Science.gov

Sample records for adsorbed protein layers

  1. The density and refractive index of adsorbing protein layers.

    PubMed

    Vörös, Janos

    2004-07-01

    The structure of the adsorbing layers of native and denatured proteins (fibrinogen, gamma-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO(2) and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO(2) surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488

  2. Effect of the interplay between protein and surface on the properties of adsorbed protein layers.

    PubMed

    Ouberai, Myriam M; Xu, Kairuo; Welland, Mark E

    2014-08-01

    Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. PMID:24780165

  3. Excitation energy migration in yellow fluorescent protein (citrine) layers adsorbed on modified gold surfaces

    NASA Astrophysics Data System (ADS)

    Yusoff, Hanis Mohd; Rzeźnicka, Izabela I.; Hoshi, Hirotaka; Kajimoto, Shinji; Horimoto, Noriko Nishizawa; Sogawa, Kazuhiro; Fukumura, Hiroshi

    2013-09-01

    The nature of functional proteins adsorbed on solid surfaces is interesting from the perspective of developing of bioelectronics and biomaterials. Here we present evidence that citrine (one of yellow fluorescent protein variants) adsorbed on modified gold surfaces would not undergo denaturation and energy transfer among the adsorbed citrine molecules would occur. Gold substrates were chemically modified with 3-mercaptopropionic acid and tert-butyl mercaptan for the preparation of hydrophilic and hydrophobic surfaces, respectively. A pure solution of citrine was dropped and dried on the modified gold substrates and their surface morphology was studied with scanning tunnelling microscopy (STM). The obtained STM images showed multilayers of citrine adsorbed on the modified surfaces. On hydrophobic surfaces, citrine was adsorbed more randomly, formed various non-uniform aggregates, while on hydrophilic surfaces, citrine appeared more aligned and isolated uniform protein clusters were observed. Fluorescence lifetime and anisotropy decay of these dried citrine layers were also measured using the time correlated single photon counting method. Fluorescence anisotropy of citrine on the hydrophobic surface decayed faster than citrine on the hydrophilic surface. From these results we concluded that fluorescence energy migration occurred faster among citrine molecules which were randomly adsorbed on the hydrophobic surface to compare with the hydrophilic surface.

  4. Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand

    NASA Astrophysics Data System (ADS)

    Yang, X.; Flynn, R.; von der Kammer, F.; Hofmann, T.

    2012-11-01

    Our recent study reported that conformation change of granule-associated Bovine Serum Albumin (BSA) may influence the role of the protein controlling colloid deposition in porous media (Flynn et al., 2012). The present study conceptualized the observed phenomena with an ellipsoid morphology model, describing BSA as an ellipsoid taking a side-on or end-on conformation on granular surface, and identified the following processes: (1) at low adsorbed concentrations, BSA exhibited a side-on conformation blocking colloid deposition; (2) at high adsorbed concentrations, BSA adapted to an end-on conformation promoted colloid deposition; and (3) colloid deposition on the BSA layer may progressively generate end-on molecules (sites) by conformation change of side-on BSA, resulting in sustained increasing deposition rates. Generally, the protein layer lowered colloid attenuation by the porous medium, suggesting the overall effect of BSA was inhibitory at the experimental time scale. A mathematical model was developed to interpret the ripening curves. Modeling analysis identified the site generation efficiency of colloid as a control on the ripening rate (declining rate in colloid concentrations), and this efficiency was higher for BSA adsorbed from a more dilute BSA solution.

  5. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    PubMed Central

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  6. Optical anisotropy of flagellin layers: in situ and label-free measurement of adsorbed protein orientation using OWLS.

    PubMed

    Kovacs, Noemi; Patko, Daniel; Orgovan, Norbert; Kurunczi, Sandor; Ramsden, Jeremy J; Vonderviszt, Ferenc; Horvath, Robert

    2013-06-01

    The surface adsorption of the protein flagellin was followed in situ using optical waveguide lightmode spectroscopy (OWLS). Flagellin did not show significant adsorption on a hydrophilic waveguide, but very rapidly formed a dense monolayer on a hydrophobic (silanized) surface. The homogeneous and isotropic optical layer model, which has hitherto been generally applied in OWLS data interpretation for adsorbed protein films, failed to characterize the flagellin layer, but it could be successfully modeled as an uniaxial thin film. This anisotropic modeling revealed a significant positive birefringence in the layer, suggesting oriented protein adsorption. The adsorbed flagellin orientation was further evidenced by monitoring the surface adsorption of truncated flagellin variants, in which the terminal protein regions or the central (D3) domain were removed. Without the terminal regions the protein adsorption was much slower and the resulting films were significantly less birefringent, implying that intact flagellin adsorbs on the hydrophobic surface via its terminal regions. PMID:23631669

  7. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  8. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  9. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces.

    PubMed Central

    Lösche, M; Piepenstock, M; Diederich, A; Grünewald, T; Kjaer, K; Vaknin, D

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 FIGURE 11 FIGURE 12 FIGURE A1 PMID:8298041

  10. Anomalous thermal denaturing of proteins adsorbed to nanoparticles

    NASA Astrophysics Data System (ADS)

    Teichroeb, J. H.; Forrest, J. A.; Ngai, V.; Jones, L. W.

    2006-09-01

    We have used localized surface plasmon resonance (LSPR) to monitor the structural changes that accompany thermal denaturing of bovine serum albumin (BSA) adsorbed onto gold nanospheres of size 5nm-60nm. The effect of the protein on the LSPR was monitored by visible extinction spectroscopy. The position of the resonance is affected by the conformation of the adsorbed protein layer, and as such can be used as a very sensitive probe of thermal denaturing that is specific to the adsorbed protein. The results are compared to detailed calculations and show that full calculations can lead to significant increases in knowledge where gold nanospheres are used as biosensors. Thermal denaturing on spheres with diameter > 20 nm show strong similarity to bulk calorimetric studies of BSA in solution. BSA adsorbed on nanospheres with d ⩽ 15nm shows a qualitative difference in behavior, suggesting a sensitivity of denaturing characteristics on local surface curvature. This may have important implications for other protein-nanoparticle interactions.

  11. Block copolymer adsorbed layers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Gowd, Bhoje; Endoh, Maya; Koga, Tadanori

    Block copolymer thin films offer a simple and effective route to fabricate highly ordered periodic microdomain structures. The fundamental, yet unsolved question is whether these highly oriented microdomain structures persist even near an impenetrable solid wall. We here report the adsorbed structures of polystyrene-block-poly (4-vinylpyridine) (PS-block-P4VP, Mw = 41,000, PS (weight fraction =0.81) formed on planar silicon substrates. Perpendicularly aligned cylindrical microdomains were created by solvent vapor annealing (Gowd et al., Soft Matter, 2014, 10, 7753), and the adsorbed layer was derived by solvent leaching with chloroform, a good solvent for the polymers and thereafter characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle x-ray scattering, and x-ray reflectivity. The results showed that both PS and P4VP chains lie flat on the substrate, forming a microphase-separated structure (MSS) without long-range order. Moreover, a spin-coated PS-block-P4VP thin film annealed under vacuum at 190 °C showed similar MSS on the substrate, indicating the generality of the interfacial polymer structure. Details will be discussed in the presentation. NSF Grant No. CMMI-1332499.

  12. Conformation Distributions in Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Meuse, Curtis W.; Hubbard, Joseph B.; Vrettos, John S.; Smith, Jackson R.; Cicerone, Marcus T.

    2007-03-01

    While the structural basis of protein function is well understood in the biopharmaceutical and biotechnology industries, few methods for the characterization and comparison of protein conformation distributions are available. New methods capable of measuring the stability of protein conformations and the integrity of protein-protein, protein-ligand and protein-surface interactions both in solution and on surfaces are needed to help the development of protein-based products. We are developing infrared spectroscopy methods for the characterization and comparison of molecular conformation distributions in monolayers and in solutions. We have extracted an order parameter describing the orientational and conformational variations of protein functional groups around the average molecular values from a single polarized spectrum. We will discuss the development of these methods and compare them to amide hydrogen/deuterium exchange methods for albumin in solution and on different polymer surfaces to show that our order parameter is related to protein stability.

  13. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  14. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  15. Construction of a functional S-layer fusion protein comprising an immunoglobulin G-binding domain for development of specific adsorbents for extracorporeal blood purification.

    PubMed

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B; Sára, Margit

    2004-03-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA(31-1068)/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-microm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm(2), whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm(2) was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773

  16. Mobility of adsorbed proteins: a Brownian dynamics study.

    PubMed

    Ravichandran, S; Talbot, J

    2000-01-01

    We simulate the adsorption of lysozyme on a solid surface, using Brownian dynamics simulations. A protein molecule is represented as a uniformly charged sphere and interacts with other molecules through screened Coulombic and double-layer forces. The simulation starts from an empty surface and attempts are made to introduce additional proteins at a fixed time interval that is inversely proportional to the bulk protein concentration. We examine the effect of ionic strength and bulk protein concentration on the adsorption kinetics over a range of surface coverages. The structure of the adsorbed layer is examined through snapshots of the configurations and quantitatively with the radial distribution function. We extract the surface diffusion coefficient from the mean square displacement. At high ionic strengths the Coulombic interaction is effectively shielded, leading to increased surface coverage. This effect is quantified with an effective particle radius. Clustering of the adsorbed molecules is promoted by high ionic strength and low bulk concentrations. We find that lateral protein mobility decreases with increasing surface coverage. The observed trends are consistent with previous theoretical and experimental studies. PMID:10620278

  17. Structure of Non-Equilibrium Adsorbed Polymer Layers

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2004-03-01

    Equilibrium polymer adsorption has been widely studied theoretically. Many experiments however implicate strong non-equilibrium effects for monomer sticking energies somewhat larger than kT, the most common case. The structure and slow dynamics in these layers is not understood. We analyze theoretically non-equilibrium layers from dilute solutions in the limit of irreversible monomer adsorption. We find the density profile ˜ z-4/3 and loop distribution ˜ s-11/5 of the resulting layer are no different to equilibrium. However, single chain statistics are radically different: the layer consists of a flat inner portion of fully collapsed chains plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ˜ f-4/5, consistent with experiment [H. M. Schneider et al, Langmuir 12, 994 (1996)], and the lateral size R of adsorbed chains is of order the bulk coil size, R ˜ N^3/5. For equilibrium layers, by contrast, P has a unique peak at a value of f of order unity, while R ˜ N^1/2 is significantly less. The relaxation of a non-equilibrium layer towards equilibrium thus entails chain shrinkage and tighter binding. We speculate that the observed decrease of bulk-layer chain exchange rates with increasing aging reflects these internal layer dynamics.

  18. Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition.

    PubMed

    Bale, M D; Wohlfahrt, L A; Mosher, D F; Tomasini, B; Sutton, R C

    1989-12-01

    The arrays of proteins adsorbed from plasma onto a series of polystyrene copolymeric latexes were analyzed by enzyme-linked immunosorbent assay (ELISA) of washed beads and immunoblotting of proteins desorbed from the beads and separated by polyacrylamide gel electrophoresis (PAGE). Beads were prepared by continuous emulsion polymerization in the absence of surfactant. Coomassie brilliant blue staining of gel electropherograms of desorbed proteins indicated that the presence of small amounts of comonomers (1 to 10 mole %) significantly influenced the composition of the adsorbed protein layer. Immunoblotting revealed that fibrinogen, fibronectin, and vitronectin were adsorbed by all surfaces investigated. C3 and Clq adsorption varied significantly with copolymer composition. The ELISAs revealed that although the concentrations of vitronectin and fibronectin in plasma are similar, the extent of vitronectin adsorption from 70% to 85% plasma was greater by two orders of magnitude than fibronectin adsorption. Vitronectin adsorbed on carboxylic acid-containing copolymers reacted more strongly with a conformationally sensitive antivitronectin monoclonal antibody (MoAb) than vitronectin adsorbed to polystyrene and was more susceptible to cleavage by plasma proteases(s). The results show that vitronectin is a major protein adsorbed from concentrated plasma and that small changes in the chemical composition of a copolymer profoundly affects the extent and nature of protein adsorption from complex mixtures such as plasma. PMID:2479428

  19. Pattern Recognition of Adsorbing HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew S.; Shi, Guangjie; Wüst, Thomas; Landau, David P.; Schmid, Friederike

    2015-03-01

    Protein adsorption is relevant in fields ranging from medicine to industry, and the qualitative behavior exhibited by course-grained models could shed insight for further research in such fields. Our study on the selective adsorption of lattice proteins utilizes the Wang-Landau algorithm to simulate the Hydrophobic-Polar (H-P) model with an efficient set of Monte Carlo moves. Each substrate is modeled as a square pattern of 9 lattice sites which attract either H or P monomers, and are located on an otherwise neutral surface. The fully enumerated set of 102 unique surfaces is simulated with each protein sequence. A collection of 27-monomer sequences is used- each of which is non-degenerate and protein-like. Thermodynamic quantities such as the specific heat and free energy are calculated from the density of states, and are used to investigate the adsorption of lattice proteins on patterned substrates. Research supported by NSF.

  20. High capacity cryogel-type adsorbents for protein purification.

    PubMed

    Singh, Naveen Kumar; Dsouza, Roy N; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2014-08-15

    Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties. PMID:24980092

  1. Candida albicans binds to saliva proteins selectively adsorbed to silicone.

    PubMed

    Holmes, Ann R; van der Wielen, Pauline; Cannon, Richard D; Ruske, Dean; Dawes, Patrick

    2006-10-01

    Explanted voice prostheses obtained from 5 patients at the time of prosthesis replacement were consistently colonized by yeast, in particular Candida albicans. A simple, reproducible, in vitro model of C. albicans adherence to saliva-coated voice prosthesis silicone was developed. Whole saliva promoted adherence of C. albicans to silicone in a dose-dependent manner. Saliva rinses from voice prosthesis patients also promoted binding of C. albicans to silicone in vitro (mean adherence 14.9% +/- 2.8% of input C. albicans cells). This was significantly higher than C. albicans adherence to silicone in the absence of saliva (P < .001) or adherence promoted by saliva rinses from healthy volunteers (P < .005). Polyacrylamide gel electrophoresis analysis and a blot overlay adherence assay revealed that certain salivary proteins were selectively adsorbed to silicone and that C. albicans yeast cells adhered specifically to the adsorbed salivary proteins. PMID:16997116

  2. Confocal Raman microscopy of protein adsorbed in chromatographic particles.

    PubMed

    Xiao, Yuewu; Stone, Thomas; Bell, David; Gillespie, Christopher; Portoles, Marta

    2012-09-01

    Confocal Raman microscopy is a nondestructive analytical technique that combines the chemical information from vibrational spectroscopy with the spatial resolution of confocal microscopy. It was applied, for the first time, to measure conformation and distribution of protein adsorbed in wetted chromatographic particles. Monoclonal antibody was loaded into the Fractogel EMD SO(3) (M) cation exchanger at 2 mS/cm or 10 mS/cm. Amide I and III frequencies in the Raman spectrum of the adsorbed protein suggest that there are no detectable changes of the original β-sheet conformation in the chromatographic particles. Protein depth profile measurements indicate that, when the conductivity is increased from 2 mS/cm to 10 mS/cm, there is a change in mass transport mechanism for protein adsorption, from the shrinking-core model to the homogeneous-diffusion model. In this study, the use of confocal Raman microscopy to measure protein distribution in chromatographic particles fundamentally agrees with previous confocal laser scanning microscopic investigations, but confocal Raman spectroscopy enjoys additional advantages: use of unlabeled protein to eliminate fluorescent labeling, ability for characterization of protein secondary structure, and ability for spectral normalization to provide a nondestructive experimental approach to correct light attenuation effects caused by refractive index (RI) mismatching in semiopaque chromatographic particles. PMID:22803776

  3. Free energy of electrical double layers: Entropy of adsorbed ions and the binding polynomial

    SciTech Connect

    Stigter, D.; Dill, K.A. )

    1989-09-07

    The authors adapt the method of binding polynomials to general problems of binding equilibria of ions to polybases, polyacids, and mixed polyelectrolytes, such as proteins and other colloids. For spherical particles with a smeared charge the interaction effects are taken into account using the Poisson-Boltzmann equation, which is shown to differ little from the Debye-Hueckel approximation under conditions met in most protein solutions. Examples are given of the salt dependence of pH titration equilibria. Binding polynomials produce an extra term in the free energy of the electrical double layer, which arises from the entropy of the adsorbed ions. The maximum term method applied to the binding polynominal yields an expression which is similar to that derived by the charging process of Chan and Mitchell. Applications to monolayers and to polyelectrolyte gels are also discussed.

  4. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  5. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study.

    PubMed

    Evers, Florian; Shokuie, Kaveh; Paulus, Michael; Sternemann, Christian; Czeslik, Claus; Tolan, Metin

    2008-09-16

    The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution. PMID:18715021

  6. Rupture force of adsorbed self-assembled surfactant layers. Effect of the dielectric exchange force

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-08-01

    The tip applied force necessary to obtain tip/substrate contact, i.e., rupture force between adsorbed layers of self-assembled surfactant films and atomic force microscope (AFM) tips in water has been measured. A substantial contribution of this rupture force is due to the dielectric exchange force (DEF). The DEF model is in agreement with the observation that the surfactant layer rupture forces are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  7. Photostability enhancement of azoic dyes adsorbed and intercalated into Mg-Al-layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Pei; Zhao, Kongcao; Li, Lei

    2015-11-01

    Two azoic dyes 4-aminoazobenzene-4-sulfonic (AS) and ethyl orange (EO) were adsorbed on or intercalated into Mg-Al-CO3 layered double hydroxide (LDH) for photostability enhancement. Fluorescence analysis results showed that the photostability of two dyes could be greatly improved after being adsorbed on the surface of Mg-Al-CO3-LDH matrix. Furthermore, photostability of adsorbed dyes was superior to that of intercalated dyes. It was suggested that AS or EO was adsorbed on LDHs surface through a strong chemisorption interaction, resulting in the enhancement of photostability. After the UV irradiation under N2 atmosphere, the absorbed dyes not only show great increase of fluorescence intensity but also exhibited high stability against UV irradiation. This work provides a feasible approach to enhance the photostability of azoic dye confined in an inorganic two-dimensional (2D) matrix via changing the microenvironment, which may be considered to be a promising method of improving photostability of solid fluorescent materials.

  8. Stability, structural and electronic properties of benzene molecule adsorbed on free standing Au layer

    NASA Astrophysics Data System (ADS)

    Katoch, Neha; Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G0 to 2G0 suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  9. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    PubMed

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents. PMID:26948763

  10. Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene

    NASA Astrophysics Data System (ADS)

    Fesenko, Olena; Dovbeshko, Galyna; Dementjev, Andrej; Karpicz, Renata; Kaplas, Tommi; Svirko, Yuri

    2015-04-01

    Graphene-enhanced Raman scattering (GERS) spectra and coherent anti-Stokes Raman scattering (CARS) of thymine molecules adsorbed on a single-layer graphene were studied. The enhancement factor was shown to depend on the molecular groups of thymine. In the GERS spectra of thymine, the main bands are shifted with respect to those for molecules adsorbed on a glass surface, indicating charge transfer for thymine on graphene. The probable mechanism of the GERS enhancement is discussed. CARS spectra are in accord with the GERS results, which indicates similar benefit from the chemical enhancement.

  11. Molecular Orientation of Hydroquinone Adsorbed at a Platinum(111) Thin-Layer Electrode.

    PubMed

    Ren; Hubbard

    1999-01-15

    Reported are new findings regarding the molecular orientation of hydroquinone (HQ) adsorbed on Pt surfaces. The packing density of hydroquinone adsorbed from 1 M HClO4 supporting electrolyte has been measured by use of a Pt(111) thin-layer electrode. The packing-density-vs-concentration profiles for hydroquinone, measured by a differential thin-layer electrode method at an ordered Pt(111) surface and at an electrochemically disordered Pt(111) surface, are identical within an experimental error of about 8%. The profiles from this study are similar to the ones obtained previously at an ordered Pt(111) surface by Auger spectroscopy, but they are significantly different from those reported previously for polycrystalline Pt thin-layer electrodes. A procedure based upon displacement of HQ by thiocyanate has been developed as an alternative method for determining the packing density of adsorbed HQ. Both methods afford information regarding the molecular state of HQ adsorbed at the Pt(111) surface. Copyright 1999 Academic Press. PMID:9885274

  12. Interrogating protonated/deuterated fibronectin fragment layers adsorbed to titania by neutron reflectivity and their concomitant control over cell adhesion

    PubMed Central

    McIntosh, Lisa; Whitelaw, Christine; Rekas, Agata; Holt, Stephen A.; van der Walle, Christopher F.

    2015-01-01

    The fibronectin fragment, 9th–10th-type III domains (FIII9–10), mediates cell attachment and spreading and is commonly investigated as a bioadhesive interface for implant materials such as titania (TiO2). How the extent of the cell attachment–spreading response is related to the nature of the adsorbed protein layer is largely unknown. Here, the layer thickness and surface fraction of two FIII9–10 mutants (both protonated and deuterated) adsorbed to TiO2 were determined over concentrations used in cell adhesion assays. Unexpectedly, the isotopic forms had different adsorption behaviours. At solution concentrations of 10 mg l−1, the surface fraction of the less conformationally stable mutant (FIII9′10) was 42% for the deuterated form and 19% for the protonated form (fitted to the same monolayer thickness). Similarly, the surface fraction of the more stable mutant (FIII9′10–H2P) was 34% and 18% for the deuterated and protonated forms, respectively. All proteins showed a transition from monolayer to bilayer between 30 and 100 mg l−1, with the protein longitudinal orientation moving away from the plane of the TiO2 surface at high concentrations. Baby hamster kidney cells adherent to TiO2 surfaces coated with the proteins (100 mg l−1) showed a strong spreading response, irrespective of protein conformational stability. After surface washing, FIII9′10 and FIII9′10–H2P bilayer surface fractions were 30/25% and 42/39% for the lower/upper layers, respectively, implying that the cell spreading response requires only a partial protein surface fraction. Thus, we can use neutron reflectivity to inform the coating process for generating bioadhesive TiO2 surfaces. PMID:25926699

  13. Quantitative surface studies of protein adsorption by infrared spectroscopy. II. Quantification of adsorbed and bulk proteins

    SciTech Connect

    Fink, D.J.; Hutson, T.B.; Chittur, K.K.; Gendreau, R.M.

    1987-08-15

    Attenuated total reflectance Fourier transform infrared spectra of surface-adsorbed proteins are correlated with concentration measurements determined by /sup 125/I-labeled proteins. This paper demonstrates that linear correlations between the intensity of the major bands of proteins and the quantity of proteins can be obtained for human albumin and immunoglobulin G up to surface concentrations of approximately 0.25 microgram/cm2. A poorer correlation was observed for human fibrinogen. A linear correlation was also observed between the concentration in the bulk solution and the major bands of albumin up to a concentration of 60 mg/ml.

  14. Study of the adsorbed layer on a solid electrode surface by specular reflection measurement

    NASA Astrophysics Data System (ADS)

    Kusu, Fumiyo; Takamura, Kiyoko

    1985-07-01

    Specular reflection measurements were carried out to study the adsorbed layers of certain heterocyclic compounds such as adenine, barbital, 2'-deoxyadenosine, phenobarbital, pyridine and thymine. When pyridine was present in 0.1M NaClO 4, a marked decrease in the reflectivity of a gold electrode was observed. In the potential range near the point of zero charge on the reflectivity-potential curve, the decrease was due to the adsorption of pyridine. Assuming the reflectivity change to be proportional to the surface coverage, the potential and concentration dependence of pyridine adsorption was determined and analysed on the basis of a Langmuir-type adsorption isotherm. The refractive indices and extinction coefficients for the adsorbed layers of the compounds investigated were evaluated using the observed reflectivity change, according to relations proposed by McIntyre and Aspnes.

  15. Plasma protein adsorbed biomedical polymers: activation of human monocytes and induction of interleukin 1.

    PubMed

    Bonfield, T L; Colton, E; Anderson, J M

    1989-06-01

    These studies involved the evaluation of human monocyte/macrophage activation by biomedical polymers coated with human blood proteins. The biomedical polymers were polyethylene, polydimethylsiloxane, woven Dacron fabric, expanded polytetrafluoroethylene, Biomer, and tissue culture treated polystyrene as the control. They were adsorbed with human blood proteins: albumin, fibrinogen, fibronectin, hemoglobin, and gamma globulin. The protein adsorbed polymers were evaluated for their potential to activate the monocyte/macrophage cellular population in vitro as assessed by the induction of the monocyte/macrophage inflammatory mediator, Interleukin 1 (IL1). Suppression of IL1 was observed when protein adsorbed polymers were compared to the appropriate protein adsorbed control. Protein adsorbed polymers, when compared to polymers without protein adsorption, stimulated IL1 production. The data presented in this manuscript show the level of induction and secretion of IL1 was dependent on the biomedical polymer and the protein adsorbed, as well as the requirement of lipopolysaccharide. These results show differential interactions occur between the proteins, monocytes/macrophages, and biomedical polymers which alter activation and induction of IL1. PMID:2786877

  16. Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.

    PubMed

    Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F

    2006-06-01

    The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore. PMID:16414057

  17. Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication.

    PubMed

    Yamada, Shinji; Fujihara, Ami; Yusa, Shin-ichi; Tanabe, Tadao; Kurihara, Kazue

    2015-11-10

    The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(α-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is

  18. Glycobiology of surface layer proteins.

    PubMed

    Schäffer, C; Messner, P

    2001-07-01

    Over the last two decades, a significant change of perception has taken place regarding prokaryotic glycoproteins. For many years, protein glycosylation was assumed to be limited to eukaryotes; but now, a wealth of information on structure, function, biosynthesis and molecular biology of prokaryotic glycoproteins has accumulated, with surface layer (S-layer) glycoproteins being one of the best studied examples. With the designation of Archaea as a second prokaryotic domain of life, the occurrence of glycosylated S-layer proteins had been considered a taxonomic criterion for differentiation between Bacteria and Archaea. Extensive structural investigations, however, have demonstrated that S-layer glycoproteins are present in both domains. Among Gram-positive bacteria, S-layer glycoproteins have been identified only in bacilli. In Gram-negative organisms, their presence is still not fully investigated; presently, there is no indication for their existence in this class of bacteria. Extensive biochemical studies of the S-layer glycoprotein from Halobacterium halobium have, at least in part, unravelled the glycosylation pathway in Archaea; molecular biological analyses of these pathways have not been performed, so far. Significant observations concern the occurrence of unusual linkage regions both in archaeal and bacterial S-layer glycoproteins. Regarding S-layer glycoproteins of bacteria, first genetic data have shed some light into the molecular organization of the glycosylation machinery in this domain. In addition to basic S-layer glycoprotein research, the biotechnological application potential of these molecules has been explored. With the development of straightforward molecular biological methods, fascinating possibilities for the expression of prokaryotic glycoproteins will become available. S-layer glycoprotein research has opened up opportunities for the production of recombinant glycosylation enzymes and tailor-made S-layer glycoproteins in large quantities

  19. Copper iodide staining and determination of proteins adsorbed to microtiter plates.

    PubMed

    Root, D D; Reisler, E

    1990-04-01

    Copper iodide staining and determination of proteins adsorbed to polystyrene microtiter plates are described. The minimum amount of copper iodide-stained protein detected in densitometric measurements is approximately 20 pg/mm2. Enzyme immunoassay readers may also be used for the determination of copper iodide-stained proteins, but are less sensitive than densitometers. The densitometric readings of copper iodide-stained proteins vary linearly with the amount of protein present as verified by enzymatic and radioactive probes. Staining is complete in 2-3 min and may be removed by a 30-min treatment with EDTA without loss of adsorbed protein or immunoreactivity. The exact amount of protein adsorbed to microtiter plate wells can be measured by using protein bound and stained on nitrocellulose as a calibration curve. Copper iodide staining is a rapid, convenient, and inexpensive alternative to radioactive measurements of similar parameters. PMID:1694063

  20. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  1. Nanotribological properties of water films adsorbing atop, and absorbing below, graphene layers supported by metal substrates

    NASA Astrophysics Data System (ADS)

    Liu, Zijian; Curtis, C. K.; Stine, R.; Sheehan, P.; Krim, J.

    The tribological properties of graphite, a common lubricant with known sensitivity to the presence of water, have been studied extensively at the macroscopic and microscopic scales. Although far less attention has been devoted to the tribological properties of graphene, it has been established that the tribological response to the presence of water is dissimilar from that of graphite. We report here a quartz crystal microbalance study of the nanotribological properties of water films adsorbed/absorbed on graphene layers prepared by either chemical decomposition on nickel(111) substrates or transfer of freestanding graphene layers to aluminum substrates. Sliding friction levels of the water films were also measured for metal surfaces in the absence of a graphene layer. We observe very high friction levels for water adsorbed atop graphene on Ni(111) and very low levels for water on aluminum. For the case of graphene/aluminum, the data indicate that the water is absorbing between the graphene layer and the aluminum. Dissipation levels moreover indicate the presence of an interstitial water increases sliding friction between the graphene and the aluminum substrate Work supported by NSF and NRL.

  2. Influence of ionic strength changes on the structure of pre-adsorbed salivary films. A response of a natural multi-component layer.

    PubMed

    Macakova, Lubica; Yakubov, Gleb E; Plunkett, Mark A; Stokes, Jason R

    2010-05-01

    Salivary films coating oral surfaces are critically important for oral health. This study focuses on determining the underlying nature of this adsorbed film and how it responds to departures from physiological conditions due to changes in ionic strength. Under physiological conditions, it is found that pre-adsorbed in vitro salivary film on hydrophobic surfaces is present as a highly hydrated viscoelastic layer. We follow the evolution of this film in terms of its effective thickness, hydration and viscoelastic properties, as well as adsorbed mass of proteins, using complementary surface characterisation methods: a Surface Plasmon Resonance (SPR) and a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Our results support a heterogeneous model for the structure of the salivary film with an inner dense anchoring layer and an outer highly extended hydrated layer. Further swelling of the film was observed upon decreasing the salt concentration down to 1mM NaCl. However, upon exposure to deionised water, a collapse of the film occurs that was associated with the loss of water contained within the adsorbed layer. We suggest that the collapse in deionised water is driven by an onset of electrostatic attraction between different parts of the multi-component salivary film. It is anticipated that such changes could also occur when the oral cavity is exposed to food, beverage, oral care and pharmaceutical formulations where drastic changes to the structural integrity of the film is likely to have implications on oral health, sensory perception and product performance. PMID:20133111

  3. Protein immobilization in hollow nanostructures and investigation of the adsorbed protein behavior.

    PubMed

    Qian, Xi; Levenstein, Alex; Gagner, Jennifer E; Dordick, Jonathan S; Siegel, Richard W

    2014-02-11

    Understanding nanomaterial-biomolecule interactions is critical to develop broad applications in sensors, devices, and therapeutics. During the past decade, in-depth studies have been performed on the effect of nanoscale surface topography on adsorbed protein structure and function. However, a fundamental understanding of nanobio interactions at concave surfaces is limited; the greatest challenge is to create a nanostructure that allows such interactions to occur and to be characterized. We have synthesized hollow nanocages (AuNG) through careful control of morphology and surface chemistry. Lysozyme was used as a model to probe interactions between a protein and these nanostructures. Solid Au nanoparticles with a similar morphology and surface chemistry were also used as a reference. Through a series of quantitative analyses of protein adsorption profiles and enzymatic activity assays of both nanobioconjugates, we discovered that a significant amount of protein could be delivered into the core of AuNG, while maintaining a substantial fraction of native activity. PMID:24450578

  4. Fabrication of Micro-Lens Array using a Chemically Adsorbed Monomolecular Layer

    NASA Astrophysics Data System (ADS)

    Okada, Kazushi; Oohira, Fumikazu; Hosogi, Maho; Hashiguchi, Gen; Mihara, Yutaka; Ogawa, Kazufumi; Shiwaku, Kazuya

    We proposed a new method of patterning a chemically adsorbed monomolecular layer on the substrate and then dropping UV cure material to form a lens shape using oil repellent effect of this film. The curvature radius of the lens was controlled by the amount of the dropped UV cure material. Using this method, a micro-lens array of various radiuses was fabricated. The formed micro-lens array shapes are transferred by the electro-plating and then the micro dies are fabricated, which are used for molding the plastic lens array. The optical characteristic of the molded micro-lens was evaluated.

  5. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirofumi; Arima, Ryo; Fukumori, Minoru; Tanaka, Daisuke; Negishi, Ryota; Kobayashi, Yoshihiro; Kasai, Seiya; Yamada, Toyo Kazu; Ogawa, Takuji

    2015-07-01

    A simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs). Further sonication allowed each dGNR to be unpeeled into two sGNRs. Purification performed using a high-speed centrifuge ensured that more than 99% of the formed GNRs were sGNRs. The changes induced in the electrical properties of the obtained sGNR by the absorption of nanoparticles of planar molecule, naphthalenediimide (NDI), were investigated. The shape of the I-V curve of the sGNRs varied with the number of NDI nanoparticles adsorbed. This was suggestive of the existence of a band gap at the narrow-necked part near the NDI-adsorbing area of the sGNRs.

  6. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles

    PubMed Central

    Tanaka, Hirofumi; Arima, Ryo; Fukumori, Minoru; Tanaka, Daisuke; Negishi, Ryota; Kobayashi, Yoshihiro; Kasai, Seiya; Yamada, Toyo Kazu; Ogawa, Takuji

    2015-01-01

    A simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs). Further sonication allowed each dGNR to be unpeeled into two sGNRs. Purification performed using a high-speed centrifuge ensured that more than 99% of the formed GNRs were sGNRs. The changes induced in the electrical properties of the obtained sGNR by the absorption of nanoparticles of planar molecule, naphthalenediimide (NDI), were investigated. The shape of the I-V curve of the sGNRs varied with the number of NDI nanoparticles adsorbed. This was suggestive of the existence of a band gap at the narrow-necked part near the NDI-adsorbing area of the sGNRs. PMID:26205209

  7. Method for Controlling Electrical Properties of Single-Layer Graphene Nanoribbons via Adsorbed Planar Molecular Nanoparticles.

    PubMed

    Tanaka, Hirofumi; Arima, Ryo; Fukumori, Minoru; Tanaka, Daisuke; Negishi, Ryota; Kobayashi, Yoshihiro; Kasai, Seiya; Yamada, Toyo Kazu; Ogawa, Takuji

    2015-01-01

    A simple method for fabricating single-layer graphene nanoribbons (sGNRs) from double-walled carbon nanotubes (DWNTs) was developed. A sonication treatment was employed to unzip the DWNTs by inducing defects in them through annealing at 500 °C. The unzipped DWNTs yielded double-layered GNRs (dGNRs). Further sonication allowed each dGNR to be unpeeled into two sGNRs. Purification performed using a high-speed centrifuge ensured that more than 99% of the formed GNRs were sGNRs. The changes induced in the electrical properties of the obtained sGNR by the absorption of nanoparticles of planar molecule, naphthalenediimide (NDI), were investigated. The shape of the I-V curve of the sGNRs varied with the number of NDI nanoparticles adsorbed. This was suggestive of the existence of a band gap at the narrow-necked part near the NDI-adsorbing area of the sGNRs. PMID:26205209

  8. Cooperation between adsorbates accounts for the activation of atomic layer deposition reactions.

    PubMed

    Shirazi, Mahdi; Elliott, Simon D

    2015-04-14

    Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4-H2O and HfCl4-H2O and growth of Al2O3 from Al(CH3)3-H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this 'cooperative' mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD. PMID:25786200

  9. Coalescence behavior of oil droplets coated in irreversibly-adsorbed surfactant layers.

    PubMed

    Reichert, Matthew D; Walker, Lynn M

    2015-07-01

    Coalescence between oil caps with irreversibly adsorbed layers of nonionic surfactant is characterized in deionized water and electrolyte solution. The coalescence is characterized using a modified capillary tensiometer allowing for accurate measurement of the coalescence time. Results suggest two types of coalescence behavior, fast coalescence at low surface coverages that are independent of ionic strength and slow coalescence at high coverage. These slow coalescence events (orders of magnitude slower) are argued to be due to electric double layer forces or more complicated stabilization mechanisms arising from interfacial deformation and surface forces. A simple film drainage model is used in combination with measured values for interfacial properties to quantify the interaction potential between the two interfaces. Since this approach allows the two caps to have the same history, interfacial coverage and curvature, the results offer a tool to better understand a mechanism that is important to emulsion stability. PMID:25766654

  10. Multi-technique Characterization of Adsorbed Peptide and Protein Orientation: LK310 and Protein G B1

    SciTech Connect

    Baio, J.; Weidner, T; Samuel, N; McCrea, K; Baugh, L; Stayton, P; Castner, D

    2010-01-01

    The ability to orient biologically active proteins on surfaces is a major challenge in the design, construction, and successful deployment of many medical technologies. As methods to orient biomolecules are developed, it is also essential to develop techniques that can accurately determine the orientation and structure of these materials. In this study, two model protein and peptide systems are presented to highlight the strengths of three surface analysis techniques for characterizing protein films: time-of-flight secondary-ion mass spectrometry (ToF-SIMS), sum-frequency generation (SFG) vibrational spectroscopy, and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. First, the orientation of Protein G B1, a rigid 6 kDa domain covalently attached to a maleimide-functionalized self-assembled monolayer, was examined using ToF-SIMS. Although the thickness of the Protein G layer was similar to the ToF-SIMS sampling depth, orientation of Protein G was successfully determined by analyzing the C{sub 2}H{sub 5}S{sup +} intensity, a secondary-ion derived from a methionine residue located at one end of the protein. Next, the secondary structure of a 13-mer leucine-lysine peptide (LK{sub 310}) adsorbed onto hydrophilic quartz and hydrophobic fluorocarbon surfaces was examined. SFG spectra indicated that the peptide's lysine side chains were ordered on the quartz surface, while the peptide's leucine side chains were ordered on the fluorocarbon surface. NEXAFS results provided complementary information about the structure of the LK{sub 310} film and the orientations of amide bonds within the LK{sub 310} peptide.

