_quotes} formalism is applied to implement the model. Highly mobile adsorbed CO is assumed randomly distributed on sites not occupied by oxygen (which is justified if one neglects CO{endash}CO and CO{endash}O adspecies interactions), and is thus treated within a mean-field framework. In contrast, the distribution of immobile adsorbed oxygen is treated within a lattice{endash}gas framework. Exact master equations are presented for the model, together with some {ital exact} relationships for the coverages and reaction rate. A precise description of steady-state bifurcation behavior is provided utilizing both conventional and {open_quotes}constant-coverage ensemble{close_quotes} Monte Carlo simulations. This behavior is compared with predictions of a suitable analytic pair approximation derived from the master equations. The model exhibits the expected bistability, i.e., coexistence of highly reactive and relatively inactive states, which disappears at a cusp bifurcation. In addition, we show that the oxygen superlattice ordering produces a symmetry-breaking transition, and associated coarsening phenomena, not present in conventional Ziff{endash}Gulari{endash}Barshad-type reaction models. {copyright} {ital 1999 American Institute of Physics.}

  1. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  2. Oxygen Isotope Fractionation Effects in Soil Water via Cations Adsorbed to High-CEC Clays

    NASA Astrophysics Data System (ADS)

    Oerter, E.; Finstad, K.; Schaefer, J.; Goldsmith, G. R.; Dawson, T. E.; Amundson, R.

    2012-12-01

    adsorbed). Water isotope data generated from direct equilibration of magnesium-saturated montmorillonite was depleted by 2‰ and 4‰ (δ18O) for the 25% and 5% water content samples, respectively. This revealed preferential adsorption of 18O isotopologues within hydrations shells around the clay/ion complex. In contrast, potassium-saturated montmorillonite showed an isotope effect in opposite direction and with a smaller magnitude (~1‰ enrichment of free water in δ18O for both the high and low water content experiments). Experiments to evaluate conditions more similar to those found in nature are also underway using dilute solutions of Mg, K and Ca. Linking isotope hydrology with the growing understanding of mineral-water reaction has several immediate impacts. First, direct CO2/soil water equilibration (either in lab or field) is a growing method for determining the oxygen isotope composition of soil water. Results thus far indicate these measurements reveal the isotope ratios of a special portion of the total soil water. Second, one of the key controls on the oxygen isotope composition of atmospheric CO2 is exchange with the soil water, which is largely assumed to follow precipitation inputs. A few per mil shift in the value of this equilibration has potentially large impacts on rates of the biotic fluxes which are of primary interest in these calculations.

  3. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    SciTech Connect

    López-Moreno, S.; Romero, A. H.

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  4. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    NASA Astrophysics Data System (ADS)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  5. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni.

    PubMed

    López-Moreno, S; Romero, A H

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered. PMID:25903900

  6. Intense Ion Beam Flux of Adsorbed Gases and Metallic Anode Materials in the “Point Pinch Diode” Measured with Thomson-Parabola Ion Spectrometer

    NASA Astrophysics Data System (ADS)

    Sato, Morihiko

    1987-06-01

    An intense flux of ion beams was observed in a “Point Pinch Diode” which consists of concentric elliptic or spherical electrodes and a slender magnetically insulated transmission line. The ion beam had an energy of about 380 keV, which was equivalent to the supplied diode voltage. The peak current density of the ion beam ranged from 5 to 7.5 kA/cm2 in spite of a small input energy (less than about 1 kJ). Measurements with a Thomson-parabola ion spectrometer show that the major components were hydrogen, carbon, and oxygen, the origins of which were oil and water adsorbed on the surface of the metallic anodes. A significant flux of the metallic ion beams was also detected in the cases of aluminium, copper and gold anodes.

  7. Chitosan membrane adsorber for low concentration copper ion removal.

    PubMed

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  8. Oxygen ions observed near Saturn's A ring.

    PubMed

    Waite, J H; Cravens, T E; Ip, W-H; Kasprzak, W T; Luhmann, J G; McNutt, R L; Niemann, H B; Yelle, R V; Mueller-Wodarg, I; Ledvina, S A; Scherer, S

    2005-02-25

    Ions were detected in the vicinity of Saturn's A ring by the Ion and Neutral Mass Spectrometer (INMS) instrument onboard the Cassini Orbiter during the spacecraft's passage over the rings. The INMS saw signatures of molecular and atomic oxygen ions and of protons, thus demonstrating the existence of an ionosphere associated with the A ring. A likely explanation for these ions is photoionization by solar ultraviolet radiation of neutral O2 molecules associated with a tenuous ring atmosphere. INMS neutral measurements made during the ring encounter are dominated by a background signal. PMID:15731442

  9. Aptamer selection for fishing of palladium ion using graphene oxide-adsorbed nanoparticles.

    PubMed

    Cho, Yea Seul; Lee, Eun Jeong; Lee, Gwan-Ho; Hah, Sang Soo

    2015-12-01

    A new aptamer selection method using graphene oxide (GO)-adsorbed nanoparticles (GO-adsorbed NPs) was employed for specific fishing of palladium ion. High affinity ssDNA aptamers were isolated through 13 rounds of selection and the capacity of the selected DNA aptamers for palladium ion uptake was measured, clarifying that DNA01 exhibits the highest affinity to palladium ion with a dissociation constant (Kd) of 4.60±1.17 μM. In addition, binding ability of DNA01 to palladium ion was verified against other metal ions, such as Li(+), Cs(+), Mg(2+), and Pt(2+). Results of the present study suggest that future modification of DNA01 may improve palladium ion-binding ability, leading to economic recovery of palladium from water solution. PMID:26514743

  10. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.

    PubMed

    Srivastava, Niharika; Thakur, Amit K; Shahi, Vinod K

    2016-01-20

    Phosphorylated cellulose triacetate (CTA)/silica composite adsorbent was prepared by acid catalyzed sol-gel method using an inorganic precursor (3-aminopropyl triethoxysilane (APTEOS)). Reported composite adsorbent showed comparatively high adsorption capacity for Ni(II) in compare with different heavy metal ions (Cu(2+), Ni(2+), Cd(2+) and Pb(2+)). For Ni(II) adsorption, effect of time, temperature, pH, adsorbent dose and adsorbate concentration were investigated; different kinetic models were also evaluated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also estimated and equilibrium adsorption obeyed Langmuir and Freundlich isotherms. Developed adsorbent exhibited about 78.8% Ni(II) adsorption at pH: 6 and a suitable candidate for the removal of Ni(II) ions from wastewater. Further, about 65.5% recovery of adsorbed Ni(II) using EDTA solution was demonstrated, which suggested effective recycling of the functionalized beads would enable it to be used in the treatment of contaminated water in industry. PMID:26572476

  11. Characterization and Cadmium Ion-Removing Property of Adsorbents Synthesized from Inorganic Wastes

    NASA Astrophysics Data System (ADS)

    Ooishi, Kou; Ogino, Kana; Nishioka, Hiroshi; Muramatsu, Yasuji

    2011-10-01

    Adsorbents for removing cadmium ions from water were synthesized from inorganic wastes such as oyster shells, drinking-water-treatment sludge (DWTS), and waste glass. The oyster shells and DWTS were pretreated by heating for 2 h at 1173 K before hydrothermal synthesis was started. The Al/(Al+Si) ratio was adjusted, and then, the mixture of pretreated materials was hydrothermally treated in a sodium hydroxide solution for 72 h at 423 K to synthesize the adsorbents. The synthesized adsorbent specimens were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA) measurements, and scanning electron microscopy (SEM). The main components of these specimens were aluminum-substituted tobermorite and sodalite. The formation of sodalite was dependent on the mass ratio of DWTS to glass. The maximum amount of cadmium ions were removed when the mass ratio of the pretreated material was 1:1:1. In the cadmium removal test, the adsorbent with this mass ratio removed almost 100% of the cadmium in a solution with a concentration of 10 mg L-1. Even in the presence of a 1000-fold excess of potassium ions or 10000-fold excess of sodium ions, approximately 80% of the cadmium ions were removed.

  12. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  13. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  14. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  15. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    SciTech Connect

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  16. Oxygen Ion Cleaning Of Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Deguchi, T. J.; Sasaki, G. R.; Champetier, R. J.

    1987-06-01

    An experiment using low energy oxygen ions to clean organic films from bare aluminum mirrors was performed. Film removal was determined by measuring the reflectance of the mirrors in the ultraviolet region of the spectrum. The results of this study show that complete removal of hydrocarbon films is obtainable. This method may not be fully effective in removing silicon-based polymers. The removal rate for a hydrocarbon oil contami nant was determined to be 2.1 X 10-14 Å/ion.

  17. Negative thermal ion mass spectrometry of oxygen in phosphates

    NASA Astrophysics Data System (ADS)

    Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-06-01

    A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.

  18. Sputtering and secondary ion emission properties of alkali metal films and adsorbed monolayers

    SciTech Connect

    Krauss, A R; Gruen, D M

    1980-01-01

    The secondary ion emission of alkali metal adsorbed monlayer and multilayer films has been studied. Profiling with sub-monolayer resolution has been performed by Auger, x-ray photoemission and secondary ion mass spectroscopy. Characteristic differences in the sputtering yields, and ion fraction have been observed which are associated with both the surface bonding properties and the mechanism leading to the formation of secondary ions. By sputtering with a negative bias applied to the sample, positive secondary ions are returned to the surface, resulting in a reduced sputter-induced erosion rate. Comparison with the results obtained with K and Li overlayers sputtered without sample bias provides an experimental value of both the total and secondary ion sputtering yields. The first and second monolayers can be readily identified and the first monolayer exhibits a lower sputtering yield and higher secondary ion fraction. This result is related to adsorption theory and measured values are compared with those obtained by thermal desorption measurements.

  19. Aging effect in magnetotransport property of oxygen adsorbed BaFe2As2

    NASA Astrophysics Data System (ADS)

    Ghosh, Nilotpal; Raj, Santhosh

    2015-06-01

    Presence of oxygen (O2) has been found by Energy Dispersive X-ray Analysis (EDAX) on the surfaces of flux grown BaFe2As2 single crystals which were kept in air ambience for several months. Transport studies show that the O2 adsorbed crystals are more resistive and do not display any sharp slope change near 140 K which is the well known Spin Density Wave (SDW) transition temperature (TSDW) accompanying structural transition for as grown BaFe2As2. An anomalous slope change in resistivity is observed around 18 K at 0 and 5T. Magnetoresistance (MR) is noticed to increase as a function of applied field (H) quite differently than that for as grown crystals below TSDW which may be attributed to aging effect.

  20. Sunflower stalks as adsorbents for the removal of metal ions from wastewater

    SciTech Connect

    Sun, G.; Shi, W.

    1998-04-01

    Sunflower stalks as adsorbents for the removal of metal ions such as copper, cadmium, zinc, and chromium ions in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of four heavy metals are 29.3 mg/g (Cu{sup 2+}), 30.73 mg/g (Zn{sup 2+}), 42.18 mg/g (Cd{sup 2+}), and 25.07 mg/g (Cr{sup 3+}), respectively. Particle sizes of sunflower stalks affected the adsorption of metal ions; the finer size of particles showed better adsorption to the ions. Temperature also plays an interesting role in the adsorption of different metal ions. Copper, zinc, and cadmium exhibited lower adsorption on sunflower stalks at higher temperature, while chromium showed the opposite phenomenon. The adsorption rates of copper, cadmium, and chromium are quite rapid. Within 60 min of operation about 60--80% of these ions were removed from the solutions.

  1. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal. PMID:19299083

  2. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    PubMed

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. PMID:27474562

  3. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.

    PubMed

    Haryanto, Bode; Chang, Chien-Hsiang

    2015-01-01

    In this study, the interfacial properties of biosurfactant rhamnolipid were investigated and were applied to remove adsorbed heavy metal ions from sand surfaces with flushing operations. The surface tension-lowering activity, micelle charge characteristic, and foaming ability of rhamnolipid were identified first. For rhamnolipid in water, the negatively charged characteristic of micelles or aggregates was confirmed and the foaming ability at concentrations higher than 40 mg/L was evaluated. By using the rhamnolipid solutions in a batch washing approach, the potential of applying the interfacial properties of rhamnolipid to remove adsorbed copper ions from sand surfaces was then demonstrated. In rhamnolipid solution flushing operations for sand-packed medium, higher efficiency was found for the removal of adsorbed copper ions with residual type than with inner-sphere interaction type, implying the important role of interaction type between the copper ion and the sand surface in the removal efficiency. In addition, the channeling effect of rhamnolipid solution flow in the sand-packed medium was clearly observed in the solution flushing operations and was responsible for the low removal efficiency with low contact areas between solution and sand. By using rhamnolipid solution with foam to flush the sand-packed medium, one could find that the channeling effect of the solution flow was reduced and became less pronounced with the increase in the rhamnolipid concentration, or with the enhanced foaming ability. With the reduced channeling effect in the flushing operations, the removal efficiency for adsorbed copper ions was significantly improved. The results suggested that the foam-enhanced rhamnolipid solution flushing operation was efficient in terms of surfactant usage and operation time. PMID:25748376

  4. Adsorption of cadmium ions on oxygen surface sites in activated carbon

    SciTech Connect

    Jia, Y.F.; Thomas, K.M.

    2000-02-08

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved in the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.

  5. Orientation and order of aqueous organic ions adsorbed to a solid surface

    SciTech Connect

    Sukhishvili, S.A.; Granick, S.

    1999-01-21

    The adsorption and orientation of an aqueous organic ion with anisotropic shape (1,4-dimethylpyridinium, P{sup +}) at the surface of oxidized silicon carrying opposite charge (produced by conditions of high pH) were studied using polarized infrared spectroscopy in attenuated total reflection (FTIR-ATR). Orientation relative to the surface was quantified from the dichroic ratio of in-plane skeletal vibrations of the pyridinium ring (1643 and 1523 cm{sup {minus}1}), and the adsorbed amount was inferred from the intensity of these bands. The sticking energy of the organic ion was slightly larger than that of small inorganic ions of the same charge (Li{sup +}, Na{sup +}, Cs{sup +}). From relative quantities adsorbed in competitive adsorption, the relative sticking energy was quantified ({approximately}7k{sub B}T relative to Na{sup +} at pH = 9.2 and varying in the order Cs{sup +} > Na{sup +} > Li{sup +} by the total amount of 0.6k{sub B}T). At low ionic strength (no inorganic ions present except those in the buffer solution), P{sup +} stood preferably parallel to the surface when the surface coverage was low but more nearly upright both as its surface coverage increased and as the concentration of coadsorbed small ions increased. This shows the influence of steric packing on the orientation of this ion of asymmetric shape. The larger the hydrated diameter of the coadsorbed ion, the more the P{sup +} ion tilted away from the surface (H{sup +} < Li{sup +}, Na{sup +}, Cs{sup +} < Mg{sup 2+}). Furthermore, if the mass adsorbed exceeded a critical level, both the tilt and the amount adsorbed jumped in response to increasing P{sup +} concentration in bulk solution, with hysteresis upon dilution. This jump, together with the measured ellipsometric thickness and contact angle, suggests that the discontinuity involved structural change within a single monolayer. The organic ion thus behaved at the surface as an embryonic amphiphile, although in the bulk, micelle formation has

  6. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface

    NASA Astrophysics Data System (ADS)

    Feng, Zhuoluo A.; El Gabaly, Farid; Ye, Xiaofei; Shen, Zhi-Xun; Chueh, William C.

    2014-07-01

    Electrochemical incorporation reactions are ubiquitous in energy storage and conversion devices based on mixed ionic and electronic conductors, such as lithium-ion batteries, solid-oxide fuel cells and water-splitting membranes. The two-way traffic of ions and electrons across the electrochemical interface, coupled with the bulk transport of mass and charge, has been challenging to understand. Here we report an investigation of the oxygen-ion incorporation pathway in CeO2-δ (ceria), one of the most recognized oxygen-deficient compounds, during hydrogen oxidation and water splitting. We probe the response of surface oxygen vacancies, electrons and adsorbates to the electrochemical polarization at the ceria-gas interface. We show that surface oxygen-ion transfer, mediated by oxygen vacancies, is fast. Furthermore, we infer that the electron transfer between cerium cations and hydroxyl ions is the rate-determining step. Our in operando observations reveal the precise roles of surface oxygen vacancy and electron defects in determining the rate of surface incorporation reactions.

  7. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  8. Functionalized-MnO2/chitosan nanocomposites: A promising adsorbent for the removal of lead ions.

    PubMed

    Mallakpour, Shadpour; Madani, Maryam

    2016-08-20

    In the current study, the surface of alpha manganese dioxide nanorod (α-MnO2) functionalized with γ-aminopropyltriethoxysilane (APTS). The α-MnO2-APTS was used as filler for preparation of chitosan (CS) nanocomposites (NCs). The α-MnO2-APTS/CS NCs were crosslinked with different amount of glutaraldehyde (GA). The effects of the GA content on the morphology, thermal properties and adsorption of NC films were studied. The Fourier transform infrared (FT-IR) results verified the grafting of APTS onto α-MnO2. The amount of APTS grafted onto α-MnO2 was found to be 20wt% by thermo gravimetric analysis. Presented results also show that with increasing crosslinker agent concentration, the thermal stability of CS films were increased. The α-MnO2-APTS/CS NCs were tested and evaluated as a potential adsorbent for the removal of lead ions. The results showed that the adsorbent exhibited a favorable performance for the removal of lead ions. Therefore, α-MnO2-APTS/CS NCs could serve as promising adsorbents. PMID:27178908

  9. The effect of oxygen during irradiation of silicon with low energy Cs{sup +} ions

    SciTech Connect

    Berghmans, B.; Vandervorst, W.

    2009-08-01

    The effect of oxygen flooding during ultralow energy SIMS depth profiling of silicon with Cs{sup +} primary ions is presented. New experimental data show the effective sputtering yield of silicon in the presence of oxygen, as well as the energy distribution of the secondary Si{sup -} ions. It is found that the component sputtering yield of Si is very sensitive to minute amounts of oxygen in the proximity of the sputtered surface. At these very low flooding pressures (in the 10{sup -9}-10{sup -8} mbar range), one cannot account for a full oxidation in the time frame of a typical measurement; it is concluded that in this particular case, which is technologically very relevant, small traces of oxygen will change the desorption characteristics of cesium as well as silicon. It shows that oxygen that is adsorbed to the silicon surface provides an attachment site for impinging cesium ions and thereby increases the retention capacity of cesium tremendously. Also, oxygen changes the secondary ion yield and can even promote the desorption of Si from the analysis surface.

  10. Probing the photochemistry of chemisorbed oxygen on TiO2(110) with Kr and other co-adsorbates.

    PubMed

    Petrik, Nikolay G; Kimmel, Greg A

    2014-02-14

    Weakly-bound atoms and molecules (Ar, Kr, Xe, CO, CH4, CO2, CH3OH, N2O, and N2) are used to probe the photochemical interactions of chemisorbed oxygen on rutile TiO2(110). Ultraviolet irradiation of chemisorbed oxygen co-adsorbed with the probe species leads to photon-stimulated desorption (PSD) of some of the probe species (e.g. Kr and CH4), but not others (e.g. CO2 and N2O). Without chemisorbed oxygen, the PSD yields of all the probe species are very low or not observed. Surprisingly, both chemisorbed O2 and oxygen adatoms, Oa, are photo-active for desorption of Kr and other weakly-bound species. To our knowledge, this is the first evidence for photo-activity of Oa on TiO2(110). The Kr PSD yield increases with increasing coverage of Kr and of chemisorbed oxygen. For Kr, the angular distribution of the photodesorbed atoms is approximately cosine. The Kr distribution is quite different from the angular distribution for the O2 PSD, which is sharply peaked along the surface normal. We propose that various forms of chemisorbed oxygen are excited by reactions with electrons and/or holes created in the TiO2 substrate by UV photon irradiation. The photo-excited oxygen collides with, and transfers energy to, neighboring co-adsorbed atoms or molecules. For co-adsorbates with a small enough binding energy to the substrate, desorption may result. The observed phenomenon provides a new tool for studying photochemical processes. PMID:24346491

  11. Tailoring LaAlO3/SrTiO3 Interface Metallicity by Oxygen Surface Adsorbates.

    PubMed

    Dai, Weitao; Adhikari, Sanjay; Garcia-Castro, Andrés Camilo; Romero, Aldo H; Lee, Hyungwoo; Lee, Jung-Woo; Ryu, Sangwoo; Eom, Chang-Beom; Cen, Cheng

    2016-04-13

    We report an oxygen surface adsorbates induced metal-insulator transition at the LaAlO3/SrTiO3 interfaces. The observed effects were attributed to the terminations of surface Al sites and the resultant electron-accepting surface states. By controlling the local oxygen adsorptions, we successfully demonstrated the nondestructive patterning of the interface two-dimensional electron gas (2DEG). The obtained 2DEG structures are stable in air and also robust against general solvent treatments. This study provides new insights into the metal-insulator transition mechanism at the complex oxide interfaces and also a highly efficient technique for tailoring the interface properties. PMID:26928809

  12. Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media.

    PubMed

    Rodríguez-López, Joaquín; Alpuche-Avilés, Mario A; Bard, Allen J

    2008-12-17

    We introduce a new in situ electrochemical technique based on the scanning electrochemical microscope (SECM) operating in a transient feedback mode for the detection and direct quantification of adsorbed species on the surface of electrodes. A SECM tip generates a titrant from a reversible redox mediator that reacts chemically with an electrogenerated or chemically adsorbed species at a substrate of about the same size as the tip, which is positioned at a short distance from it (ca.1 microm). The reaction between the titrant and the adsorbate provides a transient positive feedback loop until the adsorbate is consumed completely. The sensing mechanism is provided by the contrast between positive and negative feedback, which allows a direct quantification of the charge neutralized at the substrate. The proposed technique allows quantification of the adsorbed species generated at the substrate at a given potential under open circuit conditions, a feature not attainable with conventional electrochemical methods. Moreover, the feedback mode allows the tip to be both the titrant generator and detector, simplifying notably the experimental setup. The surface interrogation technique we introduce was tested for the quantification of electrogenerated oxides (adsorbed oxygen species) on gold and platinum electrodes at neutral pH in phosphate and TRIS buffers and with two different mediator systems. Good agreement is found with cyclic voltammetry at the substrate and with previous results in the literature, but we also find evidence for the formation of "incipient oxides" which are not revealed by conventional voltammetry. The mode of operation of the technique is supported by digital simulations, which show good agreement with the experimental results. PMID:19053403

  13. Singlet oxygen production in superoxide ion-halocarbon systems

    SciTech Connect

    Kanofsky, J.R.

    1986-05-28

    A search for singlet oxygen chemiluminescence at 1268 nm was made in a number of reactions of superoxide ion. Carbon tetrachloride and carbon tetrabromide reacted with suspended potassium superoxide to produce 1268-nm emission consistent with singlet oxygen. Chloroform was less reactive but produced 1268-nm emission when the concentration of superoxide ion in the halocarbon phase was increased with 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6). The dismutation of superoxide ion in deuterium oxide was not accompanied by 1268-nm chemiluminescence. Less than 0.02 mol of singlet oxygen was produced per mole of superoxide ion between p/sup 2/H 6 and 9.

  14. Pickup ions near Mars associated with escaping oxygen atoms

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Hoppe, A.; Ledvina, S. A.; McKenna-Lawlor, S.

    2002-08-01

    Ions produced by ionization of Martian neutral atoms or molecules and picked up by the solar wind flow are expected to be an important ingredient of the Martian plasma environment. Significant fluxes of energetic (55-72 keV) oxygen ions were recorded in the wake of Mars and near the bow shock by the solar low-energy detector (SLED) charged particle detector onboard the Phobos 2 spacecraft. Also, copious fluxes of oxygen ions in the ranges 0.5-25 and 0.01-6 keV/q were detected in the Martian wake by the Automatic Space Plasma Experiment with Rotating Analyzer (ASPERA) instrument on Phobos 2. This paper provides a quantitative analysis of the SLED energetic ion data using a test particle model in which one million ion trajectories were numerically calculated. These trajectories were used to determine the ion flux as a function of energy in the vicinity of Mars for conditions appropriate for Circular Orbit 42 of Phobos 2. The electric and magnetic fields required by the test particle model were taken from a three-dimensional magnetohydrodynamic (MHD) model of the solar wind interaction with Mars. The ions were started at rest with a probability proportional to the density expected for exospheric hot oxygen. The test particle model supports the identification of the ions observed in channel 1 of the SLED instrument as pick-up oxygen ions that are created by the ionization of oxygen atoms in the distant part of the exosphere. The flux of 55-72 keV oxygen ions near the orbit of the Phobos 2 should be proportional to the oxygen density at radial distances from Mars of about 10 Rm (Martian radii) and hence proportional to the direct oxygen escape rate from Mars that is an important part of the overall oxygen loss rate at Mars. The modeled energetic oxygen fluxes also exhibit a spin modulation as did the SLED fluxes during Circular Orbit 42.

  15. Free energy of electrical double layers: Entropy of adsorbed ions and the binding polynomial

    SciTech Connect

    Stigter, D.; Dill, K.A. )

    1989-09-07

    The authors adapt the method of binding polynomials to general problems of binding equilibria of ions to polybases, polyacids, and mixed polyelectrolytes, such as proteins and other colloids. For spherical particles with a smeared charge the interaction effects are taken into account using the Poisson-Boltzmann equation, which is shown to differ little from the Debye-Hueckel approximation under conditions met in most protein solutions. Examples are given of the salt dependence of pH titration equilibria. Binding polynomials produce an extra term in the free energy of the electrical double layer, which arises from the entropy of the adsorbed ions. The maximum term method applied to the binding polynominal yields an expression which is similar to that derived by the charging process of Chan and Mitchell. Applications to monolayers and to polyelectrolyte gels are also discussed.

  16. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions.

    PubMed

    Ibrahim, M N Mohamad; Ngah, W S Wan; Norliyana, M S; Daud, W R Wan; Rafatullah, M; Sulaiman, O; Hashim, R

    2010-10-15

    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism. PMID:20619537

  17. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    SciTech Connect

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-03

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  18. Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents.

    PubMed

    Djati Utomo, H; Hunter, K A

    2006-01-01

    The adsorption of the divalent cations of Cu, Zn, Cd and Pb by tea leaves and coffee grounds from aqueous solutions is described. Both adsorbents exhibited strong affinity for these ions which could be described by a simple single-site equilibrium model. For coffee, the order of increasing adsorption equilibrium constant K was Cu < Pb < Zn < Cd, while for tea the opposite order was observed indicating that the adsorption sites on each adsorbent have a different chemical nature. Adsorption decreased at low pH < 4 through competition with H+ for adsorption sites, and for all metals except Cu, at high pH > 10, probably because of anion formation in the case of Zn2+ and also increased leaching of metal-binding soluble materials. The effect of metal ion concentration on the adsorptive equilibria indicated a threshold concentration above which overall adsorption became limited by saturation of the adsorption sites. Competition between two metal ions for the same sites was not observed with Cu(II) and Pb(II), however Zn(II) reacted competitively with Cd(II) binding sites on both tea and coffee. If fresh coffee or tea adsorbents were used, the fraction of metal ion taken up by the adsorbent was diminished by the competitive effects of soluble metal-binding ligands released by the tea or coffee. Experiments with coffee showed that roasting temperature controls the formation of metal ion adsorption sites for this adsorbent. PMID:16457172

  19. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  20. Ethylene and oxygen species adsorbed on a defect oxidized surface Ag(1 1 1) . Theoretical analysis by DFT method

    NASA Astrophysics Data System (ADS)

    Avdeev, Vasilii I.; Zhidomirov, Georgii M.

    2001-10-01

    We suggest a cluster model AS v→Ag12-3O of the oxidized surface Ag(1 1 1) with a defect. The defect is simulated by cationic vacancy V. Density functional theory (B3LYP/LANL1MB approximation) is used to calculate ethylene and oxygen adsorption on the regular (AS r) and defect (AS d) sites on the Ag(1 1 1). Oxygen interaction with site AS r produces atomic oxygen species (AS r-O). Oxygen adsorption on site AS d is accompanied by its association with subsurface oxygen atoms to form a quasimolecular structure of metal ozonide type -Ag-O-O ep-O-Ag-, containing electrophilic oxygen O ep. Energies of atomic oxygen binding to the regular and defect surfaces are found to be approximately equal. On the regular surface, ethylene forms a π-complex with binding energy Eπ(Ag-C 2H 4)=14.2 kcal/mol. On the defect surface, ethylene produces a metal-ethylene-peroxide cycle such as Ag-O-O-C 2H 4-Ag. Determined are the frequencies of normal vibration for ethylene and oxygen species, adsorbed on the regular and defect surfaces. In the case of associative oxygen species and complete isotope replacement 16O→ 18O, the main frequency at 1000 cm -1 shifts by Δν=57-61 cm -1, but this shift decreases to Δν=25-30 cm -1 for isotope mixtures 16O/ 18O. For the adsorbed species of ethylene-oxygen mixtures, IR spectra show the frequencies within which 170-180 cm -1 are associated with stretching of bond Ag-C. Frequencies at 300-490 cm -1 are assigned to mode ν(Ag-O) of the functional group Ag-O-O ep-O-Ag. The most intensive modes at 950 and 600 cm -1 are likely to stretching and bending of the functional groups containing the O-O-O and O-O-C bonds.

  1. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    PubMed

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents. PMID:26948763

  2. Modeling the construction of polymeric adsorbent media: Effects of counter-ions on ligand immobilization and pore structure

    NASA Astrophysics Data System (ADS)

    Riccardi, Enrico; Wang, Jee-Ching; Liapis, Athanasios I.

    2014-02-01

    Molecular dynamics modeling and simulations are employed to study the effects of counter-ions on the dynamic spatial density distribution and total loading of immobilized ligands as well as on the pore structure of the resultant ion exchange chromatography adsorbent media. The results show that the porous adsorbent media formed by polymeric chain molecules involve transport mechanisms and steric resistances which cause the charged ligands and counter-ions not to follow stoichiometric distributions so that (i) a gradient in the local nonelectroneutrality occurs, (ii) non-uniform spatial density distributions of immobilized ligands and counter-ions are formed, and (iii) clouds of counter-ions outside the porous structure could be formed. The magnitude of these counter-ion effects depends on several characteristics associated with the size, structure, and valence of the counter-ions. Small spherical counter-ions with large valence encounter the least resistance to enter a porous structure and their effects result in the formation of small gradients in the local nonelectroneutrality, higher ligand loadings, and more uniform spatial density distributions of immobilized ligands, while the formation of exterior counter-ion clouds by these types of counter-ions is minimized. Counter-ions with lower valence charges, significantly larger sizes, and elongated shapes, encounter substantially greater steric resistances in entering a porous structure and lead to the formation of larger gradients in the local nonelectroneutrality, lower ligand loadings, and less uniform spatial density distributions of immobilized ligands, as well as substantial in size exterior counter-ion clouds. The effects of lower counter-ion valence on pore structure, local nonelectroneutrality, spatial ligand density distribution, and exterior counter-ion cloud formation are further enhanced by the increased size and structure of the counter-ion. Thus, the design, construction, and functionality of

  3. Modeling the construction of polymeric adsorbent media: effects of counter-ions on ligand immobilization and pore structure.

    PubMed

    Riccardi, Enrico; Wang, Jee-Ching; Liapis, Athanasios I

    2014-02-28

    Molecular dynamics modeling and simulations are employed to study the effects of counter-ions on the dynamic spatial density distribution and total loading of immobilized ligands as well as on the pore structure of the resultant ion exchange chromatography adsorbent media. The results show that the porous adsorbent media formed by polymeric chain molecules involve transport mechanisms and steric resistances which cause the charged ligands and counter-ions not to follow stoichiometric distributions so that (i) a gradient in the local nonelectroneutrality occurs, (ii) non-uniform spatial density distributions of immobilized ligands and counter-ions are formed, and (iii) clouds of counter-ions outside the porous structure could be formed. The magnitude of these counter-ion effects depends on several characteristics associated with the size, structure, and valence of the counter-ions. Small spherical counter-ions with large valence encounter the least resistance to enter a porous structure and their effects result in the formation of small gradients in the local nonelectroneutrality, higher ligand loadings, and more uniform spatial density distributions of immobilized ligands, while the formation of exterior counter-ion clouds by these types of counter-ions is minimized. Counter-ions with lower valence charges, significantly larger sizes, and elongated shapes, encounter substantially greater steric resistances in entering a porous structure and lead to the formation of larger gradients in the local nonelectroneutrality, lower ligand loadings, and less uniform spatial density distributions of immobilized ligands, as well as substantial in size exterior counter-ion clouds. The effects of lower counter-ion valence on pore structure, local nonelectroneutrality, spatial ligand density distribution, and exterior counter-ion cloud formation are further enhanced by the increased size and structure of the counter-ion. Thus, the design, construction, and functionality of

  4. Removal of copper ions from aqueous solution by adlai shell (Coix lacryma-jobi L.) adsorbents.

    PubMed

    de Luna, Mark Daniel G; Flores, Edgar D; Cenia, Marie Chela B; Lu, Ming-Chun

    2015-09-01

    Adlai shell (Coix lacryma-jobi L.) adsorbents (ASA) were used to remove copper ions from aqueous solutions under batch conditions. The effect of physical and chemical modification of ASA on Cu(II) removal was evaluated. Results showed that the high coefficients of determination for the pseudo-second order (R(2) > 0.9999) and for the intraparticle diffusion (R(2) > 0.9843) equations indicate that the rate-determining step is a combination of pore diffusion and chemisorption at low Cu(II) concentration and boundary layer, pore diffusion and chemisorption at high Cu(II) concentration. At 298K and 100 mg L(-1) Cu(II), the computed qe and k2 values were 17.2 mg g(-1) and 0.012 g mg(-1) min(-1), respectively. The Freundlich model (R(2) > 0.9636) adequately describes the experimental data indicating heterogeneous adsorption. Overall, the results of the study demonstrate the potential of adlai shell adsorbents for the removal of heavy metals from aqueous solutions. PMID:26081160

  5. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  6. Custom-tailored adsorbers: A molecular dynamics study on optimal design of ion exchange chromatography material.

    PubMed

    Lang, Katharina M H; Kittelmann, Jörg; Pilgram, Florian; Osberghaus, Anna; Hubbuch, Jürgen

    2015-09-25

    The performance of functionalized materials, e.g., ion exchange resins, depends on multiple resin characteristics, such as type of ligand, ligand density, the pore accessibility for a molecule, and backbone characteristics. Therefore, the screening and identification process for optimal resin characteristics for separation is very time and material consuming. Previous studies on the influence of resin characteristics have focused on an experimental approach and to a lesser extent on the mechanistic understanding of the adsorption mechanism. In this in silico study, a previously developed molecular dynamics (MD) tool is used, which simulates any given biomolecule on resins with varying ligand densities. We describe a set of simulations and experiments with four proteins and six resins varying in ligand density, and show that simulations and experiments correlate well in a wide range of ligand density. With this new approach simulations can be used as pre-experimental screening for optimal adsorber characteristics, reducing the actual number of screening experiments, which results in a faster and more knowledge-based development of custom-tailored adsorbers. PMID:26319376

  7. Fragmentation of molecular adsorbates by electron and ion bombardment: methoxy chemistry on Al(111)

    SciTech Connect

    Basu, P.; Chen, J.G.; Ng, L.; Colaianni, M.L.; Yates, J.T.

    1988-08-15

    High-resolution electron-energy-loss spectroscopy (HR)EELS has been used successfully to provide direct spectroscopic evidence regarding details of the molecular fragmentation of methoxy (CH3O) on Al(lll) caused by energetic electron and ion beams. Chemisorbed methoxy on Al(lll) is produced by heating of absorbed CH3OH. Irradiation of CH3O(a) by either energetic (approx 300 eV) electrons or Ar+ ions results in C-O and C-H bond scission with simultaneous formation of Al-O and Al-C bonds. During electron stimulated desorption the CH3O(a) species undergo sequential fragmentation first to CHx groups that are captured by the surface and in the final decay process to adsorbed carbon. C-O bonds in CH3O9a) are depleted preferentially compared to C-H bonds in CHx(a) species. The electron-induced sequential fragmentation of the patent CH3 group (from methoxy) to resultant CHx(a) occurs with an efficiency approx. 3 orders of magnitude greater than the subsequent process of CHx(a)=C(a). Cross sections for various bond scission processes in electron and ion bombardment have been estimated.

  8. Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Pochard, Isabelle; Frykstrand, Sara; Ahlström, Olle; Forsgren, Johan; Strømme, Maria

    2014-01-01

    Porous materials are used in application areas ranging from drug and vaccine delivery, medical implants, molecular sieves and cosmetics to catalysis and humidity control. In the present work, we employed an alternative approach to gain in-depth understanding about water interaction properties in such materials by the use of dielectric spectroscopy and thereby show that it is possible to obtain information that is not accessible from the more commonly employed water interaction analysis techniques. Specifically, the complex dielectric response of Upsalite, a novel, super-hydroscopic, high-surface area, porous magnesium carbonate material was measured in isothermal frequency scans between 10-3 and 106 Hz at controlled relative humidity (RH). We found the dielectric constant of the dry material to be 1.82. The ratio of bound to free water present in Upsalite after adsorption at room temperature was found to be high irrespective of the surrounding humidity with values ranging from ˜67% to ˜90%. We further found that OH- ions are the charge carriers responsible for the electrode polarization observed in the dielectric response and that the amount of these ions that are free to move in the material corresponds to a concentration of the order of 1-10 μmol l-1 independent of RH. Finally, the OH- diffusion coefficient displayed a drastic decrease with decreasing RH, typical of transport in unsaturated conditions. The presented results provide detailed insight about water interactions in the novel water adsorbing material under study and it is foreseen that the employed analysis methods can be used to evaluate other types of moisture adsorbing materials as well as the movement of functional species in the pores of inorganic drug delivery materials and materials tailored for adsorption of harmful charged species.

  9. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions.

    PubMed

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan; Zhang, Chaoliang; Wang, Xu; Liu, Xiangyang

    2016-04-01

    To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Qe) for Cu(2+) of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300°C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments. PMID:26736172

  10. The effect of ammonium ions on oxygen reduction and hydrogen peroxide formation on polycrystalline Pt electrodes

    NASA Astrophysics Data System (ADS)

    Halseid, Rune; Heinen, Martin; Jusys, Zenonas; Jürgen Behm, R.

    The influence of ammonium ions on the activity and selectivity of the electrocatalytic oxygen reduction reaction (ORR) on polycrystalline Pt was investigated in model studies under continuous mass transport, both in sulfuric and perchloric acid solutions. Ammonium was found to increase the yield of hydrogen peroxide, particularly in sulfuric acid, but also in perchloric acid solutions, and also at higher potentials (0.80-0.90 V RHE) typical for fuel cell cathode operation, which may severely impair the long-term stability of membranes and electrodes in fuel cells exposed to fuel gases and/or air containing ammonia. Adsorbed species, assigned to ammonia and nitric oxide, were identified on a Pt film electrode using in situ FTIR spectroscopy. Adsorbed nitric oxide could only be observed in perchloric acid solutions. The higher coverage of adsorbed ammonia in sulfuric acid solution is attributed to a stabilization by coadsorbed (bi-)sulfate species; the higher total coverage in this electrolyte can explain the larger effect of ammonium ions on the ORR activity and selectivity in sulfuric compared to perchloric acid solution.

  11. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  12. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  13. Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Zong, Xian-Li; Zhu, Rong

    2015-10-01

    The ultraviolet (UV) photoresponses of ZnO nanorods directly grown on and between two micro Au-electrodes by using electric-field-assisted wet chemical method are measured comprehensively under different conditions, including ambient environment, applied bias voltage, gate voltage and temperature. Experimental results indicate that the photoresponses of the ZnO nanorods can be modulated by surface oxygen adsorptions, applied voltages, as well as temperatures. A model taking into account both surface adsorbed oxygen and electron-hole activities inside ZnO nanorods is proposed. The enhancement effect of the bias voltage on photoresponse is also analyzed. Experimental results shows that the UV response time (to 63%) of ZnO nanorods in air and at 59 °C could be shortened from 34.8 s to 0.24 s with a bias of 4 V applied between anode and cathode. Project supported by the National Natural Science Foundation of China (Grant No. 91123017).

  14. Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater.

    PubMed

    Xu, Mingze; Wei, Guodong; Liu, Na; Zhou, Liang; Fu, Chengwei; Chubik, M; Gromov, A; Han, Wei

    2014-01-21

    Reclaimable adsorbents have a critical application in the adsorption of radioactive materials. In this study, the novel bio-nanocomposites comprising fungi and titanate nanotubes are successfully synthesized by a simple and low-cost method. Morphological characterizations and composite mechanism analysis confirm that the composites are sufficiently stable to avoid dust pollution resulting from the titanate nanomaterials. Adsorption experiments demonstrate that the bio-nanocomposites are efficient adsorbents with a saturated sorption capacity as high as 120 mg g(-1) (1.75 meq. g(-1)) for Ba(2+) ions. The results suggest that the bio-nanocomposites can be used as promising radioactive adsorbents for removing radioactive ions from water caused by nuclear leakage. PMID:24287628

  15. Adsorbed Oxygen Molecules as a Possible Source of Flux Noise in SQUIDs

    NASA Astrophysics Data System (ADS)

    Shi, Chuntai; Wang, Hui; Hu, Jun; Yu, Clare; Wu, Ruqian

    2015-03-01

    One of the dominant source of flux noise in SQUIDs is flux noise which has been attributed to mysterious fluctuating magnetic spins on the surface. We propose that the spins producing flux noise could be adsorbed O2 molecules that have a magnetic moment of about 2 μB. Using density functional calculations, we studied O2 molecules adsorbed on a sapphire surface. We find that the barrier for spin rotation is small enough to allow almost free spin reorientation due to thermal excitations at low temperatures. Monte Carlo simulations of a 2D XY spin model yields 1 / f noise where f is frequency. This work was supported by 1000 Talent Program of China through Fudan University. Work at UCI was supported by DOE-BES (Grant No. DE-FG02-05ER46237) and the Army Research Office (Grant No. W911NF-10-1-0494).

  16. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  17. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA.

