Science.gov

Sample records for adsorbed pdn clusters

  1. A Density Functional Theory Investigation of Nin , Pdn , and Ptn Clusters (n=1-4) Adsorbed on Buckminsterfullerene.

    PubMed

    Pham, Nguyet N T; Le, Hung M

    2017-02-09

    In this study, we examine the adsorptions of Ni, Pd, and Pt clusters on C60 by using a computational approach. Our calculation results show that the base structure of C60 can host Nin /Pdn /Ptn (n=1-4) clusters with good adsorption stability and the complexes establish either two or no unpaired electrons. The binding energy of Pd and Pt clusters increases as the number of metal atoms increases, implying that the coverage of C60 with Pd or Pt preferentially establishes a large-size metal cluster. A single metal atom favorably occupies the C-C bridge site. For dimer clusters, the three metals of interest share a similar binding fashion, in which two metal atoms establish direct interactions with the C-C bridge sites. For trimer adsorptions, the formation of linear and triangular structures is observed. Both Pt3 and Ni3 preferably constitute isosceles triangles on C60 , whilst Pd3 favorably establishes a linear shape. Finally, for each of the Ni4 and Pd4 adsorption cases, we observed three stable binding configurations: rhombus, tetrahedron, and Y-form. Whereas Ni4 establishes a tetrahedral form, Pd4 attains the most stable form with the Y-shape geometry on C60 . Overall, we observe that the trend of Pd binding to C60 tends to go beyond the fashion of Ni and Pt. In terms of magnetic alignment, the Pdn -C60 systems seem to be non-magnetic in most cases, unlike the Ni and Pt cases, the structures of which possess magnetic moments of 2 μB in their most stable forms.

  2. Adsorption behavior and electronic properties of Pdn (n ≤ 10) clusters on silicon carbide nanotubes: a first-principles study.

    PubMed

    Wang, Jianguang; Ma, Li; Wang, Guanghou

    2013-02-27

    First-principles calculations have been carried out to investigate the adsorption of Pd(n) (n ≤ 10) clusters on the single-walled (8, 0) and (5, 5) SiC nanotubes (SiCNTs). We find that the Pd(n) clusters can be stably adsorbed on the outer surfaces of both SiCNTs through an exothermic adsorption process. The adsorption energies of the Pd(n) clusters on the (8, 0) SiCNT are generally larger than those of clusters on the (5, 5) SiCNT. The number of bonds between the Pd(n) clusters and the SiCNTs increases with increasing cluster size. The Pd atoms adjacent to the SiCNTs adsorb preferentially on the bridge sites over an axial Si-C bond. The adsorption leads to elongation of the Pd-Pd bond lengths and structural reconstruction for the Pd(n) clusters. Moreover, the adsorbed Pd(n) clusters show two-layered structures at the cluster size n ≥ 4. We also find that the adsorbed Pd(n) clusters induce some impurity states within the band gap of the pristine SiCNTs and the strong pd hybridization near the Fermi level, thereby reducing the band gap. The charge transfer from the SiCNTs to the Pd atoms that occurs is observed for all the systems considered. Due to the strong interactions between the Pd(n) clusters and the SiCNTs, most adsorbed Pd(n) clusters exhibit zero magnetic moment.

  3. Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts

    NASA Astrophysics Data System (ADS)

    Kaden, William E.; Kunkel, William A.; Roberts, F. Sloan; Kane, Matthew; Anderson, Scott L.

    2014-03-01

    Model catalysts containing size-selected Pdn (n = 1,2,4,7,10,16,20,25) deposited on rutile TiO2(110) deactivate during repeated CO oxidation temperature-programmed reaction (TPR) cycles, and the deactivation process has been probed using a combination of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low-energy ion scattering (ISS), temperature-dependent ion scattering (TD-ISS), annealing experiments, and temperature-programmed desorption following exposure to CO and O2 reactants. Results from such experiments suggest the cluster deactivation proceeds via an alloy-like, strong metal-support interaction (SMSI) effect that chemically modifies the clusters via electronic interactions between the supported metal atoms and Ti from the support. Threshold measurements show that this effect detrimentally affects CO-oxidation activity prior to the formation of an encapsulating overlayer by severely weakening the COPd bond strengths for binding configurations on top of the clusters. Oxidation appears to provide means of partially restoring the clusters to their initial state, but after sufficient exposure to reducing environments and elevated temperatures, all Pdn become covered by an overlayer and begin to electronically and chemically resemble freshly deposited atoms, which are completely inactive towards the probe reaction. In addition, we find evidence of oxygen spillover induced by co-adsorbed CO during TPRs for all active Pdn clusters.

  4. Dynamics and Interactions of Adsorbates on Palladium and Nickel Clusters

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; Pacheco, Jose; Salazar, Justin; Brownrigg, Clifton

    2013-04-01

    We continue our interest on the interactions of different atomic and molecular species with small clusters of metallic elements, by examining the interactions of H, O and F atoms with Pdn and Nin clusters (n = 6 thru 12). The hybrid ab initio methods of quantum chemistry (particularly the DFT-B3LYP model) are used to derive optimal geometries for the clusters of interest. We compare calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps for the clusters of the two different metals. Of particular interest are the comparisons of binding strengths at the three important types of sites: edge (E) sites, hollow sites (H) site and on-top (T) sites. Effects of crystal symmetries corresponding to the bulk structures for the two metals will also be investigated. Our theoretical results will be compared with the experimental studies where they are available. We will also study the dynamics of the atomic species, and the dynamics and dissociation of the molecular species on the clusters.

  5. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland

    NASA Astrophysics Data System (ADS)

    Zhao, Chunjiang; Wu, Huarui

    2017-03-01

    Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pdn (n = 1-6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH3 adsorption on PNG. The adsorption ability of Hg on Pdn decorated PNG is found to be related to the d-band center (εd) of the Pdn, in which the closer εd of Pdn to the Fermi level, the higher adsorption strength for Hg on Pdn decorated PNG. Moreover, the charge transfer between Pdn and arsenic may constitute arsenic adsorption on Pdn decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring εd of adsorbed metals.

  6. Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins. II. Kinetic models.

    PubMed Central

    Minton, A P

    2001-01-01

    Models for equilibrium surface adsorption of proteins have been recently proposed (Minton, A. P., 2000. Biophys. Chem. 86:239-247) in which negative cooperativity due to area exclusion by adsorbate molecules is compensated to a variable extent by the formation of a heterogeneous population of monolayer surface clusters of adsorbed protein molecules. In the present work this concept is extended to treat the kinetics of protein adsorption. It is postulated that clusters may grow via two distinct kinetic pathways. The first pathway is the diffusion of adsorbed monomer to the edge of a preexisting cluster and subsequent accretion. The second pathway consists of direct deposition of a monomer in solution onto the upper (solution-facing) surface of a preexisting cluster ("piggyback" deposition) and subsequent incorporation into the cluster. Results of calculations of the time course of adsorption, carried out for two different limiting models of cluster structure and energetics, show that in the absence of piggyback deposition, enhancement of the tendency of adsorbate to cluster can reduce, but not eliminate, the negative kinetic cooperativity due to surface area exclusion by adsorbate. Apparently noncooperative (Langmuir-like) and positively cooperative adsorption progress curves, qualitatively similar to those reported in several published experimental studies, require a significant fraction of total adsorption flux through the piggyback deposition pathway. According to the model developed here and in the above-mentioned reference, the formation of surface clusters should be a common concomitant of non-site-specific surface adsorption of proteins, and may provide an important mechanism for assembly of organized "protein machines" in vivo. PMID:11259279

  7. Carbon nanotube clusters as universal bacterial adsorbents and magnetic separation agents.

    PubMed

    Moon, Hyung-Mo; Kim, Jin-Woo

    2010-01-01

    The magnetic susceptibility and high bacterial affinity of carbon nanotube (CNT) clusters highlight their great potential as a magnetic bio-separation agent. This article reports the CNT clusters' capability as "universal" bacterial adsorbents and magnetic separation agents by designing and testing a multiwalled carbon nanotube (MWNT) cluster-based process for bacterial capturing and separation. The reaction system consisted of large clusters of MWNTs for bacterial capture and an external magnet for bio-separation. The designed system was tested and optimized using Escherichia coli as a model bacterium, and further generalized by testing the process with other representative strains of both gram-positive and gram-negative bacteria. For all strains tested, bacterial adsorption to MWNT clusters occurred spontaneously, and the estimated MWNT clusters' adsorption capacities were nearly the same regardless of the types of strains. The bacteria-bound MWNT clusters also responded almost instantaneously to the magnetic field by a rare-earth magnet (0.68 Tesla), and completely separated from the bulk aqueous phase and retained in the system. The results clearly demonstrate their excellent potential as highly effective "universal" bacterial adsorbents for the spontaneous adsorption of any types of bacteria to the clusters and as paramagnetic complexes for the rapid and highly effective magnetic separations.

  8. Pressure-induced isostructural transition in PdN2

    SciTech Connect

    Aberg, D; Erhart, P; Crowhurst, J; Zaug, J M; Goncharov, A F; Sadigh, B

    2010-03-05

    We show that a synthesized Pd-N compound crystallize into the pyrite structure by comparison of experimental and calculated Raman intensities. The decreasing Raman intensities with decreasing pressure is explained by a closing of the fundamental band gap. We further discuss the experimental decomposition of this compound at 11 GPa in terms of an isostructural transition within the pyrite structure.

  9. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates.

    PubMed

    Goldsmith, Michael-Rock; George, Christopher B; Zuber, Gérard; Naaman, Ron; Waldeck, David H; Wipf, Peter; Beratan, David N

    2006-01-07

    Using a dissymmetrically-perturbed particle-in-a-box model, we demonstrate that the induced optical activity of chiral monolayer protected clusters, such as Whetten's Au28(SG)16 glutathione-passivated gold nanoclusters (J. Phys. Chem. B, 2000, 104, 2630-2641), could arise from symmetric metal cores perturbed by a dissymmetric or chiral field originating from the adsorbates. This finding implies that the electronic states of the nanocluster core are chiral, yet the lattice geometries of these cores need not be geometrically distorted by the chiral adsorbates. Based on simple chiral monolayer protected cluster models, we rationalize how the adsorption pattern of the tethering sulfur atoms has a substantial effect on the induced CD in the NIR spectral region, and we show how the chiral image charge produced in the core provides a convenient means of visualizing dissymmetric perturbations to the achiral gold nanocluster core.

  10. The CO oxidation mechanism on small Pd clusters. A theoretical study.

    PubMed

    González-Torres, Julio César; Bertin, Virineya; Poulain, Enrique; Olvera-Neria, Oscar

    2015-11-01

    CO is a pollutant that is removed by oxidation using Pd, Pt or Rh as catalysts in the exhaust pipes of vehicles. Here, a quantum chemistry study on the CO + O2 reaction catalyzed by small Pdn clusters (n ≤ 5) using the PBE/TZ2P/ZORA method is performed. The limiting step in this reaction at low temperature and coverage is the O2 dissociation. Pdn clusters catalyze the O=O bond breaking, reducing the energy barrier from 119 kcal mol(-1) without catalyst to ∼35 kcal mol(-1). The charge transfer from Pd to the O2,ad antibonding orbital weakens, and finally breaks the O─O bond. The CO oxidation takes place by the Eley-Rideal (ER) mechanism or the Langmuir-Hinshelwood (LH) mechanism. The ER mechanism presents an energy barrier of 4.10-7.05 kcal mol(-1) and the formed CO2 is released after the reaction. The LH mechanism also shows barrier energies to produce CO2 (7-15 kcal mol(-1)) but it remains adsorbed on Pd clusters. An additional energy (7-25 kcal mol(-1)) is necessary to desorb CO2 and release the metal site. The triplet multiplicity is the ground states of studied Pdn clusters, with the following order of stability: triplet > singlet > quintet state. Graphical Abstract CO oxidation mechanism on small Pd clusters.

  11. The structural and electronic properties of Ag-adsorbed (SiO2)n (n=1-7) clusters.

    PubMed

    Zhao, Gao-feng; Zhi, Li-li; Guo, Ling-ju; Zeng, Zhi

    2007-12-21

    Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Ag-adsorbed (SiO(2))(n) (n=1-7) clusters have been investigated using density functional theory with generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond in nearly a fixed direction, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of the silica clusters is minor, attributing to the tendency of stability order of Ag(SiO(2))(n) (n=1-7) clusters in consistent with silica clusters. In addition, the energy gaps between the highest occupied and lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO(2))(n) (n=1-7) clusters, eventually approaching the near infrared radiation region. This suggests that these small clusters may be an alternative material which has a similar functionality in treating cancer to the large gold-coated silica nanoshells and the small Au(3)(SiO(2))(3) cluster.

  12. Surface-enhanced Raman scattering of Ethyl carbamate adsorbed on Ag20 cluster: Enhancement mechanism

    NASA Astrophysics Data System (ADS)

    Du, Junmei; Wang, Hongyan; Wang, Hui; Chen, Yuanzheng; Guo, Chunsheng; Gan, Liyong; Du, Muying

    2017-03-01

    The normal and surface-enhanced Raman scattering of EC are studied by using the M06-2X functional. Different contributions to Raman enhancements of EC adsorbed on Ag20 cluster are analyzed in detail to explore the enhancement mechanism. The adsorption of EC on Ag20 cluster involves the static chemical enhancement with enhancements factor (EF) of 10 by forming a new EC-Ag20 complex. The charge-transfer enhancement with EF of 104 is found when a 352 nm wavelength, corresponding to the absorption maximum of EC-Ag20 complex, is taken as an incident light. The electromagnetic enhancement EF of 3.6 × 106 due to the localized surface plasmon resonance (LSPR) of Ag nanosphere at the same excitation wavelength are acquired by the discrete dipole approximation (DDA) method. The combined effect of the chemical and electromagnetic enhancement results in the total relative enhancements factor up to 3.6 × 1010. The enhancement mechanisms are successfully explained by the combination of ab initio calculation and discrete dipole appropriation method.

  13. 102Pd(n, {gamma}) Cross Section Measurement Using DANCE

    SciTech Connect

    Hatarik, R.; Alpizar-Vicente, A. M.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of the proton rich nucleus 102Pd was measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. The target was a 2 mg Pd foil with 78% enriched 102Pd. It was held by a 0.9 {mu}m thick Mylar bag which was selected after comparing different thicknesses of Kapton and Mylar for their scattering background. To identify the contribution of the other Pd isotopes the data of a natural Pd sample was compared to the data of the 102Pd enriched sample. A 12C sample was used to determine the scattering background. The 102Pd(n, {gamma}) rate is of importance for the p-process nucleosynthesis.

  14. Photoconductivities from band states and a dissipative electron dynamics: Si(111) without and with adsorbed Ag clusters

    SciTech Connect

    Vazhappilly, Tijo; Hembree, Robert H.; Micha, David A.

    2016-01-14

    A new general computational procedure is presented to obtain photoconductivities starting from atomic structures, combining ab initio electronic energy band states with populations from density matrix theory, and implemented for a specific set of materials based on Si crystalline slabs and their nanostructured surfaces without and with adsorbed Ag clusters. The procedure accounts for charge mobility in semiconductors in photoexcited states, and specifically electron and hole photomobilities at Si(111) surfaces with and without adsorbed Ag clusters using ab initio energy bands and orbitals generated from a generalized gradient functional, however with excited energy levels modified to provide correct bandgaps. Photoexcited state populations for each band and carrier type were generated using steady state solution of a reduced density matrix which includes dissipative medium effects. The present calculations provide photoexcited electronic populations and photoinduced mobilities resulting from applied electric fields and obtained from the change of driven electron energies with their electronic momentum. Extensive results for Si slabs with 8 layers, without and with adsorbed Ag clusters, show that the metal adsorbates lead to substantial increases in the photomobility and photoconductivity of electrons and holes.

  15. Surface diffusion of gold nanoclusters on Ru(0001): effects of cluster size, surface defects and adsorbed oxygen atoms.

    PubMed

    Stein, Ori; Ankri, Jonathan; Asscher, Micha

    2013-08-28

    Understanding thermal behavior of metallic clusters on their solid supports is important for avoiding sintering and aggregation of the active supported metallic particles in heterogeneous catalysis. As a model system we have studied the diffusion of gold nano-clusters on modified Ru(0001) single crystal surfaces, employing surface density grating formation via a laser induced ablation technique. Surface modifications included damage induced by varying periods of Ne(+) ion sputtering at a collision energy of 2.8 keV and the effect of pre-adsorbed oxygen on the clean, defect free ruthenium surface. High density of surface damage, obtained at long sputter times, has led to enhanced diffusivity with lower onset temperature for diffusion. It is attributed to reduced cluster-surface commensurability which gives rise to smaller effective activation energy for diffusion. The diffusion of gold nano-clusters, 2 nm in size, was found to be insensitive to the oxygen surface concentration. The adsorbed oxygen acted as an "atomic layer lubricant", reducing friction between the cluster and the underlying surface. This has led to lower diffusivity onset temperatures (150 K) of the nano-clusters, with a stronger effect on smaller clusters.

  16. Water clusters adsorbed on polycyclic aromatic hydrocarbons: Energetics and conformational dynamics

    NASA Astrophysics Data System (ADS)

    Simon, Aude; Spiegelman, Fernand

    2013-05-01

    In this work, we present some classical molecular dynamics (MD) simulations and finite temperature infrared (IR) spectra of water clusters adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). The potential energy surface is obtained within the self-consistent-charge density-functional based tight-binding approach with modifications insuring the correct description of water-water and water-PAH interactions. This scheme is benchmarked for the minimal energy structures of (C24H12)(H2O)n (n = 3-10) against density-functional theory (DFT) calculations and for the low-energy isomers of (H2O)6 and (C6H6)(H2O)3 against correlated wavefunction and DFT calculations. A detailed study of the low energy isomers of (C24H12)(H2O)3, 6 complexes is then provided. On-the-fly Born-Oppenheimer MD simulations are performed in the temperature T range 10-350 K for (C24H12)(H2O)n (n = 3-7) complexes. The description of the evolution of the systems with T is provided with emphasis on (C24H12)(H2O)n (n = 3,6). For T in the range 50-150 K, isomerisation processes are observed and when T increases, a solid-to-liquid phase-change like behavior is shown. The desorption of one water molecule is frequently observed at 300 K. The isomerisation processes are evidenced on the finite temperature IR spectra and the results are presented for (C24H12)(H2O)n (n = 3,6). A signature for the edge-coordination of the water cluster on the PAH is also proposed.

  17. On the chemical bonding effects in the Raman response: benzenethiol adsorbed on silver clusters.

    PubMed

    Saikin, Semion K; Olivares-Amaya, Roberto; Rappoport, Dmitrij; Stopa, Michael; Aspuru-Guzik, Alán

    2009-11-07

    We study the effects of chemical bonding on Raman scattering from benzenethiol chemisorbed on silver clusters using time-dependent density functional theory (TDDFT). Raman scattering cross sections are computed using a formalism that employs analytical derivatives of frequency-dependent electronic polarizabilities, which treats both off-resonant and resonant enhancement within the same scheme. In the off-resonant regime, Raman scattering into molecular vibrational modes is enhanced by one order of magnitude and shows pronounced dependence on the orientation and the local symmetry of the molecule. Additional strong enhancement of the order of 10(2) arises from resonant transitions to mixed metal-molecular electronic states. The Raman enhancement is analyzed using Raman excitation profiles (REPs) for the range of excitation energies 1.6-3.0 eV, in which isolated benzenethiol does not have electronic transitions. The computed vibrational frequency shifts and relative Raman scattering cross sections of the metal-molecular complexes are in good agreement with experimental data on surface enhanced Raman scattering (SERS) from benzenethiol adsorbed on silver surfaces. Characterization and understanding of these effects, associated with chemical enhancement mechanism, may be used to improve the detection sensitivity in molecular Raman scattering.

  18. First-principle description of magnonic PdnFem multilayers

    SciTech Connect

    Manchanda, P; Sahota, PK; Skomski, R; Kumar, PSA; Kashyap, A

    2011-04-01

    Ab-initio calculations are used to determine the parameters that determine magnonic band structure of PdnFem multilayers (n = 2, m <= 8). We obtain the layer-resolved magnetization, the exchange coupling, and the magnetic anisotropy of the Pd-Fe structures. The Fe moment is 3.0 mu(B) close to the Pd layers and 2.2 mu(B) in the middle of the Fe layers. An intriguing but not usually considered aspect is that the elemental Pd is nonmagnetic, similar to Cu spacer layers in other multilayer systems. This leads to a pre-asymptotic ferromagnetic coupling through the Pd (about 40 mJ/m(2)). Furthermore, the Pd acquires a small moment due to spin polarization by neighboring Fe atoms, which translates into magnetic anisotropy. The anisotropies are large, in the range typical for L1(0) structures, which is beneficial for high-frequency applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556763

  19. Comparative FTIR spectroscopy of HX adsorbed on solid water: Ragout-jet water clusters vs ice nanocrystal arrays.

    PubMed

    Devlin, J P; Farník, M; Suhm, M A; Buch, V

    2005-02-17

    In addition to revealing the stretch-mode bands of the smallest mixed clusters of HCl and HBr (HX) with water, the ragout-jet FTIR spectra of dense mixed water-acid supersonic jets include bands that result from the interaction of HX with larger water clusters. It is argued here that low jet temperatures prevent the water-cluster-bound HX molecules from becoming sufficiently solvated to induce ionic dissociation. The molecular nature of the HX can be deduced directly from the observed influence of changing from HCl to HBr and from replacing H2O with D2O. Furthermore, the band positions of HX are roughly coincidental with bands assigned to molecular HCl and HBr adsorbed on ice nanocrystal surfaces at temperatures below 100 K. It is also interesting that the HX band positions and widths approximate those of HX bound to the surface of amorphous ice films at <60 K. Though computational results suggest the adsorbed HX molecules observed in the jet expansions are weakly distorted by single coordination with surface dangling-oxygen atoms, on-the-fly trajectories indicate that the cluster skeletons undergo large-amplitude low-frequency vibrations. Local HX solvation, the extent of proton sharing, and the HX vibrational spectra undergo serious modulation on a picosecond time scale.

  20. Photoejection of clusters from HBr adsorbate: (HBr)/sub n/, n less than or equal to 4

    SciTech Connect

    Cho, C.C.; Polanyi, J.C.; Stanners, C.D.

    1988-12-01

    Clusters of (HBr)/sub n/, n less than or equal to 4, have been formed by irradiating multilayers of HBr adsorbed on LiF(001) with an ArF 193-nm excimer laser. The desorbed species were detected by angularly resolved time-of-flight mass spectrometry. The desorption yield for HBr monomer was found to peak normal to the surface whereas clusters (HBr)/sub n/, n = 2-4, exhibited a peak at approximately 40/degrees/ to the normal. These contrasting angular distributions, together with the observed comparable yields, and differing desorption threshold showed that clusters were desorbed as such from the surface rather than formed in adiabatic expansion of the desorbate.

  1. Infrared spectroscopy of water clusters co-adsorbed with hydrogen molecules on a sodium chloride film

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Fukutani, Katsuyuki

    2016-06-01

    Hydrogen gas containing a trace of water vapor was dosed on a vacuum-evaporated sodium chloride film at 13 K, and water clusters formed on the substrate were investigated by infrared absorption spectroscopy. Absorption bands due to (H2O)n clusters with n = 3-6 and an induced absorption band due to hydrogen were clearly observed. With increasing gas dosage, the intensities of the cluster bands increased linearly while the intensity of the hydrogen band was constant. This suggests that the water clusters were formed in two-dimensional matrices of hydrogen. We found that the water clusters did exist on the surface upon heating even after the hydrogen molecules had desorbed. A further rise of the substrate temperature up to 27 K yielded the formation of larger clusters, (H2O)n with n > 6 . We also discuss the origins of the two bands of the trimer in terms of pseudorotation and a metastable isomer.

  2. Photoionization dynamics of glycine adsorbed on a silicon cluster: ''On-the-fly'' simulations

    SciTech Connect

    Shemesh, Dorit; Baer, Roi; Seideman, Tamar; Gerber, R. Benny

    2005-05-08

    Dynamics of glycine chemisorbed on the surface of a silicon cluster is studied for a process that involves single-photon ionization, followed by recombination with the electron after a selected time delay. The process is studied by ''on-the-fly'' molecular dynamics simulations, using the semiempirical parametric method number 3 (PM3) potential energy surface. The system is taken to be in the ground state prior to photoionization, and time delays from 5 to 50 fs before the recombination are considered. The time evolution is computed over 10 ps. The main findings are (1) the positive charge after ionization is initially mostly distributed on the silicon cluster. (2) After ionization the major structural changes are on the silicon cluster. These include Si-Si bond breaking and formation and hydrogen transfer between different silicon atoms. (3) The transient ionization event gives rise to dynamical behavior that depends sensitively on the ion state lifetime. Subsequent to 45 fs evolution in the charged state, the glycine molecule starts to rotate on the silicon cluster. Implications of the results to various processes that are induced by transient transition to a charged state are discussed. These include inelastic tunneling in molecular devices, photochemistry on conducting surfaces, and electron-molecule scattering.

  3. Effect of side by side interactions on the thermodynamic properties of adsorbed CO molecules on the Ni(111) surface: a cluster model study

    NASA Astrophysics Data System (ADS)

    Shamkhali, Amir N.; Parsafar, Gholamabbas

    2010-05-01

    The effect of electrostatic interactions on vibrational frequencies and thermodynamic properties of CO adsorbate on the Ni(111) surface is calculated by taking the first and second nearest-neighbour interactions into account. In order to obtain reasonable results, the cluster model of various surface adsorption sites with CO adsorbate is partially optimized, using Density Functional Theory and also the MP2 method for the hcp site. Comparison between DFT and MP2 results shows that DFT results are more reliable for this system. The stretching and bending frequencies of CO adsorbate are calculated using both Partial Hessian Analysis and Cluster-Adsorbate Coupling methods. Stretching and bending frequencies are both shifted by the side by side interactions. The coupling of surface phonons and adsorbate vibrations reduces the side effects. The largest side effects on the vibrational internal energy, isochoric heat capacity, entropy and total Helmholtz free energy of adsorbed CO molecule calculated using the CAC method are found for 0.5 ML coverage. The results of the CAC method are better, but the PHA method can be used as a simple upper bound estimation. The adsorptive phase acts as an intelligent material in such a way that it changes its configuration in order to reduce the side effects.

  4. Density functional studies of small Au clusters adsorbed on α-FeOOH: Structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Fortunato, Leandro F.; Zubieta, Carolina E.; Fuente, Silvia A.; Belelli, Patricia G.; Ferullo, Ricardo M.

    2016-11-01

    We report a density functional theory (DFT) investigation on the interaction of tiny Aun (n = 1-5) clusters with the bare and hydroxylated (110) surfaces of goethite (α-FeOOH). Both adsorption and atom-by-atom nucleation processes were modeled. The adsorption is shown to be strong on the bare surface and takes place preferentially through the interaction of Au atoms with unsaturated surface oxygen anions, accompanied with an electronic charge transfer from the metal to the support. Au3, Au4 and Au5 planar structures resulted to be particularly stable due to polarization effects; indeed, Coulombic repulsion between basal Au atoms and surface oxygen anions promotes the displacement of the electronic density toward terminal Au atoms producing a Au+δ(basal)/Au-δ(terminal) polarization. On the hydroxylated surface, Au clusters adsorb more weakly with respect to the bare surface, mainly through monocoordinated surface hydroxyl groups and tricoordinated oxygen ions. Concerning the nucleation mechanism, while on the hydroxylated surface the nucleation energy is governed by the spin of the interacting systems, on the bare surface polarization effects seems to play a predominant role.

  5. Sondes radicalaires pour l'imagerie RPE et PDN stables dans les fluides biologiques

    NASA Astrophysics Data System (ADS)

    Guiberteau, T.; Marx, L.; Rassat, A.; Grucker, D.

    1999-10-01

    Electron paramagnetic resonance and dynamic nuclear polarisation are two techniques that allow the detection of free radicals. They can also be used for in vivo studies for oximetry in blood or tissues. One of the main problems for the development of these techniques is the need of free radicals that are stable in biological media. We present in this communication a study by EPR and DNP of two free radicals that can be suitable for in vivo applications. La résonance paramagnétique électronique et la polarisation dynamique nucléaire sont deux techniques qui permettent de détecter les radicaux libres dans divers systèmes. Elles peuvent également être utilisées in vivo et permettre ainsi de mesurer la concentration en oxygène dans le sang ou dans les tissus. Un des problèmes de ces techniques est l'utilisation de sondes radicalaires suffisamment stables dans les milieux biologiques. Nous présentons une étude comparative par RPE et PDN de deux radicaux libres de type nitroxydes dérivés de l'isoindoline. Un des radicaux possédant quatre groupements éthyle semble être intéressant pour le développement de la RPE et la PDN in vivo.

  6. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN.

    PubMed

    Yu, Rui; Weng, Hongming; Fang, Zhong; Dai, Xi; Hu, Xiao

    2015-07-17

    Based on first-principles calculation and effective model analysis, we propose that the cubic antiperovskite material Cu3PdN can host a three-dimensional (3D) topological node-line semimetal state when spin-orbit coupling (SOC) is ignored, which is protected by the coexistence of time-reversal and inversion symmetry. There are three node-line circles in total due to the cubic symmetry. Drumheadlike surface flat bands are also derived. When SOC is included, each node line evolves into a pair of stable 3D Dirac points as protected by C4 crystal symmetry. This is remarkably distinguished from the Dirac semimetals known so far, such as Na3Bi and Cd3As2, both having only one pair of Dirac points. Once C4 symmetry is broken, the Dirac points are gapped and the system becomes a strong topological insulator with (1;111) Z2 indices.

  7. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN

    NASA Astrophysics Data System (ADS)

    Yu, Rui; Weng, Hongming; Fang, Zhong; Dai, Xi; Hu, Xiao

    2015-07-01

    Based on first-principles calculation and effective model analysis, we propose that the cubic antiperovskite material Cu3PdN can host a three-dimensional (3D) topological node-line semimetal state when spin-orbit coupling (SOC) is ignored, which is protected by the coexistence of time-reversal and inversion symmetry. There are three node-line circles in total due to the cubic symmetry. Drumheadlike surface flat bands are also derived. When SOC is included, each node line evolves into a pair of stable 3D Dirac points as protected by C4 crystal symmetry. This is remarkably distinguished from the Dirac semimetals known so far, such as Na3Bi and Cd3As2 , both having only one pair of Dirac points. Once C4 symmetry is broken, the Dirac points are gapped and the system becomes a strong topological insulator with (1;111) Z2 indices.

  8. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  9. Pd-N to Pd-O rearrangement for a carbamate synthesis from carbon dioxide and methane: a density functional and ab initio molecular dynamics metadynamics study.

    PubMed

    di Dio, Philipp J; Brüssel, Marc; Muñiz, Kilian; Ray, Rupashree Shyama; Zahn, Stefan; Kirchner, Barbara

    2011-09-05

    We investigated the key step of Pd-N to Pd-O rearrangement from a model catalytic cycle for the activation of carbon dioxide and methane with static quantum chemical calculations and metadynamics simulation. Our calculations show that different bottlenecks appear in the catalytic cycle but that the investigated rearrangement of the Pd-N to Pd-O bounded complex has a barrier ΔG(#)/ΔF(#) of approximately 20 kJ mol⁻¹ and is therefore accessible at ambient reaction conditions.

  10. Is gold actor or spectator in the reaction of small AunPd{m/+} clusters with O2?

    NASA Astrophysics Data System (ADS)

    Lang, Sandra M.; Frank, Anja; Fleischer, Irene; Bernhardt, Thorsten M.

    2013-01-01

    The reactivity of free binary gold-palladium clusters (AuPd2+, Au2Pd+, Au2Pd2+, and Au2Pd3+) toward molecular oxygen was investigated in an ion trap experiment under multi-collision conditions and compared to the reactivities of bare Aun+ and Pdm+ (n, m = 2 - 5) clusters. Reaction kinetics measurements revealed that the reaction rate is mainly determined by the number of palladium atoms in the clusters and only weakly influenced by additional gold atoms. The same holds true for the observed reaction product distributions. Most interestingly, the most reactive cluster ions Pd3+, Au2Pd3+, and Pd5+ exhibit a strong preference to form tetroxide products, AunPdmO4+. In addition, employing temperature dependent mass spectrometry, a second adsorption species consisting of several weakly bound oxygen molecules was identified for all investigated palladium containing clusters which is, however, only formed at cryogenic temperatures. All these observations suggest that the gold atoms largely act upon a spectator role in the reaction of the binary clusters. Nevertheless, a rough estimation of the relative O2 binding energies via statistical rate theory indicates that the addition of gold to the Pdn+ clusters decreases the O2-cluster interaction strength, although the reaction rate stays constant. This effect in the binary clusters may be of importance to a potential activation and dissociation of the adsorbed O2 molecules. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  11. Studies on the Structural Transformation of Pt Clusters with Adsorbed Hydrogen on α-Al2O3(0001) Using Multiple Scattering Approach to Pt L3-edge Polarized X-Ray Absorption Near Edge Structure Spectra for the Pt Cluster

    NASA Astrophysics Data System (ADS)

    Ohtani, Kunihiro

    1998-03-01

    The X-ray absorption near edge structure (XANES) or the Extended X-ray absorption fine structure (EXAFS) study with polarization dependence is useful for determining the structures of the metal clusters. We have calculated Pt L3-edge XANES spectra for various structures of Pt clusters with adsorbed hydrogen, such as the one-layer-thick raft, and the hemispherical and spherical structures on α-Al2O3(0001), using the full multiple scattering approach. Comparison of the calculated results with the experimental results have yielded important information. With an increase in the spherically symmetric character of Pt clusters, the influence of Pt-support interaction on the XANES spectra decreases, that is, the hydrogen-Pt interaction plays a dominant role in such cases. We expect that Pt clusters with the one-layer-thick raft, or hemispherical structures are on the top site of surface oxygen atoms.

  12. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    PubMed Central

    Shinohara, Sho; Chiyomaru, You; Sassa, Fumihiro; Liu, Chuanjun; Hayashi, Kenshi

    2016-01-01

    Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size) using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA), composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP) layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules. PMID:27886070

  13. Adsorbate-induced absorption redshift in an organic-inorganic cluster conjugate: Electronic effects of surfactants and organic adsorbates on the lowest excited states of a methanethiol-CdSe conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Christopher; Chung, Sang-Yoon; Lee, Sungyul; Weiss, Shimon; Neuhauser, Daniel

    2009-11-01

    Bioconjugated CdSe quantum dots are promising reagents for bioimaging applications. Experimentally, the binding of a short peptide has been found to redshift the optical absorption of nanoclusters [J. Tsay et al., J. Phys. Chem. B 109, 1669 (2005)]. This study examines this issue by performing density functional theory (DFT) and time-dependent-DFT calculations to study the ground state and low-lying excited states of (CdSe)6[SCH3]-, a transition metal complex built by binding methanethiolate to a CdSe molecular cluster. Natural bond orbital results show that the redshift is caused by ligand-inorganic cluster orbital interaction. The highest occupied molecular orbital (HOMO) of (CdSe)6 is dominated by selenium 4p orbitals; in contrast, the HOMO of (CdSe)6[SCH3]- is dominated by sulfur 3p orbitals. This difference shows that [SCH3]- binding effectively introduces filled sulfur orbitals above the selenium 4p orbitals of (CdSe)6. The resulting smaller HOMO-LUMO gap of (CdSe)6[SCH3]- indeed leads to redshifts in its excitation energies compared to (CdSe)6. In contrast, binding of multiple NH3 destabilizes cadmium 5p orbitals, which contribute significantly to the lowest unoccupied molecular orbital (LUMO) of (CdSe)6, while leaving the selenium 4p orbitals near the HOMO relatively unaffected. This has the effect of widening the HOMO-LUMO gap of (CdSe)6ṡ6NH3 compared to (CdSe)6. As expected, the excitation energies of the passivated (CdSe)6ṡ6NH3 are also blueshifted compared to (CdSe)6. As far as NH3 is a faithful representation of a surfactant, the results clearly illustrate the differences between the electronic effects of an alkylthiolate versus those of surfactant molecules. Surface passivation of (CdSe)6[SCH3]- is then simulated by coating it with multiple NH3 molecules. The results suggest that the [SCH3]- adsorption induces a redshift in the excitation energies in a surfactant environment.

  14. Adsorbate-induced absorption redshift in an organic-inorganic cluster conjugate: Electronic effects of surfactants and organic adsorbates on the lowest excited states of a methanethiol-CdSe conjugate.