  11. Path-integral Monte Carlo simulation of the second layer of 4He adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Pierce, Marlon; Manousakis, Efstratios

    1999-02-01

    We have developed a path-integral Monte Carlo method for simulating helium films and apply it to the second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite interactions that are found from potentials which realistically describe the interatomic interactions. The Monte Carlo sampling is over both particle positions and permutations of particle labels. From the particle configurations and static structure factor calculations, we find that this layer possesses, in order of increasing density, a superfluid liquid phase, a 7×7 commensurate solid phase that is registered with respect to the first layer, and an incommensurate solid phase. By applying the Maxwell construction to the dependence of the low-temperature total energy on the coverage, we are able to identify coexistence regions between the phases. From these, we deduce an effectively zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and torsional oscillator measurements, and demonstrate that the experimentally observed disruption of the superfluid phase is caused by the growth of the commensurate phase. We further observe that the superfluid phase has a transition temperature consistent with the two-dimensional value. Promotion to the third layer occurs for densities above 0.212 atom/Å 2, in good agreement with experiment. Finally, we calculate the specific heat for each phase and obtain peaks at temperatures in general agreement with experiment.

  12. Kinetic silver staining and quantification of proteins adsorbed to microtiter plates.

    PubMed

    Root, D D; Wang, K

    1993-03-01

    A silver stain was used to detect and quantitate proteins adsorbed to microtiter plate wells. The kinetics of the development of the silver stain were analyzed with an automated microtiter plate reader. The lag time for stain development was found to be a consistent indicator of the amount of protein adsorbed to a microtiter plate well. Protein which was not preadsorbed to the microtiter plate was not effectively stained by silver. Complete adsorption of protein applied to the microtiter plate was possible by drying small amounts of protein in very dilute buffers. Variations in sensitivity for different proteins were less than 30% for the panel of proteins examined. Determinations from kinetic silver staining agreed with those from copper staining for bovine albumin adsorbed to microtiter plates. The precision of kinetic silver staining assay was optimal in the range of 40 to 200 ng per microtiter plate well. In this range, the standard deviations averaged less than 5%. Even smaller amounts of protein can be detected and interpolated down to approximately 10 ng per well. The kinetic silver staining method can be used on standard microtiter plate readers without special filters and is readily adaptable to automated systems. PMID:8470810

  13. Adsorbed Proteins Influence the Biological Activity and Molecular Targeting of Nanomaterials

    SciTech Connect

    Dutta, Debamitra; Sundaram, S. K.; Teeguarden, Justin G.; Riley, Brian J.; Fifield, Leonard S.; Jacobs, Jon M.; Addleman, Raymond S.; Kaysen, George A.; Moudgil, Brij M.; Weber, Thomas J.

    2007-11-01

    The possible combination of unique physicochemical properties operating at unique sites of action within cells and tissues has led to considerable uncertainty surrounding nanomaterial toxic potential. Here we have investigated the relative importance of proteins adsorbed onto nanomaterial surfaces in guiding uptake and toxicity to determine whether a priori identification of adsorbed proteins will contribute to nanomaterial toxicity assessment. Albumin was identified as the major protein adsorbed onto single walled carbon nanotubes (SWCNTs) following incubation with fetal bovine or human serum/plasma, but not when plasma from the Nagase Analbuminemic Rat (NAR) was used, and precoating SWCNTs with a non-ionic surfactant (Pluronic F127) inhibited albumin adsorption. Damaged or structurally altered albumin is rapidly cleared by scavenger receptors. In the RAW 264.7 macrophage-like model, we observed that SWCNTs inhibited the induction of cyclooxygenase-2 (Cox-2) by lipopolysaccharide (LPS; 1 ng/ml, 6 hr) and this anti-inflammatory response was inhibited by fucoidan (scavenger receptor antagonist) and by precoating SWCNTs with Pluronic F127. Fucoidan also reduced the uptake of fluorescent SWCNTs (Alexa647) in RAW 264.7 cells. Albumin-coated SWCNTs reduced LPS-mediated Cox-2 induction. SWCNTs did not appear to reduce binding of a fluorescent LPS (Alexa488) to RAW 264.7 cells. The profile of proteins adsorbed onto amorphous silica (50 – 1000 nm) was qualitatively different, relative to SWCNTs, and coating amorphous silica with Pluronic F127 dramatically reduced protein binding and toxicity. Collectively, these observations are consistent with an important role for adsorbed proteins in guiding nanomaterial disposition and toxicity.

  14. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

    PubMed

    Hammad, Moamen; Rao, Wei; Smith, James G W; Anderson, Daniel G; Langer, Robert; Young, Lorraine E; Barrett, David A; Davies, Martyn C; Denning, Chris; Alexander, Morgan R

    2016-08-16

    Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture 'hits' that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment. PMID:27466628

  15. Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films.

    PubMed

    Yang, Jen Ming; Tsai, Rong-Ze; Hsu, Chih-Chin

    2016-06-01

    As layer-by-layer self-assembly deposition (LbL) is a versatile technique for surface modification, protein adsorption on the LbL modified glass is evaluated in this study. At the beginning, glass slides was silanized by 3-aminopropyltriethoxysilane (APTES). Sodium alginate (Alg), poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes and chitosan (CS) was used as the polycation electrolyte. Both polyanion and polycation electrolytes alternately deposited on the silanized glass slide surface by the LbL technique to get three different polyanion/chitosan series of LbL films ([Alg/CS], [PGA/CS], and [PAsp/CS]). Three kinds of kinetic model including pseudo-first-order, second-order kinetic and intraparticle diffusion model were used to evaluate the adsorption of albumin on the three different polyanion/chitosan series of LbL films. It is found that the adsorption of albumin on the polyanion/chitosan series of LbL films can be described well with the pseudo-second-order kinetic mechanism. To make sure if the pseudo-second-order kinetic mechanism of protein adsorbed on the other polyanion/polycation LbL films is also suitable, poly(allylamine hydrochloride) (PAH) and poly(L-lysine) (PLL) are used as two other polycations. The [polyanion/PAH] and [polyanion/PLL] series of LbL films were prepared with the same LbL technique for albumin, fibrinogen, and fibronectin adsorption. From the results, it is found that albumin, fibrinogen, and fibronectin adsorption on the various polyanion/polycation LbL films can be described well with the pseudo-second-order kinetic mechanism. The protein adsorbed at equilibrium and rate constant of protein adsorbed on the various LbL films can be determined. PMID:26938325

  16. Protein-triggered instant disassembly of biomimetic Layer-by-Layer films.

    PubMed

    Abdelkebir, Khalil; Gaudière, Fabien; Morin-Grognet, Sandrine; Coquerel, Gérard; Atmani, Hassan; Labat, Béatrice; Ladam, Guy

    2011-12-01

    Layer-by-Layer (LbL) coatings are promising tools for the biofunctionalization of biomaterials, as they allow stress-free immobilization of proteins. Here, we explore the possibility to immobilize phosvitin, a highly phosphorylated protein viewed as a model of bone phosphoproteins and, as such, a potential promotive agent of surface-directed biomineralization, into biomimetic LbL architectures. Two immobilization protocols are attempted, first, using phosvitin as the polyanionic component of phosvitin/poly-(L-lysine) films and, second, adsorbing it onto preformed chondroitin sulfate/poly-(L-lysine) films. Surprisingly, it is neither possible to embed phosvitin as the constitutive polyanion of the LbL architectures nor to adsorb it atop preformed films. Instead, phosvitin triggers instant massive film disassembly. This unexpected, incidentally detected behavior constitutes the first example of destructive interactions between LbL films and a third polyelectrolyte, a fortiori a protein, which might open a route toward new stimuli-responsive films for biosensing or drug delivery applications. Interestingly, additional preliminary results still indicate a promotive effect of phosvitin-containing remnant films on calcium phosphate deposition. PMID:22007998

  17. Use of layered double hydroxides and their derivatives as adsorbents for inorganic and organic pollutants

    NASA Astrophysics Data System (ADS)

    You, Youwen

    Contamination of surface and groundwaters by hazardous inorganic and organic pollutants has become an increasing threat to the safety of drinking waters. Cleanup of contaminated surface and groundwaters has, therefore, become a major focus of environmental research. Primary objectives of this dissertation study were to examine the adsorption properties of layered double hydroxides (LDHs) and their derivatives for inorganic and organic contaminants and to identify potential technologies that utilize LDHs and their derivatives for environment remediation. Studies examined the adsorption characteristics of anionic selenium, arsenic and dicamba (3,6 dichloro-2-methoxy benzoic acid) on original LDHs and calcined-LDHs. Adsorption of selenium and arsenic on LDHs was a function of pH. Competing anions in solution strongly affected adsorption of all three contaminants, with divalent anions decreasing adsorption more intensely than monovalent anions. Adsorbed selenium, arsenic and dicamba could be released from LDHs in anion solutions. Adsorption isotherms for selenium and arsenic retention could be fitted to a simple Langmuir equation. Calcination processes significantly increased adsorption capacities of LDHs. Because of adsorption-desorpion characteristics, LDHs could be recycled. X-ray diffraction patterns revealed an increase of d-spacing coupling with adsorption of contaminants, verifying the intercalation of contaminants into layer structure of LDHs. Long chain anionic surfactants intercalated into LDHs modified their surface properties, resulting in organo-LDHs with hydrophobic surface properties. Various organo-LDHs were developed by incorporating different surfactants into LDHs via different synthesis methods. Surfactant intercalation properties were examined and the geometrical arrangements of the intercalated surfactants were characterized. Results revealed that surfactant molecules could adopt various configurations within the LDH interlayer space. Intercalation

  18. Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2014-05-01

    We report an optical method for measuring the thickness of the water layer adsorbed onto the surface of a high-Q fused-silica microresonator. Light from a tunable diode laser operating near 1550 nm is coupled into the microresonator to excite whispering-gallery modes (WGMs). By observing thermal distortion or even bistability of the WGM resonances caused by absorption in the water layer, the contribution of that absorption to the total loss is determined. Thereby, the thickness of the water layer is found to be ˜0.1 nm (approximately one monolayer). This method is further extended to measure the desorption rate of the adsorbed water, which is roughly exponential with a decay time of ˜40 h when the fused-silica microresonator is held in a vacuum chamber at low pressure.

  19. Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood.

    PubMed

    Vlasova, Irina I; Mikhalchik, Elena V; Barinov, Nikolay A; Kostevich, Valeria A; Smolina, Natalia V; Klinov, Dmitry V; Sokolov, Alexey V

    2016-08-01

    Proteins adsorbed on a surface may affect the interaction of this surface with cells. Here, we studied the binding of human serum albumin (HSA), fibrinogen (FBG) and immunoglobulin G (IgG) to PEGylated single-walled carbon nanotubes (PEG-SWCNTs) and evaluated the impact of PEG-SWCNT treated by these proteins on neutrophils in whole blood samples. Measurements of adsorption parameters revealed tight binding of proteins to PEG-SWCNTs. AFM was employed to directly observe protein binding to sidewalls of PEG-SWCNTs. Fluorescein-labeled IgG was used to ascertain the stability of PEG-SWCNT-IgG complexes in plasma. In blood samples, all plasma proteins mitigated damage of neutrophils observed just after blood exposure to PEG-SWCNTs, while only treatment of PEG-SWCNTs with IgG resulted in dose- and time-dependent enhancement of CNT-induced neutrophil activation and in potentiation of oxidative stress. Our study demonstrates the ability of adsorbed plasma proteins to influence neutrophil response caused by PEG-SWCNTs in whole blood. PMID:27015767

  20. Prediction of the orientations of adsorbed protein using an empirical energy function with implicit solvation.

    PubMed

    Sun, Yu; Welsh, William J; Latour, Robert A

    2005-06-01

    When simulating protein adsorption behavior, decisions must first be made regarding how the protein should be oriented on the surface. To address this problem, we have developed a molecular simulation program that combines an empirical adsorption free energy function with an efficient configurational search method to calculate orientation-dependent adsorption free energies between proteins and functionalized surfaces. The configuration space is searched systematically using a quaternion rotation technique, and the adsorption free energy is evaluated using an empirical energy function with an efficient grid-based calculational method. In this paper, the developed method is applied to analyze the preferred orientations of a model protein, lysozyme, on various functionalized alkanethiol self-assembled monolayer (SAM) surfaces by the generation of contour graphs that relate adsorption free energy to adsorbed orientation, and the results are compared with experimental observations. As anticipated, the adsorbed orientation of lysozyme is predicted to be dependent on the discrete organization of the functional groups presented by the surface. Lysozyme, which is a positively charged protein, is predicted to adsorb on its 'side' on both hydrophobic and negatively charged surfaces. On surfaces with discrete positively charged sites, attractive interaction energies can also be obtained due to the presence of discrete local negative charges present on the lysozyme surface. In this case, 'end-on' orientations are preferred. Additionally, SAM surface models with mixed functionality suggest that the interactions between lysozyme and surfaces could be greatly enhanced if individual surface functional groups are able to access the catalytic cleft region of lysozyme, similar to ligand-receptor interactions. The contour graphs generated by this method can be used to identify low-energy orientations that can then be used as starting points for further simulations to investigate

  1. Reassembly of S-layer proteins

    NASA Astrophysics Data System (ADS)

    Pum, Dietmar; Sleytr, Uwe B.

    2014-08-01

    Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.

  2. Isolation of calcium-binding proteins on selective adsorbents. Application to purification of bovine calmodulin.

    PubMed

    Chaga, G S; Ersson, B; Porath, J O

    1996-05-01

    We report the fractionation of calcium-binding proteins using immobilized metal ion affinity chromatography (IMAC) with hard metal ions. Various hard metal ions (Mn2+, La3+, Nd3+, Eu(3 were immobilized on cross-linked agarose substituted with Tris(carboxymethyl)ethylenediamine (TED) and used as an adsorbent. After systematic studies, europium was selected for further work on the fractionation of calcium-binding proteins. It was found that the presence of Ca2+ in the sample and the solvent strongly promoted the adsorption and selectivity. Selective elution was accomplished in stepwise mode by the addition of calcium chelators such as malonate, citrate and phosphate. Calmodulin of high purity was isolated from a crude extract. Similar behavior of other calcium-binding proteins indicates that the reported chromatographic procedure can be generally applied to such proteins. PMID:8653201

  3. The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Shaw, Wendy J.

    2010-03-15

    Amelogenin and amelogenin splice variants are believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein-surface interactions are critical to it’s function. We have studied the adsorption of LRAP, a splice variant of amelogenin which may also contribute to enamel function, onto model self-assembled monolayers on gold containing of COOH, CH3, and NH2 end groups. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline (PBS) and solutions at saturation with calcium phosphate contained aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and structures. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both calcium phosphate and PBS solutions. Adsorption was also promoted onto COOH surfaces when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies suggested that the protein adsorbed onto all surfaces as LRAP monomers. We propose that the monomers adsorb onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces, structures that may be important in the biomineralization of tooth enamel.

  4. Interfacial microrheology study of layer formation by staphylococcal nuclease protein and its disordered variant

    NASA Astrophysics Data System (ADS)

    Tzolova, Bilyana; Allan, Daniel; Firester, Daniel; Garcia-Moreno, Bertrand; Reich, Daniel; Leheny, Robert

    We study the formation of layers of staphylococcal nuclease protein adsorbing at the air-water interface. In a series of experiments, we follow the evolution of the rheological response of the layer using an active microrheology technique that involves tracking the rotational motion of magnetic nanowires at the interface in response to time-dependent external magnetic fields. At early stages of layer formation, the wire mobility can be interpreted using a model for viscous drag with an interfacial viscosity that increases rapidly with layer age; however, at later ages deviations from a simple viscous response indicating non-Newtonian behavior are observed. We compare the evolution in microrheology of layers forming from wild-type protein that assumes a folded conformation in solution with a variant that is disordered due to substitution of a single amino acid, thereby gaining a perspective on the impact of initial protein state on the layer formation and rheology.

  5. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface.

    PubMed

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Crescenzi, Carlo; Pozzi, Daniela; Laganà, Aldo

    2011-09-01

    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. PMID:21725631

  6. Study of the conformational change of adsorbed proteins on biomaterial surfaces using hydrogen-deuterium exchange with mass spectroscopy.

    PubMed

    Kim, Jinku

    2016-05-01

    There is no doubt that protein adsorption plays a crucial role in determining biocompatibility of biomaterials. Despite the information of the identity and composition of blood plasma/serum proteins adsorbed on surfaces of biomaterials to understand which proteins are involved in blood/biomaterial interactions, it still does not provide information about the conformations and orientations of adsorbed protein, which are very important in determining biological responses to biomaterials. Therefore, our laboratory has developed an experimental technology to probe protein conformations on materials that is applicable to mixtures of proteins. Herein, the new application of hydrogen/deuterium (H/D) exchange combined with mass spectrometry was applied to determine conformational changes of adsorbed proteins at biomaterial surfaces. The results suggest that there may be a significant conformational change in adsorbed proteins at 'low' bulk concentrations that leads to a large change in the kinetics of H/D exchange as compared to 'high' bulk concentrations. This technique may eventually be useful for the study of the kinetics of protein conformational changes. PMID:26896658

  7. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. PMID:26905881

  8. Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein material interface

    NASA Astrophysics Data System (ADS)

    Lynch, Iseult

    2007-01-01

    In this paper we discuss the possibility of a general paradigm for cell-biomaterial and cell-nanoparticle interactions. The basis of the paradigm is that the nature of the biomaterial or nanoparticle surface is not the important parameter, but rather the nature of the outermost layer of adsorbed proteins as well as long-lived misfolded proteins shed from the surfaces. If the adsorbed protein is irreversibly adsorbed onto the surface it may be sufficiently disrupted so that a variety of peptide units (here termed “cryptic epitopes”) not usually expressed in nature at the surface of the protein become exposed. Similarly, where there is a slow exchange time with the surface, surface-induced perturbations may lead to long-lived misfolded proteins being shed from the surface and continuing to express altered surface peptide sequences. In cases where the proteins have lost most of their tertiary structure, anomalous peptide sequences and geometries that are not displayed at the surface by the native protein may in fact be presented after surface adsorption of a protein. Such anomalous surface expressions could contain novel epitopes that trigger various signalling pathways or even diseases. Thus, future approaches to understanding cell-biomaterial and cell-nanoparticle interactions should focus on characterising the outer layer of the adsorbed proteins, or “epitope mapping” as well as examining the possibility of formation of essentially “new” proteins as a result of desorption of conformationally or geometrically altered proteins.

  9. Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films.

    PubMed

    Veeregowda, Deepak H; van der Mei, Henny C; Busscher, Henk J; Sharma, Prashant K

    2011-02-01

    The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal microbalance) of 2-h-old in vitro-adsorbed salivary-protein films were 43.5 nm and 9.4 MHz, respectively, whereas the dehydrated thickness, measured using X-ray photoelectron spectroscopy, was 2.4 nm. Treatment with toothpaste slurries decreased the thickness of the film, depending on the fluoride-detergent combination involved. Secondary exposure to saliva resulted in a regained thickness of the film to a level similar to its original thickness; however, no association was found between the thickness of hydrated and dehydrated films, indicating differences in film structure. Treatment with stannous fluoride/sodium lauryl sulphate (SnF(2)/SLS)-containing toothpaste slurries yielded a strong, immediate two-fold increase in characteristic film frequency (f(c)) with respect to untreated films, indicating cross-linking in adsorbed salivary-protein films by Sn(2+) that was absent when SLS was replaced with sodium hexametaphosphate (NaHMP). Secondary exposure to saliva of films treated with SnF(2) caused a strong, six-fold increase in f(c) compared with primary salivary-protein films, regardless of whether SLS or NaHMP was the detergent. This suggests that ionized stannous is not directly available for cross-linking in combination with highly negatively charged NaHMP, but becomes slowly available after initial treatment to cause cross-linking during secondary exposure to saliva. PMID:21244507

  10. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  11. Elastic response of a protein monolayer adsorbed at decorated water surface

    NASA Astrophysics Data System (ADS)

    Singh, Amarjeet; Konovalov, Oleg

    2015-05-01

    Under the in-plane isothermal compression the self-assembled protein monolayer expand in the direction perpendicular to the applied force as a function of applied compression. The structure finally buckle beyond a critical compression, which finally returns to the initial structure when the compression force was removed, behaving like an elastic body. We modelled the layer as homogeneous elastic medium and calculated elastic constants. Young's modulus of the protein layer is 2 orders of magnitude smaller than the bulk lysozyme crystals. It is of fundamental significance to be able to predict the elastic properties of the proteins at air-water interface since protein remains in their natural environment unlike protein crystals.

  12. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein.

    PubMed

    Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah R; Somavarapu, Satyanarayana; Merchant, Zahra; Hutcheon, Gillian A; Saleem, Imran Y

    2015-08-15

    Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 μg of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 μm) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 μm suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 μg/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA. PMID:26169146

  13. Targeted Mutagenesis and Combinatorial Library Screening Enables Control of Protein Orientation on Surfaces and Increased Activity of Adsorbed Proteins.

    PubMed

    Cruz-Teran, Carlos A; Carlin, Kevin B; Efimenko, Kirill; Genzer, Jan; Rao, Balaji M

    2016-08-30

    While nonspecific adsorption is widely used for immobilizing proteins on solid surfaces, the random nature of protein adsorption may reduce the activity of immobilized proteins due to occlusion of the active site. We hypothesized that the orientation a protein assumes on a given surface can be controlled by systematically introducing mutations into a region distant from its active site, thereby retaining activity of the immobilized protein. To test this hypothesis, we generated a combinatorial protein library by randomizing six targeted residues in a binding protein derived from highly stable, nonimmunoglobulin Sso7d scaffold; mutations were targeted in a region that is distant from the binding site. This library was screened to isolate binders that retain binding to its cognate target (chicken immunoglobulin Y, cIgY) as well as exhibit adsorption on unmodified silica at pH 7.4 and high ionic strength conditions. A single mutant, Sso7d-2B5, was selected for further characterization. Sso7d-2B5 retained binding to cIgY with an apparent dissociation constant similar to that of the parent protein; both mutant and parent proteins saturated the surface of silica with similar densities. Strikingly, however, silica beads coated with Sso7d-2B5 could achieve up to 7-fold higher capture of cIgY than beads coated with the parent protein. These results strongly suggest that mutations introduced in Sso7d-2B5 alter its orientation relative to the parent protein, when adsorbed on silica surfaces. Our approach also provides a generalizable strategy for introducing mutations in proteins so as to improve their activity upon immobilization, and has direct relevance to development of protein-based biosensors and biocatalysts. PMID:27490089

  14. Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability.

    PubMed

    Wang, Xin-Bo; Lin, Tze-Chung; Hsueh, Han-Yu; Lin, Shih-Chieh; He, Xiao-Dong; Ho, Rong-Ming

    2016-06-28

    Nanoporous epoxy with gyroid texture is fabricated by using a nanoporous polymer with gyroid-forming nanochannels as a template for polymerization of epoxy. The nanoporous polymer template is obtained from the self-assembly of degradable block copolymer, polystyrene-b-poly(l-lactide) (PS-PLLA), followed by hydrolysis of PLLA blocks. Templated polymerization can be conducted under ambient conditions to create well-defined, bicontinuous epoxy networks in a PS matrix. By taking advantage of multistep curing of epoxy, well-ordered robust nanoporous epoxy can be obtained after removal of PS template, giving robust porous materials. The through-hole nanoporous epoxy in the film state can be used as a coated layer to enhance the adsorbability for both lysozyme and bovine serum albumin. PMID:27245380

  15. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  16. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    PubMed

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  17. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein.

    PubMed

    Yang, Jiayi; Xiong, Youling L

    2015-10-14

    This study investigated the role of interfacial myofibrillar protein (MFP) in the oxidative stabilization of meat emulsions. Emulsions with 10% oil were prepared using either 2% (w/v) Tween 20 or 0.25, 0.5, and 1% (w/v) MFP and then subjected to hydroxyl radical oxidation at 4 °C for 0, 2, and 24 h. MFP was more readily oxidized (intrinsic fluorescence quenching, sulfur losses, and carbonyl formation) than oil [conjugated dienes and 2-thiobarbituric acid-reactive substances (TBARS)]. However, oxidized MFP in the continuous phase stimulated lipid oxidation after 24 h, sharply contrasting with interface-adsorbed MFP that inhibited TBARS formation nearly 90% (p < 0.05). Interfacial MFP from 2 h oxidized samples exhibited greater losses of fluorescence and more extensive polymerization of myosin (detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) than MFP present in the continuous phase. Results indicated that, due to the physical localization, interface-adsorbed MFP in general and myosin in particular provided accentuated protection of emulsions against oxidation. PMID:26414649

  18. Photoinduced Reconfiguration Cycle in a Molecular Adsorbate Layer Studied by Femtosecond Inner-Shell Photoelectron Spectroscopy

    SciTech Connect

    Dachraoui, H.; Michelswirth, M.; Bartz, P.; Pfeiffer, W.; Heinzmann, U.; Siffalovic, P.; Schaefer, C.; Schnatwinkel, B.; Mattay, J.; Drescher, M.

    2011-03-11

    A time-resolved study of core-level chemical shifts in a monolayer of aromatic molecules reveals complex photoinduced reaction dynamics. The combination of electron spectroscopy for chemical analysis and ultrashort pulse excitation in the extreme ultraviolet allows performing time-correlated 4d-core-level spectroscopy of iodine atoms that probe the local chemical environment in the adsorbate molecule. The selectivity of the method unveils metastable molecular configurations that appear about 50 ps after the excitation and are efficiently quenched back to the ground state.

  19. Observation of spin-glass behavior in nickel adsorbed few layer graphene

    SciTech Connect

    Mitra, Sreemanta; Mondal, Oindrila; Banerjee, Sourish; Chakravorty, Dipankar

    2013-01-14

    Nickel-adsorbed graphene was prepared by first synthesizing graphite oxide (GO) by modified Hummers' method and then reducing a solution containing both GO and Ni{sup 2+}. Energy dispersive X-ray spectroscopy analysis showed 31 at. % nickel was present. Magnetization measurements under both dc and ac magnetic fields were carried out in the temperature range 2 K to 300 K. The zero field cooled and field cooled magnetization data showed a pronounced irreversibility at a temperature around 20 K. The analysis of the ac susceptibility data was carried out by both Vogel-Fulcher as well as power law. From dynamic scaling analysis, the microscopic flipping time {tau}{sub 0}{approx}10{sup -13}s and critical exponent z{nu}=5.9{+-}0.1 were found, indicating the presence of conventional spin glass in the system. The spin glass transition temperature was estimated as 19.5 K. Decay of thermoremanent magnetization was explained by stretched exponential function with a value of the exponent as 0.6. From the results, it is concluded that nickel adsorbed graphene behaves like a spin-glass.

  20. Evaluation of the Effectiveness of Surfactants and Denaturants to Elute and Denature Adsorbed Protein on Different Surface Chemistries.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-11-01

    The elution and/or denaturation of proteins from material surfaces by chemical excipients such as surfactants and denaturants is important for numerous applications including medical implant reprocessing, bioanalyses, and biodefense. The objective of this study was to develop and apply methods to quantitatively assess how surface chemistry and adsorption conditions influence the effectiveness of three commonly used surfactants (sodium dodecyl sulfate, n-octyl-β-d-glucoside, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and two denaturants (guanidium hydrochloride and urea) to elute protein (hen egg white lysozyme and bovine pancreatic ribonuclease A) from three different surface chemistries (silica glass, poly(methyl methacrylate), and high-density polyethylene). The structure and bioactivity of residual protein on the surface following elution were characterized using circular dichroism spectropolarimetry and enzyme assays to assess the extent of protein denaturation. Our results indicate that the denaturants were generally more effective than the surfactants in removing the adsorbed proteins from each type of surface. Also, the denaturing capacity of these excipients on the residual proteins on the surfaces was distinctly different from their influence on the proteins in solution and was unique for each of the adsorption conditions. Taken altogether, these results reveal that the effectiveness of surfactants and denaturants to elute and denature adsorbed protein is significantly influenced by surface chemistry and the conditions from which the protein was adsorbed. These results provide a basis for the selection, design, and further development of chemical agents for protein elution and surface decontamination. PMID:26449787

  1. Development and application of thin-layer spectroelectrochemical techniques for the study of organosulfur monolayers adsorbed at gold

    SciTech Connect

    Simmons, N.

    1997-10-08

    A main research interest is the characterization of monolayers formed by the spontaneous adsorption of organosulfur compounds at gold. This dissertation describes the development and application of long optical pathlength thin-layer spectroelectrochemistry in an attempt to address key issues regarding the reactivity of surface-immobilized molecules. The first section of this introductory chapter briefly describes the general approach to the preparation and characterization of these films. The last section provides an overview of the main principles and advantages of thin-layer spectroelectrochemistry for studying surface-adsorbed species. The body of this dissertation is divided into four chapters. Chapter 2 consists of a paper describing the design, construction, and characterization of a cuvette-based LOPTLC. Chapter 3 is a paper which examines the reductive desorption process using thin-layer spectroelectrochemistry to monitor and identify the desorption product. Chapter 4 is a paper describing the characterization of monolayers functionalized with a catechol terminal group which serves as a redox transformable coordination site for metal ion binding. Chapter 5 discusses the application of thin-layer spectroelectrochemistry to acid-base reactivity studies of surface-immobilized molecules. The final section provides some general conclusions and a prospectus for future studies. These chapters have been processed separately for inclusion on the data base. This report contains the introduction, references, and general conclusions. 78 refs.

  2. Contact Forces between TiO2 Nanoparticles Governed by an Interplay of Adsorbed Water Layers and Roughness.

    PubMed

    Laube, Jens; Salameh, Samir; Kappl, Michael; Mädler, Lutz; Colombi Ciacchi, Lucio

    2015-10-20

    Interparticle forces govern the mechanical behavior of granular matter and direct the hierarchical assembling of nanoparticles into supramolecular structures. Understanding how these forces change under different ambient conditions would directly benefit industrial-scale nanoparticle processing units such as filtering and fluidization. Here we rationalize and quantify the contributions of dispersion, capillary, and solvation forces between hydrophilic TiO2 nanoparticles with sub-10 nm diameter and show that the humidity dependence of the interparticle forces is governed by a delicate interplay between the structure of adsorbed water layers and the surface roughness. All-atom molecular dynamics modeling supported by force-spectroscopy experiments reveals an unexpected decrease in the contact forces at increasing humidity for nearly spherical particles, while the forces between rough particles are insensitive to strong humidity changes. Our results also frame the limits of applicability of discrete solvation and continuum capillary theories in a regime where interparticle forces are dominated by the molecular nature of surface adsorbates. PMID:26414448

  3. Conformational changes of α-lactalbumin adsorbed at oil-water interfaces: interplay between protein structure and emulsion stability.

    PubMed

    Zhai, Jiali; Hoffmann, Søren V; Day, Li; Lee, Tzong-Hsien; Augustin, Mary Ann; Aguilar, Marie-Isabel; Wooster, Tim J

    2012-02-01

    The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of

  4. Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal.

    PubMed

    Koriche, Yamina; Darder, Margarita; Aranda, Pilar; Semsari, Saida; Ruiz-Hitzky, Eduardo

    2014-07-21

    Functional bionanocomposites based on two layered silicates, the commercial montmorillonite known as Cloisite®Na and a natural bentonite from Algeria, were prepared by intercalation of cationic starch, synthesized with two different degrees of substitution, 0.85 and 0.55. After characterization of the prepared bionanocomposites by XRD and zeta potential measurements, batch studies were conducted to evaluate the adsorption capacity of hexavalent chromium anions from aqueous solution. The adsorption isotherms, adsorption kinetics, and the effect of pH on the process were studied. The removal efficiency was evaluated in the presence of competing anions such as NO3(-), ClO4(-), SO4(2-) and Cl(-). In order to regenerate the adsorbent for its repeated use, the regeneration process was studied in two different extractant solutions, 0.1 M NaCl at pH 10 and 0.28 M Na2CO3 at pH 12. PMID:24658793

  5. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    PubMed Central

    Pedano, M. L.; Rivas, G. A.

    2005-01-01

    In this work we present a critical study of the nucleic acid layer immobilized at glassy carbon electrodes. Different studies were performed in order to assess the nature of the interaction between DNA and the electrode surface. The adsorption and electrooxidation of DNA demonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. The DNA layer immobilized at a freshly polished glassy carbon electrode was very stable even after applying highly negative potentials. The electron transfer of potassium ferricyanide, catechol and dopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlled potential conditions) and thick (obtained by casting the glassy carbon surface with highly concentrated DNA solutions) DNA layers was slower than that at the bare glassy carbon electrode, although this effect was dependent on the thickness of the layer and was not charge selective. Raman experiments showed an important decrease of the vibrational modes assigned to the nucleobases residues, suggesting a strong interaction of these residues with the electrode surface. The hybridization of oligo(dG)21 and oligo(dC)21 was evaluated from the guanine oxidation signal and the reduction of the redox indicator Co(phen)33+. In both cases the chronopotentiometric response indicated that the compromise of the bases in the interaction of DNA with the electrode surface is too strong, preventing further hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in a direct and very sensitive way, but not to be used for the preparation of biorecognition layers by direct adsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  6. Isolation and Characterization Of Chimeric Human Fc-expressing Proteins Using Protein A Membrane Adsorbers And A Streamlined Workflow

    PubMed Central

    Burdick, Monica M.; Reynolds, Nathan M.; Martin, Eric W.; Hawes, Jacquelyn V.; Carlson, Grady E.; Cuckler, Chaz M.; Bates, Michael C.; Barthel, Steven R.; Dimitroff, Charles J.

    2014-01-01

    Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization

  7. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents. PMID:26944833

  8. A novel adsorbent for protein chromatography: supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles.

    PubMed

    Erzengin, Mahmut; Ünlü, Nuri; Odabaşı, Mehmet

    2011-01-21

    The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity. PMID:21176840

  9. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size

    SciTech Connect

    Zhang, Haizhen; Burnum, Kristin E.; Luna, Maria L.; Petritis, Brianne O.; Kim, Jong Seo; Qian, Weijun; Moore, Ronald J.; Heredia-Langner, Alejandro; Webb-Robertson, Bobbie-Jo M.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.; Pounds, Joel G.; Liu, Tao

    2011-12-01

    In biofluids (e.g., blood plasma) nanoparticles are readily embedded in layers of proteins that can affect their biological activity and biocompatibility. Herein, we report a study on the interactions between human plasma proteins and nanoparticles with a controlled systematic variation of properties using stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) based quantitative proteomics. Novel protocol has been developed to simplify the isolation of nanoparticle bound proteins and improve the reproducibility. Plasma proteins associated with polystyrene nanoparticles with three different surface chemistries and two sizes as well as for four different exposure times (for a total of 24 different samples) were identified and quantified by LC-MS analysis. Quantitative comparison of relative protein abundances were achieved by spiking an 18 O-labeled 'universal reference' into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantitation across the sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive pattern that classifies the nanoparticles based on their surface properties and size. In addition, data on the temporal study indicated that the stable protein 'corona' that was isolated for the quantitative analysis appeared to be formed in less than 5 minutes. The comprehensive results obtained herein using quantitative proteomics have potential implications towards predicting nanoparticle biocompatibility.

  10. Effect of pH on protein adsorption capacity of strong cation exchangers with grafted layer.

    PubMed

    Wrzosek, Katarzyna; Polakovič, Milan

    2011-09-28

    The effect of pH on the static adsorption capacity of immunoglobulin G, human serum albumin, and equine myoglobin was investigated for a set of five strong cation exchangers with the grafted tentacle layer having a different ligand density. A sharp maximum of adsorption capacity with pH was observed for adsorbents with a high ligand density. The results were elucidated using the protein structure and calculations of pK(a) of ionizable groups of surface basic residues. Inverse size-exclusion experiments were carried out to understand the relation between the adsorption capacity and pore accessibility of the investigated proteins. PMID:21855072

  11. Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Radulova, Gergana M; Basheva, Elka S; Stoyanov, Simeon D; Pelan, Eddie G

    2015-08-01

    The hydrophobins are proteins that form the most rigid adsorption layers at liquid interfaces in comparison with all other investigated proteins. The mixing of hydrophobin HFBII with other conventional proteins is expected to reduce the surface shear elasticity and viscosity, E(sh) and η(sh), proportional to the fraction of the conventional protein. However, the experiments show that the effect of mixing can be rather different depending on the nature of the additive. If the additive is a globular protein, like β-lactoglobulin and ovalbumin, the surface rigidity is preserved, and even enhanced. The experiments with separate foam films indicate that this is due to the formation of a bilayer structure at the air/water interface. The more hydrophobic HFBII forms the upper layer adjacent to the air phase, whereas the conventional globular protein forms the lower layer that faces the water phase. Thus, the elastic network formed by the adsorbed hydrophobin remains intact, and even reinforced by the adjacent layer of globular protein. In contrast, the addition of the disordered protein β-casein leads to softening of the HFBII adsorption layer. Similar (an even stronger) effect is produced by the nonionic surfactant Tween 20. This can be explained with the penetration of the hydrophobic tails of β-casein and Tween 20 between the HFBII molecules at the interface, which breaks the integrity of the hydrophobin interfacial elastic network. The analyzed experimental data for the surface shear rheology of various protein adsorption layers comply with a viscoelastic thixotropic model, which allows one to determine E(sh) and η(sh) from the measured storage and loss moduli, G' and G″. The results could contribute for quantitative characterization and deeper understanding of the factors that control the surface rigidity of protein adsorption layers with potential application for the creation of stable foams and emulsions with fine bubbles or droplets. PMID:24828304

  12. Adsorption isotherms and structure of cationic surfactants adsorbed on mineral oxide surfaces prepared by atomic layer deposition.