    PubMed

    Feng, Guodong; Jiang, Luan; Wen, Puhong; Cui, Yali; Li, Hong; Hu, Daodao

    2011-11-21

    A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity. PMID:21966668

  18. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. PMID:26905881

  19. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  20. A [sup 13]C NMR study of ethylene adsorbed on reduced and oxygen-covered Ag surfaces

    SciTech Connect

    Plischke, J.K.; Benesi, A.J.; Vannice, M.A. )

    1992-11-01

    [sup 13]C-enriched ethylene was adsorbed on both clean and oxygen-covered Ag particles dispersed on [eta]-Al[sub 2]O[sub 3]. Irreversibly adsorbed C[sub 2]H[sub 4] on O-covered Ag exhibited an upfield shift of [minus]20 ppm relative to gas-phase C[sub 2]H[sub 4], whereas a narrower line and smaller shift of [minus]5 ppm occurred for C[sub 2]H[sub 4] reversibly adsorbed on reduced Ag. In addition to the resonance at 103 ppm for irreversibly adsorbed C[sub 2]H[sub 4], CP/MAS NMR spectra also gave resonances at 179, 170, 164, 159, and 19 ppm for the O-covered Ag sample. The CP/MAS spectrum for Ag acetate powder clearly identified the 179- and 19-ppm peaks as those associated with the carboxyl and methyl carbons of the acetate anion, and the peaks at 159, 164, and 170 ppm were assigned to oxalate, formate, and carbonate (or possibly acetic anhydride) species, respectively, based on previous studies. When heated to 473 K the adsorbed C[sub 2]H[sub 4] disappeared and only acetate and oxalate groups were observed, and continued heating to 573 K removed almost all resonances. No C[sub 2]H[sub 4]O was unambiguously detected, thus with this unpromoted Ag catalyst utilizing a high-surface-area alumina the observable surface species appeared to be those associated with complete combustion, with acetate and oxalate predominating during reaction. These results directly confirm the presence of an Ag acetate species which has been proposed previously to be an intermediate in complete combustion, and the presence of the other three species support earlier tentative assignments based on IR and TPR spectroscopy. Chemical shifts at 61, 28, and 13 ppm were indicative of alkoxy species formed on Bronsted-acid sites on the Al[sub 2]O[sub 3] surface. 58 refs., 8 figs., 4 tabs.

  1. In-situ leaching of South Texas uranium ores - 2. Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Johnson, W.F.; Fletcher, A.; Venuto, P.B.

    1981-01-01

    This paper reports a laboratory study of the oxidative destruction, by sodium hypochlorite, of ammonium ions adsorbed on relatively reduced South Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% sodium hypochlorite with the concentration of ammonia in the effluent falling to a very low value after 10-15 pore volumes of the oxidant. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed. Large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the pre-saturation with ammonium bicarbonate during the oxidation stage. 28 refs.

  2. The effect of surface modification on heavy metal ion removal from water by carbon nanoporous adsorbent

    NASA Astrophysics Data System (ADS)

    Baniamerian, M. J.; Moradi, S. E.; Noori, A.; Salahi, H.

    2009-12-01

    In this work, chemically oxidized mesoporous carbon (COMC) with excellent lead adsorption performance was prepared by an acid surface modification method from mesoporous carbon (MC) by wet impregnation method. The structural order and textural properties of the mesoporous materials were studied by XRD, SEM, and nitrogen adsorption. The presence of carboxylic functional groups on the carbon surface was confirmed by FT-IR analysis. Batch adsorption experiments were conducted to study the effect of adsorbent dose, initial concentration and temperature for the removal of Pb(II) from aqueous systems. The adsorption was maximum for the initial pH in the range of 6.5-8.0. The kinetic data were best fitted to the pseudo-second order model. The adsorption of chemically oxidized mesoporous carbon to Pb(II) fits to the Langmuir model. The larger adsorption capacity of chemically oxidized mesoporous carbon for Pb(II) is mainly due to the oxygenous functional groups formed on the surface of COMC which can react with Pb(II) to form salt or complex deposited on the surface of MC.

  3. Formation, characterization and reactivity of adsorbed oxygen on BaO/Pt(111)

    SciTech Connect

    Mudiyanselage, Kumudu; Mei, Donghai; Yi, Cheol-Woo; Weaver, Jason F.; Szanyi, Janos

    2010-12-02

    The formation of adsorbed O (Oad) species and their reactivities in CO oxidation on BaO/Pt(111) (at two BaO coverages) were studied with temperature programmed desorption (TPD), infrared reflection absorption (IRA) and X-ray photoelectron (XP) spectroscopies. In neither of these two systems was the Pt(111) surface completely covered with BaO. On the system with lower BaO coverage (~45 % of the Pt(111) surface is covered by BaO), two different Oad species form following the adsorption of O2 at 300 K: O adsorbed on BaO-free Pt(111) sites (OPt) and at the Pt-BaO interface (Oint). On the system with higher BaO coverage (~60 % of the Pt(111) surface is covered by BaO), two types of Oint are seen at the Pt-BaO interface. The desorption of OPt from the BaO-free portion of the Pt(111) surface gives an O2 desorption peak with a maximum desorption rate at ~690 K. Migration of Oint to the Pt(111) sites and their recombinative desorption give two explosive desorption features at ~760 and ~790 K in the TPD spectrum. The reactivities of these Oad species with CO to form CO2 follow their sequence of desorption; i.e., the OPt associated with the BaO-free Pt(111) surface, which desorbs at 690 K, reacts first with CO, followed by the Oint species at the Pt-BaO interface (first the one that desorbs at ~760 K and finally the one that is bound the most strongly to the interface, and desorbs at ~790 K). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30°C at pH 6.0 using 20g/L dose in 120min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20g/L dose, also in 120min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate. PMID:26919299

  5. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants.

    PubMed

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m(2)/g, a large pore volume of 1.66 cm(3)/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr(3+), Co(2+), Ni(2+), Ce(3+), Pb(2+)) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  6. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-11-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation.

  7. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants

    PubMed Central

    Li, Jie; Xiao, Xing; Xu, Xuewen; Lin, Jing; Huang, Yang; Xue, Yanming; Jin, Peng; Zou, Jin; Tang, Chengchun

    2013-01-01

    Novel activated boron nitride (BN) as an effective adsorbent for pollutants in water and air has been reported in the present work. The activated BN was synthesized by a simple structure-directed method that enabled us to control the surface area, pore volume, crystal defects and surface groups. The obtained BN exhibits an super high surface area of 2078 m2/g, a large pore volume of 1.66 cm3/g and a special multimodal microporous/mesoporous structure located at ~ 1.3, ~ 2.7, and ~ 3.9 nm, respectively. More importantly, the novel activated BN exhibits an excellent adsorption performance for various metal ions (Cr3+, Co2+, Ni2+, Ce3+, Pb2+) and organic pollutants (tetracycline, methyl orange and congo red) in water, as well as volatile organic compounds (benzene) in air. The excellent reusability of the activated BN has also been confirmed. All the features render the activated BN a promising material suitable for environmental remediation. PMID:24220570

  8. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2. PMID:25244407

  9. Aging effect in magnetotransport property of oxygen adsorbed BaFe{sub 2}As{sub 2}

    SciTech Connect

    Ghosh, Nilotpal E-mail: nilotpal@vit.ac.in; Raj, Santhosh

    2015-06-24

    Presence of oxygen (O{sub 2}) has been found by Energy Dispersive X-ray Analysis (EDAX) on the surfaces of flux grown BaFe{sub 2}As{sub 2} single crystals which were kept in air ambience for several months. Transport studies show that the O{sub 2} adsorbed crystals are more resistive and do not display any sharp slope change near 140 K which is the well known Spin Density Wave (SDW) transition temperature (T{sub SDW}) accompanying structural transition for as grown BaFe{sub 2}As{sub 2}. An anomalous slope change in resistivity is observed around 18 K at 0 and 5T. Magnetoresistance (MR) is noticed to increase as a function of applied field (H) quite differently than that for as grown crystals below T{sub SDW} which may be attributed to aging effect.

  10. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode. PMID:26389522

  11. K-shell Photoabsorption of Oxygen Ions

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Mendoza, C.; Bautista, M. A.; Gorczyca, T. W.; Kallman, T. R.; Palmeri, P.

    2005-01-01

    The high spectral resolutions of the Chandra and XMM-Newton X-ray observatories have unveiled the useful diagnostic possibilities of oxygen K absorption. To mention a few, strong O VII and O VIII edges are almost ubiquitous in the spectra of Seyfert 1 galaxies which have been used by Lee et al. (2001) to predict of a warm dust absorber along the line of sight; although this conclusion has been criticized in the light of a data reanalysis (SA0 et al. 2003), Steenbrugge et al. (2003) have detected inner-shell transitions of O III-O VI in the spectrum of NGC 5548 that point to a warm absorber that spans three orders of magnitude in ionization parameter. Moreover, Behar et al. (2003) have stressed that, in the case of both Seyfert 1 and Seyfert 2 galaxies, a broad range of oxygen charge states are usually observed along the line of sight that must be fitted simultaneously, and may imply strong density gradients of 2-4 orders of magnitude over short distances.

  12. Loss of atomic oxygen in mass spectrometer ion sources.

    NASA Technical Reports Server (NTRS)

    Lake, L. R.; Nier, A. O.

    1973-01-01

    A gas beam consisting of a mixture of atomic and molecular oxygen has been directed at the ion source of a mass spectrometer like those used in sounding rockets for determining the neutral composition of the lower thermosphere. The loss of atomic oxygen on mass spectrometer surfaces was evaluated by flagging the beam in several ways and comparing the experimental results with predicted values. The results obtained suggest that in rocket flights using similar instruments the atomic oxygen densities computed assuming no-loss conditions may be low by a factor of 2.5. Studies made using a beam containing tracer O-18 indicate that carbon dioxide observed when atomic oxygen enters the source is formed in a reaction involving atomic oxygen from the beam and carbon monoxide from the surfaces bombarded.

  13. Effect of Oxygen Adsorbates on Terahertz Emission Properties of Various Semiconductor Surfaces Covered with Graphene

    NASA Astrophysics Data System (ADS)

    Bagsican, Filchito Renee; Zhang, Xiang; Ma, Lulu; Wang, Minjie; Murakami, Hironaru; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro; Tonouchi, Masayoshi; Kawayama, Iwao

    2016-07-01

    We have studied coherent terahertz (THz) emission from graphene-coated surfaces of three different semiconductors—InP, GaAs, and InAs—to provide insight into the influence of O2 adsorption on charge states and dynamics at the graphene/semiconductor interface. The amplitude of emitted THz radiation from graphene-coated InP was found to change significantly upon desorption of O2 molecules by thermal annealing, while THz emission from bare InP was nearly uninfluenced by O2 desorption. In contrast, the amount of change in the amplitude of emitted THz radiation due to O2 desorption was essentially the same for graphene-coated GaAs and bare GaAs. However, in InAs, neither graphene coating nor O2 adsorption/desorption affected the properties of its THz emission. These results can be explained in terms of the effects of adsorbed O2 molecules on the different THz generation mechanisms in these semiconductors. Furthermore, these observations suggest that THz emission from graphene-coated semiconductors can be used for probing surface chemical reactions (e.g., oxidation) as well as for developing O2 gas sensor devices.

  14. Polarizabilities of Halide Ions Co-Adsorbed on Silver Nanoparticles and Their Relationship to Increased Surface-Enhanced Raman Intensities of Rhodamine-6G and Pyridine

    NASA Astrophysics Data System (ADS)

    Cole, Michael; Jagodzinski, Paul

    2013-03-01

    Glaspell et. al. (2004), found a linear relationship between the intensities of surface-enhanced Raman (SER) signals of selected vibrational modes of rhodamine-6G (R6G) and the polarizabilities of co-adsorbed halide ions. Furthermore, they noticed that the slopes of intensity versus time plots for R6G also exhibit a linear relationship with the halide polarizabilities. We will present similar results from the SER signals from selected vibrational modes of pyridine and the polarizabilities of co-adsorbed halide ions. In addition, we will present a plausible relationship between the adsorbates and the electric field of the induced dipole of the halide ions.

  15. Sputtering of oxygen ice by low energy ions

    NASA Astrophysics Data System (ADS)

    Muntean, E. A.; Lacerda, P.; Field, T. A.; Fitzsimmons, A.; Hunniford, C. A.; McCullough, R. W.

    2015-11-01

    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer Solar system. These ices are continuously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2 +, N2 + and O2 +) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yields for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.

  16. Use of immobilized metal ions as a negative adsorbent for purification of enzymes: application to phosphoglycerate mutase from chicken muscle extract and horseradish peroxidase.

    PubMed

    Chaga, G; Andersson, L; Ersson, B; Berg, M

    1992-01-01

    Two enzymes, phosphoglycerate mutase and peroxidase, were purified by using an immobilized metal ion adsorbent for the removal of unwanted proteins. The mutase was obtained pure from a single column, whereas the purification of peroxidase required the use of a thiophilic adsorbent in a tandem. The capacity was 2.5 mg pure peroxidase per mL gel. PMID:1386542

  17. Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase

    PubMed Central

    Zerball, Maximilian; Horch, Marius; Millo, Diego; Fritsch, Johannes; Lenz, Oliver; von Klitzing, Regine; Hildebrandt, Peter; Fischer, Anna; Mroginski, Maria Andrea; Zebger, Ingo

    2015-01-01

    Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H2 conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme. PMID:26580976

  18. Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase.

    PubMed

    Heidary, Nina; Utesch, Tillmann; Zerball, Maximilian; Horch, Marius; Millo, Diego; Fritsch, Johannes; Lenz, Oliver; von Klitzing, Regine; Hildebrandt, Peter; Fischer, Anna; Mroginski, Maria Andrea; Zebger, Ingo

    2015-01-01

    Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H2 conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme. PMID:26580976

  19. The Role of Oxygen in the Formation of TNT Product Ions in Ion Mobility Spectrometry

    SciTech Connect

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon

    2002-03-01

    The atmospheric pressure ionization of 2,4,6-trinitrotoluene (TNT) in air yields the (TNT-H)- product ion. It is generally accepted that this product ion is formed by the direct proton abstraction of neutral TNT by O2- reactant ions. Data presented here demonstrate the reaction involves the formation of an intermediate (TNT·O2)-, from the association of either TNT+O2- or TNT-+O2. This intermediate has two subsequent reaction branches. One of these branches involves simple dissociation of the intermediate to TNT-; the other branch is a terminal reaction that forms the typically observed (TNT-H)- ion via proton abstraction. The dissociation reaction involving electron transfer to TNT- appeared to be kinetically favored and prevailed at low concentrations of oxygen (less than 2%). The presence of significant amounts of oxygen, however, resulted in the predominant formation of the (TNT-H)- ion by the terminal reaction branch. With TNT- in the system, either from direct electron attachment or by simple dissociation of the intermediate, increasing levels of oxygen in the system will continue to reform the intermediate, allowing the cycle to continue until proton abstraction occurs. Key to understanding this complex reaction pathway is that O2- was observed to transfer an electron directly to neutral TNT to form the TNT-. At oxygen levels of less than 2%, the TNT- ion intensity increased with increasing levels of oxygen (and O2-) and was larger than the (TNT-H)- ion intensity. As the oxygen level increased from 2 to 10%, the (TNT-H)- product ion became predominant. The potential reaction mechanisms were investigated with an ion mobility spectrometer, which was configured to independently evaluate the ionization pathways.

  20. Modeling of Transmittance Degradation Caused by Optical Surface Contamination by Atomic Oxygen Reaction with Adsorbed Silicones

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward

    2001-01-01

    A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.

  1. Ring current instabilities excited by the energetic oxygen ions

    SciTech Connect

    Kakad, A. P.; Singh, S. V.; Lakhina, G. S.

    2007-09-15

    The ring current instabilities driven by the energetic oxygen ions are investigated during the magnetic storm. The electrons and protons are considered to have Maxwellian distributions, while energetic oxygen ions are having loss-cone distribution. Dispersion relation for the quasielectrostatic modes with frequencies {omega}>{omega}{sub cp} (proton cyclotron frequency) and propagating obliquely to the magnetic field is obtained. Dispersion relation is studied numerically for the storm time ring current parameters and it is found that these instabilities are most prominent during intense storms when the oxygen ions become the dominant constituents of the ring current plasma. For some typical storm-time ring current parameters, these modes can produce quasielectrostatic noise in the range of 17-220 Hz, thus providing a possible explanation of the electrostatic noise observed at the inner boundary of the ring current during magnetic storms. Further, these modes can attain saturation electric fields of the order of 100-500 {mu}V/m, and therefore, are expected to scatter O{sup +} ions into the loss-cone giving rise to their precipitation into the atmosphere, thus contributing to the ring current decay.

  2. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment.

    PubMed

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption. PMID:27463402

  3. Theoretical Analysis of Electrochemical Formation and Phase Transition of Oxygenated Adsorbates on Pt(111).

    PubMed

    Chen, Junxiang; Luo, Siwei; Liu, Yuwen; Chen, Shengli

    2016-08-10

    The electrochemical oxygenation processes of Pt(111) surface are investigated by combining density functional theory (DFT) calculations and Monto Carlo (MC) simulations. DFT calculations are performed to construct force-field parameters for computing the energy of (√3 × √3)R30°-structured OH*-H2O* hydrogen-bonding networks (differently dissociated water bilayer) on the Pt(111) surface, with which MC simulations are conducted to probe the reversible H2O* ↔ OH* conversion in OH*-H2O* networks. The simulated isotherm (relation between electrode potential and OH* coverage) agrees well with that predicted by the experimental cyclic voltammetry (CV) in the potential region of 0.55-0.85 V (vs RHE). It is suggested that the butterfly shape of CV in this region is due to different variation trends of Pt-H2O* distance in low and high OH* coverages. DFT calculation results indicate that the oxidative voltammetry in the potential region from 0.85 V to ca. 1.07 V is associated with the dissociation of OH* to O*, which yields surface structures consisting of OH*-H2O* networks and (√3 × √3)-structured O* clusters. The high stability of the half-dissociated water bilayer (OH*-H2O* hydrogen-bonding network with equal OH* and H2O* coverages) formed in the butterfly region makes OH* dissociation initially very difficult in energetics, but become facile once starts due to the destabilization of OH* by the formed O* nearby. This explains the experimentally observed nucleation and growth behavior of O* phase formation and the high asymmetry of oxidation-reduction voltammetry in this potential region. PMID:27377100

  4. Modified Mesoporous Silica (SBA–15) with Trithiane as a new effective adsorbent for mercury ions removal from aqueous environment

    PubMed Central

    2014-01-01

    Background Removal of mercury from aqueous environment has been highly regarded in recent years and different methods have been tested for this purpose. One of the most effective ways for mercury ions (Hg+2) removal is the use of modified nano porous compounds. Hence, in this work a new physical modification of mesoporous silica (SBA-15) with 1, 3, 5 (Trithiane) as modifier ligand and its application for the removal of Hg+2 from aqueous environment has been investigated. SBA-15 and Trithiane were synthesized and the presence of ligand in the silica framework was demonstrated by FTIR spectrum. The amounts of Hg+2 in the samples were determined by cold vapor generation high resolution continuum source atomic absorption spectroscopy. Also, the effects of pH, stirring time and weight of modified SBA-15 as three major parameters for effective adsorption of Hg+2 were studied. Results The important parameter for the modification of the adsorbent was Modification ratio between ligand and adsorbent in solution which was 1.5. The results showed that the best Hg+2 removal condition was achieved at pH = 5.0, stirring time 15 min and 15.0 mg of modified adsorbent. Moreover, the maximum percentage removal of Hg+2 and the capacity of adsorbent were 85% and 10.6 mg of Hg+2/g modified SBA-15, respectively. Conclusions To sum up, the present investigation introduced a new modified nano porous compound as an efficient adsorbent for removal of Hg+2 from aqueous environment. PMID:25097760

  5. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    PubMed

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  6. Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Clark, Gregory W.

    2001-01-01

    Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.

  7. Oxygen Pickup Ions at Mars: Model Comparisons with MAVEN Data and Implications for Oxygen Escape

    NASA Astrophysics Data System (ADS)

    Cravens, Tom; Rahmati, Ali; Larsen, Davin; Lillis, Rob; Connerney, Jack; Halekas, Jasper; Bougher, Stephen W.

    2015-04-01

    A major source of atmospheric escape on Mars is the dissociative recombination of O2+ in the ionosphere, which creates oxygen atoms with energies exceeding the escape energy. These atoms are the source of the hot oxygen exosphere of Mars, which extends to tens of Martian radii. Direct measurement of the distant oxygen exosphere, which is mainly populated with escaping neutral oxygen atoms, is difficult due to the very low densities at these distances. However, ionization of these atoms creates pickup ions that are accelerated by the solar wind convective electric field to high energies, allowing them to be measured by the SEP (Solar Energetic Particle) instrument onboard the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft.We modeled the hot oxygen at Mars and its interaction with the solar wind using Monte Carlo and test particle methods and using densities and temperatures from the MTGCM (Mars Thermospheric General Circulation Model). The distribution function of hot oxygen atoms at 300 km is calculated using a two-stream method, and the Liouville theorem extends this distribution for the gravitationally bound and escaping parts to high altitudes. We determined the O+ flux upstream of Mars as a function of energy, and separate it into parts due both the gravitationally bound and the escaping oxygen. Significant fluxes of O+ ions are predicted for energies greater than 60 keV and have been observed by the SEP instrument, even when MAVEN was several Martian radii away from the planet. These data-model comparisons will be presented and then interpreted in terms of the escape of oxygen from Mars.

  8. Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)-2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode

    NASA Astrophysics Data System (ADS)

    Dias, Vera L. N.; Fernandes, Elizabeth N.; da Silva, Leila M. S.; Marques, Edmar P.; Zhang, Jiujun; Marques, Aldaléa L. Brandes

    A graphite electrode irreversibly adsorbed by 2,4,6-tris(2-piridil)-1,3,5-triazine (abbreviated as TPT) was examined by cyclic voltammetry. The adsorbed TPT exhibited two irreversible reduction waves in the potential range of -0.7 and -1.0 V (versus SCE). Upon strong adsorption, TPT can serve as a coordination ligand for copper ions to form a surface complex. Its three adjacent nitrogen positions provide strong affinity to the metal ions and bond copper(II) to an electrode surface. A 1:1 coordination between Cu(II) or Cu(I) and the TPT ligand to form [Cu(II)(TPT)] 2+ or [Cu(I)(TPT)] + is the predominant process, evidenced by spectrophotometry, surface cyclic voltammetry, and coordinated structural feasibility of Cu(II)/Cu(I)-TPT complexes. The predominant copper(II)-TPT surface complex shows a reversible redox wave, which is identified as one-electron process of [Cu(II)(TPT)] 2+ ↔ [Cu(I)(TPT)] +. The electrode adsorbed by [Cu(II)(TPT)] 2+ complex showed electrocatalytic activity towards oxygen and/or hydrogen peroxide reductions. The catalyzed reduction of oxygen and hydrogen peroxide were identified as four-electron and two-electron process to form water. It is suggested that the possible electrocatalytic reductions were due to an inner-sphere mechanism, which involved a coordination between substrate (O 2 or H 2O 2) and [Cu(I)(TPT)] +. The reduction kinetics were also investigated by a rotating disk electrode method.

  9. Precious metal catalysts with oxygen-ion conducting support

    SciTech Connect

    Ganguli, P.S.; Sundaresan, S.

    1993-08-03

    A three-way supported catalyst is described for treatment of combustion gas emissions from mobile or stationary sources, comprising: an oxygen-ion conducting support material having surface area at least about 20 m[sup 2]/gm, and two active metals selected from the group consisting of (1) platinum and rhodium and (2) palladium and rhodium dispersed on the support material in overall amount of about 0.01-2.2 wt. % of the catalyst.

  10. Laboratory study of K-shell photoionization of oxygen and oxygen hydrides ions

    NASA Astrophysics Data System (ADS)

    Bizau, Jean-Marc

    2016-05-01

    The interpretation of the spectra sent by satellites required the knowledge of many atomic data, including photoionization cross sections or energy and oscillator strength of bound-bound transitions for many ions, over a broad photon energy range going from infra-red to x-rays. These data are mainly provided by theoretical results using state-of-the-art methods like R-matrix. Recently, discrepancies have been observed between the calculated energy of the Kα transitions in atomic oxygen and its ions and those determined from the satellites observations. The results of the experimental studies of K-shell photoionization of oxygen ions performed at the French synchrotron radiation center SOLEIL will be presented. A merged-beam setup installed on the PLEIADES beam line allows for the determination of absolute photoionization cross sections and transitions energy on singly- and multiply-charged ions in the 10-1000 eV photon energy range. The first results obtained with this setup on oxygen hydrides will be also presented.

  11. Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion

    NASA Astrophysics Data System (ADS)

    Masykur, Abu; Juari Santosa, Sri; Jumina, Dwi Siswanta dan

    2016-02-01

    The aim of this research was to improve the adsorption capacity of chitosan by modification of the chitosan using various cross-linking agents and followed by grafting using succinate anhydride. Succinate anhydride was grafted into chitosan that had been cross-linked using ethylene glycol di-glycidyl ether (EGDE), diethylene glycol diglycidyl ether (DEGDE) andbisphenolAdiglycidyl ether (BADGE) on the hydroxyl group of chitosan to yield Chit- EGDE-Suc, Chit-DEGDE-Suc, and Chit-BADGE-Suc, respectively. Modified chitosans were analyzed using FTIR and TG-DTA and then applied as adsorbents for Pb(II) ion. Adsorption was carried out in batch condition with a variation of solution pH, contact time, and concentration of Pb(II) in the solution. Adsorption ofPb(II) ion reached optimum condition at pH 5 and contact time of 120 minutes. Adsorption of Pb(II) ion on all of the adsorbents fit well the pseudo-second order kinetic equation. Adsorption capacities of Pb(II) on Chit-EGDE-Suc, Chit-DEGDE-SucdanChit-BADGE-Suc were 0.333, 0.388 and 0.898 mmolg-1, respectively, which mean that the adsorption of Chit-BADGE-Suc was the highest and followed by Chit- DEGDE-Suc and Chit-EGDE-Suc.

  12. Sodium niobate adsorbents doped with tantalum (TaV) for the removal of bivalent radioactive ions in waste waters.

    PubMed

    Paul, Blain; Yang, Dongjiang; Martens, Wayde N; Frost, Ray L

    2011-04-01

    Sodium niobates doped with different amounts of tantalum (Ta(V)) were prepared via a thermal reaction process. It was found that pure nanofibrils and bar like solids can be obtained when tantalum is introduced into the reaction system. For the well crystallized fibril solids, the Na(+) ions are difficult to exchange, and the radioactive ions such as Sr(2+) and Ra(2+) just deposit on the surface of the fibers during the sorption process, resulting in lower sorption capacity and distribution coefficients (K(d)). However, the bar like solids are poorly crystallized and have many exchangeable Na(+) ions. They are able to remove highly hazardous bivalent radioactive isotopes such as Sr(2+) and Ra(2+) ions. Even in the presence of many Na(+) ions, they also have higher K(d). More importantly, such sorption finally intelligently triggers considerable collapse of the structure, resulting in permanent entrapment of the toxic bivalent cations in the solids, so that they can be safely disposed of. This study highlights new opportunities for the preparation of Nb-based adsorbents to efficiently remove toxic radioactive ions from contaminated water. PMID:21266294

  13. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  14. Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling.

    PubMed

    Melo, Diego de Quadros; Vidal, Carla Bastos; Medeiros, Thiago Coutinho; Raulino, Giselle Santiago Cabral; Dervanoski, Adriana; Pinheiro, Márcio do Carmo; Nascimento, Ronaldo Ferreira do

    2016-09-01

    Buriti fibers were subjected to an alkaline pre-treatment and tested as an adsorbent to investigate the adsorption of copper, cadmium, lead and nickel in mono- and multi-element aqueous solutions, the results showed an increase in the adsorption capacity compared to the unmodified Buriti fiber. The effects of pH, adsorbent mass, agitation rate and initial metal ions concentration on the efficiency of the adsorption process were studied using a fractional 2(4-1) factorial design, and the results showed that all four parameters influenced metal adsorption differently. Fourier transform infrared spectrometry and X-ray fluorescence analysis were used to identify the groups that participated in the adsorption process and suggest its mechanisms and they indicated the probable mechanisms involved in the adsorption process are mainly ion exchange. Kinetic and thermodynamic equilibrium parameters were determined. The adsorption kinetics were adjusted to the homogeneous diffusion model. The adsorption equilibrium was reached in 30 min for Cu(2+) and Pb(2+), 20 min for Ni(2+) and instantaneously for Cd(2+). The results showed a significant difference was found in the competitiveness for the adsorption sites. A mathematical model was used to simulate the breakthrough curves in multi-element column adsorption considering the influences of external mass transfer and intraparticle diffusion resistance. PMID:26950526

  15. Polypyrrole/cobalt ferrite/multiwalled carbon nanotubes as an adsorbent for removing uranium ions from aqueous solutions.

    PubMed

    Liu, Qi; Zhu, Jiahui; Tan, Lichao; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Zhang, Hongsen; Li, Rumin; Emelchenko, G A; Wang, Jun

    2016-05-31

    A novel rod-like, dual-shell structural adsorbent of polypyrrole/cobalt ferrite/multiwalled carbon nanotubes (PPy/CoFe2O4/MWCNTs) was successfully synthesized by a hydrothermal method, which could easily separate uranium(vi) ions with an external magnetic field. The structure and morphology of PPy/CoFe2O4/MWCNTs were characterized by VSM, XRD, XPS TEM and FT-IR. The results proved that the dual-shell structure was obtained in which a shell of cobalt ferrite and polypyrrole formed around the MWCNTs core. In batch adsorption experiments, including pH, equilibrium time and temperature on uranium adsorption, were investigated. The main results show that the PPy/CoFe2O4/MWCNTs composite has a higher affinity towards the uptake of uranium(vi) from aqueous solutions. The highest adsorption capacity reached was 148.8 mg U per g at pH 7. A kinetic analysis showed that the adsorption process was best described by a pseudo-second-order kinetic model. The uranium sorption equilibrium data correlated well with the Langmuir sorption isotherm model in the thermodynamic analysis. 0.5 mol per L NaHCO3 was used as the desorbent and good adsorption properties were shown after the desorption procedures were repeated three times. Thus, PPy/CoFe2O4/MWCNTs was an excellent adsorbent for removing uranium(vi) ions. PMID:27169495

  16. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents. PMID:26944833

  17. Method for providing oxygen ion vacancies in lanthanide oxides

    DOEpatents

    Kay, D. Alan R.; Wilson, William G.

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  18. Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution

    SciTech Connect

    Biniak, S.; Pakula, M.; Szymanski, G.S.; Swiatkowski, A.

    1999-08-31

    The adsorption properties of a modified activated carbon with various oxygen-and/or nitrogen-containing surface groups toward copper ions was studied. Previously de-ashed and chemically modified commercial activated carbon D-43/1 (carbo-Tech, Essen, Germany) was used. The chemical properties of the modified carbon surface were estimated by standard neutralization titration with HCl, NaOH, and HaOC{sub 2}{sub 5}. The adsorption of Cu{sup 2+} ions on three modified activated carbons from aqueous CuSO{sub 4} solution of various pH was measured. The carbon samples with adsorbed Cu{sup 2+} ions were analyzed by spectroscopic methods (X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy). In addition, an electrochemical measurement (cyclic voltammetry) was performed using powdered activated carbon electrodes. While the modification procedures employed alter the surface only slightly, they strongly influence the surface chemical structure. Basic groups are predominant in the heat-treated samples; acidic functional groups are predominant in the oxidized sample. Both the copper cation adsorption studies and the spectral and electrochemical measurements show that adsorbed ions interact with the carbon surface in different ways. The number of adsorbed ions depends on the nature and quantity of surface acid-base functionalities and on the pH equilibrium in the aqueous solution. The possible mechanisms of interactions between metal ions and carbon surface functionalities are summarized and discussed.

  19. In situ ion gun cleaning of surface adsorbates and its effect on electrostatic forces

    NASA Astrophysics Data System (ADS)

    Schafer, Robert; Xu, Jun; Mohideen, Umar

    2016-01-01

    To obtain precise measurements of the Casimir force, it is crucial to take into account the electrostatic interactions that exist between the two boundaries. Two otherwise grounded conductors will continue to have residual electrostatic effects from patch potentials existing on the surfaces. In this paper, we look at the effect of in situ cleaning of adsorbate patches, and the resultant effect on the net electrostatic potential difference between two surfaces. We find a significant reduction in the residual potential due to in situ Ar+ cleaning for the samples used.

  20. "False" cytotoxicity of ions-adsorbing hydroxyapatite - Corrected method of cytotoxicity evaluation for ceramics of high specific surface area.

    PubMed

    Klimek, Katarzyna; Belcarz, Anna; Pazik, Robert; Sobierajska, Paulina; Han, Tomasz; Wiglusz, Rafal J; Ginalska, Grazyna

    2016-08-01

    An assessment of biomaterial cytotoxicity is a prerequisite for evaluation of its clinical potential. A material is considered toxic while the cell viability decreases under 70% of the control. However, extracts of certain materials are likely to reduce the cell viability due to the intense ions adsorption from culture medium (e.g. highly bioactive ceramics of high surface area). Thus, the standard ISO 10993-5 procedure is inappropriate for cytotoxicity evaluation of ceramics of high specific surface area because biomaterial extract obtained in this method (ions-depleted medium) is not optimal for cell cultures per se. Therefore, a simple test was designed as an alternative to ISO 10993-5 standard for cytotoxicity evaluation of the biomaterials of high surface area and high ions absorption capacity. The method, presented in this paper, included the evaluation of ceramics extract prepared according to corrected procedure. The corrected extract was found not cytotoxic (cell viability above 70%), suggesting that modified method for cytotoxicity evaluation of ions-adsorbing ceramics is more appropriate than ISO 10993-5 standard. For such biomaterials, the term "false" cytotoxicity is more suitable. Moreover, it was noted that NRU assay and microscopic observations should be recommended for cytotoxicity evaluation of ceramics of high surface area. PMID:27157729

  1. High-productivity membrane adsorbers: Polymer surface-modification studies for ion-exchange and affinity bioseparations

    NASA Astrophysics Data System (ADS)

    Chenette, Heather C. S.

    membrane adsorbers were found to have a static binding capacity for con A (6.0 mg/mL) that is nearly the same as the typical dextran-based separation media used in practice. Binding under dynamic conditions was tested using flow rates of 0.1-1.0 mL/min. No bound lectin was observed for the higher flow rate. The first Damkohler number was used to assess whether adsorption kinetics or mass transport contributed the limitation to conA binding. Analyses indicate that this system is not limited by the accessibility of the binding sites, but by the inherently low rate of adsorption of conA onto the glycopolymer. The research described in Chapter 4 focuses on reaction chemistry experiments to incorporate a phosphonate-based polymer in the membrane platform to develop a new class of affinity adsorbers that function based on their affinity for Arginine (Arg) amino acid residues. The hypothesis was that benzyl phosphonate-containing functional polymers would form strong complexes with Arg-rich proteins as a result of multivalent binding. Introducing a new class of affinity membranes for purification of Arg-rich and Arg-tagged proteins may have an impact similar to the introduction of immobilized metal ion affinity chromatography (IMAC), which would be a significant achievement. Using Arg-tags would overcome some of the associated drawbacks of using metal ions in IMAC. Additionally, some cell penetrating peptides are said to be Arg-rich, and this would be a convenient feature to exploit for their isolation and purification. Lysozyme was used as a model Arg-rich protein. The affinity membranes show a static binding capacity of 3 mg/mL. (Abstract shortened by UMI.)

  2. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE PAGESBeta

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaanmore » axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.« less

  3. Negative Oxygen Ion Formation in a Pulsed Inductively RF Excited Argon-Oxygen Discharge and the Influence of Highly Excited Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Katsch, H.-M.; Manthey, C.; Döbele, H.-F.

    2003-10-01

    The temporal behavior of negative oxygen ions oxygen / argon mixtures was investigated in the afterglow of a pulsed inductively excited modified GEC reactor. The objective of this investigation is an improved understanding of the production reactions of the negative ions and the loss processes of negative ions during the plasma decay phase. Collisions of O-minus ions with O atoms and metastable oxygen molecules lead to considerable electron production in the afterglow. This late supply of electrons entails a delayed formation of a so-called ion-ion plasma. Discharges with admixtures of argon (up to 8:2 argon : oxygen) are also strongly electronegative. An increase of the absolute O-minus density is observed with increasing argon fraction. At low pressures and high contents of argon it is necessary to consider an additional production reaction channel for the negative ions in order to explain the measured increase of the negative ion density. Appearance potential mass spectroscopy measurements show an increase of highly excited oxygen molecules with increasing argon fraction. It is, therefore, likely that additional negative ions are generated by dissociative attachment of highly excited metastable oxygen molecules [1]. [1] D. Hayashi and K. Kadota, J. Appl. Phys. 83 (1998) 697 This project is funded by the Bundesminister für Bildung und Forschung BMBF (FKZ 13N8052).

  4. Theory for charge states of energetic oxygen ions in the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Fluxes of geomagnetically trapped energetic oxygen ions have been studied in detail. Ion distributions in radial locations below the geostationary orbit, energy spectra between 1 keV and 100 MeV, and the distribution over charge states have been computed for equatorially mirroring ions. Both ionospheric and solar wind oxygen ion sources have been considered, and it is found that the charge state distributions in the interior of the radiation belts are largely independent of the charge state characteristics of the sources. In the MeV range, oxygen ions prove to be a more sensitive probe for radiation belt dynamics than helium ions and protons.

  5. Organic-inorganic hybrid nanomaterial as a new fluorescent chemosensor and adsorbent for copper ion.

    PubMed

    Lee, Soo Jin; Lee, Shim Sung; Lah, Myoung Soo; Hong, Jae-Min; Jung, Jong Hwa

    2006-11-21

    Functionalized silica nanotube (FSNT) possessing the phenanthroline moiety as a fluorescent receptor was fabricated by solgel reaction, and the binding ability of FSNT with metal ions was evaluated by fluorophotometry. PMID:17283811

  6. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.

    PubMed

    Luo, Xiaogang; Zeng, Jian; Liu, Shilin; Zhang, Lina

    2015-10-01

    Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel method. By embedding magnetic γ-Fe2O3 nanoparticles in chitosan/cellulose matrix drops in NaOH/urea aqueous solution, it combined renewability and biocompatibility of chitosan and cellulose as well as magnetic properties of γ-Fe2O3 to create a hybrid system in heavy metal ions removal. PMID:26216781

  7. Photon-stimulated desorption of F(-) ions from CF(3)Cl adsorbed on Si(111)-7x7.

    PubMed

    Wen, C-R; Chou, L-C

    2004-06-15

    We report the photon-stimulated desorption of negative ions induced by direct dipolar dissociation and dissociative electron attachment. The photon-stimulated desorption of F(-) ions from CF(3)Cl physisorbed on a Si(111)-7x7 surface at 30 K in the photon energy range 12-35 eV was studied. The F(-) ion yield exhibits four resonances, at 12.8, 16.2, 19.5, and 22.3 eV, quite unlike the gas phase photodissociation cross section. The intensities of these resonances depend strongly on the CF(3)Cl coverage in a manner which varies from peak to peak. The resonances at 19.5 and 22.3 eV, which have a significant enhancement in the monolayer regime, are due to electron mediated dipolar dissociation of adsorbed CF(3)Cl molecules. The enhancement is attributed to surface electron attachment following molecular excitation. A significant enhancement in the monolayer regime has also been observed for the resonances at 12.8 and 16.2 eV. These two resonances are ascribable to a combination of electron mediated dipolar dissociation and dissociative electron attachment driven by photoelectrons generated in the neighboring molecules. PMID:15268144

  8. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  9. Cleaning Water Contaminated with Heavy Metal Ions Using Pyrolyzed Biochar Adsorbents

    EPA Science Inventory

    The extraction of pollutants from water using activated biochar materials is a low cost, sustainable approach for providing safe water in developing countries. The adsorption of copper ions, Cu (II), onto banana peels that were dried, pyrolyzed and activated was studied and compa...

  10. Lignocellulosic Wheat Straw-Derived Ion-Exchange Adsorbent for Heavy Metals Removal.

    PubMed

    Krishnani, K K

    2016-02-01

    The aim of this work is to develop partially delignified Ca(2+)-and-Mg(2+)-ion-exchanged product from lignocellulosic wheat straw for the removal of eight different heavy metals Pb(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Mn(2+), Zn(2+), and Cu(2+) and for detoxification of Cr(VI). Maximum fixation capacity, pH, and initial metal concentration dependence were determined to confirm strong affinity of Pb(2+), Cd(2+), Cu(2+), Zn(2+), and Hg(2+) ions onto the product, whereas Co(2+), Ni(2+), and Mn(2+) were the least fixed. Morphology of the product characterized by scanning electron microscope showed its physical integrity. Different experimental approaches were applied to determine the role of cations such as Ca(2+), Mg(2+), and Na(+) and several functional groups present in the product in an ion exchange for the fixation of metal ions. Potentiometric titration and Scatchard and Dahlquist interpretation were employed for determination of binding site heterogeneity. Results showed strong and weak binding sites in the product. This product has advantages over other conventional processes by virtue of abundance, easy operational process, and cost reduction in waste disposal of its raw material. PMID:26494139

  11. Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions.

    PubMed

    Chai, Liyuan; Li, Qingzhu; Zhu, Yonghua; Zhang, Zhiyuan; Wang, Qingwei; Wang, Yunyan; Yang, Zhihui

    2010-08-01

    Spent grain (SG) was functionalized with thioglycolic acid in N,N-dimethylformamide (DMF) medium using sodium bisulfate monohydrate (NaHSO(4).H(2)O) as a catalyst, followed by treatment with sodium sulfide nonahydrate (Na(2)S.9H(2)O). Characterization of thiol-functionalized spent grain (TFSG) was performed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. These analytical results revealed the emergence of S-H and C=O groups after the chemical modification, indicating that thiol groups were successfully grafted onto TFSG. As compared with SG, TFSG showed significant improvement in terms of metal loading capacity. Typically, adsorption capacity for Zn(2+) was increased from 125.76 mg g(-1) of SG to 227.37 mg g(-1) of TFSG, which was confirmed by X-ray fluorescence (XRF) analysis. This increase may be attributed to both the formation of ester linkage and the grafting of thiol groups onto TFSG. The experimental results indicate that TFSG is a promising adsorbent for removal heavy metals from contaminated water. PMID:20338755

  12. Assessing ligand selectivity for uranium over vanadium ions to aid in the discovery of superior adsorbents for extraction of UO2(2+) from seawater.

    PubMed

    Ivanov, Alexander S; Bryantsev, Vyacheslav S

    2016-06-28

    Uranium is used as the basic fuel for nuclear power plants, which generate significant amounts of electricity and have life cycle carbon emissions that are as low as renewable energy sources. However, the extraction of this valuable energy commodity from the ground remains controversial, mainly because of environmental and health impacts. Alternatively, seawater offers an enormous uranium resource that may be tapped at minimal environmental cost. Nowadays, amidoxime polymers are the most widely utilized sorbent materials for large-scale extraction of uranium from seawater, but they are not perfectly selective for uranyl, UO2(2+). In particular, the competition between UO2(2+) and VO(2+)/VO2(+) cations poses a significant challenge to the efficient mining of UO2(2+). Thus, screening and rational design of more selective ligands must be accomplished. One of the key components in achieving this goal is the establishment of computational techniques capable of assessing ligand selectivity trends. Here, we report an approach based on quantum chemical calculations that achieves high accuracy in reproducing experimental aqueous stability constants for VO(2+)/VO2(+) complexes with ten different oxygen donor ligands. The predictive power of the developed computational protocol is demonstrated for amidoxime-type ligands, providing greater insights into new design strategies for the development of the next generation of adsorbents with high selectivity toward UO2(2+) over VO(2+)/VO2(+) ions. Importantly, the results of calculations suggest that alkylation of amidoxime moieties present in poly(acrylamidoxime) sorbents can be a potential route to better discrimination between the uranyl and competing vanadium ions in seawater. PMID:27285397

  13. Probing the photochemistry of chemisorbed oxygen on TiO2(110) with Kr and other co-adsorbates

    SciTech Connect

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2014-02-14

    Weakly bound (physisorbed) atoms and molecules such as Ar, Kr, Xe, CO, CH4, CH3OH, CO2 and N2 are used to probe the photochemical interactions of O2 on rutile TiO2(110). UV irradiation of chemisorbed O2 along with the physisorbed probe species leads to photon-stimulated desorption (PSD) of Ar, Kr, CO, CH4 and N2. Without co-adsorbed O2, the PSD yields of the probe species are very low or not observed. No PSD was observed for CO2, N2O, CH3OH and the PSD yield for Xe is very low compared to the other probe atoms or molecules. The angular distribution of the photo-desorbing Kr, which is broad and cosine, is quite different from the O2 PSD angular distribution, which is sharply peaked along the surface normal. The Kr PSD yields increase with increasing coverage of Kr and of chemisorbed O2. We propose a mechanism for the observed phenomena where the chemisorbed O2 serves as photoactive center, excited via electronic excitations (electrons and/or holes) created in the TiO2 substrate by UV photon irradiation. The photo-excited O2 may transfer its energy to neighboring co-adsorbed atom or molecule resulting in desorption of the latter. Simple momentum transfer considerations suggest that heavier adsorbates (like Xe) and adsorbates with higher binding energy (like CO2) should desorb less efficiently according to the proposed mechanism. Various forms of chemisorbed O2 appeared photoactive in such stimulated desorption of Kr atoms: molecular anions (O22-, O2-), adatoms (Oa), and others. The observed phenomenon provides a new tool for study of photocatalysis.