    PubMed

    Liu, Christopher; Chung, Sang-Yoon; Lee, Sungyul; Weiss, Shimon; Neuhauser, Daniel

    2009-11-07

    Bioconjugated CdSe quantum dots are promising reagents for bioimaging applications. Experimentally, the binding of a short peptide has been found to redshift the optical absorption of nanoclusters [J. Tsay et al., J. Phys. Chem. B 109, 1669 (2005)]. This study examines this issue by performing density functional theory (DFT) and time-dependent-DFT calculations to study the ground state and low-lying excited states of (CdSe)(6)[SCH(3)](-), a transition metal complex built by binding methanethiolate to a CdSe molecular cluster. Natural bond orbital results show that the redshift is caused by ligand-inorganic cluster orbital interaction. The highest occupied molecular orbital (HOMO) of (CdSe)(6) is dominated by selenium 4p orbitals; in contrast, the HOMO of (CdSe)(6)[SCH(3)](-) is dominated by sulfur 3p orbitals. This difference shows that [SCH(3)](-) binding effectively introduces filled sulfur orbitals above the selenium 4p orbitals of (CdSe)(6). The resulting smaller HOMO-LUMO gap of (CdSe)(6)[SCH(3)](-) indeed leads to redshifts in its excitation energies compared to (CdSe)(6). In contrast, binding of multiple NH(3) destabilizes cadmium 5p orbitals, which contribute significantly to the lowest unoccupied molecular orbital (LUMO) of (CdSe)(6), while leaving the selenium 4p orbitals near the HOMO relatively unaffected. This has the effect of widening the HOMO-LUMO gap of (CdSe)(6)6NH(3) compared to (CdSe)(6). As expected, the excitation energies of the passivated (CdSe)(6)6NH(3) are also blueshifted compared to (CdSe)(6). As far as NH(3) is a faithful representation of a surfactant, the results clearly illustrate the differences between the electronic effects of an alkylthiolate versus those of surfactant molecules. Surface passivation of (CdSe)(6)[SCH(3)](-) is then simulated by coating it with multiple NH(3) molecules. The results suggest that the [SCH(3)](-) adsorption induces a redshift in the excitation energies in a surfactant environment.

  15. Synthesis and characterization of conformationally rigid chiral pyridine-N-heterocyclic carbene-based palladacycles with an unexpected Pd-N bond cleavage.

    PubMed

    Ng, Kim Hong; Li, Yongxin; Tan, Wei Xian; Chiang, Minyi; Pullarkat, Sumod A

    2013-03-01

    The versatility of a previously developed method for the synthesis of chiral carbene-based palladacycles is demonstrated through the synthesis of two new chiral pyridine-functionalized N-heterocyclic carbene palladacycles with different wingtip groups. The efficiency in their resolution with different counter anions and different chiral amino acid salt auxiliaries has been studied. The absolute stereochemistries of all the chiral compounds were confirmed by single crystal X-ray crystallography. An unexpected Pd-N bond cleavage that resulted in the racemization of the α-carbon center in these complexes has also been investigated.

  16. The complex behavior of the Pd 7 cluster supported on TiO 2 (110) during CO oxidation: adsorbate-driven promoting effect

    DOE PAGES

    An, Wei; Liu, Ping

    2016-09-07

    When using the TiO2(110)-supported Pd7 cluster as a model catalyst, we identified the dynamics of supported metal nanoparticles using density functional theory calculations, at the sub-nanometer scale and under reactive environments. Increasing the CO coverage can induce a structural transformation from Pd7-3D/TiO2(110) at low coverage to Pd7-2D/TiO2(110) at the saturation coverage wherein CO saturation-driven Pd7-2D/TiO2(110) structure displays superior CO oxidation activity at the interfacial sites, which are highly active for catalyzing O2 dissociation and CO oxidation via bifunctional synergy.

  17. The complex behavior of the Pd 7 cluster supported on TiO 2 (110) during CO oxidation: adsorbate-driven promoting effect

    SciTech Connect

    An, Wei; Liu, Ping

    2016-09-07

    When using the TiO2(110)-supported Pd7 cluster as a model catalyst, we identified the dynamics of supported metal nanoparticles using density functional theory calculations, at the sub-nanometer scale and under reactive environments. Increasing the CO coverage can induce a structural transformation from Pd7-3D/TiO2(110) at low coverage to Pd7-2D/TiO2(110) at the saturation coverage wherein CO saturation-driven Pd7-2D/TiO2(110) structure displays superior CO oxidation activity at the interfacial sites, which are highly active for catalyzing O2 dissociation and CO oxidation via bifunctional synergy.

  18. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  19. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  20. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  1. Adsorbent and adsorbent bed for materials capture and separation processes

    DOEpatents

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  2. Insights into the geometries, electronic and magnetic properties of neutral and charged palladium clusters.

    PubMed

    Xing, Xiaodong; Hermann, Andreas; Kuang, Xiaoyu; Ju, Meng; Lu, Cheng; Jin, Yuanyuan; Xia, Xinxin; Maroulis, George

    2016-01-22

    We performed an unbiased structure search for low-lying energetic minima of neutral and charged palladium Pdn(Q) (n = 2-20, Q = 0, + 1 and -1) clusters using CALYPSO method in combination with density functional theory (DFT) calculations. The main candidates for the lowest energy neutral, cationic and anionic clusters are identified, and several new candidate structures for the cationic and anionic ground states are obtained. It is found that the ground state structures of small palladium clusters are more sensitive to the charge states. For the medium size Pdn(0/+/-) (n = 16-20) clusters, a fcc-like growth behavior is found. The structural transition from bilayer-like structures to cage-like structures is likely to occur at n = 14 for the neutral and cationic clusters. In contrast, for the anionic counterparts, the structural transition occurs at Pd13(-). The photoelectron spectra (PES) of palladium clusters are simulated based on the time-dependent density functional theory (TD-DFT) method and compared with the experimental data. The good agreement between the experimental PES and simulated spectra provides us unequivocal structural information to fully solve the global minimum structures, allowing for new molecular insights into the chemical interactions in the Pd cages.

  3. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    PubMed Central

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-01-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis. PMID:25960309

  4. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    NASA Astrophysics Data System (ADS)

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-05-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis.

  5. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Sequential desorption energy of hydrogen from nickel clusters

    SciTech Connect

    Deepika,; Kumar, Rakesh; R, Kamal Raj.; Kumar, T. J. Dhilip

    2015-06-24

    We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage and regeneration of Hydrogen as a clean energy carrier.

  7. MTBE adsorption on alternative adsorbents and packed bed adsorber performance.

    PubMed

    Rossner, Alfred; Knappe, Detlef R U

    2008-04-01

    Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.

  8. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn(N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed.

  9. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  10. Uremic toxins and oral adsorbents.

    PubMed

    Goto, Shunsuke; Yoshiya, Kunihiko; Kita, Tomoyuki; Fujii, Hideki; Fukagawa, Masafumi

    2011-04-01

    Uremic toxins are associated with various disorders in patients with end-stage renal disease and it is difficult to remove some of these toxins by dialysis. Since some uremic toxins are generated by bacterial metabolites in the colon, oral adsorbents that interfere with the absorption of uremic toxins or their precursors are believed to prevent their accumulation in the body. AST-120 adsorbs various uremic retention solutes in the gastrointestinal system and has potential for providing clinical benefit. Sevelamer hydrochloride binds some harmful compounds in addition to phosphate and seems to have pleiotropic effects that include lowering serum LDL cholesterol levels and reduction of inflammation. The effect of sevelamer hydrochloride on indoxyl sulfate and p-cresol has been shown in an in vitro study; however, in vivo studies in mice or humans did not demonstrate this effect on protein-binding uremic toxins. Oral adsorbents are thus one of the important modalities in the treatment of uremic syndrome.

  11. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  12. Potential of ZrO clusters as replacement Pd catalyst.

    PubMed

    Behera, Swayamprabha; King, Nicholas; Samanta, Devleena; Jena, Puru

    2014-07-21

    Atomic clusters with specific size and composition and mimicking the chemistry of elements in the periodic table are commonly known as superatoms. It has been suggested that superatoms could be used to replace elements that are either scarce or expensive. Based on a photoelectron spectroscopy experiment of negatively charged ions, Castleman and co-workers [Proc. Natl. Acad. Sci. U.S.A. 107, 975 (2010)] have recently shown that atoms of Ni, Pd, and Pt which are well known for their catalytic properties, have the same electronic structure as their counterpart isovalent diatomic species, TiO, ZrO, and WC, respectively. Based on this similarity they have suggested that ZrO, for example, could be a replacement catalyst for Pd. Since catalysts are seldom single isolated atoms, one has to demonstrate that clusters of ZrO also have the same electronic structure as same sized Pd clusters. To examine if this is indeed the case, we have calculated the geometries, electronic structure, electron affinity, ionization potential, and hardness of Pdn and (ZrO)n clusters (n = 1-5). We further studied the reaction of these clusters in neutral and charged forms with H2, O2, and CO and found it to be qualitatively different in most cases. These results obtained using density functional theory with hybrid B3LYP functional do not support the view that ZrO clusters can replace Pd as a catalyst.

  13. Interaction of Pd electron states with adsorbed hydrogen

    NASA Astrophysics Data System (ADS)

    Solov'ev, S. M.; Pettenkofer, C.; Pronin, I. I.; Potekhina, N. D.; Petrov, V. N.

    2013-02-01

    Investigations of electrons excited into image states (IS) of Pd clusters and their interaction with adsorbed hydrogen using photoelectron (PE) spectroscopy with synchrotron radiation is presented. Pd clusters were deposited on pyrolytic graphite surfaces which were used as inert substrates. PE spectra measured for Pd clusters at low photon energies show additional peaks at energies of ~ 4.7 and 5.25 eV that corresponds to Pd image states at energies EIS - Evac ≈ - 0.75 ± 0.1 eV and EIS - Evac ≈ - 0.2 ± 0.1 eV. After hydrogen adsorption on graphite with Pd clusters the H-induced features: positive peaks at energy - 2 eV, - 3.5 eV, - 7 eV and a small negative peak at - 4.6 eV, were observed in the valence band spectra of Pd below EF. While the peaks at - 3.5 eV and - 2 eV are the result of the formation of H-induced states in the SBZ the - 7 eV peak is due to strong interaction of Pd clusters with hydrogen producing a H―Pd bonding adsorbate state. It is proposed that a charge transfer from IS2 to Pd-H bond dominates over the H- anion neutralization via transfer of excess charge from H- to IS1.

  14. The chemistry and physics of transition metal clusters

    SciTech Connect

    Parks, E.K.; Jellinek, J.; Knickelbein, M.B.; Riley, S.J.

    1994-06-01

    In this program the authors study the fundamental properties of isolated clusters of transition metal atoms. Experimental studies of cluster chemistry include determination of cluster structure, reactivity, and the nature of cluster-adsorbate interactions. Studies of physical properties include measurements of cluster ionization potentials and photoabsorption cross sections. Theoretical studies focus on the structure and dynamics of clusters, including isomers, phases and phase changes, interactions with molecules, and fragmentation process.

  15. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    SciTech Connect

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.

  16. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    DOE PAGES

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites thatmore » is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.« less

  17. Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates.

    PubMed

    Wang, Lin-Lin; Tan, Teck L; Johnson, Duane D

    2015-11-14

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis.

  18. A trinuclear palladium(II) complex containing N,S-coordinating 2-(benzylsulfanyl)anilinide and 1,3-benzothiazole-2-thiolate ligands with a central square-planar PdN4 motif.

    PubMed

    Cross, Edward D; MacDonald, Kristen L; McDonald, Robert; Bierenstiel, Matthias

    2014-01-01

    The reaction of dichlorido(cod)palladium(II) (cod = 1,5-cyclooctadiene) with 2-(benzylsulfanyl)aniline followed by heating in N,N-dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2-1,3-benzothiazole-2-thiolato)bis[μ2-2-(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N-dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has -1 symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer Pd(II) atoms have a square-planar geometry formed by an N,S-chelating 2-(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3-benzothiazole-2-thiolate ligand, while the central Pd(II) core shows an all N-coordinated square-planar geometry. The geometry is perfectly planar within the PdN4 core and the N-Pd-N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3-benzothiazole-2-thiolate ligands are only N-coordinated to one Pd centre. The 1,3-benzothiazole-2-thiolate ligands were formed in situ from 2-(benzylsulfanyl)aniline.

  19. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  20. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  1. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  2. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, Shane R.; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D'Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods

  3. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  4. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    systematically studied adsorption and diffusion of atomic and diatomic species (H, C, N, O, CO, and NO) on nanometer-sized Pt and Cu nanoparticles with...species and two diatomic molecules (H, C, N, O, CO, and NO) as adsorbates and study the adsorption and diffusion of these adsorbates across the edges

  5. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  6. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  7. Picosecond adsorbate dynamics at condensed phase interfaces

    SciTech Connect

    Scott, T.W.; Chang, Y.J.; Martorell, J.

    1993-12-31

    Picosecond surface second harmonic generation has been used to probe a variety of elementary adsorbate reactions at liquid-solid interfaces. Electron transfer reactions at semiconductor-liquid junctions, geminate recombination of photogenerated free radical pairs and the orientational dynamics of dipolar adsorbates have all been explored in varying degrees of detail. These kinetic studies have led to a detailed analysis of adsorbate detection on the surface of non-centrosymmetric substrates as well as the use of total internal reflection geometries for signal enhancement from optically absorbing liquids. Particular emphasis has been placed on the static and dynamic characterization of adsorbate orientational distribution functions and how these are determined from the torque exerted on adsorbates by the angular part of the molecule-surface interaction potential.

  8. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  9. Nanovalved Adsorbents for CH4 Storage.

    PubMed

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications.

  10. Cluster Headache

    MedlinePlus

    Cluster headache Overview By Mayo Clinic Staff Cluster headaches, which occur in cyclical patterns or clusters, are one of the most painful types of headache. A cluster headache commonly awakens you ...

  11. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  12. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  13. Quantitative adsorbate structure determination for quasicrystals using x-ray standing waves.

    PubMed

    Diehl, R D; Li, H I; Su, S Y; Mayer, A; Stanisha, N A; Ledieu, J; Lovelock, K R J; Jones, Robert G; Deyko, A; Wearing, L H; McGrath, R; Chaudhuri, A; Woodruff, D P

    2014-09-05

    The quantitative structure determination of adsorbed species on quasicrystal surfaces has so far appeared to present insurmountable problems. The normal incidence standing x-ray wave field technique offers a simple solution, without extensive data sets or large computations. Its application to quasicrystals raises several conceptual difficulties that are related to the phase problem in x-ray diffraction. We demonstrate their solution for the case of Si atoms adsorbed on the decagonal Co-rich modification of the Al-Co-Ni quasicrystal to determine the local structure, comprising 6-atom clusters in particular hollow sites.

  14. Quantitative Adsorbate Structure Determination for Quasicrystals Using X-Ray Standing Waves

    NASA Astrophysics Data System (ADS)

    Diehl, R. D.; Li, H. I.; Su, S. Y.; Mayer, A.; Stanisha, N. A.; Ledieu, J.; Lovelock, K. R. J.; Jones, Robert G.; Deyko, A.; Wearing, L. H.; McGrath, R.; Chaudhuri, A.; Woodruff, D. P.

    2014-09-01

    The quantitative structure determination of adsorbed species on quasicrystal surfaces has so far appeared to present insurmountable problems. The normal incidence standing x-ray wave field technique offers a simple solution, without extensive data sets or large computations. Its application to quasicrystals raises several conceptual difficulties that are related to the phase problem in x-ray diffraction. We demonstrate their solution for the case of Si atoms adsorbed on the decagonal Co-rich modification of the Al-Co-Ni quasicrystal to determine the local structure, comprising 6-atom clusters in particular hollow sites.

  15. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  16. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  17. Chitin Adsorbents for Toxic Metals: A Review

    PubMed Central

    Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N.; Kyzas, George Z.

    2017-01-01

    Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth. PMID:28067848

  18. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  19. IR investigations of surfaces and adsorbates

    SciTech Connect

    Gwyn Williams

    2001-12-10

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  20. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  1. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  2. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  3. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  4. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications.

  5. Dopants adsorbed as single atoms prevent degradation of catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Sanwu; Borisevich, Albina Y.; Rashkeev, Sergey N.; Glazoff, Michael V.; Sohlberg, Karl; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2004-03-01

    The design of catalysts with desired chemical and thermal properties is viewed as a grand challenge for scientists and engineers. For operation at high temperatures, stability against structural transformations is a key requirement. Although doping has been found to impede degradation, the lack of atomistic understanding of the pertinent mechanism has hindered optimization. For example, porous γ-Al2O3, a widely used catalyst and catalytic support, transforms to non-porous α-Al2O3 at ~1,100 °C (refs 7-10). Doping with La raises the transformation temperature to ~1,250 °C, but it has not been possible to establish if La atoms enter the bulk, adsorb on surfaces as single atoms or clusters, or form surface compounds. Here, we use direct imaging by aberration-corrected Z-contrast scanning transmission electron microscopy coupled with extended X-ray absorption fine structure and first-principles calculations to demonstrate that, contrary to expectations, stabilization is achieved by isolated La atoms adsorbed on the surface. Strong binding and mutual repulsion of La atoms effectively pin the surface and inhibit both sintering and the transformation to α-Al2O3. The results provide the first guidelines for the choice of dopants to prevent thermal degradation of catalysts and other porous materials.

  6. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    SciTech Connect

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  7. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  8. Charge transfer properties of pentacene adsorbed on silver: DFT study

    SciTech Connect

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  9. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  10. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  11. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    PubMed Central

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model; the peptide axes are parallel to the membrane plane. The elastic and interfacial contributions to the perturbation free energy of the “peptide-dressed” membrane are evaluated as a function of: the peptide penetration depth into the bilayer's hydrophobic core, the membrane thickness, the polar angle, and the lipid/peptide ratio. The structural properties calculated include the shape and extent of the distorted (stretched and bent) lipid chains surrounding the adsorbed peptide, and their orientational (C-H) bond order parameter profiles. The changes in bond order parameters attendant upon peptide adsorption are in good agreement with magnetic resonance measurements. Also consistent with experiment, our model predicts that peptide adsorption results in membrane thinning. Our calculations reveal pronounced, membrane-mediated, attractive interactions between the adsorbed peptides, suggesting a possible mechanism for lateral aggregation of membrane-bound peptides. As a special case of interest, we have also investigated completely hydrophobic peptides, for which we find a strong energetic preference for the transmembrane (inserted) orientation over the horizontal (adsorbed) orientation. PMID:15189858

  12. Adsorbent catalytic nanoparticles and methods of using the same

    DOEpatents

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  13. Physisorption and chemisorption on silver clusters.

    PubMed

    Schmidt, Martin; Masson, Albert; Cheng, Hai-Ping; Bréchignac, Catherine

    2015-03-16

    Adsorption and coadsorption studies on free silver clusters show that nitrogen physisorbs like rare gases, whereas oxygen chemisorbs with similarities and differences to bulk silver surfaces. Silver nanoparticles activate, or even dissociate adsorbed oxygen molecules. The global electron configurations of the adsorbent and adsorbate dominate the stability at small clusters. This is more important than geometry and site effects. Due to electronic shell effects and electron pairing, the activation of oxygen strongly varies with size. At more than 40 free electrons in the complex, such quantum effects start to blur. The size dependence becomes smoother and general trends govern the reactivity, which is driven by the interaction between the charge state of the nanoparticle and the charge transfer of the reaction.

  14. Time Resolved Studies Of Adsorbed Species

    NASA Astrophysics Data System (ADS)

    Howard, J.; Nicol, J. M.

    1985-12-01

    A time-resolved Fourier transform IR study of ethyne adsorbed on ZnNaA zeolite yields results very different from those reported for related systems. Initially two species (A and B) are formed by the interaction of C2H2 with the cations. Whereas species A (π-bonded C2H2) was found to be removed immediately on evacuation, species B (probably Zn-acetylide) was not fully removed after 60 mins evacuation. In the presence of the gas phase, bands due to Species A decreased slowly in intensity as new bands due to adsorbed ethanal were observed.

  15. Development and testing of molecular adsorber coatings

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2012-10-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulas that passed coating adhesion and vacuum thermal cycling were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  16. Development and Testing of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  17. Dynamic analysis of a closed-cycle solar adsorption refrigerator using two adsorbent-adsorbate pairs

    SciTech Connect

    Hajji, A. ); Worek, W. ); Lavan, Z. )

    1991-05-01

    In this paper a dynamic analysis of a closed-cycle, solar adsorption refrigerator is presented. The instantaneous and daily system performance are studied using two adsorbent-adsorbate pairs, Zeolite 13X-Water and Chabazite-Methanol. The effect of design and operating parameters, including inert material thermal capacitance, matrix porosity, and evaporation and condenser temperatures on the solar and cycle coefficients of performance are evaluated.

  18. Cluster headache

    MedlinePlus

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... be related to the body's sudden release of histamine (chemical in the body released during an allergic ...

  19. Charging and hybridization in the finite cluster model

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Bagus, P. S.; Nelin, C. J.

    1984-01-01

    Cluster wavefunctions which have appropriate hybridization and polarization lead to reasonable properties for the interaction of an adsorbate with a solid surface. However, for Al clusters, it was found that the atomic change distribution is not uniform. The finite cluster size leads to changes not representative for an extended system. This effect appears to be dependent on the particular materials being studied; it does not occur in all cases.

  20. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  1. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  2. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  3. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    PubMed Central

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  4. Analytical supercritical fluid extraction of adsorbent materials

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Gale, R.W.; Smith, R.D.

    1987-01-01

    The use of supercritical fluids for the analytical extraction of semivolatile and higher molecular weight materials from various adsorbent and particulate matrices was investigated. Instrumentation was designed to allow gram quantities of the matrix to be extracted at pressures up to 400 bar and temperatures to 235 /sup 0/C with collection of the effluent in a sealed liquid-nitrogen-cooled flask. Carbon dioxide, isobutane, and methanol modified (20 mol %) carbon dioxide fluid systems were evaluated and compared to liquid Soxhlet extraction. Supercritical fluid extraction (SFE) provided very rapid (approx. =30 min) extraction with comparable efficiency to the Soxhlet methods, and both more rapid and more efficient extractions appear feasible. The more polar carbon dioxide-methanol fluid system gave higher extraction efficiencies for the more polar adsorbates and the isobutane system was more efficient for the higher molecular weight and less polar compounds.

  5. Efficient adsorbate transport on graphene by electromigration

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill; Solenov, Dmitry

    2012-02-01

    Chemical functionalization of the surface of graphene holds promise for various applications ranging from nanoelectronics to surface catalysis and nano-assembling. In many practical situations it would be beneficial to be able to propel adsorbates along the graphene sheet in a controlled manner. We propose to use electromigration as an efficient means to transport adsorbates along the graphene surface. Within the tight-binding approximation for graphene, parametrized by density functional theory calculations, we estimate the contributions of the direct force and the electron wind force to the drift velocity of electromigration and demonstrate that the electromigration can be rather efficient. In particular, we show that the drift velocity of atomic oxygen covalently bound to graphene can reach up to 4 cm/s for realistic graphene samples. Further, we discuss ways to dynamically, i.e., during experiment, control the efficiency of electromigration by charging and/or local heating of graphene.

  6. Sand consolidation methods using adsorbable catalysts

    SciTech Connect

    Friedman, R. H.

    1985-04-23

    Methods are provided for selectively consolidating sand grains within a subterranean formation. First an acidic zirconium salt catalyst, such as ZrOCl/sub 2/, Zr(SO/sub 4/)/sub 2/, or ZrCl/sub 4/, is injected into the subterranean formation, wherein the acidic salt catalyst is adsorbed to the surface of the sand grains. Next a polymerizable resin composition such as furfuryl alcohol oligomer is introduced into the well formation. Polymerization of the resin occurs upon exposure to the elevated well temperatures and contact with the acid salt catalyst adsorbed to the sand grains. The polymerized resin serves to consolidate the surfaces of the sand grains while retaining permeability through the pore spaces. An ester of a weak organic acid is included with the resin compositions to control the extent of a polymerization by consuming the water by-product formed during the polymerization reaction.

  7. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  8. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  9. About the Clusters Program

    EPA Pesticide Factsheets

    The Environmental Technology Innovation Clusters Program advises cluster organizations, encourages collaboration between clusters, tracks U.S. environmental technology clusters, and connects EPA programs to cluster needs.

  10. Remediation of AMD using industrial waste adsorbents

    NASA Astrophysics Data System (ADS)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  11. Local anesthetics adsorbed onto infusion balloon.

    PubMed

    Mizogami, Maki; Tsuchiya, Hironori; Takakura, Ko

    2004-09-01

    We compared the adsorption of different local anesthetics onto infusion balloons and studied one of the possible mechanisms for adsorption. After injection of lidocaine, bupivacaine, ropivacaine, and mepivacaine solutions (1 mM each; pH 7.4) into balloons of 100-mL volume, their concentrations in effluents flowing out at 4 mL/h were determined over time by high-performance liquid chromatography. All were adsorbed in a structure-dependent manner, and the concentration decreased by 6%-14% within 5 min. Bupivacaine was most strongly adsorbed, followed by lidocaine, ropivacaine, and mepivacaine. QX-314, a quaternary ammonium derivative of lidocaine, was only weakly adsorbed compared with the parent compound lidocaine. The extent of adsorption of local anesthetics was related to their hydrophobicity (evaluated by reversed-phase chromatography) and was much more at pH 7.4 than at pH 6.0. A hydrophobic interaction with balloon materials appears to be responsible for the adsorption of local anesthetics. When infusion balloons are used for the continuous administration of local anesthetics, attention should be paid to the possibility that their actual concentrations in effluents are smaller than those present when they are initially prepared.

  12. Vibrational infrared spectrum of NH 3 adsorbed on MgO(100). I. Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Allouche, A.; Corà, F.; Girardet, C.

    1995-12-01

    The perturbed cluster approach, previously devoted to the calculation of the stable adsorption site and energy for ammonia adsorbed on MgO(100), is used to determine the frequency and the intensity of the main peaks associated with the normal vibrational modes of the admolecule. The ab initio model based on a cluster embedded in an array of point charges is then compared to the perturbed cluster approach and used to investigate different molecular orientations and associations on the surface in order to give an interpretation to the occurrence of the infrared signals. Six normal modes for each admolecule are calculated due to the removing of internal degeneracy by adsorption. The characteristics of the calculated spectrum are compared to the experimental infrared data and it is shown that the set of selected situations is able to explain almost every band in the spectrum without implication of NH 3 dissociation on the surface.

  13. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  14. Negatively charged ions on Mg(0001) surfaces: appearance and origin of attractive adsorbate-adsorbate interactions.

    PubMed

    Cheng, Su-Ting; Todorova, Mira; Freysoldt, Christoph; Neugebauer, Jörg

    2014-09-26

    Adsorption of electronegative elements on a metal surface usually leads to an increase in the work function and decrease in the binding energy as the adsorbate coverage rises. Using density-functional theory calculations, we show that Cl adsorbed on a Mg(0001) surface complies with these expectations, but adsorption of {N,O,F} causes a decrease in the work function and an increase in the binding energy. Analyzing the electronic structure, we show that the presence of a highly polarizable electron spill-out in front of Mg(0001) causes this unusual adsorption behavior and is responsible for the appearance of a hitherto unknown net-attractive lateral electrostatic interaction between same charged adsorbates.

  15. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74.

    PubMed

    Vilhelmsen, Lasse B; Walton, Krista S; Sholl, David S

    2012-08-01

    Understanding the adsorption and mobility of metal-organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au(8), Pd(8), and Au(4)Pd(4) we find that the organic part of the MOF is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster's adsorption energy and diffusion barrier is established, confirming that Au clusters are highly mobile in the MOF-74 framework and Pd clusters are less mobile.

  16. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, R. Shane; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D’Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage

  17. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  18. Storage stability of ketones on carbon adsorbents.

    PubMed

    Prado, C; Alcaraz, M J; Fuentes, A; Garrido, J; Periago, J F

    2006-09-29

    Activated coconut carbon constitutes the more widely used sorbent for preconcentration of volatile organic compounds in sampling workplace air. Water vapour is always present in the air and its adsorption on the activated carbon surface is a serious drawback, mainly when sampling polar organic compounds, such as ketones. In this case, the recovery of the compounds diminishes; moreover, ketones can be decomposed during storage. Synthetic carbons contain less inorganic impurities and have a lower capacity for water adsorption than coconut charcoal. The aim of this work was to evaluate the storage stability of various ketones (acetone, 2-butanone, 4-methyl-2-pentanone and cyclohexanone) on different activated carbons and to study the effect of adsorbed water vapour under different storage conditions. The effect of storage temperature on extraction efficiencies was significant for each ketone in all the studied sorbents. Recovery was higher when samples were stored at 4 degrees C. The results obtained for storage stability of the studied ketones showed that the performance of synthetic carbons was better than for the coconut charcoals. The water adsorption and the ash content of the carbons can be a measure of the reactive sites that may chemisorb ketones or catalize their decomposition. Anasorb 747 showed good ketone stability at least for 7 days, except for cyclohexanone. After 30-days storage, the stability of the studied ketones was excellent on Carboxen 564. This sorbent had a nearly negligible ash content and the adsorbed water was much lower than for the other sorbents tested.

  19. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  20. Far-Infrared Dielectric Properties Of Adsorbed Water In A Cellulose-Air Matrix

    NASA Astrophysics Data System (ADS)

    Bernard, Pierre; Belanger, Pierre-Andre; Boulay, Russel; Drouin, Bernard; Gagnon, Richard

    1986-09-01

    A standard three components mixture model for the dielectric constant is compared to the measured transmittance and reflectance of FIR radiation through a wet cellulose matrix. This model reproduces, at least qualitatively, the peculiar behaviour of the reflectance versus water content curve. However, the absorption coefficient for water content above 5% can only be reproduced if we postulate that the water adsorbed between 5% and 10% in volume possesses an anomalously high absorption coefficient. This is interpreted in terms of the flickering clusters model for water and the structure breaking role of the cellulose surface.

  1. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  2. Quintuplet Cluster

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of one of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster cluster is ten times larger than typical young star clusters scattered throughout our Milky Way. It is destined to be ripped apart in just a few million years by gravitational tidal forces in the galaxy's core. But in its brief lifetime it shines more brightly than any other star cluster in the Galaxy. Quintuplet Cluster is 4 million years old. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the galaxy, called the Pistol star. This image was taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The cluster is hidden from direct view behind black dust clouds in the constellation Sagittarius. If the cluster could be seen from earth it would appear to the naked eye as a 3rd magnitude star, 1/6th of a full moon's diameter apart.

  3. Spitzer Clusters

    NASA Astrophysics Data System (ADS)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  4. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  5. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  6. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  7. Star clusters

    NASA Astrophysics Data System (ADS)

    Labhardt, Lukas; Binggeli, Bruno

    Star clusters are at the heart of astronomy, being key objects for our understanding of stellar evolution and galactic structure. Observations with the Hubble Space Telescope and other modern equipment have revealed fascinating new facts about these galactic building blocks. This book provides two comprehensive and up-to-date, pedagogically designed reviews on star clusters by two well-known experts in the field. Bruce Carney presents our current knowledge of the relative and absolute ages of globular clusters and the chemical history of our Galaxy. Bill Harris addresses globular clusters in external galaxies and their use as tracers of galaxy formation and cosmic distance indicators. The book is written for graduate students as well as professionals in astronomy and astrophysics.

  8. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  9. Testing of chemically treated adsorbent air purifiers

    SciTech Connect

    Kelly, T.J. . Dept. of Atmospheric Science and Applied Technology); Kinkead, D.A. )

    1993-07-01

    New highly sensitive continuous monitors permit testing of air filters at parts-per-billion contaminant concentrations. This article describes testing of air purification filters intended for use in the National Archives 2 building in College Park, Maryland, using a test procedure that simulates the actual conditions of use. This test demonstrates both the effectiveness of the adsorbers at low contaminant levels, and the capability of existing instruments for conducting such tests. ASHRAE TC 2.3 (Gaseous Air Contaminants and Gas Contaminant Removal Equipment) is currently sponsoring research projects (follow-on studies to ASHRAE Project RP-674) aimed at developing a standard that will test and rate the performance of different types of gas phase air purification equipment at low concentrations. The work detailed in this article represents a first of this type of testing and a technical benchmark that may aid in the further development of ASHRAE gas phase performance standards.

  10. The condensation of water on adsorbed viruses.

    PubMed

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to <50 nm. The viruses preserved their shape after a condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  11. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  12. Trends in adsorbate induced core level shifts

    NASA Astrophysics Data System (ADS)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  13. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  14. Structure and self-assembly of sequentially adsorbed coronene/octanethiol monolayers

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Villalba, D. Andres; Kautz, Natalie A.; Kandel, S. Alex

    2010-09-01

    Scanning tunneling microscopy is used to investigate the structure of sequentially adsorbed coronene/octanethiol monolayers on Au(111). In these experiments, coronene-covered gold surfaces are exposed to octanethiol vapor. The resulting mixed monolayers are covered by close-packed octanethiol domains with clusters of coronene located within octanethiol domain boundaries. For these systems, the positions of coronene on the surface are determined by the kinetics of octanethiol monolayer formation and the local structure of the gold. The initial coverage and order of the coronene-covered surface influence the final structure of the mixed coronene/alkanethiol monolayer: deposition of coronene from the vapor phase, which creates a relatively lower coverage and higher degree of order than solution-based deposition, results in smaller coronene clusters. Statistical analysis of the locations of clusters of coronene shows that depending on the deposition parameters, coronene clusters are repelled in varying degree by upward-going and downward-going steps or are attracted to the top edges of surface step defects. In contrast to clusters, isolated coronene molecules are observed in the middle of close-packed octanethiol domains, but also appear to have an affinity for the edge of downward-going steps. We compare these results to mixed monolayers composed of C 70 and octanethiol.

  15. A platelet-to-pyramid shape transition under the influence of the adsorbate substrate interfacial energy

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Hsiao; Tsai, Yan-Chr

    2002-07-01

    Within the Tersoff approximation, we obtain an analytic expression for the elastic self-energy of a truncated hut which is more general than that of a truncated pyramid [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73]. A pyramidal cluster studied previously can be treated as a square-based hut within the present formalism. The previous results [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996; Phys. Rep. 324 (2000) 271] were obtained on the assumptions of neglecting the adsorbate-substrate interfacial energy and the equilibrium cluster forming with a square base. They predicted that when the volume of a cluster is above some critical value, it preferably forms as a pyramid rather than a platelet in the absence of other strained clusters. Instead, in this paper, we take the interfacial energy into account, based on the work by Korutcheva et al. [I. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth Epitaxy, World Scientific, Singapore, 1995; Phys. Rev. B 61 (2000) 16890]. Besides, we start with the consideration of a hut cluster probably forming with a rectangular base instead of a square one [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996]. By employing the derived analytic expression of the surface and elastic energies, we find that the two- to three- dimensional (2D-3D) transition with the inclusion of the adsorbate-substrate interfacial energy is quantitatively modified. It should provide more accurate predicted values of the critical volume in 2D-3D

  16. Theoretical study of AuCu nanoalloys adsorbed on MgO(001)

    NASA Astrophysics Data System (ADS)

    Cerbelaud, M.; Barcaro, G.; Fortunelli, A.; Ferrando, R.

    2012-06-01

    The structures of AuCu clusters adsorbed on the (001) face of MgO are searched for by a two-step methodology. In a first step, the relevant structural motifs are singled out by global optimization searches within an atomistic model. In a second step, the lowest energy structures of each motif are relaxed by density-functional calculations. Three different sizes (30, 40 and 50 atoms) are considered. For each size, three compositions are analyzed. For size 30, a competition between fcc pyramids and a new motif (the daisy structure) is found. For 40 and 50 atoms, icosahedral fragments prevail. The results are discussed in connection with experimental data related to clusters of larger sizes.

  17. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion.

    PubMed

    Zhang, Liudi; Casey, Brendan; Galanakis, Dennis K; Marmorat, Clement; Skoog, Shelby; Vorvolakos, Katherine; Simon, Marcia; Rafailovich, Miriam H

    2017-03-02

    Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry.

  18. Sol-gel synthesized adsorbents for mercury(II), chromium(III) and cobalt(II) separations

    NASA Astrophysics Data System (ADS)

    Nam, Kwan-Hyun

    Novel organo-ceramic adsorbents are synthesized and characterized for mercury(II), chromium(III) and cobalt(II) separations from aqueous streams. Mercury(II) adsorption on thiol functional adsorbents (SOL-AD-IV) is studied for two systems: (1) coal-fired utility plant scrubber water, and (2) acidic nuclear wastes. To exemplify the removal of mercury from these systems, simulants are prepared and used. Results show that the mercury adsorption capacity is higher than reported in the literature. In addition, the adsorbent exhibits high adsorption capacity even at 4 M HNO3. In column operation, flow rates as high as 1100 BV/h could be employed with effluent concentrations reaching below 0.06 mug/L. This adsorbent is found to exhibit superior mercury adsorption characteristics with a demonstrated long life cycle. Chromium(III) and cobalt(II) adsorption is evaluated using phosphonic acid (SOL-PHONIC) and phosphinic acid (SOL-PHINIC) functional adsorbents synthesized via sol-gel processing by co-condensation of clusters of functional precursor (FPS) and cross-linking (CA) silanes. Nuclear magnetic resonance (NMR) spectroscopy is used to examine the evolution of oligomeric species with hydrolysis and condensation reaction times. The effects of both the FPS and CA oligomeric species on the physicochemical properties of the resulting adsorbent materials are evaluated and explained in terms of structural and adsorption capacity characteristics. The adsorbents are further characterized by solid-state NMR spectroscopy to elucidate the incorporation of the FPS and the nature of the functional groups in the adsorbent matrix. SOL-PHONIC is employed for the removal of chromium, and both SOL-PHONIC and SOL-PHINIC are employed for the removal of cobalt. Results show that chromium and cobalt adsorptions are solution pH dependent. Cobalt adsorption tests evaluated using the two adsorbents show that SOL-PHONIC exhibits a higher selectivity towards cobalt over nickel. The adsorption

  19. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Zhilin; Li, Yan; Li, Zhipeng; Wu, Deyin; Kang, Junyong; Xu, Hongxing; Sun, Mengtao

    2009-06-01

    Surface enhanced Raman scattering (SERS) of pyridine adsorbed on Au@Pd core/shell nanoparticles has been investigated theoretically with quantum chemical method, generalized Mie theory and three-dimensional finite-difference time domain (3D-FDTD) method. We first studied the influence of the coated Pd on the electronic structure of Au nanoparticle, and compared the electronic structure of Au20 cluster with that of Au10Pd10 (core/shell) cluster. Second, we studied SERS spectroscopy of pyridine on Au@Pd core/shell nanoparticles, which revealed the rate of static chemical enhancement and electromagnetic enhancement in the experimental reports. Third, the influence of the Pd shell thickness to the optical absorption of Au@Pd core/shell nanoparticles was investigated with generalized Mie theory. Fourth, we studied the influence of the shell thickness to the local electric field enhancement with 3D-FDTD method. The theoretical results reveal that the static chemical enhancement and electromagnetic enhancement are in the order of 10 and 103, respectively. These theoretical studies promote the deeper understanding of the electronic structure and optical absorption properties of Au@Pd, and the mechanisms for SERS of molecule adsorbed on Au@Pd.