    PubMed

    Wangchareansak, Thipvaree; Craig, Vincent S J; Notley, Shannon M

    2013-12-01

    The adsorption isotherms and aggregate structures of adsorbed surfactants on smooth thin-film surfaces of mineral oxides have been studied by optical reflectometry and atomic force microscopy (AFM). Films of the mineral oxides of titania, alumina, hafnia, and zirconia were produced by atomic layer deposition (ALD) with low roughness. We find that the surface strongly influences the admicelle organization on the surface. At high concentrations (2 × cmc) of cetyltrimethylammonium bromide (CTAB), the surfactant aggregates on a titania surface exhibit a flattened admicelle structure with an average repeat distance of 8.0 ± 1.0 nm whereas aggregates on alumina substrates exhibit a larger admicelle with an average separation distance of 10.5 ± 1.0 nm. A wormlike admicelle structure with an average separation distance of 7.0 ± 1.0 nm can be observed on zirconia substrates whereas a bilayered aggregate structure on hafnia substrates was observed. The change in the surface aggregate structure can be related to an increase in the critical packing parameter through a reduction in the effective headgroup area of the surfactant. The templating strength of the surfaces are found to be hafnia > alumina > zirconia > titania. Weakly templating surfaces are expected to have superior biocompatibility. PMID:24224944

  13. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated. PMID:27501777

  14. Lysozyme adsorption at a silica surface using simulation and experiment: effects of pH on protein layer structure.

    PubMed

    Kubiak-Ossowska, Karina; Cwieka, Monika; Kaczynska, Agnieszka; Jachimska, Barbara; Mulheran, Paul A

    2015-10-01

    Hen Egg White Lysozyme (HEWL) is a widely used exemplar to study protein adsorption on surfaces and interfaces. Here we use fully atomistic Molecular Dynamics (MD) simulations, Multi-Parametric Surface Plasmon Resonance (MP-SPR), contact angle and zeta potential measurements to study HEWL adsorption at a silica surface. The simulations provide a detailed description of the adsorption mechanism and indicate that at pH7 the main adsorption driving force is electrostatics, supplemented by weaker hydrophobic forces. Moreover, they reveal the preferred orientation of the adsorbed protein and show that its structure is only slightly altered at the interface with the surface. This provides the basis for interpreting the experimental results, which indicate the surface adsorbs a close-packed monolayer at about pH10 where the surface has a large negative zeta potential and the HEWL is positively charged. At higher pH, the adsorption amount of the protein layer is greatly reduced due to the loss of charge on the protein. At lower pH, the smaller zeta potential of the surface leads to lower HEWL adsorption. These interpretations are complemented by the contact angle measurements that show how the hydrophobicity of the surface is greatest when the surface coverage is highest. The simulations provide details of the hydrophobic residues exposed to solution by the adsorbed HEWL, completing the picture of the protein layer structure. PMID:26315945

  15. Synthesis of adsorbents with dendronic structures for protein hydrophobic interaction chromatography.

    PubMed

    Mata-Gómez, Marco A; Yaman, Sena; Valencia-Gallegos, Jesus A; Tari, Canan; Rito-Palomares, Marco; González-Valdez, José

    2016-04-22

    Here, we introduced a new technology based on the incorporation of dendrons-branched chemical structures-onto supports for synthesis of HIC adsorbents. In doing so we studied the synthesis and performance of these novel HIC dendron-based adsorbents. The adsorbents were synthesized in a facile two-step reaction. First, Sepharose 4FF (R) was chemically modified with polyester dendrons of different branching degrees i.e. third (G3) or fifth (G5) generations. Then, butyl-end valeric acid ligands were coupled to dendrons via ester bond formation. UV-vis spectrophotometry and FTIR analyses of the modified resins confirmed the presence of the dendrons and their ligands on them. Inclusion of dendrons allowed the increment of ligand density, 82.5 ± 11 and 175.6 ± 5.7 μmol ligand/mL resin for RG3 and RG5, respectively. Static adsorption capacity of modified resins was found to be ∼ 60 mg BSA/mL resin. Interestingly, dynamic binding capacity was higher at high flow rates, 62.5 ± 0.8 and 58.0 ± 0.5mg/mL for RG3 and RG5, respectively. RG3 was able to separate lipase, β-lactoglobulin and α-chymotrypsin selectively as well as fractionating of a whole proteome from yeast. This innovative technology will improve the existing HIC resin synthesis methods. It will also allow the reduction of the amount of adsorbent used in a chromatographic procedure and thus permit the use of smaller columns resulting in faster processes. Furthermore, this method could potentially be considered as a green technology since both, dendrons and ligands, are formed by ester bonds that are more biodegradable allowing the disposal of used resin waste in a more ecofriendly manner when compared to other exiting resins. PMID:27018188

  16. Serum protein layers on parylene-C and silicon oxide: Effect on cell adhesion

    PubMed Central

    Delivopoulos, Evangelos; Ouberai, Myriam M.; Coffey, Paul D.; Swann, Marcus J.; Shakesheff, Kevin M.; Welland, Mark E.

    2015-01-01

    Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning. PMID:25555155

  17. Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater.

    PubMed

    Chen, Dan; Li, Yang; Zhang, Jia; Li, Wenhui; Zhou, Jizhi; Shao, Li; Qian, Guangren

    2012-12-01

    A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms. PMID:23122732

  18. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    PubMed

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0

  19. Kinetics of protein adsorption/desorption mediated by pH-responsive polymer layer

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Hang; Lei, Qun-Li; Ren, Chun-Lai

    2015-11-01

    We propose a new way of regulating protein adsorption by using a pH-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution pH. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased pH promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains. Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of pH. It is because although the barrier formed by the polymer layer changes along with the change of pH, the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 21274062, 11474155, and 91027040).

  20. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    SciTech Connect

    Albayrak, Cem; Yang, William C.; Swartz, James R.

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  1. Theory and applications of refractive index-based optical microscopy to measure protein mass transfer in spherical adsorbent particles.

    PubMed

    Bankston, Theresa E; Stone, Melani C; Carta, Giorgio

    2008-04-25

    This work provides the theoretical foundation and a range of practical application examples of a recently developed method to measure protein mass transfer in adsorbent particles using refractive index-based optical microscopy. A ray-theoretic approach is first used to predict the behavior of light traveling through a particle during transient protein adsorption. When the protein concentration gradient in the particle is sharp, resulting in a steep refractive index gradient, the rays bend and intersect, thereby concentrating light in a sharp ring that marks the position of the adsorption front. This behavior is observed when mass transfer is dominated by pore diffusion and the adsorption isotherm is highly favorable. Applications to protein cation-exchange, hydrophobic interaction, and affinity adsorption are then considered using, as examples, the three commercial, agarose-based stationary phases SP-Sepharose-FF, Butyl Sepharose 4FF, and MabSelect. In all three cases, the method provides results that are consistent with measurements based on batch adsorption and previously published data confirming its utility for the determination of protein mass transfer kinetics under a broad range of practically relevant conditions. PMID:18353343

  2. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  3. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect

    Holinga IV, George Joseph

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  4. Porous ceramic/agarose composite adsorbents for fast protein liquid chromatography.

    PubMed

    Xia, Haifeng; Jin, Xionghua; Wu, Puqiang; Zheng, Zhiyong

    2012-02-01

    Porous ceramic/agarose composite adsorbents were designed and prepared with silica ceramic beads and 4% agarose gel, and then functionalized with a special ligand carboxymethyl. A novel method was introduced to fabricating of the porous silica ceramic beads. The morphology of SEM shows a spherical shape and a porous structure of the ceramic beads. Nitrogen adsorption-desorption analysis gives an average pore size of 287.5 Å, a BET surface area of 29.33 m²/g and a porosity of 41.8%, respectively. Additionally, X-ray diffraction pattern indicates that the amorphous silica has been transformed into two crystal phases of quartz and cristobalite, leading to a porous and rigid skeleton and ensuring the application of the composite beads at high flow velocities. Lysozyme of hen egg-white with the activity of 12,700 U/mg was purified by the composite ion-exchanger in one step and the recovery and purification factor reaches 95.2% and 7.9, respectively. PMID:22226554

  5. Capillary electrophoresis-mass spectrometry of basic proteins using a new physically adsorbed polymer coating. Some applications in food analysis.

    PubMed

    Simó, Carolina; Elvira, Carlos; González, Nieves; San Román, J; Barbas, Coral; Cifuentes, Alejandro

    2004-07-01

    A new physically adsorbed capillary coating for capillary electrophoresis-mass spectrometry (CE-MS) of basic proteins is presented, which is easily obtained by flushing the capillary with a polymer aqueous solution for two min. This coating significantly reduces the electrostatic adsorption of a group of basic proteins (i.e., cytochrome c, lysozyme, and ribonuclease A) onto the capillary wall allowing their analysis by CE-MS. The coating protocol is compatible with electrospray inonization (ESI)-MS via the reproducible separation of the standard basic proteins (%RSD values (n = 5) < 1% for analysis time reproducibility and < 5% for peak heights, measured from the total ion electropherograms (TIEs) within the same day). The LODs determined using cytochrome c with total ion current and extracted ion current defection were 24.5 and 2.9 fmol, respectively. Using this new coating lysozymes from chicken and turkey egg white could be easily distinguished by CE-MS, demonstrating the usefulness of this method to differentiate animal species. Even after sterilization at 120 degrees C for 30 min, lysozyme could be detected, as well as in wines at concentrations much lower than the limit marked by the EC Commission Regulation. Adulteration of minced meat with 5% of egg-white could also be analysed by our CE-MS protocol. PMID:15237406

  6. Layered protonated titanate nanosheets synthesized with a simple one-step, low-temperature, urea-modulated method as an effective pollutant adsorbent.

    PubMed

    Lin, Cheng-Hsien; Wong, David Shan-Hill; Lu, Shih-Yuan

    2014-10-01

    A simple one-step, low-temperature, urea-modulated method is developed for the synthesis of layered protonated titanate nanosheets (LPTNs). Urea serves as an indirect ammonium ion source, and the controlled supply of the ammonium ion slows the crystalline formation process and enables the production of the LPTNs from amorphous intermediate through aging-induced restructuring. The resulting LPTNs exhibit excellent adsorption capacities for methylene blue and Pb(2+) because of their high specific surface areas and excellent ion-exchange capability. Intercalation of Pb(2+) into the interlayer space of the LPTNs is evidenced by the relevant X-ray diffraction patterns on perturbation of the layered structure. The LPTNs prove to be a promising adsorbent in wastewater treatment for adsorption removal of metal ions or cationic organic dyes. PMID:25198517

  7. Paramagnetic Nanoparticles Leave Their Mark on Nuclear Spins of Transiently Adsorbed Proteins.

    PubMed

    Zanzoni, Serena; Pedroni, Marco; D'Onofrio, Mariapina; Speghini, Adolfo; Assfalg, Michael

    2016-01-13

    The successful application of nanomaterials in biosciences necessitates an in-depth understanding of how they interface with biomolecules. Transient associations of proteins with nanoparticles (NPs) are accessible by solution NMR spectroscopy, albeit with some limitations. The incorporation of paramagnetic centers into NPs offers new opportunities to explore bio-nano interfaces. We propose NMR paramagnetic relaxation enhancement as a new tool to detect NP-binding surfaces on proteins with increased sensitivity, also extending the applicability of NMR investigations to heterogeneous biomolecular mixtures. The adsorption of ubiquitin on gadolinium-doped fluoride-based NPs produced residue-specific NMR line-broadening effects mapping to a contiguous area on the surface of the protein. Importantly, an identical paramagnetic fingerprint was observed in the presence of a competing protein-protein association equilibrium, exemplifying possible interactions taking place in crowded biological media. The interaction was further characterized using isothermal titration calorimetry and upconversion emission measurements. The data indicate that the used fluoride-based NPs are not biologically inert but rather are capable of biomolecular recognition. PMID:26683352

  8. Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins.

    PubMed

    Mellema, M; Isenbart, J G

    2004-09-01

    The behavior of casein and whey proteins at the oil-water interface was studied using a dynamic drop tensiometer (DDT). The dilational modulus of the interface was measured for aqueous solutions of skim milk powder (SMP) and whey protein concentrate (WPC) with various additions (salt, calcium, lactose) and (order of) various processing steps. Acidification or heating was performed before or after creation of the interface. The elastic properties of oil-water interfaces with adsorbed milk proteins could partly determine the rate of partial coalescence and resulting product instability. For WPC, preacidification slows down the adsorption, but the modulus is not affected. This is probably because, although the whey proteins change conformation more slowly at the interface, still a homogeneous film is formed. If postacidification is applied, coarsening of the protein film leads to loss of interfacial rigidity. Preheating of the aqueous phase with WPC leads to denaturation and aggregation, but the aggregates formed are still surface active and give high moduli. If preheating of a WPC solution is followed by postacidification, the resulting modulus is high (approximately 60 mN/m). The oil-water interfacial properties of SMP are only minimally affected by preheating or by choice of powder (low, medium, or high heat). At low pH, however, aggregates are formed that are less surface active, and interfacial moduli are lower. If measurements are performed at high temperature (i.e., if postheating is applied), for both SMP and WPC systems, moduli became much lower (approximately 10 mN/m). This is probably because of accelerated rearrangements, leading to the formation of inhomogeneous film structures. PMID:15375034

  9. Elastic repulsion from polymer brush layers exhibiting high protein repellency.

    PubMed

    Inoue, Yuuki; Nakanishi, Tomoaki; Ishihara, Kazuhiko

    2013-08-27

    Hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(2-hydroxyethyl methacrylate) (PHEMA) brush layers with different thicknesses and graft densities were prepared to construct a model surface to elucidate protein-surface interactions. In particular, we focused on the steric repulsion of hydrophilic polymer layers as one of the surface properties that strongly influence protein adsorption and employed force-versus-distance (f-d) curve measurements obtained via atomic force microscopy to quantitatively evaluate the steric repulsion force, which is also referred to as the "elastic repulsion energy." We also analyzed direct interactions between the surface and proteins via the f-d curve, because these interactions trigger the protein-adsorption phenomenon. Protein-surface interactions were extremely suppressed at surfaces with high elastic repulsion energies and highly dense polymer brush structures, which is in contrast to those at surfaces with low elastic repulsion energies and low density of the grafted polymer layers. These results indicate that the elastic repulsion from the grafted polymer layer at the surface is an important parameter for controlling protein-surface interactions and protein adsorption phenomenon. PMID:23898820

  10. Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides.

    PubMed

    Guan, Guijian; Zhang, Shuangyuan; Liu, Shuhua; Cai, Yongqing; Low, Michelle; Teng, Choon Peng; Phang, In Yee; Cheng, Yuan; Duei, Koh Leng; Srinivasan, Bharathi Madurai; Zheng, Yuangang; Zhang, Yong-Wei; Han, Ming-Yong

    2015-05-20

    Here, we report a general and facile method for effective layer-by-layer exfoliation of transition metal dichalcogenides (TMDs) and graphite in water by using protein, bovine serum albumin (BSA) to produce single-layer nanosheets, which cannot be achieved using other commonly used bio- and synthetic polymers. Besides serving as an effective exfoliating agent, BSA can also function as a strong stabilizing agent against reaggregation of single-layer nanosheets for greatly improving their biocompatibility in biomedical applications. With significantly increased surface area, single-layer MoS2 nanosheets also exhibit a much higher binding capacity to pesticides and a much larger specific capacitance. The protein exfoliation process is carefully investigated with various control experiments and density functional theory simulations. It is interesting to find that the nonpolar groups of protein can firmly bind to TMD layers or graphene to expose polar groups in water, facilitating the effective exfoliation of single-layer nanosheets in aqueous solution. The present work will enable to optimize the fabrication of various 2D materials at high yield and large scale, and bring more opportunities to investigate the unique properties of 2D materials and exploit their novel applications. PMID:25936424

  11. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. PMID:21999999

  12. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  13. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial

    2016-09-23

    The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. PMID:27578405

  14. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli.

    PubMed

    Johnson, Brant R; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  15. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  16. Augmenting Protein Release from Layer- by-Layer Functionalized Agarose Hydrogels

    PubMed Central

    Lynam, Daniel; Peterson, Chelsea; Maloney, Ryan; Shahriari, Dena; Garrison, Alexa; Saleh, Sara; Mehrotra, Sumit; Chan, Christina; Sakamoto, Jeff

    2014-01-01

    Recent work demonstrated the efficacy of combining layer-by-layer assembly with hydrogels to provide the controlled delivery of proteins for use in nerve repair scaffolds. In this work, we augmented the protein dose response by controlling and increasing the hydrogel internal surface area. Sucrose was added to agarose during gelation to homogenize the nanopore morphology, resulting in increased surface area per unit volume of hydrogel. The surface area of a range of compositions (1.5 to 5.0 wt% agarose and 0, 50 and 65 wt% sucrose) was measured. Gels were supercritically dried to preserve porosity enabling detailed pore morphology measurements using nitrogen adsorption and high resolution scanning electron microscopy. The resulting surface area, normalized by superficial gel volume, ranged between 6 and 56m2/ccgel. Using the layer-by-layer process to load lysozyme, a neurotrophic factor analog, a relationship was observed between surface area and cumulative dose response ranging from 176 to 2556 μg/mL, which is in the range of clinical relevance for the delivery of growth factors. In this work, we demonstrated that the ability to control porosity is key in tuning drug delivery dose response from layer-by-layer modified hydrogels. PMID:24528743

  17. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGESBeta

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  18. Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres

    NASA Astrophysics Data System (ADS)

    Teichroeb, J. H.; Forrest, J. A.; Jones, L. W.

    2008-08-01

    We have used localized surface plasmon resonance (LSPR) to monitor the kinetics of thermal denaturing of bovine serum albumin (BSA) adsorbed onto gold nanospheres of size 5nm-100nm. The effect of the protein on the LSPR was monitored by visible extinction spectroscopy. The wavelength of the peak extinction (resonance) is affected by the conformation of the adsorbed protein layer, and as such can be used as a very sensitive probe of thermal denaturing that is specific to the adsorbed (as opposed to free) protein. The time dependence of the denaturing is measured in the temperature range 60 °C - 70 °C , and the lifetimes are used to calculate an activation barrier for thermal denaturing. The results show that thermally activated denaturing of proteins adsorbed onto nanoparticles has a nanoparticle-size-dependent activation barrier, and this barrier increases for decreasing particle size. This may have important implications for other protein-nanoparticle interactions.

  19. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins

    PubMed Central

    Günther, Tobias J.; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi. PMID:27285458

  20. Analyte induced water adsorbability in gas phase biosensors: the influence of ethinylestradiol on the water binding protein capacity.

    PubMed

    Snopok, Borys; Kruglenko, Ivanna

    2015-05-01

    An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings. PMID:25763411

  1. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    PubMed Central

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; Nordlund, D.; Schlotter, W. F.; Sellberg, J. A.; Sorgenfrei, F.; Turner, J. J.; Öström, H.; Ogasawara, H.; Wolf, M.; Wurth, W.

    2015-01-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. PMID:26798795

  2. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. PMID:26798795

  3. A challenging interpretation of a hexagonally layered protein structure

    SciTech Connect

    Thompson, Michael C.; Yeates, Todd O.

    2014-01-01

    The authors describe the structure determination of a hexagonally layered protein structure that suffered from a complicated combination of translational non-crystallographic symmetry and hemihedral twinning. This case serves as a reminder that broken crystallographic symmetry resulting from doubling of a unit-cell axis often requires a new choice of origin. The carboxysome is a giant protein complex that acts as a metabolic organelle in cyanobacteria and some chemoautotrophs. Its outer structure is formed by the assembly of thousands of copies of hexameric shell protein subunits into a molecular layer. The structure determination of a CcmK1 shell protein mutant (L11K) from the β-carboxysome of the cyanobacterium Synechocystis PCC6803 led to challenges in structure determination. Twinning, noncrystallographic symmetry and packing of hexameric units in a special arrangement led to initial difficulties in space-group assignment. The correct space group was clarified after initial model refinement revealed additional symmetry. This study provides an instructive example in which broken symmetry requires a new choice of unit-cell origin in order to identify the highest symmetry space group. An additional observation related to the packing arrangement of molecules in this crystal suggests that these hexameric shell proteins might have lower internal symmetry than previously believed.

  4. Novel layer-by-layer structured nanofibrous mats coated by protein films for dermal regeneration.

    PubMed

    Xin, Shangjing; Li, Xueyong; Wang, Qun; Huang, Rong; Xu, Xiaoli; Lei, Zhanjun; Deng, Hongbing

    2014-05-01

    Layer-by-layer coating technique is effective in modifying the surface of nanofibrous mats, but overmuch film-coating makes the mats less porous to hardly suit the condition for tissue engineering. We developed novel nanofibrous mats layer-by-layer coated by silk fibroin and lysozyme on the cellulose electrospun template via electrostatic interaction. The film-coating assembled on the mats was not excessive because the charge of the proteins varied in the coating process due to different pH value. In addition, pure nature materials made the mats nontoxic, biodegradable and low-cost. The morphology and composition variation during layer-by-layer coating process was investigated and the results showed that the structure and thickness of film-coatings could be well-controlled. The antibacterial assay and in vitro cell experiments indicated that the mats could actively inhibit bacteria and exhibit excellent biocompatibility. In vivo implant assay further verified the mats cultured with human epidermal cells could promote wound healing and avoid wound infection. Therefore, these mats showed promising prospects when performed for dermal reconstruction. PMID:24734533

  5. Adsorption mechanism of ester phosphate on baryum titanate in organic medium. Preliminary results on the structure of the adsorbed layer

    NASA Astrophysics Data System (ADS)

    Le Bars, N.; Tinet, D.; Faugère, A. M.; van Damme, H.; Levitz, P.

    1991-05-01

    The purpose of this work is to evidence the adsorption mechanism and the structure of commercial phosphate ester surfactant stabilized BaTiO3 in organic suspension, and to relate these characteristics to rheological behaviour. Binders and plasticizers are omitted to reduce the number of system components. Firstly adsorption isotherm were determined by inductively coupled argon plasma technique and interpretated based on transmission electron microscopy and ^{31}P nuclear magnetic resonance studies. Preliminary rheological measurements were then performed and related to suspension structure. Structure of the adsorption layer is critically discussed. L'objectif de cette étude est la compréhension du mécanisme d'adsorption d'agents dispersants phosphatés dans des suspensions organiques de BaTiO3, ainsi que la caractérisation de la structure, et du comportement rhéologique de ces suspensions. Liants et plastifiants ne sont pas utilisés, afin de réduire le nombre de composants dans le système. Dans un premier temps, l'isotherme d'adsorption est établie par dosage en émission plasma, puis interprétée sur la base de résultats de Microscopie Eloctronique à Transmission, et de spectroscopie par Résonance Magnétique Nucléaire du ^{31}P. Des mesures rhéologiques préliminaires sont effectuées pour caractériser la structure des suspensions.

  6. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    SciTech Connect

    Duan Li; He Qiang; Cui Yue; Wang Kewei; Li Junbai . E-mail: jbli@iccas.ac.cn

    2007-03-09

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabrication remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules.

  7. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement.

    PubMed

    Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2013-04-12

    An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling

  8. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  9. Graft copolymer composed of cationic backbone and bottle brush-like side chains as a physically adsorbed coating for protein separation by capillary electrophoresis.

    PubMed

    Zhou, Dan; Xiang, Lina; Zeng, Rongju; Cao, Fuhu; Zhu, Xiaoxi; Wang, Yanmei

    2011-12-01

    To stabilize electroosmotic flow (EOF) and suppress protein adsorption onto the silica capillary inner wall, a cationic hydroxyethylcellulose-graft-poly (poly(ethylene glycol) methyl ether methacrylate) (cat-HEC-g-PPEGMA) graft copolymer composed of cationic backbone and bottle brush-like side chains was synthesized for the first time and used as a novel physically adsorbed coating for protein separation by capillary electrophoresis. Reversed (anodal) and very stable EOF was obtained in cat-HEC-g-PPEGMA-coated capillary at pH 2.2-7.8. The effects of degree of cationization, PEGMA grafting ratio, PEGMA molecular mass, and buffer pH on the separation of basic proteins were investigated. A systematic comparative study of protein separation in bare and HEC-coated capillaries and in cat-HEC-g-PPEGMA-coated capillary was also performed. The basic proteins can be well separated in cat-HEC-g-PPEGMA-coated capillary over the pH range of 2.8-6.8 with good repeatability and high separation efficiency, because the coating combines good protein-resistant property of bottle brush-like PPEGMA side chains with excellent coating ability of cat-HEC backbone. Besides its success in separation of basic proteins, the cat-HEC-g-PPEGMA coating was also superior in the fast separation of other protein samples, such as protein mixture, egg white, and saliva, which indicates that it is a promising coating for further proteomics analysis. PMID:22038787

  10. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics. PMID:27419265

  11. In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Olszewski, P.; Willett, T. C.; Theodosiou, E.; Thomas, O. R. T.; Walsh, J. L.

    2013-05-01

    Efficient manufacturing of increasingly sophisticated biopharmaceuticals requires the development of new breeds of chromatographic materials featuring two or more layers, with each layer affording different functions. This letter reports the in situ modification of a commercial beaded anion exchange adsorbent using atmospheric pressure plasma generated within gas bubbles. The results show that exposure to He-O2 plasma in this way yields significant reductions in the surface binding of plasmid DNA to the adsorbent exterior, with minimal loss of core protein binding capacity; thus, a bi-layered chromatography material exhibiting both size excluding and anion exchange functionalities within the same bead is produced.

  12. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2016-10-01

    Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the

  13. Bacillus anthracis SlaQ Promotes S-Layer Protein Assembly

    PubMed Central

    Nguyen-Mau, Sao-Mai; Oh, So-Young; Schneewind, Daphne I.; Missiakas, Dominique

    2015-01-01

    ABSTRACT Bacillus anthracis vegetative forms assemble an S-layer comprised of two S-layer proteins, Sap and EA1. A hallmark of S-layer proteins are their C-terminal crystallization domains, which assemble into a crystalline lattice once these polypeptides are deposited on the bacterial surface via association between their N-terminal S-layer homology domains and the secondary cell wall polysaccharide. Here we show that slaQ, encoding a small cytoplasmic protein conserved among pathogenic bacilli elaborating S-layers, is required for the efficient secretion and assembly of Sap and EA1. S-layer protein precursors cosediment with SlaQ, and SlaQ appears to facilitate Sap assembly. Purified SlaQ polymerizes and when mixed with purified Sap promotes the in vitro formation of tubular S-layer structures. A model is discussed whereby SlaQ, in conjunction with S-layer secretion factors SecA2 and SlaP, promotes localized secretion and S-layer assembly in B. anthracis. IMPORTANCE S-layer proteins are endowed with the propensity for self-assembly into crystalline arrays. Factors promoting S-layer protein assembly have heretofore not been reported. We identified Bacillus anthracis SlaQ, a small cytoplasmic protein that facilitates S-layer protein assembly in vivo and in vitro. PMID:26216847

  14. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes.

    PubMed

    Sommakia, Salah; Rickus, Jenna L; Otto, Kevin J

    2009-01-01

    The successful use of implantable neural microelectrodes as neuroprosthetic devices depends on the mitigation of the reactive tissue response of the brain. One of the factors affecting the ultimate severity of the reactive tissue response and the in vivo electrical properties of the microelectrodes is the initial adsorption of proteins onto the surface of the implanted microelectrodes. In this study we quantify the increase in microelectrode impedance magnitude at physiological frequencies following electrode immersion in a 10% bovine serum albumin (BSA) solution. We also demonstrate the efficacy of a common antifouling molecule, poly(ethylene glycol) (PEG), in preventing a significant increase in microelectrode impedance. In addition, we show the feasibility of using long-duration DC voltage pulses to remove adsorbed proteins from the microelectrode surface. PMID:19963693

  15. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    PubMed

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  16. Neutron Reflection Study of Bovine β-Casein Adsorbed on OTS Self- Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Fragneto, Giovanna; Thomas, Robert K.; Rennie, Adrian R.; Penfold, Jeffrey

    1995-02-01

    Specular neutron reflection has been used to determine the structure and composition of bovine β-casein adsorbed on a solid surface from an aqueous phosphate-buffered solution at pH 7. The protein was adsorbed on a hydrophobic monolayer self-assembled from deuterated octadecyltrichlorosilane solution on a silicon (111) surface. A two-layer structure formed consisting of one dense layer of thickness 23 ± 1 angstroms and a surface coverage of 1.9 milligrams per square meter adjacent to the surface and an external layer protruding into the solution of thickness 35 ± 1 angstroms and 12 percent protein volume fraction. The structure of the (β-casein) layer is explained in terms of the charge distribution in the protein.

  17. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  18. A study of the thermal denaturation of the S-layer protein from Lactobacillus salivarius

    NASA Astrophysics Data System (ADS)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2012-09-01

    Surface layer (S-layer) proteins display an intrinsic self-assembly property, forming monomolecular crystalline arrays, identified in outermost structures of the cell envelope in many organisms, such as bacteria and archaea. Isolated S-layer proteins also possess the ability to recrystallize into regular lattices, being used in biotechnological applications, such as controlling the architecture of biomimetic surfaces. To this end, the stability of the S-layer proteins under high-temperature conditions is very important. In this study, the S-layer protein has been isolated from Lactobacillus salivarius 16 strain of human origin, and purified by cation-exchange chromatography. Using circular dichroism (CD) spectroscopy, we have investigated the thermal denaturation of the S-layer protein. The far- and near-UV CD spectra have been collected, and the temperature dependence of the CD signal in these spectral domains has been analyzed. The variable temperature results show that the secondary and tertiary structures of the S-layer protein change irreversibly due to the heating of the sample. After the cooling of the heated protein, the secondary and tertiary structures are partially recovered. The denaturation curves show that the protein unfolding depends on the sample concentration and on the heating rate. The secondary and tertiary structures of the protein suffer changes in the same temperature range. We have also detected an intermediate state in the protein denaturation pathway. Our results on the thermal behavior of the S-layer protein may be important for the use of S-layer proteins in biotechnological applications, as well as for a better understanding of the structure and function of S-layer proteins.

  19. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  20. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    PubMed

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20nm and about 110nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio. PMID:26896657

  1. Performance of a membrane adsorber for trace impurity removal in biotechnology manufacturing.

    PubMed

    Phillips, Michael; Cormier, Jason; Ferrence, Jennifer; Dowd, Chris; Kiss, Robert; Lutz, Herbert; Carter, Jeffrey

    2005-06-17

    Membrane adsorbers provide an attractive alternative to traditional bead-based chromatography columns used to remove trace impurities in downstream applications. A linearly scalable novel membrane adsorber family designed for the efficient removal of trace impurities from biotherapeutics, are capable of reproducibly achieving greater than 4 log removal of mammalian viruses, 3 log removal of endotoxin and DNA, and greater than 1 log removal of host cell protein. Single use, disposable membrane adsorbers eliminate the need for costly and time consuming column packing and cleaning validation associated with bead-based chromatography systems, and minimize the required number and volume of buffers. A membrane adsorber step reduces process time, floor space, buffer usage, labor cost, and improves manufacturing flexibility. This "process compression" effect is commonly associated with reducing the number of processing steps. The rigid microporous structure of the membrane layers allows for high process flux operation and uniform bed consistency at all processing scales. PMID:16007984

  2. Characterization of a nanoscale S-layer protein based template for biomolecular patterning.

    PubMed

    Wong, Wing Sze; Yung, Pun To

    2014-01-01

    Well organized template for biomolecular conjugation is the foundation for biosensing. Most of the current devices are fabricated using lithographic patterning processes and self-assembly monolayer (SAM) methods. However, the research toward developing a sub-10 nm patterned, self-regenerated template on various types of substrates is limited, mainly due to the limited functional groups of the building material. Bacterial surface layer proteins (S-layer proteins) can self-assemble into ordered lattice with regular pore sizes of 2-8 nm on different material supports and interfaces. The ordered structure can regenerate after extreme variations of solvent conditions. In this work, we developed a nanoscale biomolecular template based on S-layer proteins on gold surface for fabrication of sensing layer in biosensors. S-layer proteins were isolated from Bacillus cereus, Lysinibacillus sphaericus and Geobacillus stearothermophilus. Protein concentrations were measured by Bradford assay. The protein purities were verified by SDS-PAGE, showing molecular weights ranging from 97-135 kDa. The hydrophilicity of the substrate surface was measured after surface treatments of protein recrystallization. Atomic force microscopic (AFM) measurement was performed on substrate surface, indicating a successful immobilization of a monolayer of S-layer protein with 8-9 nm height on gold surface. The template can be applied on various material supports and acts as a self-regenerated sensing layer of biosensors in the future. PMID:25570568

  3. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    PubMed Central

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-01-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main. PMID:26553411

  4. Layers: A molecular surface peeling algorithm and its applications to analyze protein structures

    NASA Astrophysics Data System (ADS)

    Karampudi, Naga Bhushana Rao; Bahadur, Ranjit Prasad

    2015-11-01

    We present an algorithm ‘Layers’ to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods. Moreover, Layers generates a fine-tunable coarse model for the molecular surface by using non-random sampling. The coarse model can be used for shape comparison, protein recognition and ligand design. Additionally, Layers can be used to develop biased initial configuration of molecules for protein folding simulations. We have developed a random forest classifier to predict the RTP of a given polypeptide sequence. Layers is a standalone application; however, it can be merged with other applications to reduce the computational load when working with large datasets of protein structures. Layers is available freely at http://www.csb.iitkgp.ernet.in/applications/mol_layers/main.

  5. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence

    PubMed Central

    Perras, Alexandra K.; Daum, Bertram; Ziegler, Christine; Takahashi, Lynelle K.; Ahmed, Musahid; Wanner, Gerhard; Klingl, Andreas; Leitinger, Gerd; Kolb-Lenz, Dagmar; Gribaldo, Simonetta; Auerbach, Anna; Mora, Maximilian; Probst, Alexander J.; Bellack, Annett; Moissl-Eichinger, Christine

    2015-01-01

    The uncultivated “Candidatus Altiarchaeum hamiconexum” (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks (“hami”) on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44–47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins. PMID:26106369

  6. Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer.

    PubMed

    Suzuki, Michio; Iwashima, Ai; Tsutsui, Naoaki; Ohira, Tsuyoshi; Kogure, Toshihiro; Nagasawa, Hiromichi

    2011-11-01

    The nacreous layer of molluscan shells consists of a highly organised, layered structure comprising calcium carbonate aragonite crystals, each surrounded by an organic matrix. In the Japanese pearl oyster Pinctada fucata, the Pif protein from the nacreous layer functions in aragonite binding, and plays a key role in nacre formation. Here, we investigated whether the blue mussel Mytilus galloprovincialis also has a protein with similar functions in the nacreous layer. By using a calcium carbonate-binding assay, we identified the novel protein blue mussel shell protein (BMSP) 100 that can bind calcium carbonate crystals of both aragonite and calcite. When the entire sequence of a cDNA encoding BMSP 100 was determined, it was found that BMSP is a preproprotein consisting of a signal peptide and two proteins, BMSP 120 and BMSP 100. BMSP 120 contains four von Willebrand factor A (VWA) domains and one chitin-binding domain, thus suggesting that it has a role in maintaining structure within the matrix. Immunohistochemical analysis revealed that BMSP 100 is present throughout the nacreous layer with dense localisation in the myostracum. Posttranslational modification analysis indicated that BMSP 100 is phosphorylated and glycosylated. These results suggest that there is a common molecular mechanism between P. fucata and M. galloprovincialis that underlies the nacreous layer formation. PMID:21932217

  7. Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis

    PubMed Central

    Kern, Valerie J.; Kern, Justin W.; Theriot, Julie A.; Schneewind, Olaf

    2012-01-01

    The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings. PMID:22609927

  8. Function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations

    SciTech Connect

    Nutt, David; Smith, Jeremy C

    2008-10-01

    Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.

  9. Surface (S)-layer proteins of Deinococcus radiodurans and their utility as vehicles for surface localization of functional proteins.

    PubMed

    Misra, Chitra Seetharam; Basu, Bhakti; Apte, Shree Kumar

    2015-12-01

    The radiation resistant bacterium, Deinococcus radiodurans contains two major surface (S)-layer proteins, Hpi and SlpA. The Hpi protein was shown to (a) undergo specific in vivo cleavage, and (b) closely associate with the SlpA protein. Using a non-specific acid phosphatase from Salmonella enterica serovar Typhi, PhoN as a reporter, the Surface Layer Homology (SLH) domain of SlpA was shown to bind deinococcal peptidoglycan-containing cell wall sacculi. The association of SlpA with Hpi on one side and peptidoglycan on the other, localizes this protein in the 'interstitial' layer of the deinoccocal cell wall. Gene chimeras of hpi-phoN and slh-phoN were constructed to test efficacy of S-layer proteins, as vehicles for cell surface localization in D. radiodurans. The Hpi-PhoN protein localized exclusively in the membrane fraction, and displayed cell-based phosphatase activity in vivo. The SLH-PhoN, which localized to both cytosolic and membrane fractions, displayed in vitro activity but no cell-based in vivo activity. Hpi, therefore, emerged as an efficient surface localizing protein and can be exploited for suitable applications of this superbug. PMID:26450150

  10. Adsorption of myoglobin to Cu(II)-IDA and Ni(II)-IDA functionalized langmuir monolayers : study of the protein layer structure during the adsorption process by neutron and X-ray reflectivity.

    SciTech Connect

    Seo, Young-Soo; Satija, Sushil K.; Majewski, Jaroslaw; Sasaki, Darryl Yoshio; Kent, Michael Stuart; Yim, Hyun

    2005-05-01

    The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was {le} 20 {angstrom} and the thickness increased almost linearly with increasing coverage to 42 {angstrom}. For Ni(II)-IDA, the thickness at low coverage was - 38 {angstrom} and increased gradually with coverage to 47 {angstrom}. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive

  11. Adsorption of Myoglobin to Cu(II)-IDA and Ni(II)-IDA Functionalized Langmuir Monolayers: Study of the Protein Layer Structure during the Adsorption Process by Neutron and X-Ray Reflectivity

    SciTech Connect

    Kent, M.S.; Yim, H.; Sasaki, D.Y.; Satija, Sushil; Seo, Young-Soo; Majewski, J.

    2010-07-19

    The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was {le} 20 {angstrom} and the thickness increased almost linearly with increasing coverage to 42 {angstrom}. For Ni(II)-IDA, the thickness at low coverage was 38 {angstrom} and increased gradually with coverage to 47 {angstrom}. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive

  12. Formation of High-Capacity Protein-Adsorbing Membranes Through Simple Adsorption of Poly(acrylic acid)-Containing Films at low pH

    PubMed Central

    Bhattacharjee, Somnath; Dong, Jinlan; Ma, Yiding; Hovde, Stacy; Geiger, James H; Baker, Gregory L.; Bruening, Merlin L.