  14. Improving electrolytes for lithium-ion and lithium oxygen

    NASA Astrophysics Data System (ADS)

    Chalasani, Dinesh

    There is an ever increasing demand for fossil fuels. Lithium ion batteries (LIBs) can effectively reduce the production of greenhouse gases and lessen the need for fossil fuels. LIBs also have great potential in electric vehicle applications as an alternative to petroleum modes of transportation. Understanding the chemical reactions between the electrolyte and electrodes in LIBs is very crucial in developing batteries which can work over a wide temperature range and also give a wide potential window. The Solid Electrolyte Interface (SEI), formed by the reduction of solvent molecules on the surface of electrodes, is an important component of LIBs. The SEI is very essential to the performance of LIBs. One electron reduction pathway products of solvent molecules was investigated using lithium-naphthalenide. Methylene ethylene carbonate, a high temperature additive has been synthesized and its performance has been tested at 60°C. Lithium-Oxygen batteries have an energy density ten times greater than that of LIBs. However, lithium-oxygen batteries have rechargability problems associated with them. The most common electrolyte used in this type of batteries is LiPF6 in carbonate or ether based solvents. LiPF6 inherently decreases electrolyte stability, since LiPF 6 can undergo thermal dissociation into PF5 and LiF. PF 5 being a strong Lewis acid, can react with electron rich species. The thermal decomposition reactions of LiPF6 based electrolytes are studied in detail with regard to LIBs. The comprehensive study has been conducted on the thermal degradation of several electrolyte systems in the presence of Li2O2.

  15. The Influence of Contact Adsorbed Ions on the Photoelectrochemical Behaviour of α-HgS

    NASA Astrophysics Data System (ADS)

    Repenning, D.; Schumawcher, R.; Schindler, R. N.

    1982-04-01

    Results are reported to describe the influence of additives on the photoelectrochemical properties of the liquid junction α-HgS/electrolyte. The semiconductor electrodes were prepared by sublimation of α-HgS on Au substrates. The electrolyte was modified by additives such as Cl-, Br-, J-, and CN- ions. It was found that these anions play an important role in determining the flat band Vfb and the transition potential Vtr. Generally, both the nature and the concentration of the additives affect Vfb and Vtr.The results are interpreted in terms of contact adsorption of the used anions. It is further indicated that the adsorptive properties can be correlated to a possible chemical reaction of mercury cations with halide anions to form insoluble layers at the surface.

  16. Simple preparation of aminothiourea-modified chitosan as corrosion inhibitor and heavy metal ion adsorbent.

    PubMed

    Li, Manlin; Xu, Juan; Li, Ronghua; Wang, Dongen; Li, Tianbao; Yuan, Maosen; Wang, Jinyi

    2014-03-01

    By a simple and convenient method of using formaldehyde as linkages, two new chitosan (CS) derivatives modified respectively with thiosemicarbazide (TSFCS) and thiocarbohydrazide (TCFCS) were synthesized. The new compounds were characterized and studied by Fourier transform infrared spectroscopy, elemental analysis, thermal gravity analysis and differential scanning calorimetry, and their surface morphologies were determined via scanning electron microscopy. These CS derivatives could form pH dependent gels. The behavior of 304 steel in 2% acetic acid containing different inhibitors or different concentrations of inhibitor had been studied by potentiodynamic polarization test. The preliminary results show that the new compound TCFCS can act as a mixed-type metal anticorrosion inhibitor in some extent; its inhibition efficiency is 92% when the concentration was 60 mg/L. The adsorption studies on a metal ion mixture aqueous solution show that two samples TSFCS and TCFCS can absorb As (V), Ni (II), Cu (II), Cd (II) and Pb (II) efficiently at pH 9 and 4. PMID:24407668

  17. Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents.

    PubMed

    Liu, Si Si; Chen, Yong Zhou; De Zhang, Li; Hua, Guo Min; Xu, Wei; Li, Nian; Zhang, Ye

    2011-06-15

    Titanium oxide-Ag composite (TOAC) adsorbents were prepared by a facile solution route with Ag nanoparticles being homogeneously dispersed on layered titanium oxide materials. The as-synthesized TOAC exhibited a remarkable capability for trace Cr(VI) removal from an aqueous solution, where the concentration of Cr(VI) could be decreased to a level below 0.05 mg/L within 1h. We have systematically investigated the factors that influenced the adsorption of Cr(VI), for example, the pH value of the solution, and the contact time of TOAC with Cr(VI). We found that the adsorption of Cr(VI) was strongly pH-dependent. The adsorption behavior of Cr(VI) onto TOAC fitted well the Langmuir isotherm and a maximum adsorption capacity of Cr(VI) as 25.7 mg/g was achieved. The adsorption process followed the pseudo-second-order kinetic model, which implied that the adsorption was composed of two steps: the adsorption of Cr(VI) ions onto TOAC followed by the reduction of Cr(VI) to Cr(III) by Ag nanoparticles. Our results revealed that TOAC with high capacity of Cr(VI) removal had promising potential for wastewater treatment. PMID:21514991

  18. Preparation of Polypropylene Spin Tips Filled with Immobilized Titanium(IV) Ion Monolithic Adsorbent for Robust Phosphoproteome Analysis.

    PubMed

    Liu, Fangjie; Wan, Hao; Liu, Zhongshan; Wang, Hongwei; Mao, Jiawei; Ye, Mingliang; Zou, Hanfa

    2016-05-17

    In this study, we developed a Ti(IV) monolithic spin tip for phosphoproteome analysis of a minute amount of biological sample for the first time. The surface of polypropylene pipet tip was activated by the photoinitiator benzophenone under UV light radiation followed by polymerization of ethylene glycol methacrylate phosphate and bis-acrylamide in the tip to form a porous monolith with reactive phosphate groups. The as-prepared tips grafted with monolithic adsorbent were then chelated with titanium(IV) ion for phosphopeptide enrichment. It was found that the tips enabled fast and efficient capture of phosphopeptides from microscale complex samples. The monolithic tip was demonstrated to have a detection limit as low as 5 fmol β-casein tryptic digest, along with an exceptionally high specificity to capture phosphopeptides from complex tryptic digest mixed with an unphosphorylated protein and a phosphorylated protein at a molar ratio up to 1000:1. When the tip was applied to enrich phosphopeptides from 5 μg of tryptic digest of complex HeLa cell proteins, 1185 high confidence of phosphorylated sites were successfully identified with the specificity as high as 92.5%. So far, this is the most sensitive phosphoproteomics analysis using a standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) system for proteome-wide phosphorylation analysis in mammalian cells. PMID:27101427

  19. Momentum resolved electron stimulated desorption ion angular distribution, a new technique, probing the low frequency motion of adsorbed molecules on single crystal surfaces

    SciTech Connect

    Ahner, J.; Mocuta, D.; Yates, J.T. Jr.

    1999-07-01

    A new technique, momentum resolved electron stimulated desorption ion angular distribution (ESDIAD), provides a method for taking snapshots of the zero-point position and lateral momentum of particles adsorbed on crystalline surfaces. By employing state-of-the-art electronics and computer technology it is possible to record for each desorbing particle the desorption direction together with the flight time. High momentum and directional resolved images are obtained, with time-of-flight resolution in the picosecond range and data acquisition rates up to 100 kHz. This enables us to deconvolute spatial and momentum contributions to the ESDIAD pattern and to map the low frequency motion of the adsorbed particles. These maps reflect the adsorbate interactions with the substrate and with neighboring species on the substrate. For selected examples it is demonstrated that by measuring the three dimensional momentum vector for each desorbing particle it is possible to probe the lowest energy states of adsorbed species, as well as to measure the momentum distribution when the adsorbed species gains thermal energy. Such information can be used as a basis for thinking about anisotropies in lateral motion of particles on surfaces. One major opportunity involves the study of dissimilar chemisorbed species which, when imaged together in momentum and real space, give new insights into the first stages of interaction between the species, leading ultimately to a chemical reaction. {copyright} {ital 1999 American Vacuum Society.}

  20. Effects of adsorbed F, OH, and Cl ions on formaldehyde adsorption performance and mechanism of anatase TiO2 nanosheets with exposed {001} facets.

    PubMed

    Zhou, Peng; Zhu, Xiaofeng; Yu, Jiaguo; Xiao, Wei

    2013-08-28

    Formaldehyde (HCHO), as the main indoor air pollutant, is highly needed to be removed by adsorption or catalytic oxidation from the indoor air. Herein, the F(-), OH(-), and Cl(-)-modified anatase TiO2 nanosheets (TNS) with exposed {001} facets were prepared by a simple hydrothermal and post-treatment method, and their HCHO adsorption performance and mechanism were investigated by the experimental analysis and theoretical simulations. Our results indicated that the adsorbed F(-), OH(-), and Cl(-) ions all could weaken the interaction between the HCHO and TNS surface, leading to the serious reduction of HCHO adsorption performance of TNS. However, different from F(-) and Cl(-) ions, OH(-) ion could induce the dissociative adsorption of HCHO by capturing one H atom from HCHO, resulting in the formation of one formyl group and one H2O-like group. This greatly reduced the total energy of the HCHO adsorption system. Thus, the adsorbed OH(-) ions could provide the additional active centers for HCHO adsorption. As a result, the NaOH-treated TNS showed the best HCHO adsorption performance mainly because its surface F(-) was replaced by OH(-). This study will provide new insight into the design and fabrication of high performance adsorbents for removing indoor HCHO and, also, will enhance the understanding of the HCHO adsorption mechanism. PMID:23915356

  1. Takovite-aluminosilicate@MnFe2O4 nanocomposite, a novel magnetic adsorbent for efficient preconcentration of lead ions in food samples.

    PubMed

    Kardar, Zahra Shakeri; Beyki, Mostafa Hossein; Shemirani, Farzaneh

    2016-10-15

    Here in we report preparation of MnFe2O4 and magnetic takovite-aluminosilicate adsorbent via precipitation methodology. The synthesized nanocomposite was applied in preconcentration of Pb(2+) ions from various matrices. The structural, surface, and magnetic characteristics of the adsorbent were investigated by XRD, EDX, FE-SEM, and VSM techniques. Several parameters affecting preconcentration efficiency, including sample pH, contact time, adsorbent amount, and sample volume were studied and optimized. Under optimized conditions, the calibration graph was linear in the range of 2.0-100μgL(-1), the relative standard deviation was 3.00% (n=5), the limit of detection was 0.67μgL(-1), and the enrichment factor was 70.0. The maximum adsorption capacity of the adsorbent was calculated to be 69.9mgg(-1). The suggested method was successfully applied in determination of trace amount of Pb(2+) ions in water and food samples. PMID:27173558

  2. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    SciTech Connect

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO/sub 2/ + H/sub 2/O right reversible H/sup +/ + SHO/sub 3//sup -/. The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO/sub 3//sup -/) and the other with the proton bonded to an oxygen (SO/sub 3/H/sup -/). (The symbol SHO/sub 3//sup -/ in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO/sub 3/H/sup -/, exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum.

  3. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  4. Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy.

    PubMed

    Wakisaka, Mitsuru; Suzuki, Hirokazu; Mitsui, Satoshi; Uchida, Hiroyuki; Watanabe, Masahiro

    2009-02-17

    We have positively identified oxygen species on Pt(111) single-crystal and polycrystalline Pt electrodes in N2-purged 0.1 M HF solution by X-ray photoelectron spectroscopy combined with an electrochemical cell. Four oxygen species (Oad, OHad, and two types of water molecules) were distinguished. The binding energies of each species were nearly constant over the whole potential region and independent of the single- or polycrystalline electrodes. The coverages, however, varied considerably and were dependent on the electrode potential. We have for the first time demonstrated clear differences in the surface oxidation processes for Pt(111) and polycrystalline Pt electrodes. PMID:19152331

  5. Oxygen foreshock of Mars and its implication on ion acceleration in the bow shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Lundin, Rickard; Frahm, Rudy; Sauvaud, Jean-Andre; Holmstrom, Mats; Barabash, Stas

    2016-04-01

    Ion acceleration inside the bow shock is one of the poorly understood phenomena that has been observed for more than 30 years as the foreshock phenomena. While the Fermi-acceleration mechanism explains the diffuse component of foreshock ions, we still do not know the detailed mechanism that produces the discrete intense ions flowing along the local magnetic field direction (with and without gyration). One of the reasons for such difficulty is that majority of the bow shock study was performed for the Earth's case where Oxygen ions cannot be used to understand the acceleration mechanisms. The planetary oxygen ions that reach the Earth's bow shock have already been significantly accelerated, and are not adequate for such a study. In this sense the Martian bow shock is an ideal place to study the acceleration mechanisms leading to foreshock ions, although the nature of the bow shock is slightly different between the Earth and Mars (Yamauchi et al., 2011). On 21 September 2008, the Mars Express (MEX) Ion Mass Analyser (IMA) detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock. This was the first time that a substantial amount of planetary oxygen was observed upstream of the bow shock. The oxygen energy increased from low energy (< 300 keV) inside the magnetosheath (or it should be called an extended bow shock) to nearly 2 keV at more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. The observation is consistent with an electric potential barrier at the bow shock that simultaneously accelerates the planetary oxygen ions outward (to form the foreshock oxygen ions) and reflects a portion of the solar wind (to

  6. Electron Terms and Resonant Charge Exchange Involving Oxygen Atoms and Ions

    SciTech Connect

    Kosarim, A.V.; Smirnov, B.M.

    2005-10-01

    The electron terms are constructed for oxygen dimer ions at large ion-atom distances taking into account a certain scheme of summation of electron momenta on the basis of a hierarchy of various ion-atom interactions. Because the number of interaction types exceeds that in the Hund scheme, a realistic hierarchy of interactions and corresponding quantum numbers of the diatomic ion are outside the Hund coupling scheme. Electron terms are evaluated for the oxygen dimer ion in the case where the ground and first excited states of an atom and an ion belong to the respective valence electron shells p{sup 4} and p{sup 3} and correspond to the range of separations that determine the cross sections of resonant charge exchange in plasma. These electron terms allow us to calculate the partial and average cross sections for resonant charge exchange involving an oxygen ion and atom in the ground and first excited states in the range of collision energies of interest for oxygen plasmas. The specific features of electron terms of the oxygen ion dimer and the cross section of electron transfer are analyzed.

  7. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    DOEpatents

    Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee

    1995-01-01

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

  8. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    DOEpatents

    Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.

    1995-04-18

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.

  9. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells.

    PubMed

    Cao, Chun; Wei, Liling; Su, Min; Wang, Gang; Shen, Jianquan

    2016-08-01

    A novel low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon (N/Fe-C) with three-dimensional porous structure is employed as efficient oxygen reduction catalyst in microbial fuel cells (MFCs). The electrochemical active area is significantly improved to 617.19m(2)g(-1) in N/Fe-C by Fe-doping. And N/Fe-C (4.21at.% N, 0.11at.% Fe) exhibits excellent electrocatalytic activity with the oxygen reduction potential of -0.07V (vs. Ag/AgCl) which is comparable to commercial Pt/C. In MFCs tests, the maximum power density and output voltage with N/Fe-C are enhanced to 745mWm(-2) and 562mV (external resistance 1kΩ), which are 11% and 0.72% higher than Pt/C (0.5mgPtcm(-2)), respectively. Besides, the long-term stability of N/Fe-C retains better for more than one week. Moreover, the charge transfer resistance (Rct) values are recorded by the impedance measurements, and the low Rct of N/Fe-C is also result in better catalytic activity. PMID:27155262

  10. Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves

    NASA Technical Reports Server (NTRS)

    Chang, T.; Crew, G. B.; Hershkowitz, N.; Jasperse, J. R.; Retterer, J. M.

    1986-01-01

    Central plasma sheet (CPS) ion conics are oxygen-dominated, with peak energies ranging from tens to hundreds of eV centered around pitch-angles between 115 and 130 degrees. Because of the lack of correlation between the CPS conics and the observed currents and/or electron beam-like structures, it is not likely that all of these conics are generated by interactions with electrostatic ion cyclotron waves or lower hybrid waves. Instead, it is suggested that the observed intense broad band electric field fluctuations in the frequency range between 0 and 100 Hz can be responsible for the transverse energization of the ions through cyclotron resonance heating with the left-hand polarized electromagnetic waves. This process is much more efficient for heating the oxygen ions than hydrogen ions, thus providing a plausible explanation of the oxygen dominance in CPS conics. Simple algebraic expressions are given from which estimates of conic energy and pitch angle can be easily calculated. This suggested mechanism can also provide some preheating of the oxygen ions in the boundary plasma sheet (BPS) where discrete aurorae form.

  11. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  12. Effect of nature of oxygen interactions on friction of titanium, aluminum, and molybdenum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Friction studies were conducted with a gold pin contacting titanium, aluminum, and molybdenum surfaces after exposure to oxygen with various methods. Oxygen was adsorbed on the surface, it reacted with the surface, and the surface was ion bombarded with oxygen. The presence of oxygen was monitored with Auger spectroscopy. Titanium friction varied with the mode of the metal-oxygen interaction. It was highest with the adsorbed oxygen and least with ion bombardment using oxygen. Aluminum exhibited lower friction values for the reacted and the ion bombarded surfaces than for the surface having the adsorbed layer. With molybdenum the friction coefficients were generally the same despite the nature of the surface treatment with oxygen.

  13. Monte Carlo simulation of electron detachment properties for {{\\text{O}_{2}^{{}}}^{-}} ions in oxygen and oxygen:nitrogen mixtures

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. A.; Aleksandrov, N. L.

    2015-06-01

    Electron detachment properties of {{\\text{O}2{}}-} ions in pure oxygen and oxygen:nitrogen mixtures have been studied by a Monte Carlo technique for the reduced electric fields up to 350 Td (1 Td = 10-17 V·cm2). Swarm parameters were calculated for unexcited and vibrationally excited \\text{O}{{{}2}-} ions taking into account vibrational transfer and relaxation, charge transfer and electron detachment. The cross sections for vibrational transfer and relaxation in collisions between {{\\text{O}2{}}-} ions and O2 molecules were calculated on the basis of the statistical approach that had been successfully used in our previous work to simulate the effect of vibrational excitation and the effect of electric field on electron detachment. Good agreement between the calculated detachment rate and available measurements in oxygen were obtained over a wide range of reduced electric fields without using adjusted parameters. The method was used to calculate detachment rates in air and in some other oxygen:nitrogen mixtures and to study the effect of gas temperature on electron detachment.

  14. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral

  15. High-LET ion radiolysis of water: oxygen production in tracks.

    PubMed

    Meesungnoen, Jintana; Jay-Gerin, Jean-Paul

    2009-03-01

    It is known that molecular oxygen is a product of the radiolysis of water with high-linear energy transfer (LET) radiation, a result that is of particular significance in radiobiology and of practical relevance in radiotherapy. In fact, it has been suggested that the radiolytic formation of an oxygenated microenvironment around the tracks of high-LET heavy ions is an important factor in their enhanced biological efficiency in the sense that this may be due to an "oxygen effect" by O(2) produced by these ions in situ. Using Monte Carlo track simulations of pure, deaerated water radiolysis by 4.8 MeV (4)He(2+) (LET approximately 94 keV/microm) and 24 MeV (12)C(6+) (LET approximately 490 keV/microm) ions, including the mechanism of multiple ionization of water, we have calculated the yields and concentrations of O(2) in the tracks of these irradiating ions as a function of time between approximately 10(-12) and 10(-5) s at 25 and 37 degrees C. The track oxygen concentrations obtained compare very well with O(2) concentrations estimated from the "effective" amounts of oxygen that are needed to produce the observed reduction in oxygen enhancement ratio (OER) with LET (assuming this decrease is attributable to the sole radiolytic formation of O(2) in the tracks). For example, for 24 MeV (12)C(6+) ions, the initial track concentration of O(2) is estimated to be more than three orders of magnitude higher than the oxygen levels present in normally oxygenated and hypoxic tumor regions as well as in normal human cells. Such results, which largely plead in favor of the "oxygen in the heavy-ion track" hypothesis, could explain at least in part the greater efficiency of high-LET radiation for cell inactivation (at equal radiation dose). PMID:19267566

  16. Fast, selective adsorption of Cu{sup 2+} from aqueous mixed metal ions solution using 1,4,7-triazacyclononane modified SBA-15 silica adsorbent (SBA-TACN)

    SciTech Connect

    Tapaswi, Pradip Kumar; Moorthy, Madhappan Santha; Park, Sung Soo; Ha, Chang-Sik

    2014-03-15

    A new SBA-15 supported 1,4,7-triazacyclononane modified mesoporous silica adsorbent (SBA-TACN) has been synthesized using post grafting route and has thoroughly been characterized by small angle X-ray scattering (SAXS), N{sub 2} adsorption–desorption measurements, Fourier-transform infrared (FT-IR), solid-state {sup 29}Si MAS and {sup 13}C CP MAS NMR spectroscopy, transmission electron (TEM) and scanning electron microscopy (SEM), elemental analysis (EA) and thermogravimetric analysis (TGA). The synthesized material shows excellent copper (II) ion adsorption selectivity at pH 5 in mixed metal ion solution containing Cu{sup 2+}, Cr{sup 3+}, Ni{sup 2+}, Co{sup 2+} and Li{sup +}. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. Possible adsorption mechanism of metal ions on SBA-TACN has been discussed. The adsorbent can be readily regenerated by HNO{sub 3}–NH{sub 3} treatment. -- Graphical abstract: A new SBA-15 supported 1,4,7-triazacyclononane (TACN) modified mesoporous silica (SBA-TACN) adsorbent has been developed which shows excellent selectivity in Cu{sup 2+} adsorption from aqueous mixed metal ion solutions at pH 5. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. The adsobent is stable enough to be used atleast for three cycles. Highlights: • Synthesis of a new TACN modified mesoporous silica SBA-15 type adsorbent. • The density of 1,4,7-triazacyclononane on SBA-15 is 1.22 mmol/g. • First report on the selective Cu{sup 2+} adsorption by TACN modified mesoporous silica. • Cu{sup 2+} adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. • Potential candidate for selective removal of Cu{sup 2+} from contaminated water samples.

  17. Analytical and mechanistic aspects of the room temperature phosphorescence of Erythrosine B adsorbed on solid supports as oxygen sensing phases

    NASA Astrophysics Data System (ADS)

    Velasco-García, Nieves; Pereiro-García, Rosario; Diaz-García, Marta E.

    1995-05-01

    Room temperature phosphorescence (RTP) lifetime measurements and spectra of different concentrations of Erythrosine B immobilized on anion exchangers and non-ionic resins have been employed to unveil mechanistic aspects of the RTP of immobilized Erythrosine B. The existence of a definite number of RTP decaying components in some experimental conditions has been confirmed. The effects of humidified argon and air on RTP lifetimes and the changes in luminescence intensities were used to investigate some of the interactions responsible for the multiple component RTP emission. The experiments performed also proved the suitability of the phases prepared using non-ionic resins, for the quantification of molecular oxygen by RTP-quenching measurements. Moreover, the solid phases with anion-exchanger resins showed good potential for the analytical sensing of humidity.

  18. Pick-Up Oxygen Ion Loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M. W.; Fang, X.; Ma, Y.

    2010-12-01

    The Mars pick-up ion transport model has been developed to study the relative role of kinetic processes on ion transport through near-Mars space. Mars does not have a strong, intrinsic dipole magnetic field and consequently the solar wind directly interacts with the dayside upper atmosphere causing particles to be stripped away from the atmosphere. The Mars Pickup Ion Model model calculates the detailed ion velocity space distribution (VSD) through a background magnetic and electric field model at specific locations. The main objective of this work is to robustly probe the sources of planetary ion escape from Mars' upper atmosphere. We explore three sources of ions: photoionization, charge exchange collisions, and impact ionization. Our results illustrate distinct differences in the velocity space distributions from the different source mechanisms, which can be used to decipher Mars ion observations according to their source population. Because the VSDs are non-Maxwellian and reveal asymmetirc, non-gyrotropic features, our simulation can uniquely investigate these distributions without using the Maxwellian assumptions of current MHD models. Our results help to further examine quantify the physical processes and source locations for specific VSD fine-structure features, and to put this into the context of real and virtual observations of escaping planetary ions.

  19. Carbon monoxide production in low energy oxygen ion bombardment of pyrolytic graphite and Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Horton, C. C.; Eck, T. G.; Hoffman, R. W.

    1986-01-01

    The results of an investigtion of the interaction of low energy oxygen ions with pyrolytic graphite and Kapton surface are reported. CO molecules emitted from the surface as a result of the ion bombardment were detected by a mass spectrometer. Because the ion-induced signals were small compared to that arising from the CO background pressure in the vacuum system, the ion beam was modulated and the modulated component of the CO signal measured with a lock-in amplifier. The quantum yield (CO molecules emitted per incident oxygen ion) for graphite rose from 1.9 at 4.5 eV ion energy to 6.6 at 465 eV. Comparable yields were obtained for Kapton. The large size of the yields suggests contributions to the reaction process from the background O2 molecules in the vacuum system.

  20. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.

    2002-01-01

    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe

  1. Model comparison of oxygen ion loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M. W.; Fang, X.; Ma, Y.; Najib, D.; Brain, D.

    2011-12-01

    We present results from a Mars pick-up ion transport model in order to study the relative role of kinetic processes in planetary ion escape, as part of the first community-wide plasma interaction model comparison. Mars does not have a strong, intrinsic dipole magnetic field and consequently the solar wind directly interacts with the dayside upper atmosphere causing particles to be stripped away from the atmosphere. Ions can be picked up and carried away through this interaction, contributing to non-thermal atmospheric escape. A robust effort involving many of the global Mars space environment models is underway, selecting identical initial and boundary conditions for direct model-model comparisons between the codes. A multi-fluid and multi-species MHD model from this comparison will be used as background electric and magnetic fields for the ions in our Mars pick-up ion transport model. By simulating billions of test particles through these background fields, a comprehensive picture of the velocity space distributions of the pick-up ions is generated. Previous model comparisons have focused on pressure conservation and plasma boundaries, but this study will focus on comparing spatial patterns of escape rates and velocity space distributions at specific locations for the kinetic versus Maxwellian approaches. From these comparisons, conclusions are made about the relative contribution of kinetic and fluid physical processes in controlling the distribution of planetary ions and atmospheric escape.

  2. Surface properties and work function changes induced by atomic oxygen adsorbed on HfC(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Shao-qing

    2015-12-01

    Hafnium carbide (HfC) is regarded as one of the most promising cathode materials for field emission. But the experimental results did not provide a detail picture of the surface properties. In this work, we perform an ab initio study of the surface energies and work functions for the (1 0 0), (1 1 0), (1 1 1), (2 1 0), (3 1 0) and (3 1 1) surfaces of hafnium carbide. For the polar surface of (1 1 1) and (3 1 1) plane, a new method is taken to calculate the surface energy of the different surface terminations. The results indicate that the Hf termination surface is most stable, which are consistent with the experimental results. Additionally, we focused in particular on oxygen atom induced work function changes on HfC(1 1 1) plane as a function of coverage. An unexpected decrease of the work function is found at low coverage, and a reasonable resolution for this anomaly is given based on the method of Roman et al.

  3. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  4. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  5. In-situ leaching of south Texas uranium ores--part 2: oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  6. In-situ leaching of south Texas uranium ores--part 2: Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  7. The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge

    NASA Astrophysics Data System (ADS)

    Bowes, M.; Bradley, J. W.

    2014-07-01

    Using a single Langmuir probe, the temporal evolution of the oxygen negative ion, n-, and electron, ne, densities in the afterglow of a reactive HiPIMS discharge operating in argon-oxygen gas mixtures have been determined. The magnetron was equipped with a titanium target and operated in ‘poisoned’ mode at a frequency of 100 Hz with a pulse width of 100 µs for a range of oxygen partial pressures, {p_{O_{2}}}/{p_{total}} = 0.0{{-}}0.5 . In the initial afterglow, the density of the principle negative ion in the discharge (O-) was of the order of 1016 m-3 for all conditions. The O- concentration was found to decay slowly with characteristic decay times between 585 µs and 1.2 ms over the oxygen partial pressure range. Electron densities were observed to fall more rapidly, resulting in long-lived highly electronegative afterglow plasmas where the ratio, α = n-/ne, was found to reach values up to 672 (±100) for the highest O2 partial pressure. By comparing results to a simple plasma-chemical model, we speculate that with increased {p_{O_{2}}}/{p_{total}} ratio, more O- ions are formed in the afterglow via dissociative electron attachment to highly excited metastable oxygen molecules, with the latter being formed during the active phase of the discharge. After approximately 2.5 ms into the off-time, the afterglow degenerates into an ion-ion plasma and negative ions are free to impinge upon the chamber walls and grounded substrates with flux densities of the order of 1018 m-2 s-1, which is around 10% of the positive ion flux measured during the on-time. This illustrates the potential importance of the long afterglow in reactive HiPIMS, which can act as a steady source of low energy O- ions to a growing thin film at the substrate during periods of reduced positive ion bombardment.

  8. Oxygen incorporation in polyethylene and polypropylene implanted with F+, As+ and I+ ions at high dose

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Kvítek, J.; Švorčík, V.; Rybka, V.

    1994-04-01

    Samples of PolyPropylene (PP) and PolyEthylene (PE) implanted with 150 keV F+, As+ and I+ ions with a dose of 1×1015 cm-2 were studied using standard Rutherford Back Scattering (RBS) technique. No fluorine atoms above the present RBS detection limit were observed in the ion-implanted polymers. The measured depth profiles of As and I atoms are significantly broader than those predicted by the TRIM code for pristine polymers. The differences can be explained by stepwise polymer degradation due to ion bombardment. Massive oxidation of the ion-implanted polymers is observed. The oxidation rate and the resulting oxygen depth profile depend strongly on the polymer type and implanted ion mass. In the samples implanted with F+ ions, an uniformly oxidized layer is built up with a mean oxygen concentration of 15 at.%. In the samples implanted with As+ and I+ ions, a non-uniform oxygen depth distribution is observed with two concentration maxima on the sample surface and in a depth correlated with implanted ion range.

  9. Ion-molecule reactions of oxygenated chemical ionization reagents with vincamine.

    PubMed

    Bauerle, G F; Hall, B J; Tran, N V; Brodbelt, J S

    1996-03-01

    The ion-molecule reactions of ions from acetone, dimethyl ether, 2-methoxyethanol, and vinyl methyl ether with vincamine were investigated. Reactions with dimethyl ether result in [M+13](+) and [M+45](+) products, reactions with 2-methoxyethanol produce [M+13](+) and [M+89](+) ions, and reactions with acetone or vinyl methyl ether ions generate predominantly [M+43](+) ions. Collision-activated dissociation and deuterium labeling experiments allowed speculation about the product structures and mechanisms of dissociation. The methylene substitution process was shown to occur at the hydroxyl oxygen and the phenyl ring of vincamine for dimethyl ether reactions, but the methylene substitution process was not favored at the hydroxyl oxygen for the 2-methoxyethanol reactions, instead favored at the 12 phenyl position. The reaction site is likely different for the 2-methoxyethanol ion due to its capability for secondary hydrogen-bonding interactions. For the [M+45](+) and [M+89](+) ions, evidence suggests that charge-remote fragmentation processes occur from these products. In general, the use of dimethyl ether ions or 2-methoxyethanol ions for ionmolecule reactions prove highly diagnostic for the characterization of vincamine; both molecular weight and structural information are obtained. Limits of detection for vincamine with dimethyl ether chemical ionization via this technique on a benchtop ion trap gas chromatography-tandem mass spectrometer are in the upper parts per trillion range. PMID:24203296

  10. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    PubMed

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. PMID:27420911

  11. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  12. Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.

    2009-01-01

    The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.

  13. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  14. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions.

    PubMed

    Yu, Jin-Gang; Yu, Lin-Yan; Yang, Hua; Liu, Qi; Chen, Xiao-Hong; Jiang, Xin-Yu; Chen, Xiao-Qing; Jiao, Fei-Peng

    2015-01-01

    Due to their high adsorption capacities, carbon-based nanomaterials such as carbon nanotubes, activated carbons, fullerene and graphene are widely used as the currently most promising functional materials. Since its discovery in 2004, graphene has exhibited great potential in many technological fields, such as energy storage materials, supercapacitors, resonators, quantum dots, solar cells, electronics, and sensors. The large theoretical specific surface area of graphene nanosheets (2630 m(2)·g(-1)) makes them excellent candidates for adsorption technologies. Further, graphene nanosheets could be used as substrates for decorating the surfaces of nanoparticles, and the corresponding nanocomposites could be applied as novel adsorbents for the removal of low concentrated contaminants from aqueous solutions. Therefore, graphene nanosheets will challenge the current existing adsorbents, including other types of carbon-based nanomaterials. PMID:25244035

  15. Hydrogen removal from e-beam deposited alumina thin films by oxygen ion beam

    SciTech Connect

    Das, Arijeet Mukharjee, C. Rajiv, K. Bose, Aniruddha Singh, S. D. Rai, S. K.; Ganguli, Tapas; Joshi, S. C.; Deb, S. K.; Phase, D. M.

    2014-04-24

    Hydrogen interstitials and oxygen vacancies defects create energy levels in the band gap of alumina. This limits the application of alumina as a high-k dielectric. A low thermal budget method for removal of hydrogen from alumina is discussed. It is shown that bombardment of alumina films with low energy oxygen ion beam during electron beam evaporation deposition decreases the hydrogen concentration in the film significantly.

  16. Force constants and bond polarizabilities of thiocyanate ion adsorbed on the silver electrode as interpreted from the surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Wu, Guozhen

    1989-01-01

    The surface enhanced Raman spectra of the thiocyanate ion is studied in two ways. First, normal mode analysis is employed to determine the force constants of the adsorbed thiocyanate ion. The result shows that the force constant for the CN bond becomes larger while that for the SC bond smaller in the adsorbed state. The adatom model with an effective silver mass of 0.1 mAg ( mAg being the mass of the silver atom) is adequate for the analysis. This implies that the silver adatom is bound to the bulk electrode surface. The adsorption is also shown to be physical. Second, the SER intensifies are analyzed to obtain the molecular polarizability derivatives. The result shows that the polarizability derivative of the CN stretching motion is most responsive to the applied voltage. The polarizability derivative of the SC stretching motion is much smaller than that of the CN bond as compared in the solution. This conclusion is attributed to the adsorption center at the sulfur atom. In general, molecular polarizability derivatives are functions of the frequencies of the exciting lasers and the applied voltages on the electrode.

  17. Distribution of hydrogen and oxygen ion species in the plasmasheet

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Cao, Jinbin; Liu, Wenlong

    2016-07-01

    In this paper, using data obtained by Cluster 4 satellite from 2001 to 2012, we statistically investigate the spatial distributions of H+ and O+ in the magnetotail plasmasheet and their relation with geomagnetic indices. Our work outlines the existence of two regions with enhanced O+ concentration in the tail plasmasheet, one is located in the mid-tail plasmasheet at R > 17 RE, and the other is located near the inner boundary of plasmasheet at R < 10 RE. The existence of the depletion region of O+ between 10 RE < R < 17 RE indicates that the O+ ions in the mid-tail plasmasheet, which come from polar cap, are not likely to be able to make important contribution to the formation of ring current. Both the distributions of density and temperature of O+ ions have a dawn-dusk asymmetry. The number density of O+ during geomagnetic active time (Dst < -20 nT/AE > 200 nT/Kp ⩾ 3) is much larger than that during non-storm time (Dst > -20 nT/AE < 200 nT/Kp < 3). This dawn-dusk asymmetry and the number density of O+ varying with geomagnetic activity apply for both regions (R < 10 RE and R > 17 RE) of O+. Therefore both substorm and enhanced convection provide a large number of O+ ions to the plasmasheet, which makes favorable condition for the growth of the ring current.

  18. Experiment and modeling of laser photodetachment of negative ions in helium oxygen barrier discharges

    NASA Astrophysics Data System (ADS)

    Tschiersch, Robert; Nemschokmichal, Sebastian; Meichsner, Jürgen

    2015-09-01

    Helium oxygen discharges operating at atmospheric pressure are of great interest for applications, such as surface treatment of biological samples. Helium as the buffer gas keeps the driving power low, and oxygen serves as the source of radicals. The large electronegativity of oxygen results in the formation of negative ions which in turn have a remarkable influence on the discharge development. To point out this role of negative ions, the change of the discharge behavior after the laser photodetachment of negative ions is measured in a helium oxygen barrier discharge. These measurements reveal a lower breakdown voltage when firing the laser during the pre-phase of the discharge. The reason is the additional pre-ionization by the detached electrons which was proved by an 1D numeric fluid modeling. The next step is the determination of absolute number densities of negative ions by a comparison of the experimental parameter variations with those from the modeling. Furthermore, the actual role of negative ions on the discharge behavior will be emphasized by the modeling.

  19. The Thermalization of Oxygen Ions and Protons at Shocks Associated with CIRs

    NASA Astrophysics Data System (ADS)

    Liu, Yong C.-M.; Lee, M. A.; Galvin, A. B.; Simunac, K. D. C.

    2009-11-01

    Using analytical theory and data from the Plasma and Suprathermal Ion Composition (PLASTIC) investigation aboard NASA's Solar Terrestrial Relations Observatory (STEREO), we investigate the thermalization of protons and oxygen ions passing through a shock associated with a corotating interaction region (CIR). The theoretical prediction for the thermalization of protons is based on a simple model of charged particles crossing through an electrostatic shock potential. The oxygen ions just downstream have a different speed relative to the bulk downstream plasma, and the oxygen ions gyrate downstream of the shock. Their thermal speed is the initial gyrospeed immediately after passing through the shock potential; later on part of the initial energy is lost to waves as a result of an Alfvén Ion-Cyclotron instability. We choose time periods when STEREO AHEAD (STEREO-A) crossed two low-Mach-number shocks. These shocks are chosen such that thermalization contributed by reflected protons and the waves generated by the reflected protons are likely negligible. The predicted proton and oxygen thermal speeds match the observations very well.

  20. Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water

    NASA Astrophysics Data System (ADS)

    Khorolskaya, S. V.; Polyanskii, L. N.; Kravchenko, T. A.; Konev, D. V.

    2014-06-01

    The kinetics of the reduction of molecular oxygen dissolved in water with nanocomposites consisting of an ion-exchange matrix and copper nanoparticles deposited in it in various amounts was studied. As the metal content in the polymer increased, the amount of reduced oxygen initially increased and then reached the limiting value. At a certain metal content, ionization of individual particles with formation of metal counterions changes to the oxidation of particles assembly giving layers of oxide products. The mechanism changes at the percolation threshold of the electron conductivity of the nanocomposite and determines the maximum amount of absorbed oxygen.

  1. On atmospheric loss of oxygen ions from earth through magnetospheric processes.

    PubMed

    Seki, K; Elphic, R C; Hirahara, M; Terasawa, T; Mukai, T

    2001-03-01

    In Earth's environment, the observed polar outflow rate for O(+) ions, the main source of oxygen above gravitational escape energy, corresponds to the loss of approximately 18% of the present-day atmospheric oxygen over 3 billion years. However, part of this apparent loss can actually be returned to the atmosphere. Examining loss rates of four escape routes with high-altitude spacecraft observations, we show that the total oxygen loss rate inferred from current knowledge is about one order of magnitude smaller than the polar O(+) outflow rate. This disagreement suggests that there may be a substantial return flux from the magnetosphere to the low-latitude ionosphere. Then the net oxygen loss over 3 billion years drops to approximately 2% of the current atmospheric oxygen content. PMID:11239148

  2. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    NASA Astrophysics Data System (ADS)

    Kumar, K. V. Aneesh; Ranganathaiah, C.; Kumarswamy, G. N.; Ravikumar, H. B.

    2016-05-01

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 1012, 1013, 1014 and 1015 ions/cm2. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (1012 to1014 ions/cm2) followed by cross-linking at 1015 ions/cm2 fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  3. Correlation between oxygen vacancies and sites of Mn ions in YMnO{sub 3}

    SciTech Connect

    Cheng, Shaobo; Deng, S. Q.; Zhu, Jing; Zhao, Y. G.; Sun, X. F.

    2015-02-09

    In multiferroic hexagonal manganites (RMnO{sub 3}, R = Y, Sc, Ho-Lu), positions of Mn ions can affect both their in-plane and inter-plane exchange interactions, thus they are of utmost importance for the magneto-elastic coupling of rare-earth compounds. However, the reported in-plane positions of Mn ions by different groups are controversial and there is a lack of convenient method to identify the shift of Mn ions from the center of MnO{sub 5} bipyramids. Here, we demonstrate that the transmission electron microscopy is an efficient technique to characterize the positions of Mn ions and the shift of Mn ions can be directly recognized from the selected area electron diffraction (SAED) patterns. Through systematic studies on the SAED patterns acquired from regions with stoichiometric and non-stoichiometric ratio, we conclude that the intensities of (11{sup ¯}0) and (22{sup ¯}0) diffraction spots are very sensitive to the in-plane positions of Mn ions. We ascribe the off-centered shift of Mn ions to the in-plane oxygen vacancies and this is verified by combined electron microscopy and electron diffraction pattern calculations. Our results indicate that SAED can be used to judge both local positions of Mn ions and local oxygen deficiency in RMnO{sub 3} systems.

  4. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  5. ON THE FORMATION OF OZONE IN SOLAR SYSTEM OXYGEN ICES EXPOSED TO HEAVY IONS

    SciTech Connect

    Ennis, Courtney; Kaiser, Ralf I.