  20. Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers

    NASA Astrophysics Data System (ADS)

    Moaied, Mohammed; Moreno, J. A.; Caturla, M. J.; Ynduráin, Félix; Palacios, J. J.

    2015-04-01

    We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0 ∘C . The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases, a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.

  1. Metal adsorbent for alkaline etching aqua solutions of Si wafer

    NASA Astrophysics Data System (ADS)

    Tamada, Masao; Ueki, Yuji; Seko, Noriaki; Takeda, Toshihide; Kawano, Shin-ichi

    2012-08-01

    High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h-1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing.

  2. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    SciTech Connect

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T.; Saito, Tomonori; Brown, Suree; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  3. Adsorption of carbon on Pd clusters of nanometer size: a first-principles theoretical study.

    PubMed

    Neyman, Konstantin M; Inntam, Chan; Gordienko, Alexei B; Yudanov, Ilya V; Rösch, Notker

    2005-05-01

    Adsorbed atomic C species can be formed in the course of surface reactions and commonly decorate metal catalysts. We studied computationally C adsorption on Pd nanoclusters using an all-electron scalar relativistic density functional method. The metal particles under investigation, Pd(55), Pd(79), Pd(85), Pd(116), Pd(140), and Pd(146), were chosen as fragments of bulk Pd in the form of three-dimensional octahedral or cuboctahedral crystallites, exposing (111) and (100) facets as well as edge sites. These cluster models are shown to yield size-converged adsorption energies. We examined which surface sites of these clusters are preferentially occupied by adsorbed C. According to calculations, surface C atoms form strongly adsorbed carbide species (with adsorption energies of more than 600 kJ mol(-1)) bearing a significant negative charge. Surface sites allowing high, fourfold coordination of carbon are overall favored. To avoid effects of adsorbate-adsorbate interaction in the cluster models for carbon species in the vicinity of cluster edges, we reduced the local symmetry of selected adsorption complexes on the nanoclusters by lowering the global symmetry of the nanocluster models from point group O(h) to D(4h). On (111) facets, threefold hollow sites in the center are energetically preferred; adsorbed C is calculated to be slightly less stable when displaced to the facet borders.

  4. Feasibility of fullerene waste as carbonaceous adsorbent

    SciTech Connect

    Cleveland, T.G.; Garg, S.; Rixey, W.G.

    1996-03-01

    This note investigates using the waste soot generated in fullerene manufacture as an adsorbent. Both oven-dried and air-activated samples of waste soot are compared with three commercially available powdered activated carbons (PACs): Nuchar-SA, HDH, and Calgon-RC. Three model compounds were chosen for adsorption tests--TCE, Benzene, and Phenol--representing a small branched molecule, a small nonpolar ring molecule, and relatively polar ring molecule. Additionally, the effectiveness of total organic carbon (TOC) removal from wastewater was evaluated. Oven-dried soot performed poorly as compared to the commercial carbons, but activation of the waste soot for 60 min at 450 C in air resulted in an activated carbon (aFWS) with properties similar to those of commercially available PACs. The aFWS performed better than one would predict from the typical characterization measures of iodine number, molasses number, and methylene blue number. The data for phenol suggest some functional groups are created during the activation of the waste soot. These results show that large-scale fullerene manufacturing can be a zero-waste industry, because its primary waste product can be converted into a useful material.

  5. Photoreduction of methylviologen adsorbed on silver

    SciTech Connect

    Feilchenfeld, H.; Chumanov, G.; Cotton, T.M. |

    1996-03-21

    Methylviologen adsorbed on a roughened silver electrode is reduced to its cation radical upon irradiation with laser light at liquid nitrogen temperature. Surface-enhanced Raman scattering (SERS) spectra were obtained with different excitation wavelengths between 406 and 752 nm and compared to those obtained at room temperature in an electrochemical cell under potential control. From two-color experiments, in which one laser frequency was used to generate the radical and a second to excite the SERS spectra, it was determined that radical formation occurs mainly with excitation in the blue spectral region. A comparison of the SERS spectra of the dication and cation radical forms of methylviologen with their solution spectra suggests that the former interacts more strongly with the surface than the latter. The cation radical appears to be stable for several hours in liquid nitrogen but has a short lifetime at room temperature. Two mechanisms for the photoreduction are discussed: plasmon-assisted electron transfer from the metal to the methylviologen dication and formation of a resonance charge transfer complex. The current experimental data are insufficient to determine the particular role of these mechanisms. 23 refs., 9 figs.

  6. NASA Applications of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.

  7. DBPs removal in GAC filter-adsorber.

    PubMed

    Kim, Jinkeun; Kang, Byeongsoo

    2008-01-01

    A rapid sand filter and granular activated carbon filter-adsorber (GAC FA) were compared in terms of dissolved organic carbon (DOC) and disinfection by-products (DBPs) removal. A water treatment plant (WTP) that had a high ammonia concentration and DOC in raw water, which, in turn, led to a high concentration of DBPs because of a high dose of pre-chlorination, was investigated. To remove DBPs and DOC simultaneously, a conventional rapid sand filter had been retrofitted to a GAC FA at the Buyeo WTP in Korea. The overall removal efficiency of DBPs and DOC was higher in the GAC FA than in the sand filter, as expected. Breakthrough of trihalomethanes (THMs) was noticed after 3 months of GAC FA operation, and then removal of THMs was minimal (<10%). On the other hand, the removal efficiency of five haloacetic acids (HAA(5)) in the GAC FA was better than that of THMs, though adsorption of HAA(5) decreased rapidly after 3.5 months of GAC FA operation. And then, gradual improvement (>90%) in HAA(5) removal efficiency was again observed, which could be attributed to biodegradation. At the early stage of GAC FA operation, HAA(5) removal was largely due to physical adsorption, but later on biodegradation appeared to prevail. Biodegradation of HAA(5) was significantly influenced by water temperature. Similar turbidity removal was noticed in both filters, while better manganese removal was confirmed in the sand filter rather than in the GAC FA.

  8. Imaging the wave functions of adsorbed molecules.

    PubMed

    Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F Stefan; Ramsey, Michael G; Puschnig, Peter

    2014-01-14

    The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.

  9. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  10. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  11. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  12. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  13. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  14. Mysterious Lattice Rotations in Adsorbed Monolayers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.

    1997-03-01

    Lattice rotations due to a mismatch in structure have been observed in film growth for many years, probably beginning in the 1930's with the Nishiyama-Wasserman and Kurdjumov-Sachs orientations observed when fcc(111) films grow on bcc(110) surfaces, or vice versa. Early analysis of this problem was carried out with the aid of Moiré patterns and the observation that the preferred lattice orientations are those which maximize the Moiré fringe spacing. Later energy calculations indicated that the structures which were predicted by the the Moiré technique actually do correspond to energy minima. Epitaxial rotation in adsorbed monolayers is a conceptually simpler problem since in principle it involves only two planes of atoms, and it was first observed in 1977 for Ar on a graphite surface(C. G. Shaw, M. D. Chinn, S. C. Fain, Jr. Phys. Rev. Lett. 41 (1978) 955.). This observation came only a few months after a new theory, based on the expected elastic behavior of an overlayer, was developed by A. D. Novaco and J. P. McTague(A. D. Novaco and J. P. McTague, Phys. Rev. Lett. 38 (1977) 1286.), and the agreement with the experimental results was remarkable. It was later shown that a few symmetry principles similar to those used for the film growth studies sometimes can also predict the observed structures. However, the situation for incommensurate layers physisorbed on metal surfaces currently looks bleak. None of the existing theories or models appears to describe the experimental results. New data for physisorbed gases on metal surfaces will be presented, along with some half-baked (and probably wrong) ideas for what might be happening. This work was supported by NSF.

  15. Theoretical study of adsorption of tabun on calcium oxide clusters

    NASA Astrophysics Data System (ADS)

    Michalkova, A.; Paukku, Y.; Majumdar, D.; Leszczynski, J.

    2007-04-01

    Interactions of tabun (GA) with non-hydroxylated and hydroxylated CaO clusters have been studied using density functional (DFT) and Møller-Plesset second order perturbation (MP2) levels of theory. The nature of interactions has been further investigated from the topology of charge distribution (using Atoms in Molecules formalism) and molecular electrostatic potential (MEP) surfaces. These adsorption studies indicate that GA adsorbs strongly on the non-hydroxylated CaO cluster through its P dbnd O bond, while interactions of GA on the hydroxylated cluster are weak. These model studies could thus be useful to characterize inorganic oxides for efficient detection and disposal of GA.

  16. Ultra-small rhenium clusters supported on graphene.

    PubMed

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J; Mariscal, Marcelo M; Yacaman, Miguel José

    2015-03-28

    The adsorption of very small rhenium clusters (2-13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional theory calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones.

  17. Ultra-small rhenium clusters supported on graphene

    PubMed Central

    Miramontes, Orlando; Bonafé, Franco; Santiago, Ulises; Larios-Rodriguez, Eduardo; Velázquez-Salazar, Jesús J.; Mariscal, Marcelo M.; Yacaman, Miguel José

    2015-01-01

    The adsorption of very small rhenium clusters (2 – 13 atoms) supported on graphene was studied with high annular dark field - scanning transmission electron microscopy (HAADF-STEM). The atomic structure of the clusters was fully resolved with the aid of density functional calculations and STEM simulations. It was found that octahedral and tetrahedral structures work as seeds to obtain more complex morphologies. Finally, a detailed analysis of the electronic structure suggested that a higher catalytic effect can be expected in Re clusters when adsorbed on graphene than in isolated ones. PMID:25721176

  18. Cluster bulleticity

    NASA Astrophysics Data System (ADS)

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2011-05-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657-56) and baby bullet (MACS J0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. Constraints on the properties of dark matter, such as its interaction cross-section, are therefore restricted by uncertainties in the individual systems' impact velocity, impact parameter and orientation with respect to the line of sight. Here we develop a complementary, statistical measurement in which every piece of substructure falling into every massive cluster is treated as a bullet. We define 'bulleticity' as the mean separation between dark matter and ordinary matter, and we measure the signal in hydrodynamical simulations. The phase space of substructure orbits also exhibits symmetries that provide an equivalent control test. Any detection of bulleticity in real data would indicate a difference in the interaction cross-sections of baryonic and dark matter that may rule out hypotheses of non-particulate dark matter that are otherwise able to model individual systems. A subsequent measurement of bulleticity could constrain the dark matter cross-section. Even with conservative estimates, the existing Hubble Space Telescope archive should yield an independent constraint tighter than that from the bullet cluster. This technique is then trivially extendable to and benefits enormously from larger, future surveys.

  19. Method of coating aluminum substrates with solid adsorbent

    SciTech Connect

    Dunn, S.R.; McKeon, M.J.; Cohen, A.P.; Behan, A.S.

    1992-06-09

    This patent describes a method of coating a surface of an aluminum substrate with a layer of solid adsorbent selected from the group consisting of crystalline molecular sieves, activated alumina, and mixtures thereof. It comprises heating the surface in an oxygen containing atmosphere to a temperature of at least about 200{degrees} C and sufficient to enable bonding of the solid adsorbent to the surface, contacting the heated surface with a slurry comprising the adsorbent and a binder selected from the group consisting of volclay, kaolin, sepiolite, attapulgite, silicates, aluminates, activated alumina, and mixtures thereof in a suspending liquid to form a slurry-coated surface, and removing sufficient liquid to form an adsorbent coating thereon.

  20. Removal of adsorbed gases with CO2 snow

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    1991-09-01

    During the outgassing of orbiting astronomical observatories, the condensation of molecular species on optical surfaces can create difficulties for astronomers. The problem is particularly severe in ultraviolet astronomy where the adsorption of only a few atomic layers of some substances can be very damaging. In this paper the removal of adsorbed atomic layers using carbon dioxide snow is discussed. The rate of removal of adsorbed layers of isopropyl alcohol, Freon TF, and deionized distilled water on Teflon substrates was experimentally determined. The removal of fingerprints (containing fatty acids such as stearic acid) from optical surfaces is also demonstrated. The presence and rate of removal of the multilayers was monitored by detecting the molecular dipole field of adsorbed molecular species. For isopropyl alcohol, Freon TF (trichlorotrifluoroethane), and water adsorbed multilayers were removed in under 1.5 seconds. Fingerprint removal was much more difficult and required 20 seconds of spraying with a mixture of carbon dioxide snow flakes and atomized microdroplets of isopropyl alcohol.

  1. Radiation grafted adsorbents for newly emerging environmental applications

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  2. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  3. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  4. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  5. Residence time determination for adsorbent beds of different configurations

    SciTech Connect

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  6. Structure of water adsorbed on a single graphene sheet

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Martí, J.

    2008-08-01

    We present the result of molecular-dynamics simulations of water adsorbed on top of a single graphene layer at temperatures between 25 and 50°C . The analysis of the energy per particle and the density profiles indicate that the behavior of the adsorbed liquid is similar to the case of multiple graphene layers (graphite) with the only difference being the values of configurational energy. Other structural properties, such as stability ranges, hydrogen bond distributions, and molecular orientations are also presented.

  7. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    SciTech Connect

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  8. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  9. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    NASA Astrophysics Data System (ADS)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  10. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.

    PubMed

    Flores-Chaparro, Carlos E; Ruiz, Luis Felipe Chazaro; Alfaro-De la Torre, Ma Catalina; Rangel-Mendez, Jose Rene

    2016-06-01

    Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface.

  11. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    PubMed

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

  12. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

    PubMed

    Dods, Stewart R; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G

    2015-01-09

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5

  13. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  14. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies.

  15. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    SciTech Connect

    Das, S.; Oyola, Y.; Mayes, Richard T.; Janke, Chris J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked with 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.

  16. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.

    PubMed

    Bang, Sunbaek; Patel, Manish; Lippincott, Lee; Meng, Xiaoguang

    2005-07-01

    A novel granular titanium dioxide (TiO2) was evaluated for the removal of arsenic from groundwater. Laboratory experiments were carried out to investigate the adsorption capacity of the adsorbent and the effect of anions on arsenic removal. Batch experimental results showed that more arsenate [As(V)] was adsorbed on TiO2 than arsenite [As(III)] in US groundwater at pH 7.0. The adsorption capacities for As(V) and As(III) were 41.4 and 32.4 mgg(-1) TiO2, respectively. However, the adsorbent had a similar adsorption capacity for As(V) and As(III) (approximately 40 mgg(-1)) when simulated Bangladesh groundwater was used. Silica (20 mgl(-1)) and phosphate (5.8 mgl(-1)) had no obvious effect on the removal of As(V) and As(III) by TiO2 at neutral pH. Point-of-entry (POE) filters containing 3 l of the granular adsorbent were tested for the removal of arsenic from groundwater in central New Jersey, USA. Groundwater was continuously passed through the filters at an empty bed contact time (EBCT) of 3 min. Approximately 45,000 bed volumes of groundwater containing an average of 39 microgl(-1) of As(V) was treated by the POE filter before the effluent arsenic concentration increased to 10 microgl(-1). The total treated water volumes per weight of adsorbent were about 60,000 l per 1 kg of adsorbent. The field filtration results demonstrated that the granular TiO2 adsorbent was very effective for the removal of arsenic in groundwater.

  17. ``QM/Me'' - a novel embedding approach for adsorbate dynamics on metal surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, Jörg; Reuter, Karsten

    2010-03-01

    The dissociative adsorption of oxygen molecules on metal surfaces is a commonly known, highly exothermic reaction and in its slow or fast form of great importance for corrosion or oxidation catalysis, respectively. However, knowledge about atomistic details of the heat dissipation, a central conceptual concern, is very limited at best. Even on the level of Born-Oppenheimer potential energy surfaces, accurate dynamical ab-initio descriptions of such reactions are quite challenging from a computational point of view: Modeling the excitations of substrate phonons within periodic boundary conditions requires huge supercells, whereas traditional ``QM/MM'' embedding schemes would need unfeasibly large metal clusters. In the novel ``QM/Me'' approach presented here, the adsorbate- interaction is obtained from periodic first-principles calculations in convenient supercells and combined with the description of a 'bath-like' substrate based on classical potentials, which are parametrized to seamlessly fit the first-principles data. We apply our approach to the dissociative adsorption of O2 and H2 on Pd(100) using density-functional theory and a modified embedded atom potential. In both cases, a dominant fraction of the released chemisorption energy is dissipated into the bulk already on a femtosecond time scale. Implications for the adsorbate dynamics will be discussed.

  18. Interactions of small platinum clusters with the TiC(001) surface

    SciTech Connect

    Mao, Jianjun; Li, Shasha; Chu, Xingli; Yang, Zongxian

    2015-11-14

    Density functional theory calculations are used to elucidate the interactions of small platinum clusters (Pt{sub n}, n = 1–5) with the TiC(001) surface. The results are analyzed in terms of geometric, energetic, and electronic properties. It is found that a single Pt atom prefers to be adsorbed at the C-top site, while a Pt{sub 2} cluster prefers dimerization and a Pt{sub 3} cluster forms a linear structure on the TiC(001). As for the Pt{sub 4} cluster, the three-dimensional distorted tetrahedral structure and the two-dimensional square structure almost have equal stability. In contrast with the two-dimensional isolated Pt{sub 5} cluster, the adsorbed Pt{sub 5} cluster prefers a three-dimensional structure on TiC(001). Substantial charge transfer takes place from TiC(001) surface to the adsorbed Pt{sub n} clusters, resulting in the negatively charged Pt{sub n} clusters. At last, the d-band centers of the absorbed Pt atoms and their implications in the catalytic activity are discussed.

  19. The reactivity of CO2 with K atoms adsorbed on MgO powders.

    PubMed

    Preda, Gloria; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio

    2009-10-01

    In this combined quantum chemical and EPR study we have investigated the formation of CO(2)(-) radicals by contact of CO(2) molecules with a K precovered MgO surface. K atoms have been deposited on polycrystalline MgO samples, and then exposed to CO(2). The typical EPR signal of the isolated K atoms disappears when the reaction with CO(2) takes place and a new paramagnetic species attributed to CO(2)(-) is observed. DFT cluster model calculations show that there is a spontaneous electron transfer from the adsorbed K atom to the CO(2) molecule, with formation of K(+)CO(2)(-) surface complexes. These species have the same electronic characteristics and spin distribution of gas-phase M(+)CO(2)(-) (M = Li, Na, K) molecules, but are stabilized by the presence of the ionic surface. The most stable MgO sites where the adsorption of CO(2) occurs and the computed EPR properties are discussed.

  20. NMR Studies of the Dynamics of HD Adsorbed on MCM-41

    NASA Astrophysics Data System (ADS)

    Huan, Chao; Hamida, Jaha; Sullivan, Neil

    We report the results of measurements of the nuclear spin-spin and spin-lattice relaxation times of a monolayer of HD molecules adsorbed on MCM-41 for temperatures 1 . 5 < T < 20 K. Two distinct characteristic relaxation times are observed. A slow diffusion process for 5 < T < 8 . 8 K and a faster rate with a distinctly different activation energy for 8 . 9 < T < 12 K. The behavior is fluid-like above 12 K. We discuss the results in terms of an expected cluster formation at low temperatures followed by the diffusion of single molecules at high temperatures. Work suported by the National Science Foundation - DMR-1303599 and DMR-1157490 (National High Magnetic Field Laboratory).

  1. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift

  2. Coexistence of ice clusters and liquid-like water clusters on the Ru(0001) surface.

    PubMed

    Liu, Feng; Sturm, J M; Lee, Chris J; Bijkerk, Fred

    2017-03-10

    The RAIRS spectra of water adsorbed on Ru(0001) at 85 K are recorded from 600 cm(-1) to 4000 cm(-1). Measured at water coverages from 0.13 ML to 2.0 ML, the RAIRS spectra suggest that chemisorption of water on Ru(0001) depends on coverage. Water adsorbs on a clean Ru surface as chemisorbed ice-like clusters (likely through an O-Ru bond) up to 0.33 ML. Above this coverage, the chemisorbed layer saturates. Upon more exposure, water adsorbs as a liquid-like H-bonded layer without bonding to the Ru substrate. The chemisorbed water absorbs 7 times less IR per molecule than the liquid-like structure, which indicates that the orientation of the chemisorbed water is more parallel to the surface. Additionally, the influence of water-Ru bonding on H-bonding is reflected in the OH symmetric stretching mode. Under perturbation from water-Ru bonding, a large red shift (40 cm(-1)) in the free OH stretching frequency is observed in the chemisorbed clusters. By deconvoluting the main H-bonded OH stretching peak into five Gaussian sub-bands at 2945 ± 5 cm(-1), 3210 ± 5 cm(-1), 3300 ± 15 cm(-1), 3430 ± 5 cm(-1) and 3570 ± 10 cm(-1), changes in the H-bonding network are rationalized in terms of H-bonding motifs. The donor-acceptor-acceptor motif is significant only in the chemisorbed clusters. On the other hand, the donor-acceptor motif dominates in the liquid-like structure, which increases the disorder present in the adlayer. Although chemisorption is suppressed above 0.33 ML, no structural changes in the ice-like clusters are observed up to multilayer coverage. Therefore, ice-like and liquid-like water coexist in a meta-stable state at 85 K.

  3. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization.

    PubMed

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A

    2014-06-17

    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  4. Synthesis of arsenic graft adsorbents in pilot scale

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Aketagawa, Yasushi; Takahashi, Makikatsu; Yoshii, Akihiro; Tsunoda, Yasuhiko; Seko, Noriaki

    2012-08-01

    Synthesis of arsenic (As) adsorbents in pilot scale was carried out with a synthesizing apparatus by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid monomer (PA), which consists of phosphoric acid mono- (50%) and di- (50%) ethyl methacrylate esters onto a nonwoven cotton fabric (NCF), and following chemical modification by contact with a zirconium (Zr) solution. The apparatus which was equipped with reaction tanks, a washing tank and a pump can produce up to 0.3 m×14 m size of the As(V) adsorbent in one reaction. A degree of grafting of 150% was obtained at an irradiation dose of 20 kGy with 5% of PA solution mixed with deionized water for 1 h at 40 °C. Finally, after Zr(IV) was loaded onto a NCF with 5 mmol/L of Zr(IV) solution, the graft adsorbent for the removal of As(V) was achieved in pilot-scale. The adsorbent which was synthesized in pilot scale was evaluated in batch mode adsorption with 1 ppm (mg/l) of As(V) solution for 2 h at room temperature. As a result, the adsorption capacity for As(V) was 0.02 mmol/g-adsorbent.

  5. Natural material adsorbed onto a polymer to enhance immune function

    PubMed Central

    Reinaque, Ana Paula Barcelos; França, Eduardo Luzía; Scherer, Edson Fredulin; Côrtes, Mayra Aparecida; Souto, Francisco José Dutra; Honorio-França, Adenilda Cristina

    2012-01-01

    Background In this study, we produced poly(ethylene glycol) (PEG) microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood. Methods The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy. Results Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture. Conclusion This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function. PMID:22956861

  6. Dynamics of adsorbed polymers on attractive homogeneous surfaces

    PubMed Central

    Yang, Qing-Hui; Luo, Meng-Bo

    2016-01-01

    Dynamic behaviors of polymer chains adsorbed on an attractive, homogeneous surface are studied by using dynamic Monte Carlo simulations. The translational diffusion coefficient Dxy parallel to the surface decreases as the intra-polymer attraction strength EPP or the polymer-surface attraction strength EPS increases. The rotational relaxation time τR increases with EPS, but the dependence of τR on EPP is dependent on the adsorption state of the polymer. We find that τR decreases with increasing EPP for a partially adsorbed polymer but it increases with EPP for a fully adsorbed polymer. Scaling relations Dxy ~ N−α and τR ~ Nβ are found for long polymers. The scaling exponent α is independent of EPS for long polymers but increases with EPP from α = 1.06 at EPP = 0. While β ≈ 2.7 is also roughly independent of EPS for the adsorbed polymer at EPP = 0, but β increases with EPS at EPP > 0. Moreover, we find that β always decreases with increasing EPP. Our results reveal different effects of the attractive surface on the diffusion and rotation of adsorbed polymers. PMID:27849002

  7. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters.

  8. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  9. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  10. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  11. NMR study of n-dodecane adsorbed on graphite.

    PubMed

    Alba, M D; Castro, M A; Clarke, S M; Perdigón, A C

    2003-05-01

    In this brief contribution we demonstrate that 1H and 2H NMR spectroscopy can be an effective method of investigating adsorption from liquids at the solid-liquid interface. The method is illustrated here with the adsorption of a simple alkane adsorbed on graphite, in particular the system n-dodecane and graphite at coverages of 1 and 5 monolayers. Static single-pulse proton nuclear magnetic resonance and static quadrupolar echo deuterium nuclear magnetic resonance spectra were recorded for both coverages. The experimental NMR results presented here show features clearly consistent with earlier calorimetric and neutron scattering work and demonstrate the formation of solid adsorbed layers that coexist with the bulk adsorbate with both isotopes. This ability to probe both deuterated and protonated materials simultaneously illustrates that this experimental approach can be readily extended to investigate the adsorption behaviour of multicomponent mixtures.

  12. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  13. ESR spectra of VO2+ ions adsorbed on calcium phosphates.

    PubMed

    Oniki, T; Doi, Y

    1983-07-01

    The ESR spectra of oxovanadium(IV) ions, (VO2+), adsorbed on hydroxyapatite(OHAp), fluorhydroxyapatite(FHAp), Mg-containing tricalcium phosphate(Mg-TCP), .octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), and amorphous calcium phosphate(ACP) were measured at room temperature. The ESR parameters of VO2+ adsorbed on these compounds were slightly different from one another and accordingly, the ESR technique by use of VO2+ was useful for an analysis of the calcium phosphates precipitated from supersaturated solutions. The ESR parameters of VO2+ adsorbed on ACP and Mg-TCP were found to be very similar to each other, suggesting that ACP and TCP resemble each other in the structure of their crystal surfaces.

  14. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further.

  15. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  16. Extracting uranium from seawater: Promising AF series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.

  17. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  18. Structure and dynamics of highly adsorbed semiflexible polymer melts

    NASA Astrophysics Data System (ADS)

    Carrillo, Jan-Michael; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexie; Sumpter, Bobby

    2015-03-01

    We present a detailed analysis of coarse-grained molecular dynamics simulations of melts of semi-flexible polymer chains in the presence of an adsorbing substrate. For polymer chains located far from the substrate the chain conformations follow the worm-like chain model, in contrast to the reflected Gaussian conformation near the substrate. This is demonstrated in the chain center-of-mass distribution normal to the substrate and the probability of a polymer chain ends to be the closest to the substrate. Both quantities agree with Silberberg's derivation for an ideal chain in the presence of a reflecting wall. We characterized the adsorbed chains and counted the number of loops and tails. For stiff chains, a tail and an adsorbed segment dominate the chain conformation of the adsorbed layer. Also, the mean-square end-to-end distance normal to the substrate is proportional to the normal component of the mean-square end-to-end distance of the tails. The tails do not follow the worm-like chain model and exhibit a stretched conformation. This picture for the adsorbed layer is akin to the ``polydisperse pseudobrush'' envisioned by Guiselin. We probe the dynamics of the segments by calculating the layer (z-)resolved intermediate coherent collective dynamics structure factor, S(q,t,z), for q values equivalent to the bond length. The segment dynamics is slower for stiffer chains. In the adsorbed layer, dynamics is slowed down and can be described by two relaxation times. Department of Energy, Office of Science DE-AC05-00OR227.

  19. Water adsorption, desorption, and clustering on FeO(111).

    PubMed

    Daschbach, John L; Dohnalek, Z; Liu, Shu-Rong; Smith, R Scott; Kay, Bruce D

    2005-05-26

    The adsorption of water on FeO(111) is investigated using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Well-ordered 2 ML thick FeO(111) films are grown epitaxially on a Pt(111) substrate. Water adsorbs molecularly on FeO(111) and desorbs with a well resolved monolayer peak. IRAS measurements as a function of coverage are performed for water deposited at 30 and 135 K. For all coverages (0.2 ML and greater), the adsorbed water exhibits significant hydrogen bonding. Differences in IRAS spectra for water adsorbed at 30 and 135 K are subtle but suggest that water adsorbed at 135 K is well ordered. Monolayer nitrogen TPD spectra from water covered FeO(111) surfaces are used to investigate the clustering of the water as a function of deposition or annealing temperature. Temperature dependent water overlayer structures result from differences in water diffusion rates on bare FeO(111) and on water adsorbed on FeO(111). Features in the nitrogen TPD spectra allow the monolayer wetting and 2-dimensional (2D) ordering of water on FeO(111) to be followed. Voids in a partially disordered first water layer exist for water deposited below 120 K and ordered 2D islands are found when depositing water above 120 K.

  20. Random registry shifts in quasi-one-dimensional adsorbate systems

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Erwin, S. C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S. D.; Hellberg, C. S.; Horn, K.

    2003-02-01

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3×2 unit cell and yet a 3×1 diffraction pattern is resolved for the example of Ba/Si(111)-(3×2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3×1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  1. Ordering and phase separation of adsorbed binary mixtures

    NASA Astrophysics Data System (ADS)

    Mahale, N. K.; Cole, M. W.

    1986-10-01

    The ground state energy is calculated for mixtures adsorbed on graphite and Ag surfaces. The graphite case considers noble gases adsorbed in a commensurate array, while for Ag the substrate is ignored except for its mediation of the interatomic interaction. The balance between alternative possible structures is sensitive to the assumed interaction, for which realistic potential models are employed. Comparison is made with predictions based on simple combining rules. The cases of Ar mixtures with N 2 or CO on graphite are treated, including both herringbone and pinwheel structures for the N 2. Finite temperature behavior is described qualitatively.

  2. Random registry shifts in quasi-one-dimensional adsorbate systems

    SciTech Connect

    Schafer, J.; Erwin, S.C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S.D.; Hellberg, C.S.; Horn, K.

    2003-02-18

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3x2 unit cell and yet a 3x1 diffraction pattern is resolved for the example of Ba/Si(111)-(3x2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3x1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  3. Mass transport of adsorbates near a discontinuous structural phase transition

    NASA Astrophysics Data System (ADS)

    Granato, E.; Ying, S. C.; Elder, K. R.; Ala-Nissila, T.

    2016-12-01

    We study the mass transport dynamics of an adsorbed layer near a discontinuous incommensurate striped-honeycomb phase transition via numerical simulations of a coarse-grained model focusing on the motion of domain walls rather than individual atoms. Following an initial step profile created in the incommensurate striped phase, an intermediate hexagonal incommensurate phase nucleates and grows, leading to a bifurcation into two sharp profiles propagating in opposite directions as opposed to broad profiles induced by atomic diffusive motion. Our results are in agreement with recent numerical simulations of a microscopic model as well as experimental observations for the Pb/Si(111) adsorbate system.

  4. Structure of adsorbed organometallic rhodium: model single atom catalysts.

    PubMed

    Bennett, R A; McCavish, N D; Basham, M; Dhanak, V R; Newton, M A

    2007-02-02

    We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)2Cl] molecule adsorbed on the TiO2(110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarbonyl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.

  5. Modeling visibility in the Paso del Norte (PDN) Region

    NASA Astrophysics Data System (ADS)

    Medina Calderon, Richard

    Poor visibility is a subject of growing public concern throughout the U.S, and an active area of research. Its societal impacts on air quality, aviation transport and traffic are significant. Aerosols play a fundamental role in the attenuation of solar radiation, and also affect visibility. The scattering and extinction coefficients of aerosol particles in the Paso del Norte Region have been calculated using the T- matrix model in conjunction with a laser particle counter. Inter-comparison of the model's results of the scattering and absorption coefficients against the corresponding data from a Photoacustic extinctiometer instrument (which measures in-situ absorption and scattering coefficients of aerosol particles) shows excellent agreement. In addition, the volume-weighted method is used to determine the composite index of refraction which is representative of the aerosols for the Paso del Norte Region to obtain information of the type of aerosol particles present in the Region. The Single Scattering Albedo has also been retrieved using this methodology to obtain further insight into the type of aerosols present on a given day. Finally, the Koschmieder equation has been used to calculate the visual range or visibility, and was correlated with the PM2.5 and PM10 particle concentration present in the Region. Our methodology will allow a better understanding of the size and type of aerosol particles that are most detrimental to the visibility for the Paso Del Norte Region.

  6. Cluster headache

    PubMed Central

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke) and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms) has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments) and to reduce the number of daily attacks (prophylactic treatments). Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the hypothalamus and

  7. Formation of Cluster Complexes by Cluster-Cluster-Collisions

    NASA Astrophysics Data System (ADS)

    Ichihashi, Masahiko; Odaka, Hideho

    2015-03-01

    Multi-element clusters are interested in their chemical and physical properties, and it is expected that they are utilized as catalysts, for example. Their properties critically depend on the size, composition and atomic ordering, and it should be important to adjust the above parameters for their functionality. One of the ways to form a multi-element cluster is to employ a low-energy collision between clusters. Here, we show characteristic results obtained in the collision between a neutral Ar cluster and a size-selected Co cluster ion. Low-energy collision experiment was accomplished by using a newly developed merging-beam apparatus. Cobalt cluster ions were produced by laser ablation, and mass-selected. On the other hand, argon clusters were prepared by the supersonic expansion of Ar gas. Both cluster beams were merged together in an ion guide, and ionic cluster complexes were mass-analyzed. In the collision of Co2+ and ArN, Co2Arn+ (n = 1 - 30) were observed, and the total intensity of Co2Arn+ (n >= 1) is inversely proportional to the relative velocity between Co2+ and ArN. This suggests that the charge-induced dipole interaction between Co2+ and a neutral Ar cluster is dominant in the formation of the cluster complex, Co2+Arn.

  8. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    SciTech Connect

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; Gallego, Nidia C.; Melnichenko, Yuri B.

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbon (Do-Do model).

  9. Fast and efficient protein purification using membrane adsorber systems.

    PubMed

    Suck, Kirstin; Walter, Johanna; Menzel, Frauke; Tappe, Alexander; Kasper, Cornelia; Naumann, Claudia; Zeidler, Robert; Scheper, Thomas

    2006-02-10

    The purification of proteins from complex cell culture samples is an essential step in proteomic research. Traditional chromatographic methods often require several steps resulting in time consuming and costly procedures. In contrast, protein purification via membrane adsorbers offers the advantage of fast and gentle but still effective isolation. In this work, we present a new method for purification of proteins from crude cell extracts via membrane adsorber based devices. This isolation procedure utilises the membranes favourable pore structure allowing high flow rates without causing high back pressure. Therefore, shear stress to fragile structures is avoided. In addition, mass transfer takes place through convection rather than diffusion, thus allowing very rapid separation processes. Based on this membrane adsorber technology the separation of two model proteins, human serum albumin (HSA) and immungluboline G (IgG) is shown. The isolation of human growth hormone (hGH) from chinese hamster ovary (CHO) cell culture supernatant was performed using a cation exchange membrane. The isolation of the enzyme penicillin acylase from the crude Escherichia coli supernatant was achieved using an anion exchange spin column within one step at a considerable purity. In summary, the membrane adsorber devices have proven to be suitable tools for the purification of proteins from different complex cell culture samples.

  10. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  11. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    PubMed

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  12. Extracting uranium from seawater: Promising AI series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  13. Extracting Uranium from Seawater: Promising AI Series Adsorbents

    SciTech Connect

    Das, S.; Oyola, Y.; Mayes, R. T.; Janke, C. J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new series of adsorbents (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole to mole ratios) onto high surface area polyethylene fiber, with high degrees of grafting (DOG) varying from 110 to 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 5 wt % hydroxylamine at 80 °C for 72 h. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with prescreening brine spiked with 8 ppm uranium. Uranium adsorption capacities in prescreening ranged from 171 to 187 g-U/kg-ads irrespective of percent DOG. The performance of the adsorbents with respect to uranium adsorption in natural seawater was also investigated using flow-throughcolumn testing at the Pacific Northwest National Laboratory (PNNL). Three hours of KOH conditioning led to higher uranium uptake than 1 h of conditioning. The adsorbent AI11, containing AN and VPA at the mole ratio of 3.52, emerged as the potential candidate for the highest uranium adsorption (3.35 g-U/kg-ads.) after 56 days of exposure in seawater flow-through-columns. The rate of vanadium adsorption over uranium linearly increased throughout the 56 days of exposure. The total mass of vanadium uptake was ~5 times greater than uranium after 56 days.

  14. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  15. EVALUATING VARIOUS ADSORBENTS AND MEMBRANES FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    Field studies were conducted in Lemont, Ill., to evaluate specific adsorbents and reverse osmosis (RO) membranes for removing radium from groundwater. A radium-selective complexer and barium-sulfate-loaded alumina appeared to have the best potential for low-cost adsorption of ra...