    2012-01-01

    Layer-by-layer polyelectrolyte adsorption is a simple, convenient method for introducing ion-exchange sites in porous membranes. This study demonstrates that adsorption of poly(acrylic acid) (PAA)-containing films at pH 3 rather than pH 5 increases the protein-binding capacity of such polyelectrolyte-modified membranes 3- to 6-fold. The low adsorption pH generates a high density of –COOH groups that function as either ion-exchange sites or points for covalent immobilization of metal-ion complexes that selectively bind tagged proteins. When functionalized with nitrilotriacetate (NTA)-Ni2+ complexes, membranes containing PAA/polyethyleneimine (PEI)/PAA films bind 93 mg of histidine6-tagged (His-tagged) ubiquitin per cm3 of membrane. Additionally these membranes isolate His-tagged COP9 signalosome complex subunit 8 from cell extracts and show >90% recovery of His-tagged ubiquitin. Although modification with polyelectrolyte films occurs by simply passing polyelectrolyte solutions through the membrane for as little as 5 min, with low-pH deposition the protein binding capacities of such membranes are as high as for membranes modified with polymer brushes and 2–3 fold higher than for commercially available IMAC resins. Moreover, the buffer permeabilities of polyelectrolyte-modified membranes that bind His-tagged protein are ~30% of the corresponding permeabilities of unmodified membranes, so protein capture can occur rapidly with low pressure drops. Even at a solution linear velocity of 570 cm/h, membranes modified with PAA/PEI/PAA exhibit a lysozyme dynamic binding capacity (capacity at 10% breakthrough) of ~ 40 mg/cm3. Preliminary studies suggest that these membranes are stable under depyrogenation conditions (1 M NaOH). PMID:22468687

  13. One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis.

    PubMed

    Guo, Xiao-Feng; Guo, Xiao-Mei; Wang, Hong; Zhang, Hua-Shan

    2015-11-01

    The coating of capillary inner surface is considered to be an effective approach to suppress the adsorption of proteins on capillary inner surface in CE. However, most of coating materials reported are water-soluble, which may dissolve in BGE during the procedure of electrophoresis. In this study, a novel strategy for selection of physically coating materials has been illustrated to get coating layer with excellent stability using materials having poor solubility in commonly used solvents. Taking natural chitin as example (not hydrolyzed water soluble chitosan), a simple one step coating method using chitin solution in hexafluoroisopropanol was adopted within only 21 min with good coating reproducibility (RSDs of EOF for within-batch coated capillaries of 1.55% and between-batch coated capillaries of 2.31%), and a separation of four basic proteins on a chitin coated capillary was performed to evaluate the coating efficacy. Using chitin coating, the adsorption of proteins on capillary inner surface was successfully suppressed with reversed and stable EOF, and four basic proteins including lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen A were baseline separated within 16 min with satisfied separation efficiency using 20 mM pH 2.0 H3PO4-Na2HPO4 as back ground electrolyte and 20 kV as separation voltage. What is more important, the chitin coating layer could be stable for more than two months during this study, which demonstrates that chitin is an ideal material for preparing semi-permanent coating on bare fused silica capillary inner wall and has hopeful potential in routine separation of proteins with CE. PMID:26452799

  14. Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films.

    PubMed

    Wijeratne, Salinda; Liu, Weijing; Dong, Jinlan; Ning, Wenjing; Ratnayake, Nishanka Dilini; Walker, Kevin D; Bruening, Merlin L

    2016-04-27

    This paper describes a convenient synthesis of nitrilotriacetate (NTA)-containing polymers and subsequent layer-by-layer adsorption of these polymers on flat surfaces and in membrane pores. The resulting films form NTA-metal-ion complexes and capture 2-3 mmol of metal ions per mL of film. Moreover, these coatings bind multilayers of polyhistidine-tagged proteins through association with NTA-metal-ion complexes. Inclusion of acrylic acid repeat units in NTA-containing copolymers promotes swelling to increase protein binding in films on Au-coated wafers. Adsorption of NTA-containing films in porous nylon membranes gives materials that capture ∼46 mg of His-tagged ubiquitin per mL. However, the binding capacity decreases with the protein molecular weight. Due to the high affinity of NTA for metal ions, the modified membranes show modest leaching of Ni(2+) in binding and rinsing buffers. Adsorption of NTA-containing polymers is a simple method to create metal- and protein-binding films and may, with future enhancement of stability, facilitate development of disposable membranes that rapidly purify tagged proteins. PMID:27042860

  15. A Multi-technique Characterization of Adsorbed Protein Films: Orientation and Structure by ToF-SIMS, NEXAFS, SFG, and XPS

    NASA Astrophysics Data System (ADS)

    Baio, Joseph E.

    immobilization schemes. This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo- (ethylene glycol) (MEG)-terminated substrates. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv. Indicating that the HuLys Fv fragment when adsorbed into the NTA and MEG substrates will be induced into two different orientations. On the NTA substrate the protein's binding site is accessible, while on the MEG substrate the binding site is oriented towards the surface. By taking advantage of the electron pathway through the heme group in cytochrome c (CytoC) electrochemists have built sensors based upon CytoC immobilized onto functionalized metal electrodes. When immobilized onto a charged surface, CytoC, with its distribution of lysine and glutamate residues around its surface, should orient and form a well-ordered protein film. Here a detailed examination of CytoC orientation when electrostatically immobilized onto both amine (NH 3+) and carboxyl (COO-) functionalized gold is presented. Again, protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within CytoC, indicating opposite orientations of the protein on the two different surfaces. Spectral features within the in situ sum frequency generation vibrational spectra, acquired for the protein interacting with

  16. Cloning and Characterization of Two Bistructural S-Layer-RTX Proteins from Campylobacter rectus

    PubMed Central

    Braun, Martin; Kuhnert, Peter; Nicolet, Jacques; Burnens, André P.; Frey, Joachim

    1999-01-01

    Campylobacter rectus is an important periodontal pathogen in humans. A surface-layer (S-layer) protein and a cytotoxic activity have been characterized and are thought to be its major virulence factors. The cytotoxic activity was suggested to be due to a pore-forming protein toxin belonging to the RTX (repeats in the structural toxins) family. In the present work, two closely related genes, csxA and csxB (for C. rectus S-layer and RTX protein) were cloned from C. rectus and characterized. The Csx proteins appear to be bifunctional and possess two structurally different domains. The N-terminal part shows similarity with S-layer protein, especially SapA and SapB of C. fetus and Crs of C. rectus. The C-terminal part comprising most of CsxA and CsxB is a domain with 48 and 59 glycine-rich canonical nonapeptide repeats, respectively, arranged in three blocks. Purified recombinant Csx peptides bind Ca2+. These are characteristic traits of RTX toxin proteins. The S-layer and RTX domains of Csx are separated by a proline-rich stretch of 48 amino acids. All C. rectus isolates studied contained copies of either the csxA or csxB gene or both; csx genes were absent from all other Campylobacter and Helicobacter species examined. Serum of a patient with acute gingivitis showed a strong reaction to recombinant Csx protein on immunoblots. PMID:10198015

  17. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  18. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified inLactobacillus acidophilusNCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on thein silicodetection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) inL. acidophilusNCFM, anfbpB-deficient strain was constructed. TheL. acidophilusmutant with a deletion offbpBlost the ability to adhere to mucin and fibronectinin vitro Homologues offbpBwere identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilushomology group. PMID:26921419

  19. S-layer fusion proteins — construction principles and applications

    PubMed Central

    Ilk, Nicola; Egelseer, Eva M; Sleytr, Uwe B

    2011-01-01

    Crystalline bacterial cell surface layers (S-layers) are the outermost cell envelope component of many bacteria and archaea. S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. The wealth of information available on the structure, chemistry, genetics and assembly of S-layers revealed a broad spectrum of applications in nanobiotechnology and biomimetics. By genetic engineering techniques, specific functional domains can be incorporated in S-layer proteins while maintaining the self-assembly capability. These techniques have led to new types of affinity structures, microcarriers, enzyme membranes, diagnostic devices, biosensors, vaccines, as well as targeting, delivery and encapsulation systems. PMID:21696943

  20. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  1. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM.

    PubMed

    Johnson, Brant; Selle, Kurt; O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd

    2013-11-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  2. Continuous Reduction of Protein-Bound Uraemic Toxins with Improved Oxidative Stress by Using the Oral Charcoal Adsorbent AST-120 in Haemodialysis Patients

    PubMed Central

    Yamamoto, Suguru; Kazama, Junichiro J.; Omori, Kentaro; Matsuo, Koji; Takahashi, Yoshimitsu; Kawamura, Kazuko; Matsuto, Takayuki; Watanabe, Hiroshi; Maruyama, Toru; Narita, Ichiei

    2015-01-01

    Accumulation of protein-bound uraemic toxins (PBUTs) is one of the reasons for the development of uraemia-related complications including cardiovascular disease; however, conventional haemodialysis is limited in its ability to remove PBUTs. We aimed to examine whether the oral charcoal adsorbent AST-120 has an additive effect on PBUT removal in haemodialysis patients. During the 4-week study, anuric patients undergoing haemodialysis received AST-120 (6 g/day) in the last 2 weeks (n = 10) or the first 2 weeks (n = 10). Serum levels of total and free PBUTs such as indoxyl sulfate, p-cresyl sulfate, and phenyl sulfate at the pre- and postdialysis sessions were measured before and after AST-120 use and after discontinuation. Levels of the oxidative stress markers oxidized albumin and 8-isoprostane were also measured. AST-120 use induced dramatic reduction of indoxyl sulfate (total, 45.7% [33.2–50.5%]; free, 70.4% [44.8–79.8%]), p-cresyl sulfate (total, 31.1% [25.0–48.0%]; free, 63.5% [49.3–70.9%]), and phenyl sulfate (free, 50.6% [32.3–71.2%]) levels; however, this effect disappeared after the discontinuation of AST-120. AST-120 use also induced substantial reduction of the oxidized albumin and 8-isoprostane levels. In conclusion, oral administration of AST-120 had additive effects on the continuous reduction of some PBUTs in anuric patients undergoing haemodialysis. PMID:26395517

  3. Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size.

    PubMed

    Yu, Qian; Zhang, Yanxia; Chen, Hong; Wu, Zhaoqiang; Huang, He; Cheng, Chi

    2010-04-01

    In this work, we investigated the protein adsorption on the end-tethered thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes with varying grafted layer thickness prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized silicon surfaces. The thickness of a grafted layer was modulated by adjusting reaction time and/or solvent composition. The surface properties as a function of thickness were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). The influence of PNIPAAm-grafted layer thickness on human serum albumin (HSA) adsorption in phosphate-buffered saline (PBS) (pH 7.4) at different temperature was evaluated using a radiolabeling method. In a lower thickness range (<15 nm), protein adsorption on PNIPAAm-grafted layer shows a thermoresponsive change in a certain extent, but the variation is not remarkable. However, it is interesting to observe that these surfaces exhibit good protein-resistant property. For the surface with a PNIPAAm thickness of 13.4 nm, the HSA adsorption level measured at room temperature was approximately 7 ng/cm2, corresponding to a reduction of 97% compared to the unmodified silicon surface. For thicker PNIPAAm-grafted surface with thickness of 38.1 nm, the adsorption results of three proteins (HSA, fibrinogen, and lysozyme) with different sizes and charges indicate that the PNIPAAm-modified surface exhibits a size-sensitive property of protein adsorption. PMID:20045297

  4. Biosensing for the Environment and Defence: Aqueous Uranyl Detection Using Bacterial Surface Layer Proteins

    PubMed Central

    Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin

    2010-01-01

    The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904

  5. The surface location of individual residues in a bacterial S-layer protein.

    PubMed

    Kinns, Helen; Howorka, Stefan

    2008-03-21

    Bacterial surface layer (S-layer) proteins self-assemble into large two-dimensional crystalline lattices that form the outermost cell-wall component of all archaea and many eubacteria. Despite being a large class of self-assembling proteins, little is known about their molecular architecture. We investigated the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 to identify residues located at the subunit-subunit interface and to determine the S-layer's topology. Twenty-three single cysteine mutants, which were previously mapped to the surface of the SbsB monomer, were subjected to a cross-linking screen using the photoactivatable, sulfhydryl-reactive reagent N-[4-(p-azidosalicylamido)butyl]-3'-(2'-pyridyldithio)propionamide. Gel electrophoretic analysis on the formation of cross-linked dimers indicated that 8 out of the 23 residues were located at the interface. In combination with surface accessibility data for the assembled protein, 10 residues were assigned to positions at the inner, cell-wall-facing lattice surface, while 5 residues were mapped to the outer, ambient-exposed lattice surface. In addition, the cross-linking screen identified six positions of intramolecular cross-linking within the assembled protein but not in the monomeric S-layer protein. Most likely, these intramolecular cross-links result from conformational changes upon self-assembly. The results are an important step toward the further structural elucidation of the S-layer protein via, for example, X-ray crystallography and cryo-electron microscopy. Our approach of identifying the surface location of residues is relevant to other planar supramolecular protein assemblies. PMID:18262545

  6. A small angle neutron scattering study of the adsorbed asphaltene layer in water-in-hydrocarbon emulsions: structural description related to stability.

    PubMed

    Jestin, Jacques; Simon, Sébastien; Zupancic, Lina; Barré, Loïc

    2007-10-01

    We have developed a specific protocol to study with SANS measurements, the structure of the interfacial film layer in water-in-oil emulsions stabilized by asphaltene. Using the contrast matching technique available for neutron scattering, we have access to both the composition and the quantity of interface. The results obtained give us a view of the asphaltene aggregates in the interfacial film, which are structured as a monolayer and show a direct correlation between the size of asphaltene aggregates in solution and the thickness of the film layer. The organization of the interface has been studied as a function of several parameters such as the quantity of resins, i.e., the size of aggregates, the pH of the aqueous phase, and the aging time of the emulsions and the consequences of these variations on the macroscopic stability of these emulsions. We show that the key parameter for the stability is the inter-asphaltene aggregate interaction inside the film layer. Changing the attractive/repulsive balance between the aggregates in the film at the microscopic scale, by changing the aggregate's size or the aggregate's ionization, has a direct incidence on the quantity of water recovered after centrifugation: the stronger the attraction between aggregates in the film, the more stable the emulsion is. PMID:17867712

  7. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    SciTech Connect

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten; Weston, Matthew; Mayor, Louise C.; O’Shea, James N.

    2014-06-21

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO, therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.

  8. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten; Weston, Matthew; Mayor, Louise C.; O'Shea, James N.

    2014-06-01

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4'-dicarbo-xylato)-ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO, therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.

  9. A Bacillus thuringiensis S-Layer Protein Involved in Toxicity against Epilachna varivestis (Coleoptera: Coccinellidae)

    PubMed Central

    Peña, Guadalupe; Miranda-Rios, Juan; de la Riva, Gustavo; Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra

    2006-01-01

    The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest. PMID:16391064

  10. Separation of the attractive and repulsive contributions to the adsorbate-adsorbate interactions of polar adsorbates on Si(100)

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsiu; Jeng, Horng-Tay; Lin, Deng-Sung

    2015-11-01

    Dissociative adsorption of H2O, NH3, CH3OH and CH3NH2 polar molecules on the Si(100) surface results in a 1:1 mixture of two adsorbates (H and multi-atomic fragment A = OH, NH2, CH3O, CH3NH, respectively) on the surface. By using density functional theory (DFT) calculations, the adsorption geometry, the total energies and the charge densities for various possible ordered structures of the mixed adsorbate layer have been found. Analyzing the systematic trends in the total energies unveils concurrently the nearest-neighbor interactions ENN and the next nearest-neighbor interactions ENNN between two polar adsorbates A. In going from small to large polar adsorbates, ENN's exhibit an attractive-to-repulsive crossover behavior, indicating that they include competing attractive and repulsive contributions. Exploration of the charge density distributions allows the estimation of the degree of charge overlapping between immediately neighboring A's, the resulting contribution of the steric repulsions, and that of the attractive interactions to the corresponding ENN's. The attractive contributions to nearest neighboring adsorbate-adsorbate interactions between the polar adsorbates under study are shown to result from hydrogen bonds or dipole-dipole interactions.

  11. Structure prediction of an S-layer protein by the mean force method

    NASA Astrophysics Data System (ADS)

    Horejs, C.; Pum, D.; Sleytr, U. B.; Tscheliessnig, R.

    2008-02-01

    S-layer proteins have a wide range of application potential due to their characteristic features concerning self-assembling, assembling on various surfaces, and forming of isoporous structures with functional groups located on the surface in an identical position and orientation. Although considerable knowledge has been experimentally accumulated on the structure, biochemistry, assemble characteristics, and genetics of S-layer proteins, no structural model at atomic resolution has been available so far. Therefore, neither the overall folding of the S-layer proteins—their tertiary structure—nor the exact amino acid or domain allocations in the lattices are known. In this paper, we describe the tertiary structure prediction for the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2. This calculation was based on its amino acid sequence using the mean force method (MF method) achieved by performing molecular dynamic simulations. This method includes mainly the thermodynamic aspects of protein folding as well as steric constraints of the amino acids and is therefore independent of experimental structure analysis problems resulting from biochemical properties of the S-layer proteins. Molecular dynamic simulations were performed in vacuum using the simulation software NAMD. The obtained tertiary structure of SbsB was systematically analyzed by using the mean force method, whereas the verification of the structure is based on calculating the global free energy minimum of the whole system. This corresponds to the potential of mean force, which is the thermodynamically most favorable conformation of the protein. Finally, an S-layer lattice was modeled graphically using CINEMA4D and compared with scanning force microscopy data down to a resolution of 1nm. The results show that this approach leads to a thermodynamically favorable atomic model of the tertiary structure of the protein, which could be verified by both the MF Method and the lattice model.

  12. The role of matrix proteins in the control of nacreous layer deposition during pearl formation

    PubMed Central

    Liu, Xiaojun; Li, Jiale; Xiang, Liang; Sun, Juan; Zheng, Guilan; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2012-01-01

    To study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate (CaCO3) deposition on the bare nucleus and (ii) CaCO3 deposition that becomes more and more regular until the mature nacreous layer has formed on the nucleus. The low-expression level of matrix proteins in the pearl sac during periods of irregular CaCO3 deposition suggests that deposition may not be controlled by the organic matrix during this stage of the process. However, significant expression of matrix proteins in the pearl sac was detected by day 30–35 after implantation. On day 30, a thin layer of CaCO3, which we believe was amorphous CaCO3, covered large aragonites. By day 35, the nacreous layer had formed. The whole process is similar to that observed in shells, and the temporal expression of matrix protein genes indicated that their bioactivities were crucial for pearl development. Matrix proteins controlled the crystal phase, shape, size, nucleation and aggregation of CaCO3 crystals. PMID:21900328

  13. Contribution of S-Layer Proteins to the Mosquitocidal Activity of Lysinibacillus sphaericus

    PubMed Central

    Allievi, Mariana Claudia; Palomino, María Mercedes; Prado Acosta, Mariano; Lanati, Leonardo; Ruzal, Sandra Mónica; Sánchez-Rivas, Carmen

    2014-01-01

    Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity. PMID:25354162

  14. Tracing phylogeny through proteins of the layers of the eye lens nucleus.

    PubMed

    Smith, A C

    1982-01-01

    1. In accordance with the concept that ontogeny recapitulates phylogeny, it was hypothesized that the proteins in the eye lens nucleus increase in antiquity with depth of layer and so can be used to reconstruct the phylogenetic past. 2. This hypothesis was tested by analyzing electrophoretic patterns of proteins from solubilized nuclear lens layers of three tuna species with well-studied phylogenies. The tuna species are the albacore, Thunnus alalunga; yellowfin, T. albacares; and skipjack, Katsuwonus pelamis. 3. The electrophoretic patterns fitted a scheme that is in agreement with major phylogenetic beliefs about these species. Additionally, the patterns seemed to indicate that (a) the skipjack diverged later (although to a lesser degree) from a common ancestor than did the other two tuna species, and (b) the albacore is more closely related to the skipjack than is the yellowfin. 4. It is concluded that electrophoretic analysis of proteins from nuclear lens layers is a promising new tool for tracing phylogenetic relationships. PMID:7083823

  15. Structure and properties of water film adsorbed on mica surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  16. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    SciTech Connect

    Neufeld, E.; Goren, H.J.; Boland, D. )

    1989-02-15

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. {sup 32}P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose.

  17. Site blocking effects on adsorbed polyacrylamide conformation

    NASA Astrophysics Data System (ADS)

    Brotherson, Brett A.

    ionic strength, and an adsorbed polymer on a surface functionalized with site blocking additives. This work investigated these scenarios using a low charge density high molecular weight cationic polyacrylamide. Three different substrates, for polymer adsorption were analyzed: mica, anionic latex, and glass. It was determined that, similar to previous studies, the adsorbed polymer layer thickness in water is relatively small even for high molecular weight polymers, on the order of tens of nanometers. The loop length distribution of a single polymer, experimentally verified for the first time, revealed a broad span of loop lengths as high as 1.5 microns. However, the bulk of the distribution was found between 40 and 260 nanometers. For the first time, previous theoretical predictions regarding the salt effect on adsorbed polymer conformation were confirmed experimentally. It was determined that the adsorbed polymer layer thickness expanded with increasing ionic strength of the solvent. Using atomic force microscopy, it was determined that the adsorbed polymer loop lengths and tail lengths increased with increasing ionic strength, supporting the results found using dynamic light scattering. The effect of the addition of site blocking additives on a single polymer's conformation was investigated for the first time. It was determined that the addition of site blocking additives caused strikingly similar results as the addition of salt to the medium. The changes in adsorbed polymer's loop lengths was found to be inconsistent and minimal. However, the changes in an adsorbed polymer's free tail length was found to increase with increasing site blocking additive levels. These results were obtained using either PDADMAC or cationic nanosilica as site blocking additives.

  18. S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays

    NASA Astrophysics Data System (ADS)

    Moll, Dieter; Huber, Carina; Schlegel, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Sára, Margit

    2002-11-01

    Biomolecular self-assembly can be used as a powerful tool for nanoscale engineering. In this paper, we describe the development of building blocks for nanobiotechnology, which are based on the fusion of streptavidin to a crystalline bacterial cell surface layer (S-layer) protein with the inherent ability to self-assemble into a monomolecular protein lattice. The fusion proteins and streptavidin were produced independently in Escherichia coli, isolated, and mixed to refold and purify heterotetramers of 1:3 stoichiometry. Self-assembled chimeric S-layers could be formed in suspension, on liposomes, on silicon wafers, and on accessory cell wall polymer containing cell wall fragments. The two-dimensional protein crystals displayed streptavidin in defined repetitive spacing, and they were capable of binding D-biotin and biotinylated proteins. Therefore, the chimeric S-layer can be used as a self-assembling nanopatterned molecular affinity matrix to arrange biotinylated compounds on a surface. In addition, it has application potential as a functional coat of liposomes.

  19. Observation of ice-like water layers at an aqueous protein surface

    PubMed Central

    Meister, Konrad; Strazdaite, Simona; DeVries, Arthur L.; Lotze, Stephan; Olijve, Luuk L. C.; Voets, Ilja K.; Bakker, Huib J.

    2014-01-01

    We study the properties of water at the surface of an antifreeze protein with femtosecond surface sum frequency generation spectroscopy. We find clear evidence for the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution at temperatures above the freezing point. Decreasing the temperature to the biological working temperature of the protein (0 °C to −2 °C) increases the amount of ice-like water, while a single point mutation in the ice-binding site is observed to completely disrupt the ice-like character and to eliminate antifreeze activity. Our observations indicate that not the protein itself but ordered ice-like water layers are responsible for the recognition and binding to ice. PMID:25468976

  20. Observation of ice-like water layers at an aqueous protein surface.

    PubMed

    Meister, Konrad; Strazdaite, Simona; DeVries, Arthur L; Lotze, Stephan; Olijve, Luuk L C; Voets, Ilja K; Bakker, Huib J

    2014-12-16

    We study the properties of water at the surface of an antifreeze protein with femtosecond surface sum frequency generation spectroscopy. We find clear evidence for the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution at temperatures above the freezing point. Decreasing the temperature to the biological working temperature of the protein (0 °C to -2 °C) increases the amount of ice-like water, while a single point mutation in the ice-binding site is observed to completely disrupt the ice-like character and to eliminate antifreeze activity. Our observations indicate that not the protein itself but ordered ice-like water layers are responsible for the recognition and binding to ice. PMID:25468976

  1. Generation of a functional monomolecular protein lattice consisting of an s-layer fusion protein comprising the variable domain of a camel heavy chain antibody.

    PubMed

    Pleschberger, Magdalena; Neubauer, Angela; Egelseer, Eva M; Weigert, Stefan; Lindner, Brigitte; Sleytr, Uwe B; Muyldermans, Serge; Sára, Margit

    2003-01-01

    Crystalline bacterial cell surface layer (S-layer) proteins are composed of a single protein or glycoprotein species. Isolated S-layer subunits frequently recrystallize into monomolecular protein lattices on various types of solid supports. For generating a functional protein lattice, a chimeric protein was constructed, which comprised the secondary cell wall polymer-binding region and the self-assembly domain of the S-layer protein SbpA from Bacillus sphaericus CCM 2177, and a single variable region of a heavy chain camel antibody (cAb-Lys3) recognizing lysozyme as antigen. For construction of the S-layer fusion protein, the 3'-end of the sequence encoding the C-terminally truncated form rSbpA(31)(-)(1068) was fused via a short linker to the 5'-end of the sequence encoding cAb-Lys3. The functionality of the fused cAb-Lys3 in the S-layer fusion protein was proved by surface plasmon resonance measurements. Dot blot assays revealed that the accessibility of the fused functional sequence for the antigen was independent of the use of soluble or assembled S-layer fusion protein. Recrystallization of the S-layer fusion protein into the square lattice structure was observed on peptidoglycan-containing sacculi of B. sphaericus CCM 2177, on polystyrene or on gold chips precoated with thiolated secondary cell wall polymer, which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Thereby, the fused cAb-Lys3 remained located on the outer S-layer surface and accessible for lysozyme binding. Together with solid supports precoated with secondary cell wall polymers, S-layer fusion proteins comprising rSbpA(31)(-)(1068) and cAbs directed against various antigens shall be exploited for building up monomolecular functional protein lattices as required for applications in nanobiotechnology. PMID:12643755

  2. Ultra-fast photo-patterning of hydroxamic acid layers adsorbed on TiAlN: The challenge of modeling thermally induced desorption

    NASA Astrophysics Data System (ADS)

    Hemgesberg, Maximilian; Schütz, Simon; Müller, Christine; Schlörholz, Matthias; Latzel, Harald; Sun, Yu; Ziegler, Christiane; Thiel, Werner R.

    2012-10-01

    Long-chain n-alkyl terminated hydroxamic acids (HA) are used for the modification of titanium aluminum nitride (TiAlN) surfaces. HA coatings improve the hydrophobicity of this wear resistant and industrially relevant ceramic. Therefore, HAs with different structural properties are evaluated with respect to their wear resistance and their thermal desorption properties. In order to find new coatings for rewritable offset printing plates, the changes in the surface polarity, composition, and morphology are analyzed by contact angle measurements, X-ray photoemission spectroscopy (XPS), and scanning force microscopy (SFM), respectively. The results are referenced to the strongly bonding molecule n-dodecyl phosphonate (PO11M), which has been used for surface hydrophobization before but proved difficult to remove due to the high laser outputs required for thermal desorption. It is found that for certain HAs, an equally good hydrophobization compared to PO11M can be achieved. Contact angles obtained for different hydroxamic acid coatings can be correlated to their modes of adsorption. Only for selected HA species, resistance to mechanical wear is sufficient for further investigations. Photo-patterning of these hydroxamic acid layers is achieved using a high energy IR laser beam at different energy inputs. Fitting of the obtained data and further evaluation using finite element analysis (FEM) calculations reveal significantly reduced energy consumption of about 20% for the removal of a specific hydroxamic acid coating from the ceramic surface compared to PO11M.

  3. Monte Carlo study of the molecular mechanisms of surface-layer protein self-assembly.

    PubMed

    Horejs, Christine; Mitra, Mithun K; Pum, Dietmar; Sleytr, Uwe B; Muthukumar, Murugappan

    2011-03-28

    The molecular mechanisms guiding the self-assembly of proteins into functional or pathogenic large-scale structures can be only understood by studying the correlation between the structural details of the monomer and the eventual mesoscopic morphologies. Among the myriad structural details of protein monomers and their manifestations in the self-assembled morphologies, we seek to identify the most crucial set of structural features necessary for the spontaneous selection of desired morphologies. Using a combination of the structural information and a Monte Carlo method with a coarse-grained model, we have studied the functional protein self-assembly into S(surface)-layers, which constitute the crystallized outer most cell envelope of a great variety of bacterial cells. We discover that only few and mainly hydrophobic amino acids, located on the surface of the monomer, are responsible for the formation of a highly ordered anisotropic protein lattice. The coarse-grained model presented here reproduces accurately many experimentally observed features including the pore formation, chemical description of the pore structure, location of specific amino acid residues at the protein-protein interfaces, and surface accessibility of specific amino acid residues. In addition to elucidating the molecular mechanisms and explaining experimental findings in the S-layer assembly, the present work offers a tool, which is chemical enough to capture details of primary sequences and coarse-grained enough to explore morphological structures with thousands of protein monomers, to promulgate design rules for spontaneous formation of specific protein assemblies. PMID:21456703

  4. Monte Carlo study of the molecular mechanisms of surface-layer protein self-assembly

    NASA Astrophysics Data System (ADS)

    Horejs, Christine; Mitra, Mithun K.; Pum, Dietmar; Sleytr, Uwe B.; Muthukumar, Murugappan

    2011-03-01

    The molecular mechanisms guiding the self-assembly of proteins into functional or pathogenic large-scale structures can be only understood by studying the correlation between the structural details of the monomer and the eventual mesoscopic morphologies. Among the myriad structural details of protein monomers and their manifestations in the self-assembled morphologies, we seek to identify the most crucial set of structural features necessary for the spontaneous selection of desired morphologies. Using a combination of the structural information and a Monte Carlo method with a coarse-grained model, we have studied the functional protein self-assembly into S(surface)-layers, which constitute the crystallized outer most cell envelope of a great variety of bacterial cells. We discover that only few and mainly hydrophobic amino acids, located on the surface of the monomer, are responsible for the formation of a highly ordered anisotropic protein lattice. The coarse-grained model presented here reproduces accurately many experimentally observed features including the pore formation, chemical description of the pore structure, location of specific amino acid residues at the protein-protein interfaces, and surface accessibility of specific amino acid residues. In addition to elucidating the molecular mechanisms and explaining experimental findings in the S-layer assembly, the present work offers a tool, which is chemical enough to capture details of primary sequences and coarse-grained enough to explore morphological structures with thousands of protein monomers, to promulgate design rules for spontaneous formation of specific protein assemblies.

  5. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  6. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  7. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. PMID:26198014

  8. Characterization and Scope of S-layer Protein O-Glycosylation in Tannerella forsythia*

    PubMed Central

    Posch, Gerald; Pabst, Martin; Brecker, Lothar; Altmann, Friedrich; Messner, Paul; Schäffer, Christina

    2011-01-01

    Cell surface glycosylation is an important element in defining the life of pathogenic bacteria. Tannerella forsythia is a Gram-negative, anaerobic periodontal pathogen inhabiting the subgingival plaque biofilms. It is completely covered by a two-dimensional crystalline surface layer (S-layer) composed of two glycoproteins. Although the S-layer has previously been shown to delay the bacterium's recognition by the innate immune system, we characterize here the S-layer protein O-glycosylation as a potential virulence factor. The T. forsythia S-layer glycan was elucidated by a combination of electrospray ionization-tandem mass spectrometry and nuclear magnetic resonance spectroscopy as an oligosaccharide with the structure 4-Me-β-ManpNAcCONH2-(1→3)-[Pse5Am7Gc-(2→4)-]-β-ManpNAcA-(1→4)-[4-Me-α-Galp-(1→2)-]-α-Fucp-(1→4)-[-α-Xylp-(1→3)-]-β-GlcpA-(1→3)-[-β-Digp-(1→2)-]-α-Galp, which is O-glycosidically linked to distinct serine and threonine residues within the three-amino acid motif (D)(S/T)(A/I/L/M/T/V) on either S-layer protein. This S-layer glycan obviously impacts the life style of T. forsythia because increased biofilm formation of an UDP-N-acetylmannosaminuronic acid dehydrogenase mutant can be correlated with the presence of truncated S-layer glycans. We found that several other proteins of T. forsythia are modified with that specific oligosaccharide. Proteomics identified two of them as being among previously classified antigenic outer membrane proteins that are up-regulated under biofilm conditions, in addition to two predicted antigenic lipoproteins. Theoretical analysis of the S-layer O-glycosylation of T. forsythia indicates the involvement of a 6.8-kb gene locus that is conserved among different bacteria from the Bacteroidetes phylum. Together, these findings reveal the presence of a protein O-glycosylation system in T. forsythia that is essential for creating a rich glycoproteome pinpointing a possible relevance for the virulence of

  9. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    PubMed

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins

  10. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  11. Atomic layer deposition modified track-etched conical nanochannels for protein sensing.

    PubMed

    Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming

    2015-08-18

    Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport. PMID:26202979

  12. In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2

    NASA Astrophysics Data System (ADS)

    Bouhekka, A.; Bürgi, T.

    2012-11-01

    In this work in situ Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy in a flow-through cell was used to study the effect of visible light irradiation on bovine serum albumin (BSA) adsorbed on porous TiO2 films. The experiments were performed in water at concentrations of 10-6 mol/l at room temperature. The curve fitting method of the second derivative spectra allowed us to explore details of the secondary structure of pure BSA in water and conformation changes upon adsorption as well as during and after illumination by visible light. The results clearly show that visible light influences the conformation of adsorbed BSA. The appearance of a shift of the amide I band, in the original spectra, from 1653 cm-1 to 1648 cm-1, is interpreted by the creation of random coil in the secondary structure of adsorbed BSA. The second derivative analysis of infrared spectra permits direct quantitative analysis of the secondary structural components of BSA, which show that the percentage of α-helix decreases during visible light illumination whereas the percentage of random coil increases.

  13. Functional characterization of probiotic surface layer protein-carrying Lactobacillus amylovorus strains

    PubMed Central

    2014-01-01

    Background Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) –layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins. Results Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence. Conclusions We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus

  14. Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications.

    PubMed

    Takahashi, Shigehiro; Sato, Katsuhiko; Anzai, Jun-ichi

    2012-02-01

    In this review, the preparation and properties of protein architectures constructed by layer-by-layer (LbL) deposition through avidin-biotin and concanavalin A (Con A)-sugar interactions are discussed in relation to their use for optical and electrochemical biosensors. LbL films can be constructed through the alternate deposition of avidin and biotin-labeled enzymes on the surfaces of optical probes and electrodes. The enzymes retain their catalytic activity, resulting in the formation of optical and electrochemical biosensors. Alternatively, Con A can be used to construct enzyme-containing LbL films and microcapsules using sugar-labeled enzymes. Some enzymes such as glucose oxidase and horseradish peroxidase can be used for this purpose without labeling with sugar, because these enzymes contain intrinsic hydrocarbon chains on their molecular surfaces. The Con A/enzyme LbL architectures were successfully used to develop biosensors sensitive to specific substrates of the enzyme. In addition, Con A-based films can be used for the optical and electrochemical detection of sugars. PMID:21866404

  15. Emulsomes meet S-layer proteins: an emerging targeted drug delivery system.

    PubMed

    Ucisik, Mehmet H; Sleytr, Uwe B; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  16. Emulsomes Meet S-layer Proteins: An Emerging Targeted Drug Delivery System

    PubMed Central

    Ucisik, Mehmet H.; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action. PMID:25697368

  17. Adsorption and conformational modification of fibronectin and fibrinogen adsorbed on hydroxyapatite. A QCM-D study.

    PubMed

    Fernández-Montes Moraleda, Belén; San Román, Julio; Rodríguez-Lorenzo, Luís M

    2016-10-01

    Hydroxyapatite is a bioactive ceramic frequently used for bone engineering/replacement. One of the parameters that influence the biological response to implanted materials is the conformation of the first adsorbed protein layer. In this work, the adsorption and conformational changes of two fibroid serum proteins; fibronectin and fibrinogen adsorbed onto four different hydroxyapatite powders are studied with a Quartz Crystal Microbalance with Dissipation (QCM-D). Each of the calcined apatites adsorbs less protein than their corresponding synthesized samples. Adsorption on synthesized samples yields always an extended conformation whereas a reorganization of the layer is observed for the calcined samples. Fg acquires a "Side on" conformation in all the samples at the beginning of the experiment except for one of the synthesized samples where an "End-on" conformation is obtained during the whole experiment. The Extended conformation is the active conformation for Fn. This conformation is favored by apatites with large specific surface area (SSA) and on highly concentrated media. Apatite surface features should be considered in the selection or design of materials for bone regeneration, since it is possible to control the conformation mode of attachment of Fn and Fg by an appropriate selection of them. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2585-2594, 2016. PMID:27254464

  18. Thiophilic adsorbents for RIA and ELISA procedures.

    PubMed

    Oscarsson, S; Chaga, G; Porath, J

    1991-10-25

    Three types of agarose derivatives have been prepared and investigated as adsorbents for radioimmunoassay and ELISA analysis. The analytical systems were evaluated using beta 2 microglobulin as a model. After a competitive reaction between the immunocomponents in solution, the formed immune complexes were adsorbed onto the adsorbent in the presence of 0.5 M potassium sulfate in 0.1 M Tris, pH 7.5. The binding constant between the interaction site on human IgG and the adsorbent 3-(2-pyridylthio)-2-hydroxypropylagarose (Py-S-gel) was determined to be 1.5 x 10(7) M-1 and the binding capacity was 20 mg/ml gel. The immune complex was desorbed by deleting potassium sulfate from the buffer, and only 0.5% of the total applied protein remained after washing the adsorbent with 0.5 M NaOH. The same adsorbent can be used repetitively with different systems. PMID:1940385

  19. HPTLC-aptastaining - Innovative protein detection system for high-performance thin-layer chromatography.

    PubMed

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-01-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations. PMID:27220270

  20. HPTLC-aptastaining – Innovative protein detection system for high-performance thin-layer chromatography

    NASA Astrophysics Data System (ADS)

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-05-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.