    2012-02-01

    Mimicking the bombardment of icy surfaces with heavy ions from solar system radiation fields, solid-phase molecular oxygen ({sup 32}O{sub 2}) and its isotope labeled analogue ({sup 36}O{sub 2}) were irradiated with monoenergetic carbon (C{sup +}), nitrogen (N{sup +}), and oxygen (O{sup +}) ions in laboratory experiments simulating the interaction of ions from the solar wind and those abundant in planetary magnetospheres. Online Fourier-transform infrared spectroscopy of the irradiated oxygen ices (12 K) showed that the yields of molecular ozone monomer (O{sub 3} {approx} 2 Multiplication-Sign 10{sup -3} molecules eV{sup -1} in {sup 32}O{sub 2}) were independent of the mass of the implanted C{sup +}, N{sup +}, and O{sup +} ions ({Phi}{sub max} = 4.0 Multiplication-Sign 10{sup 14} ions cm{sup -2}). The production of oxygen atoms in the solid was observed in the mid-IR stabilized via the [O{sub 3}...O] van der Waals complex. We expand on this inference by comparing the ozone yields induced by light particles (e{sup -}, H{sup +}, and He{sup +}) to the heavy ions (C{sup +}, N{sup +}, and O{sup +}) to provide compelling evidence that the abundance of radiolytic products in an oxygen-bearing solid is primarily dependent on electronic stopping regimes, which supersedes the contribution of nuclear stopping processes irrespective of the mass of the particle irradiation in the kinetic energy regime of solar wind and magnetospheric particles.

  6. Surface modification of poly(propylene carbonate) by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhong; Kang, Jiachen; Hu, Ping; Meng, Qingli

    2007-04-01

    Poly(propylene carbonate) (PPC) was implanted by oxygen ion with energy of 40 keV. The influence of experimental parameters was investigated by varying ion fluence from 1 × 10 12 to 1 × 10 15 ions/cm 2. XPS, SEM, surface roughness, wettability, hardness, and modulus were employed to investigate structure and properties of the as-implanted PPC samples. Eight chemical groups, i.e., carbon, C sbnd H, C sbnd O sbnd C, C sbnd O, O sbnd C sbnd O, C dbnd O, ?, and ? groups were observed on surfaces of the as-implanted samples. The species and relative intensities of the chemical groups changed with increasing ion fluence. SEM images displayed that irradiation damage was related strongly with ion fluence. Both surface-recovering and shrunken behavior were observed on surface of the PPC sample implanted with fluence of 1 × 10 15 ions/cm 2. As increasing ion fluence, the surface roughness of the as-implanted PPC samples increased firstly, reached the maximum value of 159 nm, and finally decreased down the minimum value. The water droplet contact angle of the as-implanted PPC samples changed gradually with fluence, and reached the minimum value of 70° with fluence of 1 × 10 15 ions/cm 2. The hardness and modulus of the as-implanted PPC samples increased with increasing ion fluence, and reached their corresponding maximum values with fluence of 1 × 10 15 ions/cm 2. The experimental results revealed that oxygen ion fluence closely affected surface chemical group, morphology, surface roughness, wettability, and mechanical properties of the as-implanted PPC samples.

  7. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro. PMID:25212818

  8. Simulation of ion-induced water radiolysis in different conditions of oxygenation

    NASA Astrophysics Data System (ADS)

    Colliaux, Anthony; Gervais, Benoit; Rodriguez-Lafrasse, Claire; Beuve, Michaël

    2015-12-01

    We have investigated the production of free radicals induced by swift ions during the radiolysis of oxygenated water and analyzed the underlying mechanisms in detail. To this aim, we simulated, by Monte-Carlo, the irradiation of water by projectiles with LET values ranging from 1 to 300 keV/μm for a partial pressure of oxygen in air from 0 to 750 mmHg, and for times up to 10 μs after ion impact. For low-LET radiation, we observed an increase in production of (HO2rad + O2rad -) with oxygen pressure and a saturation. At 1 μs, the saturation occurred at a pressure of 20-30 mmHg and the maximal yield amounted to 0.3 μmol L-1 per Gray. For the same conditions, we observed similar trends for high-LET ions, but we observed a significant reduction in the yield values and an attenuation of the saturation behavior. By underlining similarities between the yield of (HO2rad + O2rad -) and the oxygen effect observed in radiobiology, we discuss the role of (HO2rad + O2rad -) in oxygen effect and suggest a general mechanism for this phenomenon.

  9. Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Stone, E. C.

    1983-07-01

    Observations of 1 to 20 MeV/nuc oxygen, sodium, and sulfur ions in the Jovian magnetosphere are reported. Measurements made by the cosmic ray subsystem on Voyager 1 and 2 are used to calculate abundances and energy spectra in the region from 5 to 20 Jovian radii.

  10. Reactive Ion Etching of Polymers in Oxygen Based Plasmas: a Study of Etch Mechanisms.

    NASA Astrophysics Data System (ADS)

    Graham, Sandra Wolterman

    The reactive ion etching of polymers has been studied in oxygen-based plasmas in an effort to understand the contributions of various mechanisms to the etching of these materials. Of the four active etch mechanisms; surface damage promoted etching, chemical sputtering, chemically enhanced physical sputtering, and direct reactive ion etching; the emphasis of this work has been on determining the relative contribution of direct reactive ion etching to the overall etching process. The etching of photoresist, polyimide, and amorphous carbon in O_2-CF_4 plasmas was studied in an asymmetrical reactive ion etcher at pressures ranging from 5 to 100 mtorr. Etch yield, ion flux, and oxygen atom concentration data were collected. The fit of this data to a linear model proposed by Joubert et al. (J. Appl. Phys., 65, 1989, 5096) was compared to the fit of the data to a nonlinear model proposed by the author. The linear model accounts for contribution due to three of the four etch mechanisms, but does not include contributions due to direct reactive ion etching. The nonlinear model accounts for contributions due to all four etch mechanisms. Experimental results indicate that the nonlinear model provides a better fit to the data than does the linear model. The relative contribution of direct reactive ion etching to the etching of photoresist ranges from 27% to 81% as the pressure decreases from 100 to 5 mtorr. Similar results are obtained for polyimide and amorphous carbon.

  11. Probing the oxygen-binding site of the human formylglycine-generating enzyme using halide ions.

    PubMed

    Roeser, Dirk; Schmidt, Bernhard; Preusser-Kunze, Andrea; Rudolph, Markus G

    2007-05-01

    The catalytic residue in sulfatases is a unique formylglycine that is post-translationally generated by oxidation of a cysteine or serine precursor. Molecular oxygen oxidizes the cysteine precursor in eukaryotic sulfatases, a reaction that is catalysed by the formylglycine-generating enzyme FGE. Previously, FGE was crystallized in complex with a chloride ion which, based on its similar polarizability and hydrophobicity, indicates the site of molecular oxygen binding. Here, two structures of FGE in complex with bromide and iodide were determined in order to further delineate the volume and stereochemical restraints of the oxygen-binding site for potential reaction intermediates. Anomalous difference density maps unambiguously assigned the nature of the halide ions. Unexpectedly, data collected at a wavelength of 1.54 A from the iodide-containing crystal and data collected at a wavelength of 0.8 A from a bromide-containing crystal were sufficient for SIRAS phasing. PMID:17452787

  12. Multilayer Resist Profile Control in Oxygen Reactive Ion Etching Using Ethanol Gas Mixture

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuki; Aoyama, Ryouichi; Suzuki, Seki

    1994-07-01

    By adding ethanol gas to oxygen-based chemistry, the controllability of resist profile and the overetch characteristic, under the condition with nearly no areas of material to be etched (etchable area), are improved. A model for resist profile control in which the resist profile is determined by the ratio of the sum of the isotropic etching component and the isotropic deposition component to the anisotropic etching component, is examined by evaluating the dependence of the resist profile and the etching rate on gas composition, the product of ion energy and ion current density (ion impact), and line and space (L & S) width. Both the gas composition and L & S width affect the sum of isotropic components. Ion impact affects the anisotropic etching component. When the isotropic components are balanced, resist profile is independent of ion impact and L & S width.

  13. Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mauk, B. H.; Paranicas, C.; Kollmann, P.; Smith, H. T.

    2016-03-01

    Pitch angle distributions of proton and energetic heavy ion fluxes near Europa's orbit have been measured by the Galileo Energetic Particles Detector (EPD). At similar energies, these distributions have important differences. If their source and transport processes are similar, as we hypothesize here, then it is difficult to reconcile their different pitch angle distributions. By looking at the same question, other researchers have proposed that the heavies are multiply charged, leading to differences in how the particles are lost. This could not be confirmed directly with EPD because that detector does not separate heavy ion measurements by charge state. However, indirect analyses of the data have extracted the charge state of a few sulfur events. We present here a complete list of ion injections observed with EPD over the whole mission. Energetic sulfur and oxygen charge states can be inferred through a dispersion analysis of dynamic injections that makes use of the charge-dependent nature of the gradient-curvature azimuthal drift. We find that sulfur is predominantly multiply charged, whereas oxygen is more evenly distributed between singly and doubly charged states. In addition to current theories on energetic heavy ion transport near the Europa region, we propose that charge gain for the oxygen ions (electron stripping) may play an important role in the character of energetic particles in that region.

  14. Excitation of MHD waves upstream of Jupiter by energetic sulfur or oxygen ions

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Wong, H. K.; Eviatar, A.

    1986-01-01

    Large fluxes of heavy ions have been reported upstream of Jupiter's bow shock as Voyager 1 approached the planet (Zwickl et al., 1981; Krimigis et al., 1985). Enhanced low-frequency magnetic wave activity was also observed during the particle events. The fluctuations are left-handed, elliptically polarized in the plasma frame. The spectrum of these fluctuations contains a peak close to the Doppler-shifted resonance frequency of a sulfur or oxygen beam with streaming energy of approximately 30 keV. These fluctuations are also present in the spectrum of the magnitude of the field. It is concluded that the observations result from an instability driven by an energetic beam of either sulfur or oxygen. The wave observations can be described by a heavy ion distribution with both a streaming anisotropy and a temperature anisotropy. This class of heavy ion streaming instabilities may also play a role in wave-particle interactions in the vicinity of comets.

  15. Temperature dependences of the photoluminescence intensities of centers in silicon implanted with erbium and oxygen ions

    SciTech Connect

    Sobolev, N. A. Shtel’makh, K. F.; Kalyadin, A. E.; Shek, E. I.

    2015-12-15

    Low-temperature photoluminescence in n-Cz-Si after the implantation of erbium ions at an elevated temperature and subsequent implantation of oxygen ions at room temperature is studied. So-called X and W centers formed from self-interstitial silicon atoms, H and P centers containing oxygen atoms, and Er centers containing Er{sup 3+} ions are observed in the photoluminescence spectra. The energies of enhancing and quenching of photoluminescence for these centers are determined. These energies are determined for the first time for X and H centers. In the case of P and Er centers, the values of the energies practically coincide with previously published data. For W centers, the energies of the enhancing and quenching of photoluminescence depend on the conditions of the formation of these centers.

  16. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    SciTech Connect

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  17. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  18. Chloride (Cl-) ion-mediated shape control of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj

    2016-02-01

    The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.

  19. Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

    SciTech Connect

    Manjunatha, H. Kumaraswamy, G. N.; Damle, R.

    2014-04-24

    Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10{sup −2} – 10{sup −4} S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O{sup +1} with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs.

  20. Preferential heating of oxygen 5+ ions by finite-amplitude oblique Alfvén waves

    NASA Astrophysics Data System (ADS)

    Maneva, Yana G.; Viñas, Adolfo; Araneda, Jaime; Poedts, Stefaan

    2016-03-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfvén waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfvén-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles θ ≤ 30°. The obliquely propagating Alfvén pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  1. Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels

    PubMed Central

    Veit, Florian; Pak, Oleg; Brandes, Ralf P.

    2015-01-01

    Abstract Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537–552 PMID:25545236

  2. A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level.

    PubMed

    Malherbe, Julien; Penen, Florent; Isaure, Marie-Pierre; Frank, Julia; Hause, Gerd; Dobritzsch, Dirk; Gontier, Etienne; Horréard, François; Hillion, François; Schaumlöffel, Dirk

    2016-07-19

    An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana. PMID:27291826

  3. Removal of zinc(II) ion by graphene oxide (GO) and functionalized graphene oxide-glycine (GO-G) as adsorbents from aqueous solution: kinetics studies

    NASA Astrophysics Data System (ADS)

    Najafi, F.

    2015-05-01

    The main purpose of this study is to explain the absorption of zinc from aqueous solution by grapheme oxide and functionalized grapheme oxide with glycine as the adsorbent surface. For confirmed functionalized graphene oxide, the glycine amino group was added to the surface of graphene oxide. The effects of the initial concentration of Zn(II) ions and contact time were studied. Results showed that with increasing initial concentration of Zn(II) ions, the adsorption capacity increased. The adsorption capacity did not show a large change after 50 min; therefore, for the study of kinetic parameters, the optimal time of 50 min was selected. The chemical structure of graphene oxide was confirmed by using FT-IR analysis. The adsorption process of Zn(II) ions graphene oxide and functionalized graphene oxide-glycine surfaces was fixed at 298 K and pH 6. The pseudo-first-order and the pseudo-second-order (types I, II, III and IV) kinetic models were tested for the adsorption process and the results showed that the kinetic parameters best fit type (I) of the pseudo-second-order model. A high R 2 was used to be the best match.

  4. Magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption

    NASA Astrophysics Data System (ADS)

    Roto, Roto; Yusran, Yusran; Kuncaka, Agus

    2016-07-01

    The magnetic adsorbent of Fe3O4@SiO2 core-shell nanoparticles modified with thiol group was synthesized for chloroauric ([AuCl4]-) adsorption. The Fe3O4 nanoparticles were prepared by co-precipitation method under mechanical stirring and coated with SiO2 by acid hydrolysis of Na2SiO3 under N2 purging. The coating of Fe3O4 nanoparticles with SiO2 prevents particles' agglomeration by forming Fe3O4 Fe3O4 Fe3O4@SiO2 core-shell and avoids dissolution of the Fe3O4 core in the acidic medium. The coated Fe3O4 particle was modified with a thiol group using 3-mercaptopropyltrimethoxysilane via silanization reaction. The results suggest that SiO2-coated Fe3O4 particles have a size of 10-20 nm. The FTIR and EDX data indicate that the thiol groups are successfully attached to the surface of the nanoparticles. The [AuCl4]- ion adsorption by the Fe3O4@SiO2 core-shell nanoparticles followed Langmuir isotherm model with a maximum adsorption capacity of 115 mg/g and free energy (ΔG°) of 24.8 kJ/mol. The thiourea solution can be used to desorb most of the adsorbed [AuCl4]- ion. The adsorption using magnetic compounds provides easy access to the separation for both preparation and recovery.

  5. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.

    PubMed

    Fan, Ling; Lu, Bingan

    2016-05-01

    Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen-doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen-doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen-doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g(-1) after 500 cycles for LIBs and 223 mA h g(-1) after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g(-1) ), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen-doped carbonaceous material. PMID:27061155

  6. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis

    NASA Astrophysics Data System (ADS)

    Caprarescu, Simona; Radu, Anita-Laura; Purcar, Violeta; Ianchis, Raluca; Sarbu, Andrei; Ghiurea, Marius; Nicolae, Cristian; Modrogan, Cristina; Vaireanu, Danut-Ionel; Périchaud, Alain; Ebrasu, Daniela-Ion

    2015-02-01

    The present paper was aimed at studying the possibility of zinc (Zn) removal from the wastewater discharged from zinc electroplating processes. In order to save industrial and environmental resources, the concentrated solution could be reused after electrodialysis process. A mini-electrodialysis system with three cylindrical compartments and different membranes containing various resins (Purolite A500 and Hypersol-Macronet MN500) was employed, which can be further applied for the treatment of synthetic effluent which contained zinc ions. The electrodialysis system was operated at constant voltage using different concentrations of synthetic solutions of zinc ions, without and with electrolyte recirculation for 1.5 h. The pH and conductivity of solutions were measured before and after the electrodialysis process occurs. Also the removal ratio (Rr) and mass flow (J) of zinc ions, energy consumption (EC) and current efficiency (CE) were determined. It was found that electrodialysis treatment generated a very low conductivity solution, enabling its reuse as rinse water. According to the obtained results when using a membrane pair with higher ion exchange capacity (IEC) the removal ratio is improved (over 80%). The physico-chemical, structural and mechanical properties of prepared membranes were registered, before and after electrodialysis process takes place, by means of complementary analytical techniques, namely, ion-exchange capacity, water content and thickness measurements. Furthermore analysis were also carried out by Fourier transform infrared spectroscopy (FT-IR), environmental scanning electron microscopy (ESEM), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS).

  7. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    PubMed

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets. PMID:26151150

  8. Oxygen incorporation in polyethylene implanted with 150 keV Sb+ ions

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Kvítek, J.; Švorčík, V.; Rybka, V.; Popok, V.

    1994-06-01

    Samples of polyethylene (PE) loaded with carbon black up to 8 wt.% and implanted with 150 keV Sb+ ions to the doses from 2×1013-2×1015 cm-2 were studied using standard Rutherford Back Scattering (RBS) technique. On the PE samples implanted to the doses above 2×1014 cm-2, a considerable surface carbonization is observed. The measured parameters of the Sb depth profile are compared with theoretical TRIM estimations. The projected range is by 25% lower than the theoretical one and the range straggling is about twice of that predicted. The differences are explained by stepwise polymer degradation during the ion bombardment. Strong oxidation of the ion implanted polymers is also observed. The oxygen depth profiles from the sample surface up to the depth comparable with Sb+ ion range evolve from nearly uniform one for low ion doses to highly non-uniform one for doses above 1×1015 cm-2. The total oxygen content in the sample surface layer 300 nm thick reaches a maximum for the doses of (1-2)×1014 cm-2.

  9. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.

    PubMed

    Luo, Jia-Yan; Cui, Wang-Jun; He, Ping; Xia, Yong-Yao

    2010-09-01

    Aqueous lithium-ion batteries may solve the safety problem associated with lithium-ion batteries that use highly toxic and flammable organic solvents, and the poor cycling life associated with commercialized aqueous rechargeable batteries such as lead-acid and nickel-metal hydride systems. But all reported aqueous lithium-ion battery systems have shown poor stability: the capacity retention is typically less than 50% after 100 cycles. Here, the stability of electrode materials in an aqueous electrolyte was extensively analysed. The negative electrodes of aqueous lithium-ion batteries in a discharged state can react with water and oxygen, resulting in capacity fading upon cycling. By eliminating oxygen, adjusting the pH values of the electrolyte and using carbon-coated electrode materials, LiTi(2)(PO(4))(3)/Li(2)SO(4)/LiFePO(4) aqueous lithium-ion batteries exhibited excellent stability with capacity retention over 90% after 1,000 cycles when being fully charged/discharged in 10 minutes and 85% after 50 cycles even at a very low current rate of 8 hours for a full charge/discharge offering an energy storage system with high safety, low cost, long cycling life and appropriate energy density. PMID:20729897

  10. Effects of oxygen ion implantation in spray-pyrolyzed ZnO thin films

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K. P.; Ratheesh Kumar, P. M.; Sudha Kartha, C.; Wilson, K. C.; Singh, F.; Nair, K. G. M.; Kashiwaba, Y.

    2006-04-01

    ZnO thin films, prepared using the chemical spray pyrolysis technique, were implanted using 100 keV O+ ions. Both pristine and ion-implanted samples were characterized using X-ray diffraction, optical absorption, electrical resistivity measurements, thermally stimulated current measurements and photoluminescence. Samples retained their crystallinity even after irradiation at a fluence of 1015 ions/cm2. However, at a still higher fluence of 2 × 1016 ions/cm2, the films became totally amorphous. The optical absorption edge remained unaffected by implantation and optical absorption spectra indicated two levels at 460 and 510 nm. These were attributed to defect levels corresponding to zinc vacancies (VZn) and oxygen antisites (OZn), respectively. Pristine samples had a broad photoluminescence emission centred at 517 nm, which was depleted on implantation. In the case of implanted samples, two additional emissions appeared at 425 and 590 nm. These levels were identified as due to zinc vacancies (VZn) and oxygen vacancies (VO), respectively. The electrical resistivity of implanted samples was much higher than that of pristine, while photosensitivity decreased to a very low value on implantation. This can be utilized in semiconductor device technology for interdevice isolation. Hall measurements showed a marked decrease in mobility due to ion implantation, while carrier concentration slightly increased.

  11. Optical planar waveguide in magnesium aluminate spinel crystal using oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Liu, Peng; Zhao, Jin-Hua; Wang, Xue-Lin

    2015-07-01

    A planar optical waveguide in MgAl2O4 crystal sample was fabricated using 6.0 MeV oxygen ion implantation at a fluence of 1.5 × 1015 ions/cm2 at room temperature. The optical modes were measured at a wavelength of 633 nm using a model 2010 prism coupler. The near-field intensity files in the visible band were measured and simulated with end-face coupling and FD-BPM methods, respectively. The absorption spectra show that the implantation process has almost no effect on the visible and near-infrared band absorption.

  12. Laboratory degradation of Kapton in a low energy oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1984-01-01

    An atomic oxygen ion beam, accelerated from a tunable microwave resonant cavity, was used at Lewis Research Center to bombard samples of the widely used polyimide Kapton. The Kapton experienced degradation and mass loss at high rates, which may be comparable to those found in Space Shuttle operations if the activation energy supplied by the beam enabled surface reactions with the ambient oxygen. The simulation reproduced the directionality (ram-wake dependence) of the degradation, the change in optical properties of the degraded materials, and the structure seen in scanning electron micrographs of samples returned on the Shuttle Trails with a substituted argon ion beam produced no rapid degradation. Energy Dispersive X-ray Analysis (EDAX) showed significant surface composition changes in all bombarded samples. Mass loss rates and surface composition changes are discussed in terms of the possible oxidation chemistry of the interaction. Finally, the question of how the harmful degradation of materials in low Earth orbit can be minimized is addressed.

  13. Laboratory degradation of Kapton in a low energy oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1983-01-01

    An atomic oxygen ion beam, accelerated from a tunable microwave resonant cavity, was used at Lewis Research Center to bombard samples of the widely used polyimide Kapton. The Kapton experienced degradation and mass loss at high rates, which may be comparable to those found in Space Shuttle operations if the activation energy supplied by the beam enabled surface reactions with the ambient oxygen. The simulation reproduced the directionality (ram-wake dependence) of the degradiation, the change in optical properties of the degraded materials, and the structure seen in scanning electron micrographs of samples returned on the Shuttle Trails with a substituted argon ion beam produced no rapid degradation. Energy Dispersive X-ray Analysis (EDAX) showed significant surface composition changes in all bombarded samples. Mass loss rates and surface composition changes are discussed in terms of the possible oxidation chemistry of the interaction. Finally, the question of how the harmful degradation of materials in low earth orbit can be minimized is addressed.

  14. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaan axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.

  15. Deeper and earlier penetrations of oxygen ions than protons into the inner magnetosphere Observed by Van Allen probes.

    NASA Astrophysics Data System (ADS)

    Mitani, K.; Seki, K.; Keika, K.; Lanzerotti, L. J.; Gkioulidou, M.; Mitchell, D. G.; Kletzing, C.

    2015-12-01

    It is observationally known that proton and oxygen ions are main components of the ring current during magnetic storms and that the proton and oxygen ions are considered to have different source and supply mechanisms. However, detailed properties of the ion supply and their dependence on ion species is far from well understood. To characterize the ion supply to the ring current during magnetic storms, we report studies of the properties of energetic proton and oxygen ion phase space densities (PSDs) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We used energetic ion (~50 - ~600keV protons, ~140 - ~1100keV oxygen) and magnetic field data obtained by the RBSPICE and EMFISIS, respectively, on the Van Allen Probes. We calculated ion PSDs for the specific first adiabatic invariant, mu (0.3 < mu < 12 keV/nT), and ion pitch angles near 90 degrees as a function of L for each spacecraft orbit. The results show that both proton and oxygen ions penetrated directly to L<5 during the main phase of the magnetic storm. Protons with smaller mu values (mu = 0.3 and 0.5 keV/nT) penetrated earlier than those with larger mu values (mu = 1.0 keV/nT). This result appears consistent with the energy dependence of the Alfven layer. The timing of oxygen ion penetration is approximately the same for all mu values (mu = 0.8, 1.0 and 1.2 keV/nT). The observations also show that oxygen ions penetrated more deeply in L and earlier in time than protons for the same mu value (mu = 1.0keV/nT). These results suggest that the source of the transported oxygen ions is located closer to the Earth than the inner edge of protons. The results imply the importance of the contribution from subauroral oxygen ions to the storm-time ring current. We will also discuss the possibility of non-adiabatic acceleration of oxygen ions in the inner magnetosphere.

  16. Oxygen plasma immersion ion implantation treatment to enhance data retention of tungsten nanocrystal nonvolatile memory

    SciTech Connect

    Wang, Jer-Chyi Chang, Wei-Cheng; Lai, Chao-Sung; Chang, Li-Chun; Ai, Chi-Fong; Tsai, Wen-Fa

    2014-03-15

    Data retention characteristics of tungsten nanocrystal (W-NC) memory devices using an oxygen plasma immersion ion implantation (PIII) treatment are investigated. With an increase of oxygen PIII bias voltage and treatment time, the capacitance–voltage hysteresis memory window is increased but the data retention characteristics become degraded. High-resolution transmission electron microscopy images show that this poor data retention is a result of plasma damage on the tunneling oxide layer, which can be prevented by lowering the bias voltage to 7 kV. In addition, by using the elevated temperature retention measurement technique, the effective charge trapping level of the WO{sub 3} film surrounding the W-NCs can be extracted. This measurement reveals that a higher oxygen PIII bias voltage and treatment time induces more shallow traps within the WO{sub 3} film, degrading the retention behavior of the W-NC memory.

  17. Energetic oxygen and sulfur ions in the Jovian magnetosphere. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1981-01-01

    Observations of 1 to 20 MeV/nuc oxygen, sodium, and sulfur ions in the Jovian magnetosphere are reported. Measurements made by the cosmic ray subsystem on Voyager 1 and 2 were used to calculate abundances and energy spectra in the region from 5 to 20 Jovian radii. The phase space density of the oxygen ions calculated from the spectra has a positive radial gradient between 6 and 17 Jovian radii, indicating an inward diffusive flow. The diffusion coefficient upper limit at 9 Jovian radii is approximately 10 to the -5 power/s. This limit, combined with the analysis of Voyager plasma observations by Siscoe et al.1981, implies an upper limit to the mass loading rate near Io of approximately 10 to the 28th power ions/s. The energetic oxygen lifetime is within an order of magnitude of the strong pitch-angle diffusion lifetime in this region, with the largest total number of particles lost between 7.5 and 12.5 Jovian radii. It is shown that the losses are not due to geometric absorption by Io, absorption by dust grains, or energy loss in the plasma of the inner magnetosphere, and it is therefore postulated that the primary loss mechanism is pitch-angle scattering into the loss cone.

  18. An Auger Sputter Profiling Study of Nitrogen and Oxygen Ion Implantations in Two Titanium Alloys

    SciTech Connect

    Barton, B. D., Pope, L. E., Wittberg, T. N.

    1989-07-31

    Samples of two titanium alloys, Ti-6A1-4V and Ti-15V-3Cr-3Sn-3A1, were ion implanted with a combination of nitrogen (N+) and oxygen (O+). For each alloy, implantation parameters were chosen to give implanted nitrogen concentrations of approximately 10 or 50 atomic percent, from a depth of 100 nanometers to a depth of 400 nanometers. In all but one case, dual energy (200 keV and 90 keV) implantations of nitrogen were used to give a relatively uniform nitrogen concentration to a depth of 300 nanometers. In each case, oxygen was implanted at 35 keV, following the nitrogen implantation, to give an oxygen-enriched region near the surface. The implanted samples were then examined by Auger electron spectroscopy (AES) combined with argon ion sputtering. In order to determine the stoichiometry of the nitrogen implanted regions, it was necessary to determine the N (KVV) contribution to the overlapping N (KVV) and Ti (LMM) Auger transitions. It was also necessary to correct for the ion-bombardment-induced compositional changes which have been described in an earlier study of titanium nitride thin films. The corrected AES depth profiles were in good agreement with theoretical predictions.

  19. Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology.

    PubMed

    Kaynar, Ümit H; Şabikoğlu, Israfil; Kaynar, Sermin Çam; Eral, Meral

    2016-09-01

    The silicon dioxide nano-balls (nano-SiO2) were prepared for the adsorption of thorium (IV) ions from aqueous solution. The synthesized silicon dioxide nano-balls were characterized by Scanning Electron Microscopy/Energy Dispersive X-ray, X-ray Diffraction, Fourier Transform Infrared and BET surface area measurement spectroscopy. The effects of pH, concentration, temperature and the solid-liquid ratio on the adsorption of thorium by nano-balls were optimized using central composite design of response surface methodology. The interaction between four variables was studied and modelled. Furthermore, the statistical analysis of the results was done. Analysis of variance revealed that all of the single effects found statistically significant on the sorption of Th(IV). Probability F-values (F=4.64-14) and correlation coefficients (R(2)=0.99 for Th(IV)) indicate that model fit the experimental data well. The ability of this material to remove Th(IV) from aqueous solution was characterized by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption capacity of thorium (IV) achieved 188.2mgg(-1). Thermodynamic parameters were determined and discussed. The batch adsorption condition with respect to interfering ions was tested. The results indicated that silicon dioxide nano-balls were suitable as sorbent material for adsorption and recovery of Th(IV) ions from aqueous solutions. PMID:27451112

  20. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  1. Dayside pickup oxygen ion precipitation at Venus and Mars - Spatial distributions, energy deposition and consequences

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Kozyra, J. U.

    1991-04-01

    The fluxes and energy spectra of picked-up planetary O(+) ions incident on the dayside atmospheres of Venus and Mars are calculated. Maps of precipitating ion number flux and energy flux are presented which show the asymmetrical distribution of dayside energy deposition expected from this source. Although the associated heating of the atmosphere and ionosphere is found to be negligible compared to that from the usual sources, backscattered or sputtered neutral oxygen atoms are produced at energies which exceed that needed for escape from the gravitational fields of both planets. These neutral 'winds', driven by pickup ion precipitation, represent a possibly significant loss of atmospheric constituents over the age of the solar system.

  2. Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces.

    PubMed

    Rubasinghege, Gayan; Grassian, Vicki H

    2009-07-01

    Nitrogen oxides, including nitrogen dioxide and nitric acid, react with mineral dust particles in the atmosphere to yield adsorbed nitrate. Although nitrate ion is a well-known chromophore in natural waters, little is known about the surface photochemistry of nitrate adsorbed on mineral particles. In this study, nitrate adsorbed on aluminum oxide, a model system for mineral dust aerosol, is irradiated with broadband light (lambda > 300 nm) as a function of relative humidity (RH) in the presence of molecular oxygen. Upon irradiation, the nitrate ion readily undergoes photolysis to yield nitrogen-containing gas-phase products including NO(2), NO, and N(2)O, with NO being the major product. The relative ratio and product yields of these gas-phase products change with RH, with N(2)O production being highest at the higher relative humidities. Furthermore, an efficient dark reaction readily converts the major NO product into NO(2) during post-irradiation. Photochemical processes on mineral dust aerosol surfaces have the potential to impact the chemical balance of the atmosphere, yet little is known about these processes. In this study, the impact that adsorbed nitrate photochemistry may have on the renoxification of the atmosphere is discussed. PMID:19534452

  3. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    PubMed

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  4. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex. PMID:26711153

  5. Ion-imprinted silica adsorbent modified diffusive gradients in thin films technique: Tool for speciation analysis of free lead species.

    PubMed

    Sui, Dian-Peng; Chen, Hua-Xia; Liu, Lin; Liu, Ming-Xuan; Huang, Cong-Cong; Fan, Hong-Tao

    2016-02-01

    A new diffusive gradients in thin films (DGT) device, using Pb(II) ion-imprinted silica (IIS) as the binding agents and commercial cellulose acetate dialysis (CAD) membrane as the diffusion layer (CAD/IIS-DGT), has been developed and evaluated for sampling and measurement of free Pb(II) species. The CAD/IIS-DGT devices were successfully applied to the measurement of free Pb(II) species in synthetic solutions, in natural freshwaters and in industrial wastewaters. The CAD/IIS-DGT provides reliable results over pH range of 4.5-6.5 and a wide range of ionic strength from 1.0×10(-3) to 0.7 mol L(-1). The concentrations of the free Pb(II) species in synthetic solution containing different concentrations of ligands measured by CAD/IIS-DGT showed a good agreement with the value measured by Pb-ion selective electrode. Field deployments of the CAD/IIS-DGT devices allowed accurate measurements of the concentrations of free Pb(II) species. PMID:26653451

  6. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. PMID:26458121

  7. The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass.

    PubMed

    El-Hendawy, Abdel-Nasser A

    2009-08-15

    A deep understanding of adsorption of Pb(2+) and Cd(2+) ions from their aqueous solutions on activated carbons and their HNO(3)-oxidized forms has been attempted. These activated carbons were obtained from date pits using different activation methods. Adsorption isotherms of Pb(2+) and Cd(2+) ions were determined from solutions at pH 3 and 5.9. The results revealed that all obtained isotherms exhibited the model fitting according to Langmuir equation. The oxidized samples prone, slightly, to the high affinity isotherm type. The results revealed also that the investigated carbons removed appreciable amounts of lead and cadmium ions which increased by increasing pH of solutions from 3 to 5.9. The adsorption capacity of the investigated carbons also increased by HNO(3) acid surface treatment. The results were discussed in light of a possible chemical modification by nitric acid resulting in the creation of a large number of surface functional oxygen species. This interpretation was confirmed by FTIR investigation. The solution-pH and the surface chemistry of the carbons were found to play a decisive role in the uptake of these heavy metal ions from aqueous solutions rather than the carbon texture characteristics. PMID:19195774

  8. Extraction of low-energy negative oxygen ions for thin film formation

    SciTech Connect

    Vasquez, M. Jr.; Sasaki, D.; Kasuya, T.; Wada, M.; Maeno, S.

    2011-09-26

    Coextraction of low-energy positive and negative ions were performed using a plasma sputter-type ion source system driven by a 13.56 MHz radio frequency (rf) power. Titanium (Ti) atoms were sputtered out from a target and the sputtered neutrals were postionized in oxygen/argon (O{sub 2}/Ar) plasma prior to extraction. The negative O ions were surface-produced and self-extracted. Mass spectral analyses of the extracted ion beams revealed the dependence of the ion current on the incident rf power, induced target bias and O{sub 2}/Ar partial pressure ratio. Ti{sup +} current was found to be dependent on Ar{sup +} current and reached a saturation value with increasing O{sub 2} partial pressure while the O{sup -} current showed a peak current at around 1:9 O{sub 2}/Ar partial pressure ratio. Ti{sup +} current was several orders of magnitude higher than that of the O{sup -} current.

  9. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  10. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity.

    PubMed

    Mateják, Marek; Kulhánek, Tomáš; Matoušek, Stanislav

    2015-04-01

    As has been known for over a century, oxygen binding onto hemoglobin is influenced by the activity of hydrogen ions (H⁺), as well as the concentration of carbon dioxide (CO₂). As is also known, the binding of both CO₂and H⁺ on terminal valine-1 residues is competitive. One-parametric situations of these hemoglobin equilibria at specific levels of H⁺, O₂or CO₂are also well described. However, we think interpolating or extrapolating this knowledge into an 'empirical' function of three independent variables has not yet been completely satisfactory. We present a model that integrates three orthogonal views of hemoglobin oxygenation, titration, and carbamination at different temperatures. The model is based only on chemical principles, Adair's oxygenation steps and Van't Hoff equation of temperature dependences. Our model fits the measurements of the Haldane coefficient and CO₂hemoglobin saturation. It also fits the oxygen dissociation curve influenced by simultaneous changes in H⁺, CO₂and O₂, which makes it a strong candidate for integration into more complex models of blood acid-base with gas transport, where any combination of mentioned substances can appear. PMID:25594800

  11. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    PubMed

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics. PMID:23858847

  12. The interaction of potassium submonolayers adsorbed on Pt(111) with oxygen and the adsorption of ethylene on the resulting modified surfaces: a TDS and UPS study

    NASA Astrophysics Data System (ADS)

    Cassuto, A.; Schmidt, S.; Mane, Mane

    1993-03-01

    UPS shows that K atoms deposited on Pt(111) in the submonolayer range strongly interact with oxygen molecules. At 300 K, oxygen molecules dissociate. Oxygen atoms either attach to potassium atoms or lead to K 2O. At 95 K, depending on the experimental conditions (exposure and pressure), potassium peroxide or potassium Superoxide, as majority species, form. TDS as well as UPS indicate that on these surfaces ethylene is π-bonded as on Pt(111) surfaces, partially covered with K atoms. No ethylene adsorption occurs on surfaces fully covered with oxygen atoms or oxides. Ethylene adsorption therefore occurs on the clean part of the sample and is disturbed by the presence of various species of potassium attached to oxygen.

  13. High impact of uranyl ions on carrying-releasing oxygen capability of hemoglobin-based blood substitutes.

    PubMed

    Duan, Li; Du, Lili; Jia, Yi; Liu, Wenyuan; Liu, Zhichao; Li, Junbai

    2015-01-01

    The effect of radioactive UO2 (2+) on the oxygen-transporting capability of hemoglobin-based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer-by-layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe3 O4 ) were loaded in porous CaCO3 particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO2 (2+) , it was found that UO2 (2+) was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO2 (2+) in vivo destroys the structure and oxygen-transporting capability of Hb microspheres. In view of the high adsorption capacity of UO2 (2+) , the as-assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation-contaminated bodies, or from nuclear-power reactor effluent before discharge into the environment. PMID:25418690

  14. The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films

    SciTech Connect

    Bikowski, Andre; Welzel, Thomas; Ellmer, Klaus

    2013-06-17

    In order to study the impact of negative oxygen ion bombardment on the electronic transport properties of ZnO:Al films, a systematic magnetron sputtering study from ceramic targets with excitation frequencies from DC to 27 MHz, accompanied by strongly varying discharge voltages, has been performed. Higher plasma excitation frequencies significantly improve the transport properties of ZnO:Al films. The effect of the bombardment of the films by energetic particles (negative oxygen ions) can be explained by the dynamic equilibrium between the formation of acceptor-like oxygen interstitials compensating the extrinsic donors and the self-annealing of the interstitial defects at higher deposition temperatures.

  15. Negative ion clusters in oxygen: collision cross sections and transport coefficients

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Bekstein, A.; Ducasse, O.; Ruíz-Vargas, G.; Yousfi, M.; Benhenni, M.

    2009-12-01

    Using a pulsed Townsend experiment, we have observed the formation of two negative ion species in oxygen over the pressure range 100-600 torr, and the density-normalised electric field strength, E/N, from 2 to 14 Td. The peculiar shape of these transients has led us to propose a scheme of three-body ion-molecule reactions leading to the formation of O4 - and O6 -, which is substantiated by a curve fitting procedure. The resulting mobility data of these two ionic species have been used to calculate their respective momentum transfer collision cross sections, together with the dissociation cross sections that are needed to extend the range of calculation of mobility and diffusion (transverse and longitudinal) to 1000 Td. These calculations were based on an optimised Monte Carlo algorithm, using collision cross sections obtained from a JWKB approximation (Jeffreys-Wentzel-Kramers-Brillouin) or taken from literature.

  16. Structured back gates for high-mobility two-dimensional electron systems using oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Berl, M.; Tiemann, L.; Dietsche, W.; Karl, H.; Wegscheider, W.

    2016-03-01

    We present a reliable method to obtain patterned back gates compatible with high mobility molecular beam epitaxy via local oxygen ion implantation that suppresses the conductivity of an 80 nm thick silicon doped GaAs epilayer. Our technique was optimized to circumvent several constraints of other gating and implantation methods. The ion-implanted surface remains atomically flat which allows unperturbed epitaxial overgrowth. We demonstrate the practical application of this gating technique by using magneto-transport spectroscopy on a two-dimensional electron system (2DES) with a mobility exceeding 20 × 106 cm2/V s. The back gate was spatially separated from the Ohmic contacts of the 2DES, thus minimizing the probability for electrical shorts or leakage and permitting simple contacting schemes.

  17. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  18. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center.

    PubMed

    Kurz, C; Mairani, A; Parodi, K

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of (16)O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  19. Experimental study of electric dipoles on an oxygen-adsorbed Si(100)-2 × 1 surface by non-contact scanning nonlinear dielectric microscopy

    SciTech Connect

    Suzuki, Masataka; Yamasue, Kohei Cho, Yasuo

    2015-07-20

    Oxygen-adsorption on a Si(100)-2 × 1 surface is investigated by using non-contact scanning nonlinear dielectric microscopy (NC-SNDM). On the Si(100)-2 × 1 surface exposed to oxygen (O{sub 2}) gas at room temperature, several variations in atomic configuration and electric dipole moment of dimers are observed. Models are proposed for oxygen adsorption which are consistent with the topographies and electric dipole moment distributions obtained by NC-SNDM.

  20. Chemistry induced by energetic ions in water ice mixed with molecular nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Boduch, Ph.; Domaracka, A.; Fulvio, D.; Langlinay, T.; Lv, X. Y.; Palumbo, M. E.; Rothard, H.; Strazzulla, G.

    2012-08-01

    Context. Several molecular species have been observed as frozen gases in cold environments such as grains in the interstellar/circumstellar medium or icy objects in the outer solar system. Because N2 and O2 are homonuclear, symmetric molecules are not easily observed. It is therefore relevant to find indirect methods to prove their presence from astronomical observations. Aims: Here we investigate one of the possible indirect methods, namely the formation of specific molecules by cosmic ion bombardment of ices in astrophysical environments that contain O2 and N2. The observation of these molecules in astronomical environments could act as a trojan horse to detect the presence of frozen molecular oxygen and/or nitrogen. Methods: We have conducted ion bombardment experiments of frozen O2, H2O and their mixtures with N2 at the laboratories of CIMAP-GANIL at Caen (France) and LASp at Catania (Italy). Different ions (13C2+, Ar2+ and H+) and energies (30-200 keV) have been used. Results: We have found that 13CO2 is formed when carbon ions are implanted in ices containing H2O and/or O2. Ozone and nitrogen oxides (NO, N2O, NO2) are formed in the studied ices containing O2 and N2 with different relative abundances. Conclusions: We suggest that ozone and nitrogen oxides are present and have to be searched for in some specific environments such as dense clouds in the interstellar medium and the surfaces of Pluto, Charon and Triton. Their observation could demonstrate the presence of molecular oxygen and/or nitrogen. A possible interest for the observations of atmospheres in exo-planetary objects is also discussed.

  1. Charge transfer reaction of multi-charged oxygen ions with O2

    NASA Astrophysics Data System (ADS)

    Holzscheiter, H. M.; Church, D. A.

    1981-10-01

    The reaction rates for charge transfer from O2 to doubly and triply charged oxygen atoms are measured in a demonstration of the measurement capabilities of a system at ultrahigh vacuum with low-energy magnetically confined ions. Ions were produced by electron impact ionization of gas within a Penning-type ion trap, with selective removal of unwanted ionization states by radio-frequency resonant excitation. Ion number mass-to-charge ratio spectra obtained at partial pressures of O2 from 9.9 x 10 to the -9th to 1.5 x 10 to the -7th torr yield rate constants of 1.0 x 10 to the -9th cu cm/sec and 2.5 x 10 to the -9th cu cm/sec for the O(2+) and O(3+) reactions, respectively. Measurements made at a 30% increase of the effective axial well depth of the trap demonstrate that the rate constant is essentially energy independent in the energy range studies, implying that the O(2+) cross section for charge transfer has an inverse velocity dependence of the Langevin type, despite a reaction rate lower than the Langevin valve.