  16. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  17. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  18. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  19. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  20. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  1. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  2. Chemical speciation of adsorbed glycine on metal surfaces

    NASA Astrophysics Data System (ADS)

    Han, Jeong Woo; James, Joanna N.; Sholl, David S.

    2011-07-01

    Experimental studies have reported that glycine is adsorbed on the Cu(110) and Cu(100) surfaces in its deprotonated form at room temperature, but in its zwitterionic form on Pd(111) and Pt(111). In contrast, recent density functional theory (DFT) calculations indicated that the deprotonated molecules are thermodynamically favored on Cu(110), Cu(100), and Pd(111). To explore the source of this disagreement, we have tested three possible hypotheses. Using DFT calculations, we first show that the kinetic barrier for the deprotonation reaction of glycine on Pd(111) is larger than on Cu(110) or Cu(100). We then report that the presence of excess hydrogen would have little influence on the experimentally observed results, especially for Pd(111). Lastly, we perform Monte Carlo simulations to demonstrate that the aggregates of zwitterionic species on Pt(111) are energetically preferred to those of neutral species. Our results strongly suggest that the formation of aggregates with relatively large numbers of adsorbed molecules is favored under experimentally relevant conditions and that the adsorbate-adsorbate interactions in these aggregates stabilize the zwitterionic species.

  3. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  4. Gd uptake experiments for preliminary set of functionalized adsorbents

    SciTech Connect

    Clinton Noack

    2015-03-16

    These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.

  5. Dispersive kinetic of fluorescence decay of alloxazines adsorbed into cellulose

    NASA Astrophysics Data System (ADS)

    Krawczyk, Alina; Sikorska, Ewa; Khmelinskii, Igor V.; Sikorski, Marek

    2005-09-01

    The fluorescence decay of alloxazines adsorbed into microcrystalline cellulose shows a complex kinetics suggesting at least three emitting species. The exponential series method and the Albery model were used to calculate the underlying distributions, providing results about the decay rate constants or lifetime distributions.

  6. Comparison of natural adsorbents for metal removal from acidic effluent.

    PubMed

    Blais, J F; Shen, S; Meunier, N; Tyagi, R D

    2003-02-01

    Adsorption tests were carried out in acidic synthetic solutions (pH 2.0) using 20 g l(-1) of various natural adsorbents and 0.25 mM of 11 different metals. In decreasing order, the most efficient adsorbents tested were: oyster shells, cedar bark, vermiculite, cocoa shells and peanut shells. In contrast, weak metal adsorption was demonstrated by: red cedar wood, peat moss, pine wood, corn cobs and perlite. Metal adsorption capacities in acidic synthetic solution followed the order: Pb2+> Cr3+> Cu2+> Fe2+> Al3+> Ni2+> Cd2+ > Mn2+ > Zn2+ > Ca2+, Mg2+. Alkaline treatment (0.75 M NaOH) increased the effectiveness of metal removal for the majority of adsorbents. In contrast, acid treatment (0.75 M H2SO4) either reduced or did not affect the adsorption capacity of the materials tested. Finally, oyster shells, red cedar wood, vermiculite, cocoa shells and peanut shells, were effective natural adsorbents for the selective recovery of lead and trivalent chromium from acidic effluent.

  7. High-capacity hydrogen storage in Al-adsorbed graphene

    NASA Astrophysics Data System (ADS)

    Ao, Z. M.; Peeters, F. M.

    2010-05-01

    A high-capacity hydrogen storage medium—Al-adsorbed graphene—is proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79wt% with average adsorption energy -0.193eV/H2 . Its hydrogen storage capacity is in excess of 6wt% , surpassing U. S. Department of Energy (DOE’s) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.

  8. Activation volumes of enzymes adsorbed on silica particles.

    PubMed

    Schuabb, Vitor; Czeslik, Claus

    2014-12-30

    The immobilization of enzymes on carrier particles is useful in many biotechnological processes. In this way, enzymes can be separated from the reaction solution by filtering and can be reused in several cycles. On the other hand, there is a series of examples of free enzymes in solution that can be activated by the application of pressure. Thus, a potential loss of enzymatic activity upon immobilization on carrier particles might be compensated by pressure. In this study, we have determined the activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase (HRP), when they are adsorbed on silica particles and free in solution. The experiments have been carried out using fluorescence assays under pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied pressure, suggesting different compressions of the enzyme-substrate complex and the transition state. The volume profiles of free and adsorbed HRP are similar. For α-CT, larger activation volumes are found in the adsorbed state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on silica particles, is characterized by a negative activation volume. This observation suggests that application of pressure might indeed be useful to enhance the activity of enzymes on carrier particles.

  9. Chiral switching by spontaneous conformational change in adsorbed organic molecules.

    PubMed

    Weigelt, Sigrid; Busse, Carsten; Petersen, Lars; Rauls, Eva; Hammer, Bjørk; Gothelf, Kurt V; Besenbacher, Flemming; Linderoth, Trolle R

    2006-02-01

    Self-assembly of adsorbed organic molecules is a promising route towards functional surface nano-architectures, and our understanding of associated dynamic processes has been significantly advanced by several scanning tunnelling microscopy (STM) investigations. Intramolecular degrees of freedom are widely accepted to influence ordering of complex adsorbates, but although molecular conformation has been identified and even manipulated by STM, the detailed dynamics of spontaneous conformational change in adsorbed molecules has hitherto not been addressed. Molecular surface structures often show important stereochemical effects as, aside from truly chiral molecules, a large class of so-called prochiral molecules become chiral once confined on a surface with an associated loss of symmetry. Here, we investigate a model system in which adsorbed molecules surprisingly switch between enantiomeric forms as they undergo thermally induced conformational changes. The associated kinetic parameters are quantified from time-resolved STM data whereas mechanistic insight is obtained from theoretical modelling. The chiral switching is demonstrated to enable an efficient channel towards formation of extended homochiral surface domains. Our results imply that appropriate prochiral molecules may be induced (for example, by seeding) to assume only one enantiomeric form in surface assemblies, which is of relevance for chiral amplification and asymmetric heterogenous catalysis.

  10. Results of testing various natural gas desulfurization adsorbents

    NASA Astrophysics Data System (ADS)

    Israelson, Gordon

    2004-06-01

    This article presents the results of testing many commercially available and some experimental sulfur adsorbents. The desired result of our testing was to find an effective method to reduce the quantity of sulfur in natural gas to less than 100 ppb volume (0.1 ppm volume). An amount of 100 ppb sulfur is the maximum limit permitted for Siemens Westinghouse solid oxide fuel cells (SOFCs). The tested adsorbents include some that rely only on physical adsorption such as activated carbon, some that rely on chemisorption such as heated zinc oxide, and some that may use both processes. The testing was performed on an engineering scale with beds larger than those used for typical laboratory tests. All tests were done at about 3.45 barg (50 psig). The natural gas used for testing was from the local pipeline in Pittsburgh and averaged 6 ppm volume total sulfur. The primary sulfur species were dimethyl sulfide (DMS), isopropyl mercaptan, tertiary butyl mercaptan, and tetrahydrothiophene. Some tests required several months to achieve a sulfur breakthrough of the bed. It was found that DMS always came through a desulfurizer bed first, independent of adsorption process. Since the breakthrough of DMS always exceeds the 100 ppb SOFC sulfur limit before other sulfurs were detected, an index was created to rate the adsorbents in units of ppm DMS × absorbent bed volume. This index is useful for calculating the expected adsorbent bed lifetime before sulfur breakthrough when the inlet natural gas DMS content is known. The adsorbents that are included in these reports were obtained from suppliers in the United States, the Netherlands, Japan, and England. Three activated carbons from different suppliers were found to have identical performance in removing DMS. One of these activated carbons was operated at four different space velocities and again showed the same performance. When using activated carbon as the basis of comparison for other adsorbents, three high-performance adsorbents

  11. Theoretical predictions of structures in dispersions containing charged colloidal particles and non-adsorbing polymers.

    PubMed

    Xie, Fei; Turesson, Martin; Woodward, Clifford E; van Gruijthuijsen, Kitty; Stradner, Anna; Forsman, Jan

    2016-04-28

    We develop a theoretical model to describe structural effects on a specific system of charged colloidal polystyrene particles, upon the addition of non-adsorbing PEG polymers. This system has previously been investigated experimentally, by scattering methods, so we are able to quantitatively compare predicted structure factors with corresponding experimental data. Our aim is to construct a model that is coarse-grained enough to be computationally manageable, yet detailed enough to capture the important physics. To this end, we utilize classical polymer density functional theory, wherein all possible polymer configurations are accounted for, subject to a mean-field Boltzmann weight. We make efforts to counteract drawbacks with this mean-field approach, resulting in structural predictions that agree very well with computationally more demanding simulations. Electrostatic interactions are handled at the fully non-linear Poisson-Boltzmann level, and we demonstrate that a linearization leads to less accurate predictions. The particle charge is an experimentally unknown parameter. We define the surface charge such that the experimental and theoretical gel point at equal polymer concentration coincide. Assuming a fixed surface charge for a certain salt concentration, we find very good agreements between measured and predicted structure factors across a wide range of polymer concentrations. We also present predictions for other structural quantities, such as radial distribution functions, and cluster size distributions. Finally, we demonstrate that our model predicts the occurrence of equilibrium clusters at high polymer concentrations, but low particle volume fractions and salt levels.

  12. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  13. Multiple-overtone resonance Raman scattering and fluorescence from I{sub 2} species adsorbed on silver surfaces

    SciTech Connect

    Sibbald, M.S.; Chumanov, G.; Small, G.; Cotton, T.M.

    1998-07-01

    A detailed excitation profile of a Raman progression consisting of up to six overtones and a fundamental band at 123 cm{sup {minus}1} observed from iodide adsorbed on an electrochemically roughened silver surface at 20 K is analyzed. The excitation profile was constructed from 77 spectra obtained by tuning the laser wavelength in {approximately}0.25 nm steps through the spectral range 409 nm{endash}433 nm. The shift between resonances in the excitation profile, corresponding to the spacing between vibronic levels in the excited state, is also equal to 123 cm{sup {minus}1} indicating that the ground state and excited state potential energy surfaces have the same shape. Only two distinct resonances spaced three vibrational quanta apart were evident in the profile for each band in the progression. Curve fitting of the Raman band shapes indicates that each overtone is composed of one sharp and one broad band, whereas the fundamental contains only one sharp component. The measured width of the fundamental was less than 2.5 cm{sup {minus}1} FWHM, limited by the instrument function. It is proposed that the sharp Raman bands represent a normal vibrational mode of a surface-adsorbed I{sub 2}-like species with the width determined by the intrinsic vibrational dephasing in the ground state. On the other hand, the broad Raman bands reflect vibronic coupling between different I{sub 2}-like species adsorbed on the same Ag cluster. The broad bandwidths result from both dephasing associated with the vibronic coupling and the intrinsic vibrational dephasing. Other weak emission bands are attributed to resonance fluorescence corresponding to direct transitions from higher vibronic levels of the excited state to the ground state. An emission at 429.9 nm is assigned to exciton recombination in small silver iodide clusters which are formed after spontaneous oxidation of the iodide-modified silver surface. {copyright} {ital 1998 American Institute of Physics.}

  14. Photovoltaic properties of TiO2 loaded with glutathione-protected silver clusters.

    PubMed

    Sakai, Nobuyuki; Nakamura, Satoshi; Tatsuma, Tetsu

    2013-12-07

    Glutathione-protected Ag clusters (Ag15, Ag25 and Ag29) function as photosensitizers when they are adsorbed on TiO2 electrodes. [Co(bpy)3](2+) is the most appropriate electron donor among the cobalt complexes examined. Ag15 clusters yielded the highest internal quantum efficiency of 28% at 460 nm in the presence of [Co(bpy)3](2+) as a donor.

  15. Nano porous alkaline earth metal silicates as free fatty acid adsorbents from Crude Palm Oil (CPO)

    NASA Astrophysics Data System (ADS)

    Masmur, Indra; Sembiring, Seri Bima; Bangun, Nimpan; Kaban, Jamaran; Putri, Nabila Karina

    2017-01-01

    Free fatty acids(FFA) from Crude Palm Oil (CPO) have been adsorbed by alkaline earth metal silicate (M-silicate : M = Mg, Ca, Sr and Ba) adsorbents in ethanol using batch method. The adsorbents were prepared from the chloride salts of alkaline metals and Na2SiO3. The resulting white solid of the alkaline earth metal silicates were then heated at 800°C for 3 hours to enlarge their porosities. All adsorbents were characterized by SEM-EDX, XRD and BET. The EDX spectrum of SEM-EDX showed the appearance of all elements in the adsorbents, and the XRD spectrum of all adsorbents showed that they have crystobalite structure. The porosity of the adsorbents calculated by BET method showed that the porosities of the adsorbents range from 2.0884 - 2.0969 nm. All the adsorbents were used to adsorb the FFA from CPO containing 4.79%, 7.3%, 10.37% and 13.34% of FFA. The ratio of adsorbent to CPO to be used in adsorption of FFA from CPO were made 1:1, 1:2 and 1:3, with adsorption time of 1 hour. We found that the maximum adsorption of FFA from CPO was given by Ca-Silicate adsorbent which was between 69.86 - 94.78%, while the lowest adsorption was shown by Mg-silicate adsorbent which was 49.32 -74.53%.

  16. Novel adsorbent applicability for decontamination of printing wastewater

    NASA Astrophysics Data System (ADS)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ < B = pure C < C with PEG 600 addition. The adsorption equilibrium data of Zn(II) ion on NZ, B, pure C and C with PEG 600 were analyzed in terms of the Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The characteristic parameters for each isotherms and related correlation coefficients were determined. The values of correlation coefficient (R2) indicated the following order of the isotherm models: Freundlich > Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential

  17. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    PubMed

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon.

  18. Dissociative Adsorption of Hydrogen and Oxygen on Palladium Clusters:  A Comparison with the (111) Infinite Surface.

    PubMed

    Roques, Jérôme; Lacaze-Dufaure, Corinne; Mijoule, Claude

    2007-05-01

    We report a density-functional study of some properties of the dissociative interaction of hydrogen and oxygen molecules on small palladium clusters (n = 5, 7, and 10). The calculated physisorption and chemisorption energies are compared with those of the infinite (111) palladium surface. First, adsorption of atomic hydrogen and oxygen is investigated on the Pd5, Pd7, and Pd10 clusters. Second, the interaction between H2 (O2) and the small Pd5 cluster is examined and compared to the process occurring on an infinite (111) surface. Finally, the simultaneous adsorption of two hydrogen (oxygen) atoms is analyzed in detail. As shown in a previous work, the binding energy of the first hydrogen (oxygen) atom does not depend significantly on the cluster size, and small two-layer clusters (n ≤ 10) can be used to determine with accuracy the interaction of atomic adsorbates with an infinite (111) palladium surface. In this study, we show that the dissociative chemisorption of H2 and more especially of O2 on a small palladium cluster may lead to erroneous binding energy:  the cluster's size may prevent an accurate description of the adsorbate-adsorbate interaction as a function of their distance. It is demonstrated that a good choice of both the size and the shape of the cluster is preponderant for a good description of the dissociative adsorption of H2 and O2 on an infinite (111) surface.

  19. Grand canonical Monte Carlo simulations of the distribution and chemical shifts of xenon in the cages of zeolite NaA. II. Structure of the adsorbed fluid

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Jameson, A. Keith; Lim, Hyung-Mi; Baello, Bernoli I.

    1994-04-01

    The quantitative agreement between the results of a grand canonical Monte Carlo (GCMC) simulation and the various direct experimental measures of the distribution of the Xe atoms between adsorbed phase and gas phase, of intrazeolitic xenon among the alpha cages, and of the distribution of n Xe atoms in a Xen cluster within one alpha cage permit us to consider the structure of the adsorbed fluid in the GCMC simulation as a reasonable description of the actual structure. We provide here the adsorption sites for a single Xe atom in the alpha cage of zeolite NaA, the transition states between these adsorption sites, the one-body distribution functions for the individual clusters Xen inside the alpha cage, the Xe-Xe pair distribution functions for Xe2 through Xe8 at two temperatures, and some of the local minima in the configuration space of the clusters Xe2 through Xe8, i.e., some of the minimum energy configurations of the clusters.

  20. Adsorbed molecules in external fields: Effect of confining potential

    NASA Astrophysics Data System (ADS)

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.

  1. Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Shi, Chuntai; Hu, Jun; Han, Sungho; Yu, Clare C.; Wu, R. Q.

    2015-08-01

    A major obstacle to using superconducting quantum interference devices (SQUIDs) as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be O2 molecules adsorbed on the surface. Using density functional theory calculations, we find that an O2 molecule adsorbed on an α-alumina surface has a magnetic moment of ˜1.8 μB . The spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic X Y spins on a square lattice find 1 /f magnetization noise, consistent with flux noise in Al SQUIDs.

  2. Palladium dimers adsorbed on graphene: A DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Dharamvir, Keya

    2015-05-01

    The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd2) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd2-graphene system are calculated. Both horizontal and vertical orientations of Pd2 on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen.

  3. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  4. Monte Carlo lattice models for adsorbed polymer conformation

    NASA Technical Reports Server (NTRS)

    Good, B. S.

    1985-01-01

    The adhesion between a polymer film and a metal surface is of great technological interest. However, the prediction of adhesion and wear properties of polymer coated metals is quite difficult because a fundamental understanding of the polymer surface interaction does not yet exist. A computer model for the conformation of a polymer molecule adsorbed on a surface is discussed. The chain conformation is assumed to be described by a partially directed random walk on a three dimensional simple cubic lattice. An attractive surface potential is incorporated into the model through the use of a random walk step probability distribution that is anisotropic in the direction normal to the attractive surface. The effects of variations in potential characteristics are qualitatively included by varying both the degree of anisotropy of the step distribution and the range of the anisotropy. Polymer conformation is characterized by the average end to end distance, average radius of gyration, and average number of chain segments adsorbed on the surface.

  5. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance.

  6. Graphene-modulated photo-absorption in adsorbed azobenzene monolayers.

    PubMed

    Fu, Qiang; Cocchi, Caterina; Nabok, Dmitrii; Gulans, Andris; Draxl, Claudia

    2017-02-22

    The impact of graphene on the photo-absorption properties of trans- and cis-azobenzene monolayers is studied in the framework of density-functional theory and many-body perturbation theory. We find that, despite the weak hybridization between the electronic bands of graphene and those of the azobenzene monolayers, graphene remarkably modulates the absorption spectra of the adsorbates. The excitation energies are affected via two counteracting mechanisms: substrate polarization reduces the band-gap of azobenzene, and enhanced dielectric screening weakens the attractive interaction between electrons and holes. The competition between these two effects gives rise to an overall blueshift of peaks stemming from intramolecular excitations, and a redshift of peaks from intermolecular ones. Even more interesting is that excitations corresponding to intermolecular electron-hole pairs, which are dark in the isolated monolayers, are activated by the graphene substrate. Our results demonstrate that the photoisomerization process of weakly adsorbed azobenzene undergoes notable changes on a carbon-based substrate.

  7. Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone.

    PubMed

    Zhang, Yongjun; Mancke, Raoul Georg; Sabelfeld, Marina; Geißen, Sven-Uwe

    2014-04-30

    A FAU-type zeolite was studied as an adsorbent to remove 2,4,6-trichlorophenol (TCP), a frequently detected recalcitrant pollutant in water bodies. Both adsorption isotherm and kinetics were studied with TCP concentrations from 10 to 100mg/L. It was observed that TCP was effectively adsorbed onto the zeolite with a high adsorption capacity and a high kinetic rate. Freundlich model and pseudo-second-order kinetics were successfully applied to describe the experimental data. The influence of solution pH was also studied. Furthermore, ozone was applied to regenerate the loaded zeolite. It was found that an effective adsorption of TCP was kept for at least 8 cycles of adsorption and regeneration. The ozonation also increased the BET specific surface of zeolite by over 60% and consequently enhanced the adsorption capacity.

  8. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    NASA Astrophysics Data System (ADS)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  9. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates.

  10. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes.

    PubMed

    Ye, Zhuoliang; Berson, R Eric

    2014-09-01

    The rate of enzymatic hydrolysis of cellulose reaction is known to decrease significantly as the reaction proceeds. Factors such as reaction temperature, time, and surface area of substrate that affect cellulose conversion were analyzed relative to their role in a mechanistic model based on first order inactivation of adsorbed cellulases. The activation energies for the hydrolytic step and inactivation step were very close in magnitude: 16.3 kcal mol(-1) for hydrolysis and 18.0 kcal mol(-1) for inactivation, respectively. Therefore, increasing reaction temperature would cause a significant increase in the inactivation rate in addition to the catalytic reaction rate. Vmax,app was only 20% or less of the value at 72 h compared to at 2h as a result of inactivation of adsorbed cellulases, suggesting prolonged hydrolysis is not an efficient way to improve cellulose hydrolysis. Hydrolysis rate increased with corresponding increases in available substrate surface binding area.

  11. Development of glucose sensor using two-photon adsorbed photopolymerization.

    PubMed

    Kim, Jong Min; Park, Jung-Jin; Lee, Haeng-Ja; Kim, Woo-Sik; Muramatsu, Hiroshi; Chang, Sang-Mok

    2010-01-01

    A novel glucose sensor was constructed, and its analytical potential examined. A chip-type three-electrode system for use in a flow-type electrochemical glucose sensor was fabricated using a UV lithography technique on a glass slide. An Ag/AgCl reference electrode was made by electroplating silver onto a Pt electrode and dipping in a saturated KCl solution for 30 min. In addition, a glucose-sensing electrode was fabricated using a two-photon adsorbed photopolymerization technique with a photo-reactive resin containing a glucose oxidase enzyme, ferrocene mediator, non-ionic surfactant, and carbon nanotubes. The cyclic voltammetry of the potassium ferrocyanide in the Pt sensor system showed a stable electrode condition. The response of the modified Pt sensor confirms the feasibility of using a two-photon adsorbed photopolymerization technique for the easy fabrication of functional biosensors.

  12. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  13. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-05

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.

  14. Supersonic Bare Metal Cluster Beams. Final Report

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1997-10-14

    A major portion of the project involved elucidating the relation between reactivity and the electronic structure of transition-metal (TM) clusters of 2--200 atoms, which required the construction and continuous development of two principal apparati; the Fourier Transform-Ion Cyclotron Resonance (FT-ICR) apparatus, and Ultraviolet Photoelectron Spectroscopy (UPS). Together, these machines have enabled the most detailed probing of the structure and chemical reactivity of TM clusters. Clusters of all the transition metals were included in these studies. Fundamental aspects in chemisorption, reactivity, and heterogeneous catalysis have also become better understood as a result of these experiments for important classes of systems such as H{sub 2}, CO, and CO{sub 2} adsorbed onto clusters of many of the metals listed above. In particular, a correlation was found between reactivity of H{sub 2} with Fe, Co, and Ni clusters and differences between the cluster IP and EA. As recounted in a previous technical report, the DOE`s role in the initial discovery of fullerenes at Rice was central, and from the start investigations were made into metal atoms trapped in the fullerenes cage. More recently, the authors have discovered that 2--4 atoms of La, Y, or Sc can be produced by laser vaporization of composite graphite/metal-oxide disks. This work was largely motivated by the prospects of using such endohedral TM metals for their catalytic activity without the well-known difficulties of effective support media and lack of control over particle size. Thus, while it will certainly be important to discover ways to efficiently scale up production (e.g., the solar generation method explored with DOE support), the efforts have concentrated more on characterization, purification, and manipulation of doped fullerenes. For the past two years, much of the group`s effort has involved the production, purification, and characterization of carbon nanotubes.

  15. PREFACE: Nuclear Cluster Conference; Cluster'07

    NASA Astrophysics Data System (ADS)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  16. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  17. Development of the Molecular Adsorber Coating for Spacecraft and Instrument Interiors

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin

    2011-01-01

    On-orbit Molecular Contamination occurs when materials outgas and deposit onto very sensitive interior surfaces of the spacecraft and instruments. The current solution, Molecular Adsorber Pucks, has disadvantages, which are reviewed. A new innovative solution, Molecular Adsorber Coating (MAC), is currently being formulated, optimized, and tested. It is a sprayable alternative composed of Zeolite-based coating with adsorbing properties.

  18. Silver diffusion over silicon surfaces with adsorbed tin atoms

    SciTech Connect

    Dolbak, A. E. Olshanetskii, B. Z.

    2015-02-15

    Silver diffusion over the (111), (100), and (110) surfaces of silicon with preliminarily adsorbed tin atoms is studied by Auger electron spectroscopy and low-energy electron diffraction. Diffusion is observed only on the surface of Si(111)-2√3 × 2√3-Sn. The diffusion mechanism is established. It is found that the diffusion coefficient depends on the concentration of diffusing atoms. The diffusion coefficient decreases with increasing silver concentration, while the activation energy and the preexponential factor increase.

  19. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  20. Resonant vibrational excitation of adsorbed molecules by electron impact

    NASA Astrophysics Data System (ADS)

    Djamo, V.; Teillet-Billy, D.; Gauyacq, J. P.

    1993-11-01

    The vibrational excitation of N2 molecules adsorbed on a silver surface by low energy electron impact is studied within the newly developed coupled angular mode method. The process involves the formation of a transient negative molecular ion. The results account well for the observations of Demuth and co-workers. They also reveal that most of the vibrational excitation corresponds to electrons scattered into the metal and thus unobservable in a scattering experiment.

  1. Second virial coefficient of helium adsorbed on liquid hydrogen

    SciTech Connect

    Paine, C.G.; Seidel, G.M. )

    1994-08-01

    The nonlinear dependence of the surface energy of liquid hydrogen as a function of the density of helium gas in equilibrium with the liquid surface has been used to determine the second virial coefficient of the two-dimensional gas of helium atoms adsorbed on the surface. The surface energy of both liquid hydrogen and liquid deuterium has been measured in the presence of [sup 4]He and [sup 3]He. The experimental results are in rough agreement with theoretical prediction.

  2. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    SciTech Connect

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  3. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    NASA Astrophysics Data System (ADS)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  4. Heterogeneous Ozonolysis of Surface Adsorbed Lignin Pyrolysis Products

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.

    2012-12-01

    Biomass combustion releases semi-volatile organic compounds into the troposphere, including many phenols and methoxyphenols as the result of lignin pyrolysis. Given their relatively low vapor pressures, these compounds readily adsorb on inorganic and organic aerosol substrates where they may alter aerosol properties and undergo heterogeneous chemistry. We use infrared spectroscopy (DRIFTS and ATR-FTIR) to monitor the adsorption and subsequent heterogeneous ozonolysis of model lignin pyrolysis products, including catechol, eugenol, and 4-propylguaiacol. Ozonolysis reaction kinetics were compared on various inorganic substrates - such as Al2O3 and NaCl, which serve as mineral and sea salt aerosol substrates, respectively - and as a function of ozone concentration and relative humidity. Following in situ FTIR analysis, the adsorbed organics were extracted and analyzed using gas chromatography-mass spectroscopy to identify reaction products and quantify product branching ratios. Ozonolysis of catechol and 4-propylguaiacol readily resulted in ring cleavage forming dicarboxylic acids (e.g., muconic acid). Eugenol ozonolysis proceeded rapidly at the alkene side chain producing homovanillic acid and homovanillin in an approximate 2:1 branching ratio at 0% RH; ring cleavage was also observed. For all lignin pyrolysis products, heterogeneous ozonolysis was faster on NaCl versus Al2O3. Implications for the atmospheric chemistry of semi-volatile methoxylphenols adsorbed on aerosol substrates will be discussed.

  5. Modeling adsorbate-induced property changes of carbon nanotubes.

    PubMed

    Groß, Lynn; Bahlke, Marc Philipp; Steenbock, Torben; Klinke, Christian; Herrmann, Carmen

    2017-05-05

    Because of their potential for chemical functionalization, carbon nanotubes (CNTs) are promising candidates for the development of devices such as nanoscale sensors or transistors with novel gating mechanisms. However, the mechanisms underlying the property changes due to functionalization of CNTs still remain subject to debate. Our goal is to reliably model one possible mechanism for such chemical gating: adsorption directly on the nanotubes. Within a Kohn-Sham density functional theory framework, such systems would ideally be described using periodic boundary conditions. Truncating the tube and saturating the edges in practice often offers a broader selection of approximate exchange-correlation functionals and analysis methods. By comparing the two approaches systematically for NH3 and NO2 adsorbates on semiconducting and metallic CNTs, we find that while structural properties are less sensitive to the details of the model, local properties of the adsorbate may be as sensitive to truncation as they are to the choice of exchange-correlation functional, and are similarly challenging to compute as adsorption energies. This suggests that these adsorbate effects are nonlocal. © 2017 Wiley Periodicals, Inc.

  6. Bayer Electrofilter Fines as Potential Se(VI) Adsorbents

    NASA Astrophysics Data System (ADS)

    Ayala, Julia; Fernández, Begoña

    2015-11-01

    Removal of Se(VI) from an aqueous solution under different conditions was investigated using Bayer electrofilter fines (BEFs), a waste from alumina production, as an adsorbent. Adsorption selenate was studied using batch adsorption experiments as a function of pH (2-12), contact time (0.08-30 h), adsorbent concentration (4-80 g/L), initial selenium concentration (5-203 mg/L), and ionic strength (0-0.1 M NaCl). The results showed that adsorption was significantly affected by pH Se(VI) having the highest affinity for BEFs at pH 3. Sorption Se(VI) reached equilibrium in 4 h. Increasing ionic strength decreased selenate sorption. The adsorption of Se(VI) onto BEFs was found to fit the Langmuir isotherm. Maximum selenium uptake values were calculated as 2.3613 mg/g and 1.5608 mg/g when using adsorbent concentrations of 20 g/L and 40 g/L, respectively.

  7. SPR-MS: from identifying adsorbed molecules to image tissues

    NASA Astrophysics Data System (ADS)

    Masson, Jean-François; Breault-Turcot, Julien; Forest, Simon; Chaurand, Pierre

    2015-03-01

    Surface plasmon resonance (SPR) sensors have become valuable analytical sensors for biomolecule detection. While SPR is heralded with high sensitivity, label-free and real-time detection, nonspecific adsorption and detection of ultralow concentrations remain issues. Nonspecific adsorption can be minimized using adequate surface chemistry. For example, we have employed peptide monolayers to reduce nonspecific adsorption of crude serum or cell lysate. It is important to uncover the nature of molecules nonspecifically adsorbing to surfaces in these biofluids, to further improve understanding of the nonspecific adsorption processes. Mass spectrometry (MS) provides a complementary tool to SPR to identify biomolecule adsorbed to surface. Trypsic digestion of the proteins adsorbed to surfaces led to identification of characteristic peptides from the proteins involved in nonspecific adsorption. Nonspecific adsorption in crude cell lysate results mainly from lipids, as confirmed with SPR and MS but proteins were observed on some surfaces. In another application of SPR and MS, imaging SPR can be used in combination to imaging MS to image tissue sections. Thin sections of mouse liver were inserted in the fluidic chamber of a SPRi instrument and proteins were transferred to the SPRi chip. The SPR chip was then imaged using MALDI imaging MS to identify the biomolecules that were transferred to the SPRi chip.

  8. Structural damages in adsorbed vaccines affected by freezing.

    PubMed

    Kurzątkowski, Wiesław; Kartoğlu, Ümit; Staniszewska, Monika; Górska, Paulina; Krause, Aleksandra; Wysocki, Mirosław Jan

    2013-03-01

    This study was planned to evaluate structural damages in adsorbed vaccines affected by freezing using scanning electron microscopy and X-ray analysis of the elements. Randomly selected 42 vials of eight different types of WHO pre-qualified adsorbed freeze-sensitive vaccines from 10 manufacturers were included in the study. Vaccines were kept at 5 °C. Selected numbers of vials from each type were then exposed to -25 °C for 24 h periods. All samples were evaluated for their structure using scanning electron microscopy, X-ray analysis of the elements and precipitation time. Scanning electron microscopy of vaccines affected by freezing showed either smooth or rough surfaced conglomerates associated with phosphate content of the precipitate. These vaccines precipitated 2-15 times faster compared to non-frozen samples. Non-frozen samples showed uniform flocculent structure either dense or dispersed. X-ray analysis of precipitates in frozen samples confirmed that the precipitate is mainly aluminium clutters. Scanning electron microscopy confirmed that the lattice structure of bonds between adsorbent and the antigen is broken and aluminium forms conglomerates that grow in size and weight. The precipitation time of vaccines affected by freezing is 4.5 times faster on average compared to non-frozen samples. These facts form the basis of the "shake test".

  9. Metal carbon bond energies for adsorbed hydrocarbons from calorimetric data

    NASA Astrophysics Data System (ADS)

    Gross, Heike; Campbell, Charles T.; King, David A.

    2004-11-01

    Single crystal adsorption calorimetry (SCAC) is a powerful new method for measuring adsorption and reaction energies. Particularly for hydrocarbons, where little or no information is available from either experiment or theory on well-defined surfaces, this method can provide crucially needed information. Assignment of the measured calorimetric heats to the appropriate surface reaction yields directly reaction heats and heats of formation of surface species. An important extension using these results is to derive values for metal-carbon bond energies in adsorbed hydrocarbon species. In this paper we review the definition of the bond dissociation energy for a surface species and discuss methodologies and limitations for calculating accurate values of this quantity from measured calorimetric data. As a step in establishing benchmark data for adsorbed hydrocarbons, we calculate a Pt-C σ bond strength, < D(Pt-C)>, of about 245 kJ/mol from data for ethylidyne on Pt{1 1 1}. Two independent methods, the quasiempirical valence bond (QVB) method and an average bond energy (ABE) method, were used to obtain this value, and the two values derived from these two approaches agree quite well. We also discuss the implications and applicability of this value of D(Pt-C) for other adsorbed hydrocarbons and on other Pt surfaces, and estimates of how this bond energy should differ when the C atom's ligands are different.

  10. R&D for graft adsorbents by radiation processing

    NASA Astrophysics Data System (ADS)

    Seko, Noriaki; Tamada, Masao

    Fibrous adsorbent for removal and recovery of metal ions have been synthesized by graft polymerization. In the grafting, the functional groups which have high selectivity against for target metal ions such as Fe, Sc, As, and U are introduced onto nonwoven fabric. When the monomer has a chelate group which makes selective coordination bond to specific these ions, it was directly grafted on the trunk polymer. In the case of precursor monomer having functional groups such as epoxy ring, the grafted trunk fabric is chemically modified. The resultant fibrous adsorbent leads the swift adsorption of metal ions. This property by using fibrous material can reduce the column size of adsorbent in the purification of waste water. The size of purification equipment becomes quite compact and that implies total volume of equipment can reduce. Instead of organic solvent, emulsion system which disperses monomer micelles in water with assistance of surfactant was found to accelerate the graft polymerization. This means the air pollution from organic solvent can be avoided by water system grafting. Furthermore, since the emulsion grafting was highly efficient, the required irradiation dose was considerably lower compared to general organic solvent system. As a result, the emulsion grafting has enormous potential for natural polymer to use as a trunk material for grafting. If a natural polymer such as cellulose can be used, the dependence on petroleum resources, the amount of industrial waste and the generation of carbon dioxide will be reduced to some extent.

  11. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  12. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  13. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons.

    PubMed

    Sánchez-Polo, M; Rivera-Utrilla, J

    2002-09-01

    The present work investigated the effect of surface oxygenated groups on the adsorption of Cd(II) and Hg(II) by activated carbon. A study was undertaken to determine the adsorption isotherms and the influence of the pH on the adsorption of each metallic ion by a series of ozonized activated carbons. In the case of Cd(II), the adsorption capacity and the affinity of the adsorbent augmented with the increase in acid-oxygenated groups on the activated carbon surface. These results imply that electrostatic-type interactions predominate in this adsorption process. The adsorption observed at solution pH values below the pH(PZC) of the carbon indicates that other forces also participate in this process. Ionic exchange between -C pi-H3O+ interaction protons and Cd(II) ions would account for these findings. In the case of Hg(II), the adsorption diminished with an increase in the degree of oxidation of the activated carbon. The presence of electron-withdrawing groups on oxidized carbons decreases the electronic density of their surface, producing a reduction in the adsorbent-adsorbate dispersion interactions and in their reductive capacity, thus decreasing the adsorption of Hg(II) on the activated carbon. At pH values above 3, the pH had no influence on the adsorption of Hg(II) by the activated carbon, confirming that electrostatic interactions do not have a determinant influence on Hg(II) adsorption.

  14. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  15. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  16. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  17. Cluster Physics with Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor

    Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard ΛCDM model, where the total density is dominated by the cosmological constant (Λ) and the matter density by cold dark matter (CDM), structure formation is hierarchical, and clusters grow mostly by merging. Mergers of two massive clusters are the most energetic events in the universe after the Big Bang, hence they provide a unique laboratory to study cluster physics. The two main mass components in clusters behave differently during collisions: the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulence are developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thus our review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clusters is to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses. New high spatial and spectral resolution ground and space based telescopes will come online in the near future. Motivated by these new opportunities, we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  18. Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile TiO(2)(110).

    PubMed

    Madsen, Georg K H; Hammer, Bjørk

    2009-01-28

    The density functional theory is used to examine the electronic structure of small Au clusters, supported on rutile TiO(2)(110) surfaces having subsurface Ti-interstitials. The interstitials reduce the surface and we find that negatively charged gold clusters are stabilized with respect to the stoichiometric surface. The behavior of the open-shell gold clusters can be rationalized in terms of the highest occupied molecular orbitals and the resulting electron affinities. The relative stabilities of closed-shell gold clusters led to recent disagreements in the literature. We show that they are very dependent on the density functional used. As expected, a redshift in the CO stretch vibration is calculated for CO adsorbed on a negatively charged cluster. Somewhat surprisingly a larger redshift is found for CO adsorbed on an overall positively charged Au(3) cluster. This is explained by CO being a local probe of the individual Au charges and one Au atom having an electron accumulation.