  1. HPTLC-aptastaining – Innovative protein detection system for high-performance thin-layer chromatography

    PubMed Central

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-01-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations. PMID:27220270

  2. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  3. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    SciTech Connect

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.

  4. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects.

    PubMed

    Shah, Naman B; Duncan, Thomas M

    2014-01-01

    We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthase is the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε's conformations is predominant. The assay measures kinetics of ε's binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε's conformational changes. PMID:24638157

  5. Relevance of glycosylation of S-layer proteins for cell surface properties

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2015-01-01

    Elucidating the building principles and intrinsic features modulating certain water-associated processes (e.g., surface roughness in the nanometer scale, surface hydration and accompanied antifouling property, etc.) of surface structures from (micro)organisms is nowadays a highly challenging task in fields like microbiology, biomimetic engineering and (bio)material sciences. Here, we show for the first time the recrystallization of the wild-type S-layer glycoprotein wtSgsE from Geobacillus stearothermophilus NRS 2004/3a and its recombinantly produced non-glycosylated form, rSgsE, on gold sensor surfaces. Whereas the proteinaceous lattice of the S-layer proteins is forming a rigid layer on the sensor surface, the glycan chains are developing an overall soft, highly dissipative film. Interestingly, to the wtSgsE lattice almost twice the amount of water is bound and/or coupled in comparison with the non-glycosylated rSgsE with the preferred region being the extending glycan residues. The present results are discussed in terms of the effect of the glycan residues on the recrystallization, the adjoining hydration layer, and the nanoscale roughness and fluidic behavior. The latter features may turn out to be one of the most general ones among bacterial and archaeal S-layer lattices. PMID:25818946

  6. Relevance of glycosylation of S-layer proteins for cell surface properties.

    PubMed

    Schuster, Bernhard; Sleytr, Uwe B

    2015-06-01

    Elucidating the building principles and intrinsic features modulating certain water-associated processes (e.g., surface roughness in the nanometer scale, surface hydration and accompanied antifouling property, etc.) of surface structures from (micro)organisms is nowadays a highly challenging task in fields like microbiology, biomimetic engineering and (bio)material sciences. Here, we show for the first time the recrystallization of the wild-type S-layer glycoprotein wtSgsE from Geobacillus stearothermophilus NRS 2004/3a and its recombinantly produced non-glycosylated form, rSgsE, on gold sensor surfaces. Whereas the proteinaceous lattice of the S-layer proteins is forming a rigid layer on the sensor surface, the glycan chains are developing an overall soft, highly dissipative film. Interestingly, to the wtSgsE lattice almost twice the amount of water is bound and/or coupled in comparison with the non-glycosylated rSgsE with the preferred region being the extending glycan residues. The present results are discussed in terms of the effect of the glycan residues on the recrystallization, the adjoining hydration layer, and the nanoscale roughness and fluidic behavior. The latter features may turn out to be one of the most general ones among bacterial and archaeal S-layer lattices. PMID:25818946

  7. Proteome analysis of Paenibacillus larvae reveals the existence of a putative S-layer protein.

    PubMed

    Fünfhaus, Anne; Genersch, Elke

    2012-04-01

    Honey bee pathology has attracted much interest recently due to the problems with honey bee declines in many regions of the world. American Foulbrood (AFB) caused by Paenibacillus larvae is the most devastating bacterial brood disease of the Western honey bee (Apis mellifera) causing considerable economic losses to beekeepers worldwide. AFB outbreaks are mainly caused by two differentially virulent genotypes of P. larvae, P. larvae ERIC I and ERIC II. To better understand AFB pathogenesis and to complement already existing data from the genetic level we aimed at obtaining expression data from the protein level. We successfully developed a protocol for two-dimensional proteome analysis of P. larvae with subsequent mass-spectrometry based protein sequencing. Based on the obtained master protein maps of P. larvae genotypes ERIC I and II we identified the dominantly expressed cytosolic proteins of both genotypes, some of them presumably linked to pathogenesis and virulence. Comparing the master maps of both genotypes revealed differentially expressed proteins, i.e. a putative S-layer protein which is expressed by P. larvae ERIC II but absent from the proteome of P. larvae ERIC I. The implications of our findings for pathogenesis of AFB and virulence of P. larvae will be discussed. PMID:23757273

  8. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants.

    PubMed

    Li, Min; Wang, Xin; Cao, Lu; Lin, Zhijie; Wei, Minxi; Fang, Mujin; Li, Shaowei; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian

    2016-08-17

    Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples. PMID:27426626

  9. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.

    PubMed

    Konstantinov, Sergey R; Smidt, Hauke; de Vos, Willem M; Bruijns, Sven C M; Singh, Satwinder Kaur; Valence, Florence; Molle, Daniel; Lortal, Sylvie; Altermann, Eric; Klaenhammer, Todd R; van Kooyk, Yvette

    2008-12-01

    Dendritic cells (DCs) are antigen-presenting cells that play an essential role in mucosal tolerance. They regularly encounter beneficial intestinal bacteria, but the nature of these cellular contacts and the immune responses elicited by the bacteria are not entirely elucidated. Here, we examined the interactions of Lactobacillus acidophilus NCFM and its cell surface compounds with DCs. L. acidophilus NCFM attached to DCs and induced a concentration-dependent production of IL-10, and low IL-12p70. We further demonstrated that the bacterium binds to DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a DC- specific receptor. To identify the DC-SIGN ligand present on the bacterium, we took advantage of a generated array of L. acidophilus NCFM mutants. A knockout mutant of L. acidophilus NCFM lacking the surface (S) layer A protein (SlpA) was significantly reduced in binding to DC-SIGN. This mutant incurred a chromosomal inversion leading to dominant expression of a second S layer protein, SlpB. In the SlpB-dominant strain, the nature of the interaction of this bacterium with DCs changed dramatically. Higher concentrations of proinflammatory cytokines such as IL-12p70, TNFalpha, and IL-1beta were produced by DCs interacting with the SlpB-dominant strain compared with the parent NCFM strain. Unlike the SlpA-knockout mutant, T cells primed with L. acidophilus NCFM stimulated DCs produced more IL-4. The SlpA-DC-SIGN interaction was further confirmed as purified SlpA protein ligated directly to the DC-SIGN. In conclusion, the major S layer protein, SlpA, of L. acidophilus NCFM is the first probiotic bacterial DC-SIGN ligand identified that is functionally involved in the modulation of DCs and T cells functions. PMID:19047644

  10. Removal of adsorbed gases with CO2 snow

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    1991-09-01

    During the outgassing of orbiting astronomical observatories, the condensation of molecular species on optical surfaces can create difficulties for astronomers. The problem is particularly severe in ultraviolet astronomy where the adsorption of only a few atomic layers of some substances can be very damaging. In this paper the removal of adsorbed atomic layers using carbon dioxide snow is discussed. The rate of removal of adsorbed layers of isopropyl alcohol, Freon TF, and deionized distilled water on Teflon substrates was experimentally determined. The removal of fingerprints (containing fatty acids such as stearic acid) from optical surfaces is also demonstrated. The presence and rate of removal of the multilayers was monitored by detecting the molecular dipole field of adsorbed molecular species. For isopropyl alcohol, Freon TF (trichlorotrifluoroethane), and water adsorbed multilayers were removed in under 1.5 seconds. Fingerprint removal was much more difficult and required 20 seconds of spraying with a mixture of carbon dioxide snow flakes and atomized microdroplets of isopropyl alcohol.

  11. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations.

    PubMed

    Moreno-Gordaliza, Estefanía; Stigter, Edwin C A; Lindenburg, Petrus W; Hankemeier, Thomas

    2016-06-01

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10(-9) m(2) V(-1) s(-1)) when compared with unmodified fused silica (5.9 ± 0.1 10(-8) m(2) V(-1) s(-1)). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1-1.8% coefficient-of-variation (CV) within a day) and 2-3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. PMID:27155306

  12. Application of Bio-Layer Interferometry for the analysis of protein/liposome interactions.

    PubMed

    Wallner, Jakob; Lhota, Gabriele; Jeschek, Dominik; Mader, Alexander; Vorauer-Uhl, Karola

    2013-01-01

    The development of biosensor technologies for the investigation of biomolecular interactions has markedly advanced over the last years. One promising biosensor platform, the Bio-Layer Interferometry (BLI), was developed by ForteBio with the main focus to qualify and quantify protein/protein interactions in research and routine applications. Here, a method to characterize protein/liposome binding interactions based on the biophysical principles of this platform is described. Three different liposome formulations and the protein hormone, recombinant human erythropoietin (rh-Epo) were used as models in the test system. Rh-Epo was immobilized on disposable optical fiber streptavidin (SA) biosensor tips and binding of different liposome formulations under certain conditions was measured. The assay performance was evaluated, followed by calculating the kinetic rate and affinity constants. The results showed that all liposome formulations formed extremely stable complexes with the immobilized protein. Nevertheless, liposome specific differences in binding affinities were determined. Furthermore, a liposome concentration dependent binding pattern was demonstrated. The combination of simple sample preparation, the opportunity of automation with high throughput in an acceptable time range and excellent reproducibility, makes this assay suitable for basic research as well as for drug discovery and drug screening to estimate drug/membrane interactions. PMID:23146240

  13. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein.

    PubMed

    Kajikawa, Akinobu; Zhang, Lin; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd R; Dean, Gregg A

    2015-01-01

    Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides. PMID:26509697

  14. Mucosal Immunogenicity of Genetically Modified Lactobacillus acidophilus Expressing an HIV-1 Epitope within the Surface Layer Protein

    PubMed Central

    Kajikawa, Akinobu; Zhang, Lin; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd R.; Dean, Gregg A.

    2015-01-01

    Surface layer proteins of probiotic lactobacilli are theoretically efficient epitope-displaying scaffolds for oral vaccine delivery due to their high expression levels and surface localization. In this study, we constructed genetically modified Lactobacillus acidophilus strains expressing the membrane proximal external region (MPER) from human immunodeficiency virus type 1 (HIV-1) within the context of the major S-layer protein, SlpA. Intragastric immunization of mice with the recombinants induced MPER-specific and S-layer protein-specific antibodies in serum and mucosal secretions. Moreover, analysis of systemic SlpA-specific cytokines revealed that the responses appeared to be Th1 and Th17 dominant. These findings demonstrated the potential use of the Lactobacillus S-layer protein for development of oral vaccines targeting specific peptides. PMID:26509697

  15. Protein adsorption kinetics in different surface potentials

    NASA Astrophysics Data System (ADS)

    Quinn, A.; Mantz, H.; Jacobs, K.; Bellion, M.; Santen, L.

    2008-03-01

    We have studied the adsorption kinetics of the protein amylase at solid/liquid interfaces. Offering substrates with tailored properties, we are able to separate the impact of short- and long-range interactions. By means of a colloidal Monte Carlo approach including conformational changes of the adsorbed proteins induced by density fluctuations, we develop a scenario that is consistent with the experimentally observed three-step kinetics on specific substrates. Our observations show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate may lead to non-negligible effects.

  16. Probing peptide and protein insertion in a biomimetic S-layer supported lipid membrane platform.

    PubMed

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B; Schuster, Bernhard

    2015-01-01

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided. PMID:25633104

  17. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles.

    PubMed

    Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L

    2017-01-01

    The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process. PMID:27380623

  18. Probing Peptide and Protein Insertion in a Biomimetic S-Layer Supported Lipid Membrane Platform

    PubMed Central

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B.; Schuster, Bernhard

    2015-01-01

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided. PMID:25633104

  19. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species.

    PubMed Central

    Boot, H J; Kolen, C P; Pouwels, P H

    1995-01-01

    The bacterial S-layer forms a regular structure, composed of a monolayer of one (glyco)protein, on the surfaces of many prokaryotic species. S-layers are reported to fulfil different functions, such as attachment structures for extracellular enzymes and major virulence determinants for pathogenic species. Lactobacillus acidophilus ATCC 4356, which originates from the human pharynx, possesses such an S-layer. No function has yet been assigned to the S-layer of this species. Besides the structural gene (slpA) for the S-layer protein (S-protein) which constitutes this S-layer, we have identified a silent gene (slpB), which is almost identical to slpA in two regions. From the deduced amino acid sequence, it appears that the mature SB-protein (44,884 Da) is 53% similar to the SA-protein (43,636 Da) in the N-terminal and middle parts of the proteins. The C-terminal parts of the two proteins are identical except for one amino acid residue. The physical properties of the deduced S-proteins are virtually the same. Northern (RNA) blot analysis shows that only the slpA gene is expressed in wild-type cells, in line with the results from sequencing and primer extension analyses, which reveal that only the slpA gene harbors a promoter, which is located immediately upstream of the region where the two genes are identical. The occurrence of in vivo chromosomal recombination between the two S-protein-encoding genes will be described elsewhere. PMID:8522531

  20. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    SciTech Connect

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  1. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    NASA Astrophysics Data System (ADS)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-01

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  2. Mass sensitivity calculation of the protein layer using love wave SAW biosensor.

    PubMed

    Lee, Sangdae; Kim, Ki Bok; Il Kim, Yong

    2012-07-01

    Love waves, a variety of surface acoustic waves (SAWs), can be used to detect very small biological surface interactions and so have a wide range of potential applications. To demonstrate the practicality of a Love wave SAW biosensor, we fabricated a 155-MHz Love wave SAW biosensor and compared it with a commercial surface Plasmon resonance (SPR) using glycerol-water solution with known densities and viscosities to calibrate the response signals of the biosensors. And the mass per unit area of anti-mouse IgG bound with protein G onto the sensitive layer of the biosensor was calculated on the basis of the calibration result. The sensitivity of the Love wave SAW biosensor was the same as or greater than that of the SPR biosensor. Furthermore, the Love wave SAW biosensor was capable of measuring a much wider range of viscosities than the SPR biosensor. Although the operating principle of the Love wave SAW biosensor is completely different from that of the SPR biosensor, the subtle changes in the viscoelastic properties of the biological layer that accompany biological binding reactions on the sensitive layer can be monitored and measured in the same ways as with the SPR biosensor. PMID:22966717

  3. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  4. Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Shi, Jisen; Dong, Chen; Zhang, Wenyi; Lu, Ye; Guo, Ping

    2014-02-01

    Covalently assembly of low molecular weight poly(ethyleneimine) was introduced to glass surfaces via glutaraldehyde crosslinking, with focus on its application on protein immobilization or bacteria attachment. Characterizations of Fourier transform infrared spectroscopy and ellipsometry measurement revealed a stepwise growth of poly(ethyleneimine) films by layer-by-layer deposition. After fluorescein isothiocyanate labelling, photoluminescence spectroscopy measurement indicated that the amount of surface accessible amine groups had been gradually enhanced with increasing poly(ethyleneimine) layers deposition. As compared with traditional aminosilanized surfaces, the surface density of amine groups was enhanced by ∼11 times after five layers grafting, which resulted in ∼9-time increasing of surface density of immobilized bovine serum albumin. Finally, these as-prepared PEI multi-films with excellent biocompatibility were adopted as culture substrates to improve Escherichia coli adherence, which showed that their surface density had been increased by ∼251 times.

  5. Surface characterization of adsorbed asphaltene on a stainless steel surface

    NASA Astrophysics Data System (ADS)

    Abdallah, W. A.; Taylor, S. D.

    2007-05-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p3/2, N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies.

  6. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation

    PubMed Central

    Tomek, Markus B.; Neumann, Laura; Nimeth, Irene; Koerdt, Andrea; Andesner, Philipp; Messner, Paul; Mach, Lukas; Potempa, Jan S.; Schäffer, Christina

    2014-01-01

    SUMMARY Conserved C-terminal domains (CTD) have been shown to act as a signal for the translocation of certain proteins across the outer membrane of Bacteroidetes via a type IX secretion system (T9SS). The genome sequence of the periodontal pathogen Tannerella forsythia predicts the presence of the components for a T9SS in conjunction with a suite of CTD proteins. T. forsythia is covered with a 2-dimensional crystalline surface (S-) layer composed of the glycosylated CTD proteins TfsA and TfsB. To investigate if T9SS is functional in T. forsythia, T9SS-deficient mutants were generated by targeting either TF0955 (putative C-terminal signal peptidase) or TF2327 (PorK ortholog), and the mutants were analyzed with respect to secretion, assembly and glycosylation of the S-layer proteins as well as to proteolytic processing of the CTD and biofilm formation. In either mutant, TfsA and TfsB were incapable of translocation, as evidenced by the absence of the S-layer in transmission electron microscopy of ultrathin-sectioned bacterial cells. Despite entrapped within the periplasm, mass spectrometry analysis revealed that the S-layer proteins were modified with the complete, mature glycan found on the secreted proteins, indicating that protein translocation and glycosylation are two independent processes. Further, the T9SS mutants showed a denser biofilm with less voids compared to the wild-type. This study demonstrates the functionality of T9SS and the requirement of CTD for the outer membrane passage of extracellular proteins in T. forsythia, exemplified with the two S-layer proteins. In addition, T9SS protein translocation is decoupled from O-glycan attachment in T. forsythia. PMID:24943676

  7. Free energy barriers for escape of water molecules from protein hydration layer.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2012-03-01

    Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these "slow" water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface. PMID:22288939

  8. A hybrid multi-loop genetic-algorithm/simplex/spatial-grid method for locating the optimum orientation of an adsorbed protein on a solid surface

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Mu, Shengjing; Nakano, Aiichiro; Shing, Katherine

    2009-05-01

    Atomistic simulation of protein adsorption on a solid surface in aqueous environment is computationally demanding, therefore the determination of preferred protein orientations on the solid surface usually serves as an initial step in simulation studies. We have developed a hybrid multi-loop genetic-algorithm/simplex/spatial-grid method to search for low adsorption-energy orientations of a protein molecule on a solid surface. In this method, the surface and the protein molecule are treated as rigid bodies, whereas the bulk fluid is represented by spatial grids. For each grid point, an effective interaction region in the surface is defined by a cutoff distance, and the possible interaction energy between an atom at the grid point and the surface is calculated and recorded in a database. In searching for the optimum position and orientation, the protein molecule is translated and rotated as a rigid body with the configuration obtained from a previous Molecular Dynamic simulation. The orientation-dependent protein-surface interaction energy is obtained using the generated database of grid energies. The hybrid search procedure consists of two interlinked loops. In the first loop A, a genetic algorithm (GA) is applied to identify promising regions for the global energy minimum and a local optimizer with the derivative-free Nelder-Mead simplex method is used to search for the lowest-energy orientation within the identified regions. In the second loop B, a new population for GA is generated and competitive solution from loop A is improved. Switching between the two loops is adaptively controlled by the use of similarity analysis. We test the method for lysozyme adsorption on a hydrophobic hydrogen-terminated silicon (110) surface in implicit water (i.e., a continuum distance-dependent dielectric constant). The results show that the hybrid search method has faster convergence and better solution accuracy compared with the conventional genetic algorithm.

  9. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-09-01

    Constraint generation for 3d structure prediction and structure-based database searches benefit from fine-grained prediction of local structure. In this work, we present LOCUSTRA, a novel scheme for the multiclass prediction of local structure that uses two layers of support vector machines (SVM). Using a 16-letter structural alphabet from de Brevern et al. (Proteins: Struct., Funct., Bioinf. 2000, 41, 271-287), we assess its prediction ability for an independent test set of 222 proteins and compare our method to three-class secondary structure prediction and direct prediction of dihedral angles. The prediction accuracy is Q16=61.0% for the 16 classes of the structural alphabet and Q3=79.2% for a simple mapping to the three secondary classes helix, sheet, and coil. We achieve a mean phi(psi) error of 24.74 degrees (38.35 degrees) and a median RMSDA (root-mean-square deviation of the (dihedral) angles) per protein chain of 52.1 degrees. These results compare favorably with related approaches. The LOCUSTRA web server is freely available to researchers at http://www.fz-juelich.de/nic/cbb/service/service.php. PMID:18763837

  10. Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide.

    PubMed

    Birdsall, Robert E; Koshel, Brooke M; Hua, Yimin; Ratnayaka, Saliya N; Wirth, Mary J

    2013-03-01

    Sieving of proteins in silica colloidal crystals of millimeter dimensions is characterized for particle diameters of nominally 350 and 500 nm, where the colloidal crystals are chemically modified with a brush layer of polyacrylamide. A model is developed that relates the reduced electrophoretic mobility to the experimentally measurable porosity. The model fits the data with no adjustable parameters for the case of silica colloidal crystals packed in capillaries, for which independent measurements of the pore radii were made from flow data. The model also fits the data for electrophoresis in a highly ordered colloidal crystal formed in a channel, where the unknown pore radius was used as a fitting parameter. Plate heights as small as 0.4 μm point to the potential for miniaturized separations. Band broadening increases as the pore radius approaches the protein radius, indicating that the main contribution to broadening is the spatial heterogeneity of the pore radius. The results quantitatively support the notion that sieving occurs for proteins in silica colloidal crystals, and facilitate design of new separations that would benefit from miniaturization. PMID:23229163

  11. Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide

    PubMed Central

    Birdsall, Robert E.; Koshel, Brooke M.; Hua, Yimin; Ratnayaka, Saliya N.; Wirth, Mary J.

    2013-01-01

    Sieving of proteins in silica colloidal crystals of mm dimensions is characterized for particle diameters of nominally 350 and 500 nm, where the colloidal crystals are chemically modified with a brush layer of polyacrylamide. A model is developed that relates the reduced electrophoretic mobility to the experimentally measurable porosity. The model fits the data with no adjustable parameters for the case of silica colloidal crystals packed in capillaries, for which independent measurements of the pore radii were made from flow data. The model also fits the data for electrophoresis in a highly ordered colloidal crystal formed in a channel, where the unknown pore radius was used as a fitting parameter. Plate heights as small as 0.4 μm point to the potential for miniaturized separations. Band broadening increases as the pore radius approaches the protein radius, indicating that the main contribution to broadening is the spatial heterogeneity of the pore radius. The results quantitatively support the notion that sieving occurs for proteins in silica colloidal crystals, and facilitate design of new separations that would benefit from miniaturization. PMID:23229163

  12. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    PubMed

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications. PMID:26992716

  13. Bacterial S-layer protein coupling to lipids: x-ray reflectivity and grazing incidence diffraction studies.

    PubMed

    Weygand, M; Wetzer, B; Pum, D; Sleytr, U B; Cuvillier, N; Kjaer, K; Howes, P B; Lösche, M

    1999-01-01

    The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows that the phosphatidylethanolamine headgroups must reorient toward the surface normal to accommodate such changes. In terms of the protein structure (which is as yet unknown in three dimensions), the electron density profile reveals a thickness lz approximately 90 A of the recrystallized S-layer and shows water-filled cavities near its center. The protein volume fraction reaches maxima of >60% in two horizontal sections of the S-layer, close to the lipid monolayer and close to the free subphase. In between it drops to approximately 20%. Four S-layer protein monomers are located within the unit cell of a square lattice with a spacing of approximately 131 A. PMID:9876158

  14. OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope.

    PubMed Central

    Lemaire, M; Ohayon, H; Gounon, P; Fujino, T; Béguin, P

    1995-01-01

    Several proteins of Clostridium thermocellum possess a C-terminal triplicated sequence related to bacterial cell surface proteins. This sequence was named the SLH domain (for S-layer homology), and it was proposed that it might serve to anchor proteins to the cell surface (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). This hypothesis was investigated by using the SLH-containing protein ORF1p from C. thermocellum as a model. Subcellular fractionation, immunoblotting, and electron microscopy of immunocytochemically labeled cells indicated that ORF1p was located on the surface of C. thermocellum. To detect C. thermocellum components interacting with the SLH domains of ORF1p, a probe was constructed by grafting these domains on the C terminus of the MalE protein of Escherichia coli. The SLH domains conferred on the chimeric protein (MalE-ORF1p-C) the ability to bind noncovalently to the peptidoglycan of C. thermocellum. In addition, 125I-labeled MalE-ORF1p-C was shown to bind to SLH-bearing proteins transferred onto nitrocellulose, and to a 26- to 28-kDa component of the cell envelope. These results agree with the hypothesis that SLH domains contribute to the binding of exocellular proteins to the cell surface of bacteria. The gene carrying ORF1 and its product, ORF1p, are renamed olpB and OlpB (for outer layer protein B), respectively. PMID:7730277

  15. Protein denaturing on Nanospheres

    NASA Astrophysics Data System (ADS)

    Forrest, James; Teichroeb, Jonathan

    2007-03-01

    We have used localized surface plasmon resonance (LSPR) to monitor the structural changes that accompany thermal denaturing of Bovine Serum Albumin(BSA) adsorbed onto gold nanospheres of size 5nm-60nm. The effect of the protein on the LSPR was monitored by visible extinction spectroscopy. The position of the resonance is affected by the conformation of the adsorbed protein layer, and as such can be used as a very sensitive probe of thermal denaturing that is specific to the adsorbed protein. The results are compared to detailed calculations and show that full calculations can lead to significant increases in knowledge where gold nanospheres are used as biosensors. Thermal denaturing on spheres with diameter > 20 nm show strong similarity to bulk calorimetric studies of BSA in solution. BSA adsorbed on nanospheres with d<= 15 nm shows a qualitative difference in behavior, suggesting a sensitivity of denaturing characteristics on local surface curvature. Studies of isothermal denaturing kinetics were used to obtain an activatiuon barrier for thermal denaturing. This activation barrier also exhibited a strong dependence on nanoparticle size. These results may have important implications for other protein-nanoparticle interactions.

  16. Mem-ADSVM: A two-layer multi-label predictor for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-06-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane proteins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not. If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader׳s convenience, the Mem-ADSVM server is available online at http://bioinfo.eie.polyu.edu.hk/MemADSVMServer/. PMID:27000774

  17. Recombinant glycans on an S-layer self-assembly protein: a new dimension for nanopatterned biomaterials.

    PubMed

    Steiner, Kerstin; Hanreich, Angelika; Kainz, Birgit; Hitchen, Paul G; Dell, Anne; Messner, Paul; Schäffer, Christina

    2008-10-01

    Crucial biological phenomena are mediated through carbohydrates that are displayed in a defined manner and interact with molecular scale precision. We lay the groundwork for the integration of recombinant carbohydrates into a "biomolecular construction kit" for the design of new biomaterials, by utilizing the self-assembly system of the crystalline cell surface (S)-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a. SgsE is a naturally O-glycosylated protein, with intrinsic properties that allow it to function as a nanopatterned matrix for the periodic display of glycans. By using a combined carbohydrate/protein engineering approach, two types of S-layer neoglycoproteins are produced in Escherichia coli. Based on the identification of a suitable periplasmic targeting system for the SgsE self-assembly protein as a cellular prerequisite for protein glycosylation, and on engineering of one of the natural protein O-glycosylation sites into a target for N-glycosylation, the heptasaccharide from the AcrA protein of Campylobacter jejuni and the O7 polysaccharide of E. coli are co- or post-translationally transferred to the S-layer protein by the action of the oligosaccharyltransferase PglB. The degree of glycosylation of the S-layer neoglycoproteins after purification from the periplasmic fraction reaches completeness. Electron microscopy reveals that recombinant glycosylation is fully compatible with the S-layer protein self-assembly system. Tailor-made ("functional") nanopatterned, self-assembling neoglycoproteins may open up new strategies for influencing and controlling complex biological systems with potential applications in the areas of biomimetics, drug targeting, vaccine design, or diagnostics. PMID:18816436

  18. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting

    PubMed Central

    Ucisik, Mehmet H.; Küpcü, Seta; Breitwieser, Andreas; Gelbmann, Nicola; Schuster, Bernhard; Sleytr, Uwe B.

    2015-01-01

    Selective targeting of tumor cells by nanoparticle-based drug delivery systems is highly desirable because it maximizes the drug concentration at the desired target while simultaneously protecting the surrounding healthy tissues. Here, we show a design for smart nanocarriers based on a biomimetic approach that utilizes the building principle of virus envelope structures. Emulsomes and CurcuEmulsomes comprising a tripalmitin solid core surrounded by phospholipid layers are modified by S-layer proteins that self-assemble into a two-dimensional array to form a surface layer. One significant advantage of this nanoformulation is that it increases the solubility of the lipophilic anti-cancer agent curcumin in the CurcuEmulsomes by a factor of 2700. In order to make the emulsomes specific for IgG, the S-layer protein is fused with two protein G domains. This S-layer fusion protein preserves its recrystallization characteristics, forming an ordered surface layer (square lattice with 13 nm unit-by-unit distance). The GG domains are presented in a predicted orientation and exhibit a selective binding affinity for IgG. PMID:25734967

  19. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting.

    PubMed

    Ucisik, Mehmet H; Küpcü, Seta; Breitwieser, Andreas; Gelbmann, Nicola; Schuster, Bernhard; Sleytr, Uwe B

    2015-04-01

    Selective targeting of tumor cells by nanoparticle-based drug delivery systems is highly desirable because it maximizes the drug concentration at the desired target while simultaneously protecting the surrounding healthy tissues. Here, we show a design for smart nanocarriers based on a biomimetic approach that utilizes the building principle of virus envelope structures. Emulsomes and CurcuEmulsomes comprising a tripalmitin solid core surrounded by phospholipid layers are modified by S-layer proteins that self-assemble into a two-dimensional array to form a surface layer. One significant advantage of this nanoformulation is that it increases the solubility of the lipophilic anti-cancer agent curcumin in the CurcuEmulsomes by a factor of 2700. In order to make the emulsomes specific for IgG, the S-layer protein is fused with two protein G domains. This S-layer fusion protein preserves its recrystallization characteristics, forming an ordered surface layer (square lattice with 13 nm unit-by-unit distance). The GG domains are presented in a predicted orientation and exhibit a selective binding affinity for IgG. PMID:25734967

  20. Neutron Reflectometry Studies of the Adsorbed Structure of the Amelogenin, LRAP

    SciTech Connect

    Tarasevich, Barbara J.; Perez-Salas, Ursula; Masica, David L.; Philo, John; Krueger, Susan; Majkrzak, Charles F.; Gray, Jeffrey J.; Shaw, Wendy J.

    2013-03-21

    Amelogenins make up over 90 percent of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayers (SAMs) surfaces. Sedimentation velocity experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ~33 Å thick layers at ~70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. Sedimentation velocity experiments and Rosetta simulation show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal region (~8-24)) located near the surface is consistent with the higher scattering length density (SLD) and higher protein hydration found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.

  1. Discrete layers of interacting growing protein seeds: convective and morphological stages of evolution.

    PubMed

    Lappa, Marcello

    2005-03-01

    The growth of several macromolecular seeds uniformly distributed on the bottom of a protein reactor (i.e., a discrete layer of N crystals embedded within a horizontal layer of liquid with no-slip boundaries) under microgravity conditions is investigated for different values of N and for two values of the geometrical aspect ratio of the container. The fluid dynamics of the growth reactor and the morphological (shape-change) evolution of the crystals are analyzed by means of a recently developed moving boundary method based on differential equations coming from the protein "surface incorporation kinetics." The face growth rates are found to depend on the complex multicellular structure of the convective field and on associated "pluming phenomena." This correspondence is indirect evidence of the fact that mass transport in the bulk and surface attachment kinetics are competitive as rate-limiting steps for growth. Significant adjustments in the roll pattern take place as time passes. The convective field undergoes an interesting sequence of transitions to different values of the mode and to different numbers of rising solutal jets. The structure of the velocity field and the solutal effects, in turn, exhibit sensitivity to the number of interacting crystals if this number is small. In the opposite case, a certain degree of periodicity can be highlighted for a core zone not affected by edge effects. The results with no-slip lateral walls are compared with those for periodic boundary conditions to assess the role played by geometrical constraints in determining edge effects and the wavelength selection process. The numerical method provides "microscopic" and "morphological" details as well as general rules and trends about the macroscopic evolution (i.e., "ensemble behaviors") of the system. PMID:15903456

  2. Thin-layer immunoaffinity chromatography with bar code quantitation of C-reactive protein.

    PubMed

    Nilsson, S; Lager, C; Laurell, T; Birnbaum, S

    1995-09-01

    A rapid thin-layer immunoaffinity chromatographic method for quantitation in serum of an acute phase reactant, C-reactive protein (CRP), which can differentiate between viral and bacteria] infections, is described, where material and reagent costs are minimal. The analysis is based on the "sandwich" assay format using monoclonal antibodies directed against two sites of CRP. One of the antibodies is covalently bound to defined zones on a thin-layer immunoaffinity chromatography membrane, while the other antibody is covalently bound to deeply dyed blue latex particles. After incubation (CRP sample and latex particles), the CRP-latex immunocomplex is allowed to migrate along the immunoaffinity chromatography membrane. In the presence of antigen, a sandwich is formed between the CRP-latex immunocomplex and membrane-bound antibodies, which results in the appearance of blue lines on the membrane. Antibody immobilization on the TLC membrane is made with a redesigned piezoelectric-driven ink-jet printer. The time required for the analysis is less than 10 min. Quantitation is achieved either by counting the lines visually, with scanning reflectometry, or with a modified bar code reader. The limit of detection was estimated in the low femtomolar range using the naked eye as detector. PMID:8779423

  3. Nuclear spin heat capacity of 3He adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Greywall, Dennis S.

    1989-10-01

    The heat capacity of 3He adsorbed on graphite has been measured for films between one and five atomic layers and for temperatures between 2 and 200 mK. These results are compared with recent magnetization data which also show several anomalies in this coverage regime. Prior to third layer promotion the second layer is found to solidify into a registered structure with unusual propertis. This contradicts the model proposed to explain the NMR measurements.

  4. A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells.

    PubMed

    Ilk, Nicola; Küpcü, Seta; Moncayo, Gerald; Klimt, Sigrid; Ecker, Rupert C; Hofer-Warbinek, Renate; Egelseer, Eva M; Sleytr, Uwe B; Sára, Margit

    2004-04-15

    The chimaeric gene encoding a C-terminally truncated form of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 and the EGFP (enhanced green fluorescent protein) was ligated into plasmid pET28a and cloned and expressed in Escherichia coli. Just 1 h after induction of expression an intense EGFP fluorescence was detected in the cytoplasm of the host cells. Expression at 28 degrees C instead of 37 degrees C resulted in clearly increased fluorescence intensity, indicating that the folding process of the EGFP moiety was temperature sensitive. To maintain the EGFP fluorescence, isolation of the fusion protein from the host cells had to be performed in the presence of reducing agents. SDS/PAGE analysis, immunoblotting and N-terminal sequencing of the isolated and purified fusion protein confirmed the presence of both the S-layer protein and the EGFP moiety. The fusion protein had maintained the ability to self-assemble in suspension and to recrystallize on peptidoglycan-containing sacculi or on positively charged liposomes, as well as to fluoresce. Comparison of fluorescence excitation and emission spectra of recombinant EGFP and rSbpA(31-1068)/EGFP revealed identical maxima at 488 and 507 nm respectively. The uptake of liposomes coated with a fluorescent monomolecular protein lattice of rSbpA(31-1068)/EGFP into HeLa cells was studied by confocal laser-scanning microscopy. The major part of the liposomes was internalized within 2 h of incubation and entered the HeLa cells by endocytosis. PMID:14725506

  5. A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells.

    PubMed Central

    Ilk, Nicola; Küpcü, Seta; Moncayo, Gerald; Klimt, Sigrid; Ecker, Rupert C; Hofer-Warbinek, Renate; Egelseer, Eva M; Sleytr, Uwe B; Sára, Margit

    2004-01-01

    The chimaeric gene encoding a C-terminally truncated form of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 and the EGFP (enhanced green fluorescent protein) was ligated into plasmid pET28a and cloned and expressed in Escherichia coli. Just 1 h after induction of expression an intense EGFP fluorescence was detected in the cytoplasm of the host cells. Expression at 28 degrees C instead of 37 degrees C resulted in clearly increased fluorescence intensity, indicating that the folding process of the EGFP moiety was temperature sensitive. To maintain the EGFP fluorescence, isolation of the fusion protein from the host cells had to be performed in the presence of reducing agents. SDS/PAGE analysis, immunoblotting and N-terminal sequencing of the isolated and purified fusion protein confirmed the presence of both the S-layer protein and the EGFP moiety. The fusion protein had maintained the ability to self-assemble in suspension and to recrystallize on peptidoglycan-containing sacculi or on positively charged liposomes, as well as to fluoresce. Comparison of fluorescence excitation and emission spectra of recombinant EGFP and rSbpA(31-1068)/EGFP revealed identical maxima at 488 and 507 nm respectively. The uptake of liposomes coated with a fluorescent monomolecular protein lattice of rSbpA(31-1068)/EGFP into HeLa cells was studied by confocal laser-scanning microscopy. The major part of the liposomes was internalized within 2 h of incubation and entered the HeLa cells by endocytosis. PMID:14725506

  6. Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices.

    PubMed

    Baneyx, François; Matthaei, James F

    2014-08-01

    Although the crystalline S-layer arrays that form the exoskeleton of many archaea and bacteria have been studied for decades, a long-awaited crystal structure coupled with a growing understanding of the S-layer assembly process are injecting new excitement in the field. The trend is amplified by computational strategies that allow for in silico design of protein building blocks capable of self-assembling into 2D lattices and other prescribed quaternary structures. We review these and other recent developments toward achieving unparalleled control over the geometry, chemistry and function of protein-based 2D objects from the nanoscale to the mesoscale. PMID:24832073

  7. Neutron Reflectometry Studies of the Adsorbed Structure of the Amelogenin, LRAP

    PubMed Central

    Tarasevich, Barbara J.; Perez-Salas, Ursula; Masica, David L.; Philo, John; Kienzle, Paul; Krueger, Susan; Majkrzak, Charles F.; Gray, Jeffrey L.; Shaw, Wendy J.