  2. Influence of Kilo-Electron Oxygen Ion Irradiation on Structural, Electrical and Optical Properties of CdTe Thin Films

    NASA Astrophysics Data System (ADS)

    Honey, Shehla; Thema, F. T.; Bhatti, M. T.; Ishaq, A.; Naseem, Shahzad; Maaza, M.

    2016-09-01

    In this paper, effect of oxygen (O+) ion irradiation on the properties of polycrystalline cubic structure CdTe thin films has been investigated. CdTe thin films were irradiated with O+ ions of energy 80keV at different fluence ranging from 1×1015 to 5×1016 ion/cm2 at room temperature. At 1×1015 ion/cm2 O+ ions fluence, the CdTe structure was maintained while XRD peaks of cubic phase were shifted toward lower angles. At 5×1016 ion/cm2 O+ ions fluence, cubic structure of CdTe thin films was transformed into hexagonal structure. In addition, electrical resistivity and optical bandgap were decreased with increasing O+ ion beam irradiation.

  3. Using Ion Injections to Infer the Energetic Oxygen and Sulfur Charge States in Jupiter's Inner and Middle Magnetosphere

    NASA Astrophysics Data System (ADS)

    Clark, G. B.; Mauk, B.; Paranicas, C.; Kollmann, P.; Mitchell, D. G.

    2015-12-01

    Neutral gases can, through the charge exchange processes, shape the distributions of energetic ions trapped within a planetary magnetosphere, and also redistribute the energetic ion charge states. One region where the prevalence of such processes has been proposed is the orbital region of Jupiter's moon Europa, where the existence of a neutral gas torus has been inferred. Data from the Galileo Energetic Particle Detector (EPD) showed a depletion of protons with near equatorial pitch angles near Europa, while oxygen and sulfur maintained their trapped profile as they were transported inward. The contrast in these distributions was attributed by Lagg et al. (2003) to the multiple charge states of the oxygen and sulfur, dramatically increasing the charge exchange lifetimes of these species. It was proposed that as the ions diffuse inwards across Europa's orbit and into the Io torus regions, the distributed neutral gas interactions redistribute the charge states of the heavy ions until, close to Io, these ions may be heavily depleted. And so, the charge state of the heavy ions is a critical parameter in determining whether or not these processes are taking place. Limited evidence for the multiple charged states of heavy ions was provided by Mauk et al. [1999], who analyzed three ion injection events and found evidence of multiply charged energetic oxygen and sulfur ions in two of the events, but not in the third event. Injections introduce a transient disturbance to the ion distributions, and the drift rate of disturbed ions away from the injection region depends on the charge state of the ions. In this work we revisit the Galileo EPD data set and find additional ion dispersion events from which composition can be measured and charge state can be inferred. We aspire to develop a much clearer picture as to the ordering of charge state as a function of radial distance. Results and conclusions will be presented as well as the importance from new measurements from the

  4. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction.

    PubMed

    Mahmood, Nasir; Zhang, Chenzhen; Jiang, Jie; Liu, Fei; Hou, Yanglong

    2013-04-15

    Cobalt sulfide is a good candidate for both lithium ion batteries (LIBs) and cathodic oxygen reduction reaction (ORR), but low conductivity, poor cyclability, capacity fading, and structural changes hinder its applications. The incorporation of graphene into Co3S4 makes it a promising electrode by providing better electrochemical coupling, enhanced conductivity, fast mobility of ions and electrons, and a stabilized structure due to its elastic nature. With the objective of achieving high-performance composites, herein we report a facile hydrothermal process for growing Co3S4 nanotubes (NTs) on graphene (G) sheets. Electrochemical impedance spectroscopy (EIS) verified that graphene dramatically increases the conductivity of the composites to almost twice that of pristine Co3S4. Electrochemical measurements indicated that the as-synthesized Co3S4/G composites exhibit good cyclic stability and a high discharge capacity of 720 mA h g(-1) up to 100 cycles with 99.9% coulombic efficiency. Furthermore, the composites react with dissolved oxygen in the ORR by four- and two-electron mechanisms in both acidic and basic media with an onset potential close to that of commercial Pt/C. The stability of the composites is much higher than that of Pt/C, and exhibit high methanol tolerance. Thus, these properties endorse Co3 S4 /G composites as auspicious candidates for both LIBs and ORR. PMID:23447515

  5. Influence of Oxygen Ion Implantation on the Damage and Annealing Kinetics of Iron-Implanted Sapphire

    SciTech Connect

    Hunn, J.D.; McHargue, C.J.

    1999-11-14

    The effects of implanted oxygen on the damage accumulation in sapphire which was previously implanted with iron was studied for (0001) sapphire implanted with iron and then with oxygen. The energies were chosen to give similar projected ranges. One series was implanted with a 1:l ratio (4x10{sup 16} ions/cm{sup 2} each) and another with a ratio of 2:3 (4x10{sup 16} fe{sup +}/cm{sup 2}; 6x10{sup 16} O{sup +}/cm{sup 2}). Retained damage, X, in the Al-sublattice, was compared to that produced by implantation of iron alone. The observed disorder was less for the dual implantations suggesting that implantation of oxygen enhanced dynamic recovery during implantation. Samples were annealed for one hour at 800 and 1200 C in an oxidizing and in a reducing atmosphere. No difference was found in the kinetics of recovery in the Al-sublattice between the two dual implant conditions. However, the rate of recovery was different for each from samples implanted with iron alone.

  6. Defect Chemistry, Oxygen Ion Conduction, and Proton Conduction of Oxides with Brownmillerite and Related Structures.

    NASA Astrophysics Data System (ADS)

    Zhang, Guobin

    This dissertation presents a study on defect structure, oxygen ion conductivity, proton conductivity, electronic conductivity, and high temperature equilibrium redox properties of brownmillerite related oxides with general formula A _{rm n}B _{rm n}O_ {rm 3n-1} (n = 2 to infty ). A defect chemistry model is proposed for the brownmillerite oxides with high oxygen ion conductivity. Ba_2 In_2O_5 was chosen as the model material and its electrical conductivity and transport properties have been studied in detail. The oxygen ion conduction above the order-disorder temperature, T_{rm d} ~ 925^circC, and a mixed ionic-electronic conduction below T _{rm d}, was studied by conductivity and EMF measurements as a function of temperature and oxygen activity. The main defects are intrinsic anion Frenkel defects below T_{rm d}, and above T_{rm d} the oxide can be treated as acceptor doped perovskite with extrinsic oxygen vacancies. Charge compensation involves only ionic defects over the whole P(O_2 ) range used in this study. The formation and mobility enthalpies of the Frenkel defects, the redox enthalpies, and the band gap have been obtained for this oxide. A similar study has been done for other compositions in Ba _{rm n}In _2Zr_{rm n-2} O_{rm 3n-1} system. The proposed model is in good agreement with the experimental results. Evidence for protonic conduction was also found in these materials, especially at low temperatures. Three regions of protonic conduction in the Arrhenius plot have been observed and analyzed. The proton formation and mobility enthalpies have been obtained. The observed proton conductivity transition at the oxygen order-disorder transition temperature directly confirms the proton formation mechanism by incorporation of H_2O molecules into oxygen vacancies. A defect chemistry study was also conducted for the brownmillerite oxides with high electronic conductivity with Ca_2(Al_{ rm x}Fe_{rm 2-x})O_5 chosen as the model system. The main defects are

  7. Observations of energetic oxygen and carbon ions with charge states between 3 and 6 in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.

    1988-01-01

    Data obtained by the AMPTE/CCE charge-energy-mass spectrometer are used to study the average spatial distributions of oxygen and carbon ions with charge states between 3 and 6. The O(6+) and C(6+) ion fluxes are found to increase with the drift shell parameter L up to a constant level at L of not less than 7. It is suggested that the diurnal variations noted are related to the shape of the L profiles. The results support a model in which the solar wind origin O(6+) and C(6+) ions and the terrestrial origin O(+) and O(2+) ions are transported from the tail towards the earth. Charge exchange processes near the earth produce the oxygen and carbon ions with charge states between 3 and 5.

  8. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2014-03-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vaporization with an Aerodyne high-resolution soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vaporizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial fullerene-enriched soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x < 6) were found to dominate the Cxn+ distribution. For fullerene soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x ≫ 6 were present, with significant contributions from multiply charged ions (n > 1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+ / C3+ could be used to predict whether significant Cxn+ signals with x > 5 were present. When such signals were present, C1+ / C3+ was close to 1. When absent, C1+ / C3+ was < 0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake and heterogeneous chemistry. If atmospherically stable, these oxidized species may be useful for distinguishing

  9. The influence of negative ions in helium-oxygen barrier discharges: I. Laser photodetachment experiment

    NASA Astrophysics Data System (ADS)

    Tschiersch, R.; Nemschokmichal, S.; Meichsner, J.

    2016-04-01

    This work is the experimental part of a comprehensive study that aims to understand the influence of negative ions on the development of atmospheric pressure barrier discharges in electronegative systems. The investigations will be complemented by a 1D numerical fluid simulation. Laser photodetachment experiments were performed in a glow-like barrier discharge operated in helium with admixtures of oxygen up to 1 vol.% at a gas pressure of 500 mbar. The discharge gap between the glass-coated electrodes was 3 mm. The discharge properties were characterized by electrical measurements and optical emission spectroscopy. Laser photodetachment of {{\\text{O}}-} , {\\text{O}}2- , and {\\text{O}}3- was studied using the fundamental and second harmonic wavelength of a Nd-YAG laser. The laser photodetachment of negative ions influences the breakdown characteristics when the laser is fired during the prephase of the discharge only. The breakdown voltage is reduced, which indicates an enhanced pre-ionization initiated by the detached electrons. Systematic variations in the laser pulse in time, the axial laser beam position, the laser pulse energy, and the laser wavelength provided detailed knowledge on this process. The investigation underlines the importance of the discharge prephase in general and aims to differentiate between the negative ion species {{\\text{O}}-} , {\\text{O}}2- , and {\\text{O}}3- .

  10. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts

    PubMed Central

    Dettmering, Till; Zahnreich, Sebastian; Colindres-Rojas, Miriam; Durante, Marco; Taucher-Scholz, Gisela; Fournier, Claudia

    2015-01-01

    The production of reactive oxygen species (ROS), especially superoxide anions (O2·–), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3–5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure. PMID:25304329

  11. Formation of donor centers upon the annealing of silicon light-emitting structures implanted with oxygen ions

    SciTech Connect

    Sobolev, N. A. Danilov, D. V.; Aleksandrov, O. V.; Loshachenko, A. S.; Sakharov, V. I.; Serenkov, I. T.; Shek, E. I.; Trapeznikova, I. N.

    2015-03-15

    It is found that the implantation of silicon with oxygen ions and subsequent annealing at high temperatures are accompanied by the formation of electrically active donor centers and by the p-n conversion of the conductivity of silicon. The concentration and spatial distribution of these centers depend on the annealing temperature. The results are accounted for by the interaction of oxygen atoms with intrinsic point defects formed upon the annealing of implantation damages.

  12. Hydraulic Permeability of Resorcinol-Formaldehyde Ion-Exchange Resin - Effects of Oxygen Uptake and Radiation

    SciTech Connect

    Taylor, Paul Allen

    2009-01-01

    An ion-exchange process, using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the U.S. Department of Energy's (DOE) Hanford site in Washington State. The RF resin is also being evaluated for use in the proposed Small Column Ion Exchange (SCIX) system, which is an alternative treatment option at DOE's Savannah River Site (SRS)in South Carolina. Testing at ORNL will determine the impact of radiation exposure and oxygen uptake by the RF resin on the hydraulic permeability of the resin. Samples of the resin will be removed periodically to measure physical properties (bead size and compressibility) and cesium capacity. The proposed full-scale treatment system at Hanford, the Waste Treatment Plant (WTP), will use an ion-exchange column containing nominally 680 gal of resin, which will treat 30 gpm of waste solution. The ion-exchange column is designed for a typical pressure drop of 6 psig, with a maximum of 9.7 psig. The lab-scale column is 3-in. clear PVC pipe and is prototypic of the proposed Hanford column. The fluid velocity in the lab-scale test will be much higher than for the full-scale column, in order to generate the maximum pressure drop expected in that column (9.7 psig). The frictional drag from this high velocity will produce similar forces on the resin in the lab-scale column as would be expected at the bottom of the full-scale column. The chemical changes in the resin caused by radiation exposure and oxygen uptake are expected to cause physical changes in the resin that could reduce the bed porosity and reduce the hydraulic permeability of the resin bed. These changes will be monitored by measuring the pressure drop through the lab-scale column and by measuring the physical properties of samples of the resin. The test loop with the lab-scale column is currently being fabricated, and operation will start by late May. Testing will be completed by the

  13. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  14. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    PubMed Central

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  15. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-02-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities.

  16. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction.

    PubMed

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  17. A linear diffusion model for ion current across blocking grain boundaries in oxygen-ion and proton conductors.

    PubMed

    Kim, Seong K; Khodorov, Sergey; Lubomirsky, Igor; Kim, Sangtae

    2014-07-28

    We demonstrate the applicability of the linear diffusion model recently proposed for the current-voltage, Igb-Ugb, characteristics of blocking grain boundaries in solid electrolytes to various oxygen-ion and proton conductors: the model precisely reproduces the Igb-Ugb characteristics of La-, Sm-, Gd-, and Y-doped ceria as well as Y-doped barium zirconate to provide accurate explanations to the "power law" behavior of the Igb-Ugb relationship, i.e. Igb ∝ Ugb(n), experimentally observed. The model also predicts that the grain-boundary potential, Ψgb, in doped ceria weakly depends on temperature, if the trapped charge remains constant, and that the value of Ψgb can be determined from the value of the power n. Furthermore, the model provides a plausible explanation for the increase in the Ψgb with temperature observed for the proton conductor in which the concentration of the charge carrier decreases with temperature. Hence, it is evident that the linear diffusion model is robust and applicable to grain boundaries in a large variety of practically important solid electrolytes. PMID:24930884

  18. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process

  19. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    PubMed

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-01

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices. PMID:25647357

  20. Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography.

    PubMed

    Wagner, Andrea; Raue, Brigitte; Brauch, Heinz-Jürgen; Worch, Eckhard; Lange, Frank T

    2013-06-21

    A new method for the determination of trace levels of adsorbable organic fluorine (AOF) in water is presented. Even if the individual contributing target compounds are widely unknown, this surrogate parameter is suited to identify typical organofluorine contaminations, such as with polyfluorinated chemicals (PFCs), and represents a lower boundary of the organofluorine concentration in water bodies. It consists of the adsorption of organofluorine chemicals on a commercially available synthetic polystyrene-divinylbenzene based activated carbon (AC) followed by analysis of the loaded AC by hydropyrolysis combustion ion chromatography (CIC). Inorganic fluorine is displaced by excess nitrate during the extraction step and by washing the loaded activated carbon with an acidic sodium nitrate solution. Due to its high purity the synthetic AC had a very low and reproducible fluorine blank (0.3 μg/g) compared to natural ACs (up to approximately 9 μg/g). Using this AC, fluoride and the internal standard phosphate could be detected free of chromatographic interferences. With a sample volume of 100 mL and 2× 100 mg of AC packed into two extraction columns combined in series, a limit of quantification (LOQ), derived according to the German standard method DIN 32645, of 0.3 μg/L was achieved. The recoveries of six model PFCs were determined from tap water and a municipal wastewater treatment plant (WWTP) effluent. Except for the extremely polar perfluoroacetic acid (recovery of approximately 10%) the model substances showed fairly good (50% for perfluorobutanoic acid (PFBA)) to very good fluorine recoveries (100±20% for perfluorooctanoic acid (PFOA), perfluorobutanesulfonate (PFBS), 6:2 fluorotelomersulfonate (6:2 FTS)), both from tap water and wastewater matrix. This new analytical protocol was exemplarily applied to several surface water and groundwater samples. The obtained AOF values were compared to the fluorine content of 19 target PFCs analyzed by high performance

  1. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species.

    PubMed

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-02-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  2. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen Species

    PubMed Central

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  3. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    DOE PAGESBeta

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Chen, Yan; An, Ke; Zhu, Yimei; et al

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high asmore » 301 mAh g–1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g–1 still remains without any obvious decay in voltage. Lastly, this study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.« less

  4. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-07-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g-1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g-1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.

  5. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries.

    PubMed

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-01-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944

  6. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

    PubMed Central

    Qiu, Bao; Zhang, Minghao; Wu, Lijun; Wang, Jun; Xia, Yonggao; Qian, Danna; Liu, Haodong; Hy, Sunny; Chen, Yan; An, Ke; Zhu, Yimei; Liu, Zhaoping; Meng, Ying Shirley

    2016-01-01

    Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries. PMID:27363944

  7. Oxygen chemisorption on V/sub 2/O/sub 5/: isotherms and isobars of adsorption

    SciTech Connect

    Rey, L.; Gambaro, L.A.; Thomas, H.J.

    1984-06-01

    Experimental results of oxygen adsorption on V/sub 2/O/sub 5/ (isotherms and isobars) are reported. In its normal state V/sub 2/O/sub 5/ is a nonstoichiometric oxide that shows oxygen vacancies with the subsequent formation of V/sup 4 +/ ions. A model is developed for the interaction between oxygen (gaseous, adsorbed, and bulk) and the solid phase (V/sub 2/O/sub 5/). 12 references, 4 figures, 1 table.

  8. Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses.

    PubMed

    da Silva, Rondinelly Brandão; Lima Neto, Alcides Fernandes; Soares Dos Santos, Lucas Samuel; de Oliveira Lima, José Renato; Chaves, Mariana Helena; Dos Santos, José Ribeiro; de Lima, Geraldo Magela; de Moura, Edmilson Miranda; de Moura, Carla Verônica Rodarte

    2008-10-01

    Catalysts of Cu(II) and Co(II) adsorbed in chitosan was used in transesterification of soy bean and babassu oils. The catalysts were characterized by infrared, atomic absorption and TG, and biodiesels was characterized by infrared, NMR, CG, TG, physic chemistry analysis. The maximum adsorption values found for copper and cobalt cations were 1.584 and 1.260mgg(-1), respectively, in 180min. However, conversion of oils in biodiesel was better when used Co(II) adsorbed in chitosan. PMID:18440802

  9. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID

  10. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  11. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  12. Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs

    NASA Astrophysics Data System (ADS)

    Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-06-01

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  13. Unprecedented Perovskite Oxyfluoride Membranes with High-Efficiency Oxygen Ion Transport Paths for Low-Temperature Oxygen Permeation.

    PubMed

    Zhu, Jiawei; Liu, Gongping; Liu, Zhengkun; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-05-01

    Unprecedented perovskite oxyfluoride membranes, a new generation of mixed ionic-electronic conducting (MIEC) membranes, feature extraordinary performance for low-temperature oxygen permeation, which transcend the performance of state-of-the-art MIEC membranes and fulfil commercial requirements. These results provide important progress for MIEC membranes and will potentially open the door to exploring high-performance MIEC compounds. PMID:26970399

  14. Near infrared spectroscopy-derived interstitial hydrogen ion concentration and tissue oxygen saturation during ambulation.

    PubMed

    Lee, Stuart M C; Clarke, Mark S F; O'Connor, Daniel P; Stroud, Leah; Ellerby, Gwenn E C; Soller, Babs R

    2011-08-01

    The objective of this study was to determine whether walking and running at different treadmill speeds resulted in different metabolic and cardiovascular responses in the vastus lateralis (VL) and lateral gastrocnemius (LG) by examining metabolite accumulation and tissue oxygen saturation. Ten healthy subjects (6 males, 4 females) completed a submaximal treadmill exercise test, beginning at 3.2 km h(-1) and increasing by 1.6 km h(-1) increments every 3 min until reaching 85% of age-predicted maximal heart rate. Muscle tissue oxygenation (SO(2)), total hemoglobin (HbT) and interstitial hydrogen ion concentration ([H(+)]) were calculated from near infrared spectra collected from VL and LG. The [H(+)] threshold for each muscle was determined using a simultaneous bilinear regression. Muscle and treadmill speed effects were analyzed using a linear mixed model analysis. Paired t-tests were used to test for differences between muscles in the [H(+)] threshold. SO(2) decreased (P = 0.001) during running in the VL and LG, but the SO(2) response across treadmill speeds was different between muscles (P = 0.047). In both muscles, HbT and [H(+)] increased as treadmill speed increased (P < 0.001), but the response to exercise was not different between muscles. The [H(+)] threshold occurred at a lower whole-body VO(2) in the LG (1.22 ± 0.63 L min(-1)) than in the VL (1.46 ± 0.58 L min(-1), P = 0.01). In conclusion, interstitial [H(+)] and SO(2) are aggregate measures of local metabolite production and the cardiovascular response. Inferred from simultaneous SO(2) and [H(+)] measures in the VL and LG muscles, muscle perfusion is well matched to VL and LG work during walking, but not running. PMID:21212975

  15. Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration

    PubMed Central

    2013-01-01

    The resistive switching memory of Ge nanowires (NWs) in an IrOx/Al2O3/Ge NWs/SiO2/p-Si structure is investigated. Ge NWs with an average diameter of approximately 100 nm are grown by the vapor–liquid-solid technique. The core-shell structure of the Ge/GeOx NWs is confirmed by both scanning electron microscopy and high-resolution transmission electron microscopy. Defects in the Ge/GeOx NWs are observed by X-ray photoelectron spectroscopy. Broad photoluminescence spectra from 10 to 300 K are observed because of defects in the Ge/GeOx NWs, which are also useful for nanoscale resistive switching memory. The resistive switching mechanism in an IrOx/GeOx/W structure involves migration of oxygen ions under external bias, which is also confirmed by real-time observation of the surface of the device. The porous IrOx top electrode readily allows the evolved O2 gas to escape from the device. The annealed device has a low operating voltage (<4 V), low RESET current (approximately 22 μA), large resistance ratio (>103), long pulse read endurance of >105 cycles, and good data retention of >104 s. Its performance is better than that of the as-deposited device because the GeOx film in the annealed device contains more oxygen vacancies. Under SET operation, Ge/GeOx nanofilaments (or NWs) form in the GeOx film. The diameter of the conducting nanofilament is approximately 40 nm, which is calculated using a new method. PMID:23657016

  16. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  17. Charge Transfer in Collisions of Lithium Ions with Beryllium through Oxygen Ions at Energies Below 32 keV/amu

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Suzuki, S.; Shirai, T.; Shimakura, N.

    The charge transfer cross sections of Li+ (1s2) ions in collisions with B5+ , C6+, N5+ (1s2), and O6+ (1s2) ions, and of Li2+ (1s) ions with Be+ (1s22s) ions are calculated in the collision energy range of 0.02-32 keV/amu by using a semi-classical close-coupling method with molecular-state expansion.

  18. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, p<.01) were reduced after BR. As expected, SO2 decreased with exercise before and after BR. However, SO2 was lower post compared with pre-BR throughout exercise, including at peak exercise (pre-BR: 50+/-3, post-BR: 43+/-4%, p=.01). After BR, [H+] was higher at the start of exercise and did not increase at the same rate as pre-BR. Peak [H+] was not different from pre to post-BR (pre-BR: 36+/-2; post-BR: 38+/-2 nmol/L). CONCLUSIONS: Lower SO2 during exercise suggests that oxygen extraction in the VL is higher after BR, perhaps due to lower circulating blood volume. The higher [H+] after BR suggests a greater reliance upon glycolysis during submaximal exercise, although [H+] at peak exercise was unchanged

  19. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  20. Investigation of (110)Mo, (110)W monocrystals and Nb polycrystal implanted by oxygen ions and used as TEC electrodes

    SciTech Connect

    Tsakadze, L.M.

    1995-12-31

    In an effort to improve efficiency of a thermionic energy converter (TEC), converting thermal power into electric power, there were investigated collectors made of (110)Mo and (110)W monocrystals, and Nb polycrystal, all being implanted by oxygen ions with fluence of 1*10{sup 18} cm{sup {minus}2}. For emitters there were used (110)Mo and (110)W monocrystals, and Nb polycrystal implanted by oxygen ions, respectively. The performance of TEC with implanted electrode material is compared with this of TEC having electrodes of non-implanted materials. It is demonstrated that for emitter temperature range of 1,473 to 1,873 K employment of (110)Mo and (110)W monocrystals, implanted by oxygen ions, for TEC collector allows to increase the specific output power of a converter approximately by a factor of 1.6, and employment of implanted Nb for electrodes -- to increase this value approximately by a factor of 3, as compared with non-implanted electrode materials. The upgraded performance of TEC with implanted electrode materials is caused by the increase of minimum values of the collector working function by {approximately}0.15--0.2 eV as compared with non-implanted collectors, as well as by improvement of emitter emissive and adsorption properties due to oxygen supply from collectors at operating temperatures.

  1. Can oxygen deficient SmFeAsO1 - x be synthesized?: Unintentional incorporation of hydride ion at oxygen vacancy site

    NASA Astrophysics Data System (ADS)

    Muraba, Yoshinori; Iimura, Soshi; Matsuishi, Satoru; Hosono, Hideo

    Hydrogen substitution and introduction of oxygen vacancy are effective electron doping methods for the LnFeAsO. However, their Tc vs e-/Fe diagrams do not entirely overlap each other, while Tc vs lattice dimension relationships are very similar. These contradictions can be understood by assuming that unintentional hydrogen is incorporated into the oxygen vacancy. To examine the preferred electron-dopant species in LnFeAsO and the influence of the atmosphere during synthesis on the formation of LnFeAsO1- x , we try to synthesize the SmFeAsO1- x under three well-controlled atmosphere (H2O, H2 and H2O- and H2-free). Under H2O and H2 atmosphere, hydrogen were incorporated at oxygen sites as the hydride ion and SmFeAsO1- x Hx was formed. On the other hand, when H2O and H2 were removed from synthetic process, nearly stoichiometric SmFeAsO was formed. Furthermore, DFT calculations showed that H-substituted samples are more stable than oxygen deficient samples. These results strongly imply that the reported LnFeAsO1- x was contaminated with unintentional hydrogen and LnFeAsO1- x Hx was misidentified as LnFeAsO1- x .

  2. Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion

    NASA Astrophysics Data System (ADS)

    Pavlos, Dimitrios; Petropouleas, Panayiotis; Hatzipanayioti, Despina

    2015-11-01

    DFT theoretical calculations at B3LYP/TZVP or LANL2DZ level of theory, for neutral, zwitterions, protonated and anionic carnosine, were performed. Energies, the structural and spectroscopic parameters were calculated in the gas phase and aqueous medium. Additional H-bonds stabilize the ionized forms of carnosine, creating "nests" into which metal ions or bio-molecules may be sheltered. Based on Fukui functions, the reactivity of the abovementioned forms of carnosine, with 1O2, may lead to oxygenated species. The theoretical spectroscopic parameters have been correlated to our experimental results. The effect of H2O2 and the electrochemistry of aqueous carnosine solutions were examined. Theoretical models containing Ni(II), carnosine and water were constructed. In the isolated mauve solid, formulated [Ni(carn)2(H2O)5], the COOsbnd , Nπ and/or NH2 were bonded. When H2O2 was added, the imidazole NMR signals disappeared. A redox couple clearly indicates one electron process, the electron coming from either the oxidation of imidazole ring or the nickel(II)/Ni(III) couple.

  3. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species.

    PubMed

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg(2+) ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn(2+)); and (3) by inducing reactive oxygen species (ROS). Hg(2+) causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn(2+) release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn(2+) or Hg(2+). Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg(2+)-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg(2+) that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system. PMID:20951154

  4. Planar and channel waveguides on Na:CBN formed by oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Guo, Sha-Sha; Zhao, Jin-Hua; Huang, Qing; Liu, Peng; Liu, Tao; Zhang, Lian; Wang, Xue-Lin

    2012-09-01

    We reported the fabrication of the planar and channel waveguides in Na-doped calcium barium niobate (CBN) with multiple-energy oxygen-ion implantation. Multiple-energy implants can broaden the barrier width to reduce light leakage from the waveguide to the substrate through the barrier wall. The guiding modes and the near-field intensity distribution of the light were measured by the prism-coupling method and the end-facing coupling arrangement separately. The refractive index profiles of planar and channel waveguides were both typical "well + barrier" distribution, and we used the finite-difference beam propagation method (FD-BPM) to simulate the light propagation. After annealing at 200 °C for 30 min, the waveguide propagation loss of the planar and channel waveguides could be reduced down to ˜3.7 dB/cm and ˜3.5 dB/cm. The calculated results were in excellent agreement with the measured waveguide modes, indicating the feasibility of designing these devices.

  5. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system.

    PubMed

    Darley-Usmar, V; Halliwell, B

    1996-05-01

    Free radicals, such as superoxide, hydroxyl and nitric oxide, and other "reactive species", such as hydrogen peroxide, hypochlorous acid and peroxynitrite, are formed in vivo. Some of these molecules, e.g. superoxide and nitric oxide, can be physiologically useful, but they can also cause damage under certain circumstances. Excess production of reactive oxygen or nitrogen species (ROS, RNS), their production in inappropriate relative amounts (especially superoxide and NO) or deficiencies in antioxidant defences may result in pathological stress to cells and tissues. This oxidative stress can have multiple effects. It can induce defence systems, and render tissues more resistant to subsequent insult. If oxidative stress is excessive or if defence and repair responses are inadequate, cell injury can be caused by such mechanisms as oxidative damage to essential proteins, lipid peroxidation, DNA strand breakage and base modification, and rises in the concentration of intracellular "free" Ca(2+). Considerable evidence supports the view that oxidative damage involving both ROS and RNS is an important contributor to the development of atherosclerosis. Peroxynitrite (derived by reaction of superoxide with nitric oxide) and transition metal ions (perhaps released by injury to the vessel wall) may contribute to lipid peroxidation in atherosclerotic lesions. PMID:8860419

  6. Effect of lanthanum ions (La3+) on the reactive oxygen species scavenging enzymes in wheat leaves.

    PubMed

    Zhang, Lijing; Zeng, Fuli; Xiao, Rong

    2003-03-01

    Physiological effects of lanthanum ions on the activities of the enzymes in the reactive oxygen species (ROS) scavenging system in leaves of wheat (Triticum aestivum L.) seedlings were studied. Wheat leaves treated in Hogland solution with 0.1 mM LaCl(3) for 48 h showed increased levels of superoxide dismutase (SOD), catalase (CAT), ascorbate-specific peroxidase (AsA-POD), and dehydroascorbate reductase (DHAR). However, a minor effect was observed on the levels of monodehydroascorbate reductase (MDAR) and glutathione reductase (GR), which regulate the release of energy required by the ROS scavenging system. The whole system was linked up by H(+) transmission. Our results indicated that the activities of the enzymes that function directly to remove ROS were elevated by La(3+) treatment, which is consistent with the observations that La(3+)-treated plants had increased tolerance to environmental stresses. The remaining levels of MDAR and GR suggested that these two enzymes might be regulated differently from that of the other four enzymes studied. PMID:12663948

  7. The spatial distribution of negative oxygen ion densities in a dc reactive magnetron discharge

    NASA Astrophysics Data System (ADS)

    Scribbins, Steven; Bowes, Michael; Bradley, James W.

    2013-01-01

    Using Langmuir probe-assisted eclipse laser photodetachment, the spatial distribution of O- densities in the bulk plasma of magnetron sputter tool has been determined for a range of pressures, 0.79 to 2.40 Pa. The discharge was operated in dc (200 W) with a Ti target and a fixed oxygen-argon pressure ratio of 0.2, in poisoned mode. Measurements show significant O- densities occupying an annulus downstream from the magnetic trap in regions of most positive plasma potential. With increasing pressure the region of high O- density expands and the peak densities increase reaching ˜1.5 × 1016 m-3 at 2.40 Pa, corresponding to an O- to electron density ratio (electronegativity α) of ˜2. Outside the area of dense negative ions, and in regions of the magnetic trap accessible to our probe we measure α < 0.2. The results show that these reactive magnetron plasmas, utilized for oxide film production, to be highly electronegative in regions close to the substrate.

  8. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    DOE PAGESBeta

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less

  9. The optimization of incident angles of low-energy oxygen ion beams for increasing sputtering rate on silicon samples

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Yoshida, N.; Takahashi, M.; Tomita, M.

    2008-12-01

    In order to determine an appropriate incident angle of low-energy (350-eV) oxygen ion beam for achieving the highest sputtering rate without degradation of depth resolution in SIMS analysis, a delta-doped sample was analyzed with incident angles from 0° to 60° without oxygen bleeding. As a result, 45° incidence was found to be the best analytical condition, and it was confirmed that surface roughness did not occur on the sputtered surface at 100-nm depth by using AFM. By applying the optimized incident angle, sputtering rate becomes more than twice as high as that of the normal incident condition.

  10. Ion-molecule reactions for mass spectrometric identification of functional groups in protonated oxygen-containing monofunctional compounds.

    PubMed

    Watkins, Michael A; Price, Jason M; Winger, Brian E; Kenttämaa, Hilkka I

    2004-02-15

    Protonated oxygen-containing monofunctional compounds react with selected methoxyborane reagents by proton transfer followed by nucleophilic substitution of methanol at the boron atom in a Fourier transform ion cyclotron resonance mass spectrometer. The derivatized oxygen functionality can be identified by H/D exchange, collision-activated dissociation, or both. This information on the identity of the functionalities in the analyte, in conjunction with molecular formula information obtained from exact mass measurements on either the protonated or derivatized analyte, facilitates structure elucidation of unknown organic compounds in a mass spectrometer. PMID:14961727

  11. Model oxygen ions distributions in the Earth{close_quote}s magnetosphere for different pitch-angles

    SciTech Connect

    Beliaev, A.A.; Koroteyeva, E.G.; Panasyuk, M.I.

    1996-07-01

    Results of calculations of energetic, spatial and charge distributions of oxygen ions in the Earth{close_quote}s radiation belts are present. The model of oxygen radiation belts for various pitch angles is suggested. Model is based on the solution of stationary Fokker-Planck equation for particles{close_quote} diffusion due to magnetic and electric field fluctuations and accounts for particles losses due to Coulomb interactions and charge exchange. Particles{close_quote} distributions are studied as function of fluctuations{close_quote} power indices and source spectra (both solar and ionospheric) on the magnetosphere boundary. Comparison is made with experimental data. {copyright} {ital 1996 American Institute of Physics.}

  12. Adsorption of o-cresol and benzoic acid in an adsorber packed with an ion-exchange resin: A comparative study of diffusional models

    SciTech Connect

    Run-Tun Huang; Teh-Liang Chen; Hung-Shan Weng

    1994-10-01

    Both solid- and pore-diffusion models were employed to simulate the adsorption of o-cresol and benzoic acid in a fixed-bed adsorber packed with an anion-exchange resin. The equilibrium adsorption data were modeled by a Langmuir isotherm. When the shape of the adsorption isotherm was approximately linear (as in the case of o-cresol), both models agreed well with the experimental break-through data, and they could be effectively applied to predict the breakthrough curve of longer columns. For a favorable adsorption isotherm (say, benzoic acid), however, better results were obtained by using the solid-diffusion model. In addition to the shape of the adsorption isotherm, several factors, such as the type of adsorbent, modeling of equilibrium data, computation efficiency, and concentration dependence of the intraparticle diffusivity, should also be taken into account for selecting a suitable diffusion model.

  13. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  14. Nano sponge Mn₂O ₃ as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2014-10-01

    In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples. PMID:25059126

  15. Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent.

    PubMed

    Sitko, Rafal; Janik, Paulina; Zawisza, Beata; Talik, Ewa; Margui, Eva; Queralt, Ignasi

    2015-03-17

    A new method based on dispersive microsolid phase extraction (DMSPE) and total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for multielemental ultratrace determination of heavy metal ions and arsenic species. In the developed methodology, the crucial issue is a novel adsorbent synthesized by grafting 3-mercaptopropyl trimethoxysilane on a graphene oxide (GO) surface. Mercapto-modified graphene oxide (GO-SH) can be applied in quantitative adsorption of cobalt, nickel, copper, cadmium, and lead ions. Moreover, GO-SH demonstrates selectivity toward arsenite in the presence of arsenate. Due to such features of GO-SH nanosheets as wrinkled structure and excellent dispersibility in water, GO-SH seems to be ideal for fast and simple preconcentration and determination of heavy metal ions using methodology based on DMSPE and TXRF measurement. The suspension of GO-SH was injected into an analyzed water sample; after filtration, the GO-SH nanosheets with adsorbed metal ions were redispersed in a small volume of internal standard solution and deposited onto a quartz reflector. The high enrichment factor of 150 allows obtaining detection limits of 0.11, 0.078, 0.079, 0.064, 0.054, and 0.083 ng mL(-1) for Co(II), Ni(II), Cu(II), As(III), Cd(II), and Pb(II), respectively. Such low detection limits can be obtained using a benchtop TXRF system without cooling media and gas consumption. The method is suitable for the analysis of water, including high salinity samples difficult to analyze using other spectroscopy techniques. Moreover, GO-SH can be applied to the arsenic speciation due to its selectivity toward arsenite. PMID:25707847

  16. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGESBeta

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10-8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less

  17. The Uranium from Seawater Program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary; Kuo, Li-Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T; Bonheyo, George; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang P; Bianucci, Laura; Wood, Jordana; Warner, Marvin G; Peterson, Sonja; Abrecht, David; Mayes, Richard T; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas; Addleman, Shane R; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Dr. Ken; Breier, Crystalline; D'Alessandro, Dr. Evan

    2016-01-01

    Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10-8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.

  18. Metal Ion Adsorption by Activated Carbons Made from Pecan Shells: Effect of Oxygen Level During Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this presenta...

  19. Medium Energy Ion Scattering Study of Oxygen Diffusion-Reactions in High-k Dielectrics on Si

    NASA Astrophysics Data System (ADS)

    Goncharova, Lyudmila; Bersuker, Gennadi

    2005-03-01

    Understanding the thermodynamics and kinetics of film growth during fabrication of high-κ gate stacks is vital to establish atomic level control of interfacial layers and to minimize defects. Annealing such films in different atmospheres may lead to diffusion and reactions with significant consequences on the electrical properties. We have used high-resolution medium energy ion scattering in combination with isotope tracing to investigate oxygen transport in model systems, including Hf and Ce oxides. The reaction of oxygen (pO2=10-2 Torr) with HfO2(SiO2)x/Si films at 500^oC was dominated by oxygen isotopic exchange (not SiO2 interfacial growth). The oxygen exchange rate decreases with an increase of SiO2 fraction in Hf silicate films and is almost fully suppressed (at 500^oC) for a (HfO2):(SiO2)=1:1 film composition. This reaction saturated with time and appeared to be enhanced after film recrystallization. Annealing in a nitrogen-containing atmosphere result in reduced O^18 incorporation and exchange. In comparison to Hf dielectrics, Ce silicates exhibit rapid interface growth upon oxygen exposure. Incorporating nitrogen into the structure lowers the rate of subsequent oxygen diffusion and incorporation.

  20. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice.

    PubMed

    Chang, Jianhui; Luo, Yi; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  1. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice

    PubMed Central

    Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  2. Control of Nano-Structure of Photocatalytic TiO2 Films by Oxygen Ion Assisted Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoichi; Yasuda, Yoji; Kitahara, Naoto

    2013-11-01

    Control of the nano-structure of TiO2 photocatalytic films by a glancing angle deposition was investigated using an oxygen ion assisted reactive evaporation (OARE) system. The porosity of the film was increased as the incidence angle of Ti vapor increased, and films with clearly separated columnar grains were obtained at an incident angle above 60°. The increase in the porosity led to a significant decrease in UV reflectance and the film deposited at 60° had a large UV absorptance above 80% at 300 nm. The photocatalytic performance of the film, however, did not improve remarkably, since the crystallinity of the film was degraded by the deposition at a high incidence angle above 60°. To improve the crystallinity of the film, control of energy of the incident oxygen ions was attempted. However, only a slight improvement of photocatalytic properties was observed.

  3. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  4. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  5. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  6. Collisions of carbon and oxygen ions with electrons, H, H/sub 2/ and He: Volume 5

    SciTech Connect

    Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.

    1987-02-01

    This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research.

  7. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    SciTech Connect

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg{sup 2+} ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn{sup 2+}); and (3) by inducing reactive oxygen species (ROS). Hg{sup 2+} causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn{sup 2+} release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn{sup 2+} or Hg{sup 2+}. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg{sup 2+}-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg{sup 2+} that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  8. Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.

    PubMed

    Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linhui; Xu, Zhichuan

    2015-12-01

    An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31 nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al-O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. PMID:26511473

  9. Reactions of State-Selected Atomic Oxygen Ions O(+)((4)S, (2)D, (2)P) with Methane.

    PubMed

    Cunha de Miranda, Barbara; Romanzin, Claire; Chefdeville, Simon; Vuitton, Véronique; Žabka, Jan; Polášek, Miroslav; Alcaraz, Christian

    2015-06-11

    An experimental study has been carried out on the reactions of state selected O(+)((4)S, (2)D, (2)P) ions with methane with the aims of characterizing the effects of both the parent ion internal energy and collision energy on the reaction dynamics and determining the fate of oxygen species in complex media, in particular the Titan ionosphere. Absolute cross sections and product velocity distributions have been determined for the reactions of (16)O(+) or (18)O(+) ions with CH4 or CD4 from thermal to 5 eV collision energies by using the guided ion beam (GIB) technique. Dissociative photoionization of O2 with vacuum ultraviolet (VUV) synchrotron radiation delivered by the DESIRS beamline at the SOLEIL storage ring and the threshold photoion photoelectron coincidence (TPEPICO) technique are used for the preparation of purely state-selected O(+)((4)S, (2)D, (2)P) ions. A complete inversion of the product branching ratio between CH4(+) and CH3(+) ions in favor of the latter is observed for excitation of O(+) ions from the (4)S ground state to either the (2)D or the (2)P metastable state. CH4(+) and CH3(+) ions, which are by far the major products for the reaction of ground state and excited states, are strongly backward scattered in the center of mass frame relative to O(+) parent ions. For the reaction of O(+)((4)S), CH3(+) production also rises with increasing collision energy but with much less efficiency than with O(+) excitation. We found that a mechanism of dissociative charge transfer, mediated by an initial charge transfer step, can account very well for all the observations, indicating that CH3(+) production is associated with the formation of H and O atoms (CH3(+) + H + O) rather than with OH formation by an hydride transfer process (CH3(+) + OH). Therefore, as the CH4(+) production by charge transfer is also associated with O atoms, the fate of oxygen species in these reactions is essentially the O production, except for the reaction of O(+)((4)S), which also

  10. Electron-Stimulated Oxidation of Thin Water Films Adsorbed on TiO2(110)

    SciTech Connect

    Lane, Christopher D.; Petrik, Nikolay G.; Orlando, Thomas M.; Kimmel, Greg A.