  19. Gold-bismuth clusters.

    PubMed

    Martínez, Ana

    2014-08-07

    Metal clusters have interesting characteristics, such as the relationship between properties and size of the cluster. This is not always apparent, so theoretical studies can provide relevant information. In this report, optimized structures and electron donor-acceptor properties of AunBim clusters are reported (n + m = 2-7, 20). Density functional theory calculations were performed to obtain optimized structures. The ground states of gold clusters formed with up to seven atoms are planar. The presence of Bi modifies the structure, and the clusters become 3-D. Several optimized geometries have at least one Bi atom bonded to gold or bismuth atoms and form structures similar to NH3. This fragment is also present in clusters with 20 atoms, where the formation of Au3Bi stabilizes the structures. Bismuth clusters are better electron donors and worse electron acceptors than gold clusters. Mixed clusters fall in between these two extremes. The presence of Bi atoms in gold clusters modifies the electron donor-acceptor properties of the clusters, but there is no correlation between the number of Bi atoms present in the cluster and the capacity for donating electrons. The effect of planarity in Au19Bi clusters is the same as that in Au20 clusters. The properties of pure gold clusters are certainly interesting, but clusters formed by Bi and Au are more important because the introduction of different atoms modifies the geometry, the stability, and consequently the physical and chemical properties. Apparently, the presence of Bi may increase the reactivity of gold clusters, but further studies are necessary to corroborate this hypothesis.

  20. Structure and Redox Properties of 5-Amino-3-nitro-1H-1,2,4-triazole (ANTA) Adsorbed on a Silica Surface: A DFT M05 Computational Study.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynska, Danuta; Leszczynski, Jerzy

    2015-07-23

    A cluster approximation was applied at the M05/tzvp level to model an adsorption of 5-amino-3-nitro-1H-1,2,4-triazole (ANTA) on the (001) surface of α-quartz. Structures of the obtained ANTA-silica complexes confirm a nearly parallel orientation of the nitro compound toward the surface. The atoms in molecules (AIM) method was applied to analyze binding between ANTA and the silica surface. Attachment or loss of an electron was found to lead to a significant deviation from coplanarity in the complexes and to a strengthening of a hydrogen bonding. Redox properties of the adsorbed ANTA were compared with those of gas-phase and hydrated species by calculation of the ionization potential, electron affinity, oxidation and reduction Gibbs free energies, and oxidation and reduction potentials. It was shown that the adsorbed ANTA has a lower ability to undergo redox transformations as compared to that of the hydrated one.

  1. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood

    PubMed Central

    Heuck, Claus-Chr.

    2011-01-01

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca++ and Mg++ inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density. PMID:21289994

  2. Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces

    NASA Astrophysics Data System (ADS)

    Pandey, Lalit M.; Pattanayek, Sudip K.

    2013-01-01

    We have studied the adsorption of BSA and fibrinogen from their mixture onto surfaces with mixed self-assembled monolayer (SAM) of amine and octyl (ratio 1:1) and hybrid SAM. The properties of adsorbed proteins obtained from individual protein solution differ considerably from the properties of the adsorbed proteins obtained from mixture of proteins at same total concentration. The adsorbed amount of proteins is lesser and the adsorbed protein is more elastic if it is adsorbing from mixture of proteins. It is found that with increasing total protein concentration, adsorbed amount increases and elasticity of the adsorbed proteins decreases. The apparent displacements of BSA with Fb are observed on the graphs of change in frequency with time, which are obtained from quartz crystal microbalance.

  3. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood.

    PubMed

    Heuck, Claus-Chr

    2011-01-24

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca(++) and Mg(++) inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density.

  4. Nuclear Clusters in Astrophysics

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, H.; Kahl, D.; Wakabayashi, Y.; Yamaguchi, H.; Teranishi, T.; Iwasa, N.; Komatsubara, T.; Kato, S.; Khiem, Le H.

    2010-03-01

    The role of nuclear clustering is discussed for nucleosynthesis in stellar evolution with Cluster Nucleosynthesis Diagram (CND) proposed before. Special emphasis is placed on α-induced stellar reactions together with molecular states for O and C burning.

  5. Matlab Cluster Ensemble Toolbox

    SciTech Connect

    Sapio, Vincent De; Kegelmeyer, Philip

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.

  6. Activation and adsorption of CO{sub 2} on copper surfaces and clusters

    SciTech Connect

    Gautam, Seema; Dharmvir, Keya; Goel, Neetu

    2014-04-24

    The activation and adsorption of CO{sub 2} over Cu{sub n} clusters have been investigated by first principle calculations. Results of these calculations are compared with the previous studies of adsorption of CO{sub 2} on Cu (hkl) surfaces [Wang et al. Surface Science 570 (2004) 205–217]. We find that CO{sub 2} is preferentially adsorbed over the clusters in comparison with Cu (hkl) surfaces. The Cu13 cluster in particular dissociates the CO{sub 2} molecule adsorbed on the one of the caps of the icosahedron into CO and atomic oxygen. This activated configuration can act as a precursor to reactions leading to hydrocarbon fuels from CO{sub 2}.

  7. A DFT study on the adsorption of CO and CO{sub 2} molecules on Pt{sub 4} and Ir{sub 4} clusters

    SciTech Connect

    Munieswaran, P.; Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh; Saranya, C.; Mahendran, M.

    2015-06-24

    We analyze the electronic structure and adsorption binding energy of CO and CO{sub 2} molecules adsorbed on Ir{sub 4} and Pt{sub 4} clusters by using Density functional theory (DFT). It is found that the Ir{sub 4} cluster has more adsorption binding energy than Pt{sub 4} cluster. We show that the Ir and Ir - supported materials are good catalytic materials and could be useful for gas sensor applications.

  8. [Pathophysiology of cluster headache].

    PubMed

    Donnet, Anne

    2015-11-01

    The aetiology of cluster headache is partially unknown. Three areas are involved in the pathogenesis of cluster headache: the trigeminal nociceptive pathways, the autonomic system and the hypothalamus. The cluster headache attack involves activation of the trigeminal autonomic reflex. A dysfunction located in posterior hypothalamic gray matter is probably pivotal in the process. There is a probable association between smoke exposure, a possible genetic predisposition and the development of cluster headache.

  9. Hydrogen spillover on DV (555-777) graphene – vanadium cluster system: First principles study

    SciTech Connect

    Kumar, E. Mathan E-mail: mathanranjitha@gmail.com; Thapa, Ranjit E-mail: mathanranjitha@gmail.com; P, Sabarikirishwaran

    2015-06-24

    Using dispersion corrected density functional theory (DFT+D), the interaction of Vanadium adatom and cluster with divacancy (555-777) defective graphene sheet has been studied elaborately. We explore the prospect of hydrogen storage on V{sub 4} cluster adsorbed divacancy graphene system. It has been observed that V{sub 4} cluster (acting as a catalyst) can dissociate the H{sub 2} molecule into H atoms with very low barrier energy. We introduce the spillover of the atomic hydrogen throughout the surface via external mediator gallane (GaH{sub 3}) to form a hydrogenated system.

  10. Clustering algorithm studies

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2001-07-01

    An object-oriented framework for undertaking clustering algorithm studies has been developed. We present here the definitions for the abstract Cells and Clusters as well as the interface for the algorithm. We intend to use this framework to investigate the interplay between various clustering algorithms and the resulting jet reconstruction efficiency and energy resolutions to assist in the design of the calorimeter detector.

  11. Size to density coupling of supported metallic clusters.

    PubMed

    Gross, Elad; Asscher, Micha

    2009-01-28

    One of the difficulties in standard growth of metallic nano-clusters on oxide substrates as model catalysts is the strong coupling between clusters size and density. Employing multiple cycles, amorphous solid water-buffer layer assisted growth (ASW-BLAG) procedure, we demonstrate how the size to density coupling can be eliminated under certain conditions. In this study, gold clusters were deposited on a SiO2/Si(100) substrate in UHV, using ASW as a buffer layer assisting aggregation and growth. The clusters were imaged ex situ by tapping mode atomic force microscope (AFM) and high-resolution scanning electron microscope (HR-SEM). In situ Auger electron spectroscopy (AES) measurements have led to independent evaluation of the gold covered area. In order to increase the clusters density we have introduced a multiple BLAG procedure, in which, a BALG cycle is repeated up to 10 times. The cluster density can be increased this way by more than five fold without changing their size. Above a specific number of cycles, however, the cluster density reaches saturation and a gradual increase in clusters size is observed. Larger clusters correlate with lower saturation density following multiple BLAG cycles. This observation is explained in terms of long range cluster-cluster attraction between clusters already on the substrate and those approaching in the next BLAG cycle. This attraction is more pronounced as the clusters become larger. We have shown that at saturation density, inter-cluster distance can not be smaller than 20 nm for clusters 4 nm in diameter or larger. Employing two consecutive BLAG cycles, characterized by different parameters (metal dosage and buffer layer thickness) result in a bi-modal size distribution. Moreover, it is demonstrated that one can prepare this way co-adsorbed bi-metallic film of e.g. Au and Pd clusters, with specific density and size on the same substrate. The ASW-BLAG procedure is thus expected to introduce a new pathway for tailor made

  12. Adsorption equilibrium and dynamics of gasoline vapors onto polymeric adsorbents.

    PubMed

    Jia, Lijuan; Yu, Weihua; Long, Chao; Li, Aimin

    2014-03-01

    The emission of gasoline vapors is becoming a significant environmental problem especially for the population-dense area and also results in a significant economic loss. In this study, adsorption equilibrium and dynamics of gasoline vapors onto macroporous and hypercrosslinked polymeric resins at 308 K were investigated and compared with commercial activated carbon (NucharWV-A 1100). The results showed that the equilibrium and breakthrough adsorption capacities of virgin macroporous and hypercrosslinked polymeric resins were lower than virgin-activated carbon. Compared with origin adsorbents, however, the breakthrough adsorption capacities of the regenerated activated carbon for gasoline vapors decreased by 58.5 % and 61.3 % when the initial concentration of gasoline vapors were 700 and 1,400 mg/L, while those of macroporous and hypercrosslinked resins decreased by 17.4 % and 17.5 %, and 46.5 % and 45.5 %, respectively. Due to the specific bimodal property in the region of micropore (0.5-2.0 nm) and meso-macropore (30-70 nm), the regenerated hypercrosslinked polymeric resin exhibited the comparable breakthrough adsorption capacities with the regenerated activated carbon at the initial concentration of 700 mg/L, and even higher when the initial concentration of gasoline vapors was 1,400 mg/L. In addition, 90 % of relative humidity had ignorable effect on the adsorption of gasoline vapors on hypercrosslinked polymeric resin. Taken together, it is expected that hypercrosslinked polymeric adsorbent would be a promising adsorbent for the removal of gasoline vapors from gas streams.

  13. Controlling the magnetism of adsorbed metal-organic molecules

    NASA Astrophysics Data System (ADS)

    Kuch, Wolfgang; Bernien, Matthias

    2017-01-01

    Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule’s magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.

  14. Controlling the magnetism of adsorbed metal-organic molecules.

    PubMed

    Kuch, Wolfgang; Bernien, Matthias

    2017-01-18

    Gaining control on the size or the direction of the magnetic moment of adsorbed metal-organic molecules constitutes an important step towards the realization of a surface-mounted molecular spin electronics. Such control can be gained by taking advantage of interactions of the molecule's magnetic moment with the environment. The paramagnetic moments of adsorbed metal-organic molecules, for example, can be controlled by the interaction with magnetically ordered substrates. Metalloporphyrins and -phthalocyanines display a quasi-planar geometry, allowing the central metal ion to interact with substrate electronic states. This can lead to magnetic coupling with a ferromagnetic or even antiferromagnetic substrate. The molecule-substrate coupling can be mediated and controlled by insertion layers such as oxygen atoms, graphene, or nonmagnetic metal layers. Control on the magnetic properties of adsorbed metalloporphyrins or -phthalocyanines can also be gained by on-surface chemical modification of the molecules. The magnetic moment or the magnetic coupling to ferromagnetic substrates can be changed by adsorption and thermal desorption of small molecules that interact with the fourfold-coordinated metal center via the remaining axial coordination site. Spin-crossover molecules, which possess a metastable spin state that can be switched by external stimuli such as temperature or light, are another promising class of candidates for control of magnetic properties. However, the immobilization of such molecules on a solid surface often results in a quench of the spin transition due to the interaction with the substrate. We present examples of Fe(II) spin-crossover complexes in direct contact with a solid surface that undergo a reversible spin-crossover transition as a function of temperature, by illumination with visible light, or can be switched by the tip of a scanning tunneling microscope.

  15. Density matrix treatment of combined instantaneous and delayed dissipation for an electronically excited adsorbate on a solid surface

    NASA Astrophysics Data System (ADS)

    Leathers, Andrew S.; Micha, David A.; Kilin, Dmitri S.

    2009-10-01

    The interaction of an excited adsorbate with a medium undergoing electronic and vibrational transitions leads to fast dissipation due to electronic energy relaxation and slow (or delayed) dissipation from vibrational energy relaxation. A theoretical and computational treatment of these phenomena has been done in terms of a reduced density matrix satisfying a generalized Liouville-von Neumann equation, with instantaneous dissipation constructed from state-to-state transition rates, and delayed dissipation given by a memory term derived from the time-correlation function (TCF) of atomic displacements in the medium. Two representative applications are presented here, where electronic excitation may enhance vibrational relaxation of an adsorbate. They involve femtosecond excitation of (a) a CO molecule adsorbed on the Cu(001) metal surface and (b) a metal cluster on a semiconductor surface, Ag3Si(111):H, both electronically excited by visible light and undergoing electron transfer and dissipative dynamics by electronic and vibrational relaxations. Models have been parametrized in both cases from electronic structure calculations and known TCFs for the medium, which are slowly decaying in case (a) and fast decaying in case (b). This requires different numerical procedures in the solution of the integrodifferential equations for the reduced density matrix, which have been solved with an extension of the Runge-Kutta algorithm. Results for the populations of vibronic states versus time show that they oscillate due to vibrational coupling through dissipative interaction with the substrate and show quantum coherence. The total population of electronic states is, however, little affected by vibrational motions. Vibrational relaxation is important only at very long times to establish thermal equilibrium.

  16. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.

  17. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  18. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  19. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate

    USGS Publications Warehouse

    Zobrist, J.; Dowdle, P.R.; Davis, J.A.; Oremland, R.S.

    2000-01-01

    Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite, a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was influenced by the method in which arsenate became associated with the mineral phases and may have been strongly coupled with arsenate desorption rates. The extent of release of arsenite into solution was governed by adsorption of arsenite onto the ferrihydrite or alumina phases. The results of these experiments have interpretive significance to the mobilization of arsenic in large alluvial aquifers, such as those of the Ganges in India and Bangladesh, and in the hyporheic zones of contaminated streams.Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was

  20. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  1. Contaminant removal from enclosed atmospheres by regenerable adsorbents

    NASA Technical Reports Server (NTRS)

    Goldsmith, R. L.; Mcnulty, K. J.; Freedland, G. M.; Turk, A.; Nwankwo, J.

    1974-01-01

    A system for removing contaminants from spacecraft atmospheres was studied, which utilizes catalyst-impregnated activated carbon followed by in-situ regeneration by low-temperature catalytic oxidation of the adsorbed contaminants. Platinum was deposited on activated carbon by liquid phase impregnation with chloroplatinic acid, followed by drying and high-temperature reduction. Results were obtained for the seven selected spacecraft contaminants by means of three experimental test systems. The results indicate that the contaminants could be removed by oxidation with very little loss in adsorptive capacity. The advantages of a catalyst-impregnated carbon for oxidative regeneration are found to be significant enough to warrent its use.

  2. Detection of adsorbed water and hydroxyl on the Moon.

    PubMed

    Clark, Roger N

    2009-10-23

    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  3. Temperature programmed desorption of weakly bound adsorbates on Au(111)

    NASA Astrophysics Data System (ADS)

    Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim

    2016-08-01

    We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.

  4. Detection of adsorbed water and hydroxyl on the moon

    USGS Publications Warehouse

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  5. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  6. Do methanethiol adsorbates on the Au(111) surface dissociate?

    PubMed

    Zhou, Jian-Ge; Hagelberg, Frank

    2006-07-28

    The interaction of methanethiol molecules CH3SH with the Au(111) surface is investigated, and it is found for the first time that the S-H bond remains intact when the methanethiol molecules are adsorbed on the regular Au(111) surface. However, it breaks if defects are present in the Au(111) surface. At low coverage, the fcc region is favored for S atom adsorption, but at saturated coverage the adsorption energies at various sites are almost isoenergetic. The presented calculations show that a methanethiol layer on the regular Au(111) surface does not dimerize.

  7. Do Methanethiol Adsorbates on the Au(111) Surface Dissociate?

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Hagelberg, Frank

    2006-07-01

    The interaction of methanethiol molecules CH3SH with the Au(111) surface is investigated, and it is found for the first time that the S-H bond remains intact when the methanethiol molecules are adsorbed on the regular Au(111) surface. However, it breaks if defects are present in the Au(111) surface. At low coverage, the fcc region is favored for S atom adsorption, but at saturated coverage the adsorption energies at various sites are almost isoenergetic. The presented calculations show that a methanethiol layer on the regular Au(111) surface does not dimerize.

  8. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  9. Behavior of adsorbed Poly-A onto sodium montmorillonite

    SciTech Connect

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  10. Reactions of silver atoms and clusters in Ag-NaA zeolites

    NASA Astrophysics Data System (ADS)

    Waşowicz, Tomasz; Michalik, Jacek

    The agglomeration of silver in hydrated and dehydrated Ag-NaA zeolites gamma irradiated at 77 K has been studied by ESR. The agglomeration process is radiation-induced in hydrated samples whereas in dehydrated ones is initiated by thermal autoreduction. In the result different silver clusters are stabilized at room temperature, Ag 2+3…Ag + becomes stabilized in hydrated zeolites and Ag n+ 6 in dehydrated ones. Silver hexamers have been reacted with various molecular adsorbates. The reaction rate depends on molecular size and nucleophilic character of adsorbate. In the presence of water and small alcohols silver hexamers are transformed to the elongated tetramers.

  11. NISXW study of Si adsorbed on an Al-Co-Ni quasicrystal

    NASA Astrophysics Data System (ADS)

    Stanisha, Nick; Chaudhuri, Anindita; Ledieu, Julian; Li, Hsin; Su, Stephanie; Mayer, Andreas; Lovelock, Kevin; Jones, Robert; Wearing, Lisa; Woodruff, David; Diehl, Renee

    2013-03-01

    The normal incidence standing x-ray wavefield (NISXW) technique has never before been applied to the determination of adsorption structures on quasicrystals, even though it is quite clear that, under the right conditions, x-ray standing waves do exist in quasicrystals. This omission may be due to a misconception that the relationship between the phase of the standing waves and the atoms at a quasicrystal surface is arbitrary. We have performed a NISXW experiment for the adsorption of Si atoms on the nominally 10-fold surface of the decagonal Al-Co-Ni quasicrystal. NISXW spectra were obtained for a Si coverage of about 0.3, for two different angles of incidence: normal to the 10-fold surface, and at an angle of about 60 ∘ from the surface normal. These angles correspond to two strong x-ray reflections of the quasicrystal. The intensity of the Si 1s photoemission signal was measured in order to determine the location of the Si atoms.order to accurately model the 5-fold symmetry of the surface, our analysis employed a 200 Å x 200 Å x 8 Å structure model for the quasicrystal. The results indicate that the Si atoms have an average height of 1.80 Å above the surface, and are arranged in 6-atom pentagonal clusters centered at points of 5-fold symmetry. This study demonstrates the feasibility for using NISXW as a structural tool for adsorbed atoms or molecules on quasicrystal surfaces.

  12. Density matrix calculations of gaseous and adsorbate dynamics in electronically excited molecular systems

    NASA Astrophysics Data System (ADS)

    Micha, David A.

    This contribution deals with two approaches for localized phenomena in excited many-atom systems. The first approach develops a quantum quasi-classical treatment for the density operator, including all atoms. It is based on a partial Wigner representation and is illustrated with applications to photodissociation of NaI, and to light emission of excited Li interacting with a He cluster. This second application describes the direct dynamics with a time-dependent electronic density matrix, expanded in a basis set of atomic functions. It shows that such an approach can deal with electronically excited many-atom systems involving tens of quantum states and hundreds of classical variables. The second approach makes use of the reduced density operator description for a system in a medium. This allows for dissipative dynamics, which can be instantaneous or delayed. An application is presented for femtosecond photodesorption using a Markovian dissipation and construction of the density operator from density amplitudes, for CO/Cu(001). A second application of a reduced density operator has been made to vibrational relaxation of adsorbates, solving integrodifferential equations to compare delayed, instantaneous, and Markovian dissipation. It is concluded that delayed dissipation is needed at short times and that a Markovian treatment is suitable for the interpretation of cross-sectional measurements that involve long-term dynamics.

  13. Acetylene hydrogenation on anatase TiO2(101) supported Pd4 cluster: oxygen deficiency effect.

    PubMed

    Yang, Jie; Cao, Li-Xin; Wang, Gui-Chang

    2012-07-01

    Acetylene hydrogenation on both the perfect and oxygen defective anatase TiO(2)(101) surfaces supported Pd(4) cluster has been studied using density functional theory calculations with a Hubbard U correction (DFT + U). The adsorbed Pd(4) cluster on the perfect surface prefers to form a tetrahedral structure, while it likely moves to the oxygen defective site to form a distorted tetrahedral structure by removing a bridging oxygen atom. For the defective surface, it exhibits a stronger ability to capture Pd(4) cluster as charge transfer is significantly performed due to the oxygen deficiency. Moreover, it is found that the oxygen defective surface shows higher activity for acetylene hydrogenation, and the possible reason may lie in the weaker adsorption strength between the Pd cluster and the adsorbed molecules on the defective surface as compared to the case on the perfect surface.

  14. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  15. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  16. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule?

    PubMed

    Aleksandrov, Hristiyan A; Neyman, Konstantin M; Hadjiivanov, Konstantin I; Vayssilov, Georgi N

    2016-08-10

    The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt(0), with C-O vibrational frequencies in the region 2018-2077 cm(-1), suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm(-1). This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches.

  17. Unconventional methods for clustering

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  18. Tunable surface charge of ZnS:Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater.

    PubMed

    Wang, Yongjing; Chen, Dagui; Wang, Yandi; Huang, Feng; Hu, Qichang; Lin, Zhang

    2012-06-21

    A novel environmentally friendly nano-adsorbent is developed by doping Cu(+) cations into the lattice of ZnS microspheres. The adsorbent shows selective adsorbability for cationic dyes in low concentrations in wastewater. The adsorbed dye could be successfully eluted with alcohol, resulting in a 1000 fold enrichment of the dye solution.

  19. Self-Assembly and Scanning Tunneling Microscopy Tip-Induced Motion of Ferrocene Adamantane Trithiolate Adsorbed on Au(111)

    NASA Astrophysics Data System (ADS)

    Katano, Satoshi; Kim, Yousoo; Kitagawa, Toshikazu; Kawai, Maki

    2008-07-01

    We have studied the self-assembled monolayers (SAMs) of adamantane-based trithiolate, which consists of a ferrocene derivative at the head (ferrocene adamantane trithiolate; ferrocene-ATT), on Au(111) using low temperature scanning tunneling microscopy (STM). It was found that the adsorption behavior of ferrocene-ATT is similar to that of bromine adamantane trithiolate (BATT) adsorbed on Au(111). This indicates that adsorption of adamantane-based trithiol is controlled by three legs (CH2S) connected to bridgehead positions of the adamantane cage. Molecules, which form an ordered structure, are stable under low-bias-voltage scanning, i.e., a sample bias voltage lower than 1 V. STM tip-induced diffusion, however, was observed both for small clustered molecules and for molecules bound around the edge of an ordered molecular island. Furthermore, applying a high bias voltage (5 V) resulted in the destruction of SAMs structures.

  20. Mercury(II) removal with modified magnetic chitosan adsorbents.

    PubMed

    Kyzas, George Z; Deliyanni, Eleni A

    2013-05-24

    Two modified chitosan derivatives were prepared in order to compare their adsorption properties for Hg(II) removal from aqueous solutions. The one chitosan adsorbent (CS) is only cross-linked with glutaraldehyde, while the other (CSm), which is magnetic, is cross-linked with glutaraldehyde and functionalized with magnetic nanoparticles (Fe₃O₄). Many possible interactions between materials and Hg(II) were observed after adsorption and explained via characterization with various techniques (SEM/EDAX, FTIR, XRD, DTG, DTA, VSM, swelling tests). The adsorption evaluation was done studying various parameters as the effect of pH (optimum value 5 for adsorption and 2 for desorption), contact time (fitting to pseudo-first, -second order and Elovich equations), temperature (isotherms at 25, 45, 65 °C), in line with a brief thermodynamic analysis (ΔG⁰ < 0, ΔH⁰ > 0, ΔS⁰ > 0). The maximum adsorption capacity (fitting with Langmuir and Freundlich model) of CS and CSm at 25 °C was 145 and 152 mg/g, respectively. The reuse ability of the adsorbents prepared was confirmed with sequential cycles of adsorption-desorption.

  1. Adsorbate electric fields on a cryogenic atom chip.

    PubMed

    Chan, K S; Siercke, M; Hufnagel, C; Dumke, R

    2014-01-17

    We investigate the behavior of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency, we measure the field strength versus distance from a 1 mm square of yttrium barium copper oxide (YBCO) patterned onto a yttria stabilized zirconia chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes.

  2. Sustainable conversion of agro-wastes into useful adsorbents

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Owojuyigbe, Emmanuel Seun; Babatunde, Monsurat Abiodun; Folaranmi, Folasayo Eunice

    2016-11-01

    Preparation and characterization of raw and activated carbon derived from three different selected agricultural wastes: kola nut pod raw and activated (KNPR and KNPA), bean husk raw and activated (BHR and BHA) and coconut husk raw and activated (CHR and CHA) were investigated, respectively. Influences of carbonization and acid activation on the activated carbon were investigated using SEM, FTIR, EDX, pHpzc and Boehm titration techniques, respectively. Carbonization was done at 350 °C for 2 h followed by activation with 0.3 M H3PO4 (ortho-phosphoric acid). Results obtained from SEM, FTIR, and EDX revealed that, carbonization followed by acid activation had a significant influence on morphology and elemental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acid treatment, FTIR spectra revealed reduction, broadening, disappearance or appearance of new peaks after acid activation. EDX results showed highest percentage of carbon by atom respectively in the order BHA > KNPA > CHA respectively. The pHpzc was found to be 5.32, 4.57 and 3.69 for KNPA, BHA and CHA, respectively. Boehm titration result compliments that of pHpzc, indicating that the surfaces of the prepared adsorbents are predominantly acidic. This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily available activated carbons, thereby ensuring more affordable water and effluent treatment adsorbents.

  3. Waste metal hydroxide sludge as adsorbent for a reactive dye.

    PubMed

    Santos, Sílvia C R; Vílar, Vítor J P; Boaventura, Rui A R

    2008-05-30

    An industrial waste sludge mainly composed by metal hydroxides was used as a low-cost adsorbent for removing a reactive textile dye (Remazol Brilliant Blue) in solution. Characterization of this waste material included chemical composition, pH(ZPC) determination, particle size distribution, physical textural properties and metals mobility under different pH conditions. Dye adsorption equilibrium isotherms were determined at 25 and 35 degrees C and pH of 4, 7 and 10 revealing reasonably fits to Langmuir and Freundlich models. At 25 degrees C and pH 7, Langmuir fit indicates a maximum adsorption capacity of 91.0mg/g. An adsorptive ion-exchange mechanism was identified from desorption studies. Batch kinetic experiments were also conducted at different initial dye concentration, temperature, adsorbent dosage and pH. A pseudo-second-order model showed good agreement with experimental data. LDF approximation model was used to estimate homogeneous solid diffusion coefficients and the effective pore diffusivities. Additionally, a simulated real effluent containing the selected dye, salts and dyeing auxiliary chemicals, was also used in equilibrium and kinetic experiments and the adsorption performance was compared with aqueous dye solutions.

  4. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    PubMed

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  5. Solvent cleanup using base-treated silica gel solid adsorbent

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO/sub 3/, dibutyl phosphate (DBP), UO/sub 2//sup 2 +/, Pu/sup 4 +/, various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO/sub 3/ waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables.

  6. Solubility of adsorbed sulfate in coastal plain soils

    SciTech Connect

    Camberato, J.J.; Kamprath, E.J.

    1986-10-01

    Ultisols of the Atlantic Coastal Plain have sandy surface horizons low in Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable SO/sub 4//sup 2 -/ and clayey subsoil horizons high in extractable SO/sub 4//sup 2 -/. The capacity of the subsoils to supply adequate S is dependent upon the solubility of the extractable SO/sub 4//sup 2 -/. To assess the solubility of adsorbed SO/sub 4//sup 2 -/ in Coastal Plain soils, the authors collected samples from the Ap and B horizons of 12 sites and determined Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable and water-soluble SO/sub 4//sup 2 -/. The Ap horizon contained 2 to 7 mg kg/sup -1/ of Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable SO/sub 4//sup 2 -/-S, which ranged from 33 to 100% water soluble, with an average of 79%. The B horizon Ca(H/sub 2/PO/sub 4/)/sub 2/-extractable SO/sub 4//sup 2 -/-S levels ranged from 26 to 142 mg kg/sup -1/ soil. The solubility of the adsorbed SO/sub 4//sup 2 -/-S in the B horizons ranged from 0.203 to 0.359 mM L/sup -1/ SO/sub 4//sup 2 -/-S, which is adequate to supply plant requirements for S if plant roots can gain access to the B horizon.

  7. Graphene protected surface state on Ir(111) with adsorbed lithium

    NASA Astrophysics Data System (ADS)

    Lazic, Predrag; Pervan, Petar; Petrovic, Marin; Srut-Rakic, Iva; Pletikosic, Ivo; Kralj, Marko; Milun, Milorad; Valla, Tonica

    It is well known that electronic surface states (SS) get strongly perturbed upon the chemical adsorption of very small amount of adsorbates. Adsorption of lithium atoms on Ir(111) is no exception to that rule. Iridium SS gets strongly perturbed and is practically eradicated - it can not be seen as a sharp peak in the ARPES measurement. However, if the system is prepared with graphene on top of Ir/Li system, the iridium SS reappears. We present a combined experimental and theoretical study of the described system. Using the density functional theory calculations for large unit cells with disordered lithium atoms geometries on the (111) surface of iridium we were able to reproduce the results of the ARPES measurements - showing clearly that the SS signal is strongly suppressed when lithium is adsorbed, while it is almost unchanged when lithium is intercalated (i.e. with graphene on top of it). Looking at the projected density of states we constructed a rather simple model explaining this behavior which seems to be general.

  8. Mechanisms of Sulfur Poisoning of NOx Adsorber Materials

    SciTech Connect

    Kim, Do Heui; Chin, Ya-Huei; Muntean, George G.; Peden, Charles HF; Stork, Kevin; Broering, L. C.; Stafford, R. J.; Stang, J. H.; Chen, H.-Y.; Cooper, B.; Hess, H.; Lafyatis, D.

    2004-10-01

    This annual report will review progress of the initial 4 months of a three-year effort between Cummins Engine Company and Pacific Northwest National Laboratory to understand and improve the performance and sulfur tolerance of the materials used in the NOx adsorber after-treatment technology in order to meet both performance and reliability standards required for diesel engines. The goal of this project is to enable NOx after-treatment technologies that will meet both EPA 2007 emission standards and customer cost, reliability and durability requirements. The project will consist of three phases. First, the efforts will focus on understanding the current limitation of capture, regeneration and durability of existing NOx adsorber materials, especially with respect to their sulfur tolerance. With this developing understanding, efforts will also be focused on the optimization of the NOx absorber chemical and material properties to increase performance and durability over many regeneration cycles. We anticipate that improved materials will be tested and evaluated, in partnership with Cummins, on diesel vehicle engines over expected operating conditions.

  9. Cellulose: A review as natural, modified and activated carbon adsorbent.

    PubMed

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose.

  10. Fly ash adsorbents for multi-cation wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Isac, Luminita; Duta, Anca

    2012-06-01

    Class "F" fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 proved good adsorbent properties, and was further used for obtaining a new substrate with good adsorption capacity for heavy metals from multi-cation wastewater treatment. Firstly, the new adsorbent was characterized by AFM, XRD, DSC, FTIR and the surface energy was evaluated by contact angle measurements. The experimental data suggested that the new type of substrate is predominant crystalline with highly polar surface. The substrate was used for removing the Pb2+, Cd2+ and Zn2+ cations from mixed solutions. The results show high efficiency and selective adsorption the Pb2+ and Zn2+ cations. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The Langmuir and Freundlich models were used to describe the processes. The pseudo-second order kinetics could well model all the processes, indicating a surface concentration of the adsorption sites with the same order of magnitude as the cation concentrations.

  11. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta).

    PubMed

    González, Aridane G; Jimenez-Villacorta, Felix; Beike, Anna K; Reski, Ralf; Adamo, Paola; Pokrovsky, Oleg S

    2016-05-05

    The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05-0.06 mmolg(dry)(-1) and a maximal adsorption capacity of 0.93-1.25 mmolg(dry)(-1) for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu(2+) yielded ∼20% of Cu(I) in the form of Cu-S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu(2+).

  12. Structure of CO2 adsorbed on the KCl(100) surface.

    PubMed

    Traeger, Franziska; Hadnadjev, Milica; Vogt, Jochen; Weiss, Helmut

    2011-06-30

    The structure and dynamics of the adsorbate CO(2)/KCl(100) from a diluted phase to a saturated monolayer have been investigated with He atom scattering (HAS), low-energy electron diffraction (LEED), and polarization dependent infrared spectroscopy (PIRS). Two adsorbate phases with different CO(2) coverage have been found. The low-coverage phase is disordered at temperatures near 80 K and becomes at least partially ordered at lower temperatures, characterized by a (2√2×√2)R45° diffraction pattern. The saturated 2D phase has a high long-range order and exhibits (6√2×√2)R45° symmetry. Its isosteric heat of adsorption is 26 ± 4 kJ mol(-1). According to PIRS, the molecules are oriented nearly parallel to the surface, the average tilt angle in the saturated monolayer phase is 10° with respect to the surface plane. For both phases, structure models are proposed by means of potential calculations. For the saturated monolayer phase, a striped herringbone structure with 12 inequivalent molecules is deduced. The simulation of infrared spectra based on the proposed structures and the vibrational exciton approach gives reasonable agreement between experimental and simulated infrared spectra.

  13. Structure of Inert Gases Adsorbed in MCM-41

    NASA Astrophysics Data System (ADS)

    Evans, Dylan; Sokol, Paul

    One-dimensional quantum liquids of 3He or 4He have generated recent interest for investigation in the Luttinger liquid model. Unfortunately, current studies lack a clear demonstration of definitively one-dimensional behavior. We propose using the templated, porous material, MCM-41, as a host for an atomic Luttinger liquid. In general, the pores of MCM-41 are too wide to provide a strictly one-dimensional environment, so we investigate preplating these pores with inert gases to effectively reduce their diameter. We present the results of studies of the structure of inert gases in MCM-41. Nitrogen sorption isotherms were used to characterize the sample. Then, using inert gases as adsorbates, we determined the minimum effective pore diameter that can be achieved in our sample before capillary condensation takes over. X-ray powder diffraction (XRD) was performed on the ideally preplated sample to investigate the structure of the adsorbates in the nanopores. The XRD measurements are compared to simulations of core-shell cylinder model scattering, and the validity of the model is assessed. The prospects for creating a definitively one-dimensional channel for the application of studying the structure and dynamics of helium confined in one dimension are discussed. This work was supported by the National Science Foundation under Grant DGE-1069091.

  14. Palladium dimers adsorbed on graphene: A DFT study

    SciTech Connect

    Kaur, Gagandeep; Gupta, Shuchi; Dharamvir, Keya

    2015-05-15

    The 2D structure of graphene shows a great promise for enhanced catalytic activity when adsorbed with palladium. We performed a systematic density functional theory (DFT) study of the adsorption of palladium dimer (Pd{sub 2}) on graphene using SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Pd{sub 2}-graphene system are calculated. Both horizontal and vertical orientations of Pd{sub 2} on graphene are studied. Our calculations revealed that the minimum energy configuration for Pd dimer is parallel to the graphene sheet with its two atoms occupying centre of adjacent hexagonal rings of graphene sheet. Magnetic moment is induced for Pd dimer adsorbed on graphene in vertical orientation while horizontal orientation of Pd dimer on graphene do not exhibit magnetism. Insignificant energy differences among adsorption sites means that dimer mobility on the graphene sheet is high. There is imperceptible distortion of graphene sheet perpendicular to its plane. However, some lateral displacements are seen.

  15. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents.