    2013-01-01

    Amelogenins make up over 90 percent of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayers (SAMs) surfaces. Sedimentation velocity (SV) experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ~32 Å thick layers at ~70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. SV experiments and Rosetta simulation show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal region (residues ~8–24) located near the surface is consistent with the higher scattering length density (SLD) found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins. PMID:23477285

  8. Nanoscale mono- and multi-layer cylinder structures formed by recombinant S-layer proteins of mosquitocidal Bacillus sphaericus C3-41.

    PubMed

    Li, Jia; Yang, Lingling; Hu, Xiaomin; Zheng, Dasheng; Yan, Jianpin; Yuan, Zhiming

    2013-08-01

    The mature surface layer (S-layer) protein SlpC of mosquitocidal Bacillus sphaericus C3-41 comprises amino acids 31-1,176 and could recrystallize in vitro. The N-terminal SLH domain is responsible for binding function. Deletion of this part, S-layer proteins could not bind to the cell wall sacculi. To investigate the self-assembly ability of SlpC from B. sphaericus, nine truncations were constructed and their self-assembly properties were compared with the recombinant mature S-layer protein rSlpC₃₁₋₁,₁₇₆. The results showed that rSbsC₃₁₋₁,₁₇₆ and truncations rSlpC₂₁₁₋₁,₁₇₆, rSlpC₂₇₈₋₁,₁₇₆, rSlpC₃₁₋₁,₁₀₀, and rSlpC₃₁₋₁,₀₅₀ could assemble into multilayer cylinder structures, while N-terminal truncations rSlpC₃₃₈₋₁,₁₇₆, rSlpC₄₃₈₋₁,₁₇₆, and rSlpC₄₉₈₋₁,₁₇₆ mainly showed monolayer cylinders in recombinant Escherichia coli BL21 (DE3) cells. Growth phase analysis of the self-assembly process revealed that rSlpC₄₉₈₋₁,₁₇₆ mainly formed monolayer cylinders in the early stage (0.5 and 1 h induction of expression), but few double-layer or multilayer cylinders were also found with the cells growing, while rSlpC₃₁₋₁,₁₇₆ could formed multilayer cylinders in all the growth stage in the E. coli cells. It is concluded that the deletion of the C-terminal 126 aa or the N-terminal 497 aa did not interfere with the self-assembly process, the fragment (amino acids 278 to 337) is essential for the multilayer cylinder formation in E. coli BL21 (DE3) cells in the early stage and the fragment (amino acids 338 to 497) is related to monolayer cylinder formation. The information is important for further studies on the assembly mechanism of S-layer proteins and forms a basis for further studies concerning surface display and nanobiotechnology. PMID:23306643

  9. Fabrication of fracture-free nanoglassified substrates by layer-by-layer deposition with a paint gun technique for real-time monitoring of protein-lipid interactions.

    PubMed

    Linman, Matthew J; Culver, Sean P; Cheng, Quan

    2009-03-01

    New sensing materials that are robust, biocompatible, and amenable to array fabrication are vital to the development of novel bioassays. Herein we report the fabrication of ultrathin (ca. 5-8 nm) glass (silicate) layers on top of a gold surface for surface plasmon resonance (SPR) biosensing applications. The nanoglass layers are fabricated by layer-by-layer (LbL) deposition of poly(allylamine) hydrochloride (PAH) and sodium silicate (SiO(x)), followed by calcination at high temperature. To deposit these layers in a uniform and reproducible manner, we employed a high-volume, low-pressure (HVLP) paint gun technique that offers high precision and better control through pressurized nitrogen gas. The new substrates are stable in solution for a long period of time, and scanning electron microscopy (SEM) images confirm that these films are nearly fracture-free. In addition, atomic force microscopy (AFM) indicates that the surface roughness of the silicate layers is low (rms = 2 to 3 nm), similar to that of bare glass slides. By tuning the experimental parameters such as HVLP gun pressure and layers deposited, different surface morphology could be obtained as revealed by fluorescence microscopy and SEM images. To demonstrate the utility of these ultrathin, fracture-free substrates, lipid bilayer membranes composed of phosphorylated derivatives of phosphoinositides (PIs) were deposited on the new substrates for biosensing applications. Fluorescence recovery after photobleaching (FRAP) data indicated that these lipid components in the membranes were highly mobile. Furthermore, interactions of PtdIns(4,5)P2 and PtdIns(4)P lipids with their respective binding proteins were detected with high sensitivity by using SPR spectroscopy. This method of glass deposition can be combined with already well-developed surface chemistry for a range of planar glass assay applications, and the process is amenable to automation for mass production of nanometer thick silicate chips in a highly

  10. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Pentti; Engelhardt, Peter; Hynönen, Ulla; Torkkeli, Mika; Palva, Airi; Serimaa, Ritva

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 Å and 435 Å.

  11. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2015-03-17

    The molecular interaction forces generated during the adsorption of proteins to surfaces were examined by the force-versus-distance (f-d) curve measurements of atomic force microscopy using probes modified with appropriate molecules. Various substrates with polymer brush layers bearing zwitterionic, cationic, anionic, and hydrophobic groups were systematically prepared by surface-initiated atom transfer radical polymerization. Surface interaction forces on these substrates were analyzed by the f-d curve measurements using probes with the same polymer brush layer as the substrate. Repulsive forces, which decreased depending on the ionic strength, were generated between cationic or anionic polyelectrolyte brush layers; these were considered to be electrostatic interaction forces. A strong adhesive force was detected between hydrophobic polymer brush layers during retraction; this corresponded to the hydrophobic interaction between two hydrophobic polymer layers. In contrast, no significant interaction forces were detected between zwitterionic polymer brush layers. Direct interaction forces between proteins and polymer brush layers were then quantitatively evaluated by the f-d curve measurements using protein-immobilized probes consisting of negatively charged albumin and positively charged lysozyme under physiological conditions. In addition, the amount of protein adsorbed on the polymer brush layer was quantified by surface plasmon resonance measurements. Relatively large amounts of protein adsorbed to the polyelectrolyte brush layers with opposite charges. It was considered that the detachment of the protein after contact with the polymer brush layer hardly occurred due to salt formation at the interface. Both proteins adsorbed significantly on the hydrophobic polymer brush layer, which was due to hydrophobic interactions at the interface. In contrast, the zwitterionic polymer brush layer exhibited no significant interaction force with proteins and suppressed

  13. Simulations of noble gases adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Maiga, Sidi; Gatica, Silvina

    2014-03-01

    We present results of Grand Canonical Monte Carlo simulations of adsorption of Kr, Ar and Xe on a suspended graphene sheet. We compute the adsorbate-adsorbate interaction by a Lennard-Jones potential. We adopt a hybrid model for the graphene-adsorbate force; in the hybrid model, the potential interaction with the nearest carbon atoms (within a distance rnn) is computed with an atomistic pair potential Ua; for the atoms at r>rnn, we compute the interaction energy as a continuous integration over a carbon uniform sheet with the density of graphene. For the atomistic potential Ua, we assume the anisotropic LJ potential adapted from the graphite-He interaction proposed by Cole et.al. This interaction includes the anisotropy of the C atoms on graphene, which originates in the anisotropic π-bonds. The adsorption isotherms, energy and structure of the layer are obtained and compared with experimental results. We also compare with the adsorption on graphite and carbon nanotubes. This research was supported by NSF/PRDM (Howard University) and NSF (DMR 1006010).

  14. Conformational properties of an adsorbed charged polymer.

    PubMed

    Cheng, Chi-Ho; Lai, Pik-Yin

    2005-06-01

    The behavior of a strongly charged polymer adsorbed on an oppositely charged surface of a low-dielectric constant is formulated by the functional integral method. By separating the translational, conformational, and fluctuational degrees of freedom, the scaling behaviors for both the height of the polymer and the thickness of the diffusion layer are determined. Unlike the results predicted by scaling theory, we identified the continuous crossover from the weak compression to the compression regime. All the analytical results are found to be consistent with Monte Carlo simulations. Finally, an alternative (operational) definition of a charged polymer adsorption is proposed. PMID:16089715

  15. S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity

    PubMed Central

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko

    2013-01-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  16. S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity.

    PubMed

    Taverniti, Valentina; Stuknyte, Milda; Minuzzo, Mario; Arioli, Stefania; De Noni, Ivano; Scabiosi, Christian; Cordova, Zuzet Martinez; Junttila, Ilkka; Hämäläinen, Sanna; Turpeinen, Hannu; Mora, Diego; Karp, Matti; Pesu, Marko; Guglielmetti, Simone

    2013-02-01

    The ability to positively affect host health through the modulation of the immune response is a feature of increasing importance in measuring the probiotic potential of a bacterial strain. However, the identities of the bacterial cell components involved in cross talk with immune cells remain elusive. In this study, we characterized the dairy strain Lactobacillus helveticus MIMLh5 and its surface-layer protein (SlpA) using in vitro and ex vivo analyses. We found that MIMLh5 and SlpA exert anti-inflammatory effects by reducing the activation of NF-κB on the intestinal epithelial Caco-2 cell line. On the contrary, MIMLh5 and SlpA act as stimulators of the innate immune system by triggering the expression of proinflammatory factors tumor necrosis factor alpha and COX-2 in the human macrophage cell line U937 via recognition through Toll-like receptor 2. In the same experiments, SlpA protein did not affect the expression of the anti-inflammatory cytokine interleukin-10. A similar response was observed following stimulation of macrophages isolated from mouse bone marrow or the peritoneal cavity. These results suggest that SlpA plays a major role in mediating bacterial immune-stimulating activity, which could help to induce the host's defenses against and responses toward infections. This study supports the concept that the viability of bacterial cells is not always essential to exert immunomodulatory effects, thus permitting the development of safer therapies for the treatment of specific diseases according to a paraprobiotic intervention. PMID:23220964

  17. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    SciTech Connect

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; Tripp, Patrick; Arvai, Andrew  S.; Ishida, Justin  P.; Tainer, John  A.; Albers, Sonja -Verena

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.

  18. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    DOE PAGESBeta

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; Tripp, Patrick; Arvai, Andrew  S.; Ishida, Justin  P.; Tainer, John  A.; Albers, Sonja -Verena

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less

  19. FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein

    PubMed Central

    Banerjee, Ankan; Tsai, Chi-Lin; Chaudhury, Paushali; Tripp, Patrick; Arvai, Andrew S.; Ishida, Justin P.; Tainer, John A.; Albers, Sonja-Verena

    2015-01-01

    Summary Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope. PMID:25865246

  20. Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption.

    PubMed

    Osypova, A; Magnin, D; Sibret, P; Aqil, A; Jérôme, C; Dupont-Gillain, C; Pradier, C-M; Demoustier-Champagne, S; Landoulsi, J

    2015-11-01

    In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly of PNIPAM-containing polyelectrolytes and PAH. PAA-b-PNIPAM block copolymers were synthesized in order to benefit from (i) the ionizable properties of PAA, to be involved in the LbL assembly, and (ii) the sensitivity of PNIPAM to temperature stimulus. The impact of parameters related to the structure and size of the macromolecules (their molecular weight and the relative degree of polymerization of PAA and PNIPAM), and the interaction with proteins under physico-chemical stimuli, such as pH and temperature, are carefully investigated. The incorporation of PAA-b-PNIPAM into multilayered films is shown to be successful whatever the block copolymer used, resulting in slightly thicker films than the corresponding (PAA/PAH)n film. Importantly, the protein adsorption studies demonstrate that it is possible to alter the adsorption behavior of proteins on (PAA-b-PNIPAM/PAH)n surfaces by varying the temperature and/or the pH of the medium, which seems to be intimately related to two key factors: (i) the ability of PNIPAM units to undergo conformational changes and (ii) the structural changes of the film made of weak polyelectrolytes. The simplicity of construction of these PNIPAM block copolymer-based LbL coatings on a large range of substrates, combined with their highly tunable features, make them ideal candidates to be employed for various biomedical applications requiring the control of protein adsorption. PMID:26338028

  1. Nicotine biosynthesis is regulated by two more layers: Small and long non-protein-coding RNAs.

    PubMed

    Xie, Jiahua; Fan, Longjiang

    2016-06-01

    In recent years, many small RNAs and long non-protein-coding RNAs (lncRNAs) have been identified and characterized. They have been proved to play essential regulatory roles in gene expression in both primary and secondary metabolisms. In nature, many plants produce alkaloids. However, there are only few reports on the involvement of non-coding RNAs in alkaloid biosynthesis. Nicotine is major alkaloid in tobacco plants. Its biosynthesis and regulation in tobacco (Nicotiana tabacum) have been well studied; and major structural genes involved in the nicotine biosynthesis and transcriptional regulators related to its biosynthesis have been identified and characterized. In our recent studies, we identified a microRNA (nta-miRX27) and also a lncRNA (nta-eTMX27) as an endogenous target mimicry (eTM) in tobacco targeting the nicotine biosynthesis key gene QPT2 encoding quinolinate phosphoribosyltransferase (QPT) and thereby regulating the nicotine content. Their regulatory pattern leads us to conclude that nicotine biosynthesis is regulated by 2 more layers besides previously known mechanisms. Future study on the relationship between the non-coding RNAs and transcription factors in nicotine biosynthesis was discussed in this article. PMID:27172239

  2. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  3. Interfacial hydrodynamic drag on nanowires embedded in thin oil films and protein layers.

    PubMed

    Lee, Myung Han; Lapointe, Clayton P; Reich, Daniel H; Stebe, Kathleen J; Leheny, Robert L

    2009-07-21

    We investigate the motion of ferromagnetic nanowires confined to nanometer-scale oil films at an air/aqueous interface in response to the application of external magnetic fields and field gradients. By varying the oil viscosity, film thickness, and wire length, we cover two regimes of response suggested by theory: one where the surface viscosity is expected to dominate the wire's motion and one where the subphase viscosity is expected to dominate [Levine, A. J.; Liverpool, T. B.; MacKintosh, F. C. Phys. Rev. E 2004, 69, 021503]. For wire motion parallel to the long axis of the wire, the observed drag agrees reasonably with theoretical predictions. However, the drag on wires moving perpendicular to their long axis or rotating about a short axis is unexpectedly insensitive to the film properties over the full range of measurements. This behavior is in contrast to the rotational and translational drag on nanowires in molecularly thin protein layers, which follow theoretical expectations. The observations in the oil films, which are explained in terms of the manner in which the wire immerses dynamically in the film and subphase, demonstrate how the effective drag viscosity of an aspherical particle confined to a fluid interface can depend on its direction of motion. PMID:19594180

  4. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    PubMed Central

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  5. Dexamethasone released from cochlear implant coatings combined with a protein repellent hydrogel layer inhibits fibroblast proliferation.

    PubMed

    Wrzeszcz, Antonina; Dittrich, Barbara; Haamann, Daniel; Aliuos, Pooyan; Klee, Doris; Nolte, Ingo; Lenarz, Thomas; Reuter, Günter

    2014-02-01

    The insertion of cochlear implants into the inner ear often causes inflammation and fibrosis inside the scala tympani and thus growth of fibrous tissue on the implant surface. This deposition leads to the loss of function in both electrical and laser-based implants. The design of this study was to realize fibroblast growth inhibition by dexamethasone (Dex) released from the base material of the implant [polydimethylsiloxane (PDMS)]. To prevent cell and protein adhesion, the PDMS was coated with a hydrogel layer [star-shaped polyethylene glycol prepolymer (sPEG)]. Drug release rates were studied over 3 months, and surface characterization was performed. It was observed that the hydrogel slightly smoothened the surface roughened by the Dex crystals. The hydrogel coating reduced and prolonged the release of the drug over several months. Unmodified, sPEG-coated, Dex-loaded, and Dex/sPEG-equipped PDMS filaments were cocultivated in vitro with fluorescent fibroblasts, analyzed by fluorescent microscopy, and quantified by cell counting. Compared to the unmodified PDMS, cell growth on all modified filaments was averagely 95% ±standard deviation (SD) less, while cell growth on the bottom of the culture dishes containing Dex-loaded filaments was reduced by 70% ±SD. Both, Dex and sPEG prevented direct cell growth on the filament surfaces, while drug delivery was maintained for the duration of several months. PMID:23533184

  6. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure

    PubMed Central

    Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer. PMID:26262686

  7. Design and characterization of complex protein films

    NASA Astrophysics Data System (ADS)

    Bui, Holt P.

    Once a biomaterial is implanted into biological system, a layer of protein is immediately deposited on the surface of that material. The newly formed protein film will dictate how the implanted material will interact with the surrounding biological environment and lead to either the acceptance or rejection of the biomaterial. One method to enhance performance involves the activation the surface of the biomaterial with one or more proteins to direct specific interactions with the host environment. The focus of my dissertation was to develop and characterize model biomaterials surfaces that are activated with one or more proteins to help understand how the protein films may affect biological processes and a biomaterial's performance. One model system consisted of a patterned film of two proteins on a gold surface. Characterization of this protein pattern indicated that patterning protein films with a focused ion beam produced protein patterns with high biological contrast and high spatial control. The second model protein film involved the adsorption of fibronectin on surfaces with different surface energies. The characterization of the adsorbed fibronectin films suggest that fibronectin adsorbed on a hydrophilic surface is in an orientation that projects hydrophilic amino acid residues towards surface of the protein and dehydration causes reorientation to project hydrophobic amino acids towards the surface. In contrast, fibronectin is adsorbed onto a hydrophobic surface in a manner that resulted in dehydration and denaturation during the adsorption process. The last model protein film studied in this work consisted of fibronectin patterned in a manner so that the film consisted of spatially controlled domains of fibronectin adsorbed onto a hydrophilic surface as well as a hydrophobic surface. Lateral characterization of this pattern demonstrated a difference in secondary structure of fibronectin adsorbed on the two domains with varying surface energies.

  8. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes.

    PubMed

    Beykal, Burcu; Herzberg, Moshe; Oren, Yoram; Mauter, Meagan S

    2015-12-15

    The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies. PMID:26348658

  9. Highly Stable, Protein-Resistant Surfaces via the Layer-by-Layer Assembly of Poly(sulfobetaine methacrylate) and Tannic Acid.

    PubMed

    Ren, Peng-Fei; Yang, Hao-Cheng; Liang, Hong-Qing; Xu, Xiao-Ling; Wan, Ling-Shu; Xu, Zhi-Kang

    2015-06-01

    Zwitterionic materials have received great attention because of the non-fouling property. As a result of the electric neutrality of zwitterionic polymers, their layer-by-layer (LBL) assembly is generally conducted under specific conditions, such as very low pH values or ionic strength. The formed multilayers are unstable at high pH or in a high ionic strength environment. Therefore, the formation of highly stable multilayers of zwitterionic polymers via the LBL assembly process is still challenging. Here, we report the LBL assembly of poly(sulfobetaine methacrylate) (PSBMA) with a polyphenol, tannic acid (TA), for protein-resistant surfaces. The assembly process was monitored by a quartz crystal microbalance (QCM) and variable-angle spectroscopic ellipsometry (VASE), which confirms the formation of thin multilayer films. We found that the (TA/PSBMA)n multilayers are stable over a wide pH range of 4-10 and in saline, such as 1 M NaCl or urea solution. The surface morphology and chemical composition were characterized by specular reflectance Fourier transform infrared spectroscopy (FTIR/SR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, (TA/PSBMA)n multilayers show high hydrophilicity, with a water contact angle lower than 15°. A QCM was used to record the dynamic protein adsorption process. Adsorption amounts of bovine serum albumin (BSA), lysozyme (Lys), and hemoglobin (Hgb) on (TA/PSBMA)20 multilayers decreased to 0.42, 52.9, and 37.9 ng/cm(2) from 328, 357, and 509 ng/cm(2) on a bare gold chip surface, respectively. In addition, the protein-resistance property depends upon the outmost layer. This work provides new insights into the LBL assembly of zwitterionic polymers. PMID:25966974

  10. Stability and self-assembly of the S-layer protein of the cell wall of Bacillus stearothermophilus.

    PubMed

    Jaenicke, R; Welsch, R; Sára, M; Sleytr, U B

    1985-07-01

    The surface layer of the cell envelope of Bacillus stearothermophilus consists of a regular array of protein subunits. As shown by dodecyl sulfate polyacrylamide gel-electrophoresis and ultracentrifugation, the fully solubilized S-layer protein represents a homogeneous entity with a subunit molecular mass of 115 +/- 5 kDa. Solubilization of the protein may be accomplished at acid pH, or using high concentrations of urea or guanidine X HCl. It is accompanied by (partial) denaturation, thus interfering with the characterization of the protein in its unperturbed native state. Removal of the solubilizing agent by dialysis or dilution allows the S-layer to be reassembled into two-dimensional crystalline lattices identical to those observed in intact cells. To determine the kinetics of association, optimum conditions are found to be rapid mixing with 0.1 M sodium phosphate pH 7.0, 20 degrees C, final protein concentration greater than 10 micrograms/ml. If the time course of the self-assembly is monitored by light scattering, as well as by chemical cross-linking with glutardialdehyde, multiphasic kinetics with a rapid initial phase and slow consecutive processes of higher than second-order are observed. The rapid phase may be attributed to the formation of oligomeric precursors (Mr greater than 10(6) ). Concentration-dependent light scattering measurements give evidence for a "critical concentration" of association, suggesting that patches of 12-16 protein subunits fuse and recrystallize into the final (native) S-layer structure. Recrystallization tends to be complete. PMID:4041240

  11. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    PubMed

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants. PMID:26844589

  12. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  13. A simultaneous electrochemical multianalyte immunoassay of high sensitivity C-reactive protein and soluble CD40 ligand based on reduced graphene oxide-tetraethylene pentamine that directly adsorb metal ions as labels.

    PubMed

    Yuan, Guolin; Yu, Chao; Xia, Chunyong; Gao, Liuliu; Xu, Wailan; Li, Wenjuan; He, Junlin

    2015-10-15

    A simplified electrochemical multianalyte immunosensor for the simultaneous detection of high sensitivity C-reactive protein (hsCRP) and soluble CD40 ligand (sCD40L) that uses reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) that directly adsorbs metal ions as labels is reported. rGO-TEPA contains a large number of amino groups and has excellent conductivity, making it an ideal template for the loading of Pb(2+) and Cu(2+), which greatly amplifies the detection signals. The signals could be directly detected in a single run through differential pulse voltammetry (DPV), and each biorecognition event produces a distinct voltammetric peak. The position and size of each peak reflects the identity and the level of the corresponding antigen. Primarily designed for an application in a sandwich-type immunoassay based on Pb(2+) and Cu(2+) labels, two main challenges are accomplished with the herein presented nanosheets: fabrication of the template and the amination process for Pb(2+) and Cu(2+) adsorption. To further improve the analytical performance of the immunosensor, Au@bovine serum albumin (BSA) nanospheres synthesized through a "green" synthesis route were used as a sensor platform, which not only provides a biocompatible microenvironment for the immobilization of antibodies but also amplifies the electrochemical signals. Under optimal conditions, hsCRP and sCD40L could be assayed in the range of 0.05 to 100 ng mL(-1) with detection limits of 16.7 and 13.1 pg mL(-1) (S/N=3), respectively. The assay results on clinical serum samples with the proposed immunosensor were in acceptable agreement with those using the standard single-analyte test of the enzyme-linked immunosorbent assay (ELISA). This novel immunosensing system provides a simple, sensitive and low-cost approach for a multianalyte immunoassay. PMID:25985199

  14. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  15. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro.

    PubMed

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca(2+)) ions, with an optimal concentration of 10 mM. Further increase of the Ca(2+) concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications. PMID:21258149

  16. Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans

    DOE PAGESBeta

    Farci, Domenica; Bowler, Matthew W.; Esposito, Francesca; McSweeney, Sean; Tramontano, Enzo; Piano, Dario

    2015-06-03

    The protein DR_2577 is a major Surface layer component of the radio-resistant bacterium Deinococcus radiodurans. In the present study DR_2577 has been purified and its oligomeric profile characterized by means of size exclusion chromatography and gel electrophoresis. DR_2577 was found to be organized into three hierarchical orders characterized by monomers, stable dimers formed by the occurrence of disulfide bonds, and hexamers resulting from a combination of dimers. Finally, the structural implications of these findings are discussed providing new elements for a more integrated model of this S-layer.

  17. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.

    PubMed

    Wang, Xiaobo; Yan, Yong; Hao, Bo; Chen, Ge

    2013-05-01

    Through an aqueous, protein-mediated layer-by-layer titania deposition process, we have fabricated a protamine/titania composite layer on nickel foam. The coating was composed of amorphous carbon and TiO2(B)/anatase nanoparticles and formed upon organic pyrolysis under a reducing atmosphere (5% H2-Ar mixture). X-ray diffraction analyses, Auger electron spectroscopy, and high-resolution transmission electron microscopy revealed that the obtained coatings contained fine monoclinic TiO2(B) and anatase nanocrystals, along with amorphous carbon. Moreover, the coating can be used as a binder-free negative electrode material for lithium-ion batteries and exhibits high reversible capacity and fast charge-discharge properties; a reversible capacity of 245 mAh g(-1) was obtained at a current density of 50 mA g(-1), and capacities of 167 and 143 mAh g(-1) were obtained at current densities of 1 and 2 A g(-1), respectively. PMID:23597025

  18. Adsorption, aggregation, and desorption of proteins on smectite particles.

    PubMed

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-01

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes. PMID:25216210

  19. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

    NASA Astrophysics Data System (ADS)

    Junghans, F.; Morawietz, M.; Conrad, U.; Scheibel, T.; Heilmann, A.; Spohn, U.

    2006-02-01

    Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation. The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

  20. A high-capacity hydrophobic adsorbent for human serum albumin.

    PubMed

    Belew, M; Peterson, E A; Porath, J

    1985-12-01

    A simple method, based on salting out hydrophobic interaction chromatography, for the efficient removal of trace amounts of serum albumin from partially purified protein preparations is described. The method is also successfully applied for the purification of albumin from Cohn fraction IV, a by-product obtained from the commercial fractionation of human serum proteins by the ethanol precipitation procedure. About 70% of the adsorbed albumin can be eluted by buffer of low ionic strength and can thus be lyophilized directly, if required. The adsorbent can be used for several cycles of adsorption and desorption without affecting its selectivity or capacity. Its adsorption properties and capacity for serum albumin are compared with those of the commercially available adsorbent Blue Sepharose CL-6B. PMID:3879424

  1. Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein

    NASA Astrophysics Data System (ADS)

    Barbosa, J. S.; Costa, R. R.; Testera, A. M.; Alonso, M.; Rodríguez-Cabello, J. C.; Mano, J. F.

    2009-10-01

    Electrostatic self-assembly was used to fabricate new smart multi-layer coatings, using a recombinant elastin-like polymer (ELP) and chitosan as the counterion macromolecule. The ELP was bioproduced, purified and its purity and expected molecular weight were assessed. Aggregate size measurements, obtained by light scattering of dissolved ELP, were performed as a function of temperature and pH to assess the smart properties of the polymer. The build-up of multi-layered films containing ELP and chitosan, using a layer-by-layer methodology, was followed by quartz-crystal microbalance with dissipation monitoring. Atomic force microscopy analysis permitted to demonstrate that the topography of the multi-layered films could respond to temperature. This work opens new possibilities for the use of ELPs in the fabrication of biodegradable smart coatings and films, offering new platforms in biotechnology and in the biomedical area.

  2. Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein

    PubMed Central

    2009-01-01

    Electrostatic self-assembly was used to fabricate new smart multi-layer coatings, using a recombinant elastin-like polymer (ELP) and chitosan as the counterion macromolecule. The ELP was bioproduced, purified and its purity and expected molecular weight were assessed. Aggregate size measurements, obtained by light scattering of dissolved ELP, were performed as a function of temperature and pH to assess the smart properties of the polymer. The build-up of multi-layered films containing ELP and chitosan, using a layer-by-layer methodology, was followed by quartz-crystal microbalance with dissipation monitoring. Atomic force microscopy analysis permitted to demonstrate that the topography of the multi-layered films could respond to temperature. This work opens new possibilities for the use of ELPs in the fabrication of biodegradable smart coatings and films, offering new platforms in biotechnology and in the biomedical area. PMID:20596391

  3. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-01

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. PMID:24001944

  4. Nanosize electropositive fibrous adsorbent

    DOEpatents

    Tepper, Frederick; Kaledin, Leonid

    2005-01-04

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2 /g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.

  5. Kinetics of Protein Adsorption at liquid/solid interfaces

    NASA Astrophysics Data System (ADS)

    Bellion, Markus; Santen, Ludger; Nagel, Armin; Mantz, Hubert; Quinn, Anthony; Jacobs, Karin

    2006-03-01

    Protein adsorption processes are of crucial importance in many biomedical processes. From a physical point of view these processes raise a number of challenging questions, e.g.: How does the surface influence the conformation of proteins at the surface? What are the characteristics of the protein film at the liquid/solid interface? In this work we investigate the adsorption kinetics of salivary proteins on different kinds of surfaces in a liquid environment. The adsorbed protein layers are analyzed by means of ellipsometry, plasmon resonance, and SPM. It turns out that the adsorbed amount of proteins is sensitive to the long ranged interactions of the solid surface. The experimental data are compared to extensive Monte Carlo simulation of a colloidal protein model. The Monte Carlo results strongly suggest that induced conformal changes lead to the experimentally observed three step kinetics of amylase.

  6. Lactobacillus helveticus MIMLh5-specific antibodies for detection of S-layer protein in Grana Padano protected-designation-of-origin cheese.

    PubMed

    Stuknyte, Milda; Brockmann, Eeva-Christine; Huovinen, Tuomas; Guglielmetti, Simone; Mora, Diego; Taverniti, Valentina; Arioli, Stefania; De Noni, Ivano; Lamminmäki, Urpo

    2014-01-01

    Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods. PMID:24242242

  7. Polydopamine meets porous membrane: A versatile platform for facile preparation of membrane adsorbers.

    PubMed

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2016-05-27

    Polydopamine, as an intermediate layer coated on PES membrane, was applied to fabricate various membrane adsorbers. Anion-exchange, hydrophobic interaction and affinity membrane adsorbers prepared by this facile method exhibited a high selectivity in fractionation of IgG (immunoglobulin)/HSA (human serum albumin) mixture. The anion-exchange membrane adsorber containing polyethylenimine (PEI) improved the HSA purity from 17.7% to 96.7%; The hydrophobic interaction membrane adsorber with Dodecyl mercaptan (DDM) as ligand obtained an IgG purity of 94.6%; Histidine attached affinity membrane chromatography achieved nearly a 100% purity of IgG. The present work indicated that the polydopamine layer not only activated membrane surface to attach various adsorptive ligands under the mild condition, but also reduced non-specific adsorption. Due to the versatile conjunction function, this facile mussel-inspired coating is also promising for the preparation of diverse membrane adsorbers. PMID:27131962

  8. A Bottom-Up Approach to Understanding Protein Layer Formation at Solid-Liquid Interfaces

    PubMed Central

    Kastantin, Mark; Langdon, Blake B.; Schwartz, Daniel K.

    2014-01-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  9. A bottom-up approach to understanding protein layer formation at solid-liquid interfaces.

    PubMed

    Kastantin, Mark; Langdon, Blake B; Schwartz, Daniel K

    2014-05-01

    A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors. PMID:24484895

  10. Study on Wear Reduction Mechanisms of Artificial Cartilage by Synergistic Protein Boundary Film Formation

    NASA Astrophysics Data System (ADS)

    Nakashima, Kazuhiro; Sawae, Yoshinori; Murakami, Teruo

    Poly(vinyl alcohol) (PVA) hydrogel is one of the anticipated materials for artificial cartilage. PVA hydrogel has high water content and a low elastic modulus similar to natural cartilage, but its major disadvantage is its lower strength. PVA hydrogel experienced rapid wear under severe conditions such as mixed or boundary lubrication. Therefore, the existence of a protective surface film with low friction becomes important to prevent surface failure. In this study, the reciprocating frictional tests for a sliding pair of PVA hydrogel and glass plate were carried out, and fluorescent observations were performed to identify the roles of adsorbed protein film. Albumin and γ-globulin, which are contained in natural synovial fluid, were used by mixing into the lubricant. It appears that groups of albumin molecules adsorb on the smooth γ-globulin adsorbed layer at content of 2.1wt% of proteins with an appropriate ratio. But in the case of a lubricant which has excessive protein at 2.8wt%, albumin and γ-globulin adsorbed separately. Considering the wear reduction at 2.1wt% content of protein, albumin and γ-globulin constituted synergistic adsorbed film for wear reduction. It is indicated that albumin constructs a low shear layer and γ-globulin forms a layer protecting PVA hydrogel from wear. It is considered that wear and friction of PVA hydrogel were reduced due to slip of the boundary of adsorbed albumin and γ-globulin layer. Content of protein and ratio of albumin to γ-globulin (AG ratio) are important to constitute the appropriate protein film.

  11. Deoxynivalenol Impairs Hepatic and Intestinal Gene Expression of Selected Oxidative Stress, Tight Junction and Inflammation Proteins in Broiler Chickens, but Addition of an Adsorbing Agent Shifts the Effects to the Distal Parts of the Small Intestine

    PubMed Central

    Osselaere, Ann; Santos, Regiane; Hautekiet, Veerle; De Backer, Patrick; Chiers, Koen; Ducatelle, Richard; Croubels, Siska

    2013-01-01

    Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON. PMID:23922676

  12. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress1[W

    PubMed Central

    Barba-Espín, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per; Svensson, Birte; Finnie, Christine

    2014-01-01

    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion. PMID:24344171

  13. Determination of 1-naphthol and 2-naphthol from environmental waters by magnetic solid phase extraction with Fe@MgAl-layered double hydroxides nanoparticles as the adsorbents prior to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Lei, Man; Li, Jing; Zhao, Kuifu; Liu, Yongli

    2016-04-01

    Magnetic Fe@MgAl-layered double hydroxides (MgAl-LDHs) composite was firstly synthesized by coating MgAl-layered double hydroxides on the surface of the dispersed nanoscale zero valent irons with co-precipitation method and characterized by transmission electron microscopy and X-ray diffraction techniques. The synthesized Fe@MgAl-LDHs nanoparticles were investigated for magnetic solid phase extraction (MSPE) of 1-naphthol and 2-naphthol from the water samples. The elutent containing 1-naphthol and 2-naphthol was analyzed by high performance liquid chromatography with variable wavelength detection (HPLC-UV). Under optimal conditions, there is good linear relationship between the concentration and the peak area in the range of 0.5-200 μgL(-1) with the correlation coefficients (r(2)) above 0.998 for 1-naphthol and 2-naphthol. The limits of detection were 0.22 μgL(-1) and 0.19 μgL(-1) for 1-naphthol and 2-naphthol, respectively, and precisions were both below 2.5% (n=6). The real water analysis demonstrated that the spiked recoveries were in the range of 79.2-80.9% (n=3). All these results indicated that the developed MSPE-HPLC-UV method was proved to be an efficient tool for the analysis of naphthols. PMID:26965650

  14. Chitosan membrane adsorber for low concentration copper ion removal.

    PubMed

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  15. On the neutron scattering length density of proteins in H2O/D2O

    NASA Astrophysics Data System (ADS)

    Efimova, Y. M.; van Well, A. A.; Hanefeld, U.; Wierczinski, B.; Bouwman, W. G.

    2004-07-01

    The structure of the protein layers adsorbed at different interfaces can be determined by using neutron-reflection and small-angle neutron scattering. For highlighting the adsorbed protein layer at the interface, the technique of contrast-variation by changing the H2O/D2O ratio, is often used. For determining the scattering length density, both the protein volume in solution and the total scattering length of the protein is needed. The volume is calculated from the amino-acid sequence. For calculating the scattering length, the H/D exchange of the labile protons of the protein should be taken into account. For monitoring the H/D exchange, Positive Electrospray Ionization Mass Spectroscopy was applied. We compare experimental results for the exchange in lysozyme and β-casein with theoretical calculations. The importance of using the correct protein scattering-length density is elucidated by simultaneous model fitting to neutron reflection data at different water contrasts.

  16. 7 Å projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals

    PubMed Central

    Norville, Julie E.; Kelly, Deborah F.; Knight, Thomas F.; Belcher, Angela M.; Walz, Thomas

    2007-01-01

    Two-dimensional crystallization on lipid monolayers is a versatile tool to obtain structural information of proteins by electron microscopy. An inherent problem with this approach is to prepare samples in a way that preserves the crystalline order of the protein array and produces specimens that are sufficiently flat for high-resolution data collection at high tilt angles. As a test specimen to optimize the preparation of lipid monolayer crystals for electron microscopy imaging, we used the S-layer protein sbpA, a protein with potential for designing arrays of both biological and inorganic materials with engineered properties for a variety of nanotechnology applications. Sugar embedding is currently considered the best method to prepare two-dimensional crystals of membrane proteins reconstituted into lipid bilayers. We found that using a loop to transfer lipid monolayer crystals to an electron microscopy grid followed by embedding in trehalose and quick-freezing in liquid ethane also yielded the highest resolution images for sbpA lipid monolayer crystals. Using images of specimens prepared in this way we could calculate a projection map of sbpA at 7 Å resolution, one of the highest resolution projection structures obtained with lipid monolayer crystals to date. PMID:17638580

  17. A Multi-layered Protein Network Stabilizes the Escherichia coli FtsZ-ring and Modulates Constriction Dynamics

    PubMed Central

    Buss, Jackson; Coltharp, Carla; Shtengel, Gleb; Yang, Xinxing; Hess, Harald; Xiao, Jie

    2015-01-01

    The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring) at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome). Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation. PMID:25848771

  18. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  19. Nitric oxide releasing material adsorbs more fibrinogen.