    2007-11-08

    Electron-stimulated reactions in thin (< 3 monolayer, ML) water films adsorbed on TiO2(110) are investigated. For electron fluences less than ~1×1016 e-/cm2, irradiation with 100 eV electrons results in electron-stimulated desorption (ESD) of atomic and molecular hydrogen, but no measurable O2. The ESD leaves adsorbed hydroxyls which oxidize the TiO2(110) surface and change the post-irradiation TPD spectra of the remaining water in characteristic ways. The species remaining on the TiO2(110) after irradiation of adsorbed water films are apparently similar to those produced without irradiation by co-dosing water and O2. Annealing above ~600 K reduces the oxidized surfaces, and water TPD spectra characteristic of ion sputtered and annealed TiO2(110) are recovered. The rate of electron-stimulated “oxidation” of the water films is proportional to the coverage of water in the first layer for coverages less than 1 ML. However, higher coverages suppress this reaction. When thin water films are irradiated, the rate of electron-stimulated oxidation is independent of the initial oxygen vacancy concentration, as is the final oxidized state achieved at high electron fluences. To explain the results, we propose that electron excitation of water molecules adsorbed on Ti4+ sites leads to desorption of hydrogen atoms and leaves an OH adsorbed at the site. If hydroxyls are present in the bridging oxygen rows, these react with the OH’s on the Ti4+ sites to reform water and heal the oxygen vacancy associated with the bridging OH. Once the bridge bonded hydroxyls have been eliminated, further irradiation increases the concentration of OH’s in the Ti4+ rows leading to the creation of species which block sites in the Ti4+ rows, perhaps H2O2 and/or HO2.

  11. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence

    NASA Astrophysics Data System (ADS)

    Kanematsu, Masakazu; Young, Thomas M.; Fukushi, Keisuke; Green, Peter G.; Darby, Jeannie L.

    2013-04-01

    Adsorption of the two oxyanions, arsenate (As(V)) and arsenite (As(III)), on a common goethite-based granular porous adsorbent is studied in the presence of major co-existing ions in groundwater (i.e., phosphate, silicic acid, sulfate, carbonate, magnesium, and calcium) and predicted using the extended triple layer model (ETLM), a dipole modified single-site triple layer surface complexation model consistent with spectroscopic and molecular evidence. Surface species of all ions were selected according to the previous ETLM studies and published experimental spectroscopic/theoretical molecular information. The adsorption equilibrium constants for all ions were determined using adsorption data obtained in single-solute systems. The adsorption equilibrium constants referenced to the site-occupancy standard state (indicated by Kθ) were compared with those for goethite in the literature if available. The values of these constants for the goethite-based adsorbent are found to be close to the values for goethite previously studied. These "constrained" adsorption equilibrium constants determined in single-solute systems were used in the ETLM to predict the competitive interactions of As(III, V) with the co-existing ions in binary-solute systems. The ETLM is capable of predicting As(III, V) adsorption in the presence of oxyanions (phosphate, silicic acid, sulfate, and carbonate). This study presents the first successful and systematic prediction of the competitive interactions of As(III, V) with these oxyanions using the ETLM. The ETLM prediction of surface (and aqueous) speciation also provides insights into the distinct adsorption behavior of As(III, V) in the presence of the oxyanions. Magnesium and calcium significantly enhanced As(V) adsorption at higher pH values, while they had little effect on As(III) adsorption. The enhanced adsorption of As(V), however, could not be predicted by the ETLM using the surface species proposed in previous ETLM studies. Further studies

  12. Structural features and enhanced high-temperature oxygen ion transport in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}

    SciTech Connect

    Markov, Alexey A.; Shalaeva, Elizaveta V.; Tyutyunnik, Alexander P.; Kuchin, Vasily V.; Patrakeev, Mikhail V.; Leonidov, Ilya A.; Kozhevnikov, Victor L.

    2013-01-15

    Structural features, oxygen non-stoichiometry and transport properties are studied in the oxide series SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}, where x=0.2, 0.3 and 0.4. X-ray diffraction and electron microscopy data evidence formation of the inhomogeneous materials at x=0.3 and 0.4, which include phase constituents with a cubic perovskite and a double perovskite structure types. The composition, the amount and the typical grain size of the phase inhomogeneities are shown to depend both on doping and oxygen content. The increased oxygen-ion conductivity is observed in oxygen depleted materials, which is explained by the increase in the amount of cubic perovskite-like phase and development of interfacial pathways favorable for enhanced oxygen ion transport. - Graphical abstract: The structural studies, oxygen content and conductivity measurements suggest that oxygen depletion from the double perovskite phase constituent of SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}} for x>0.2 is accompanied by formation of pathways for fast ion transport. Black-Small-Square Highlights: Black-Right-Pointing-Pointer The double perovskite type regions are shown to exist in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}. Black-Right-Pointing-Pointer The oxygen depletion is accompanied with phase separation. Black-Right-Pointing-Pointer The phase separation favors formation of pathways for enhanced oxygen ion transport.

  13. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates

    NASA Astrophysics Data System (ADS)

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-05-01

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as “air vitamin”. In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation.

  14. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates.

    PubMed

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-01-01

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as "air vitamin". In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation. PMID:27229763

  15. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates

    PubMed Central

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-01-01

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as “air vitamin”. In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation. PMID:27229763

  16. Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films

    NASA Astrophysics Data System (ADS)

    Triana, C. A.; Granqvist, C. G.; Niklasson, G. A.

    2016-01-01

    Optical absorption in oxygen-deficient and Li+-ion inserted titanium oxide films was studied in the framework of small-polaron hopping. Non-stoichiometric TiOy films with 1.68 ≤ y ≤ 2.00 were deposited by reactive DC magnetron sputtering and were subjected to electrochemical intercalation of Li+-ions and charge-balancing electrons to obtain LixTiOy films with 0.12 ≤ x ≤ 0.34. Dispersion analysis was applied to calculate the complex dielectric function ɛ(ℏω) ≡ ɛ1(ℏω) + i ɛ2(ℏω) from numerical inversion of optical transmittance and reflectance spectra; a superposition of Tauc-Lorentz and Lorentz oscillator models was used for this purpose. Data on ɛ2(ℏω) were employed to calculate the optical conductivity and fit this property to a small-polaron model for disordered systems with strong electron-phonon interaction and involving transitions near the Fermi level. The introduction of oxygen vacancies and/or Li+ insertion yielded band gap widening by ˜0.20-0.35 eV, and both processes induced similar low-energy optical absorption. The small-polaron-based analysis indicated increases in the Fermi level by ˜0.15-0.3 eV for sub-stoichiometric and/or Li+-inserted films. This suggests the existence of polaronic Ti3+ states in the lower part of the conduction band arising from transfer of electrons from oxygen vacancies and/or inserted Li+ species. The present article is a sequel to an earlier paper on oxygen-deficient and/or Li+-inserted amorphous WOy thin films and forms part of a comprehensive investigation of optical absorption in amorphous transition metal oxides with different valence states of the metallic ions.

  17. Extraction of methocarbamol from human plasma with a polypyrrole/multiwalled carbon nanotubes composite decorated with magnetic nanoparticles as an adsorbent followed by electrospray ionization ion mobility spectrometry detection.

    PubMed

    Saraji, Mohammad; Khayamian, Taghi; Hashemian, Zahra

    2014-12-01

    In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3 O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic-modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X-ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2-150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3 O4 -polypyrrole and Fe3 O4 -multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples. PMID:25243817

  18. Macrophages Under Low Oxygen Culture Conditions Respond to Ion Parametric Resonance Magnetic Fields

    EPA Science Inventory

    Macrophages, when entering inflamed tissue, encounter low oxygen tension due to the impairment of blood supply and/or the massive infiltration of cells that consume oxygen. Previously, we showed that such macrophages release more bacteriotoxic hydrogen peroxide (H202) when expose...

  19. Macrophages Under Low Oxygen Culture ConditionsRespond to Ion Parametric Resonance Magnetic Fields

    EPA Science Inventory

    Macrophages, when entering inflamed tissue, encounter low oxygen tension due to the impairment of blood supply and/or the massive infiltration of cells that consume oxygen. Previously, we showed that such macrophages release more bacteriotoxic hydrogen peroxide (H202) when expose...

  20. Observations of Oxygen Ion Behavior in the Lithium-Based Electrolytic Reduction of Uranium Oxide

    SciTech Connect

    Steven D. Herrmann; Shelly X. Li; Brenda E. Serrano-Rodriguez

    2009-09-01

    Parametric studies were performed on a lithium-based electrolytic reduction process at bench-scale to investigate the behavior of oxygen ions in the reduction of uranium oxide for various electrochemical cell configurations. Specifically, a series of eight electrolytic reduction runs was performed in a common salt bath of LiCl – 1 wt% Li2O. The variable parameters included fuel basket containment material (i.e., stainless steel wire mesh and sintered stainless steel) and applied electrical charge (i.e., 75 – 150% of the theoretical charge for complete reduction of uranium oxide in a basket to uranium metal). Samples of the molten salt electrolyte were taken at regular intervals throughout each run and analyzed to produce a time plot of Li2O concentrations in the bulk salt over the course of the runs. Following each run, the fuel basket was sectioned and the fuel was removed. Samples of the fuel were analyzed for the extent of uranium oxide reduction to metal and for the concentration of salt constituents, i.e., LiCl and Li2O. Extents of uranium oxide reduction ranged from 43 – 70% in stainless steel wire mesh baskets and 8 – 33 % in sintered stainless steel baskets. The concentrations of Li2O in the salt phase of the fuel product from the stainless steel wire mesh baskets ranged from 6.2 – 9.2 wt%, while those for the sintered stainless steel baskets ranged from 26 – 46 wt%. Another series of tests was performed to investigate the dissolution of Li2O in LiCl at 650 °C across various cathode containment materials (i.e., stainless steel wire mesh, sintered stainless steel and porous magnesia) and configurations (i.e., stationary and rotating cylindrical baskets). Dissolution of identical loadings of Li2O particulate reached equilibrium within one hour for stationary stainless steel wire mesh baskets, while the same took several hours for sintered stainless steel and porous magnesia baskets. Rotation of an annular cylindrical basket of stainless steel

  1. General facile approach to transition-metal oxides with highly uniform mesoporosity and their application as adsorbents for heavy-metal-ion sequestration.

    PubMed

    Seisenbaeva, Gulaim A; Daniel, Geoffrey; Kessler, Vadim G; Nedelec, Jean-Marie

    2014-08-18

    Mesoporous powders of transition-metal oxides, TiO2, ZrO2, HfO2, Nb2O5, and Ta2O5, pure from organic impurities were produced by a rapid single-step thermohydrolytic approach. The obtained materials display an impressively large active surface area and sharp pore-size distribution, being composed of partially coalesced uniform nanoparticles with crystalline cores and amorphous shells. They reveal extremely high adsorption capacity in removal of Cr(VI) anions from solutions (25.8 for TiO2, 73.0 for ZrO2, and 74.7 mg g(-1) for Nb2O5 in relation to the Cr2O7(2-) anion), making them very attractive as adsorbents in water remediation applications. The difference in adsorption capacities for the studied oxides may be explained by variation in surface hydration and surface-charge distribution. PMID:25042144

  2. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    SciTech Connect

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  3. Oxygen-18 study of the mechanism of promoter action of thiocyanate ions in the electrosynthesis of persulfuric acid and ammonium persulfate at platinum anodes

    SciTech Connect

    Kasatkin, E.V.; Larchenko, L.I.; Potapova, G.F.

    1987-02-01

    The authors use labelled oxygen to study the involvement of water and sulfate ions in molecular oxygen evolution during the anodic synthesis of persulfuric acid and ammonium persulfate at a platinum anode in an electrolytic cell with and without thiocyanate as a promoter for the electrocatalytic reaction.

  4. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    NASA Astrophysics Data System (ADS)

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Won Noh, Tae; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-10-01

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.

  5. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films.

    PubMed

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Noh, Tae Won; Kalinin, Sergei V; MacManus-Driscoll, Judith L

    2015-01-01

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness. PMID:26446866

  6. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    DOE PAGESBeta

    Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Noh, Tae Won; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. Bymore » using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.« less

  7. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    SciTech Connect

    Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Noh, Tae Won; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.

  8. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    PubMed Central

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Won Noh, Tae; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-01-01

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. By using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness. PMID:26446866

  9. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    PubMed

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future. PMID:27108287

  10. Alkylammonium montmorillonites as adsorbents for organic vapors from air

    SciTech Connect

    Harper, M.; Purnell, C.J. )

    1990-01-01

    Montmorillonite clays may be modified by the exchange of the inorganic interlayer cations with alkylammonium ions, resulting in a fixed internal porosity. The pore size and shape depend on the nature of the alkylammonium ion. A number of different ions were used to prepare adsorbents with varying properties, and these were examined for their potential application to sampling organic vapors in air. Characterization involved determination of nitrogen and water contents, surface area, interlayer spacing, thermal stability, and breakthrough volumes of organic vapors. The adsorbent that showed the most promise (tetramethylammonium montmorillonite (TMA)) was further evaluated for use as an adsorbent in both thermal- and solvent-desorable sampling systems.

  11. Oxygen loss induced by swift heavy ions of low and high dE/dx in PMMA thin films

    NASA Astrophysics Data System (ADS)

    Thomaz, R.; Gutierres, L. I.; Morais, J.; Louette, P.; Severin, D.; Trautmann, C.; Pireaux, J. J.; Papaléo, R. M.

    2015-12-01

    Investigations on the chemical modifications induced by swift heavy ions in PMMA thin films were carried out using beams of high dE/dx (2.2 GeV Bi, 14,090 eV/nm) and low dE/dx (2 MeV H, 19 eV/nm). The induced chemical modifications were monitored by XPS for films with initial thickness of 50 and 100 nm. For both beams, the irradiation decreased the amount of carbon atoms bound to oxygen (Cdbnd O and Csbnd Osbnd C), with a larger decrease of the carboxyl moiety, as expected. However, the chemical changes induced by light and heavy ions were qualitatively different. For the same mean deposited energy density, proton irradiation induced a decrease of the relative intensity of the carbon-oxygen bonds up to ∼20% larger than the irradiation with Bi ions. This suggests a greater importance of particle ejection by unzipping of PMMA chains at high dE/dx, which tends to keep the O/C ratio closer to the pristine value.

  12. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    SciTech Connect

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-05

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O{sup 7+} ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O{sup 7+} ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  13. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  14. Influence of temperature on oxygen permeation through ion transport membrane to feed a biomass gasifier

    NASA Astrophysics Data System (ADS)

    Antonini, T.; Foscolo, P. U.; Gallucci, K.; Stendardo, S.

    2015-11-01

    Oxygen-permeable perovskite membranes with mixed ionic-electronic conducting properties can play an important role in the high temperature separation of oxygen from air. A detailed design of a membrane test module is presented, useful to test mechanical resistance and structural stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) capillary membrane in the reactor environment. Preliminary experimental results of membrane permeation tests highlight the positive effect of temperature on perovskite materials. This behaviour is also confirmed by a computational model of char combustion with oxygen permeated through the membrane module, when it is placed inside a gasifier reactor to provide the necessary input of heat to the gasification endothermic process. The results show that the temperature affects the oxygen permeation of the BSCF membrane remarkably.

  15. A Distonic Radical-Ion for Detection of Traces of Adventitious Molecular Oxygen (O2) in Collision Gases Used in Tandem Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Jariwala, Freneil B.; Hibbs, John A.; Weisbecker, Carl S.; Ressler, John; Khade, Rahul L.; Zhang, Yong; Attygalle, Athula B.

    2014-09-01

    We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [•SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases.

  16. Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: a case study of cobalt-free BaFeO(3-δ).

    PubMed

    Dong, Feifei; Chen, Yubo; Chen, Dengjie; Shao, Zongping

    2014-07-23

    The widespread application of solid oxide fuel cell technology requires the development of innovative electrodes with high activity for oxygen reduction reaction (ORR) at intermediate temperatures. Here, we demonstrate that a cobalt-free parent oxide BaFeO(3-δ) (BF), which lacks long-range oxygen-ion diffusion paths, has surprisingly high electrocatalytic activity for ORR. Both in situ high-temperature X-ray diffraction analysis on room-temperature powder and transmission electron microscopy on quenched powder are applied to investigate the crystal structure of BF. Despite the lack of long oxygen-ion diffusion paths, the easy redox of iron cations as demonstrated by thermal gravimetric analysis (TGA) and oxygen temperature-programmed desorption and the high oxygen vacancy concentration as supported by iodometric titration and TGA benefit the reduction of oxygen to oxygen ions. Moreover, the electrical conductivity relaxation technique in conjunction with a transient thermogravimetric study reveals very high surface exchange kinetics of BF oxide. At 700 °C, the area specific resistance of BF cathode, as expressed by a symmetrical cell configuration, is only ∼0.021 Ω cm(2), and the derived single fuel cell achieves high power output with a peak power density of 870 mW cm(-2). It suggests that an undoped BF parent oxide can be used as a high-efficiency catalyst for ORR. PMID:24978102

  17. Surface-enhanced Raman spectroscopy of Omethoate adsorbed on silver surface

    NASA Astrophysics Data System (ADS)

    Kim, Hee Jin; Lee, Chul Jae; Karim, Mohammad Rezaul; Kim, Mak Soon; Lee, Mu Sang

    2011-01-01

    We have investigated surface-enhanced Raman spectroscopy (SERS) spectrum of Omethoate (O,O-dimethyl-S-methylcarbamoylmethylthiophosphate). It is found significant signals in the ordinary Raman spectrum for solid-state Omethoate as well as strong vibrational signals absorbed on the silver sol surface which is prepared by γ-irradiation technique at a very low concentration. Effects of pH and anions (Cl -, Br -, I -) on the adsorption orientation are investigated as well. Two different adsorption mechanisms are deduced, depending on the experimental conditions. The sulfur atom or the sulfur and two oxygen atoms are adsorbed onto the silver sol surface. Among halide ions, Br - and I - are more strongly adsorbed onto the silver sol surface. As a result, the adsorption of Omethoate is less effective due to their steric hindrance.

  18. Tailored Oxygen Framework of Li4Ti5O12 Nanorods for High-Power Li Ion Battery.

    PubMed

    Song, Kyeongse; Seo, Dong-Hwa; Jo, Mi Ru; Kim, Yong-Il; Kang, Kisuk; Kang, Yong-Mook

    2014-04-17

    Here we designed the kinetically favored Li4Ti5O12 by modifying its crystal structure to improve intrinsic Li diffusivity for high power density. Our first-principles calculations revealed that the substituted Na expanded the oxygen framework of Li4Ti5O12 and facilitated Li ion diffusion in Li4Ti5O12 through 3-D high-rate diffusion pathway secured by Na ions. Accordingly, we synthesized sodium-substituted Li4Ti5O12 nanorods having not only a morphological merit from 1-D nanostructure engineering but also sodium substitution-induced open framework to attain ultrafast Li diffusion. The new material exhibited an outstanding cycling stability and capacity retention even at 200 times higher current density (20 C) compared with the initial condition (0.1 C). PMID:26269981

  19. Rapid and direct micro-machining/patterning of polymer materials by oxygen MeV ion beam irradiation through masks

    NASA Astrophysics Data System (ADS)

    Brun, S.; Guibert, G.; Meunier, C.; Guibert, E.; Keppner, H.; Mikhailov, S.

    2011-10-01

    PTFE (PolyTetraFluoroEthylene), often called Teflon, is a well-known polymer for being a non-stick material with good thermal properties. Moreover, PTFE is biocompatible and especially it is a cyto-compatible polymer. To enable bonding, a chemical etching based on sodium solutions is generally used to modify surfaces. In this paper we study the etching of PTFE using an oxygen ion beam in the MeV energy range. We present micro-patterning of PTFE through masks with two fluences of 5 × 1015 and 1 × 1016 ion cm-2. As is demonstrated the use of a mask allows structuring of large areas while maintaining a distance between the mask and sample makes industrial applications possible.

  20. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  1. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  2. Chemisorption of a Molecular Oxygen On the UN(0 0 1) Surface: Ab Initio Calculations

    SciTech Connect

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej

    2009-09-15

    The results of DFT GGA calculations on oxygen molecules adsorbed upon the (0 0 1) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air.

  3. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  4. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate. PMID:25904197

  5. Is Substorm Onset Seeded by Cross-Tail Current Enhancement Resulting from Parallel Energization of Oxygen Ion Polar Cap Outflow?

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; Hussey, G. C.; McWilliams, K. A.

    2015-12-01

    The parallel energization of polar cap outflow (PCO) has been shown to be highly effective along newly-created lobe lines where the geometry is such that the Coulomb force due to the dawn-to-dusk electric field is roughly parallel to the curvature drift of the ions. This "Coulomb-curvature" interaction can produce a parallel energization rate that raises the parallel energy of the ions to about 5-6 keV before they reach the Neutral Sheet (NSh) at about 11 earth radii downtail. Then, in the outer NSh, they produce a strong westward curvature current. When they enter the inner neutral sheet (INSh) where they become "unmagnetized", they are accelerated westward by the dawn-dusk electric field. This causes their perpendicular energy and their pitch angle to increase such that the ions essentially become trapped in the inner NSh while continuing to accelerate westward. This additional westward current in the inner NSh accompanies the westward curvature current produced in the two outer NSh layers. This total ion current is supplemented by the westward curvature current caused by the eastward curvature drift of the electrons. The combined total ion and electron current is sufficient to severely decrease the magnetic field near the earthward end of the NSh. The magnetic pressure decrease is compensated by the particle pressure increase due to inflow of oxygen ions from the northern and southern polar caps. The conditions near the earthward edge of the NSh and in the adjoining plasmasheet regions neighbouring the NSh become ideal for reconnection and the dipolarization that follows.

  6. Fragmentation cross-section of relativistic oxygen ions and determination of overlap parameter

    NASA Technical Reports Server (NTRS)

    Verma, S. D.

    1977-01-01

    Results are presented for measurements of total fragmentation cross sections of relativistic O-16 ions in CsI crystals, which were performed using a monochromatic bevatron ion beam at energies of 0.5 and 2.1 GeV/nucleon. The total fragmentation cross section at each energy is determined on the basis of detected changes in the charge of the incident ions, and the values obtained at both energies are found to be the same to within the experimental errors. Values of the O-16 nucleon radius and overlap parameter are derived simultaneously from the measured cross sections.

  7. A comparative study of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiated Si NPN BJTs

    SciTech Connect

    Kumar, M. Vinay Krishnaveni, S.; Yashoda, T.; Dinesh, C. M.; Krishnakumar, K. S.; Jayashree, B.; Ramani

    2015-06-24

    The impact of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor.

  8. Rapid enhancement of energetic oxygen ions in the inner magnetosphere during substorms

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Ebihara, Y.; Tanaka, T.

    2014-12-01

    Satellite observations show that energetic (>100 keV) O+ ions are rapidly increased in the inner magnetosphere during substorms. The ultimate source of O+ ions is the Earth's ionosphere, so that O+ ions must be accelerated from ~eV to 100s keV somewhere in the magnetosphere. A fundamental question still arise regarding why O+ ions are accelerated and transported to the inner magnetosphere. We simulated substorms under two different solar wind conditions by using the global MHD simulation developed by Tanaka et al. (2010, JGR). The solar wind speed is set to be 372 km/s for Case I, and 500 km/s for Case II. In both cases, the MHD simulation result shows that the dawn to dusk electric field is enhanced in the night side tail region at >7 Re just after the substorm onset. In particular, the electric field in the inner region (~7 Re) is highly enhanced by the tension force because of relatively strong magnetic field together with curved field lines. The strongest electric field takes place near the region where the plasma pressure is high. We performed test particle simulation under the electric and magnetic fields for Cases I and II. O+ ions are released from two planes located at ±2 Re in the Z direction in the tail region. O+ ions released at the two planes represent outflowing stream of O+ ions escaping from the Earth. The distribution function at the planes is assumed to be drifting Kappa distribution with temperature of 10 eV, the density of 105 m-3, and the parallel velocity given by the MHD simulation. In total, around a billion of particles are traced. Each test particle carries the real number of particles in accordance with the Liouville theorem. After tracing particles, we reconstructed 6-dimensional phase space density of O+ ions. We obtained the following results. (1) Just after substorm onset, the differential flux of O+ ions is almost simultaneously enhanced in the region where the electric field is strong. (2) The kinetic energy increases rapidly to

  9. Negative oxygen ion formation in reactive magnetron sputtering processes for transparent conductive oxides

    SciTech Connect

    Welzel, Thomas; Ellmer, Klaus

    2012-11-15

    Reactive d.c. magnetron sputtering in Ar/O{sub 2} gas mixtures has been investigated with energy-resolved mass spectrometry. Different metal targets (Mg, Ti, Zn, In, InSn, and Sn), which are of importance for transparent conductive oxide thin film deposition, have been used to study the formation of negative ions, mainly high-energetic O{sup -}, which are supposed to induce radiation damage in thin films. Besides their energy distribution, the ions have been particularly investigated with respect to their intensity in comparison of the different target materials. To realize the comparability, various calibration factors had to be introduced. After their application, major differences in the negative ion production have been observed for the target materials. The intensity, especially of O{sup -}, differs by about two orders of magnitude. It is shown that this difference results almost exclusively from ions that gain their energy in the target sheath. Those may gain additional energy from the sputtering process or reflection at the target. Low-energetic negative ions are, however, less affected by changes of the target material. The results concerning O{sup -} formation are discussed in term of the sputtering rate from the target and are compared to models for negative ion formation.

  10. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal

    NASA Astrophysics Data System (ADS)

    Bian, Yu; Bian, Zhao-Yong; Zhang, Jun-Xiao; Ding, Ai-Zhong; Liu, Shao-Lei; Wang, Hui

    2015-02-01

    The adsorption process of graphene oxide (GO) with oxygen-containing functional groups towards cadmium ions was investigated. GO synthesized from graphite by using the modified Hummers method was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oxygen-containing groups on the surfaces of GO played an important role in Cd(II) ion adsorption onto GO. The results of batch experiments indicated that maximal adsorption, which was found to be 23.9 mg/g, could be achieved over the broad pH range of 6.0-7.0. Adsorption isotherms were better fitted by Freundlich model than by Langmuir model and kinetic studies suggested that adsorption was controlled by chemical adsorption. According to FT-IR and XPS analyses of before and after Cd(II) adsorption on GO, electrostatic attraction and cation exchange between Cd(II) and O-containing functional groups on GO were the dominant mechanisms responsible for Cd(II) sorption.

  11. Structural and Electrochemical Impacts of Oxygen Doped and Surfactant Coated Activated Carbon Electrodes in Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Collins, John; Gourdin, Gerald; Qu, Deyang; Foster, Michelle

    2013-03-01

    Passive charge and discharge dynamics are necessary for advancing Li-ion batteries. Surfactant adsorption on activated carbon has been shown to promote advancements in the discharge capacity, time and cycle-ability of electrochemical systems--specifically by enhancing diffusion pathways for ion insertion/de-insertion and suppressing pore blockage from precipitates known to form during charge/discharge states. Enhancement of surfactant chemisorption on activated carbon is achieved through oxygen doping of the carbon surface. In addition, doping alters the degree of Faradaic processes occurring in solution, resulting in prolonged reduction at the carbon surface. The work presented describes how surface oxygen groups on a granulated activated carbon have been manipulated using nitric acid in a controlled, stepwise fashion. A nonionic surfactant was applied to oxidized and non-oxidized samples at various concentrations. The composition and structure of the activated carbon surface was characterized using DRIFTS, Raman Spectroscopy, SEM and Porosimetry. The charge/discharge Li insertion capacities along with correlating surface microstructure changes were analyzed for all treated electrodes at progressive oxidation stages.

  12. In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Guo, Jin-Zhi; Zhang, Xiao-Hua; Zhang, Jing-Ping; Sun, Hai-Zhu; Yan, Qingyu; Han, Dong-Xue; Niu, Li; Wu, Xing-Long

    2016-03-30

    Graphene incorporation should be one effective strategy to develop advanced electrode materials for a sodium-ion battery (SIB). Herein, the micro/nanostructural Sb/graphene composite (Sb-O-G) is successfully prepared with the uniform Sb nanospheres (∼100 nm) bound on the graphene via oxygen bonds. It is revealed that the in-situ-constructed oxygen bonds play a significant role on enhancing Na-storage properties, especially the ultrafast charge/discharge capability. The oxygen-bond-enhanced Sb-O-G composite can deliver a high capacity of 220 mAh/g at an ultrahigh current density of 12 A/g, which is obviously superior to the similar Sb/G composite (130 mAh/g at 10 A/g) just without Sb-O-C bonds. It also exhibits the highest Na-storage capacity compared to Sb/G and pure Sb nanoparticles as well as the best cycling performance. More importantly, this Sb-O-G anode achieves ultrafast (120 C) energy storage in SIB full cells, which have already been shown to power a 26-bulb array and calculator. All of these superior performances originate from the structural stability of Sb-O-C bonds during Na uptake/release, which has been verified by ex situ X-ray photoelectron spectroscopies and infrared spectroscopies. PMID:26960386

  13. Low energy oxygen ion beam modification of the surface morphology and chemical structure of polyurethane fibers

    NASA Astrophysics Data System (ADS)

    Wong, K. H.; Zinke-Allmang, M.; Wan, W. K.; Zhang, J. Z.; Hu, P.

    2006-01-01

    Energetic O+ ions were implanted into polyurethane (PU) fiber filaments, at 60 and 100 keV with doses of 5 × 1014 and 1 × 1015 ions/cm2, to modify the near-surface fiber morphology. The implantations were performed at room temperature and at -197 °C, a temperature well below the glass transition temperature for this system. At room temperature, the lower energy implantation heats the fibers primarily near their surface, causing the fiber surface to smoothen and to develop a flattened shape. At the higher energy, the ion beam deposits its energy closer to the fiber core, heating the fiber more uniformly and causing them to re-solidify slowly. This favors a cylindrical equilibrium shape with a smooth fiber surface and no crack lines. The average fiber diameter reduced during 100 keV implantation from 3.1 to 2.3 μm. At -197 °C, the ion implantation does not provide enough heat to cause notable physical modifications, but the fibers crack and break during subsequent warming to room temperature. The dose dependence of the crack formation along the fiber intersections is presented. The ion beams further cause near-surface chemical modifications in the fibers, particularly introducing two new chemical functional groups (C-(Cdbnd O)-C and C-N-C).

  14. Direct mapping of recoil in the ion-pair dissociation of molecular oxygen by a femtosecond depletion method.

    PubMed

    Baklanov, Alexey V; Janssen, Liesbeth M C; Parker, David H; Poisson, Lionel; Soep, Benoit; Mestdagh, Jean-Michel; Gobert, Olivier

    2008-12-01

    Time-resolved dynamics of the photodissociation of molecular oxygen, O(2), via the (3)Sigma(u) (-) ion-pair state have been studied with femtosecond time resolution using a pump-probe scheme in combination with velocity map imaging of the resulting O(+) and O(-) ions. The fourth harmonic of a femtosecond titanium-sapphire (Ti:sapphire) laser (lambda approximately 205 nm) was found to cause three-photon pumping of O(2) to a level at 18.1 eV. The parallel character of the observed O(+) and O(-) images allowed us to conclude that dissociation takes place on the (3)Sigma(u) (-) ion-pair state. The 815 nm fundamental of the Ti:sapphire laser used as probe was found to cause two-photon electron photodetachment starting from the O(2) ion-pair state, giving rise to (O((3)P)+O(+)((4)S)) products. This was revealed by the observed depletion of the yield of the O(-) anion and the appearance of a new O(+) cation signal with a kinetic energy E(transl)(O(+)) dependent on the time delay between the pump and probe lasers. This time-delay dependence of the dissociation dynamics on the ion-pair state has also been simulated, and the experimental and simulated results coincide very well over the experimental delay-time interval from about 130 fs to 20 ps where two- or one-photon photodetachment takes place, corresponding to a change in the R(O(+),O(-)) interatomic distance from 12 to about 900 A. This is one of the first implementations of a depletion scheme in femtosecond pump-probe experiments which could prove to be quite versatile and applicable to many femtosecond time-scale experiments. PMID:19063560

  15. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  16. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  17. Variation of the average 'freezing-in' temperature of oxygen ions with solar wind speed

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Vogt, C.

    1980-01-01

    Observations of the average oxygen ionization equilibrium as a function of speed of the solar wind are presented. At low solar wind speeds they indicate a coronal temperature at the freezing-in point of (1.6 + or - 0.2) x 10 to the 6th K. At speeds above 450 km/sec the apparent temperature starts to rise rapidly. This rise is tentatively interpreted in terms of a lack of thermodynamic equilibrium in the source region.

  18. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. Thermally stimulated spontaneous current investigations in 75 MeV oxygen-ion-irradiated kapton-H polyimide

    NASA Astrophysics Data System (ADS)

    Sharma, Anu; Sridharbabu, Y.; Quamara, J. K.

    2015-02-01

    Thermally stimulated spontaneous currents in 75 MeV oxygen-ion-irradiated kapton-H polyimide samples sandwiched between similar (M-P-M) and dissimilar (M1-P-M2) electrodes in the temperature range of 20-250°C have been studied. Metals used as electrodes in the present investigations are having different work functions (Bi: 4.22, Al: 4.28, Cr: 4.37, Cu: 4.70 and Au: 5.1 eV). One maxima in the temperature region 30-60°C and other in the temperature region 100-120°C have been observed, termed as γ and β relaxations, respectively. γ-Relaxation is associated with the water absorption and β-relaxation is associated with the presence of dipoles in the material. The magnitude of the current depends on the type of electrode combinations used: either similar (M-P-M) or dissimilar (M1-P-M2) electrode systems. The value of current in M1-P-M2 combinations is more in comparison with M-P-M systems, as the internal potential difference developed in dissimilar electrodes is more as compared with the similar electrode system. The carbonyl groups present in the structure of kapton-H polyimide are the most affected group, due to the contact electrode system and ion irradiation. Aluminum atoms interact with imide carbonyl groups in kapton-H polyimide form carbonyl (>C═O)-metal complex. As a result of ion irradiation, demerization of carbonyl groups and formation of some new polar-subpolar groups take place. The moisture in ion-irradiated samples promotes the current magnitude via helping in transport or conduction of charge carriers through polyimide.

  20. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    NASA Technical Reports Server (NTRS)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  1. Electrical control of Co/Ni magnetism adjacent to gate oxides with low oxygen ion mobility

    SciTech Connect

    Yan, Y. N.; Zhou, X. J.; Li, F.; Cui, B.; Wang, Y. Y.; Wang, G. Y.; Pan, F.; Song, C.

    2015-09-21

    We investigate the electrical manipulation of Co/Ni magnetization through a combination of ionic liquid and oxide gating, where HfO{sub 2} with a low O{sup 2−} ion mobility is employed. A limited oxidation-reduction process at the metal/HfO{sub 2} interface can be induced by large electric field, which can greatly affect the saturated magnetization and Curie temperature of Co/Ni bilayer. Besides the oxidation/reduction process, first-principles calculations show that the variation of d electrons is also responsible for the magnetization variation. Our work discloses the role of gate oxides with a relatively low O{sup 2−} ion mobility in electrical control of magnetism, and might pave the way for the magneto-ionic memory with low power consumption and high endurance performance.

  2. Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials

    NASA Technical Reports Server (NTRS)

    Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.

    1978-01-01

    Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.

  3. Collision integrals for the interaction of the ions of nitrogen and oxygen in a plasma at high temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, E.

    1992-01-01

    The corrections to the transport cross-sections and collision integrals for Coulomb interactions arising from the application of realistic interaction energies of the ions of nitrogen and oxygen are investigated. Accurate potential-energy curves from an ab initio electronic-structure calculation and a semiclassical description of the scattering are used to determine the difference between the cross-sections for the real interaction forces and a Coulomb force for large values of the Debye shielding parameter. Graphs of the correction to the diffusion and viscosity-collision integrals are presented for temperatures from about 10,000 K to 150,000 K. This correction can be combined with tabulations of the collision integrals for shielded Coulomb potentials to determine the contribution of N(+)-N(+), N(+)-O(+), and O(+)-O(+) interactions to the transport properties of high-temperature air. Analytical forms are fitted to the calculated results to assist this application.

  4. Laboratory Measurement and Theoretical Modeling of K-shell X-ray Lines from Inner-shell Excited and Ionized Ions of Oxygen

    SciTech Connect

    Gu, M; Schmidt, M; Beiersdorfer, P; Chen, H; Thorn, D B; Tr?bert, E; Behar, E; Kahn, S M

    2005-02-05

    We present high resolution laboratory spectra of K-shell X-ray lines from inner-shell excited and ionized ions of oxygen, obtained with a reflection grating spectrometer on the electron beam ion trap (EBIT-I) at the Lawrence Livermore National Laboratory. Only with a multi-ion model including all major atomic collisional and radiative processes, are we able to identify the observed K-shell transitions of oxygen ions from O III to O VI. The wavelengths and associated errors for some of the strongest transitions are given, taking into account both the experimental and modeling uncertainties. The present data should be useful in identifying the absorption features present in astrophysical sources, such as active galactic nuclei and X-ray binaries. They are also useful in providing benchmarks for the testing of theoretical atomic structure calculations.

  5. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  6. Oxygen-based free radical generation by ferrous ions and deferoxamine.

    PubMed

    Klebanoff, S J; Waltersdorph, A M; Michel, B R; Rosen, H

    1989-11-25

    Deferoxamine accelerates the autooxidation of iron as measured by the rapid disappearance of Fe2+, the associated appearance of Fe3+, and the uptake of oxygen. Protons are released in the reaction. The formation of H2O2 was detected by the horseradish peroxidase-catalyzed oxidation of scopoletin, and the formation of hydroxyl radicals (OH.) was suggested by the formation of the OH. spin trap adduct (DMPO/OH). with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and the generation of the methyl radical adduct on the further addition of dimethyl sulfoxide. (DMPO/OH). adduct formation was inhibited by catalase but not by superoxide dismutase. The oxidant formed converted iodide to a trichloroacetic acid-precipitable form (iodination) and was bactericidal to logarithmic phase Escherichia coli. Both iodination and bactericidal activity was inhibited by catalase and by OH. scavengers, but not by superoxide dismutase. Iodination was optimal in 5 x 10(-4) M acetate buffer, pH 5.0, and when the Fe2+ and deferoxamine concentrations were equimolar at 10(-4) M. Fe2+ could not be replaced by Fe3+, Co2+, Zn2+, Ca2+, Mg2+, or Mn2+, or deferoxamine by EDTA, diethylenetriaminepentaacetic acid, or bathophenanthroline. These findings indicate that Fe2+ and deferoxamine can act as an oxygen radical generating system, which may contribute to its biological effects in vitro and in vivo. PMID:2555330

  7. Cerebral resuscitation after cardiac arrest using hetastarch hemodilution, hyperbaric oxygenation and magnesium ion.

    PubMed

    Ruiz, E; Brunette, D D; Robinson, E P; Tomlinson, M J; Lange, J; Wieland, M J; Sherman, R

    1986-12-01

    This study was done to investigate the effects of hemodilution, hyperbaric oxygenation, and magnesium sulfate on cerebral resuscitation. Sixteen mongrel dogs were anesthetized, and monitored via pulmonary artery catheter, arterial catheter and electrocardiogram. A left lateral thoracotomy was done. Ventricular fibrillation was obtained by application of a 6-volt AC current. Mechanical ventilation was stopped. Total arrest time was 12 min. All dogs were cardiac resuscitated within 6 min using internal massage, ventilation, bicarbonate, epinephrine and internal defibrillation. The animals were then randomized into three groups. Group I represented controls, and were not treated. Group II dogs received normvolemic hemodilution using hetastarch (Hespan) containing magnesium sulfate (2000 mg/l), resulting in a hematocrit of 20%-30%. Group III dogs received the above hemodilution plus compression in a hyperbaric oxygen chamber to 2 atmospheres absolute. Critical care management and hourly neurologic scoring was performed for 7 days by blinded observers. All dogs at the time of death underwent autopsies for gross study. Data analysis revealed no statistical difference among the three groups with respect to survival time, cardiac function or neurologic scoring. PMID:2433721

  8. Atomic data from the IRON Project. V. Effective collision strengths for transitions in the ground configuration of oxygen-like ions.

    NASA Astrophysics Data System (ADS)

    Butler, K.; Zeippen, C. J.

    1994-11-01

    Fine-structure collision strengths for transitions between the ground configuration terms of oxygen-like ions have been obtained in a six state close-coupling approximation. Effective collision strengths are tabulated in the range of 1000-100000K for the following ions: F II, Ne III, Na IV, Mg V, Al VI, Si VII, P VIII, S IX, Cl X, Ar XI.

  9. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    PubMed Central

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device. PMID:27052322

  10. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions.

    PubMed

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He, Jr-Hau; Lee, Si-Chen

    2016-01-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<± 1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device. PMID:27052322

  11. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He-Hau, Jr.; Lee, Si-Chen

    2016-04-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  12. Study of nuclear reactions with carnon-11 and oxygen-15 radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Lee, Dongwon

    Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides 11C, 14O and 15O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as 12N and 15F. In this work, the proton capture reaction on 11C has been evaluated via the indirect d(11C,12N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective 12N→11C +p ANC is found to be C12Neff 2 = 1.83 +/- 0.27 fm-1. With the high 11C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the 11C(p,gamma) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed 15O radioactive ion beam at BEARS was used to study the poorly known level widths of 16F via the p(15O,15O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in 16N and 16O have been well established, but less has been reported on 16F. Four states of 16F below 1 MeV have been identified experimentally: 0-, 1-, 2-, and 3- (Ex = 0.0, 0.19, 0.42, and 0.72 MeV, respectively). Our study utilized R-matrix analysis and found that the 0- state has a level width of 23.1 +/- 2.2 keV, and that the broader 1 - state has a width of 91.1 +/- 9.9 keV. The level width of the 2- state is found to be 3

  13. Large-area synthesis of WSe2 from WO3 by selenium-oxygen ion exchange

    NASA Astrophysics Data System (ADS)

    Browning, Paul; Eichfeld, Sarah; Zhang, Kehao; Hossain, Lorraine; Lin, Yu-Chuan; Wang, Ke; Lu, Ning; Waite, A. R.; Voevodin, A. A.; Kim, Moon; Robinson, Joshua A.

    2015-03-01

    Few-layer tungsten diselenide (WSe2) is attractive as a next-generation electronic material as it exhibits modest carrier mobilities and energy band gap in the visible spectra, making it appealing for photovoltaic and low-powered electronic applications. Here we demonstrate the scalable synthesis of large-area, few-layer WSe2 via replacement of oxygen in hexagonally stabilized tungsten oxide films using dimethyl selenium. Cross-sectional transmission electron microscopy reveals successful control of the final WSe2 film thickness through control of initial tungsten oxide thickness, as well as development of layered films with grain sizes up to several hundred nanometers. Raman spectroscopy and atomic force microscopy confirms high crystal uniformity of the converted WSe2, and time domain thermo-reflectance provide evidence that near record low thermal conductivity is achievable in ultra-thin WSe2 using this method.