    PubMed

    Turov, V V; Leboda, R

    1999-02-01

    The paper presents 1H NMR spectroscopy as a perspective method of the studies of the characteristics of water boundary layers in the hydrated powders and aqueous dispergated suspensions of the adsorbents. The method involves measurements of temperature dependence proton signals intensity in the adsorbed water at temperatures lower than 273 K. Free energy of water molecules at the adsorbent/water interface is diminished due to the adsorption interactions causing the water dosed to the adsorbent surface freezes at T < 273 K. Thickness of a non-freezing layer of water can be determined from the intensity of the water signal of 1H NMR during the freezing-thawing process. Due to a disturbing action of the adsorbent surface, water occurs in the quasi-liquid state. As a result, it is observed in the 1H NMR spectra as a relatively narrow signal. The signal of ice is not registered due to great differences in the transverse relaxation times of the adsorbed water and ice. The method of measuring the free surface energy of the adsorbents from the temperature dependence of the signal intensity of non-freezing water is based on the fact that the temperature of water freezing decreases by the quantity which depends on the surface energy and the distance of the adsorbed molecules from the solid surface. The water at the interface freezes when the free energies of the adsorbed water and ice are equal. To illustrate the applicability of the method under consideration the series of adsorption systems in which the absorbents used differed in the surface chemistry and porous structure. In particular, the behaviour of water on the surface of the following adsorbents is discussed: non-porous and porous silica (aerosils, silica gels); chemically and physically modified non-porous and porous silica (silanization, carbonization, biopolymer deposition); and pyrogeneous Al2O3 and aluminasilicas. The effect of preliminary treatment of the adsorbent (thermal, high pressure, wetting with polar

  16. Fuzzy Subspace Clustering

    NASA Astrophysics Data System (ADS)

    Borgelt, Christian

    In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254-264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735-746, 2000). In addition, by reformulating Gustafson-Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).

  17. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.

  18. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    PubMed

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  19. Understanding the lateral movement of particles adsorbed at a solid-liquid interface.

    PubMed

    Savaji, Kunal; Li, Xue; Couzis, Alexander

    2015-09-01

    In this paper we study the phenomenon of lateral movement of particles that are electrostatically adsorbed at a solid-liquid interface. The experimental system involves negatively charged silica particles of two different sizes (65 nm and 90 nm) that are exposed to the positively charged solid surface (silane coated silicon wafer) in sequential steps. The particle-adsorbed wafers are analyzed under a scanning electron microscope and the images are processed to determine the pair-correlation function for the particles adsorbed in the first step. From the pair correlation data and the particle surface coverage data we show that the adsorbed particles are mobile at the solid-liquid interface. In specific, we show that the adsorbed particles are mobile at the solid-liquid interface when there is a driving force for the adsorbed particles to move. The driving force in the scheme of experiments discussed in this paper is the reduction in the free energy of the system.

  20. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes.

    PubMed

    Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui

    2015-01-01

    New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.

  1. The Effects of Organic Adsorbates on the Underpotential Deposition of Silver on Pt(111) Electrodes

    DTIC Science & Technology

    1993-01-01

    CV) The Effects of Organic Adsorbates on the Underpotential Deposition W.0 of Silver on Pt(111) Electrodes _• D. L. Taylor and H. D. Abruxla* D TIC...to determine the effects of competing organic adsorbates on the underpotential deposition of silver on Pt(111). The adsorbates studied are known to...hcis )n appive tor pubic release and sal Its distribution is unlimited. fu .. 93-12456 INTRODUCTION The process of underpotential deposition (UPD) of

  2. The National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention

    DTIC Science & Technology

    1997-12-01

    Heavy Metal Adsorbents for Storm Water Pollution Prevention U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER in...National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED. FINAL REPORT HEAVY METAL ADSORBENTS

  3. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.

    PubMed

    Lo, Sut-I; Chen, Po-Cheng; Huang, Chih-Ching; Chang, Huan-Tsung

    2012-03-06

    We report a new adsorbent for removal of mercury species. By mixing Au nanoparticles (NPs) 13 nm in diameter with aluminum oxide (Al(2)O(3)) particles 50-200 μm in diameter, Au NP-Al(2)O(3) adsorbents are easily prepared. Three adsorbents, Al(2)O(3), Au NPs, and Au NP-Al(2)O(3), were tested for removal of mercury species [Hg(2+), methylmercury (MeHg(+)), ethylmercury (EtHg(+)), and phenylmercury (PhHg(+))]. The Au NP adsorbent has a higher binding affinity (dissociation constant; K(d) = 0.3 nM) for Hg(2+) ions than the Al(2)O(3) adsorbent (K(d) = 52.9 nM). The Au NP-Al(2)O(3) adsorbent has a higher affinity for mercury species and other tested metal ions than the Al(2)O(3) and Au NP adsorbents. The Au NP-Al(2)O(3) adsorbent provides a synergic effect and, thus, is effective for removal of most tested metal ions and organic mercury species. After preconcentration of mercury ions by an Au NP-Al(2)O(3) adsorbent, analysis of mercury ions down to the subppq level in aqueous solution was performed by inductively coupled plasma mass spectrometry (ICP-MS). The Au NP-Al(2)O(3) adsorbent allows effective removal of mercury species spiked in lake water, groundwater, and seawater with efficiencies greater than 97%. We also used Al(2)O(3) and Au NP-Al(2)O(3) adsorbents sequentially for selectively removing Hg(2+) and MeHg(+) ions from water. The low-cost, effective, and stable Au NP-Al(2)O(3) adsorbent shows great potential for economical removal of various mercury species.

  4. Theoretical investigation of the hetero-junction effect in PVP-stabilized Au 13 clusters. The role of PVP in their catalytic activities

    NASA Astrophysics Data System (ADS)

    Okumura, Mitsutaka; Kitagawa, Yasutaka; Kawakami, Takashi; Haruta, Masatake

    2008-06-01

    Hybrid density functional calculations have been carried out for Au 13-poly( N-vinyl-2-pyrrolidone), abbreviated as Au 13-PVP, and related model clusters, Au 13-PVP 4, Au 13-PVP-O 2 and Au 13-PVP 4-O 2, to discuss the variation in the electronic structure of Au 13 clusters by PVP adsorption. The calculations have shown that the charge transfer from the adsorbed PVP to Au 13 produces negatively charged O 2 on Au 13-PVP 4. These findings suggest that PVP acts not only as a stabilizer to prevent the aggregation of Au clusters but also as an electron donor to Au clusters. Thus we conclude that the catalytic activities of Au clusters are affected by the adsorbed PVPs.

  5. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  6. Information-based clustering

    PubMed Central

    Slonim, Noam; Atwal, Gurinder Singh; Tkačik, Gašper; Bialek, William

    2005-01-01

    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here, we reformulate the clustering problem from an information theoretic perspective that avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster “prototype,” does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures nonlinear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures. PMID:16352721

  7. Clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A. A.; Kravtsov, A. V.; Markevich, M. L.; Sunyaev, R. A.; Churazov, E. M.

    2014-04-01

    Galaxy clusters are formed via nonlinear growth of primordial density fluctuations and are the most massive gravitationally bound objects in the present Universe. Their number density at different epochs and their properties depend strongly on the properties of dark matter and dark energy, making clusters a powerful tool for observational cosmology. Observations of the hot gas filling the gravitational potential well of a cluster allows studying gasdynamic and plasma effects and the effect of supermassive black holes on the heating and cooling of gas on cluster scales. The work of Yakov Borisovich Zeldovich has had a profound impact on virtually all cosmological and astrophysical studies of galaxy clusters, introducing concepts such as the Harrison-Zeldovich spectrum, the Zeldovich approximation, baryon acoustic peaks, and the Sunyaev-Zeldovich effect. Here, we review the most basic properties of clusters and their role in modern astrophysics and cosmology.

  8. Regulating the interactions of adsorbates on surfaces by scanning tunneling microscopy manipulation.

    PubMed

    Sun, Qiang; Xu, Wei

    2014-09-15

    Scanning tunneling microscopy (STM) manipulation has received wide attention in the surface science community since the pioneering work of Eigler to construct surface nanostructures in an atom by atom fashion. Lots of scientists have been inspired and devoted to study the surface issues with the help of STM manipulations and great achievements have been obtained. In this Minireview, we mainly describe the recent progress in applying STM manipulations to regulate the inter-adsorbate and adsorbate-substrate interactions on solid surfaces. It was shown that this technique could not only differentiate intermolecular interactions but also construct molecular nanostructures by regulating different kinds of inter-adsorbate interactions or adsorbate-substrate interactions.

  9. Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents

    SciTech Connect

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Wood, Jordana R.; Wai, Chien; Pan, Horng-Bin

    2015-06-01

    Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.

  10. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  11. Toward an effective adsorbent for polar pollutants: formaldehyde adsorption by activated carbon.

    PubMed

    Lee, Kyung Jin; Miyawaki, Jin; Shiratori, Nanako; Yoon, Seong-Ho; Jang, Jyongsik

    2013-09-15

    Due to increasing concerns about environmental pollutants, the development of an effective adsorbent or sensitive sensor has been pursued in recent years. Diverse porous materials have been selected as promising candidates for detecting and removing harmful materials, but the most appropriate pore structure and surface functional groups, both important factors for effective adsorbency, have not yet been fully elucidated. In particular, there is limited information relating to the use of activated carbon materials for effective adsorbent of specific pollutants. Here, the pore structure and surface functionality of polyacrylonitrile-based activated carbon fibers were investigated to develop an efficient adsorbent for polar pollutants. The effect of pore structure and surface functional groups on removal capability was investigated. The activated carbons with higher nitrogen content show a great ability to absorb formaldehyde because of their increased affinity with polar pollutants. In particular, nitrogen functional groups that neighbor oxygen atoms play an important role in maximizing adsorption capability. However, because there is also a similar increase in water affinity in adsorbents with polar functional groups, there is a considerable decrease in adsorption ability under humid conditions because of preferential adsorption of water to adsorbents. Therefore, it can be concluded that pore structures, surface functional groups and the water affinity of any adsorbent should be considered together to develop an effective and practical adsorbent for polar pollutants. These studies can provide vital information for developing porous materials for efficient adsorbents, especially for polar pollutants.

  12. Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graft-polymerization

    NASA Astrophysics Data System (ADS)

    Shiraishi, Tomoyuki; Tamada, Masao; Saito, Kyouichi; Sugo, Takanobu

    2003-01-01

    Fabric adsorbent having amidoxime function was synthesized by radiation-induced graft-polymerization. This adsorbent was applied to the removal of Cd from the scallop waste. The scallop waste was homogenized as a pre-treatment. The obtained top layer was used for the Cd absorption experiment at various pH conditions. At pH 6, the adsorbent showed the highest performance in Cd adsorption. The concentration factor was thousand for Cd. Preliminary column experiment was also carried out. The amidoxime adsorbent recovered 96.1% of Cd in the waste solution.

  13. Dynamics of benzene vapor adsorption on carbon adsorbents having different volumes of transporting pores

    SciTech Connect

    Ivakhnyuk, G.K.; Fedorov, N.F.; Babkin, O.E.; Smetanin, G.N.; Belotserkovskii, G.M.

    1986-08-20

    To ascertain the effect of the porosity peculiarities on the benzene vapor adsorption process under dynamic conditions, a series of adsorbents was synthesized in this work from zirconium carbide. Their porous structure was studied by a traditional set of methods, viz., pycnometric, porometric, and sorption. Carbon adsorbents derived from zirconium carbide have an open-pore system of adsorbing pores which communicate directly with the outer surface. Transporting porosity of carbon adsorbents derived from zirconium carbide does not affect the mass transport processes during adsorption of benzene vapors on them under the conditions of a dynamic experiment.

  14. Vibrational properties of small cobalt clusters on the Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Borisova, S. D.; Rusina, G. G.; Eremeev, S. V.; Chulkov, E. V.

    2009-06-01

    Vibrational properties of small cobalt clusters (dimer and trimer) adsorbed on the Cu(111) surface are studied using interatomic interaction potentials obtained in a tight-binding approximation. The complete (lateral and vertical) relaxation of the surface, the local phonon density of states, and the polarization of vibration modes of clusters and atoms of the substrate are discussed. It is shown that the adsorption of small cobalt clusters leads to a local modification of the vibrational properties of the substrate surface and to excitation of new vibration modes localized on both the cluster adatoms and substrate surface atoms. An increase in the cluster size causes a decrease in the intensity of peaks of the local density of states and their broadening and also a shift in the frequencies of the peaks.

  15. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity

    NASA Astrophysics Data System (ADS)

    Corma, Avelino; Concepción, Patricia; Boronat, Mercedes; Sabater, Maria J.; Navas, Javier; Yacaman, Miguel José; Larios, Eduardo; Posadas, Alvaro; López-Quintela, M. Arturo; Buceta, David; Mendoza, Ernest; Guilera, Gemma; Mayoral, Alvaro

    2013-09-01

    The catalytic activity of gold depends on particle size, with the reactivity increasing as the particle diameter decreases. However, investigations into behaviour in the subnanometre regime (where gold exists as small clusters of a few atoms) began only recently with advances in synthesis and characterization techniques. Here we report an easy method to prepare isolated gold atoms supported on functionalized carbon nanotubes and their performance in the oxidation of thiophenol with O2. We show that single gold atoms are not active, but they aggregate under reaction conditions into gold clusters of low atomicity that exhibit a catalytic activity comparable to that of sulfhydryl oxidase enzymes. When clusters grow into larger nanoparticles, catalyst activity drops to zero. Theoretical calculations show that gold clusters are able to activate thiophenol and O2 simultaneously, and larger nanoparticles are passivated by strongly adsorbed thiolates. The combination of both reactants activation and facile product desorption makes gold clusters excellent catalysts.

  16. Atomic, electronic, and magnetic properties of bimetallic ZrCo clusters: A first-principles study

    NASA Astrophysics Data System (ADS)

    Chattaraj, D.; Bhattacharya, Saswata; Dash, Smruti; Majumder, C.

    2016-09-01

    Here, we report the atomic, electronic, and magnetic structures of small ZrmCon (m + n = 2, 4, 6, and 8) alloy clusters based on spin-polarized density functional theory under the plane wave based pseudo-potential approach. The ground state geometry and other low-lying stable isomers of each cluster have been identified using the cascade genetic algorithm scheme. On the basis of the relative energy, it is found that Zr2Co2 (for tetramer), Zr3Co3 (for hexamer), and Zr4Co4 (for octamer) are the most stable isomers than others. In order to underscore the hydrogen storage capacity of these small clusters, the hydrogen adsorption on the stable ZrmCon (m + n = 2, 4, 6, and 8) clusters has also been studied. The electronic structures of ZrmCon clusters with and without adsorbed hydrogen are described in terms of density of states spectra and charge density contours.

  17. Chemistry Within Molecular Clusters

    DTIC Science & Technology

    1990-01-01

    DME )nCH3OCH 2 +). We speculate that this is due to the fragments being consumed by an ion-molecule reaction within the cluster. One likely candidate is...the ion-molecule reaction of the fragment cations with a neutral DME , within the bulk cluster to form a trimethyloxonlum cation intermediate. This...the observed products. We therefore speculate that the DME cluster reactions leading to the same products, should involve the same mechanism found to

  18. Chemistry Within Molecular Clusters

    DTIC Science & Technology

    1992-06-01

    and ( DME ).CH 3OCH2+). We speculate that this is due to the fragments being consumed by an ion-molecule reaction within the cluster. A likely candidate...is the ion-molecule reaction of the fragment cations with a neutral DME within the bulk cluster, to form a trimethyloxonium cation intermediate...a trimethyloxonium intermediate as the common intermediate for the observed products. We therefore speculate that the DME cluster reactions leading to

  19. Cluster State Quantum Computation

    DTIC Science & Technology

    2014-02-01

    nearest neighbor cluster state has been shown to be a universal resource for MBQC thus we can say our quantum computer is universal. We note that...CLUSTER STATE QUANTUM COMPUTATION FEBRUARY 2014 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE...TITLE AND SUBTITLE CLUSTER STATE QUANTUM COMPUTATION 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6

  20. Chemical Reactions in Clusters

    DTIC Science & Technology

    1992-11-04

    NH 3)n, n _> 4, clusters has been attributed to the (solvated) naphtholate anion.3a A single picosecond decay measurement has been reported which...vibrational energy in the cluster Sl state. The data are summarized in Table I. A model to explain these decay results can be constructed based on a proton...11 TITLE (Include Security Classification) Chemical Reactions in Clusters 12 PERSONAL AUTHOR(S) Elliot R. Bernstein 13a TYPE OF REPORT 13b TIME COVERED

  1. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  2. Melting of nickel clusters

    SciTech Connect

    Garzon, I.L.; Jellinek, J.

    1991-12-31

    The meltinglike phenomenon in Ni{sub n}, n = 19,20,55, clusters is studied using microcanonical molecular dynamics simulations. The interaction between the atoms in the clusters is modelled by a size-dependent Gupta-like potential that incorporates many-body effects. The clusters display the ``usual`` stages in their meltinglike transition, which characterize also Lennard-Jones (e.g., noble gas) and ionic clusters. In addition, Ni{sub 20} passes through a so-called premelting stage found earlier also for Ni{sub 14}. 11 ref., 3 figs.

  3. Melting of nickel clusters

    SciTech Connect

    Garzon, I.L. . Inst. de Fisica); Jellinek, J. )

    1991-01-01

    The meltinglike phenomenon in Ni{sub n}, n = 19,20,55, clusters is studied using microcanonical molecular dynamics simulations. The interaction between the atoms in the clusters is modelled by a size-dependent Gupta-like potential that incorporates many-body effects. The clusters display the usual'' stages in their meltinglike transition, which characterize also Lennard-Jones (e.g., noble gas) and ionic clusters. In addition, Ni{sub 20} passes through a so-called premelting stage found earlier also for Ni{sub 14}. 11 ref., 3 figs.

  4. Mini-clusters

    NASA Technical Reports Server (NTRS)

    Chinellato, J. A.; Dobrigkeit, C.; Bellandifilho, J.; Lattes, C. M. G.; Menon, M. J.; Navia, C. E.; Pamilaju, A.; Sawayanagi, K.; Shibuya, E. H.; Turtelli, A., Jr.

    1985-01-01

    Experimental results of mini-clusters observed in Chacaltaya emulsion chamber no.19 are summarized. The study was made on 54 single core shower upper and 91 shower clusters of E(gamma) 10 TeV from 30 families which are visible energy greater than 80 TeV and penetrate through both upper and lower detectors of the two-story chamber. The association of hadrons in mini-cluster is made clear from their penetrative nature and microscopic observation of shower continuation in lower chamber. Small P sub t (gamma) of hadrons in mini-clusters remained in puzzle.

  5. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    SciTech Connect

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2015-12-02

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with defined defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.

  6. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    DOE PAGES

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; ...

    2015-12-02

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with definedmore » defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.« less

  7. Photoluminescence Enhancement of Adsorbed Species on Si Nanoparticles

    NASA Astrophysics Data System (ADS)

    Matsumoto, Taketoshi; Maeda, Masanori; Kobayashi, Hikaru

    2016-01-01

    We have fabricated Si nanoparticles from Si swarf using the beads milling method. The mode diameter of produced Si nanoparticles was between 4.8 and 5.2 nm. Si nanoparticles in hexane show photoluminescence (PL) spectra with peaks at 2.56, 2.73, 2.91, and 3.09 eV. The peaked PL spectra are attributed to the vibronic structure of adsorbed dimethylanthracene (DMA) impurity in hexane. The PL intensity of hexane with DMA increases by ~3000 times by adsorption on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of Si nanoparticles.

  8. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    NASA Astrophysics Data System (ADS)

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; Park, J. B.; Rodriguez, J. A.; Stacchiola, D. J.; Senanayake, S. D.

    2016-08-01

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. Starting with a well-ordered Au(111) surface we prepared by ion sputtering gold surfaces modified by pits, used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with defined defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.

  9. Sunflower stalks as adsorbents for color removal from textile wastewater

    SciTech Connect

    Sun, G.; Xu, X.

    1997-03-01

    Sunflower stalks as adsorbents for two basic dyes (Methylene Blue and Basic Red 9) and two direct dyes (Congo Red and Direct Blue 71) in aqueous solutions were studied with equilibrium isotherms and kinetic adsorptions. The maximum adsorptions of two basic dyes on sunflower stalks are very high, i.e., 205 and 317 mg/g for Methylene Blue and Basic Red 9, respectively. The two direct dyes have relatively lower adsorption on sunflower stalks. The adsorptive behaviors of sunflower stalk components are different. The pith, which is the soft and porous material in the center of stalks, has twice the adsorptive capacity of the skin. Particle sizes of sunflower stalks also affect the adsorption of dyes. The adsorption rates of two basic dyestuffs are much higher than that of the direct dyes. Within 30 min about 80% basic dyes were removed from the solutions.

  10. Thermal relaxation of adsorbed atoms in an intense laser field

    NASA Astrophysics Data System (ADS)

    Arnoldus, Henk F.; van Smaalen, Sander; George, Thomas F.

    1986-11-01

    Adsorbed atoms on the surface of a harmonic lattice are immersed in a strong laser field. The optical Bloch equations are derived, which include the thermal relaxation and the coherent excitation of the adbond. This is accomplished by a transformation to dressed states, which diagonalizes the interaction with the laser. The single-phonon couplings are then understood as transitions between dressed states. The radiative contributions for arbitrarily strong fields are obtained in the master equation, and it is shown that the coherences with respect to the dressed states decay exponentially, due to the phonon relaxation. General properties of the competing phonon-induced redistribution and optical excitation of the level populations are presented, and exemplified by an explicit elaboration of a three-level system. The results are amenable to analytical evaluation once the interaction potential is prescribed, and extensions of the approach to include multiphonon processes are straightforward.

  11. Long-term storage of surface-adsorbed protein machines.

    PubMed

    Albet-Torres, Nuria; Månsson, Alf

    2011-06-07

    The effective and simple long-term storage of complex functional proteins is critical in achieving commercially viable biosensors. This issue is particularly challenging in recently proposed types of nanobiosensors, where molecular-motor-driven transportation substitutes microfluidics and forms the basis for novel detection schemes. Importantly, therefore, we here describe that delicate heavy meromyosin (HMM)-based nanodevices (HMM motor fragments adsorbed to silanized surfaces and actin bound to HMM) fully maintain their function when stored at -20 °C for more than a month. The mechanisms for the excellent preservation of acto-HMM motor function upon repeated freeze-thaw cycles are discussed. The results are important to the future commercial implementation of motor-based nanodevices and are of more general value to the long-term storage of any protein-based bionanodevice.

  12. Surface properties of mesoporous carbon-silica gel adsorbents

    SciTech Connect

    Leboda, R.; Turov, V.V.; Charmas, B.; Skubiszewska-Zieba, J.; Gun'ko, V.M.

    2000-03-01

    Carbon/silica (carbosil) samples prepared utilizing mesoporous silica gel (Si-60) modified by methylene chloride pyrolysis were studied by nitrogen adsorption, quasi-isothermal thermogravimetry, p-nitrophenol adsorption from aqueous solution, and {sup 1}H NMR methods. The structural characteristics and other properties of carbosils depend markedly on the synthetic conditions and the amount of carbon deposited. The changes in the pore size distribution with increasing carbon concentration suggest grafting of carbon mainly in pores, leading to diminution of the mesopore radii. However, heating pure silica gel at the pyrolysis temperature of 550 C leads to an increase in the pore radii. The quasi-isothermal thermogravimetry and {sup 1}H NMR spectroscopy methods used to investigate the water layers on carbosils showed a significant capability of carbosils to adsorb water despite a relatively large content of the hydrophobic carbon deposit, which represents a nonuniform layer incompletely covering the oxide surface.

  13. Liquid 4He Adsorbed Films on Very Attractive Substrates

    NASA Astrophysics Data System (ADS)

    Urrutia, Ignacio; Szybisz, Leszek

    Adsorbed films of liquid 4He are analized, in the framework of Density functionals Theories (DF). In these systems, when the substrate becomes increasingly attractive, the thin films of 4He approaches the quasi-bidimensional limit. We study this strongly attractive substrate regime with two DF, the Orsay-Trento (OT) and a recent Hybrid proposal (Hyb), focusing in the energy behavior. It is showed that OT does not reproduce the correct limiting energy curve, and it implies that this functional could not provide reliable results for very strongly attractive substrates like Graphite (Gr). In other hand, with the Hyb DF, the correct energy behavior is found for the adsorption energy of 4He on Gr. These results show that OT should not be applied to quasi 2D (confinement) situations, and that Hyb DF provides a much more realistic description.

  14. Liquid 4He Adsorbed Films on Very Attractive Substrates

    NASA Astrophysics Data System (ADS)

    Urrutia, Ignacio; Szybisz, Leszek

    2006-09-01

    Adsorbed films of liquid 4He are analized, in the framework of Density Functional Theories (DF). In these systems, when the substrate becomes increasingly attractive, the thin films of 4He approaches the quasi-bidimensional limit. We study this strongly attractive substrate regime with two DF, the Orsay-Trento (OT) and a recent Hybrid proposal (Hyb), focusing in the energy behavior. It is showed that OT does not reproduce the correct limiting energy curve, and it implies that this functional could not provide reliable results for very strongly attractive substrates like Graphite (Gr). In other hand, with the Hyb DF, the correct energy behavior is found for the adsorption energy of 4He on Gr. These results show that OT should not be applied to quasi 2D (confinement) situations, and that Hyb DF provides a much more realistic description.

  15. Controlling spins in adsorbed molecules by a chemical switch

    PubMed Central

    Wäckerlin, Christian; Chylarecka, Dorota; Kleibert, Armin; Müller, Kathrin; Iacovita, Cristian; Nolting, Frithjof; Jung, Thomas A.; Ballav, Nirmalya

    2010-01-01

    The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect. PMID:20975713

  16. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  17. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash

    SciTech Connect

    Behymer, T.D.

    1987-01-01

    Polycyclic aromatic hydrocarbons (PAH) are formed by the combustion of almost any fuel under oxygen-deficient conditions. Previous laboratory studies have found that many PAH degrade with lifetimes as short as a few hours; however, studies of marine and lacustrine sediments, the ultimate sinks of PAH, have shown relative abundances of PAH which are similar to those in combustion sources; this suggests that PAH are stable in the atmosphere. Eighteen PAH adsorbed on carbon black and fifteen coal fly ashes of varying physical and chemical composition were photolyzed in order to study their atmospheric fate. Photolytic half-lives for these particle-bound PAH were found to be highly dependent on the substrate onto which they were adsorbed. On low-carbon fly ash, PAH showed a wide range of half-lives, indicating a relationship between PAH structure and photochemical reactivity. However, PAH on carbon black and fly ashes with a high-carbon content, show similar half-lives for most PAH including reactive PAH such as anthracene and benzo(a)pyrene. This indicates a photolytic process that is independent of structure and dependent on the physical and chemical nature of the fly ash. Surprisingly, no other parameter accounts for observed PAH reactivity. Substrate characteristics such as surface area, porosity, particle size, surface pH, and iron content have all been suggested to influence the rate of PAH degradation. However, these parameters, measured for substrates studied in this thesis, do not correlate with PAH reactivity. Because carbon black and high-carbon fly ashes stabilize reactive PAH, it is these substrates which would facilitate the transport of PAH from combustion sources through the atmosphere to ultimate sinks.

  18. Stability of Ptn cluster on free/defective graphene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yang, G. M.; Fan, X. F.; Shi, S.; Huang, H. H.; Zheng, W. T.

    2017-01-01

    With first-principles methods, we investigate the stability of isolated Ptn clusters from Sutton-Chen model and close-packed model, and their adsorption on defected graphene. The single-vacancy in graphene is found to enhance obviously the adsorption energy of Pt cluster on graphene due to the introduction of localized states near Fermi level. It is found that the close-packed model is more stable than Sutton-Chen model for the adsorption of Ptn cluster on single-vacancy graphene, except the magic number n = 13. The cluster Pt13 may be the richest one for small Pt clusters on defected graphene due to the strong adsorption on single-vacancy. The larger cluster adsorbed on defected graphene is predicted with the close-packed crystal structure. The charge is found to transfer from the Pt atom/cluster to graphene with the charge accumulation at the interface and the charge polarization on Pt cluster. The strong interaction between Pt cluster and single vacancy can anchor effectively the Pt nanoparticles on graphene and is also expected that the new states introduced near Fermi level can enhance the catalytic characteristic of Pt cluster.

  19. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  20. Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy

    SciTech Connect

    Rani, Babita; Jindal, V.K.; Dharamvir, Keya

    2016-08-15

    We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates. Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density

  1. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  2. Photoionization of molecular clusters

    NASA Astrophysics Data System (ADS)

    Andres, R. P.; Calo, J. M.

    1981-12-01

    An experimental apparatus consisting of a novel multiple expansion cluster source coupled with a molecular beam system and photoionization mass spectrometer has been designed and constructed. This apparatus has been thoroughly tested and preliminary measurements of the growth kinetics of water clusters and the photoionization cross section of the water dimer have been carried out.

  3. Probability and Cancer Clusters

    ERIC Educational Resources Information Center

    Hamilton-Keene, Rachael; Lenard, Christoper T.; Mills, Terry M.

    2009-01-01

    Recently there have been several news items about possible cancer clusters in the Australian media. The term "cancer cluster" is used when an unusually large number of people in one geographic area, often a workplace, are diagnosed with cancer in a short space of time. In this paper the authors explore this important health issue using…

  4. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  5. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  6. Cluster Guide. Accounting Occupations.

    ERIC Educational Resources Information Center

    Beaverton School District 48, OR.

    Based on a recent task inventory of key occupations in the accounting cluster taken in the Portland, Oregon, area, this curriculum guide is intended to assist administrators and teachers in the design and implementation of high school accounting cluster programs. The guide is divided into four major sections: program organization and…

  7. Marketing Occupations. Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This cluster guide, which is designed to show teachers what specific knowledge and skills qualify high school students for entry-level employment (or postsecondary training) in marketing occupations, is organized into three sections: (1) cluster organization and implementation, (2) instructional emphasis areas, and (3) assessment. The first…

  8. Ultrametric Hierarchical Clustering Algorithms.

    ERIC Educational Resources Information Center

    Milligan, Glenn W.

    1979-01-01

    Johnson has shown that the single linkage and complete linkage hierarchical clustering algorithms induce a metric on the data known as the ultrametric. Johnson's proof is extended to four other common clustering algorithms. Two additional methods also produce hierarchical structures which can violate the ultrametric inequality. (Author/CTM)

  9. [Cluster headache differential diagnosis].

    PubMed

    Guégan-Massardier, Evelyne; Laubier, Cécile

    2015-11-01

    Cluster headache is characterized by disabling stereotyped headache. Early diagnosis allows appropriate treatment, unfortunately diagnostic errors are frequent. The main differential diagnoses are other primary or essential headaches. Migraine, more frequent and whose diagnosis is carried by excess, trigeminal neuralgia or other trigemino-autonomic cephalgia. Vascular or tumoral underlying condition can mimic cluster headache, neck and brain imaging is recommended, ideally MRI.

  10. Targeting Clusters, Achieving Excellence.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart; Jacobs, Jim; Liston, Cynthia

    2003-01-01

    Suggests that groups, or clusters, of industries form partnerships with community colleges in order to positively impact economic development. Asserts that a cluster-oriented community college system requires innovation, specialized resources and expertise, knowledge of trends, and links to industry. Offers suggestions for developing such a…

  11. Multiple frame cluster tracking

    NASA Astrophysics Data System (ADS)

    Gadaleta, Sabino; Klusman, Mike; Poore, Aubrey; Slocumb, Benjamin J.

    2002-08-01

    Tracking large number of closely spaced objects is a challenging problem for any tracking system. In missile defense systems, countermeasures in the form of debris, chaff, spent fuel, and balloons can overwhelm tracking systems that track only individual objects. Thus, tracking these groups or clusters of objects followed by transitions to individual object tracking (if and when individual objects separate from the groups) is a necessary capability for a robust and real-time tracking system. The objectives of this paper are to describe the group tracking problem in the context of multiple frame target tracking and to formulate a general assignment problem for the multiple frame cluster/group tracking problem. The proposed approach forms multiple clustering hypotheses on each frame of data and base individual frame clustering decisions on the information from multiple frames of data in much the same way that MFA or MHT work for individual object tracking. The formulation of the assignment problem for resolved object tracking and candidate clustering methods for use in multiple frame cluster tracking are briefly reviewed. Then, three different formulations are presented for the combination of multiple clustering hypotheses on each frame of data and the multiple frame assignments of clusters between frames.

  12. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  13. Hybridization schemes for clusters

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.

  14. Cool Cluster Correctly Correlated

    SciTech Connect

    Varganov, Sergey Aleksandrovich

    2005-01-01

    Atomic clusters are unique objects, which occupy an intermediate position between atoms and condensed matter systems. For a long time it was thought that physical and chemical properties of atomic dusters monotonically change with increasing size of the cluster from a single atom to a condensed matter system. However, recently it has become clear that many properties of atomic clusters can change drastically with the size of the clusters. Because physical and chemical properties of clusters can be adjusted simply by changing the cluster's size, different applications of atomic clusters were proposed. One example is the catalytic activity of clusters of specific sizes in different chemical reactions. Another example is a potential application of atomic clusters in microelectronics, where their band gaps can be adjusted by simply changing cluster sizes. In recent years significant advances in experimental techniques allow one to synthesize and study atomic clusters of specified sizes. However, the interpretation of the results is often difficult. The theoretical methods are frequently used to help in interpretation of complex experimental data. Most of the theoretical approaches have been based on empirical or semiempirical methods. These methods allow one to study large and small dusters using the same approximations. However, since empirical and semiempirical methods rely on simple models with many parameters, it is often difficult to estimate the quantitative and even qualitative accuracy of the results. On the other hand, because of significant advances in quantum chemical methods and computer capabilities, it is now possible to do high quality ab-initio calculations not only on systems of few atoms but on clusters of practical interest as well. In addition to accurate results for specific clusters, such methods can be used for benchmarking of different empirical and semiempirical approaches. The atomic clusters studied in this work contain from a few atoms to

  15. Removal of arsenic from water using nano adsorbents and challenges: A review.

    PubMed

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents.

  16. Towards understanding KOH conditioning of amidoxime-based oolymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Wood, Jordana; ...

    2015-11-17

    Conditioning of polymer fiber adsorbents grafted with amidoxime and carboxylic acid groups is necessary to make the materials hydrophilic for sequestering uranium from seawater. In this paper, spectroscopic techniques were employed to study the effectiveness of the traditional KOH conditioning method (2.5% KOH at 80⁰C) on recently developed high-surface-area amidoxime-based polymer fiber adsorbents developed at Oak Ridge National Laboratory. FTIR spectra reveal that the KOH conditioning process removes the proton from the carboxylic acids and also converts the amidoxime groups to carboxylate groups in the adsorbent. With prolonged KOH treatment (>1 hr) at 80⁰C, physical damage to the adsorbent materialmore » occurs which can lead to a significant reduction in the adsorbent's uranium adsorption capability in real seawater during extended exposure times (>21 days). The physical damage to the adsorbent can be minimized by lowering KOH conditioning temperature. For the high-surface-area amidoxime-based adsorbents, 20 min of conditioning in 2.5% KOH at 80⁰C or 1 hr of conditioning in 2.5% KOH at 60⁰C appears sufficient to achieve de-protonation of the carboxylic acid with minimal harmful effects to the adsorbent material. Lastly, the use of NaOH instead of KOH can also reduce the cost of the base treatment process required for conditioning the amidoxime-based sorbents with minimal loss of adsorption capacity (≤7%).« less

  17. Fabrication and thermal conductivity improvement of novel composite adsorbents adding with nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Qibai; Yu, Xiaofen; Zhang, Haiyan; Chen, Yiming; Liu, Liying; Xie, Xialin; Tang, Ke; Lu, Yiji; Wang, Yaodong; Roskilly, Anthony Paul

    2016-10-01

    Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.

  18. Towards understanding KOH conditioning of amidoxime-based oolymer adsorbents for sequestering uranium from seawater

    SciTech Connect

    Pan, Horng-Bin; Kuo, Li-Jung; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary A.; Janke, Christopher James; Wai, Chien M.

    2015-11-17

    Conditioning of polymer fiber adsorbents grafted with amidoxime and carboxylic acid groups is necessary to make the materials hydrophilic for sequestering uranium from seawater. In this paper, spectroscopic techniques were employed to study the effectiveness of the traditional KOH conditioning method (2.5% KOH at 80⁰C) on recently developed high-surface-area amidoxime-based polymer fiber adsorbents developed at Oak Ridge National Laboratory. FTIR spectra reveal that the KOH conditioning process removes the proton from the carboxylic acids and also converts the amidoxime groups to carboxylate groups in the adsorbent. With prolonged KOH treatment (>1 hr) at 80⁰C, physical damage to the adsorbent material occurs which can lead to a significant reduction in the adsorbent's uranium adsorption capability in real seawater during extended exposure times (>21 days). The physical damage to the adsorbent can be minimized by lowering KOH conditioning temperature. For the high-surface-area amidoxime-based adsorbents, 20 min of conditioning in 2.5% KOH at 80⁰C or 1 hr of conditioning in 2.5% KOH at 60⁰C appears sufficient to achieve de-protonation of the carboxylic acid with minimal harmful effects to the adsorbent material. Lastly, the use of NaOH instead of KOH can also reduce the cost of the base treatment process required for conditioning the amidoxime-based sorbents with minimal loss of adsorption capacity (≤7%).

  19. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    PubMed

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.

  20. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-05

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  1. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process.