    PubMed

    Lantvit, Sarah M; Barrett, Brittany J; Reynolds, Melissa M

    2013-11-01

    One mechanism of the failure of blood-contacting devices is clotting. Nitric oxide (NO) releasing materials are seen as a viable solution to the mediation of surface clotting by preventing platelet activation; however, NO's involvement in preventing clot formation extends beyond controlling platelet function. In this study, we evaluate NO's effect on factor XII (fibrinogen) adsorption and activation, which causes the initiation of the intrinsic arm of the coagulation cascade. This is done by utilizing a model plasticized poly(vinyl) chloride (PVC), N-diazeniumdiolate system and looking at the adsorption of fibrinogen, an important clotting protein, to these surfaces. The materials have been prepared in such a way to eliminate changes in surface properties between the control (plasticized PVC) and composite (NO-releasing) materials. This allows us to isolate NO release and determine the effect on the adsorption of fibrinogen, to the material surface. Surprisingly, it was found that an NO releasing material with a surface flux of 17.4 ± 0.5 × 10(-10) mol NO cm(-2) min(-1) showed a significant increase in the amount of fibrinogen adsorbed to the material surface compared to one with a flux of 13.0 ± 1.6 × 10(-10) mol NO cm(-2) min(-1) and the control (2334 ± 496, 226 ± 99, and 103 ±31% fibrinogen adsorbed of control, respectively). This study suggests that NO's role in controlling clotting is extended beyond platelet activation. PMID:23554300

  20. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    PubMed

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis. PMID:26769222

  1. MEASUREMENTS OF CONFORMATION CHANGES DURING ADHESION OF LIPID PROTEIN (POLYLYSINE AND S-LAYER) SURFACES

    EPA Science Inventory

    The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique which allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. hree types of biologi...

  2. Monolayers of photosystem II on gold electrodes with enhanced sensor response--effect of porosity and protein layer arrangement.

    PubMed

    Maly, J; Krejci, J; Ilie, M; Jakubka, L; Masojídek, J; Pilloton, R; Sameh, K; Steffan, P; Stryhal, Z; Sugiura, M

    2005-04-01

    Mass transport of the bulk of the analyte to the electrode and through the bioactive layer can be significantly improved by use of the nanoelectrode array and defined arrangement of protein film. This phenomenon has been studied by (i) atomic-force microscopy, (ii) electrochemical measurements of PSII activity, and (iii) digital simulations for an oriented monolayer of histidine-tagged photosystem II (PSII) immobilized on nitrilotriacetic acid (NTA)-modified gold electrodes. The output signal of the electrochemical biosensor is controlled by (i) mass transport from the bioactive layer to electrode and (ii) mass transport between the bulk of the analyte and the electrode. Mass transport through the bioactive layer was electrochemically studied for PSII self-assembled on gold screen-printed electrodes. A densely packed monolayer of PSII has a significant shielding effect toward the diffusion of redox mediator duroquinone (DQ). Mass transport to the planar electrode surface was improved by co-immobilization of bovine-serum albumin (BSA) as spacer biomolecule in the monolayer of PSII. Correlation between the electrochemical properties and surface arrangement of the resulting protein films was clearly observable and confirmed the improved mass-transport properties of structured enzyme monolayers. On the basis of this observation, the application of a bottom-up approach for improvement of electrode performance was proposed and digitally simulated for an infinite array of electrodes ranging in diameter from 50 nm to 5 microm. The nanoelectrode array, with the optimum time window selected for measurements, enables enhancement of mass transport between the bulk of the analyte and the macroelectrode by a factor of up to 50 in comparison with "classical" planar electrodes. Use of a time window enables minimization of crosstalk between individual electrodes in the array. The measurements require methods which suppress the double-layer capacity. PMID:15821904

  3. [DSC and FTIR study of adsorbed lysozyme on hydrophobic surface].

    PubMed

    Lei, Zu-meng; Geng, Xin-peng; Dai, Li; Geng, Xin-du

    2008-09-01

    During a process of hen egg white lysozyme adsorption and folding on a moderately hydrophobic surface (PEG-600), the effects of salt((NH4)2SO4) concentrations, surface coverage and denaturant (guanidine hydrochloride, GuHCl) concentrations on thermal stability and the changes in the molecular conformation of adsorbed native and denatured lysozyme without aqueous solution were studied with a combination of differential scanning calorimetry (DSC) with FTIR spectroscopy. The results showed that temperature due to endothermic peaks was reduced and the disturbance increased at higher temperature with the increase in salt concentration and surface coverage of adsorbed protein. beta-Sheet and beta-Turn stucture increased while alpha-Helix structure decreased after the adsorption. The peaks corresponding to both C-C stretching frequency in 1400-1425 cm(-1) and amide I band frequency in 1650-1670 cm(-1) of adsorbed denatured lysozyme can be detected in FTIR spectra while that due to amide I band frequency of adsorbed native lysozyme almost can't be observed. Adsorption resulted in structural loss of adsorbed native lysozyme, whose performance was less stable. PMID:19093560

  4. Truncation Derivatives of the S-Layer Protein of Sporosarcina ureae ATCC 13881 (SslA): Towards Elucidation of the Protein Domain Responsible for Self-Assembly.

    PubMed

    Varga, Melinda

    2016-01-01

    The cell surface of Sporosarcina ureae ATCC 13881 is covered by an S-layer (SslA) consisting of identical protein subunits that assemble into lattices exhibiting square symmetry. In this work the self-assembly properties of the recombinant SslA were characterised with an emphasis on the identification of protein regions responsible for self-assembly. To this end, recombinant mature SslA (aa 31-1097) and three SslA truncation derivatives (one N-terminal, one C-terminal and one CN-terminal) were produced in a heterologous expression system, isolated, purified and their properties analysed by in vitro recrystallisation experiments on a functionalised silicon wafer. As a result, recombinant mature SslA self-assembled into crystalline monolayers with lattices resembling the one of the wild-type SslA. The study identifies the central protein domain consisting of amino acids 341-925 self-sufficient for self-assembly. Neither the first 341 amino acids nor the last 172 amino acids of the protein sequence are required to self-assemble into lattices. PMID:27563868

  5. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  6. Reflectivity studies on adsorbed block copolymers under shear

    SciTech Connect

    Smith, G.S.; Wages, S.; Baker, S.M.; Toprakcioglu, C.; Hadziioannou, G.

    1994-12-01

    The authors report neutron reflectivity data on (poly)styrene-(poly)ethylene oxide (PS-PEO) diblock copolymers adsorbed onto quartz from the selective solvent cyclohexane (a non-solvent for PEO and a poor solvent for PS). The PEO ``anchor block`` adsorbs strongly to form a thin layer on the quartz substrate, while the deuterated PS chains dangle into the solvent. They find that under static conditions the density profile of the PS block in a poor solvent can be well described by a Schultz function which is indicative of a polymer ``mushroom.`` Furthermore, they have studied the same system under shear at shear rates from 0--400s{sup {minus}1}. They find that there is a dramatic increase in the thickness of the PS layer under shear in cyclohexane and that the relaxation time from the shear-on profile back to the static profile is on the order of several days.

  7. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  8. Studying the Stability of S-Layer Protein of Lactobacillus Acidophilus ATCC 4356 in Simulated Gastrointestinal Fluids Using SDS-PAGE and Circular Dichroism

    PubMed Central

    Eslami, Neda; Kermanshahi, Rouha Kasra; Erfan, Mohammad

    2013-01-01

    Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are now recognized as one of the most common outermost cell envelope components of prokaryotic organisms. The surface layer protein of Lactobacillus acidophilus ATCC4356 is composed of a single species of protein of apparent molecular weight of 43-46 KDa. Considering the Lactobacillus acidophilus ATCC4356 having the S-layer is stable in harsh gastrointestinal (GI) conditions, a protective role against destructive GI factors which has been proposed for these nanostructures. It opens interesting perspectives in the using and development of this S-layer as a protective coat for oral administration of unstable drug nanocarriers. To achieve this goal, it is necessary to study the in-vitro stability of the S-layers in the simulated gastrointestinal fluids (SGIF). This study was planned to evaluate the in-vitro stability of the extracted S-layer protein of Lactobacillus acidophilus ATCC4356 in SGIF using it as a protective coat in oral drug delivery. Sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy were used to study the stability of the S-layer protein incubated in SGIF. Both the SDS-PAGE and CD spectra results showed that Lactobacillus acidophilus ATCC4356 S-layer protein is stable in simulated gastric fluid (SGF) with pH = 2 up to 5 min. It is stable in SGF pH = 3.2 and above it, with and without pepsin. It is also stable in all the simulated intestinal fluids. This S-layer is also stable in all of the simulated intestinal fluids. PMID:24250671

  9. Molecular characterization of the S-layer gene, sbpA, of Bacillus sphaericus CCM 2177 and production of a functional S-layer fusion protein with the ability to recrystallize in a defined orientation while presenting the fused allergen.

    PubMed

    Ilk, Nicola; Völlenkle, Christine; Egelseer, Eva M; Breitwieser, Andreas; Sleytr, Uwe B; Sára, Margit

    2002-07-01

    The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5' end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA(31-1068)). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA(31-1068). Labeling of the square S-layer lattice formed by recrystallization of rSbpA(31-1068)/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices. PMID:12089001

  10. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  11. Protein deposition on field-emitter tips and its removal by UV radiation

    NASA Astrophysics Data System (ADS)

    Panitz, J. A.; Giaever, I.

    1980-07-01

    Protein deposition on field-emitter tips has been examined using Transmission Electron Microscopy to view the protein coated tip profile. A single layer of adsorbed protein is barely if at all detectable, but double and triple layers produced by the immunologic reaction can be directly observed. As a result, the thickness and morphology of antigen-antibody layers has been directly observed for the first time. Tips exposed first to Bovine Serum Albumin (BSA) and then to anti-BSA rabbit serum are covered with a reasonably uniform, double protein layer ≈130 Å thick. This layer can be built-up to a triple layer ≈275 Å thick by additional exposure to anti-rabbit IgG goat serum. Surface tension forces during the drying process which follows protein deposition appear to affect the thickness and morphology of the protein layers. The oxidation and subsequent change in the morphology of a protein layer exposed to ultraviolet radiation has also been observed using TEM. The destruction of a triple protein layer at a rate of ≈0.5 Å/s is observed for tungsten tips exposed to ≈6 W of UV radiation from a high-pressure mercury arc in laboratory ambient. These results are compared to those obtained from a simple, visual test for protein layer adsorption in which submonolayer coverages of protein can be detected with the unaided eye.

  12. LC-MS/MS analysis of surface layer proteins as a useful method for the identification of lactobacilli from the Lactobacillus acidophilus group.

    PubMed

    Podlesny, Marcin; Jarocki, Piotr; Komon, Elwira; Glibowska, Agnieszka; Targonski, Zdzislaw

    2011-04-01

    For precise identification of a Lactobacillus K1 isolate, LC-MS/MS analysis of the putative surface layer protein was performed. The results obtained from LTQ-FT-ICR mass spectrometry confirmed that the analyzed protein spot is the surface layer protein originating from Lb. helveticus species. Moreover, the identified protein has the highest similarity with the surface layer protein from Lb. helveticus R0052. To evaluate the proteomic study, multilocus sequence analysis of selected housekeeping gene sequences was performed. Combination of 16S rRNA sequencing with partial sequences for the genes encoding the RNA polymerase alpha subunit (rpoA), phenylalanyl-tRNA synthase alpha subunit (pheS), translational elongation factor Tu (tuf), and Hsp60 chaperonins (groEL) also allowed to classify the analyzed isolate as Lb. helveticus. Further classification at the strain level was achieved by sequencing of the slp gene. This gene showed 99.8% identity with the corresponding slp gene of Lb. helveticus R0052, which is in good agreement with data obtained by nano-HPLC coupled to an LTQ-FT-ICR mass spectrometer. Finally, LC-MS/ MS analysis of surface layer proteins extracted from three other Lactobacillus strains proved that the proposed method is the appropriate molecular tool for the identification of S-layer-possessing lactobacilli at the species and even strain levels. PMID:21532327

  13. Description of a Putative Oligosaccharyl:S-Layer Protein Transferase from the Tyrosine O-Glycosylation System of Paenibacillus alvei CCM 2051T

    PubMed Central

    Ristl, Robin; Janesch, Bettina; Anzengruber, Julia; Forsthuber, Agnes; Blaha, Johanna; Messner, Paul; Schäffer, Christina

    2015-01-01

    Surface (S)-layer proteins are model systems for studying protein glycosylation in bacteria and simultaneously hold promises for the design of novel, glyco-functionalized modules for nanobiotechnology due to their 2D self-assembly capability. Understanding the mechanism governing S-layer glycan biosynthesis in the Gram-positive bacterium Paenibacillus alvei CCM 2051T is necessary for the tailored glyco-functionalization of its S-layer. Here, the putative oligosaccharyl:S-layer protein transferase WsfB from the P. alvei S-layer glycosylation gene locus is characterized. The enzyme is proposed to catalyze the final step of the glycosylation pathway, transferring the elongated S-layer glycan onto distinct tyrosine O-glycosylation sites. Genetic knock-out of WsfB is shown to abolish glycosylation of the S-layer protein SpaA but not that of other glycoproteins present in P. alvei CCM 2051T, confining its role to the S-layer glycosylation pathway. A transmembrane topology model of the 781-amino acid WsfB protein is inferred from activity measurements of green fluorescent protein and phosphatase A fused to defined truncations of WsfB. This model shows an overall number of 13 membrane spanning helices with the Wzy_C domain characteristic of O-oligosaccharyl:protein transferases (O-OTases) located in a central extra-cytoplasmic loop, which both compares well to the topology of OTases from Gram-negative bacteria. Mutations in the Wzy_C motif resulted in loss of WsfB function evidenced in reconstitution experiments in P. alvei ΔWsfB cells. Attempts to use WsfB for transferring heterologous oligosaccharides to its native S-layer target protein in Escherichia coli CWG702 and Salmonella enterica SL3749, which should provide lipid-linked oligosaccharide substrates mimicking to some extent those of the natural host, were not successful, possibly due to the stringent function of WsfB. Concluding, WsfB has all features of a bacterial O-OTase, making it the most probable candidate

  14. SPR-MS: from identifying adsorbed molecules to image tissues

    NASA Astrophysics Data System (ADS)

    Masson, Jean-François; Breault-Turcot, Julien; Forest, Simon; Chaurand, Pierre

    2015-03-01

    Surface plasmon resonance (SPR) sensors have become valuable analytical sensors for biomolecule detection. While SPR is heralded with high sensitivity, label-free and real-time detection, nonspecific adsorption and detection of ultralow concentrations remain issues. Nonspecific adsorption can be minimized using adequate surface chemistry. For example, we have employed peptide monolayers to reduce nonspecific adsorption of crude serum or cell lysate. It is important to uncover the nature of molecules nonspecifically adsorbing to surfaces in these biofluids, to further improve understanding of the nonspecific adsorption processes. Mass spectrometry (MS) provides a complementary tool to SPR to identify biomolecule adsorbed to surface. Trypsic digestion of the proteins adsorbed to surfaces led to identification of characteristic peptides from the proteins involved in nonspecific adsorption. Nonspecific adsorption in crude cell lysate results mainly from lipids, as confirmed with SPR and MS but proteins were observed on some surfaces. In another application of SPR and MS, imaging SPR can be used in combination to imaging MS to image tissue sections. Thin sections of mouse liver were inserted in the fluidic chamber of a SPRi instrument and proteins were transferred to the SPRi chip. The SPR chip was then imaged using MALDI imaging MS to identify the biomolecules that were transferred to the SPRi chip.

  15. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  16. Recrystallized S-layer protein of a probiotic Propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM.

    PubMed

    de sa Peixoto, Paulo; Roiland, Claire; Thomas, Daniel; Briard-Bion, Valérie; Le Guellec, Rozenn; Parayre, Sandrine; Deutsch, Stéphanie-Marie; Jan, Gwénaël; Guyomarc'h, Fanny

    2015-01-01

    Surface protein layers (S layers) are common constituents of the bacterial cell wall and originate from the assembly of strain-dependent surface layer proteins (Slps). These proteins are thought to play important roles in the bacteria's biology and to have very promising technological applications as biomaterials or as part of cell-host cross-talk in probiotic mechanism. The SlpA from Propionibacterium freudenreichii PFCIRM 118 strain was isolated and recrystallized to investigate organization and assembly of the protein using atomic force microscopy and solid-state (1)H and (13)C-nuclear magnetic resonance. SlpA was found to form hexagonal p1 monolayer lattices where the protein exhibited high proportions of disordered regions and of bound water. The lattice structure was maintained, but softened, upon mild heating or acidification, probably in relation with the increasing mobilities of the disordered protein regions. These results gave structural insights on the mobile protein regions exposed by S layer films, upon physiologically relevant changes of their environmental conditions. PMID:25479375

  17. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    PubMed

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system. PMID:23566015

  18. Hypothetical Protein Avin_16040 as the S-Layer Protein of Azotobacter vinelandii and Its Involvement in Plant Root Surface Attachment

    PubMed Central

    Jong, Bor Chyan

    2015-01-01

    A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface. PMID:26276116

  19. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry

    PubMed Central

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-01-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6–8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay’s experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635

  20. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry.

    PubMed

    Naik, Subhashchandra; Kumru, Ozan S; Cullom, Melissa; Telikepalli, Srivalli N; Lindboe, Elizabeth; Roop, Taylor L; Joshi, Sangeeta B; Amin, Divya; Gao, Phillip; Middaugh, C Russell; Volkin, David B; Fisher, Mark T

    2014-10-01

    The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates. PMID:25043635

  1. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. PMID:26709174

  2. Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents.

    PubMed

    Schwellenbach, Jan; Taft, Florian; Villain, Louis; Strube, Jochen

    2016-05-20

    Motivated by the demand for more economical capture and polishing steps in downstream processing of protein therapeutics, a novel strong cation-exchange chromatography stationary phase based on polyethylene terephthalate (PET) high surface area short-cut fibers is presented. The fiber surface is modified by grafting glycidyl methacrylate (GMA) via surface-initiated atom transfer radical polymerization (SI-ATRP) and a subsequent derivatization leading to sulfonic acid groups. The obtained cation-exchange fibers have been characterized and compared to commercially available resin and membrane based adsorbers. High volumetric static binding capacities for lysozyme (90mg/mL) and polyclonal human IgG (hIgG, 92mg/mL) were found, suggesting an efficient multi-layer binding within the grafted hydrogel layer. A packed bed of randomly orientated fibers has been tested for packing efficiency, permeability and chromatographic performance. High dynamic binding capacities for lysozyme (50mg/mL) and hIgG (54mg/mL) were found nearly independent of the bed-residence time, revealing a fast mass-transport mechanism. Height equivalent to a theoretical plate (HETP) values in the order of 0.1 cm and a peak asymmetry factor (AF) of 1.8 have been determined by tracer experiments. Additionally inverse size-exclusion chromatography (iSEC) revealed a bimodal structure within the fiber bed, consisting of larger transport channels, formed by the voidage between the fibers, and a hydrogel layer with porous properties. PMID:27106396

  3. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues.

    PubMed

    Jakava-Viljanen, Miia; Palva, Airi

    2007-10-01

    Surface-layer proteins (Slps) of lactobacilli have been shown to confer tissue adherence. This study aimed to isolate and identify Slps carrying Lactobacillus species from the porcine intestine and faeces and to characterize these S-layer-expressing strains for their ability to adhere to the pig and human intestinal cells and to extracellular matrix (ECM) proteins. In total 99 strains, putatively belonging to the genus Lactobacillus, were isolated as pure cultures. SDS-PAGE and a gene probe specific for the Lactobacillus brevis ATCC 8287 S-layer protein gene (slpA) were used to screen the presence of strains possessing putative Slps. Eight of the 99 pure cultures exhibited Slps according to the SDS-PAGE analyses. In these strains the presence of genes encoding Slps was confirmed by PCR and partial sequencing. Only one isolate of the 99 strains gave a positive hybridisation signal with the L. brevis slpA probe but did not appear to produce S-layer protein. Their taxonomic identification, based on phenotyping and the 16S rRNA sequences, revealed that the eight S-layer protein-producing strains were closely related to Lactobacillus amylovorus, Lactobacillus sobrius and Lactobacillus crispatus. The strain with the slpA positive hybridisation result was identified as Lactobacillus mucosae. The SDS-extractable protein profile, the size of the putative S-layer protein and binding capability of the strains varied greatly, even among the isolates belonging to the same Lactobacillus cluster. Removal of the intact Slps from the bacterial surface by extraction with guanidine hydrochloride reduced the adhesion of some strains to fibronectin and laminin, whereas, the adhesiveness to laminin increased with some strains. PMID:17544232

  4. Advancing the use of Lactobacillus acidophilus surface layer protein A for the treatment of intestinal disorders in humans.

    PubMed

    Sahay, Bikash; Ge, Yong; Colliou, Natacha; Zadeh, Mojgan; Weiner, Chelsea; Mila, Ashley; Owen, Jennifer L; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immunity is subject to complex and fine-tuned regulation dictated by interactions of the resident microbial community and their gene products with host innate cells. Deterioration of this delicate process may result in devastating autoinflammatory diseases, including inflammatory bowel disease (IBD), which primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Efficacious interventions to regulate proinflammatory signals, which play critical roles in IBD, require further scientific investigation. We recently demonstrated that rebalancing intestinal immunity via the surface layer protein A (SlpA) from Lactobacillus acidophilus NCFM potentially represents a feasible therapeutic approach to restore intestinal homeostasis. To expand on these findings, we established a new method of purifying bacterial SlpA, a new SlpA-specific monoclonal antibody, and found no SlpA-associated toxicity in mice. Thus, these data may assist in our efforts to determine the immune regulatory efficacy of SlpA in humans. PMID:26647142

  5. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  6. How water layers on graphene affect folding and adsorption of TrpZip2

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Agarwal, Mrigya; Kim, BongKeun; Pivkin, Igor V.; Shea, Joan-Emma

    2014-12-01

    We present a computational study of the folding of the Trp-rich β-hairpin TrpZip2 near graphene, a surface of interest as a platform for biosensors. The protein adsorbs to the surface, populating a new bound, folded state, coexisting with extended, adsorbed conformations. Adsorption and folding are modulated by direct interactions between the indole rings of TrpZip2 and the rings on the graphene surface, as well as by indirect water-mediated interactions. In particular, we observe strong layering of water near graphene, ice-like water configurations, and the formation of short lived hydrogen-bonds between water and protein. In order to study the effect of this layering in more detail, we modified the interactions between graphene and water to obtain two extreme cases: (1) enhanced layering of water that prevents the peptide from penetrating the water layer thereby enabling it to fold to a bulk-like structure, and (2) disruption of the water layer leading to adsorption and unfolding of the protein on the surface. These studies illuminate the roles of direct and solvent mediated interactions in modulating adsorption and folding of proteins on surfaces.

  7. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  8. The S-layer Protein DR_2577 Binds Deinoxanthin and under Desiccation Conditions Protects against UV-Radiation in Deinococcus radiodurans

    PubMed Central

    Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario

    2016-01-01

    Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation. PMID:26909071

  9. The S-layer Protein DR_2577 Binds Deinoxanthin and under Desiccation Conditions Protects against UV-Radiation in Deinococcus radiodurans.

    PubMed

    Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario

    2016-01-01

    Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation. PMID:26909071

  10. Adsorbate-induced demagnetization and restructuring of ultrathin magnetic films: CO chemisorbed on γ-Fe/Cu(100)

    NASA Astrophysics Data System (ADS)

    Spišák, D.; Hafner, J.

    2001-09-01

    First-principles local-spin-density (LSD) investigations of the structural, magnetic, and electronic properties of clean and CO-adsorbed ultrathin γ-iron films epitaxially grown on Cu(100) surfaces demonstrate that both the geometrical and the magnetic structures of the films are profoundly modified by the adsorption of CO. The enhanced magnetic moments of the top-layer atoms are strongly quenched by the presence of the adsorbate. Due to the pronounced magnetovolume effect, this leads also to a correlated change in the interlayer relaxations. Strikingly, the adsorbate-induced demagnetization is primarily limited to those surface atoms directly bonded to the adsorbate. This leads to the formation of an in-plane magnetic pattern in a partially adsorbate-covered film. The comparison of the calculated vibrational eigenfrequencies of the CO adsorbate with experiment confirms the picture based on the LSD calculations.

  11. Adsorbate-induced curvature and stiffening of graphene.

    PubMed

    Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H

    2015-01-14

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  12. Protein adsorption on tailored substrates: long-range forces and conformational changes

    NASA Astrophysics Data System (ADS)

    Bellion, M.; Santen, L.; Mantz, H.; Hähl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K.

    2008-10-01

    Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, α-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.

  13. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGESBeta

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  14. The Uranium from Seawater Program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary; Kuo, Li-Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T; Bonheyo, George; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang P; Bianucci, Laura; Wood, Jordana; Warner, Marvin G; Peterson, Sonja; Abrecht, David; Mayes, Richard T; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas; Addleman, Shane R; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Dr. Ken; Breier, Crystalline; D'Alessandro, Dr. Evan

    2016-01-01

    The Pacific Northwest National Laboratory s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole

  15. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus.

    PubMed

    Kinns, Helen; Badelt-Lichtblau, Helga; Egelseer, Eva Maria; Sleytr, Uwe B; Howorka, Stefan

    2010-01-29

    Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen. The haemagglutinin epitope tag was inserted at 23 amino acid positions known to be located on the monomer protein surface from a previous cysteine accessibility screen. Limited proteolysis, circular dichroism, and fluorescence were used to probe whether the epitope insertion affected the secondary and tertiary structures of the monomer, while electron microscopy and size-exclusion chromatography were employed to examine proteins' ability to self-assemble. The screen not only identified assembly-compromised mutants with native fold but also yielded correctly folded, self-assembling mutants suitable for displaying epitopes for biomedical and biophysical applications, as well as cryo-electron microscopy imaging. Our study marks an important step in the analysis of the S-layer structure. In addition, the approach of concerted insertion and cysteine mutagenesis can likely be applied for other supramolecular assemblies. PMID:19836402

  16. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  17. Interfacial adsorption of antifreeze proteins: a neutron reflection study.

    PubMed

    Xu, Hai; Perumal, Shiamalee; Zhao, Xiubo; Du, Ning; Liu, Xiang-Yang; Jia, Zongchao; Lu, Jian R

    2008-06-01

    Interfacial adsorption from two antifreeze proteins (AFP) from ocean pout (Macrozoarces americanus, type III AFP, AFP III, or maAFP) and spruce budworm (Choristoneura fumiferana, isoform 501, or cfAFP) were studied by neutron reflection. Hydrophilic silicon oxide was used as model substrate to facilitate the solid/liquid interfacial measurement so that the structural features from AFP adsorption can be examined. All adsorbed layers from AFP III could be modeled into uniform layer distribution assuming that the protein molecules were adsorbed with their ice-binding surface in direct contact with the SiO(2) substrate. The layer thickness of 32 A was consistent with the height of the molecule in its crystalline form. With the concentration decreasing from 2 mg/ml to 0.01 mg/ml, the volume fraction of the protein packed in the monolayer decreased steadily from 0.4 to 0.1, consistent with the concentration-dependent inhibition of ice growth observed over the range. In comparison, insect cfAFP showed stronger adsorption over the same concentration range. Below 0.1 mg/ml, uniform layers were formed. But above 1 mg/ml, the adsorbed layers were characterized by a dense middle layer and two outer diffuse layers, with a total thickness around 100 A. The structural transition indicated the responsive changes of conformational orientation to increasing surface packing density. As the higher interfacial adsorption of cfAFP was strongly correlated with the greater thermal hysteresis of spruce budworm, our results indicated the important relation between protein adsorption and antifreeze activity. PMID:18234809

  18. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  19. Nanovalved Adsorbents for CH4 Storage.

    PubMed

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications. PMID:27124722

  20. NOx adsorber and method of regenerating same

    SciTech Connect

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  1. Characterization of antigens adsorbed to anionic PLG microparticles by XPS and TOF-SIMS.

    PubMed

    Chesko, James; Kazzaz, Jina; Ugozzoli, Mildred; Singh, Manmohan; O'Hagan, Derek T; Madden, Claire; Perkins, Mark; Patel, Nikin

    2008-04-01

    The chemical composition of the surface of anionic PLG microparticles before and after adsorption of vaccine antigens was measured using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The interfacial distributions of components will reflect underlying interactions that govern properties such as adsorption, release, and stability of proteins in microparticle vaccine delivery systems. Poly(lactide-co-glycolide) microparticles were prepared by a w/o/w emulsification method in the presence of the anionic surfactant dioctyl sodium sulfosuccinate (DSS). Ovalbumin, lysozyme, a recombinant HIV envelope glyocoprotein and a Neisseria meningitidis B protein were adsorbed to the PLG microparticles, with XPS and time-of-flight secondary mass used to analyze elemental and molecular distributions of components of the surface of lyophilized products. Protein (antigen) binding to PLG microparticles was measured directly by distinct elemental and molecular spectroscopic signatures consistent with amino acids and excipient species. The surface sensitive composition of proteins also included counter ions that support the importance of electrostatic interactions being crucial in the mechanism of adsorptions. The protein binding capacity was consistent with the available surface area and the interpretation of previous electron and atomic force microscope images strengthened by the quantification possible by XPS and the qualitative identification possible with TOF-SIMS. Protein antigens were detected and quantified on the surface of anionic PLG microparticles with varying degrees of efficiency under different adsorption conditions such as surfactant level, pH, and ionic strength. Observable changes in elemental and molecular composition suggest an efficient electrostatic interaction creating a composite surface layer that mediates antigen binding and release. PMID:17724659

  2. New Insights into the Glycosylation of the Surface Layer Protein SgsE from Geobacillus stearothermophilus NRS 2004/3a▿

    PubMed Central

    Steiner, Kerstin; Pohlentz, Gottfried; Dreisewerd, Klaus; Berkenkamp, Stefan; Messner, Paul; Peter-Katalinić, Jasna; Schäffer, Christina

    2006-01-01

    The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→2)-α-L-Rhap-(1→] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known →3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→ core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band represents

  3. New insights into the glycosylation of the surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a.

    PubMed

    Steiner, Kerstin; Pohlentz, Gottfried; Dreisewerd, Klaus; Berkenkamp, Stefan; Messner, Paul; Peter-Katalinić, Jasna; Schäffer, Christina

    2006-11-01

    The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-L-Rhap-(1-->] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1--> core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band

  4. Adsorbate modification of the structural, electronic, and magnetic properties of ferromagnetic fcc {110} surfaces

    NASA Astrophysics Data System (ADS)

    Gunn, D. S. D.; Jenkins, Stephen J.

    2011-03-01

    We identify trends in structural, electronic, and magnetic modifications that occur on ferromagnetic {110} surfaces upon varying either the substrate material or the adsorbate species. First, we have modeled the adsorption of several first-row p-block elements on the surface of fcc Co{110} at two coverages [0.5 and 1.0 monolayer (ML)]. All adsorbates were found to expand the distance between the first and second substrate layers and to contract the distance between the second and third layers. The energetic location of a characteristic trough in the density-of-d-states difference plot correlates with the direction of the adsorbate magnetic coupling to the surface, and a trend of antiferromagnetic to ferromagnetic coupling to the surface was observed across the elements from boron to fluorine. A high fluorine adatom coverage (1.0 ML) was found to enhance the surface spin magnetic moment by 11%. Second, we also calculate and contrast adsorption of 0.5 and 1.0 ML of carbon, nitrogen, and oxygen adatoms on fcc iron, cobalt, and nickel {110} surfaces and compare the structural, electronic, and magnetic properties of these systems. Carbon and nitrogen are found to couple antiferromagnetically, and oxygen ferromagnetically, to all surfaces. It was found that antiferromagnetically coupled adsorbates retained their largest spin moment values on iron, whereas ferromagnetically coupled adsorbates possessed their lowest moments on this surface. The strongly localized influence of these adsorbates is clearly illustrated in partial density-of-states plots for the surface atoms.

  5. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    SciTech Connect

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  6. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    PubMed

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. PMID:26538339

  7. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  8. Promoting the selection and maintenance of fetal liver stem/progenitor cell colonies by layer-by-layer polypeptide tethered supported lipid bilayer.

    PubMed

    Lee, I-Chi; Liu, Yung-Chiang; Tsai, Hsuan-Ang; Shen, Chia-Ning; Chang, Ying-Chih

    2014-12-10

    In this study, we designed and constructed a series of layer-by-layer polypeptide adsorbed supported lipid bilayer (SLB) films as a novel and label-free platform for the isolation and maintenance of rare populated stem cells. In particular, four alternative layers of anionic poly-l-glutamic acid and cationic poly-l-lysine were sequentially deposited on an anionic SLB. We found that the fetal liver stem/progenitor cells from the primary culture were selected and formed colonies on all layer-by-layer polypeptide adsorbed SLB surfaces, regardless of the number of alternative layers and the net charges on those layers. Interestingly, these isolated stem/progenitor cells formed colonies which were maintained for an 8 day observation period. Quartz crystal microbalance with dissipation measurements showed that all SLB-polypeptide films were protein resistant with serum levels significantly lower than those on the polypeptide multilayer films without an underlying SLB. We suggest the fluidic SLB promotes selective binding while minimizing the cell-surface interaction due to its nonfouling nature, thus limiting stem cell colonies from spreading. PMID:25243588

  9. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. PMID:25666640

  10. A simple model for electronic properties of surface adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Dhakal, Rajesh; Schwalm, William

    We adapt a minimal approximation to one electron quantum theory of molecules referred as Fast Accurate Kinetic Energy method. This in principle handles large complex molecular structures with less computational effort to compute electronic properties of adsorbed molecules. Kinetic energy integrals are calculated accurately but multi-electron potential energy integrals are approximated. The neighboring atom interactions are included also. For layers of isopthalic acids formed on pyrolytic graphite the configuration changes as a function of length of hydrocarbon tails. We study properties of this system as a function of tail length.

  11. Do Methanethiol Adsorbates on the Au(111) Surface Dissociate?

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Hagelberg, Frank

    2006-07-01

    The interaction of methanethiol molecules CH3SH with the Au(111) surface is investigated, and it is found for the first time that the S-H bond remains intact when the methanethiol molecules are adsorbed on the regular Au(111) surface. However, it breaks if defects are present in the Au(111) surface. At low coverage, the fcc region is favored for S atom adsorption, but at saturated coverage the adsorption energies at various sites are almost isoenergetic. The presented calculations show that a methanethiol layer on the regular Au(111) surface does not dimerize.

  12. The study of a light-activated albumin protein solder to bond layers of porcine small intestinal submucosa.

    PubMed

    Ware, Mark H; Buckley, Christine A

    2003-01-01

    This study investigated the feasibility of bonding layers of porcine small intestinal submucosa (SIS, Cook Biotech, Inc.) with a light-activated protein solder. SIS is an acellular, collagen-based extracellular matrix material that is approximately 100 microns thick. The solder consists of bovine serum albumin and indocyanine green dye (ICG) in deionized water. The solder is activated by an 808 nm diode laser, which denatures the albumin, causing the albumin to bond with the collagen of the tissue. The predictable absorption and thermal energy diffusion rates of ICG increase the chances of reproducible results. To determine the optimal condition for laser soldering SIS, the following parameters were varied: albumin concentration (from 30-45% (w/v) in increments of 5%), the concentration of ICG (from 0.5-2.0 mg/ml H2O) and the irradiance of the laser (10-64 W/cm2). While many of the solder compositions and laser irradiance combinations resulted in no bonding, a solder composition of 45% albumin, ICG concentration of 0.5 mg/ml H2O, and a laser irradiance of 21 W/cm2 did produce a bond between two pieces of SIS. The average shear strength of this bond was 29.5 +/- 17.1 kPa (n = 14). This compares favorably to our previous work using fibrin glue as an adhesive, in which the average shear strength was 27 +/- 15.8 kPa (n = 40). PMID:12724859

  13. Activation of the cAMP-dependent protein kinase signaling pathway by luteinizing hormone in trout theca layers.

    PubMed

    Méndez, Eva; Maeland, Mari; Skålhegg, Bjørn S; Planas, Josep V

    2003-07-31

    In the fish ovary, LH is the main factor regulating the production of steroids during the periovulatory period and its effects are believed to be mediated, at least partially, through the cAMP-dependent protein kinase (PKA) signaling pathway. However, there is no direct evidence for the presence of PKA in the fish ovary nor on the regulation of its activity by fish LH. Here, we show the identification of regulatory (R) and catalytic (C) subunits of PKA in trout theca cells by immunoblotting. DEAE-cellulose chromatography of theca cell extracts indicated the presence of PKA type I and II and showed that trout theca cells display PKA-specific phosphotransferase and cAMP-binding activities. Salmon LH (sLH) stimulated PKA activity and increased the levels of immunoreactive RIIalpha, RIIbeta and C subunits in trout theca layers. These observations, coupled with the sLH-dependent decrease in the half-life of the C subunit, as shown by pulse-chase experiments, strongly suggest that sLH activates PKA in trout theca cells. Furthermore, our results suggest that ovarian PKA activity and its regulation by LH has been well conserved from fish to humans. PMID:12890563

  14. Inhibition of Shigella sonnei adherence to HT-29 cells by lactobacilli from Chinese fermented food and preliminary characterization of S-layer protein involvement.

    PubMed

    Zhang, Ying-Chun; Zhang, Lan-Wei; Tuo, Yan-Feng; Guo, Chun-Feng; Yi, Hua-Xi; Li, Jing-Yan; Han, Xue; Du, Ming

    2010-10-01

    In this study, seven lactobacilli with a high degree of antagonistic activity against three pathogens and good adherence to HT-29 cells were selected. The ability of these seven lactobacilli to inhibit adhesion of Shigella sonnei to intestinal mucosa was studied on cultured HT-29 cells. Lactobacilli were added simultaneously with, before or after S. sonnei to test for their effectiveness in exclusion, competition and displacement assays, respectively. Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L and Lactobacillus casei Q8-L all exhibited significant inhibitory activity. In order to elucidate the inhibitory functions of S-layer proteins, the S-layer proteins were removed with 5 M LiCl from the M5-L, J10-L and Q8-L strains. Under such conditions, inhibition activity was decreased in all three strains, as revealed in exclusion, competition and displacement assays. SDS-PAGE analysis confirmed the presence of S-layer proteins with dominant bands of approximately 45 kDa. Further analysis of S-layer proteins revealed that the hydrophobic amino acids accounted for 40.5%, 41.5% and 43.8% of the total amino acid for the M5-L, J10-L and Q8-L strains, respectively. These findings suggest that the M5-L, J10-L and Q8-L strains possess the ability to inhibit S. sonnei adherence to HT-29 cells, and S-layer proteins are involved in this adhesion inhibition. PMID:20600857

  15. Immobilization of bacterial S-layer proteins from Caulobacter crescentus on iron oxide-based nanocomposite: synthesis and spectroscopic characterization of zincite-coated Fe₂O₃ nanoparticles.