  14. Double differential distribution of electron emission in the ionization of water molecules by fast bare oxygen ions

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Shamik; Biswas, Shubhadeep; Bagdia, Chandan; Roychowdhury, Madhusree; Nandi, Saikat; Misra, Deepankar; Monti, J. M.; Tachino, C. A.; Rivarola, R. D.; Champion, C.; Tribedi, Lokesh C.

    2016-03-01

    The doubly differential distributions of low-energy electron emission in the ionization of water molecules under the impact of fast bare oxygen ions with energy of 48 MeV are measured. The measured data are compared with two quantum-mechanical models, i.e. the post and prior versions of the continuum distorted wave-eikonal initial state (CDW-EIS) approximation, and the first-order Born approximation with initial and final wavefunctions verifying correct boundary conditions (CB1). An overall excellent qualitative agreement is found between the data and the CDW-EIS models whereas the CB1 model showed substantial deviation. However, the detailed angular distributions display some discrepancies with both CDW-EIS models. The single differential and total cross-sections exhibit good agreement with the CDW-EIS models. The present detailed data set could also be used as an input for modeling highly charged ion induced radiation damage in living tissues, whose most abundant component is water. Similar measurements are also carried out for a projectile energy of 60 MeV. However, since the double differential cross-section data show similar results the details are not provided here, except for the total ionization cross-sections results.

  15. Removal of nitrate ions from water by activated carbons (ACs)—Influence of surface chemistry of ACs and coexisting chloride and sulfate ions

    NASA Astrophysics Data System (ADS)

    Ota, Kazunari; Amano, Yoshimasa; Aikawa, Masami; Machida, Motoi

    2013-07-01

    Adsorptive removal of nitrate ions in aqueous solution using activated carbons (ACs) was examined. After ash was removed from Filtrasorb 400 AC, oxidation and outgassing and several heat treatments were carried out to modify the textural and surface properties of ACs. AC oxidized with 8 M nitric acid followed by outgassing at 900 °C (Ox-9OG) exhibited the greatest Langmuir adsorption capacity and affinity for nitrate removal among the total 7 ACs examined. Influence of coexisting chloride and sulfate ions was investigated as well to inspect the nitrate adsorption sites. The highest amount of sites which adsorbed nitrate ions exclusively could be observed for Ox-9OG adsorbent even though as great as 250 times greater number of chloride or sulfate ions over nitrate ions were present in the same aqueous system. Some basic oxygen species on carbon were estimated to work as selective adsorption sites for nitrate ions.

  16. The role of oxygen in the uptake of deuterium in lithiated graphite

    SciTech Connect

    Taylor, C. N.; Luitjohan, K. E.; Dadras, J.; Allain, J. P.; Krstic, P. S.; Skinner, C. H.

    2013-12-14

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000 eV/amu and fluences over 10{sup 16} cm{sup −2} the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300 h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  17. The role of oxygen in the uptake of deuterium in lithiated graphite

    SciTech Connect

    C.N. Taylor; J. Dadras; K.E. Luitjohan; J.P. Allain; P.S. Krstic; C.H. Skinner

    2013-12-01

    We investigate the mechanism of deuterium retention by lithiated graphite and its relationship to the oxygen concentration through surface sensitive experiments and atomistic simulations. Deposition of lithium on graphite yielded 5%–8% oxygen surface concentration and when subsequently irradiated with D ions at energies between 500 and 1000?eV/amu and fluences over 1016?cm-2 the oxygen concentration rose to between 25% and 40%. These enhanced oxygen levels were reached in a few seconds compared to about 300?h when the lithiated graphite was allowed to adsorb oxygen from the ambient environment under equilibrium conditions. Irradiating graphite without lithium deposition, however, resulted in complete removal of oxygen to levels below the detection limit of XPS (e.g., <1%). These findings confirm the predictions of atomistic simulations, which had concluded that oxygen was the primary component for the enhanced hydrogen retention chemistry on the lithiated graphite surface.

  18. Effects of oxygen plasma source ion implantation on microstructure evolution and mechanical properties of nickel-titanium shape memory alloy

    NASA Astrophysics Data System (ADS)

    Tan, Lizhen

    Near-equiatomic NiTi is an important shape memory alloy used in both medical and non-medical applications, which are dependent upon the surface characteristics of NiTi. The work presented here is the first use of plasma source ion implantation with oxygen as the incident species to modify the surface structure of NiTi shape memory alloy. Two levels of voltage bias and three levels of ion dose were employed to investigate the effect of processing parameters on surface microstructure and surface-related properties. Several surface analytical techniques, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to analyze the effects of the surface modification on surface characteristics including oxide thickness, oxide constitution, phase distribution, morphology and topography. A two-layer surface structure consisting of an oxide layer and a precipitate accommodation layer was observed on modified NiTi. The surface morphology, roughness and hydrophilicity, which are considered to play important roles in affecting protein adsorption behavior, were found to be altered by surface modification. The effects of surface modification on surface-related properties including corrosion resistance, hardness and wear resistance were evaluated by cyclic potentiodynamic polarization tests, Knoop hardness microindentation and fretting wear tests, respectively. The optimum corrosion and wear resistance of NiTi were achieved with ion implantation under high bias and moderate dose. Archard's equation was modified by incorporating the pseudoelasticity effect on wear resistance in addition to hardness. The modified Archard's equation better describes the fretting wear resistance of NiTi. A combination of nanoindentation and AES was employed to understand the relationship between mechanical properties and composition of the modified material.

  19. Measurement of Atomic Oxygen in Diffuse Aurora and Ion Density in the E-Region

    NASA Technical Reports Server (NTRS)

    Sharp, William E.

    1997-01-01

    An ion mass spectrometer (IMS) was refurbished, calibrated and supplied to the University of Colorado payload (Dr. Charles Barth, P.I.) which was launched from White Sands in September of 1993 as NASA 33.062. The nose cone failed to deploy and their were problems with the ACS so the mission was declared a failure. However, the door covering the IMS deployed and the instrument obtained data. The launch occurred shortly after a payload carrying solar x-ray detectors was launched. Thus a small portion of the Colorado payload science was salvaged; namely, the NO(+)/O2(+) ratio to compare with the measured x-ray flux. Figure I shows the NO(+) to O2(+) ratio vs. altitude. The behavior is typical of the E-region.

  20. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  1. Oxygen isotopic measurements by secondary ion mass spectrometry in uranium oxide microparticles: a nuclear forensic diagnostic.

    PubMed

    Tamborini, G; Phinney, D; Blidstein, O; Betti, M

    2002-12-01

    To exploit oxygen isotopic measurement by SIMS as a diagnostic tool in nuclear forensics, the magnitude and reproducibility of 0-isotope instrumental mass discrimination for O-isotope standards in the SIMS laboratory at the Institute for Transuranium Elements has been evaluated. Tests for matrix-dependent discrimination effects on three different O-isotope standards with substantially different matrix compositions have been performed. The results were checked by an interlaboratory comparison of O-isotope discrimination with those obtained in the SIMS laboratory at the Lawrence Livermore National Laboratory on two standards. The results from the two laboratories are in very good agreement, indicating statistically indistinguishable instrumental mass discrimination factors for 180/160 ratios on the Cameca 6f and 3f, when the analyses are performed under the experimental conditions described. The 2sigma(mean) uncertainties of these factors are in the range of 0.3-0.9%. In accordance with the tested methodology, 0-isotope compositions were measured in three particulate uranium oxide samples of nuclear forensics interest. PMID:12498207

  2. Near-infrared reflectance modulation with electrochromic crystalline WO sub 3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique

    SciTech Connect

    Arntz, F.O.; Goldner, R.B.; Morel, B.; Hass, T.E.; Wong, K.K. )

    1990-03-15

    Electrochromic, crystalline WO{sub 3} films have been deposited on glass substrates at ambient temperature by an oxygen-ion-assisted technique using oxygen ion energies {ge}300 eV and oxygen ion to vapor molecule (WO{sub 3}) ratios, {gamma}{ge}2.5. After lithiation, the resulting Li{sub {ital x}}WO{sub 3} films exhibited {gt}50% reflectivity in the near infrared, and the reflectivity dispersion was fit by a Drude free-electron model, yielding the Drude parameters: plasma energy, {ital E}{sub {ital p}}=3.3 eV; and the loss (damping) parameter, {ital E}{sub {Gamma}}=1.0 eV. (The bound electron permittivity, {epsilon}{sub {ital b}}, was fixed at 4.0.) These values are comparable to those obtained with WO{sub 3} films rf sputter deposited onto substrates at temperatures {gt}420 {degree}C. During the ion-assisted deposition the substrate temperature reached approximately 90 {degree}C, caused primarily by radiation from the WO{sub 3} evaporant source. This indicates that economical low-temperature substrates, such as plastics, could be used. These results suggest that practical electrochromic smart windows for energy-efficient buildings might be produced using ion-assisted deposition techniques.

  3. Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion.

    PubMed

    Dash, Ranjan K; Bassingthwaighte, James B

    2006-07-01

    A detailed nonlinear four-region (red blood cell, plasma, interstitial fluid, and parenchymal cell) axially distributed convection-diffusion-permeation-reaction-binding computational model is developed to study the simultaneous transport and exchange of oxygen (O2) and carbon dioxide (CO2) in the blood-tissue exchange system of the heart. Since the pH variation in blood and tissue influences the transport and exchange of O2 and CO2 (Bohr and Haldane effects), and since most CO2 is transported as HCO3(-) (bicarbonate) via the CO2 hydration (buffering) reaction, the transport and exchange of HCO3(-) and H+ are also simulated along with that of O2 and CO2. Furthermore, the model accounts for the competitive nonlinear binding of O2 and CO2 with the hemoglobin inside the red blood cells (nonlinear O2-CO2 interactions, Bohr and Haldane effects), and myoglobin-facilitated transport of O2 inside the parenchymal cells. The consumption of O2 through cytochrome-c oxidase reaction inside the parenchymal cells is based on Michaelis-Menten kinetics. The corresponding production of CO2 is determined by respiratory quotient (RQ), depending on the relative consumption of carbohydrate, protein, and fat. The model gives a physiologically realistic description of O2 transport and metabolism in the microcirculation of the heart. Furthermore, because model solutions for tracer transients and steady states can be computed highly efficiently, this model may be the preferred vehicle for routine data analysis where repetitive solutions and parameter optimization are required, as is the case in PET imaging for estimating myocardial O2 consumption. PMID:16775761

  4. Calculation of resonant effects in electron-impact excitation of positive ions Application to oxygen VII

    NASA Technical Reports Server (NTRS)

    Pindzola, M. S.; Temkin, A.; Bhatia, A. K.

    1979-01-01

    The general reaction theory of Feshbach is applied to the calculation of resonant effects in near-threshold electron-positive-ion excitation. The theory divides configuration space into open- and closed-channel parts, resonance effects being described by the closed-channel part. The open-channel part is handled in a distorted-wave approximation to the set of open-channel coupled equations. Various methods are suggested for handling the closed-channel part. However, an 'attached-excited-target approximation' is used explicitly, which is further approximated by a set of uncoupled closed-channel equations. As an example, the 1 1S-2 1P excitation cross section of O VII below the 3 3S threshold is calculated. Various distorted-wave approximations are investigated and results from most of them are quite similar. Resonant effects arising from the attachment of the colliding electron with the 3 3S state are found to be small, but other close-lying n = 3 states have not yet been included.

  5. Ion microprobe analysis of oxygen isotope ratios in granulite facies magnetites: diffusive exchange as a guide to cooling history

    NASA Astrophysics Data System (ADS)

    Valley, John W.; Graham, Colin M.

    1991-03-01

    Ion microprobe analysis of magnetites from the Adirondack Mountains, NY, yields oxygen isotope ratios with spatial resolution of 2 8 μm and precision in the range of 1‰ (1 sigma). These analyses represent 11 orders of magnitude reduction in sample size compared to conventional analyses on this material and they are the first report of routinely reproducible precision in the 1 per mil range for analysis of δ18O at this scale. High precision micro-analyses of this sort will permit wide-ranging new applications in stable isotope geochemistry. The analyzed magnetites form nearly spherical grains in a calcite matrix with diopside and monticellite. Textures are characteristic of granulite facies marbles and show no evidence for retrograde recrystallization of magnetite. Magnetites are near to Fe3O4 in composition, and optically and chemically homogeneous. A combination of ion probe plus conventional BrF5 analysis shows that individual grains are homogeneous with δ18O=8.9±1‰ SMOW from the core to near the rim of 0.1 1.2 mm diameter grains. Depth profiling into crystal growth faces of magnetites shows that rims are 9‰ depleted in δ18O. These low δ18O values increase in smooth gradients across the outer 10 μm of magnetite rims in contact with calcite. These are the sharpest intracrystalline gradients measured to date in geological materials. This discovery is confirmed by bulk analysis of 150 350 μm diameter magnetites which average 1.2‰ lower in δ18O than coarse magnetites due to low δ18O rims. Conventional analysis of coexisting calcite yields °18O=18.19, suggesting that bulk Δ18O (Cc-Mt)=9.3‰ and yielding an apparent equilibration “temperature” of 525° C, over 200° C below the temperature of regional metamorphism. Consideration of experimental diffusion data and grain size distribution for magnetite and calcite suggests two contrasting cooling histories. The data for oxygen in calcite under hydrothermal conditions at high P(H2O) indicates that

  6. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater. PMID:26818070

  7. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    NASA Astrophysics Data System (ADS)

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.

  8. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    PubMed Central

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater. PMID:26818070

  9. Resistive switching memory characteristics of Ge/GeO x nanowires and evidence of oxygen ion migration

    NASA Astrophysics Data System (ADS)

    Prakash, Amit; Maikap, Siddheswar; Rahaman, Sheikh Ziaur; Majumdar, Sandip; Manna, Santanu; Ray, Samit K.

    2013-05-01

    The resistive switching memory of Ge nanowires (NWs) in an IrO x /Al2O3/Ge NWs/SiO2/p-Si structure is investigated. Ge NWs with an average diameter of approximately 100 nm are grown by the vapor-liquid-solid technique. The core-shell structure of the Ge/GeO x NWs is confirmed by both scanning electron microscopy and high-resolution transmission electron microscopy. Defects in the Ge/GeO x NWs are observed by X-ray photoelectron spectroscopy. Broad photoluminescence spectra from 10 to 300 K are observed because of defects in the Ge/GeO x NWs, which are also useful for nanoscale resistive switching memory. The resistive switching mechanism in an IrO x /GeO x /W structure involves migration of oxygen ions under external bias, which is also confirmed by real-time observation of the surface of the device. The porous IrO x top electrode readily allows the evolved O2 gas to escape from the device. The annealed device has a low operating voltage (<4 V), low RESET current (approximately 22 μA), large resistance ratio (>103), long pulse read endurance of >105 cycles, and good data retention of >104 s. Its performance is better than that of the as-deposited device because the GeO x film in the annealed device contains more oxygen vacancies. Under SET operation, Ge/GeO x nanofilaments (or NWs) form in the GeO x film. The diameter of the conducting nanofilament is approximately 40 nm, which is calculated using a new method.

  10. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  11. Sterilization by oxygen plasma

    NASA Astrophysics Data System (ADS)

    Moreira, Adir José; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Zambon, Luis da Silva; da Silva, Mônica Valero; Verdonck, Patrick Bernard

    2004-07-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  12. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction.

    PubMed

    Kocot, Karina; Leardi, Riccardo; Walczak, Beata; Sitko, Rafal

    2015-03-01

    A dispersive micro-solid phase extraction (DMSPE) with graphene as a solid adsorbent and ammonium pyrrolidinedithiocarbamate (APDC) as a chelating agent was proposed for speciation and detemination of inorganic selenium by the energy-dispersive X-ray fluorescence spectrometry (EDXRF). In developed DMSPE, graphene particles are dispersed throughout the analyzed solution, therefore reaction between Se(IV)-APDC complexes and graphene nanoparticles occurs immediately. The concentration of Se(VI) is calculated as the difference between the concentration of selenite after and before prereduction of selenate. A central composite face-centered design with 3 center points was performed in order to optimize conditions and to study the effect of four variables (pH of the sample, concentration of APDC, concentration of Triton-X-100, and sample volume). The best results were obtained when suspension consisting of 200 µg of graphene nanosheets, 1.2 mg of APDC and 0.06 mg of Triton-X-100 was rapidly injected to the 50 mL of the analyzed solution. Under optimized conditions Se ions can be determined with a very good recovery (97.7±5.0% and 99.2±6.6% for Se(IV) and Se(VI), respectively) and precision (RSD=5.1-6.6%). Proposed DMSPE/EDXRF procedure allowed to obtain low detection limits (0.032 ng mL(-1)) and high enrichment factor (1013±15). The proposed methodology was successfully applied for the determination of Se in mineral, tap, lake and sea water samples as well as in biological materials (Lobster Hepatopancreas and Pig Kidney). PMID:25618680

  13. A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels.

    PubMed

    Yuan, Guolin; Yu, Chao; Xia, Chunyong; Gao, Liuliu; Xu, Wailan; Li, Wenjuan; He, Junlin

    2015-10-15

    A simplified electrochemical multianalyte immunosensor for the simultaneous detection of high sensitivity C-reactive protein (hsCRP) and soluble CD40 ligand (sCD40L) that uses reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) that directly adsorbs metal ions as labels is reported. rGO-TEPA contains a large number of amino groups and has excellent conductivity, making it an ideal template for the loading of Pb(2+) and Cu(2+), which greatly amplifies the detection signals. The signals could be directly detected in a single run through differential pulse voltammetry (DPV), and each biorecognition event produces a distinct voltammetric peak. The position and size of each peak reflects the identity and the level of the corresponding antigen. Primarily designed for an application in a sandwich-type immunoassay based on Pb(2+) and Cu(2+) labels, two main challenges are accomplished with the herein presented nanosheets: fabrication of the template and the amination process for Pb(2+) and Cu(2+) adsorption. To further improve the analytical performance of the immunosensor, Au@bovine serum albumin (BSA) nanospheres synthesized through a "green" synthesis route were used as a sensor platform, which not only provides a biocompatible microenvironment for the immobilization of antibodies but also amplifies the electrochemical signals. Under optimal conditions, hsCRP and sCD40L could be assayed in the range of 0.05 to 100 ng mL(-1) with detection limits of 16.7 and 13.1 pg mL(-1) (S/N=3), respectively. The assay results on clinical serum samples with the proposed immunosensor were in acceptable agreement with those using the standard single-analyte test of the enzyme-linked immunosorbent assay (ELISA). This novel immunosensing system provides a simple, sensitive and low-cost approach for a multianalyte immunoassay. PMID:25985199

  14. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  15. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank

    2013-08-01

    Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of

  16. Effects of Carbon Structure and Surface Oxygen on the Carbon's Performance as the Anode in Lithium-Ion Battery Determined

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2000-01-01

    Four carbon materials (C1, C2, C3, and C4) were tested electrochemically at the NASA Glenn Research Center at Lewis Field to determine their performance in lithium-ion batteries. They were formed as shown in the figure. This process caused very little carbon loss. Products C1 and C3 contained very little oxygen because of the final overnight heating at 540 C. Products C2 and C4, on the other hand, contained small amounts of basic oxide. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) ethylene carbonate (EC) and dimethyl carbonate (DMC)/Li half cell. The cycling test, which is summarized in the table, resulted in three major conclusions. The capacity of the carbon with a basic oxide surface converges to a constant 1. value quickly (within 4 cycles), possibly because the oxide prevents solvent from entering the carbon structure and, therefore, prolongs the carbon s cycle life. Under certain conditions, the disordered carbon can store more lithium than its 2. precursor. These samples and their precursor can intercalate at 200 mA/g and deintercalate at 3. a rate of 2000 mA/g without significant capacity loss.

  17. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage.

    PubMed

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-07-21

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g(-1) at 0.5 A g(-1), outstanding rate capability and long cycling stability, even at a current density of 20 A g(-1). The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials. PMID:24906180

  18. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells.

    PubMed

    Shen, Cenchao; James, Simon A; de Jonge, Martin D; Turney, Terence W; Wright, Paul F A; Feltis, Bryce N

    2013-11-01

    Although zinc oxide (ZnO) nanoparticles (NPs) have been widely formulated in sunscreens, the relationship between reactive oxygen species (ROS) generation induced by these particles, zinc ions, and cytotoxicity is not clearly understood. This study explores whether these factors can be accurately quantified and related. The study demonstrates a strong correlation between ZnO NP-induced cytotoxicity and free intracellular zinc concentration (R (2) = .945) in human immune cells, indicating a requirement for NP dissolution to precede cytotoxicity. In addition, although direct exposure to ZnO NPs was found to induce cytotoxicity at relatively high concentrations, indirect exposure (via dialysis) was not cytotoxic, even at extremely high concentrations, highlighting a requirement for NP-to-cell contact. Elevated levels of ROS present in NP-exposed cells also correlated to both cytotoxicity and intracellular free zinc. Although the addition of antioxidant was able to reduce ROS, cytotoxicity to ZnO NPs was unaffected, suggesting ROS may be, in part, a result of cytotoxicity rather than a causal factor. This study highlights both the requirement and role of intracellular dissolution of zinc nanomaterials to elicit a cytotoxic response. This response is only partially ROS dependent, and therefore, modification of NP uptake and their intracellular solubility are key components in modulating the bioactivity of ZnO NPs. PMID:23997113

  19. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Zhangpeng; Yu, Xin-Yao; Paik, Ungyu

    2016-04-01

    Two dimensional (2D) porous nanostructures are of great interest due to their high surface area and rich edge sites, which are favorable for a wide variety of applications. In this communication, well-defined porous Co3O4 nanosheets (PCNSs) are successfully fabricated using graphene oxide as sacrificial template. The 2D structure and porous nature effectively provide more exposed active sites for electrochemical reaction and facilitate easier ion transportation across the sheets. As a result, the as-prepared PCNSs exhibit remarkable lithium storage performance, showing high reversible capacity of 1380 mAh g-1 even after 240 discharge/charge cycles at a current density of 500 mA g-1 and good rate capability (606 mAh g-1 at 10 A g-1). Moreover, it also shows a good electrocatalytic activity for the electrochemical oxygen evolution reaction with an overpotential of 368 mV for driving the current density of 10 mA cm-2 in 1 M KOH and a small Tafel slope of 59 mV dec-1.

  20. Ultrafiltration by a compacted clay membrane. I - Oxygen and hydrogen isotopic fractionation. II - Sodium ion exclusion at various ionic strengths.

    NASA Technical Reports Server (NTRS)

    Coplen, T. B.; Hanshaw, B. B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disk compacted to a porosity of 35% by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5% and in O-18 by 0.8% relative to the residual solution. No additional isotopic fractionation due to a salt-filtering mechanism was observed at NaCl concentrations up to 0.01N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. It is shown how it is possible to proceed from the ion exchange capacity of clay minerals and, by means of the Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane.

  1. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    DOE PAGESBeta

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; Cho, Kyung -Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Inmore » conclusion, complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less

  2. Chemical State of Surface Oxygen on Carbon and Its Effects on the Capacity of the Carbon Anode in a Lithium-Ion Battery Investigated

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2001-01-01

    In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.

  3. Structural and compositional characterization of X-cut LiNbO 3 crystals implanted with high energy oxygen and carbon ions

    NASA Astrophysics Data System (ADS)

    Bentini, G. G.; Bianconi, M.; Cerutti, A.; Chiarini, M.; Pennestrì, G.; Sada, C.; Argiolas, N.; Bazzan, M.; Mazzoldi, P.; Guzzi, R.

    2005-10-01

    High energy implantation of medium-light elements such as oxygen and carbon was performed in X-cut LiNbO3 single crystals in order to prepare high quality optical waveguides. The compositional and damage profiles, obtained by exploiting the secondary ion mass spectrometry and Rutherford back-scattering techniques respectively, were correlated to the structural properties measured by the high resolution X-ray diffraction. This study evidences the development of tensile strain induced by the ion implantation that can contribute to the decrease of the ordinary refractive index variation through the photo-elastic effect.

  4. Structural, optical and transport properties of 100 MeV oxygen ion irradiated V{sub 2}O{sub 5} thin film

    SciTech Connect

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Singh, J. P.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2012-06-05

    Thin films of V{sub 2}O{sub 5} were spray deposited at 450 deg. C on ITO coated glass substrates. The film with a thickness of 217 nm was irradiated with 100 MeV oxygen ion beam at a fluence of 5 x 10{sup 12} ions/cm{sup 2}. Upon irradiation, the optical transparency of the film decreased from 90% to 40% and the band gaps estimated using Tauc relation showed red shift. Transport parameters were also measured. The induced modifications are mainly due to electronic energy loss and the results are discussed.

  5. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species.

    PubMed

    Ostrakhovitch, Elena A; Lordnejad, Mohammad Reza; Schliess, Freimut; Sies, Helmut; Klotz, Lars-Oliver

    2002-01-15

    Copper is implicated in metabolic disorders, such as Wilson's disease or Alzheimer's disease. Analysis of signaling pathways regulating cellular survival and function in response to a copper stress is crucial for understanding the pathogenesis of such diseases. Exposure of human skin fibroblasts or HeLa cells to Cu(2+) resulted in a dose- and time-dependent activation of the antiapoptotic kinase Akt/protein kinase B, starting at concentrations as low as 3 microM. Only Cu(II), but not Cu(I), had this effect. Activation of Akt was accompanied by phosphorylation of a downstream target of Akt, glycogen synthase kinase-3. Inhibitors of phosphoinositide-3-kinase (PI3K) completely blocked activation of Akt by Cu(2+), indicating a requirement of PI3K for Cu(2+)-induced activation of Akt. Indeed, cellular PI3K activity was strongly enhanced after exposure to Cu(2+). Copper ions may lead to the formation of reactive oxygen species, such as hydrogen peroxide. Activation of Akt by hydrogen peroxide or growth factors is known to proceed via the activation growth factor receptors. In line with this, pretreatment with inhibitors of growth factor receptor tyrosine kinases blocked activation of Akt by hydrogen peroxide and growth factors, as did a src-family tyrosine kinase inhibitor or the broad-spectrum tyrosine kinase inhibitor genistein. Activation of Akt by Cu(2+), however, remained unimpaired, implying (i) that tyrosine kinase activation is not involved in Cu(2+) activation of Akt and (ii) that activation of the PI3K/Akt pathway by Cu(2+) is initiated independently of that induced by reactive oxygen species. Comparison of the time course of the oxidation of 2',7'-dichlorodihydrofluorescein in copper-treated cells with that of Akt activation led to the conclusion that production of hydroperoxides cannot be an upstream event in copper-induced Akt activation. Rather, both activation of Akt and generation of ROS are proposed to occur in parallel, regulating cell survival after a

  6. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  7. Estimating Electrical Conductivities of CaO-MgO-Al2O3-SiO2 Using Ion-Oxygen Parameter

    NASA Astrophysics Data System (ADS)

    Wang, Yaxian; Wang, Lijun; Chou, Kuo-chih

    2016-03-01

    Electrical conductivity of molten slags is one of the most important physicochemical properties and it also has a close relationship to the structure of slag. This article focused on the basic slag system CaO-MgO-Al2O3-SiO2 and made estimations for electrical conductivity. Ion-oxygen parameter was selected to describe the relationship between electrical conductivity with compositions. Moreover, the interaction between composition and temperature was embodied in the final model formula. It was shown that increasing CaO and MgO contents enhanced the ability for electric conduction. Moreover, with a higher temperature, the change of electrical conductivity with ion-oxygen parameter was more remarkable. This model gives reasonable prediction of the electrical conductivity for the slags studied with the mean deviation of 14.3%. Thus, this model would provide a feasible tool for industry to predict and optimize the electrical conductivity of slag system.

  8. Measurement of neutron-production double-differential cross-sections on carbon bombarded with 290-MeV/nucleon carbon and oxygen ions

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Moriguchi, D.; Kajimoto, T.; Uehara, H.; Shigyo, N.; Ueyama, M.; Yoshioka, M.; Uozumi, Y.; Sanami, T.; Koba, Y.; Takada, M.; Matsufuji, N.

    2011-07-01

    Neutron-production double-differential cross-sections on carbon-carbon and oxygen-carbon reactions with incident heavy-ion energy of 290 MeV/nucleon were measured by time-of-flight method using liquid organic scintillators. By use of a detection system specialized for low-energy neutrons, the cross-sections were obtained in a wide energy region from several hundred MeV down to 0.6 MeV for the oxygen-ion incidences. The experimental data were compared with the calculation results using the Monte-Carlo simulation code, PHITS. The PHITS results gave an overall agreement with the measured data within a factor of two.

  9. Optical waveguide properties of Ca0.4Ba0.6Nb2O6 crystal formed by oxygen ion irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Jun; Zhou, Yu-Fan; Yu, Xiao-Fei; Liu, Tao; Zhang, Lian; Song, Hong-Lian; Qiao, Mei; Wang, Xue-Lin

    2015-07-01

    We report the fabrication of a planar optical waveguide in a Ca0.4Ba0.6Nb2O6 crystal by irradiation with 6.0 MeV oxygen ions. We measured the guiding mode by the prism-coupling method at 633 nm and 1539 nm. The near-field intensity distributions were measured by the end-face coupling setup at a wavelength of 633 nm. The reflectivity calculation method (RCM) was used for reconstructing refractive index profiles. SRIM was used to simulate the electronic and nuclear stopping power caused by oxygen ion irradiation, and the finite-difference beam propagation method (FD-BPM) was used to simulate the near-field intensity distributions. Micro-Raman spectra were measured at room temperature in air to study the differences between the substrate and waveguide region.

  10. Designing nitrogen-enriched echinus-like carbon capsules for highly efficient oxygen reduction reaction and lithium ion storage

    NASA Astrophysics Data System (ADS)

    Hu, Chuangang; Wang, Lixia; Zhao, Yang; Ye, Minhui; Chen, Qing; Feng, Zhihai; Qu, Liangti

    2014-06-01

    Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting current, stability and tolerance to methanol crossover effect, but is also better than most of the nanostructured carbon-based catalysts reported previously. On the other hand, as an anode material for lithium ion batteries, the N-CC@CNTs obtained also exhibit an excellent reversible capacity of ca. 1337 mA h g-1 at 0.5 A g-1, outstanding rate capability and long cycling stability, even at a current density of 20 A g-1. The capacity is the highest among all the heteroatom-doped carbon materials reported so far, and is even higher than that of many of the composites of metal, metal oxides or metal sulfides with carbon materials.Both structural and compositional modulations are important for high-performance electrode materials in energy conversion/storage devices. Here hierarchical-structure nitrogen-rich hybrid porous carbon capsules with bamboo-like carbon nanotube whiskers (N-CC@CNTs) grown in situ have been specifically designed, which combine the advantageous features of high surface area, abundant active sites, easy access to medium and favorable mass transport. As a result, the newly prepared N-CC@CNTs show highly efficient catalytic activity in oxygen reduction reaction in alkaline media for fuel cells, which not only outperforms commercial Pt-based catalysts in terms of kinetic limiting

  11. Crystal Growth and Structural Investigations of the Oxygen Ion Conductor BaBi 3O 5.5

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, Saeid; Berastegui, Pedro; Grins, Jekabs; Rundlöf, Håkan

    2000-07-01

    Large single crystals of the oxygen ion conductor BaBi3O5.5 have been obtained, and its structure was investigated by single-crystal X-ray diffraction (XRD) and neutron diffraction (ND), electron diffraction, and high-resolution electron microscopy (HREM). The basic three-dimensional structure was refined, using single crystal ND data, in space group Imoverline3m to a weighted R value of 5.3% for 17 unique reflections, with Ba and Bi atoms statistically distributed on the 2(a) sites (0, 0, 0) and the O atoms on the 6(b) sites ({1}/{2}, 0, 0) with a refined occupancy of 36(1)%. The refined thermal-displacement parameters for the O atoms are highly anisotropic, with U11=U22=0.27(1) and U33=0.082(7) Å2. In addition, the structure is incommensurately modulated with the systematic absence conditions F=0 unless h+k+l=2j and m+n+p=2j, implying the six-dimensional superspace group P:Imoverline3m:Imoverline3m, with a=4.3798(2) Å and modulation vectors q1=[α, 0, 0]*, q2=[0, α, 0]*, and q3=[0, 0, α]* with α=0.3835(1). The diffraction data and the HREM images indicate that the modulation is predominantly occuptional. The satellite reflections have comparable intensities in powder XRD and ND patterns, indicating furthermore that the modulation originates from ordering of both O atoms/vacancies and metal atoms.

  12. The oxygen coordination of metal ions in phosphate and silicate glasses studied by a combination of x-ray and neutron diffraction

    NASA Astrophysics Data System (ADS)

    Hoppe, U.; Stachel, D.; Beyer, D.

    1995-01-01

    A combination of results from x-ray and neutron diffraction is used to obtain structural information about the metal-oxygen coordination shell in oxide glasses. Two ways to extract structural parameters of the Me-O coordination are presented. The first variant is a direct combination of both distance correlation functions which are considered simultanously in a least-squares fit procedure. On the other hand a suitable difference of the two structure factors is introduced, which do not contain any O-O correlation. The corresponding distance correlation function directly shows the Me-O peak. The samples are metaphosphate glasses with Me = Al, Zn, Mg, Ca, Ba and Na and two sodium silicate glasses (76.5 and 67 mol% silicon dioxide). Four oxygens are found in contact to the Mg ion. But two additional, more distant positions are detected. Thus, the sum of all oxygen atoms in the coordination sphere is 6 rather than 4. The Zn cation is located in a real ZnO4-tetrahedron. The number of oxygens in the environment of the Na ion is of about five both in the metaphosphate glass and in the silicate glasses. But a surprising result is a splitting observed for the Na-O distance peak in case of silicate glasses.

  13. Joint contributions of Ag ions and oxygen vacancies to conducting filament evolution of Ag/TaO{sub x}/Pt memory device

    SciTech Connect

    Chung, Yu-Lung; Cheng, Wen-Hui; Chen, Wei-Chih; Jhan, Sheng-An; Chen, Jen-Sue; Jeng, Jiann-Shing

    2014-10-28

    The electroforming and resistive switching behaviors in the Ag/TaO{sub x}/Pt trilayer structure are investigated under a continual change of temperatures between 300 K and 100 K to distinguish the contributions of Ag ions and oxygen vacancies in developing of conducting filaments. For either electroforming or resistive switching, a significantly higher forming/set voltages is needed as the device is operated at 100 K, as compared to that observed when operating at 300 K. The disparity in forming/set voltages of Ag/TaO{sub x}/Pt operating at 300 K and 100 K is attributed to the contribution of oxygen vacancies, in addition to Ag atoms, in formation of conducting filament at 100 K since the mobilities of oxygen vacancies and Ag ions become comparable at low temperature. The presence of oxygen vacancy segment in the conducting filament also modifies the reset current from a gradually descending behavior (at 300 K) to a sharp drop (at 100 K). Furthermore, the characteristic set voltage and reset current are irreversible as the operation temperature is brought from 100 K back to 300 K, indicating the critical role of filament constituents on the switching behaviors of Ag/oxide/Pt system.

  14. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation

    NASA Astrophysics Data System (ADS)

    Ito, D.; Nishimura, K.; Miura, O.

    2009-03-01

    Zirconium ferrite particles are good adsorbent for phosphate ions. Magnetic separation characteristics for removal of phosphate from treated water of sewage plants with the adsorbent have been studied to prevent eutrophication of semi-enclosed bay, e.g. the bay of Tokyo. Based on the adsorption for the phosphate ions and ferromagnetic properties of the zirconium ferrite adsorbent, high gradient magnetic separation characteristics with using superconducting magnet was discussed. Very rapid magnetic filtration velocity, i.e. 1m/s, and regeneration properties of the adsorbent indicate that the zirconium ferrite is the excellent adsorbent for phosphorus removal and recycle from treated water of large scale sewage plants.

  15. Gold recovery from low concentrations using nanoporous silica adsorbent

    NASA Astrophysics Data System (ADS)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  16. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    NASA Astrophysics Data System (ADS)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  17. Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment

    SciTech Connect

    Yeo, Sanghak; Woong Jang, Chi; Lee, Seok; Min Jhon, Young; Choi, Changrok

    2013-02-18

    We have shown that the sensitivity of carbon nanotube (CNT) based sensors can be enhanced as high as 74 times through surface modification by using the inductively coupled plasma chemical vapor deposition method with oxygen. The plasma treatment power was maintained as low as 10 W within 20 s, and the oxygen plasma was generated far away from the sensors to minimize the plasma damage. From X-ray photoelectron spectroscopy analysis, we found that the concentration of oxygen increased with the plasma treatment time, which implies that oxygen functional groups or defect sites were generated on the CNT surface.

  18. A first-principles study on the effect of oxygen content on the structural and electronic properties of silicon suboxide as anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Rahaman, Obaidur; Mortazavi, Bohayra; Rabczuk, Timon

    2016-03-01

    Silicon suboxide is currently considered as a unique candidate for lithium ion batteries anode materials due to its considerable capacity. However, no adequate information exists about the role of oxygen content on its performance. To this aim, we used density functional theory to create silicon suboxide matrices of various Si:O ratios and investigated the role of oxygen content on the structural, dynamic, electronic properties and lithiation behavior of the matrices. Our study demonstrates that the O atoms interact strongly with the inserted Li atoms resulting in a disintegration of the host matrix. We found that higher concentration of oxygen atoms in the mixture reduces its relative expansion upon lithiation, which is a desirable quality for anode materials. It helps in preventing crack formation and pulverization due to large fluctuations in volume. Our study also demonstrates that a higher oxygen content increases the lithium storage capacity of the anode. However, it can also cause the formation of stable complexes like lithium silicates that might result into reversible capacity loss as indicated by the voltage-composition curves. The study provides valuable insights into the role of oxygen in moderating the interaction of lithium in silicon suboxide mixture in microscopic details.

  19. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. SERS effect of isonicotinic acid adsorbed on a copper electrode

    NASA Astrophysics Data System (ADS)

    Noda, Lucia K.; Sala, O.

    1987-11-01

    The surface enhanced Raman spectra (SERS) of isonicotinic acid adsorbed on a copper electrode were obtained in order to verify their dependence on the type of electrolyte solution, pH and applied potential. The results are discussed considering the most characteristic bands of the species (protonated or nonprotonated) in the ring nitrogen and in the carboxylic group. In specifically adsorbed electrolytes (Cl - and mainly I -) the completely protonated species is more stabilized on the electrode surface than it is in non-specifically adsorbed anions (ClO -4), because of the formation of ion pairs with the coadsorbed halide ions. For more negative potentials, even at low pH values, the spectra are characteristic of the nonprotonated species.

  1. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    SciTech Connect

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; Cho, Kyung -Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η22-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.

  2. Wastewater treatment by batch adsorption method onto micro-particles of dried Withania frutescens plant as a new adsorbent.

    PubMed

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel

    2012-03-01

    A new adsorbent for removing metallic elements, nitrate and phosphate ions from municipal and industrial wastewaters has been investigated. This new adsorbent consists of micro-particles of dried Withania frutescens plant (<500 μm). Batch experiments were conducted to evaluate the removal of metallic elements and anions from raw wastewaters by W. frutescens particles. The results show that the micro-particles of W. frutescens plant presented a good adsorption of metallic elements, nitrate and phosphate ions from both real wastewaters. This adsorption increased with increasing of contact time. The percentage of metallic elements removal from industrial wastewater by W. frutescens plant was 98 ≈ 99% for Pb(II), 92 ≈ 93% for Cd(II), 91 ≈ 92% for Cu(II) and 92 ≈ 93% for Zn(II). The maximum adsorption capacity was dependent on the type of ions. The results also indicate that the values of chemical oxygen demand (COD) decrease after the contact with W. frutescens particles. Based on the results it can be concluded that the dried W. frutescens plant appears to be an economical and environmentally friendly material for wastewater treatment. PMID:21803480

  3. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  4. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift

  5. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    -flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from

  6. Surface characterization of adsorbed asphaltene on a stainless steel surface

    NASA Astrophysics Data System (ADS)

    Abdallah, W. A.; Taylor, S. D.

    2007-05-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p3/2, N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies.

  7. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  8. Halide anion effect on surface enhanced Raman scattering of 2-amino,5-nitropyridine adsorbed on silver sols

    NASA Astrophysics Data System (ADS)

    Muniz-Miranda, Maurizio; Neto, Natale; Sbrana, Giuseppe

    1995-03-01

    2-Amino,5-nitropiridine (ANP) can be adsorbed on silver sols as neutral molecule or ANP- anion, as detected by SERS. The adsorption of the ANP- is related to the presence of hydroxide ions on the metal surface. Strongly adsorbed halide anions are able to remove hydroxide ions from the silver surface, inducing the adsorption of ANP as neutral molecule.

  9. Pair breaking by chain oxygen disorder in light-ion irradiated YBa2Cu3Ox thin films

    NASA Astrophysics Data System (ADS)

    Arias, D.; Sefrioui, Z.; Loos, G. D.; Agullo-Rueda, F.; Garcia-Barriocanal, J.; Leon, C.; Santamaria, J.

    2003-09-01

    We report on the effect of oxygen disorder in the CuO chains on the superconducting properties of oxygen depleted YBa2Cu3Ox(YBCO). While moderate disorder, induced thermally, depresses the critical temperature as a result of a reduced carrier concentration, strong oxygen disorder and chain fragmentation induced by low energy (80 keV) He+ irradiation suppresses the critical temperature beyond the values expected from the reduction of the carrier density. This provides an experimental evidence of pair breaking by chain disorder and outlines the importance of chain states in the pairing mechanism in the YBCO family.

  10. First-principles study of oxygen adsorption and diffusion on the UN(001) surface

    NASA Astrophysics Data System (ADS)

    Nie, J. L.; Ao, L.; Zu, X. T.; Huang, H.; Liu, K. Z.

    2015-12-01

    First-principles calculations have been performed to study the interaction of oxygen with UN(001) surface. The molecule oxygen was found to dissociate spontaneously on all considered adsorption sites on the surface. Atomic oxygen (O) preferred to adsorb on a hollow site or the top of uranium ions, which were energetically degenerate. Adsorption on top of nitrogen (N) ion was found to be unstable which may be attributed to the repulsion of negatively charged O with the N anions. In comparison with those on α-U(001)surface at the same coverage, the adsorption of O on UN(001) surface was found to be less stable, being about 0.7 eV higher in adsorption energy. The diffusion barrier for O on the surface was found to be ∼0.5 eV, similar to those of α-U(001)surface. The penetration of O into the substrate was difficult with a high barrier of 2.86 eV. Analysis on the density of states (DOS) has shown that the adsorbed oxygen has strong chemical interaction with surface ions, characterized by the hybridization of O 2p states with N 2p and U 6d, U 5f states.

  11. 3,3'-Dihydroxyisorenieratene prevents UV-induced formation of reactive oxygen species and the release of protein-bound zinc ions in human skin fibroblasts.