    PubMed

    Hu, Tian-Jue; Zeng, Guang-Ming; Huang, Dan-Lian; Yu, Hong-Yan; Jiang, Xiao-Yun; Dai, Fang; Huang, Guo-He

    2007-03-22

    Three kinds of adsorbents-potassium dihydrogen phosphate, sawdust and mixture of potassium dihydrogen phosphate and sawdust were added respectively into composting to investigate their adsorption effect on ammonia. The experimental results showed that all the adsorbents could restrain ammonia volatilizing, with the sorption of potassium dihydrogen phosphate adsorbents being the best of all, the sorption of mixture adsorbent with potassium dihydrogen phosphate and sawdust being the second and the sorption of sawdust adsorbent being the last. Therefore, the total nitrogen loss ratios respectively reduced from 38% to 13%, 15% and 21% after adding these three kinds of adsorbents into composting. However, potassium dihydrogen phosphate produced negative influence on composting properties as its supplemented amount exceeded a quantity basis equivalent to 18% of total nitrogen in the composting, for example: pH value had been lessened, microorganism activity reduced, which finally resulted in the reduction of biodegradation ratio of organic matter. But it did not result in these problems when using the mixture of potassium dihydrogen phosphate and sawdust as adsorbent, in which the amount of potassium dihydrogen phosphate was under a quantity basis equivalent to 6% of total nitrogen in the composting. Moreover, the mixture adsorbent produced better adsorption effect on ammonia, and raised biodegradation ratio of organic matter from 26% to 33%.

  2. Evidence for Adsorbate-Enhanced Field Emission from Carbon Nanotube Fibers (Postprint)

    DTIC Science & Technology

    2013-07-31

    microscopy from single wall nanotube ( SWNT ) caps,9 and by current satura- tion measurements10 from adsorbate-covered SWNTs , were consistent with this...assertion. Comparison of the FE electron energy distributions acquired from clean and adsorbate- covered SWNTs led11 to the conclusion that enhancement...Residual Gas Analysis FE Field Emission CNT Carbon Nanotube SWNT Single Wall Nanotube CSA Chlorosulfonic Acid

  3. Lysozyme adsorption onto mesoporous materials: effect of pore geometry and stability of adsorbents.

    PubMed

    Vinu, Ajayan; Miyahara, Masahiko; Hossain, Kazi Zakir; Takahashi, Motoi; Balasubramanian, Veerappan Vaithilingam; Mori, Toshiyuki; Ariga, Katsuhiko

    2007-03-01

    In this paper, adsorption of lysozyme onto two kinds of mesoporous adsorbents (KIT-5 and AISBA-15) has been investigated and the results on the effects of pore geometry and stability of the adsorbents are also discussed. The KIT-5 mesoporous silica materials possess cage-type pore geometry while the AISBA-15 adsorbent has mesopores of cylindrical type with rather large diameter (9.7 nm). Adsorption of lysozyme onto AISBA-15 aluminosilicate obeys a Langmuir isotherm, resulting in pore occupation of 25 to 30%. In contrast, the KIT-5 adsorbents showed very small adsorption capacities for the lysozyme adsorption, typically falling in 6 to 13% of pore occupation. The cage-type KIT-5 adsorbents have narrow channel (4 to 6 nm) where penetration of the lysozyme (3 x 3 x 4.5 nm) might be restricted. The KIT-5 adsorbent tends to collapse after long-time immersion in water, as indicated by XRD patterns, while the AISBA-15 adsorbent retains its regular structure even after immersion in basic water for 4 days. These facts confirm superiority of the AISBA-15 as an adsorbent as compared with the KIT-5 mesoporous silicates. This research strikingly demonstrates the selection of mesoporous materials is crucial to achieve efficient immobilization of biomaterials in aqueous environment.

  4. Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents.

    PubMed

    Ko, Young Gun; Shin, Seung Su; Choi, Ung Su

    2011-09-15

    CO(2) emissions, from fossil-fuel-burning power plants, the breathing, etc., influence the global worming on large scale and the man's work efficiency on small scale. The reversible capture of CO(2) is a prominent feature of CO(2) organic-inorganic hybrid adsorbent to sequester CO(2). Herein, (3-aminopropyl) trimethoxysilane (APTMS), [3-(methylamino)propyl] trimethoxysilane (MAPTMS), and [3-(diethylamino) propyl] trimethoxysilane (DEAPTMS) are immobilized on highly ordered mesoporous silicas (SBA-15) to catch CO(2) as primary, secondary, and tertiary aminosilica adsorbents. X-ray photoelectron spectroscopy was used to analyze the immobilized APTMS, MAPTMS, and DEAPTMS on the SBA-15. We report an interesting discovery that the CO(2) adsorption and desorption on the adsorbent depend on the amine type of the aminosilica adsorbent. The adsorbed CO(2) was easily desorbed from the adsorbent with the low energy consumption in the order of tertiary, secondary, and primary amino-adsorbents while the adsorption amount and the bonding-affinity increased in the reverse order. The effectiveness of amino-functionalized (1(o), 2(o), and 3(o) amines) SBA-15s as a CO(2) capturing agent was investigated in terms of adsorption capacity, adsorption-desorption kinetics, and thermodynamics. This work demonstrates apt amine types to catch CO(2) and regenerate the adsorbent, which may open new avenues to designing "CO(2) basket".

  5. Phosphorus removal from aqueous solutions using a synthesized adsorbent prepared from mineralized refuse and sewage sludge.

    PubMed

    Chen, Kaining; Zhao, Keqiang; Zhang, Houhu; Sun, Qinfang; Wu, Zhilin; Zhou, Yongmin; Zhong, Yongchao; Ke, Fan

    2013-01-01

    Mineralized refuse and sewage sludge generated from solid waste from municipal landfills and sewage treatment plants were sintered as a cost-effective adsorbent for the removal of phosphorus. Compared with the Freundlich model, phosphorus adsorption on the synthesized adsorbent, zeolite and ironstone was best described by the Langmuir model. Based on the Langmuir model, the maximum adsorption capacity of the synthesized adsorbent (9718 mg kg(-1)) was 13.7 and 25.4 times greater than those of zeolite and ironstone, respectively. The desorbability of phosphorus from the synthesized adsorbent was significantly lower than that of zeolite. Moreover, phosphorus removal using the synthesized adsorbent was more tolerant to pH fluctuations than zeolite and ironstone for the removal of phosphorus from aqueous solutions. The immobilization of phosphorus onto the synthesized adsorbent was attributed to the formation of insoluble calcium, aluminium and iron phosphorus. The heavy metal ion concentrations of the leachate of the synthesized adsorbent were negligible. The synthesized adsorbent prepared from mineralized refuse and sewage sludge was cost-effective and possessed a high adsorptive capacity for phosphorus removal from aqueous solutions.

  6. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  7. Surface-enhanced raman spectra and molecular orientation of phthalazine adsorbed on a silver electrode

    NASA Astrophysics Data System (ADS)

    Takahashi, Machiko; Fujita, Masato; Ito, Masatoki

    1984-08-01

    SERS from phthalazine adsorbed on an Ag electrode was investigated under several conditions of applied voltage and solution concentration. Spectral assignments of the Raman bands were successfully performed and two differently oriented adsorbates, i.e. flat and end-on species, were identified. The contribution of the image field to the SERS intensity was considerable.

  8. Galaxy cluster's rotation

    NASA Astrophysics Data System (ADS)

    Manolopoulou, M.; Plionis, M.

    2017-03-01

    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  9. Molecular-scale interface engineering of nanocrystalline titania by co-adsorbents for solar energy conversion.

    PubMed

    Wang, Mingkui; Plogmaker, Stefan; Humphry-Baker, Robin; Pechy, Peter; Rensmo, Håkan; Zakeeruddin, Shaik M; Grätzel, Michael

    2012-01-09

    The use of mixed self-assembled monolayers, combining hydrophobic co-adsorbents with the sensitizer, has been demonstrated to enhance the efficiency of dye-sensitized solar cells (DSCs). Herein, the influence of the anchoring groups of the co-adsorbents on the performance of the DSCs is carefully examined by selecting two model molecules: neohexyl phosphonic acid (NHOOP) and bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP). The effect of these co-adsorbents on the photovoltaic performance (J-V curves, incident photon-to-electron conversion efficiency) is investigated. Photoelectron spectroscopy and electrochemical impedance spectroscopy are performed to assess the spatial configuration of adsorbed dye and co-adsorbent molecules. The photoelectron spectroscopy studies indicate that the ligands of the ruthenium complex, containing thiophene groups, point out away from the surface of TiO(2) in comparison with the NCS group.

  10. Extraction of bioavailable contaminants from marine sediments: an approach to reducing toxicity using adsorbent parcels.

    PubMed

    Goodsir, Freya; Fisher, Tom T; Barry, Jon; Bolam, Thi; Nelson, Leah D; Rumney, Heather S; Brant, Jan L

    2013-07-15

    This paper demonstrates an approach to reducing acute toxicity in marine sediments using adsorbent parcels. Acute toxicity tests were carried using the marine amphipod Corophium volutator. Marine sediments were spiked with two know contaminants tributyltin and naphthalene and then treated with adsorbent parcels containing either amberlite XAD4 or activated carbon. Results showed that both types of adsorbent parcels were effective in reducing acute toxicity, not only within spiked sediments containing naphthalene and/or tributyltin, but also in an environmental field samples form an expected contaminated site. Adsorbent parcels such as these could provide a practical approach to remediate areas of contaminated sediment within marine environments. Furthermore adsorbents can be used as an identification tool for problematic contaminants using a toxicity identification evaluation approach.

  11. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    PubMed

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants.

  12. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-01

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  13. Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity

    NASA Astrophysics Data System (ADS)

    Shaffer, James

    2016-05-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface. This work was supported by the DARPA Quasar program by a Grant through ARO (60181-PH-DRP) and the AFOSR (FA9550-12-1-0282),.

  14. Molecule-specific interactions of diatomic adsorbates at metal-liquid interfaces

    PubMed Central

    Kraack, Jan Philip; Kaech, Andres; Hamm, Peter

    2017-01-01

    Ultrafast vibrational dynamics of small molecules on platinum (Pt) layers in water are investigated using 2D attenuated total reflectance IR spectroscopy. Isotope combinations of carbon monoxide and cyanide are used to elucidate inter-adsorbate and substrate-adsorbate interactions. Despite observed cross-peaks in the CO spectra, we conclude that the molecules are not vibrationally coupled. Rather, strong substrate-adsorbate interactions evoke rapid (∼2 ps) vibrational relaxation from the adsorbate into the Pt layer, leading to thermal cross-peaks. In the case of CN, vibrational relaxation is significantly slower (∼10 ps) and dominated by adsorbate-solvent interactions, while the coupling to the substrate is negligible.

  15. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2015-10-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  16. Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater.

    PubMed

    Wang, Shaobin; Li, Lin; Zhu, Z H

    2007-01-10

    Solid-state conversion of fly ash to an amorphous aluminosilicate adsorbent (geopolymer) has been investigated under different conditions and the synthesised material has been tested for Cu2+ removal from aqueous solution. It has been found that higher reaction temperature and Na:FA ratio will make the adsorbents achieving higher removal efficiency. The adsorbent loading and Cu2+ initial concentration will also affect the removal efficiency while the adsorption capacity exhibits similarly at 30-40 degrees C. The adsorption capacity of the synthesised adsorbent shows much higher value than fly ash and natural zeolite. The capacity is 0.1, 3.5 and 92 mg/g, for fly ash, natural zeolite, and FA derived adsorbent, respectively. The kinetic studies indicate that the adsorption can be fitted by the second-order kinetic model. Langmuir and Freundlich isotherms also can fit to the adsorption isotherm.

  17. In situ x-ray photoelectron spectroscopic and density-functional studies of Si atoms adsorbed on a C60 film.

    PubMed

    Onoe, Jun; Nakao, Aiko; Hara, Toshiki

    2004-12-08

    The interaction between C(60) and Si atoms has been investigated for Si atoms adsorbed on a C(60) film using in situ x-ray photoelectron spectroscopy (XPS) and density-functional (DFT) calculations. Analysis of the Si 2p core peak identified three kinds of Si atoms adsorbed on the film: silicon suboxides (SiO(x)), bulk Si crystal, and silicon atoms bound to C(60). Based on the atomic percent ratio of silicon to carbon, we estimated that there was approximately one Si atom bound to each C(60) molecule. The Si 2p peak due to the Si-C(60) interaction demonstrated that a charge transfer from the Si atom to the C(60) molecule takes place at room temperature, which is much lower than the temperature of 670 K at which the charge transfer was observed for C(60) adsorbed on Si(001) and (111) clean surfaces [Sakamoto et al., Phys. Rev. B 60, 2579 (1999)]. The number of electrons transferred between the C(60) molecule and Si atom was estimated to be 0.59 based on XPS results, which is in good agreement with the DFT result of 0.63 for a C(60)Si with C(2v) symmetry used as a model cluster. Furthermore, the shift in binding energy of both the Si 2p and C 1s core peaks before and after Si-atom deposition was experimentally obtained to be +2.0 and -0.4 eV, respectively. The C(60)Si model cluster provides the shift of +2.13 eV for the Si 2p core peak and of -0.28 eV for the C 1s core peak, which are well corresponding to those experimental results. The covalency of the Si-C(60) interaction was also discussed in terms of Mulliken overlap population between them.

  18. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  19. Reactions and clustering of water with silica surface.

    PubMed

    Ma, Yuchen; Foster, A S; Nieminen, R M

    2005-04-08

    The interaction between silica surface and water is an important topic in geophysics and materials science, yet little is known about the reaction process. In this study we use first-principles molecular dynamics to simulate the hydrolysis process of silica surface using large cluster models. We find that a single water molecule is stable near the surface but can easily dissociate at three-coordinated silicon atom defect sites in the presence of other water molecules. These extra molecules provide a mechanism for hydrogen transfer from the original water molecule, hence catalyzing the reaction. The two-coordinated silicon atom is inert to the water molecule, and water clusters up to pentamer could be stably adsorbed at this site at room temperature.

  20. Evolution Properties of Clusters and AXAF Contributions to understanding Clusters

    NASA Technical Reports Server (NTRS)

    Jones, Christine

    1998-01-01

    Our ROSAT survey for distant clusters of galaxies contains the largest solid angle of all ROSAT pointed surveying and thus has sufficient area to test the previously reported cluster evolution. We find significant negative cluster evolution, i.e,, at high redshifts there are fewer luminous clusters than at present. We compare optical cluster properties for the most distant clusters in the ROSAT survey with those measured for nearby clusters. We also present AXAF capabilities and show how AXAF will significantly extend our understanding of cluster properties and their cosmological evolution.

  1. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  2. Multiple species of noninteracting molecules adsorbed on a Bethe lattice.

    PubMed

    Cohen, Michael; Harris, A B

    2008-10-01

    A simple method, previously used to calculate the equilibrium concentration of dimers adsorbed on a Bethe lattice as a function of the dimer activity, is generalized to solve the problem of a Bethe lattice in contact with a reservoir containing a mixture of molecules. The molecules may have arbitrary sizes and shapes consistent with the geometry of the lattice and the molecules do not interact with one another except for the hard-core restriction that two molecules cannot touch the same site. We obtain a set of simultaneous nonlinear equations, one equation for each species of molecule, which determines the equilibrium concentration of each type of molecule as a function of the (arbitrary) activities of the various species. Surprisingly, regardless of the number of species, the equilibrium concentrations are given explicitly in terms of the solution of a single equation in one unknown which can be solved numerically, if need be. Some numerical examples show that increasing the activity of one species need not necessarily decrease the equilibrium concentration of all other species. We also calculate the adsorption isotherm of an "annealed" Bethe lattice consisting of two types of sites which differently influence the activity of an adsorbed molecule. We prove that if the reservoir contains a finite number of molecular species, regions of two different polymer densities cannot simultaneously exist on the lattice. The widely used Guggenheim theory of mixtures, which can also be construed as a theory of adsorption, assumes for simplicity that the molecules in the mixture are composed of elementary units, which occupy sites of a lattice of coordination number q . Guggenheim's analysis relies on approximate combinatorial formulas which become exact on a Bethe lattice of the same coordination number, as we show in an appendix. Our analysis involves no combinatorics and relies only on recognizing the statistical independence of certain quantities. Despite the nominal

  3. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks.

    PubMed

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V; Ku Kang, Jeung; Yaghi, Omar M; Terasaki, Osamu

    2015-11-26

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of 'extra adsorption domains'-that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  4. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Sung Cho, Hae; Deng, Hexiang; Miyasaka, Keiichi; Dong, Zhiyue; Cho, Minhyung; Neimark, Alexander V.; Ku Kang, Jeung; Yaghi, Omar M.; Terasaki, Osamu

    2015-11-01

    Metal-organic frameworks (MOFs) have a high internal surface area and widely tunable composition, which make them useful for applications involving adsorption, such as hydrogen, methane or carbon dioxide storage. The selectivity and uptake capacity of the adsorption process are determined by interactions involving the adsorbates and their porous host materials. But, although the interactions of adsorbate molecules with the internal MOF surface and also amongst themselves within individual pores have been extensively studied, adsorbate-adsorbate interactions across pore walls have not been explored. Here we show that local strain in the MOF, induced by pore filling, can give rise to collective and long-range adsorbate-adsorbate interactions and the formation of adsorbate superlattices that extend beyond an original MOF unit cell. Specifically, we use in situ small-angle X-ray scattering to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms. We find in all cases that the capillary condensation that fills the pores gives rise to the formation of ‘extra adsorption domains’—that is, domains spanning several neighbouring pores, which have a higher adsorbate density than non-domain pores. In the case of one MOF, IRMOF-74-V-hex, these domains form a superlattice structure that is difficult to reconcile with the prevailing view of pore-filling as a stochastic process. The visualization of the adsorption process provided by our data, with clear evidence for initial adsorbate aggregation in distinct domains and ordering before an even distribution is finally reached, should help to improve our understanding of this process and may thereby improve our ability to exploit it practically.

  5. Studies in clustering theory

    NASA Astrophysics Data System (ADS)

    Stell, George

    In recent years the properties of percolation models have been studied intensively. The purpose of our project was to develop a general theory of percolation and clustering between particles of arbitrary size and shape, with arbitrary correlations between them. The goal of such a theory includes the treatment of continuum percolation as well as a novel treatment of lattice percolation. We made substantial progress toward this goal. The quantities basic to a description of clustering, the mean cluster size, mean number of clusters, etc., were developed. Concise formulas were given for the terms in such series, and proved, at least for sufficiently low densities, that the series are absolutely convergent. These series can now be used to construct Pade approximants that will allow one to probe the percolation transition. A scaled-particle theory of percolation was developed which gives analytic approximants for the mean number of clusters in a large class of two and three dimensional percolation models. Although this quantity is essential in many applications, e.g., explaining colligative properties, and interpreting low-angle light-scattering data, no systematic studies of it have been done before this work. Recently carried out detailed computer simulations show that the mean number of clusters is given to high accuracy by several of there approximations. Extensions of this work will allow calculation of the complete cluster size distribution.

  6. Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Neumayer, Nadine

    2017-03-01

    The centers of galaxies host two distinct, compact components: massive black holes and nuclear star clusters. Nuclear star clusters are the densest stellar systems in the universe, with masses of ~ 107M⊙ and sizes of ~ 5pc. They are almost ubiquitous at the centres of nearby galaxies with masses similar to, or lower than the Milky Way. Their occurrence both in spirals and dwarf elliptical galaxies appears to be a strong function of total galaxy light or mass. Nucleation fractions are up to 100% for total galaxy magnitudes of M B = -19mag or total galaxy luminosities of about L B = 1010 L ⊙ and falling nucleation fractions for both smaller and higher galaxy masses. Although nuclear star clusters are so common, their formation mechanisms are still under debate. The two main formation scenarios proposed are the infall and subsequent merging of star clusters and the in-situ formation of stars at the center of a galaxy. Here, I review the state-of-the-art of nuclear star cluster observations concerning their structure, stellar populations and kinematics. These observations are used to constrain the proposed formation scenarios for nuclear star clusters. Constraints from observations show, that likely both cluster infall and in-situ star formation are at work. The relative importance of these two mechanisms is still subject of investigation.

  7. Allodynia in Cluster Headache.

    PubMed

    Wilbrink, Leopoldine A; Louter, Mark A; Teernstra, Onno Pm; van Zwet, Erik W; Huygen, Frank Jpm; Haan, Joost; Ferrari, Michel D; Terwindt, Gisela M

    2017-03-04

    Cutaneous allodynia is an established marker for central sensitization in migraine. There is debate whether cutaneous allodynia may also occur in cluster headache, another episodic headache disorder. Here we examined the presence and severity of allodynia in a large well-defined nation-wide population of people with cluster headache.Using validated questionnaires we assessed, cross-sectionally, ictal allodynia and comorbid depression and migraine in the nation-wide "Leiden University Cluster headache neuro-Analysis" (LUCA) study. Participants with cluster headache were diagnosed according to the International Classification of Headache Disorders criteria. Multivariate regression models were used, with correction for demographic factors and cluster headache subtype (chronic vs. episodic; recent attacks < 1 month vs. no recent attacks).In total 606/798 (75.9%) participants with cluster headache responded of whom 218/606 (36%) had allodynia during attacks. Female gender (OR 2.05, 95% CI 1.28-3.29), low age at onset (OR 0.98, 95% CI 0.96- 0.99), lifetime depression (OR 1.63; 95% CI 1.06-2.50), comorbid migraine (OR 1.96; 95% CI 1.02-3.79), and having recent attacks (OR 1.80; 95% CI 1.13-2.86), but not duration of attacks and chronic cluster headache, were independent risk factors for allodynia.The high prevalence of cutaneous allodynia with similar risk factors for allodynia as found for migraine suggests that central sensitization, like in migraine, also occurs in cluster headache. In clinical practice, awareness that people with cluster headache may suffer from allodynia can in the future be an important feature in treatment options.

  8. Extending Beowulf Clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George

    2003-01-01

    Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.

  9. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  10. Magnetization of ferromagnetic clusters

    SciTech Connect

    Onishi, Naoki; Bertsch, G.; Yabana, Kazuhiro

    1995-02-01

    The magnetization and deflection profiles of magnetic clusters in a Stern-Gerlach magnet are calculated for conditions under which the magnetic moment is fixed in the intrinsic frame of the cluster, and the clusters enter the magnetic field adiabatically. The predicted magnetization is monotonic in the Langevin parameter, the ratio of magnetic energy {mu}{sub 0}B to thermal energy k{sub B}T. In low field the average magnetization is 2/3 of the Langevin function. The high-field moment approaches saturation asymptotically as B{sup {minus}1/2} instead of the B{sup {minus}1} dependence in the Langevin function.

  11. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  12. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  13. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  14. Combining cluster number counts and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Rosenfeld, Rogerio

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  15. Detection of individual gas molecules adsorbed on graphene.

    PubMed

    Schedin, F; Geim, A K; Morozov, S V; Hill, E W; Blake, P; Katsnelson, M I; Novoselov, K S

    2007-09-01

    The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.

  16. Efficiency of sepiolite in broilers diet as uranium adsorbent.

    PubMed

    Mitrović, Branislava M; Jovanović, Milijan; Lazarević-Macanović, Mirjana; Janaćković, Djordje; Krstić, Nikola; Stojanović, Mirjana; Mirilović, Milorad

    2015-05-01

    The use of phosphate mineral products in animal nutrition, as a major source of phosphor and calcium, can lead to uranium entering the food chain. The aim of the present study was to determine the protective effect of natural sepiolite and sepiolite treated with acid for broilers after oral intake of uranium. The broilers were contaminated for 7 days with 25 mg/uranyl nitrate per day. Two different adsorbents (natural sepiolite and sepiolite treated with acid) were given via gastric tube immediately after the oral administration of uranium. Natural sepiolite reduced uranium distribution by 57% in kidney, 80% in liver, 42% in brain, and 56% in muscle. A lower protective effect was observed after the administration of sepiolite treated with acid, resulting in significant damage of intestinal villi in the form of shortening, fragmentation, and necrosis, and histopathological lesions on kidney in the form of edema and abruption of epithelial cells in tubules. When broilers received only sepiolite treated with acid (no uranyl nitrate), shortening of intestinal villi occurred. Kidney injuries were evident when uranium concentrations in kidney were 0.88 and 1.25 µg/g dry weight. It is concluded that adding of natural sepiolite to the diets of broilers can reduce uranium distribution in organs by significant amount without adverse side effects.

  17. Interactions of NO2 with sewage sludge based composite adsorbents.

    PubMed

    Pietrzak, Robert; Bandosz, Teresa J

    2008-06-15

    Interactions of NO2 present in most air were analyzed at room temperature on composite sewage sludge-derived adsorbents. They consist of carbonaceous and inorganic phases with the majority of the latter. The adsorption capacity was evaluated using the dynamic breakthrough experiments. The materials before and after NO2 exposure were characterized using adsorption of nitrogen, thermal analysis and FTIR. The results showed differences in the surface activities of sludge-derived materials towards immobilization and reduction of nitric dioxide. Nitrates and nitrite are the main products of surface reactions. This is linked to the presence of active oxides and hydroxides, which are formed when the surface is exposed to water. The highest activity of the sample pyrolyzed at 650 degrees C is owing to the high content of those species formed as a result of decomposition of inorganic salts (likely chlorides, sulfates and phosphates) during thermal treatment. When sludge is pyrolyzed at 950 degrees C those oxides are engaged in stable mineral phases formed in solid-state reactions, which limits the surface activity towards NO2 retention. The reactivity of the high temperature pyrolyzed samples can be linked to the physical adsorption of water. In a water film nitrous and nitric acid can be formed and they can further react with inorganic and carbonaceous phases to the limited extent.

  18. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial.

    PubMed

    Arriagada, Francisco; Correa, Olosmira; Günther, Germán; Nonell, Santi; Mura, Francisco; Olea-Azar, Claudio; Morales, Javier

    2016-01-01

    Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.

  19. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial

    PubMed Central

    Arriagada, Francisco; Correa, Olosmira; Günther, Germán; Nonell, Santi; Mura, Francisco; Olea-Azar, Claudio

    2016-01-01

    Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased. PMID:27812111

  20. Adsorbed Methane Film Properties in Nanoporous Carbon Monoliths

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Chada, Nagaraju; Beckner, Matthew; Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Carbon briquetting can increase methane storage capacity by reducing the useless void volume resulting in a better packing density. It is a robust and efficient space-filling form for an adsorbed natural gas vehicle storage tank. To optimize methane storage capacity, we studied three fabrication process parameters: carbon-to-binder ratio, compaction temperature, and pyrolysis temperature. We found that carbon-to-binder ratio and pyrolysis temperature both have large influences on monolith uptakes. We have been able to optimize these parameters for high methane storage. All monolith uptakes (up to 260 bar) were measured by a custom-built, volumetric, reservoir-type instrument. The saturated film density and the film thickness was determined using linear extrapolation on the high pressure excess adsorption isotherms. The saturated film density was also determined using the monolayer Ono-Kondo model. Film densities ranged from ca. 0.32 g/cm3 - 0.37 g/cm3.The Ono-Kondo model also determines the binding energy of methane. Binding energies were also determined from isosteric heats calculated from the Clausius-Clapeyron equation and compared with the Ono-Kondo model method. Binding energies from Ono-Kondo were ca. 7.8 kJ/mol - 10 kJ/mol. Work funded by California Energy Commission Contract #500-08-022.

  1. Utilization of Rice Husk as Pb Adsorbent in Blood Cockles

    NASA Astrophysics Data System (ADS)

    Rohaeti, Eti; Permata Sari, Wenny; Batubara, Irmanida

    2016-01-01

    Water pollution by lead affects blood cockles, a potential source of food. The aim of this research is to compare rice husk (RH) and rice husk carbon (RHC) in reducing the concentration of lead in blood cockles. RH and RHC were activated with NaOH 1 M, and then the optimal conditions and maximum capacity were determined. This research showed that RH and RHC had maximum adsorbancy capacities of 28.7326 mg/g and 51.5464 mg/g at optimal condition. The optimal adsorption condition for RH in 100 ml Pb solution is 0.32 gram, pH 5, for 4 hours. The optimal adsorption condition for RHC in 100 ml Pb solution is 0.20 gram, pH 5, for 2 hours. Lead content in blood cockles from the north waters of Jakarta (1.9658 mg/kg) is beyond the threshold limit. Lead adsorption by RH and RHC could reduce lead content in blood cockles by about 40% and 31%, respectively.

  2. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  3. Modulation of the molecular spintronic properties of adsorbed copper corroles

    PubMed Central

    Wu, Fan; Liu, Jie; Mishra, Puneet; Komeda, Tadahiro; Mack, John; Chang, Yi; Kobayashi, Nagao; Shen, Zhen

    2015-01-01

    The ability to modulate the spin states of adsorbed molecules is in high demand for molecular spintronics applications. Here, we demonstrate that the spin state of a corrole complex can be tuned by expanding its fused ring as a result of the modification to the d–π interaction between the metal and ligand. A bicyclo[2.2.2]octadiene-fused copper corrole can readily be converted into a tetrabenzocorrole radical on an Au(111) substrate during the sublimation process. In the scanning tunnelling spectroscopy spectrum, a sharp Kondo resonance appears near the Fermi level on the corrole ligand of the tetrabenzocorrole molecule. In contrast, a non-fused-ring-expanded copper corrole molecule, copper 5,10,15-triphenylcorrole, shows no such Kondo feature. Mapping of the Kondo resonance demonstrates that the spin distribution of the tetrabenzocorrole molecule can be further modified by the rotation of the meso-aryl groups, in a manner that could lead to applications in molecular spintronics. PMID:26112968

  4. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    USGS Publications Warehouse

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  5. New insights into the ideal adsorbed solution theory.

    PubMed

    Furmaniak, Sylwester; Koter, Stanisław; Terzyk, Artur P; Gauden, Piotr A; Kowalczyk, Piotr; Rychlicki, Gerhard

    2015-03-21

    The GCMC technique is used for simulation of adsorption of CO2-CH4, CO2-N2 and CH4-N2 mixtures (at 298 K) on six porous carbon models. Next we formulate a new condition of the IAS concept application, showing that our simulated data obey this condition. Calculated deviations between IAS predictions and simulation results increase with the rise in pressure as in the real experiment. For the weakly adsorbed mixture component the deviation from IAS predictions is higher, especially when its content in the gas mixture is low, and this is in agreement with the experimental data. Calculated activity coefficients have similar plots to deviations between IAS and simulations, moreover obtained from simulated data activity coefficients are similar qualitatively as well as quantitatively to experimental data. Since the physical interpretation of activity coefficients is completely lacking we show for the first time that they can be described by the formulas derived from the expression for G(ex) for the ternary mixture. Finally we also for the first time show the linear relationship between the chemical potentials of nonideal and ideal solutions and the reduced temperature of interacting mixture components, and it is proved that the deviation from ideality is larger if adsorption occurs in a more microporous system.

  6. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    PubMed Central

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-01-01

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. Our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices. PMID:27554975

  7. Adsorption of copper cyanide on chemically active adsorbents

    SciTech Connect

    Lee, J.S.; Deorkar, N.V.; Tavlarides, L.L.

    1998-07-01

    An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN){sub 2}{sup {minus}}), divalent (Cu(CN){sub 3}{sup 2{minus}}), and trivalent (Cu(CN){sub 4}{sup 3{minus}}) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

  8. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    DOE PAGES

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE ismore » observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less

  9. Tunable magnetism in metal adsorbed fluorinated nanoporous graphene

    SciTech Connect

    Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; Yang, Li-Ming; Pushpa, Raghani

    2016-08-24

    Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.

  10. Adsorption and separation of proteins by collagen fiber adsorbent.

    PubMed

    Li, Juan; Liao, Xue-pin; Zhang, Qi-xian; Shi, Bi

    2013-06-01

    The separation of proteins is a key step in biomedical and pharmaceutical industries. In the present investigation, the collagen fiber adsorbent (CFA) was exploited as column packing material to separate proteins. Bovine serum albumin (BSA), bovine hemoglobin (Hb) and lysozyme (LYS) that have different isoelectric points (pIs) were selected as model proteins to investigate the separation ability of CFA to proteins. In batch adsorption, the adsorption behaviors of these proteins on CFA under different pHs and ionic strengths indicated that the electrostatic interaction plays a predominant role in the adsorption of proteins on CFA. CFA exhibited high adsorption capacity to Hb and LYS. In column separation, the proteins were completely separated by adjusting pH and ionic strength of the eluent. The increase of flow rate could reduce the separation time with no influence on the recovery of protein in the experimental range. The protein recovery was higher than 90% even when the CFA column was re-used for 4 times in separation of BSA and LYS, and the retention time of BSA or LYS was almost constant during the repeated applications. In addition, as a practical application, LYS was successfully separated from chicken egg white powder by CFA column.

  11. Adsorbed polymers under flow. A stochastic dynamical system approach

    NASA Astrophysics Data System (ADS)

    Armstrong, Robert; Jhon, Myung S.

    1985-09-01

    Recent experiments have shown that porous filters preadsorbed with polymer molecules exhibit an anomalously high pressure drop at high rates of flow. We have modeled the adsorbed polymers as dynamical systems and have found that the introduction of hydrodynamic interaction between molecules destabilizes at a high applied shear. As a direct result this instability will cause the molecules to unravel and stretch far into the cross section of the pore, and thus by inference, cause the observed anomalously high pressure drop. Although much of this paper is devoted to the stability characteristics of the deterministic system, Brownian motion is also considered, and an account of the statistics of the Brownian system when the deterministic system becomes unstable is given. The examples revealed in this paper are not of sufficient complexity to calculate with any accuracy the magnitude of this anomalous pressure drop. We simply present a procedure by which a large variety of more complex models could be undertaken and their ultimate effect clearly understood.

  12. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    PubMed

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  13. Control of optical response of a supported cluster on different dielectric substrates

    SciTech Connect

    Iida, Kenji Noda, Masashi; Nobusada, Katsuyuki

    2015-06-07

    We develop a computational method for optical response of a supported cluster on a dielectric substrate. The substrate is approximated by a dielectric continuum with a frequency-dependent dielectric function. The computational approach is based on our recently developed first-principles simulation method for photoinduced electron dynamics in real-time and real-space. The approach allows us to treat optical response of an adsorbate explicitly taking account of interactions at an interface between an adsorbate and a substrate. We calculate optical absorption spectra of supported Ag{sub n} (n = 2, 54) clusters, changing the dielectric function of a substrate. By analyzing electron dynamics in real-time and real-space, we clarify the mechanisms for variations in absorption spectra, such as peak shifts and intensity changes, relating to various experimental results for optical absorption of supported clusters. Attractive and repulsive interactions between an adsorbate and a substrate result in red and blue shifts, respectively, and the intensity decreases by energy dissipation into a substrate. We demonstrate that optical properties can be controlled by varying the dielectric function of a substrate.

  14. Molecular cluster theory for chemisorption of first row atoms on nickel /100/ surfaces

    NASA Technical Reports Server (NTRS)

    Ellis, D. E.; Adachi, H.; Averill, F. W.

    1976-01-01

    Self-consistent Hartree-Fock-Slater molecular cluster models for the chemisorption of first-row atoms on Ni(100) surfaces are presented. Energy levels and ground-state charge distributions are given for XNi5 clusters with the adatom X = H, C, N, O located in C4V symmetry at a fixed height of 2.0 au above the surface. The variation of properties with height was studied in detail for the case of oxygen. Theoretical results compare rather well with experimental photoelectron and energy-loss data. Local-densities-of-states diagrams are used to clarify the interaction between adsorbate levels and metal conduction bands.

  15. Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents

    SciTech Connect

    Kuo, Li-Jung; Gill, Gary A.; Strivens, Jonathan E.; Wood, Jordana R.; Schlafer, Nicholas J.; Wai, Chien M.; Pan, H. B.

    2016-09-28

    Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method to strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT-IR analysis. The

  16. How Clusters Work

    EPA Pesticide Factsheets

    Technology innovation clusters are geographic concentrations of interconnected companies, universities, and other organizations with a focus on environmental technology. They play a key role in addressing the nation’s pressing environmental problems.

  17. [Treatment of cluster headache].

    PubMed

    Fabre, N

    2005-07-01

    Remarkable therapeutic improvements have come forward recently for trigemino-autonomic cephalalgias. Attack treatment in cluster headache is based on sumatriptan and oxygen. Non-vasoconstrictive treatments are opening a new post-triptan era but are not yet applicable. Prophylactic treatment of cluster headache is based on verapamil and lithium. The efficacy of anti-epileptic drugs in cluster headache remains to be demonstrated. Surgical treatment aimed at the parasympathetic pathways and at the trigeminal nerve demonstrates a high rate of recurrence and adverse events and questions about the relevance of a "peripheral" target in cluster headache. The efficacy of continuous hypothalamic stimulation in patients with intractable headache constitutes a breakthrough, but must be demonstrated at a larger scale and the benefice/risk ratio must be carefully evaluated. Indomethacin still remains the gold standard in paroxysmal hemicrania treatment. Until recently SUNCT was considered an intractable condition. However there are some reports of complete relief with lamotrigine, topiramate and gabapentin.