    PubMed

    Lutter, Kaya; De Spirt, Silke; Kock, Sebastian; Kröncke, Klaus-Dietrich; Martin, Hans-Dieter; Wagener, Tanja; Stahl, Wilhelm

    2010-02-01

    3,3'-Dihydroxyisorenieratene (DHIR) is a structurally unusual carotenoid exhibiting bifunctional antioxidant properties. It is synthesized by Brevibacterium linens, used in dairy industry for the production of red smear cheeses. The compound protects cellular structures against photo-oxidative damage and inhibits the UV-dependent formation of thymidine dimers. Here we show that DHIR prevents a UV-induced intracellular release of zinc ions from proteins in human dermal fibroblasts. The effect is correlated with a decreased formation of intracellular reactive oxygen species. In contrast, zinc release from cellular proteins induced by hyperthermia is not affected by pretreatment of cells with the antioxidant DHIR. It is suggested that the intracellular zinc release upon UV irradiation is due to oxidative modifications of the zinc ligands in proteins (e.g. cysteine) and that protection by DHIR is due to intracellular scavenging of reactive oxygen species generated in photo-oxidation. PMID:19862772

  12. A kinetic model of the formation of the hot oxygen geocorona 2. Influence of O{sup +} ion precipitation

    SciTech Connect

    Bisikalo, D.V.; Shematovich, V.I.; Gerard, J.C.

    1995-03-01

    The authors model oxygen precipitation in the upper atmosphere by a Monte Carlo treatment of the Boltzman equation, during geomagnetically unstable times. They attempt to simulate the O precipitation for the storm conditions on September 17, 1971. They find that O precipitation greatly modifies the electron velocity distribution for the bulk oxygen population in the upper atmosphere, resulting in an enhanced hot O tail density.

  13. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  14. Observation of internal structure of the L-shell x-ray hypersatellites for palladium atoms multiply ionized by fast oxygen ions

    SciTech Connect

    Czarnota, M.; Banas, D.; Pajek, M.; Berset, M.; Dousse, J.-Cl.; Hoszowska, J.; Maillard, Y.-P.; Mauron, O.; Raboud, P. A.; Chmielewska, D.; Rzadkiewicz, J.; Sujkowski, Z.; Polasik, M.; Slabkowska, K.

    2010-06-15

    An observation of the internal structure of the L-shell hypersatellite x rays resulting from the one-photon decay of L{sup -2} double-vacancy states in palladium multiply ionized by oxygen ions is reported. The Pd L{sub 3}{yields}M{sub 4,5} x-ray spectrum was measured with a von Hamos high-resolution crystal spectrometer. The complex shape of the observed spectrum could be interpreted in detail using relativistic multiconfiguration Dirac-Fock calculations. The relative intensities of the measured x rays were found to be in good agreement with semiclassical approximation calculations using relativistic Dirac-Hartree-Fock wave functions.

  15. K-, L- and M-shell X-ray productions induced by oxygen ions in the 0.8-1.6 MeV/amu range

    NASA Astrophysics Data System (ADS)

    Gorlachev, I.; Gluchshenko, N.; Ivanov, I.; Kireyev, A.; Kozin, S.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2016-08-01

    The X-ray production cross sections induced by oxygen ions with projectile energies from 12.8 to 25.6 MeV for the elements from Al to Bi were measured. The applied approach is based on calculation of X-ray production cross sections through the cross section of Rutherford backscattering, which can be calculated with high accuracy using the Rutherford formula. The experimental results are compared to the predictions of ECPSSR and PWBA theories calculated with the ISICS code.

  16. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    SciTech Connect

    Son, Phil Kook; Park, Jeung Hun; Kim, Jae Chang; Yoon, Tae-Hoon; Rho, Soon Joon; Jeon, Back Kyun; Shin, Sung Tae; Kim, Jang Sub; Lim, Soon Kwon

    2007-09-03

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiO{sub x} films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low.

  17. Effects of negative air ions on oxygen uptake kinetics, recovery and performance in exercise: a randomized, double-blinded study

    NASA Astrophysics Data System (ADS)

    Nimmerichter, Alfred; Holdhaus, Johann; Mehnen, Lars; Vidotto, Claudia; Loidl, Markus; Barker, Alan R.

    2014-09-01

    Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; : 57 ± 7 mL min-1 kg-1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm-3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm-3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II response ( τ) and the magnitude of the slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.

  18. Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures

    NASA Astrophysics Data System (ADS)

    Macias-Montero, M.; Garcia-Garcia, F. J.; Álvarez, R.; Gil-Rostra, J.; González, J. C.; Cotrino, J.; Gonzalez-Elipe, A. R.; Palmero, A.

    2012-03-01

    Growth of amorphous SiO2 thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O- ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO2 thin films by magnetron sputtering at low temperatures, controlled by the amount of O2 in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

  19. Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO{sub 2} thin films during growth at low temperatures

    SciTech Connect

    Macias-Montero, M.; Garcia-Garcia, F. J.; Alvarez, R.; Gil-Rostra, J.; Gonzalez, J. C.; Gonzalez-Elipe, A. R.; Palmero, A.; Cotrino, J.

    2012-03-01

    Growth of amorphous SiO{sub 2} thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O{sup -} ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO{sub 2} thin films by magnetron sputtering at low temperatures, controlled by the amount of O{sub 2} in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

  20. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    NASA Technical Reports Server (NTRS)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  1. Mechanisms of oxygen ion diffusion in a nanoporous complex oxide 12CaO•7 Al2 O3

    NASA Astrophysics Data System (ADS)

    Sushko, Peter V.; Shluger, Alexander L.; Hayashi, Katsuro; Hirano, Masahiro; Hosono, Hideo

    2006-01-01

    We performed a theoretical analysis of O2- diffusion mechanisms in a nanoporous complex oxide 12CaO•7Al2O3 (C12A7). This material can be viewed as a positively charged framework, arranged in subnanometer sized cages, hosting extra-framework O2- ions occupying one in six cages. Using both classical molecular-dynamics simulations and ab initio calculations we demonstrate that the diffusion of O2- species is dominated by the exchange of framework and extra-framework O2- ions rather than by an interstitial diffusion mechanism. The results allow us to rationalize the origins of the experimentally observed high oxide ion conductivity of C12A7 and the stability of its lattice under positive ion-beam irradiation.

  2. Novel adsorbent applicability for decontamination of printing wastewater

    NASA Astrophysics Data System (ADS)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ < B = pure C < C with PEG 600 addition. The adsorption equilibrium data of Zn(II) ion on NZ, B, pure C and C with PEG 600 were analyzed in terms of the Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The characteristic parameters for each isotherms and related correlation coefficients were determined. The values of correlation coefficient (R2) indicated the following order of the isotherm models: Freundlich > Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential

  3. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M. K.

    2015-01-01

    Activated carbon was prepared from walnut wood which was locally available, non-toxic, abundant and cheap. This new adsorbent was characterized using BET, FTIR and SEM. Point of zero charge (pHpzc) and oxygen containing functional groups were also determined. The prepared adsorbent was applied for simultaneous removal of Pb2+ ions and methylene blue (MB) dye from aqueous solution. The prominent effect and interaction of variables such as amount of adsorbent, contact time, concentration of MB and Pb2+ ions were optimized by central composite design. The equilibrium data obtained at optimum condition were fitted to conventional isotherm models and found that Langmuir model was the best fitted isotherm. Kinetic data were fitted using various models. It was revealed that the adsorption rate follows pseudo-second order kinetic model and intraparticle diffusion model.

  4. Assessment of spatial variability of major-ion concentrations and del oxygen-18 values in surface snow, Upper Fremont Glacier, Wyoming, USA

    USGS Publications Warehouse

    Naftz, D.L.; Schuster, P.F.; Reddy, M.M.

    1994-01-01

    One hundred samples were collected from the surface of the Upper Fremont Glacier at equally spaced intervals defined by an 8100m2 snow grid to asesss the significance of lateral variability in major-ion concentrations and del oxygen-18 values. Comparison of the observed variability of each chemical constituent to the variability expected by measurement error indicated substantial lateral variability with the surface-snow layer. Results of the nested ANOVA indicate most of the variance for every constituent is in the values grouped at the two smaller geographic scales (between 506m2 and within 506m2 sections). The variance data from the snow grid were used to develop equations to evaluate the significance of both positive and negative concentration/value peaks of nitrate and del oxygen-18 with depth, in a 160m ice core. Values of del oxygen-18 in the section from 110-150m below the surface consistently vary outside the expected limits and possibly represents cooler temperatures during the Little Ice Age from about 1810 to 1725 A.D. -from Authors

  5. The influence of Atomic Oxygen on the Figure of Merit of Indium Tin Oxide thin Films grown by reactive Dual Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Geerts, Wilhelmus; Simpson, Nelson; Woodall, Allen; Compton, Maclyn

    2014-03-01

    Indium Tin Oxide (ITO) is a transparent conducting oxide that is used in flat panel displays and optoelectronics. Highly conductive and transparent ITO films are normally produced by heating the substrate to 300 Celsius during deposition excluding plastics to be used as a substrate material. We investigated whether high quality ITO films can be sputtered at room temperature using atomic instead of molecular oxygen. The films were deposited by dual ion beam sputtering (DIBS). During deposition the substrate was exposed to a molecular or an atomic oxygen flux. Microscope glass slides and silicon wafers were used as substrates. A 29 nm thick SIO2 buffer layer was used. Optical properties were measured with a M2000 Woollam variable angle spectroscopic ellipsometer. Electrical properties were measured by linear four point probe using a Jandel 4pp setup employing silicon carbide electrodes, high input resistance, and Keithley low bias current buffer amplifiers. The figure of merit (FOM), i.e. the ratio of the conductivity and the average optical absorption coefficient (400-800 nm), was calculated from the optical and electric properties and appeared to be 1.2 to 5 times higher for the samples sputtered with atomic oxygen. The largest value obtained for the FOM was 0.08 reciprocal Ohms. The authors would like to thank the Research Corporation for Financial Support.

  6. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  7. Atomic transport of oxygen

    SciTech Connect

    Routbort, J.L.; Tomlins, G.W.

    1994-06-15

    Atomic transport of oxygen in nonstoichiometric oxides is an extremely important topic which overlaps science and technology. In many cases the diffusion of oxygen controls sintering, grain growth, and creep. High oxygen diffusivity is critical for efficient operation of many fuel cells. Additionally, oxygen diffusivities are an essential ingredient in any point defect model. Secondary Ion Mass Spectrometry (SIMS) is the most accurate modern technique to measure oxygen tracer diffusion. This paper briefly reviews the principles and applications of SIMS for the measurement of oxygen transport. Case studies are taken from recent work on ZnO and some high-temperature superconductors.

  8. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  9. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  10. Oxygen foreshock of Mars

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  11. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. PMID:24518820

  12. Oxidative response of human monocytes and macrophages cultured under low oxygen culture conditions to ion parametric resonance magnetic fields.

    EPA Science Inventory

    INTRODUCTION One proposed mechanism of action of electromagnetic fields (EMFs) on biological systems is the Ion Parametric Resonance (IPR) model, which has been experimentally validated in neuronal PC-12 cells [1, 2]. It proposes that when applied EMFs are tuned to resonate with...

  13. Low-cost adsorbents for heavy metals uptake from contaminated water: a review.

    PubMed

    Babel, Sandhya; Kurniawan, Tonni Agustiono

    2003-02-28

    In this article, the technical feasibility of various low-cost adsorbents for heavy metal removal from contaminated water has been reviewed. Instead of using commercial activated carbon, researchers have worked on inexpensive materials, such as chitosan, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The results of their removal performance are compared to that of activated carbon and are presented in this study. It is evident from our literature survey of about 100 papers that low-cost adsorbents have demonstrated outstanding removal capabilities for certain metal ions as compared to activated carbon. Adsorbents that stand out for high adsorption capacities are chitosan (815, 273, 250 mg/g of Hg(2+), Cr(6+), and Cd(2+), respectively), zeolites (175 and 137 mg/g of Pb(2+) and Cd(2+), respectively), waste slurry (1030, 560, 540 mg/g of Pb(2+), Hg(2+), and Cr(6+), respectively), and lignin (1865 mg/g of Pb(2+)). These adsorbents are suitable for inorganic effluent treatment containing the metal ions mentioned previously. It is important to note that the adsorption capacities of the adsorbents presented in this paper vary, depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentration of adsorbate. PMID:12573840

  14. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    PubMed

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  15. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution.

    PubMed

    Gunawan, Poernomo; Xiao, Wen; Chua, Marcus Wen Hao; Tan, Cheryl Poh-Choo; Ding, Jun; Zhong, Ziyi

    2016-10-14

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water. PMID:27585547

  16. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  17. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  18. Direct Production of Electron-Positron Pairs by 200-GeV/Nucleon Oxygen and Sulfur Ions in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Moon, K. H.; Parnell, T. A.; King, D. T.; Gregory, J. C.; Takahashi, Y.; Ogata, T.

    1995-01-01

    Measurements of direct Coulomb electron-positron pair production have been made on the tracks of relativistic heavy ions in nuclear track emulsion. Tracks of 0(16) and S(32) at 200 GeV/nucleon were studied. The measured total cross sections and energy and emission angle distributions for the pair members are compared to theoretical predictions. The data are consistent with some recent calculations when knock-on electron contamination is accounted for.

  19. A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries.

    PubMed

    Hassoun, Jusef; Jung, Hun-Gi; Lee, Dong-Ju; Park, Jin-Bum; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno

    2012-11-14

    A preliminary study of the behavior of lithium-ion-air battery where the common, unsafe lithium metal anode is replaced by a lithiated silicon-carbon composite, is reported. The results, based on X-ray diffraction and galvanostatic charge-discharge analyses, demonstrate the basic reversibility of the electrochemical process of the battery that can be promisingly cycled with a rather high specific capacity. PMID:23077970

  20. The Relative Biological Effectiveness for Carbon and Oxygen Ion Beams Using the Raster-Scanning Technique in Hepatocellular Carcinoma Cell Lines

    PubMed Central

    Habermehl, Daniel; Ilicic, Katarina; Dehne, Sarah; Rieken, Stefan; Orschiedt, Lena; Brons, Stephan; Haberer, Thomas; Weber, Klaus-Josef; Debus, Jürgen; Combs, Stephanie E.

    2014-01-01

    Background Aim of this study was to evaluate the relative biological effectiveness (RBE) of carbon (12C) and oxygen ion (16O)-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT) based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. Methods Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ionsingle doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O). SOBP-penetration depth and extension was 35 mm +/−4 mm and 36 mm +/−5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET) were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and realtive biological effectiveness (RBE) values were defined. Results For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1–3.3 and 1.9–3.1 for 12C and 16O, respectively. Conclusion Both irradiation with 12C and 16O using the rasterscanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O. PMID:25460352

  1. Oxygen ion irradiation on AlGaN/GaN heterostructure grown on silicon substrate by MOCVD method

    SciTech Connect

    Ramesh, R.; Arivazhagan, P.; Balaji, M.; Baskar, K.; Asokan, K.

    2015-06-24

    In the present work, we have reported 100 MeV O{sup 7+} ion irradiation with 1×10{sup 12} and 5×10{sup 12} ions/cm{sup 2} fluence on AlGaN/GaN heterostructures grown on silicon substrate by Metal Organic Chemical Vapour Deposition (MOCVD). The Irradiated samples were characterized by High Resolution X-Ray Diffraction (HRXRD), Atomic Force Microscope (AFM) and Photoluminescence (PL). Crystalline quality has been analysed before and after irradiation using HRXRD. Different kinds of morphology are attributed to specific type of dislocations using the existing models available in the literature. A sharp band-edge emission in the as grown samples was observed at ∼3.4 eV in GaN and 3.82 for AlGaN. The band-edge absorption intensity reduced due to irradiation and these results have been discussed in view of the damage created by the incident ions. In general the effect of irradiation induced-damages were analysed as a function of material properties. A possible mechanism responsible for the observations has been discussed.

  2. Assessment of mercury toxicity by the changes in oxygen consumption and ion levels in the freshwater snail, Pila globosa, and the mussel, Lamellidens marginalis

    SciTech Connect

    Sivaramakrishna, B.; Radhakrishnaiah, K.; Suresh, A. )

    1991-06-01

    There are many studies on mercury toxicity in freshwater fishes but very few on freshwater molluscs (Wright 1978) though they serve as bio-indicators of metal pollution. A few reports on marine gastropods and bivalves indicated the importance of these animals in metal toxicity studies. Hence, in the present study, the level of tolerance of the freshwater gastropod Pila globosa and of a freshwater bivalve Lamellidens marginalis mercury at lethal and sublethal levels was determined and compared with the rate of whole animal oxygen consumption and the level of sodium, potassium and calcium ions in the hepatopancreas and the foot of these animals. As the period of exposure is one of the important factors in toxicity studies, the level of tolerance was determined at 120 hours of exposure and the other parameters were analyzed at 1, 3 and 5 days in lethal and at 1, 7 and 15 days in sublethal concentrations.

  3. EFFECT OF MOLECULAR OXYGEN ON THE SCALEUP OF GAC ADSORBERS

    EPA Science Inventory

    A rapid small-scale column test (RSSCT), designed according to the assumption of no dependency of the intraparticle surface diffusion coefficient on the activated carbon particle size, was able to accurately predict breakthrough of three volatile organic chemicals as well as back...

  4. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGESBeta

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; Strelcov, Evgheni; Foglietti, Vittorio; Orgiani, Pasquale; Balestrino, Giuseppe; Kalinin, Sergei V.; Jennifer L. M. Rupp; Aruta, Carmela; et al

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  5. Role of Associated Defects in Oxygen Ion Conduction and Surface Exchange Reaction for Epitaxial Samaria-Doped Ceria Thin Films as Catalytic Coatings.

    PubMed

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; Strelcov, Evgheni; Belianinov, Alex; Foglietti, Vittorio; Orgiani, Pasquale; Balestrino, Giuseppe; Kalinin, Sergei V; Rupp, Jennifer L M; Aruta, Carmela

    2016-06-15

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications. PMID:27192540

  6. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  7. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    PubMed

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities. PMID:26093796

  8. Cesium adsorption on composite ferrocyanide-aluminosilicate adsorbents

    SciTech Connect

    Panasyugin, A.S.; Rat`ko, A.I.; Trofimenko, N.E.

    1995-11-01

    The formation of composite ferrocyanide adsorbents prepared on the basis of clinoptilolite is studied by potentiometric titration, X-ray diffraction analysis, and IR spectroscopy, and the nature of ion-exchanging complex is established. Exchange capacity, selectivity, and hydrolytic stability of the sorbents are characterized. Distribution coefficients with modified samples can be as large as 10000 for {sup 137}Cs; however, with increase of the background salt concentration above 0.17 g l{sup -1}, competing ions have noticeable effect on the adsorption properties of the aluminosilicates.

  9. Thorium and uranium M-shell x-ray production cross sections for 0.4--4.0 MeV protons, 0.4--6.0 MeV helium ions, 4.5--11.3 mev carbon ions, and 4.5--13.5 MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Phinney, Lucas C.

    The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4--4.0 MeV, helium ions of energy 0.4--6.0 MeV, carbon ions of energy 4.5--11.3 MeV and oxygen ions of energy 4.5--13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4-O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.

  10. Structural characterization of adsorbed helical and beta-sheet peptides

    NASA Astrophysics Data System (ADS)

    Samuel, Newton Thangadurai

    Adsorbed peptides on surfaces have potential applications in the fields of biomaterials, tissue engineering, peptide microarrays and nanobiotechnology. The surface region, the "biomolecular interface" between a material and the biological environment, plays a crucial role in these applications. As a result, characterization of adsorbed peptide structure, especially with respect to identity, concentration, spatial distribution, conformation and orientation, is important. The present research employs NEXAFS (near-edge X-ray absorption fine structure spectroscopy) and SFG (sum frequency generation spectroscopy) to provide information about the adsorbed peptide structure. Soft X-ray NEXAFS is a synchrotron-based technique which typically utilizes polarized X-rays to interrogate surfaces under ultra-high vacuum conditions. SFG is a non-linear optical technique which utilizes a combination of a fixed visible and a tunable infrared laser beams to generate a surface-vibrational spectrum of surface species. SFG has the added advantage of being able to directly analyze the surface-structure at the solid-liquid interface. The main goals of the present research were twofold: characterize the structure of adsorbed peptides (1) ex situ using soft X-ray NEXAFS, and (2) in situ using non-linear laser spectroscopy (SFG). Achieving the former goal involved first developing a comprehensive characterization of the carbon, nitrogen and oxygen k-edge NEXAFS spectra for amino acids, and then using a series of helical and beta-sheet peptides to demonstrate the sensitivity of polarization-dependent NEXAFS to secondary structure of adsorbed peptides. Characterizing the structure of adsorbed peptides in situ using SFG involved developing a model system to probe the solid-liquid interface in situ; demonstrating the ability to probe the molecular interactions and adsorbed secondary structure; following the time-dependent ordering of the adsorbed peptides; and establishing the ability to obtain

  11. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  12. Critical evaluation of adsorption-desorption hysteresis of heavy metal ions from carbon nanotubes: influence of wall number and surface functionalization.

    PubMed

    Li, Jie; Chen, Changlun; Zhang, Shouwei; Ren, Xuemei; Tan, Xiaoli; Wang, Xiangke

    2014-04-01

    Single-, double-, and multi-walled carbon nanotubes (SWCNTs, DWCNTs, and MWCNTs), and two oxidized MWCNTs with different oxygen contents (2.51 wt % and 3.5 wt %) were used to study the effect of the wall number and surface functionalization of CNTs on their adsorption capacity and adsorption-desorption hysteresis for heavy metal ions (Ni(II), Cd(II), and Pb(II)). Metal ions adsorbed on CNTs could be desorbed by lowering the solution pH. Adsoprtion of heavy metal ions was not completely reversible when the supernatant was replaced with metal ion-free electrolyte solution. With increasing wall number and amount of surface functional groups, CNTs had more surface defects and exhibited higher adsorption capacity and higher adsorption-desorption hysteresis index (HI) values. The coverage of heavy metal ions on the surface of CNTs, solution pH, and temperature affect the metal ion adsorption-desorption hysteresis. A possible shift in the adsorption mechanism from mainly irreversible to largely reversible processes may take place, as the amount of metal ions adsorbed on CNTs increases. Heavy metal ions may be irreversibly adsorbed on defect sites. PMID:24488899

  13. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization.

    PubMed

    Zhao, Haixiang; Wang, Liping; Qiu, Yueming; Zhou, Zhiqiang; Zhong, Weike; Li, Xiang

    2007-03-14

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH3I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 microg kg(-1). Limit of detection (LOD) of barbital was 0.2 microg kg(-1) and that of amobarbital and phenobarbital were both 0.1 microg kg(-1) (S/N > or = 3). Limit of quantification (LOQ) was 0.5 microg kg(-1) for three barbiturates (S/N > or = 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%. PMID:17386740

  14. Surface chemistry and interfacial charge-transfer mechanisms in photoinduced oxygen exchange at O2-TiO2 interfaces.

    PubMed

    Montoya, Juan Felipe; Peral, José; Salvador, Pedro

    2011-04-01

    Experimental results obtained over the last three decades on photoinduced oxygen isotopic exchange (POIE) of TiO₂ oxygen atoms with those of adsorbed water molecules and gaseous O₂ are analyzed in the light of recent information from the literature on the interaction of water and O₂ species with the TiO₂ surface (obtained by application of surface spectroscopy techniques in combination with high-resolution scanning tunnelling microscopy). The analysis emphasizes the singular role that bridging oxygen ions and bridging oxygen vacancies play in TiO₂ surface chemistry and interfacial electron transfer at the gas phase-TiO₂ interface in the absence and presence of water. The observed competition between POIE and the photo-oxidation (PO) of organic compounds is analyzed in terms of the recently developed direct-indirect (D-I) kinetic model for heterogeneous photocatalysis (D. Monllor-Satoca et al., Catal. Today, 2007, 129, 247, and references therein). PMID:21442702

  15. Atomic data and spectral analysis of carbon, nitrogen, oxygen and silicon ions observed with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    1992-01-01

    According to the plan presented in the original proposal we have now completed most of the atomic calculations involving collision strengths and rate coefficients for electron impact excitation of C II, N III, and O IV ions. These have been reported in the first two publications appended with this report. We have now moved into the applications phase of the project with the new data being used to analyze the International Ultraviolet Explorer (IUE) observations of a variety of objects, as described in the third publication recently submitted (also appended). The analysis and interpretation of archival data will continue well into the next year with several collaborators that the PI and Co-PI are involved with. In addition, the atomic calculations on Si II have been started.

  16. Note: Transient negative ions as initiators of oxygen fixation in <20 eV electron-irradiated DNA

    NASA Astrophysics Data System (ADS)

    Massey, Sylvain; Bass, Andrew D.; Sanche, Léon

    2013-11-01

    This note represents a significant addition to our previous manuscript [N. Mirsaleh-Kohan, A. D. Bass, P. Cloutier, S. Massey, and L. Sanche, J. Chem. Phys. 136, 235104 (2012)] where we demonstrated that enhancements in the electron stimulated desorption yields of O- and OH- from O2 exposed DNA samples were due to the reactions of O2 with electron-induced damage sites within the DNA. Here, we investigate the attachment of O2 to electron-irradiated DNA as a function of electron energy and find a local maximum for O2 attachment to DNA at ˜11.4 eV. This reaction is likely initiated by the production of transient negative ions that dissociate to form RCHx-1• radicals. This work is thus relevant to our understanding of how O2 modulates radiation induced damage in cellular DNA and upon the question of the radio-sensitization of cells during, for example, radiotherapy.

  17. Correlation of structure and ion conduction in La{sub 2−x}Y{sub x}Mo{sub 2}O{sub 9} (0 ≤ x ≤ 0.2) oxygen ion conductors

    SciTech Connect

    Paul, T.; Ghosh, A.

    2015-06-21

    Correlation of structure and ion conduction of La{sub 2−x}Y{sub x}Mo{sub 2}O{sub 9} (0 ≤ x ≤ 0.2) has been investigated. The cubic symmetry with space group P2{sub 1}3 and other structural parameters are obtained from Rietveld refinement of X-ray diffraction patterns of Y doped samples. The average lanthanum-oxygen and molybdenum-oxygen distances are obtained from the electron density contour plot. The transmission electron microscopic study confirms the cubic nature of the samples and also provides an estimate of thickness of the grain boundary. The scanning transmission electron microscope energy dispersive spectrometer mapping confirms the different orientations of grains. The composition dependence of the ionic conductivity has been correlated with that of O2 and O3 site occupancies in the [O1La{sub 3}Mo] antitetrahedral unit. The different vibrational modes in the low frequency region due to vibration of Mo-O bands are confirmed from the analysis of FTIR and Raman spectra. The full widths at half maximum of most of the Mo-O bands are found to be independent of Y doping. Additionally, the shifts in the position of Raman bands are correlated with unit cell parameter using Grüneisen constant.

  18. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  19. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  20. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates. PMID:15141467

  1. Thorium and uranium M-shell x-ray production cross sections by 4.5-11.3 MeV carbon ion and 4.5-13.5 MeV oxygen ion bombardment

    NASA Astrophysics Data System (ADS)

    Phinney, L. C.; Lapicki, G.; Weathers, D. L.; Naab, F. U.; Duggan, J. L.; McDaniel, F. D.

    2012-02-01

    The M-shell x-ray production cross sections for thorium and uranium have been measured for carbon ions with energies from 4.5 to 11.3 MeV with the charge state q increasing from 2 to 4, and oxygen ions with energies from 4.5 to 13.5 MeV with the charge state q increasing from 2 to 5. These cross sections are compared to the predictions of the first Born (PWBA+OBKN) and ECUSAR ionization theories, which were evaluated in a novel manner for the C+q and O+q energies and charge states of the data and converted to x-ray production cross sections with atomic parameters for a singly ionized M-shell and multiple ionization in the outer shells. Individual groups of M-shell transitions are also compared to the two ionization theories. The ECUSAR theory is shown to describe the measurements better than the first Born approximation. It is found to be in generally good agreement for all the total M-shell x-ray production and M-shell lines except for the Mγ cross sections. Reasons for the overestimation of the Mγ data are discussed.

  2. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica. PMID:27220375

  3. Assessment of grain-scale homogeneity and equilibration of carbon and oxygen isotope compositions of minerals in carbonate-bearing metamorphic rocks by ion microprobe

    NASA Astrophysics Data System (ADS)

    Ferry, John M.; Ushikubo, Takayuki; Kita, Noriko T.; Valley, John W.

    2010-11-01

    Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ˜5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ 18O and ±0.71‰ for δ 13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ 18O and 0.10-0.29‰ for δ 13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ 13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ 13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ 18O (up to 9.4‰), intercrystalline inhomogeneity in δ 18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ 18O and δ 13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively

  4. XPS studies of water and oxygen on iron-sputtered natural ilmenite

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.

    1985-01-01

    The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.

  5. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-01

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents. PMID:27135170

  6. Density functional studies of small Au clusters adsorbed on α-FeOOH: Structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Fortunato, Leandro F.; Zubieta, Carolina E.; Fuente, Silvia A.; Belelli, Patricia G.; Ferullo, Ricardo M.

    2016-11-01

    We report a density functional theory (DFT) investigation on the interaction of tiny Aun (n = 1-5) clusters with the bare and hydroxylated (110) surfaces of goethite (α-FeOOH). Both adsorption and atom-by-atom nucleation processes were modeled. The adsorption is shown to be strong on the bare surface and takes place preferentially through the interaction of Au atoms with unsaturated surface oxygen anions, accompanied with an electronic charge transfer from the metal to the support. Au3, Au4 and Au5 planar structures resulted to be particularly stable due to polarization effects; indeed, Coulombic repulsion between basal Au atoms and surface oxygen anions promotes the displacement of the electronic density toward terminal Au atoms producing a Au+δ(basal)/Au-δ(terminal) polarization. On the hydroxylated surface, Au clusters adsorb more weakly with respect to the bare surface, mainly through monocoordinated surface hydroxyl groups and tricoordinated oxygen ions. Concerning the nucleation mechanism, while on the hydroxylated surface the nucleation energy is governed by the spin of the interacting systems, on the bare surface polarization effects seems to play a predominant role.

  7. Visual detection of trace copper ions based on copper-catalyzed reaction of ascorbic acid with oxygen

    NASA Astrophysics Data System (ADS)

    Hou, Xin Yan; Chen, Shu; Shun, Lian Ju; Zhao, Yi Ni; Zhang, Zhi Wu; Long, Yun Fei; Zhu, Li

    2015-10-01

    A visual detection method for trace Cu2+ in aqueous solutions using triangular silver nanoplates (abbreviated as TAgNPs) as the probe was developed. The method is based on that TAgNPs could be corroded in sodium thiosulfate (Na2S2O3) solutions. The absorption spectrum of TAgNPs solution changed when it is corroded by Na2S2O3. The reaction of oxygen with ascorbic acid (Vc) in the presence of a low concentration of Cu2+ generates hydrogen peroxide that reacts with Na2S2O3, which leads the concentration of Na2S2O3 in the solution to be decreased. Therefore, the reaction between TAgNPs and the reacted mixture of Na2S2O3/Vc/Cu2+ was prevented efficiently. When the Na2S2O3 concentration and reaction time are constant, the decrease in the concentration of Na2S2O3 is directly proportional to the Cu2+ concentration. Thus, morphology, color, and maximum absorption wavelength of TAgNPs changed with the change of Cu2+ concentration. The changed maximum absorption wavelength of TAgNPs (Δλ) is proportional to Cu2+ concentration in the range from 7.5 × 10-9 to 5.0 × 10-7 M with a correlation coefficient of r = 0.9956. Moreover, color change of TAgNP solution was observed clearly over a Cu2+ concentration range from 7.5 × 10-8 to 5.0 × 10-7 M. This method has been used to detect the Cu2+ content of a human hair sample, and the result is in agreement with that obtained by the atomic absorption spectroscopy (AAS) method.

  8. Note: Transient negative ions as initiators of oxygen fixation in <20 eV electron-irradiated DNA

    SciTech Connect

    Massey, Sylvain; Bass, Andrew D.; Sanche, Léon

    2013-11-14

    This note represents a significant addition to our previous manuscript [N. Mirsaleh-Kohan, A. D. Bass, P. Cloutier, S. Massey, and L. Sanche, J. Chem. Phys. 136, 235104 (2012)] where we demonstrated that enhancements in the electron stimulated desorption yields of O{sup −} and OH{sup −} from O{sub 2} exposed DNA samples were due to the reactions of O{sub 2} with electron-induced damage sites within the DNA. Here, we investigate the attachment of O{sub 2} to electron-irradiated DNA as a function of electron energy and find a local maximum for O{sub 2} attachment to DNA at ∼11.4 eV. This reaction is likely initiated by the production of transient negative ions that dissociate to form RCH{sub x−1}{sup •} radicals. This work is thus relevant to our understanding of how O{sub 2} modulates radiation induced damage in cellular DNA and upon the question of the radio-sensitization of cells during, for example, radiotherapy.

  9. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High Altitude Polar Cap During Solar Minimum Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, Heather A.; Comfort, Richard H.; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.

    2000-01-01

    We correlate solar wind and IMF properties with the properties of O(+) and H(+) in the polar cap in early 1996 during solar minimum conditions at altitudes between 5.5 and 8.9 Re geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite. Throughout the high altitude polar cap, we observe H(+) to be more abundant than O(+). H(+) is a significant fraction of both the ionosphere and the solar wind, and O(+) is not a significant species in the solar wind. O(+) is the major species in the ionosphere so the faction of O(+) present in the magnetosphere is commonly used as a measure of the ionospheric contribution to the magnetosphere. For these reasons, 0+ is of primary interest in this study. We observe O(+) to be most abundant at lower latitudes when the solar wind speed is low (and low Kp), and at higher solar wind speeds (and high Kp) O(+) is observed across most of the polar cap. We also find that O(+) density and parallel flux are well organized by solar wind dynamic pressure; they both increase with solar wind dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, but H(+) density and parallel flux have some negative correlation with IMF By, and some positive correlation with VswBIMF. In this solar minimum data set, H(+) is dominant so that contributions of this plasma to the plasma sheet would have a very low O(+) to H(+) ratio.

  10. Oxygen-Plasma-Treated Indium-Tin-Oxide Films on Nonalkali Glass Deposited by Super Density Arc Plasma Ion Plating

    NASA Astrophysics Data System (ADS)

    Kim, Soo Young; Hong, Kihyon; Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam; Choi, Kyu Han; Song, Kyu Ho; Ahn, Kyung Chul

    2008-02-01

    The effects of O2 plasma treatment on both the chemical composition and work function of an indium-tin-oxide (ITO) film were investigated. ITO films were deposited on non-alkali glass substrate by super density arc plasma ion plating for application in active-matrix organic light-emitting diodes (OLEDs). The water contact angle decreased from 38 to 11° as the ITO films were treated with O2 plasma for 60 s at a plasma power of 150 W, indicating an increase in the hydrophilicity of the surface. It was found that there were no distinct changes in the microstructure or electrical properties of the ITO films with O2 plasma treatment. Synchrotron radiation photoemission spectroscopy data revealed that O2 plasma treatment decreased the amount of carbon contamination and increased the number of unscreened states of In3+ and (O2)2- peroxo species. This played the role of increasing the work function of the ITO films by 1.7 eV. As a result, the turn-on voltage of the OLED decreased markedly from 24 to 8 V and the maximum luminance value of the OLED increased to 2500 cd/m2.

  11. Experimental Studies on the Formation of D2O and D2O2 by Implantation of Energetic D+ Ions into Oxygen Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I.

    2014-02-01

    The formation of water (H2O) in the interstellar medium is intrinsically linked to grain-surface chemistry; thought to involve reactions between atomic (or molecular) hydrogen with atomic oxygen (O), molecular oxygen (O2), and ozone (O3). Laboratory precedent suggests that H2O is produced efficiently when O2 ices are exposed to H atoms (~100 K). This leads to the sequential generation of the hydroxyperoxyl radical (HO2), then hydrogen peroxide (H2O2), and finally H2O and a hydroxyl radical (OH); despite a barrier of ~2300 K for the last step. Recent detection of the four involved species toward ρ Oph A supports this general scenario; however, the precise formation mechanism remains undetermined. Here, solid O2 ice held at 12 K is exposed to a monoenergetic beam of 5 keV D+ ions. Products formed during the irradiation period are monitored through FTIR spectroscopy. O3 is observed through seven archetypal absorptions. Three additional bands found at 2583, 2707, and 1195 cm -1 correspond to matrix isolated DO2 (ν1) and D2O2 (ν1, ν5), and D2O (ν2), respectively. During subsequent warming, the O2 ice sublimates, revealing a broad band at 2472 cm-1 characteristic of amorphous D2O (ν1, ν3). Sublimating D2, D2O, D2O2, and O3 products were confirmed through their subsequent detection via quadrupole mass spectrometry. Reaction schemes based on both thermally accessible and suprathermally induced chemistries were developed to fit the observed temporal profiles are used to elucidate possible reaction pathways for the formation of D2-water. Several alternative schemes to the hydrogenation pathway (O2→HO2→H2O2→H2O) were identified; their astrophysical implications are briefly discussed.

  12. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application

    NASA Astrophysics Data System (ADS)

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-10-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g-1 at 100 mA g-1vs. 590 mA h g-1 of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ~4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g-1 (current density, 200 mA g-1) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP

  13. The role of strain and structure on oxygen ion conduction in nanoscale zirconia and ceria thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Jun

    were decreased 3 - 7 times. YSZ thin films deposited on Al2O3 obtained a stable epitaxial growth along [110] (111)YSZ//[1010] (0001)Al2O3. By tailoring the thickness of YSZ thin film on Al2O3 from 100 nm to 6 nm, the lattice strain can be increased from nearly 1% to 2%. The corresponding conductivity increased by about 1 order of magnitude and the activation energy decreased from 0.99 eV to 0.79 eV. Ion cleaning of the MgO substrate surface was found to change the YSZ thin films' texture without large change to the conductivity, while ion cleaning of the Al2O3 substrate surface decreased the crystallinity without changing the texture and reduced the ionic conductivity of YSZ thin films by a factor of 4. Thus, crystallinity not texture was found to determine the ionic conductivity. In addition, a post annealing with a temperature as high as 1000 °C was able to increase the crystallinity of YSZ thin films therefore increasing the conductivity by a factor of 2. Gadolinia doped ceria (GDC) thin films deposited on MgO were randomly oriented along multi axes, suggesting a polycrystalline structure. While, on Al2O3, GDC thin films' growth became stable only oriented in (111) orientation, just like YSZ thin films on Al2O 3. In the thickness range of 15 nm - 173 nm, the maximum conductivity of GDC thin films was obtained at the thickness of 81 nm. Interestingly, as GDC thin films' thickness increased above 100 nm, the electrical properties changed from a bulk-like conduction to a grain boundary-like conduction.

  14. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.

    PubMed

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-11-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g(-1) at 100 mA g(-1)vs. 590 mA h g(-1) of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ∼4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g(-1) (current density, 200 mA g(-1)) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery. PMID:24056975

  15. Adsorbate modification of the structural, electronic, and magnetic properties of ferromagnetic fcc {110} surfaces

    NASA Astrophysics Data System (ADS)

    Gunn, D. S. D.; Jenkins, Stephen J.

    2011-03-01

    We identify trends in structural, electronic, and magnetic modifications that occur on ferromagnetic {110} surfaces upon varying either the substrate material or the adsorbate species. First, we have modeled the adsorption of several first-row p-block elements on the surface of fcc Co{110} at two coverages [0.5 and 1.0 monolayer (ML)]. All adsorbates were found to expand the distance between the first and second substrate layers and to contract the distance between the second and third layers. The energetic location of a characteristic trough in the density-of-d-states difference plot correlates with the direction of the adsorbate magnetic coupling to the surface, and a trend of antiferromagnetic to ferromagnetic coupling to the surface was observed across the elements from boron to fluorine. A high fluorine adatom coverage (1.0 ML) was found to enhance the surface spin magnetic moment by 11%. Second, we also calculate and contrast adsorption of 0.5 and 1.0 ML of carbon, nitrogen, and oxygen adatoms on fcc iron, cobalt, and nickel {110} surfaces and compare the structural, electronic, and magnetic properties of these systems. Carbon and nitrogen are found to couple antiferromagnetically, and oxygen ferromagnetically, to all surfaces. It was found that antiferromagnetically coupled adsorbates retained their largest spin moment values on iron, whereas ferromagnetically coupled adsorbates possessed their lowest moments on this surface. The strongly localized influence of these adsorbates is clearly illustrated in partial density-of-states plots for the surface atoms.

  16. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  17. Active sites imaging for oxygen reduction at the La{sub 0.9}Sr{sub 0.1}MnO{sub 3{minus}x}/yttria-stabilized zirconia interface by secondary-ion mass spectrometry

    SciTech Connect

    Horita, Teruhisa; Yamaji, Katsuhiko; Ishikawa, Masahiko; Sakai, Natsuko; Yokokawa, Harumi; Kawada, Tatsuya; Kato, Tohru

    1998-09-01

    Active sites for oxygen reduction were investigated at the interface of O{sub 2}/La{sub 0.9}Sr{sub 0.1}MnO{sub 3{minus}x} (LSM)/yttria-stabilized zirconia (YSZ). Isotopic oxygen ({sup 16}O/{sup 18}O) exchange under cathodic polarization and secondary-ion mass spectrometry (SIMS) analysis were examined to visualize the oxygen reduction active sites. The LSM mesh pattern electrode was prepared to define the contact area of LSM/YSZ. Under cathodic polarization, oxygen can diffuse through the dense LSM via oxygen vacancy, which promotes the electrode reaction. By SIMS imaging technique, the active sites for oxygen reduction were clearly determined as spots around the O{sub 2}/LSM/YSZ three-phase boundary. The line analysis of the SIMS image enabled the authors to draw a contour map of the {sup 18}O concentration in the cross section of YSZ. The diffusion paths were clearly visualized in the contour map. The width of the active sites for oxygen reduction is estimated to be less than 1 {micro}m under the examined condition.

  18. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  19. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  20. Durability to oxygen reactive ion etching enhanced by addition of synthesized bis(trimethylsilyl)phenyl-containing (meth)acrylates in ultraviolet nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Ito, Shunya; Sato, Hiroki; Tasaki, Yuhei; Watanuki, Kimihito; Nemoto, Nobukatsu; Nakagawa, Masaru

    2016-06-01

    We investigated the selection of bis(trimethylsilyl)phenyl-containing (meth)acrylates as additives to improve the durability to oxygen reactive ion etching (O2 RIE) of sub-50 nm imprint resist patterns suitable for bubble-defect-free UV nanoimprinting with a readily condensable gas. 2,5-Bis(2-acryloyloxyethoxy)-1,4-bis(trimethylsilyl)benzene, which has a diacrylate chemical structure similar to that of glycerol 1,3-diglycerolate diacrylate used as a base monomer, and 3-(2-methacryloyloxyethoxy)-1-(hydroxylethoxy)-2-propoxy-3,5-bis(trimethylsilyl)benzene, which has a hydroxy group similar to the base monomer, were synthesized taking into consideration the Ohnishi and ring parameters, and the oxidization of the trimethylsilyl moiety to inorganic species during O2 RIE. The addition of the latter liquid additive to the base monomer decreased etching rate owing to the good miscibility of the additive in the base monomer, while the addition of the former crystalline additive caused phase separation after UV nanoimprinting. The latter additive worked as a compatibilizer to the former additive, which is preferred for etching durability improvement. The coexistence of the additives enabled the fabrication of a 45 nm line-and-space resist pattern by UV nanoimprinting, and its residual layer could be removed by O2 RIE.