  18. STEM characterization of metal clusters in/on oxides

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shareghe

    Dispersed metal clusters in or on a support matrix are key phenomenons in many technological fields. Two widely used examples of them which are investigated in this thesis are supported-metal clusters in heterogeneous catalysis and transition metal clusters in diluted magnetic semiconductors (DMS) applied in spintronics. The catalytic activity and selectivity of catalysts often depend sensitively on structure parameters, such as particles size and shape. With the same analogy, the magnetic properties of DMS oxides are sensitively related to the crystal defects of the host material as a consequence of doping the transition metal. Therefore it is essential to develop and understand the correlation between nanostructure and function of these materials. STEM Z-contrast imaging is the best candidate for this type of study because of a high degree of resolution it provides and the unique ability it offers to detect and differentiate between the clusters and oxide matrix due to the large difference between their atomic numbers. Moreover the technique development in the STEM field fosters the conjugation of electron energy Loss Spectroscopy (EELS) and Z-contrast imaging and their widespread use for nearly atomic level chemical analysis at interface, second phases, and isolated defects. The advanced preparation method of supported clusters catalysts which is by carbonyl ligands offers a controlled cluster size and shape. MgO-supported Os clusters and SiO2-supported Ta clusters prepared by this method are adsorbed on oxide to convert into single-sized supported metal aggregates. The last step of preparation method is by removal of the ligands (decarbonylation) which is very important because it determines the final size distribution and shape of such clusters. Reaching carbonylated decaosmium clusters with the size of theoretically 0.295 nm and the tetrahedral-shape geometry are the aim of the preparation method. The size distribution measurements of sub-nanoclusters of

  19. NO2 interaction with Au atom adsorbed on perfect and defective MgO(100) surfaces: density functional theory calculations.

    PubMed

    Ammar, H Y; Eid, Kh M

    2013-10-01

    The interactions of nitrogen dioxide molecule (NO2) on Au atom adsorbed on the surfaces of metal oxide MgO (100) on both anionic (O2-) and defect (F(s) and F(s)(+)-centers) sites have been studied using the Density Functional Theory (DFT) in combination with embedded cluster model. The adsorption energies of NO2 molecule (N-down as well as O-down) on O(-2), F(s) and F(s)(+)-sites were considered. Full optimization for the additive materials and partial optimization for MgO substrate surfaces have been done. The formation energies were evaluated for F(s) and F(s)(+) of MgO substrate surfaces. Some parameters, the Ionization Potential (IP) and electron Affinity (eA), for defect free and defect containing surfaces have been calculated. The interaction properties of NO2 have been analyzed in terms of the adsorption energy, the electron donation (basicity), the elongation of N-O bond length and the charge distribution by using Natural Bond Orbital (NBO) analysis. The adsorption properties were examined by calculation of the Density of State (DOS). The presence of the Au atom increases the surface chemistry of the anionic O(2-)-site of MgO substrate surfaces. On the other hand, the presence of the Au atom decreases the surface chemistry of the F(s) and F(s)(+)-sites of MgO substrate surfaces. Generally, the NO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing F(s) and F(s)(+)-centers.

  20. Clustered frequency comb.

    PubMed

    Matsko, Andrey B; Savchenkov, Anatoliy A; Huang, Shu-Wei; Maleki, Lute

    2016-11-01

    We show theoretically that it is feasible to generate a spectrally broad Kerr frequency comb consisting of several spectral clusters phase matched due to interplay among second- and higher-order group velocity dispersion contributions. We validate the theoretical analysis experimentally by driving a magnesium fluoride resonator, characterized with 110 GHz free spectral range, with a continuous wave light at 1.55 μm and observing two comb clusters separated by nearly two-thirds of an octave.

  1. Cluster State Quantum Computing

    DTIC Science & Technology

    2012-12-01

    implementation of quantum computation,” Fortschr. Phys. 48, 771 (2000). [Dragoman01] D. Dragoman, “Proposal for a three-qubit teleportation experiment”, Phys...CLUSTER STATE QUANTUM COMPUTING DECEMBER 2012 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...From - To) NOV 2010 – OCT 2012 4. TITLE AND SUBTITLE CLUSTER STATE QUANTUM COMPUTING 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER N/A 5c

  2. Globular clusters with Gaia

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Bellazzini, M.; Giuffrida, G.; Marinoni, S.

    2017-01-01

    The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach sufficient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance, and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majoritiy of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that: (i) the systemic proper motions and parallaxes will be determined to 1% or better up to ≃15 kpc, and the nearby clusters will have radial velocities to a few km s-1 ; (ii) internal kinematics will be of unprecendented quality, cluster masses will be determined to ≃10% up to 15 kpc and beyond, and it will be possible to identify differences of a few km s-1 or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V≃17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3% errors on the absolute photometric calibration.

  3. Chemistry within Molecular Clusters

    DTIC Science & Technology

    1992-05-29

    molecule reaction of the fragment cations with a neutral DME within the bulk cluster, to form a trimethyloxonium cation intermediate. Similar ion...trimethyloxonium intermediate as the common intermediate for the observed products. We therefore speculate that the DME cluster reactions leading to the same...1982, 20, 51, Ibid. Kinetics of Ion-Molecule Reactions ; Ausloos, P., Ed.; Plenum, New York, 1979; p. 69. (18) Ono, Y.; Ng, C. Y. J. Am. Chem. Soc. 1982

  4. Wild Duck Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On April 7, 2005, the Deep Impact spacecraft's Impactor Target Sensor camera recorded this image of M11, the Wild Duck cluster, a galactic open cluster located 6 thousand light years away. The camera is located on the impactor spacecraft, which will image comet Tempel 1 beginning 22 hours before impact until about 2 seconds before impact. Impact with comet Tempel 1 is planned for July 4, 2005.

  5. Parallel Wolff Cluster Algorithms

    NASA Astrophysics Data System (ADS)

    Bae, S.; Ko, S. H.; Coddington, P. D.

    The Wolff single-cluster algorithm is the most efficient method known for Monte Carlo simulation of many spin models. Due to the irregular size, shape and position of the Wolff clusters, this method does not easily lend itself to efficient parallel implementation, so that simulations using this method have thus far been confined to workstations and vector machines. Here we present two parallel implementations of this algorithm, and show that one gives fairly good performance on a MIMD parallel computer.

  6. Effects of dilution of poly(ethylvinylbenzene-divinylbenzene) adsorbent on the adsorption of aliphatic, alicyclic, and aromatic hydrocarbon adsorbates from effective zero to finite surface coverage

    SciTech Connect

    Djordjevic, N.M.; Laub, R.J.

    1988-01-15

    The chromatographic measurement and systematic interpretation of the solidgas partition coefficients K/sub s/ and related thermodynamic properties of a number of hydrocarbon adsorbates (n-pentane through n-octane, cyclohexane, methylcyclohexane, benzene, dichloromethane, chloroform, carbon tetrachloride, tetrahydrofuran, thiophene, and acetone) at effective zero surface coverage with a 1:10 admixture of the title adsorbent-inert diluent from 393 to 443 K are reported. Despite a difference of an order of magnitude in the surface areas of bulk and admixed packings, the adsorbate relative retentions were in good agreement with those found in previous work with neat Porapak Q. The heats of adsorption also coincided to within an experimental error of ca. +- 5%. The GSC technique of elution by characteristic point was then used to derive the finite-concentration adsorption isotherms and isosteric heats of adsorption on n-hexane, cyclohexane, benzene, carbon tetrachloride, and acetone adsorbates with diluted Porapak Q over the temperature range 393-433 K. All exhibited BET Type IV isotherms, as well as changes in the respective isotherm temperature coefficients. The latter is said to be a consequence of the microporous substructure of this adsorbent.

  7. Applications and limits of theoretical adsorption models for predicting the adsorption properties of adsorbents.

    PubMed

    Park, Hyun Ju; Nguyen, Duc Canh; Na, Choon-Ki; Kim, Chung-il

    2015-01-01

    The objective of this study is to evaluate the applicability of adsorption models for predicting the properties of adsorbents. The kinetics of the adsorption of NO3- ions on a PP-g-AA-Am non-woven fabric have been investigated under equilibrium conditions in both batch and fixed bed column processes. The adsorption equilibrium experiments in the batch process were carried out under different adsorbate concentration and adsorbent dosage conditions and the results were analyzed using adsorption isotherm models, energy models, and kinetic models. The results of the analysis indicate that the adsorption occurring at a fixed adsorbate concentration with a varying adsorbent dosage occur more easily compared to those under a fixed adsorbent dosage with a varying adsorbate concentration. In the second part of the study, the experimental data obtained using fixed bed columns were fit to Bed Depth Service Time, Bohart-Adams, Clark, and Wolborska models, to predict the breakthrough curves and determine the column kinetic parameters. The adsorption properties of the NO3- ions on the PP-g-AA-Am non-woven fabric were differently described by different models for both the batch and fixed bed column process. Therefore, it appears reasonable to assume that the adsorption properties were dominated by multiple mechanisms, depending on the experimental conditions.

  8. Electronic and magnetic properties of nonmetal atoms adsorbed ReS{sub 2} monolayers

    SciTech Connect

    Zhang, Xiaoou; Li, Qingfang

    2015-08-14

    The stable configurations and electronic and magnetic properties of nonmetal atoms (H, N, P, O, S, F, and Cl) adsorbed ReS{sub 2} monolayers have been investigated by first-principles calculations. It is found that H, O, S, F, and Cl prefer to occupy the peak sites of S atoms, while both N and P atoms favor the valley sites of S atoms. The ReS{sub 2} sheet exhibits a good adsorption capability to nonmetal atoms. The reconstruction of the surface is pronounced in N- and P-adsorbed ReS{sub 2} monolayers. In H-adsorbed case, the Fermi level is pulled into the conduction band, which results in the semiconductor-metal transition. The same magnetic moment of 1μ{sub B} is found in the N-, P-, F-, and Cl-adsorbed ReS{sub 2} monolayers, while the mechanisms of forming magnetic moment for N (P)- and F (Cl)-adsorbed cases are different. In addition, the spatial extensions of spin density in P-, F-, and Cl-adsorbed cases are larger than that in N-adsorbed case, which is more suitable to achieve long-range magnetic coupling interaction at low defect concentrations. Our results provide insight for achieving metal-free magnetism and a tunable band gap for various electronic and spintronic devices based on ReS{sub 2}.

  9. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water.

    PubMed

    Liu, Han; Deng, Shubo; Li, Zhijian; Yu, Gang; Huang, Jun

    2010-07-15

    A novel Al-Ce hybrid adsorbent with high sorption capacity for fluoride was prepared through the coprecipitation method in this study, and its preparation conditions were optimized. X-ray diffraction (XRD) and scanning electron microscope (SEM) results showed that the hybrid adsorbent was of amorphous structure and constituted by some aggregated nanoparticles. As the adsorbent had the zero point of zeta potential at pH 9.6, it was very effective in fluoride removal from aqueous solution via electrostatic interaction. The results of sorption experiments including sorption kinetics, isotherms, and the effect of solution pH showed that the sorption of fluoride on the Al-Ce adsorbent was fast and pH-dependent. Especially, the adsorbent had high sorption capacity up to 27.5 mg g(-1) for fluoride at the equilibrium fluoride concentration of 1 mg L(-1), much higher than that of the conventional adsorbents. Fourier transform infrared (FTIR) analysis and zeta potential measurement showed that the hydroxyl groups and the protonated hydroxyl groups on the adsorbent surface were involved in the fluoride adsorption.

  10. Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water.

    PubMed

    Goel, Narender Kumar; Kumar, Virendra; Misra, Nilanjal; Varshney, Lalit

    2015-11-05

    A cationized adsorbent was prepared from cellulosic cotton fabric waste via a single step-green-radiation grafting process using gamma radiation source, wherein poly[2-(methacryloyloxy) ethyl]trimethylammonium chloride (PMAETC) was covalently attached to cotton cellulose substrate. Radiation grafted (PMAETC-g-cellulose) adsorbent was investigated for removal of acid dyes from aqueous solutions using two model dyes: Acid Blue 25 (AB25) and Acid Blue 74 (AB74). The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherms, whereas kinetic data was analyzed by pseudo first order, pseudo second order, intra particle diffusion and Boyd's models. The PMAETC-g-cellulose adsorbent with 25% grafting yield exhibited equilibrium adsorption capacities of ∼ 540.0mg/g and ∼ 340.0mg/g for AB25 and AB74, respectively. Linear and nonlinear fitting of adsorption data suggested that the equilibrium adsorption process followed Langmuir adsorption isotherm model, whereas, the kinetic adsorption process followed pseudo-second order model. The multi-linearities observed in the intra-particle kinetic plots suggested that the intraparticle diffusion was not the only rate-controlling process in the adsorption of acid dyes on the adsorbent, which was further supported by Boyd's model. The adsorbent could be regenerated by eluting the adsorbed dye from the adsorbent and could be repeatedly used.

  11. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  12. Application of a novel magnetic carbon nanotube adsorbent for removal of mercury from aqueous solutions.

    PubMed

    Homayoon, Farshid; Faghihian, Hossein; Torki, Firoozeh

    2017-04-01

    In this research, multiwall carbon nanotube was magnetized and subsequently functionalized by thiosemicarbazide. After characterization by FTIR, BET, SEM, EDAX, and VSM techniques, the magnetized adsorbent (multi-walled carbon nanotubes (MWCNTs)/Fe3O4) was used for removal of Hg(2+) from aqueous solutions and the experimental conditions were optimized. The adsorption capacity of 172.83 mg g(-1) was obtained at 25 °C and pH = 3 which was superior to the value obtained for initial multiwall carbon nanotube, magnetized sample, and many previously reported values. In the presence of Pb(+2) and Cd(+2), the adsorbent was selective towards mercury when their concentration was respectively below 50 and 100 mg L(-1). The adsorption process was kinetically fast and the equilibration was attained within 60 min with 69.5% of the capacity obtained within 10 min. The used adsorbent was regenerated by HNO3 solution, and the regenerated adsorbent retained 92% of its initial capacity. The magnetic sensitivity of the adsorbent allowed the simple separation of the used adsorbent from the solution by implying an appropriate external magnetic field. The adsorption data was well fitted to the Langmuir isotherm model, indicating homogeneous and monolayer adsorption of mercury by the adsorbent.

  13. CO{sub 2} capture by polyethylenimine-modified fibrous adsorbent

    SciTech Connect

    Li, P.Y.; Ge, B.Q.; Zhang, S.J.; Chen, S.X.; Zhang, Q.K.; Zhao, Y.N.

    2008-07-15

    This work focuses on developing a novel adsorbent for CO{sub 2} capture, by coating polyethylenimine (PEI) on glass fiber matrix and using epichlorohydrin (ECH) as cross-linking agent. The physicochemical properties of the fibrous adsorbent were characterized. The CO{sub 2} adsorption capacity was evaluated. Factors that affect the adsorption capacity of the fibrous adsorbent were studied. The experimental results show that this fibrous PEI adsorbent exhibits a much higher adsorption capacity for CO{sub 2} compared with another PEI fiber prepared in our previous work, which employed epoxy resin as the cross-linking agent. A CO{sub 2} adsorption capacity as high as 4.12 mmol CO{sub 2}/g of adsorbent was obtained for this fibrous PEI adsorbent at 30{sup o}C, equal to 13.56 mmol CO{sub 2}/g of PEI, with a PEI/ECH ratio of 20:1. The adsorbent can be completely regenerated at 120{sup o}C.

  14. Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix.

    PubMed

    Velghe, I; Carleer, R; Yperman, J; Schreurs, S; D'Haen, Jan

    2012-05-15

    Copper and zinc removal from water (pH = 5.0) using adsorbents produced from slow and fast pyrolysis of industrial sludge and industrial sludge mixed with a disposal filter cake (FC), post treated with HCl, is investigated in comparison with a commercial adsorbent F400. The results show that a pseudo-second order kinetics model is followed. The Langmuir-Freundlich isotherm model is found to fit the data best. The capacity for heavy metal removal of studied adsorbents is generally better than that of commercial F400. The dominant heavy metal removal mechanism is cation exchange. Higher heavy metal removal capacity is associated with fast pyrolysis adsorbents and sludge/FC derived adsorbents, due to enhanced cation exchange. Improvement of Zn(2+) removal via 1 N HCl post-treatment is only effective when exchangeable cations of the adsorbent are substituted with H(+) ions, which boost the cation exchange capacity. Increase of temperature also enhances metal removal capacity. Fast pyrolysis sludge-based adsorbents can be reused after several adsorption-desorption cycles.

  15. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    PubMed

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g(-1). The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent.

  16. Molecular separations with breathing metal-organic frameworks: modelling packed bed adsorbers.

    PubMed

    Van Assche, Tom R C; Baron, Gino V; Denayer, Joeri F M

    2016-03-14

    Various metal-organic framework (MOFs) adsorbents show peculiar adsorption behaviour as they can adopt different crystal phases, each phase with its own adsorption characteristics. Besides external stimuli such as temperature or light, different species of guest adsorbate can trigger a transition (breathing) of the host structure at a different pressure. Such phase transitions also occur during dynamic separations on a packed bed of adsorbent, where the concentrations of the adsorbates vary throughout axial column distance and time. This work presents a general strategy to model the adsorption behavior of such phase changing adsorbents during column separations and focuses on remarkable model predictions for pure components and binary mixtures in diluted and non-diluted conditions. During binary breakthrough experiments, the behaviour of flexible adsorbents is quite complex. A succession of complete or even partial phase transformations (resulting in phase coexistence) can occur during the adsorption process. A variety of unusual breakthrough profiles is observed for diluted binary mixtures. Simulations reveal at least five types of breakthrough profiles to emerge. The occurrence of these cases can be rationalized by the hodograph technique, combined with the phase diagram of the adsorbent. The remarkable experimental breakthrough profiles observed for ortho-xylene/ethylbenzene (diluted) and CO2/CH4 (non-diluted) separation on the flexible MIL-53 framework can be rationalized by application of the proposed model strategy.

  17. Submerged membrane adsorption hybrid system using four adsorbents to remove nitrate from water.

    PubMed

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2017-04-05

    Nitrate contamination of ground and surface waters causes environmental pollution and human health problems in many parts of the world. This study tests the nitrate removal efficiencies of two ion exchange resins (Dowex 21K XLT and iron-modified Dowex 21K XLT (Dowex-Fe)) and two chemically modified bio-adsorbents (amine-grafted corn cob (AG corn cob) and amine-grafted coconut copra (AG coconut copra)) using a dynamic adsorption treatment system. A submerged membrane (microfiltration) adsorption hybrid system (SMAHS) was used for the continuous removal of nitrate with a minimal amount of adsorbents. The efficiency of membrane filtration flux and replacement rate of adsorbent were studied to determine suitable operating conditions to maintain the effluent nitrate concentration below the WHO drinking standard limit of 11.3 mg N/L. The volume of water treated and the amount of nitrate adsorbed per gramme of adsorbent for all four flux tested were in the order Dowex-Fe > Dowex > AG coconut copra > AG corn cob. The volumes of water treated (L/g adsorbent) were 0.91 and 1.85, and the amount of nitrate removed (mg N/g adsorbent) were 9.8 and 22.2 for AG corn cob and Dowex-Fe, respectively, at a flux of 15 L/(m(2)/h).

  18. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants.

    PubMed

    Nakamura, Yuki; Okachi, Manami; Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2015-12-15

    We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters.

  19. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; ...

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  20. Structural transitions in clusters.

    PubMed

    Hartke, Bernd

    2002-05-03

    If one adds more particles to a cluster, the energetically optimal structure is neither preserved nor does it change in a continuous fashion. Instead, one finds several cluster size regions where one structural principle dominates almost without exception, and rather narrow boundary regions in-between. The structure of the solid is usually reached only at relatively large sizes, after more than one structural transition. The occurrence of this general phenomenon of size-dependent structural transitions does not seem to depend on the nature of the particles, it is found for atomic, molecular, homogeneous, and heterogeneous clusters alike. Clearly, it is a collective many-body phenomenon which can in principle be calculated but not understood in a fully reductionistic manner. Actual calculations with sufficient accuracy are not feasible today, because of the enormous computational expense, even when unconventional evolutionary algorithms are employed for global geometry optimization. Therefore, simple rules for cluster structures are highly desirable. In fact, we are dealing here not just with the academic quest for linkages between cluster structure and features of the potential energy surface, but structural transitions in clusters are also of immediate relevance for many natural and industrial processes, ranging from crystal growth all the way to nanotechnology. This article provides an exemplary overview of research on this topic, from simple model systems where first qualitative explanations start to be successful, up to more realistic complex systems which are still beyond our understanding.

  1. Cluster functional renormalization group

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Thomale, Ronny

    2014-01-01

    Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.

  2. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    PubMed

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  3. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    PubMed

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  4. A computer modelling study of the interaction of organic adsorbates with fluorapatite surfaces

    NASA Astrophysics Data System (ADS)

    Mkhonto, Donald; Ngoepe, Phuti E.; Cooper, Timothy G.; de Leeuw, Nora H.

    2006-08-01

    Computer modelling techniques were employed to investigate the adsorption of a selection of organic surfactant molecules to a range of fluorapatite surfaces, and new interatomic potential models for the apatite/adsorbate interactions are presented. The adsorbates coordinate mainly to the surfaces through interaction between their oxygen (or nitrogen) atoms to surface calcium ions, followed by hydrogen-bonded interactions to surface oxygen ions and, to a much lesser extent, surface fluorides. Bridging between two surface calcium ions is the preferred mode of adsorption, when the geometry of the adsorbates allows it, and multiple interactions between surfaces and adsorbate molecules lead to the largest adsorption energies. All adsorbates containing carbonyl and hydroxy groups interact strongly with the surfaces, releasing energies between approximately 100 and 215 kJ mol-1, but methylamine containing only the NH2 functional group adsorbs to the surfaces to a much lesser extent (25 95 kJ mol-1). Both hydroxy methanamide and hydroxy ethanal prefer to adsorb to some surfaces in an eclipsed conformation, which is a requisite for these functional groups. Sorption of the organic material by replacement of pre-adsorbed water at different surface features is calculated to be mainly exothermic for methanoic acid, hydroxy methanamide and hydroxy ethanal molecules, whereas methyl amine would not replace pre-adsorbed water at the fluorapatite surfaces. The efficacy of the surfactant molecules is calculated to be hydroxy aldehydes > alkyl hydroxamates > carboxylic acids ≫ alkyl amines. The results from this study suggest that computer simulations may provide a route to the identification or even design of particular organic surfactants for use in mineral separation by flotation.

  5. Titanium-incorporated organic–inorganic hybrid adsorbent for improved CO{sub 2} adsorption performance

    SciTech Connect

    Zhang, Xiaoyun; Qin, Hongyan; Zhang, Sisi; Wu, Wei

    2015-02-15

    Highlights: • Titanium-incorporated organic–inorganic hybrid adsorbent was prepared. • The incorporation of Ti to the adsorbent showed significant effect. • The sorbent shows high CO{sub 2} capture capacity both in pure and diluted CO{sub 2} at RT. • The sorbent exhibits a high recycling stability after 15 cycling runs. - Abstract: The CO{sub 2} adsorption performance of acrylonitrile (AN)–tetraethylenepentamine (TEPA) adduct (hereafter referred to as TN) impregnated adsorbent was greatly enhanced by introduction of Titanium atom into the silica matrix. The adsorbents were characterized by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption/desorption, UV–vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments together with the physicochemical characterization demonstrated that these adsorbents containing an optimal amount of Titanium (Ti/Si ≈ 0.1) remarkably reinforced the CO{sub 2} adsorption capacity and recycling stability. The highest CO{sub 2} uptakes reached 4.65 and 1.80 mmol CO{sub 2}/g adsorbent at 25 °C under 90% CO{sub 2} (CO{sub 2}/N{sub 2}, 90:10 V/V) and 1% CO{sub 2} (CO{sub 2}/N{sub 2}, 1:99 V/V) conditions for sample Ti(0.1)-DMS-TN, respectively. Repeated adsorption/desorption cycles revealed that the Ti-incorporated adsorbent showed only a tiny decrease in adsorption capacity (1.778 mmol CO{sub 2}/g adsorbent after 15 cycles, decreased by 0.95%), significantly enhanced the adsorbent recycling stability.

  6. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry.

    PubMed

    Miller, Yifat; Thomas, Jennie L; Kemp, Daniel D; Finlayson-Pitts, Barbara J; Gordon, Mark S; Tobias, Douglas J; Gerber, R Benny

    2009-11-19

    Structural properties of large NO(3)(-).(H(2)O)(n) (n = 15-500) clusters are studied by Monte Carlo simulations using effective fragment potentials (EFPs) and by classical molecular dynamics simulations using a polarizable empirical force field. The simulation results are analyzed with a focus on the description of hydrogen bonding and solvation in the clusters. In addition, a comparison between the electronic structure based EFP and the classical force field description of the 32 water cluster system is presented. The EFP simulations, which focused on the cases of n = 15 and 32, show an internal, fully solvated structure and a "surface adsorbed" structure for the 32 water cluster at 300 K, with the latter configuration being more probable. The internal solvated structure and the "surface adsorbed" structure differ considerably in their hydrogen bonding coordination numbers. The force field based simulations agree qualitatively with these results, and the local geometry of NO(3)(-) and solvation at the surface-adsorbed site in the force field simulations are similar to those predicted using EFPs. Differences and similarities between the description of hydrogen bonding of the anion in the two approaches are discussed. Extensive classical force field based simulations at 250 K predict that long time scale stability of "internal" NO(3)(-), which is characteristic of extended bulk aqueous interfaces, emerges only for n > 300. Ab initio Møller-Plesset perturbation theory is used to test the geometries of selected surface and interior anions for n = 32, and the results are compared to the EFP and MD simulations. Qualitatively, all approaches agree that surface structures are preferred over the interior structures for clusters of this size. The relatively large aqueous clusters of NO(3)(-) studied here are of comparable size to clusters that lead to new particle formation in air. Nitrate ions on the surface of such clusters may have significantly different photochemistry

  7. Structure of Large Nitrate-Water Clusters at Ambient Temperatures: Simulations with Effective Fragment Potentials and Force Fields with Implications for Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Miller, Yifat; Thomas, Jennie L.; Kemp, Daniel D.; Finlayson-Pitts, Barbara J.; Gordon, Mark S.; Tobias, Douglas J.; Gerber, R. Benny

    2009-10-01

    Structural properties of large NO3-·(H2O)n (n = 15-500) clusters are studied by Monte Carlo simulations using effective fragment potentials (EFPs) and by classical molecular dynamics simulations using a polarizable empirical force field. The simulation results are analyzed with a focus on the description of hydrogen bonding and solvation in the clusters. In addition, a comparison between the electronic structure based EFP and the classical force field description of the 32 water cluster system is presented. The EFP simulations, which focused on the cases of n = 15 and 32, show an internal, fully solvated structure and a "surface adsorbed" structure for the 32 water cluster at 300 K, with the latter configuration being more probable. The internal solvated structure and the "surface adsorbed" structure differ considerably in their hydrogen bonding coordination numbers. The force field based simulations agree qualitatively with these results, and the local geometry of NO3- and solvation at the surface-adsorbed site in the force field simulations are similar to those predicted using EFPs. Differences and similarities between the description of hydrogen bonding of the anion in the two approaches are discussed. Extensive classical force field based simulations at 250 K predict that long time scale stability of "internal" NO3-, which is characteristic of extended bulk aqueous interfaces, emerges only for n > 300. Ab initio Møller-Plesset perturbation theory is used to test the geometries of selected surface and interior anions for n = 32, and the results are compared to the EFP and MD simulations. Qualitatively, all approaches agree that surface structures are preferred over the interior structures for clusters of this size. The relatively large aqueous clusters of NO3- studied here are of comparable size to clusters that lead to new particle formation in air. Nitrate ions on the surface of such clusters may have significantly different photochemistry than the internal

  8. Particle reflection and its energy spectrum from solid surfaces with adsorbate atoms

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.

    1988-06-01

    Using the ACAT and ACOCT codes, the particle reflection coefficients and energy spectra reflected from solid surfaces covered with adsorbated atoms have been calculated in the low-energy region. It is found that the particle reflection coefficients of low energy ions are much reduced due to the collision between an incoming ion and an adsorbate atom, especially for M1 > M3 ( M1 and M3 being the atomic masses of an ion and an adsorbate atom, respectively), and the surface peak from a substrate atom becomes strongly suppressed as the coverage increases.

  9. Inverse photoemission of adsorbed xenon multilayers on Ru(001): Refutation of final-state screening effects

    NASA Astrophysics Data System (ADS)

    Wandelt, K.; Jacob, W.; Memmel, N.; Dose, V.

    1986-09-01

    In this Letter we describe photoemission and inverse photoemission spectra of adsorbed xenon multilayers on Ru(001). Electron energy-loss spectra of xenon adsorbed on gold by Demuth, Avouris, and Schmeisser are included in the discussion. The observed layer-dependent shifts of the inverse photoemission spectra closer to the Fermi level clearly invalidate image screening effects as being the dominant cause of these shifts but support a ``floating'' of the adsorbed Xe potential well as a whole with the surface potential in the initial state.

  10. Thermodynamic properties of adsorbed water on silica gel - Exergy losses in adiabatic sorption processes

    NASA Astrophysics Data System (ADS)

    Worek, W. M.; Zengh, W.; San, J.-Y.

    1991-09-01

    In order to perform exergy analyses to optimize the transient heat and mass transfer processes involving sorption by solid adsorbents, the thermodynamic properties of adsorbed water must be determined. In this paper, the integral enthalpy and entropy are determined directly from isotherm data of water adsorbed on silica gel particles and silica gel manufactured in the form of a felt with 25 percent cotton as a support and Teflon as a binder. These results are then used to evaluate the exergy losses, due to the sorption and the convective heat and mass transfer processes, that occur in each portion of an adiabatic desiccant dehumidificaton cycle.

  11. Enhanced membrane filtration of wood hydrolysates for hemicelluloses recovery by pretreatment with polymeric adsorbents.

    PubMed

    Koivula, Elsi; Kallioinen, Mari; Sainio, Tuomo; Antón, Enrique; Luque, Susana; Mänttäri, Mika

    2013-09-01

    In this study adsorption of foulants from birch and pine/eucalyptus wood hydrolysates on two polymeric adsorbents was studied aiming to reduce the membrane fouling. The effect of the pretreatment of hydrolysate on polyethersulphone membrane performance was studied in dead-end filtration experiments. Adsorption pretreatment improved significantly filtration capacity and decreased membrane fouling. Especially high-molecular weight lignin was efficiently removed. A multistep adsorption pretreatment was found to reduce the amount of adsorbent required. While large adsorbent amount was shown to increase flux in filtration, it was found also to cause significant hemicellulose losses.

  12. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  13. Direct Measurement of Core-Level Relaxation Dynamics on a Surface-Adsorbate System

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, L.; Saathoff, G.; Mathias, S.; Yin, J.; La-O-Vorakiat, C.; Bauer, M.; Aeschlimann, M.; Murnane, M. M.; Kapteyn, H. C.

    2008-07-01

    The coupling between electronic states in a surface-adsorbate system is fundamental to the understanding of many surface interactions. In this Letter, we present the first direct time-resolved observations of the lifetime of core-excited states of an atom adsorbed onto a surface. By comparing laser-assisted photoemission from a substrate with a delayed Auger decay process from an adsorbate, we measure the lifetime of the 4d-1 core level of xenon on Pt(111) to be 7.1±1.1fs. This result opens up time-domain measurements of surface dynamics where energy-resolved measurements may provide incomplete information.

  14. Direct electrochemistry of Penicillium chrysogenum catalase adsorbed on spectroscopic graphite.

    PubMed

    Dimcheva, Nina; Horozova, Elena

    2013-04-01

    The voltammetric studies of Penicillium chrysogenum catalase (PcCAT) adsorbed on spectroscopic graphite, showed direct electron transfer (DET) between its active site and the electrode surface. Analogous tests performed with the commercially available bovine catalase revealed that mammalian enzyme is much less efficient in the DET process. Both catalases were found capable to catalyse the electrooxidation of phenol, but differed in the specifics of catalytic action. At an applied potential of 0.45V the non-linear regression showed the kinetics of the bioelectrochemical oxidation catalysed by the PcCAT obeyed the Hill equation with a binding constant K=0.034±0.002 M(2) (Hill's coefficient n=2.097±0.083, R(2)=0.997), whilst the catalytic action of the bovine catalase was described by the Michaelis-Menten kinetic model with the following parameters: V(max,app)=7.780±0.509 μA, and K(M,app)=0.068±0.070 mol L(-1). The performance of the electrode reaction was affected by the electrode potential, the pH, and temperature. Based on the effect of pH and temperature on the electrode response in presence of phenol a tentative reaction pathway of its bioelectrocatalytic oxidation has been hypothesised. The possible application of these findings in biosensing phenol up to concentration 30 mM at pHs below 7 and in absence of oxidising agents (oxygen or H(2)O(2)) was considered.

  15. The Structure and Properties of Carbon Fiber Based Adsorbent Monoliths

    SciTech Connect

    Burchell, T.; Judkins, R.R.; Rogers, M.R.; Shaw, W.S.

    1998-11-06

    Carbon fiber monoliths manufactured by a novel slurry molding process from isotropic pitch-derived fibers are being developed at ORNL for gas separation and storage applications [1]. Low density (p = 0.2 - 0,3 g/cm3) monoliths have been successfully demonstrated to have an acceptable pressure drop for gas separation applications and are currently being developed for C02/CH4 separations, whereas monoliths with densities in the range p = 0.4 - 0.6 g/cm3 have been "shown to have natural gas storage capacities of >100 VIV at 500 psi pressure and room temperature. Thermal conductivity, as a function of temperature, was measured using the LASER flash, thermal- pulse method. Another approach to minimizing the temperature gradients that develop in a storage bed is to increase the thermal conductivity of the adsorbent carbon. To this end, we have developed hybrid monoliths that contain small fractions of mesophase pitch- derived carbon fibers. Our hybrid monoliths exhibit thermal conductivities in the range 0.2-0.9 W/m.K depending on the blend and density of the monolith. In comparison, a packed bed of granular carbon at comparable density would have a thermal conductivity of approximately 0.1 W/m.K [ 1 ]. The thermal conductivities of several of the hybrid The improved thermal conductivity of our monoliths is attributed to the bonding between the fibers and the incorporation of high thermal conductivity, mesophase pitch-derived carbon fibers. These features are visible in the SEM micrograph in Fig. 4.

  16. Siloxanes removal from biogas by high surface area adsorbents.

    PubMed

    Gislon, P; Galli, S; Monteleone, G

    2013-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds, as their burning has damaging effects on turbines and engines; organic silicon compounds in the form of siloxanes can be found in biogas produced from urban wastes, due to their massive industrial use in synthetic product, such as cosmetics, detergents and paints. Siloxanes removal from biogas can be carried out by various methods (Mona, 2009; Ajhar et al., 2010 May; Schweigkofler and Niessner, 2001); aim of the present work is to find a single practical and economic way to drastically and simultaneously reduce both the hydrogen sulphide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleone et al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing the most volatile siloxane (hexamethyldisiloxane or L2) in a nitrogen stream, typically 100-200 ppm L2 over N2, through an activated carbon powder bed; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best activated carbon shows an adsorption capacity of 0.1g L2 per gram of carbon. The next thermogravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests. The capacity results depend on L2 concentration. A regenerative carbon process is then carried out by heating the carbon bed up to 200 °C and flushing out the adsorbed L2 samples in a nitrogen stream in a three step heating procedure up to 200 °C. The adsorption capacity is observed to degrade after cycling the samples through several adsorption-desorption cycles.

  17. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  18. Microfungal alkylation and volatilization of selenium adsorbed by goethite.

    PubMed

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael

    2010-01-01

    Selenium adsorbed in the oxyanionic form by Fe-oxides like goethite is considered of benefit for long-term stabilization of (79)Se under near field conditions of radionuclide waste disposal sites. However, microbe-mediated volatilization of the uranium fission product (79)Se has not yet been considered for risk assessment based on the use of the water-solid distribution coefficient K(D). We have performed incubation experiments in a ternary system selenium-microbe-goethite and show that mycobiota including the common black microfungi genera Alternaria alternata are capable of volatilizing the Se even if immobilized by goethite. The microfungi were incubated in a standardized nutrient broth suspension with 10 g L(-1) of the oxide target under defined conditions. Volatile organic selenium (VOSe) species formed in the head space of the culture flasks were sampled and measured directly by a cryotrapping cryofocusing gas chromatographic system coupled with ICP-MS detection (CT-CF-GC-ICP-MS). Alkylated VOSe species were found at the tens to hundreds ng m(-3) levels dominated by dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). The total amount of DMSe released into the 80-mL headspace volume within the 21 days of incubation was up to 1.12 +/- 0.17 nmol and 0.48 +/- 0.12 nmol for systems without and with goethite amendment, respectively. Alkylation rates of up to 0.1 mumol Se per day and g biomass cannot be neglected as a potential fission product mobilization pathway, unless the inherent radioactivity is proven to prevent any such microbial activity on the long-term. Otherwise it may lead to an onsite accumulation of (79)Se through evapoconcentration in the enclosed underground caverns.

  19. Behavioral Clustering of School Children.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; DiStefano, Christine; Kamphaus, Randy W.

    1997-01-01

    How a cluster analysis is conducted, validated, and interpreted is illustrated using a 14-scale behavioral assessment instrument and a national sample of 1,228 elementary school students. Method, cluster typology, validity, cluster structure, and prediction of cluster membership are discussed. (Author/SLD)

  20. Clustered data in sports research.

    PubMed

    Hayen, A

    2006-05-01

    Clustered, or dependent, data, arise commonly in sports medicine and sports science research, particularly in studies of sports injury and biomechanics, particularly in sports injury trials that are randomised at team or club level, in cross-sectional surveys in which groups of individuals are studied and in studies with repeated measures designs. Clustering, or positive correlation among responses, arises because responses and outcomes from the same cluster will usually be more similar than from different clusters. Study designs with clustering will usually required an increased sample size when compared to those without clustering. Ignoring clustering in statistical analyses can also lead to misleading conclusions, including incorrect confidence intervals and p-values. Appropriate statistical analyses for clustered data must be adopted. This paper gives some examples of clustered data and discusses the implications of clustering on the design and analysis of studies in sports medicine and sports science research.