    PubMed

    Habibi, Neda

    2014-05-01

    Zinc oxide was coated on Fe2O3 nanoparticles using sol-gel spin-coating. Caulobacter crescentus have a crystalline surface layer (S-layer), which consist of one protein or glycoprotein species. The immobilization of bacterial S-layers obtained from C. crescentus on zincite-coated nanoparticles of iron oxide was investigated. The SDS PAGE results of S-layers isolated from C. crescentus showed the weight of 50 KDa. Nanoparticles of the Fe2O3 and zinc oxide were synthesized by a sol-gel technique. Fe2O3 nanoparticles with an average size of 50 nm were successfully prepared by the proper deposition of zinc oxide onto iron oxide nanoparticles surface annealed at 450 °C. The samples were characterized by field-emission scanning electron microscope (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). PMID:24566114

  16. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  17. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  18. Sequence-defined Energetic Shifts Control the Disassembly Kinetics and Microstructure of Amelogenin Adsorbed onto Hydroxyapatite (100)

    SciTech Connect

    Tao, Jinhui; Buchko, Garry W.; Shaw, Wendy J.; De Yoreo, Jim; Tarasevich, Barbara J.

    2015-11-03

    The interactions between proteins and surfaces are critical to a number of important processes including biomineralization, the biocompatibility of biomaterials, and the function of biosensors. Although many proteins exist as monomers or small oligomers, amelogenin is a unique protein that self-assembles into supramolecular structures called “nanospheres,” aggregates of 100’s of monomers that are 20-60 nm in diameter. The nanosphere quaternary structure is observed in solution, however, the quaternary structure of amelogenin adsorbed onto hydroxyapatite (HAP) surfaces is not known even though it may be important to amelogenin’s function in forming highly elongated and intricately assembled HAP crystallites during enamel formation. We report studies of the interactions of the enamel protein, amelogenin (rpM179), with a well-defined (100) face prepared by synthesis of large crystals of HAP. High resolution, in-situ atomic force microscopy (AFM) was used to directly observe protein adsorption onto HAP at the molecular level within an aqueous solution environment. Our study shows that the amelogenin nanospheres disassemble onto the HAP surface, breaking down into oligomeric (25-mer) subunits of the larger nanosphere. In some cases, the disassembly event is directly observed by in situ imaging for the first time. Quantification of the adsorbate amounts by size analysis led to the determination of a protein binding energy (17.1 kbT) to a specific face of HAP (100). The kinetics of disassembly are greatly slowed in aged solutions, indicating there are time-dependent increases in oligomer-oligomer binding interactions within the nanosphere. A small change in the sequence of amelogenin by the attachment of a histidine tag to the N-terminus of rpM179 to form rp(H)M180 results in the adsorption of a complete second layer on top of the underlying first layer. Our research elucidates how supramolecular protein structures interact and break down at surfaces and how small

  19. Wounding coordinately induces cell wall protein, cell cycle and pectin methyl esterase genes involved in tuber closing layer and wound periderm development.

    PubMed

    Neubauer, Jonathan D; Lulai, Edward C; Thompson, Asunta L; Suttle, Jeffrey C; Bolton, Melvin D

    2012-04-15

    Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more

  20. Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements.

    PubMed

    Stadler, H; Mondon, M; Ziegler, C

    2003-01-01

    Adsorption of the protein bovine serum albumin (BSA) on gold has been tested at various concentrations in aqueous solution by dynamic contact-angle analysis (DCA) and quartz-crystal microbalance (QCM) measurements. With the Wilhelmy plate technique advancing and receding contact angles and the corresponding hysteresis were measured and correlated with the hydrophilicity and the homogeneity of the surface. With electrical admittance measurements of a gold-coated piezoelectrical quartz crystal, layer mass and viscoelastic contributions to the resonator's frequency shift during adsorption could be separated. A correlation was found between the adsorbed mass and the homogeneity and hydrophilicity of the adsorbed film. PMID:12520439

  1. The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA.

    PubMed Central

    Boot, H J; Kolen, C P; Andreadaki, F J; Leer, R J; Pouwels, P H

    1996-01-01

    S-proteins are proteins which form a regular structure (S-layer) on the outside of the cell walls of many bacteria. Two S-protein-encoding genes are located in opposite directions on a 6.0-kb segment of the chromosome of Lactobacillus acidophilus ATCC 4356 bacteria. Inversion of this chromosomal segment occurs through recombination between two regions with identical sequences, thereby interchanging the expressed and the silent genes. In this study, we show that the region involved in recombination also has a function in efficient S-protein production. Two promoter sequences are present in the S-protein gene expression site, although only the most downstream promoter (P-1) is used to direct mRNA synthesis. S-protein mRNA directed by this promoter has a half-life of 15 min. Its untranslated leader can form a stable secondary structure in which the 5' end is base paired, whereas the ribosome-binding site is exposed. Truncation of this leader sequence results in a reduction in protein production, as shown by reporter gene analysis of Lactobacillus casei. The results obtained indicate that the untranslated leader sequence of S-protein mRNA is involved in efficient S-protein production. PMID:8808926

  2. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.

    PubMed

    Kharazian, B; Hadipour, N L; Ejtehadi, M R

    2016-06-01

    Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions. PMID:26873405

  3. The S-layer proteins of two Bacillus stearothermophilus wild-type strains are bound via their N-terminal region to a secondary cell wall polymer of identical chemical composition.

    PubMed

    Egelseer, E M; Leitner, K; Jarosch, M; Hotzy, C; Zayni, S; Sleytr, U B; Sára, M

    1998-03-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1gamma chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  4. IR investigations of surfaces and adsorbates

    SciTech Connect

    Gwyn Williams

    2001-12-10

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  5. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  6. Examining Adsorbed Polymer Conformations with Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Parkes, Maria; Chennaoui, Mourad; Wong, Janet; Tribology Group, Dept. of Mechanical Engineering Team

    2011-03-01

    The conformation of adsorbed polymers can have significant impact on their properties such as dynamics and elasticity as well as their ability to take part in reactions with other molecules. Experimental research to determine adsorbed polymer conformation has relied mainly on atomic force microscopy (AFM) studies. During an AFM scan, the contact between the scanning probe and the polymer could affect the polymer conformation, particularly where parts of the polymer might have formed projected loops and tails. In this work, conformations of model polymers are examined with total internal reflection fluorescence microscopy (TIRFM). The advantage of TIRFM over AFM is that TIRFM is a non contact technique. Lambda DNA labelled along its length with fluorescent probes was adsorbed in a projected 2D -- 3D state. With TIRFM, the relationship between intensity and depth was used as a basis to determine how the conformation of the adsorbed polymers evolved with time using our custom algorithm.

  7. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-06-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  8. Dispersed-phase adsorbents for biotechnology applications

    SciTech Connect

    Scott, C.D.

    1987-01-01

    A new type of adsorbent material has been developed in which very small adsorbent particles are entrapped in a hydrocolloidal gel matrix that is formed into small, monodisperse spherical beads. Examples of applications of this type of material include dispersed, hydrous transition metal oxides that can be used for the retention of biocatalysts, such as enzymes, and certain microorganisms or microbial fragments that can be dispersed into the gel matrix to accumulate and isolate various dissolved metals. 7 refs., 2 figs., 2 tabs.

  9. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  10. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  11. Mesoporous Silica: A Suitable Adsorbent for Amines

    PubMed Central

    2009-01-01

    Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices. PMID:20628459

  12. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  13. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  14. Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease.

    PubMed

    Kandalaft, Hiba; Hussack, Greg; Aubry, Annie; van Faassen, Henk; Guan, Yonghong; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Logan, Susan M; Tanha, Jamshid

    2015-10-01

    Clostridium difficile is a leading cause of death from gastrointestinal infections in North America. Antibiotic therapy is effective, but the high incidence of relapse and the rise in hypervirulent strains warrant the search for novel treatments. Surface layer proteins (SLPs) cover the entire C. difficile bacterial surface, are composed of high-molecular-weight (HMW) and low-molecular-weight (LMW) subunits, and mediate adherence to host cells. Passive and active immunization against SLPs has enhanced hamster survival, suggesting that antibody-mediated neutralization may be an effective therapeutic strategy. Here, we isolated a panel of SLP-specific single-domain antibodies (VHHs) using an immune llama phage display library and SLPs isolated from C. difficile hypervirulent strain QCD-32g58 (027 ribotype) as a target antigen. Binding studies revealed a number of VHHs that bound QCD-32g58 SLPs with high affinity (K D = 3-6 nM) and targeted epitopes located on the LMW subunit of the SLP. The VHHs demonstrated melting temperatures as high as 75 °C, and a few were resistant to the gastrointestinal protease pepsin at physiologically relevant concentrations. In addition, we demonstrated the binding specificity of the VHHs to the major C. difficile ribotypes by whole cell ELISA, where all VHHs were found to bind 001 and 027 ribotypes, and a subset of antibodies were found to be broadly cross-reactive in binding cells representative of 012, 017, 023, and 078 ribotypes. Finally, we showed that several of the VHHs inhibited C. difficile QCD-32g58 motility in vitro. Targeting SLPs with VHHs may be a viable therapeutic approach against C. difficile-associated disease. PMID:25936376

  15. Improving biocompatibility by controlling protein adsorption: Modification and design of biomaterials using poly(ethylene glycol) microgels and microspheres

    NASA Astrophysics Data System (ADS)

    Scott, Evan Alexander

    2009-12-01

    Guided by the clinical needs of patients and developments in biology and materials science, the primary focus of the biomaterials field remains at the solid/liquid interface between biomaterial surfaces and biological fluids. For blood-contacting devices, biological responses are initially elicited and directed by proteins that adsorb from this multicomponent solution to form thin films on their surfaces. The identity, conformation, and quantity of adsorbed proteins are related to the properties of a material's surface. For example, hydrophobic surfaces tend to be thrombotic via interactions between platelets and adsorbed fibrinogen, while surface-activation of specific enzymes initiates the coagulation cascade on hydrophilic surfaces. The objective of this thesis is to improve the design of biomaterials through the analysis and control of adsorbing protein layers. This goal is approached through three separate strategies. First, a proteomics-based methodology is presented for the assessment of protein conformation at the residue level after adsorption to biomaterial surfaces. A quantitative mass spectrometric technique is additionally suggested for the identification and quantification of proteins within adsorbed protein layers. Second, a method is described for the covalent attachment of poly(ethylene glycol) (PEG)-based hydrogel coatings onto biomaterials surfaces for the minimization of protein adsorption. The coatings are applied using partially crosslinked PEG solutions containing polymer and protein oligomers and microgels that can be designed to control cell adhesion. Finally, a modular strategy is proposed for the assembly of bioactive PEG-based hydrogel scaffolds. This was accomplished using novel PEG microspheres with diverse characteristics that individually contribute to the ability of the scaffold to direct cellular infiltration. The methodologies proposed by this thesis contribute to the recent shift in biomaterials and tissue engineering strategies

  16. Giant Hysteresis of Single-Molecule Magnets Adsorbed on a Nonmagnetic Insulator.

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Rusponi, Stefano; Diller, Katharina; Patthey, François; Pivetta, Marina; Lan, Yanhua; Klyatskaya, Svetlana; Ruben, Mario; Brune, Harald; Dreiser, Jan

    2016-07-01

    TbPc2 single-molecule magnets adsorbed on a magnesium oxide tunnel barrier exhibit record magnetic remanence, record hysteresis opening, perfect out-of-plane alignment of the magnetic easy axes, and self-assembly into a well-ordered layer. PMID:27159732

  17. The adsorbed state of a thiol on palladium nanoparticles.

    PubMed

    Rogers, Scott M; Dimitratos, Nikolaos; Jones, Wilm; Bowker, Michael; Kanaras, Antonios G; Wells, Peter P; Catlow, C Richard A; Parker, Stewart F

    2016-06-29

    In the present work, a combination of imaging, spectroscopic and computational methods shows that 1-dodecanethiol undergoes S-deprotonation to form 1-dodecanethiolate on the surface of palladium nanoparticles, which then self-assembles into a structure that shows a high degree of order. The alkyl chain is largely in the all-trans conformation, which occurs despite the small size of the nanoparticle, (mean diameter = 3.9 nm). Inelastic neutron scattering spectroscopy is readily able to characterise organic surface layers on nanoparticles; the nature of the material is irrelevant: whether the nanoparticle core is an oxide, a metal or a semiconductor makes no difference. Comparison to DFT calculations allows insights into the nature and conformation of the adsorbed layer. PMID:27087637

  18. Amphiphilic agarose-based adsorbents for chromatography. Comparative study of adsorption capacities and desorption efficiencies.

    PubMed

    Oscarsson, S; Angulo-Tatis, D; Chaga, G; Porath, J

    1995-01-01

    A number of hydrophobic derivatives attached to cross-linked agarose were studied as protein adsorbents. Differences in the adsorption and desorption behaviour were determined as functions of type and concentration of selected salts. Whereas octyl- and phenyl-Sepharose adsorb serum albumin preferentially, pyridyl-S-agarose shows a much stronger preferential affinity for IgG in the presence of high concentrations of lyotropic salts, such as sulphates. In contrast to pyridyl-S-agarose, a large portion of proteins remained fixed to octyl- and phenyl-Sepharose after extensive washing with 1 M NaOH. PMID:7881534

  19. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-07-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical stremgth to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 composisting of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.

  20. Three-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)

    PubMed Central

    Kakinoki, Sachiro; Nakayama, Midori; Moritan, Toshiyuki; Yamaoka, Tetsuji

    2014-01-01

    We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical strength to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 compositing of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer. PMID:25101261

  1. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  2. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.

    PubMed

    Kamon, Yuri; Kitayama, Yukiya; Itakura, Akiko N; Fukazawa, Kyoko; Ishihara, Kazuhiko; Takeuchi, Toshifumi

    2015-04-21

    We studied the effects of layer thickness and grafting density of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) thin layers as specific ligands for the highly sensitive binding of C-reactive protein (CRP). PMPC layer thickness was controlled by surface-initiated activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP). PMPC grafting density was controlled by utilizing mixed self-assembled monolayers with different incorporation ratios of the bis[2-(2-bromoisobutyryloxy)undecyl] disulfide ATRP initiator, as modulated by altering the feed molar ratio with (11-mercaptoundecyl)tetra(ethylene glycol). X-ray photoelectron spectroscopy and ellipsometry measurements were used to characterize the modified surfaces. PMPC grafting densities were estimated from polymer thickness and the molecular weight obtained from sacrificial initiator during surface-initiated AGET ATRP. The effects of thickness and grafting density of the obtained PMPC layers on CRP binding performance were investigated using surface plasmon resonance employing a 10 mM Tris-HCl running buffer containing 140 mM NaCl and 2 mM CaCl2 (pH 7.4). Furthermore, the non-specific binding properties of the obtained layers were investigated using human serum albumin (HSA) as a reference protein. The PMPC layer which has 4.6 nm of thickness and 1.27 chains per nm(2) of grafting density showed highly sensitive CRP detection (limit of detection: 4.4 ng mL(-1)) with low non-specific HSA adsorption, which was improved 10 times than our previous report of 50 ng mL(-1). PMID:25783194

  3. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    PubMed Central

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-01-01

    Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism. PMID:25004975

  4. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    PubMed

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  5. Negative chromatography of hepatitis B virus-like particle: Comparative study of different adsorbent designs.

    PubMed

    Lee, Micky Fu Xiang; Chan, Eng Seng; Tan, Wen Siang; Tam, Kam Chiu; Tey, Beng Ti

    2016-05-01

    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration. PMID:27059397

  6. Refractive index matching to develop transparent polyaphrons: Characterization of immobilized proteins.

    PubMed

    Ward, Keeran; Stuckey, David C

    2016-06-01

    Refractive index matching was used to create optically transparent polyaphrons to enable proteins adsorbed to the aphron surface to be characterized. Due to the significant light scattering created by polyaphrons, refractive index matching allowed for representative circular dichroism (CD) spectra and acceptable structural characterization. The method utilized n-hexane as the solvent phase, a mixture of glycerol and phosphate buffer (30% [w/v]) as the aqueous phase, and the non-ionic surfactants, Laureth-4 and Kolliphor P-188. Deconvolution of CD spectra revealed that the immobilized protein adapted its native conformation, showing that the adsorbed protein interacted only with the bound water layer ("soapy shell") of the aphron. Isothermal calorimetry further demonstrated that non-ionic surfactant interactions were virtually non-existent, even at the high concentrations used (5% [w/v]), proving that non-ionic surfactants can preserve protein conformation. PMID:26952359

  7. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  8. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  9. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  10. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases.

    PubMed

    Martins, Paulo H L; Bachmann, Michael

    2016-01-21

    By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail. PMID:26690091

  11. Isolation and characterization of a novel acidic matrix protein hic22 from the nacreous layer of the freshwater mussel, Hyriopsis cumingii.

    PubMed

    Liu, X J; Jin, C; Wu, L M; Dong, S J; Zeng, S M; Li, J L

    2016-01-01

    Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid sequence of hic22 was determined and the complete cDNA encoding hic22 was cloned and sequenced by rapid amplification of cDNA ends-polymerase chain reaction. Finally, the localization and distribution of hic22 was determined by in situ hybridization. Our results revealed that hic22 encodes a 22-kDa protein composed of 185 amino acids. Tissue expression analysis and in situ hybridization indicated that hic22 is expressed in the dorsal epithelial cells of the mantle pallial; moreover, significant expression levels of hic22 were observed after the early formation of the pearl sac (days 19-77), implying that hic22 may play an important role in biomineralization of the nacreous layer. PMID:27525898

  12. Dimensionally Frustrated Diffusion towards Fractal Adsorbers

    NASA Astrophysics Data System (ADS)

    Nair, Pradeep R.; Alam, Muhammad A.

    2007-12-01

    Diffusion towards a fractal adsorber is a well-researched problem with many applications. While the steady-state flux towards such adsorbers is known to be characterized by the fractal dimension (DF) of the surface, the more general problem of time-dependent adsorption kinetics of fractal surfaces remains poorly understood. In this Letter, we show that the time-dependent flux to fractal adsorbers (1

  13. Standoff Spectroscopy of Surface Adsorbed Chemicals

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2009-01-01

    Despite its immediate applications, selective detection of trace quantities of surface adsorbed chemicals, such as explosives, without physically collecting the sample molecules is a challenging task. Standoff spectroscopic techniques offer an ideal method of detecting chemicals without using a sample collection step. Though standoff spectroscopic techniques are capable of providing high selectivity, their demonstrated sensitivities are poor. Here we describe standoff detection of trace quantities of surface adsorbed chemicals using two quantum cascade lasers operated simultaneously, with tunable wavelength windows that match with absorption peaks of the analytes. This standoff method is a variation of photoacoustic spectroscopy, where scattered light from the sample surface is used for exciting acoustic resonance of the detector. We demonstrate a sensitivity of 100 ng/cm{sup 2} and a standoff detection distance of 20 m for surface adsorbed analytes such as explosives and tributyl phosphate.

  14. The S-Layer Homology Domain-Containing Protein SlhA from Paenibacillus alvei CCM 2051T Is Important for Swarming and Biofilm Formation

    PubMed Central

    Janesch, Bettina; Koerdt, Andrea; Messner, Paul; Schäffer, Christina

    2013-01-01

    Background Swarming and biofilm formation have been studied for a variety of bacteria. While this is well investigated for Gram-negative bacteria, less is known about Gram-positive bacteria, including Paenibacillus alvei, a secondary invader of diseased honeybee colonies infected with Melissococcuspluton, the causative agent of European foulbrood (EFB). Methodology Paenibacillus alvei CCM 2051T is a Gram-positive bacterium which was recently shown to employ S-layer homology (SLH) domains as cell wall targeting modules to display proteins on its cell surface. This study deals with the newly identified 1335-amino acid protein SlhA from P. alvei which carries at the C‑terminus three consecutive SLH-motifs containing the predicted binding sequences SRGE, VRQD, and LRGD instead of the common TRAE motif. Based on the proof of cell surface location of SlhA by fluorescence microscopy using a SlhA-GFP chimera, the binding mechanism was investigated in an in vitro assay. To unravel a putative function of the SlhA protein, a knockout mutant was constructed. Experimental data indicated that one SLH domain is sufficient for anchoring of SlhA to the cell surface, and the SLH domains of SlhA recognize both the peptidoglycan and the secondary cell wall polymer in vitro. This is in agreement with previous data from the S-layer protein SpaA, pinpointing a wider utilization of that mechanism for cell surface display of proteins in P. alvei. Compared to the wild-type bacterium ΔslhA revealed changed colony morphology, loss of swarming motility and impaired biofilm formation. The phenotype was similar to that of the flagella knockout Δhag, possibly due to reduced EPS production influencing the functionality of the flagella of ΔslhA. Conclusion This study demonstrates the involvement of the SLH domain-containing protein SlhA in swarming and biofilm formation of P. alvei CCM 2051T. PMID:24058714

  15. Untangleing the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts

    SciTech Connect

    Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexei P; Sumpter, Bobby G.

    2015-06-11

    Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z), mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[ni(t,z)•ni(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.

  16. Untangleing the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts

    DOE PAGESBeta

    Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexei P; Sumpter, Bobby G.

    2015-06-11

    Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z),more » mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[ni(t,z)•ni(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.« less

  17. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development.

    PubMed

    Huber, Carina; Liu, Jing; Egelseer, Eva M; Moll, Dieter; Knoll, Wolfgang; Sleytr, Uwe B; Sára, Margit

    2006-01-01

    Based on the S-layer protein SbpA of Bacillus sphaericus CCM 2177, an S-layer-streptavidin fusion protein was constructed. After heterologous expression, isolation of the fusion protein, and refolding, functional heterotetramers were obtained that had retained the ability to recrystallize into the square-lattice structure on plain gold chips and on gold chips precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Monolayers generated by recrystallization of heterotetramers on plain gold chips or on gold chips precoated with thiolated SCWP were exploited for the binding of biotinylated oligonucleotides (30-mers). Hybridization experiments with complementary fluorescently labeled oligonucleotides carrying one mismatch or no mismatch (both 15-mers) were performed and evaluated with surface-plasmon-field-enhanced fluorescence spectroscopy. For surfaces generated by the recrystallization of heterotetramers on SCWP-coated gold chips, a detection limit of 1.57 pM could be determined, whereas for surfaces obtained by direct recrystallization of heterotetramers on plain gold chips, a detection limit of 8.2 pM was found. Measuring the association and dissociation processes of oligonucleotides carrying no mismatch led to a dissociation constant of K(D)=6.3 x 10(-10) m, whereas for oligonucleotides carrying one mismatch a dissociation constant of K(D)=7.9 x 10(-9) m was determined. This finding was confirmed by measuring the whole Langmuir isotherm, which resulted in a dissociation constant of K(D)=2.6 x 10(-8) m. PMID:17193570

  18. Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma.

    PubMed

    Price, M E; Cornelius, R M; Brash, J L

    2001-06-01

    Unmodified and polyethylene glycol (PEG) modified neutral and negatively charged liposomes were prepared by freeze-thaw and extrusion followed by chromatographic purification. The effects of PEG molecular weight (PEG 550, 2000, 5000), PEG loading (0-15 mol%), and liposome surface charge on fibrinogen adsorption were quantified using radiolabeling techniques. All adsorption isotherms increased monotonically over the concentration range 0-3 mg/ml and adsorption levels were low. Negatively charged liposomes adsorbed significantly more fibrinogen than neutral liposomes. PEG modification had no effect on fibrinogen adsorption to neutral liposomes. An inverse relationship was found between PEG loading of negatively charged liposomes and fibrinogen adsorption. PEGs of all three molecular weights at a loading of 5 mol% reduced fibrinogen adsorption to negatively charged liposomes. Protein adsorption from diluted plasma (10% normal strength) to four different liposome types (neutral, PEG-neutral, negatively charged, and PEG-negatively charged) was investigated using gel electrophoresis and immunoblotting. The profiles of adsorbed proteins were similar on all four liposome types, but distinctly different from the profile of plasma itself, indicating a partitioning effect of the lipid surfaces. alpha2-macroglobulin and fibronectin were significantly enriched on the liposomes whereas albumin, transferrin, and fibrinogen were depleted compared to plasma. Apolipoprotein AI was a major component of the adsorbed protein layers. The blot of complement protein C3 adsorbed on the liposomes suggested that the complement system was activated. PMID:11406096

  19. CO2 electrochemical reduction via adsorbed halide anions

    NASA Astrophysics Data System (ADS)

    Ogura, Kotaro; Salazar-Villalpando, Maria D.

    2011-01-01

    The electrochemical reduction of CO2 was studied utilizing halide ions as electrolytes, specifically, aqueous solutions of KCl, KBr, KI. Electrochemical experiments were carried out in a laboratory-made, divided H-type cell. The working electrode was a copper mesh, while the counter and reference electrodes were a Pt wire and an Ag/AgCl electrode, respectively. The results of our work suggest a reaction mechanism for the electrochemical reduction of CO2 where the presence of Cu-X as the catalytic layer facilitates the electron transfer from the electrode to CO2. Electron-transfer to CO2 may occur via the X- ad(Br-, Cl-, I-)-C bond, which is formed by the electron flow from the specifically adsorbed halide anion to the vacant orbital of CO2. The stronger the adsorption of the halide anion to the electrode, the more strongly CO2 is restrained, resulting in higher CO2 reduction current. Furthermore, it is suggested that specifically adsorbed halide anions could suppress the adsorption of protons; leading to a higher hydrogen overvoltage. These effects may synergistically mitigate the over potential necessary for CO2 reduction, and thus increase the rate of electrochemical CO2 reduction.

  20. Adsorbate electric fields on a cryogenic atom chip.

    PubMed

    Chan, K S; Siercke, M; Hufnagel, C; Dumke, R

    2014-01-17

    We investigate the behavior of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency, we measure the field strength versus distance from a 1 mm square of yttrium barium copper oxide (YBCO) patterned onto a yttria stabilized zirconia chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes. PMID:24484028

  1. Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces.

    PubMed

    Richter, Marina J; Schulz, Alexander; Subkowski, Thomas; Böker, Alexander

    2016-10-01

    Hydrophobins are highly surface active proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. We investigate hydrophobin self-assembly at oil/water interfaces to deepen the understanding of protein behavior in order to improve our biomimetic synthesis. Therefore, we carried out pendant drop measurements of hydrophobin stabilized oil/water systems determining the time-dependent IFT and the dilatational rheology with additional adaptation to the Serrien protein model. We show that the class I hydrophobin H(∗)Protein B adsorbs at an oil/water interface where it forms a densely-packed interfacial protein layer, which dissipates energy during droplet oscillation. Furthermore, the interfacial protein layer exhibits shear thinning behavior. PMID:27388134

  2. Differential domain accessibility to monoclonal antibodies in three different morphological assemblies built up by the S-layer protein of Thermus thermophilus HB8.

    PubMed Central

    Castón, J R; Olabarría, G; Lasa, I; Carrascosa, J L; Berenguer, J

    1996-01-01

    A collection of 27 monoclonal antibodies (MAbs) against the S-layer protein (P100) of Thermus thermophilus HB8 has been obtained. They have been classified according to their ability to recognize S-layer regions expressed in E. coli from plasmids containing different fragments of its coding gene, slpA. The accessibility of the binding sites in hexagonal, trigonal, or tetragonal assemblies of P100 was analyzed by enzyme-linked immunosorbent assays with six of these MAbs and their respective Fab fragments. When packed hexagonally as the native S-layer (S1 assemblies), only a small region located near the amino terminus of the P1OO was accessible. However, when P1OO was assembled into trigonal (pS2 assemblies) or tetragonal (S2 assemblies) arrays, most of the protein domains analyzed were easily detected, thus suggesting that P1OO is assembled in S2 and pS2 in a similar way and that these two arrangements are quite different from the S1 assembly. Relationships between accessibility and sequence predictions are discussed. PMID:8655568

  3. Solution structure of the hypothetical protein TA0095 from Thermoplasma acidophilum: A novel superfamily with a two-layer sandwich architecture

    PubMed Central

    León, Esther; Yee, Adelinda; Ortíz, Angel R.; Santoro, Jorge; Rico, Manuel; Jiménez, M. Angeles

    2007-01-01

    TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an α/β two-layer sandwich architecture formed by three α-helices and five β-strands following the order β1-α1-β2-β3-β4-β5-α2-α3. Searches for structural homologs indicate that the TA0095 structure belongs to the TBP-like fold, constituting a novel superfamily characterized by an additional C-terminal helix. The TA0095 structure provides a fold common to the COG4004 proteins that will obviously belong to this new superfamily. Most hydrophobic residues conserved in the COG4004 proteins are buried in the structure determined herein, thus underlying their importance for structure stability. Considering that the TA0095 surface shows a large positively charged patch with a high degree of residue conservation within the COG4004 domain, the biological function of TA0095 and the rest of COG4004 proteins might occur through binding a negatively charged molecule. Like other TBP-like fold proteins, the COG4004 proteins might be DNA-binding proteins. The fact that TA0095 is shown to interact with large DNA fragments is in favor of this hypothesis, although nonspecific DNA binding cannot be ruled out. PMID:17766377

  4. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    NASA Technical Reports Server (NTRS)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  5. Evidence that an N-terminal S-layer protein fragment triggers the release of a cell-associated high-molecular-weight amylase in Bacillus stearothermophilus ATCC 12980.

    PubMed Central

    Egelseer, E M; Schocher, I; Sleytr, U B; Sára, M

    1996-01-01

    During growth on starch medium, the S-layer-carrying Bacillus stearothermophilus ATCC 12980 and an S-layer-deficient variant each secreted three amylases, with identical molecular weights of 58,000, 122,000, and 184,000, into the culture fluid. Only the high-molecular-weight amylase (hmwA) was also identified as cell associated. Extraction and reassociation experiments showed that the hmwA had a high-level affinity to the peptidoglycan-containing layer and to the S-layer surface, but the interactions with the peptidoglycan-containing layer were stronger than those with the S-layer surface. For the S-layer-deficient variant, no changes in the amount of cell-associated and free hmwA could be observed during growth on starch medium, while for the S-layer-carrying strain, cell association of the hmwA strongly depended on the growth phase of the cells. The maximum amount of cell-associated hmwA was observed 3 h after inoculation, which corresponded to early exponential growth. The steady decrease in cell-associated hmwA during continued growth correlated with the appearance and the increasing intensity of a protein with an apparent molecular weight of 60,000 on sodium dodecyl sulfate gels. This protein had a high-level affinity to the peptidoglycan-containing layer and was identified as an N-terminal S-layer protein fragment which did not result from proteolytic cleavage of the whole S-layer protein but seems to be a truncated copy of the S-layer protein which is coexpressed with the hmwA under certain culture conditions. During growth on starch medium, the N-terminal S-layer protein fragment was integrated into the S-layer lattice, which led to the loss of its regular structure over a wide range and to the loss of amylase binding sites. Results obtained in the present study provide evidence that the N-terminal part of the S-layer protein is responsible for the anchoring of the subunits to the peptidoglycan-containing layer, while the surface-located C-terminal half

  6. Adsorbate-driven morphological changes on Cu(111) nano-pits

    DOE PAGESBeta

    Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; Hrbek, J.; Waluyo, I.; Boscoboinik, J. A.; Stacchiola, D. J.

    2014-12-09

    Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar+ sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm-1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm-1 for CO adsorbed on atop sitesmore » of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.« less

  7. Adsorbate-driven morphological changes on Cu(111) nano-pits

    SciTech Connect

    Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; Hrbek, J.; Waluyo, I.; Boscoboinik, J. A.; Stacchiola, D. J.

    2014-12-09

    Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar+ sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm-1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm-1 for CO adsorbed on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.

  8. Unoccupied electronic states in adsorbate systems

    NASA Astrophysics Data System (ADS)

    Bertel, E.

    1991-11-01

    Experimental work on unoccupied electronic states in adsorbate systems on metallic substrates is reviewed with emphasis on recent developments. The first part is devoted to molecular adsorbates. Weakly chemisorbed hydrocarbons are briefly discussed. An exhaustive inverse photoemission (IPE) study of the CO bond to the transition metals Ni, Pb, and Pt is presented. Adsorbed NO is taken as an example to demonstrate the persisting discrepancies in the interpretation of IPE spectra. Atomic adsorbates are discussed in the second part. The quantum well state model is applied to interpret the surface states in reconstructing and non-reconstructing adsorption systems of alkali metals and hydrogen. A recent controversy on the unoccupied electronic states of the Cu(110)/O p(2×1) surface is critically reviewed. The quantum well state model is then compared to tight binding and local-density-functional calculations of the unoccupied bands and the deficiencies of the various approaches are pointed out. Finally, the relation between the surface state model and more chemically oriented models of surface bonding is briefly discussed.

  9. Use of immobilized metal ions as a negative adsorbent for purification of enzymes: application to phosphoglycerate mutase from chicken muscle extract and horseradish peroxidase.

    PubMed

    Chaga, G; Andersson, L; Ersson, B; Berg, M

    1992-01-01

    Two enzymes, phosphoglycerate mutase and peroxidase, were purified by using an immobilized metal ion adsorbent for the removal of unwanted proteins. The mutase was obtained pure from a single column, whereas the purification of peroxidase required the use of a thiophilic adsorbent in a tandem. The capacity was 2.5 mg pure peroxidase per mL gel. PMID:1386542

  10. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network

    PubMed Central

    Faraggi, Eshel; Xue, Bin; Zhou, Yaoqi

    2008-01-01

    This paper attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in ten-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36° for ψ, and 22° for ϕ. The method is available as a Real-SPINE 3.0 server in http://sparks.informatics.iupui.edu. PMID:18704931

  11. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  12. Development and Testing of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  13. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers.

    PubMed

    Shim, M Y; Song, E; Billard, L; Aggrey, S E; Pesti, G M; Sodsee, P

    2013-10-01

    The effects of a series of balanced dietary protein levels on egg production and egg quality parameters of laying hens from 18 through 74 wk of age were investigated. One hundred forty-four pullets (Bovans) were randomly assigned to individual cages with separate feeders including 3 different protein level series of isocaloric diets. Diets were separated into 4 phases of 18-22, 23-32, 33-44, and 45-74 wk of age. The high protein (H) series contained 21.62, 19.05, 16.32, and 16.05% CP, respectively. Medium protein (M) and low protein (L) series were 2 and 4% lower in balanced dietary protein. The results clearly demonstrated that the balanced dietary protein level was a limiting factor for BW, ADFI, egg weight, hen day egg production (HDEP), and feed per kilogram of eggs. Feeding with the L series resulted in lower ADFI and HDEP (90.33% peak production) and more feed per kilogram of eggs compared with the H or M series (HDEP; 93.23 and 95.68% peak production, monthly basis). Egg weight responded in a linear manner to balanced dietary protein level (58.78, 55.94, and 52.73 g for H, M, and L, respectively). Feed intake of all hens, but especially those in the L series, increased considerably after wk 54 when the temperature of the house decreased due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house temperature to maintain BW, ADFI, and HDEP. For egg quality parameters, percent yolk, Haugh units, and egg specific gravity were similar regardless of diets. Haugh units were found to be greatly affected by the variation of housing temperature (P = 0.025). Maximum performance cannot always be expected to lead to maximum profits. Contrary to the idea of a daily amino acid requirement for maximum performance, these results may be used to determine profit-maximizing levels of balanced dietary protein based on the cost of protein and returns from different possible protein levels that may be fed. PMID:24046416

  14. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.

    PubMed

    Kao, Hui-Ju; Huang, Chien-Hsun; Bretaña, Neil Arvin; Lu, Cheng-Tsung; Huang, Kai-Yao; Weng, Shun-Long; Lee, Tzong-Yi

    2015-01-01

    Protein O-GlcNAcylation, involving the β-attachment of single N-acetylglucosamine (GlcNAc) to the hydroxyl group of serine or threonine residues, is an O-linked glycosylation catalyzed by O-GlcNAc transferase (OGT). Molecular level investigation of the basis for OGT's substrate specificity should aid understanding how O-GlcNAc contributes to diverse cellular processes. Due to an increasing number of O-GlcNAcylated peptides with site-specific information identified by mass spectrometry (MS)-based proteomics, we were motivated to characterize substrate site motifs of O-GlcNAc transferases. In this investigation, a non-redundant dataset of 410 experimentally verified O-GlcNAcylation sites were manually extracted from dbOGAP, OGlycBase and UniProtKB. After detection of conserved motifs by using maximal dependence decomposition, profile hidden Markov model (profile HMM) was adopted to learn a first-layered model for each identified OGT substrate motif. Support Vector Machine (SVM) was then used to generate a second-layered model learned from the output values of profile HMMs in first layer. The two-layered predictive model was evaluated using a five-fold cross validation which yielded a sensitivity of 85.4%, a specificity of 84.1%, and an accuracy of 84.7%. Additionally, an independent testing set from PhosphoSitePlus, which was really non-homologous to the training data of predictive model, was used to demonstrate that the proposed method could provide a promising accuracy (84.05%) and outperform other O-GlcNAcylation site prediction tools. A case study indicated that the proposed method could be a feasible means of conducting preliminary analyses of protein O-GlcNAcylation and has been implemented as a web-based system, OGTSite, which is now freely available at http://csb.cse.yzu.edu.tw/OGTSite/. PMID:26680539

  15. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs

    PubMed Central

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-01-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs—the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3–RRM4 block is the main platform mediating the stable association with the H12–H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP–RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. PMID:24748666

  16. Bridging in grafted layers : Statics and kinetics

    NASA Astrophysics Data System (ADS)

    Johner, A.

    We discuss bridging between a grafted layer and an opposing plate which adsorbs the polymer. The case of end adsorption is considered, as well as the case where all monomers adsorb. We predict that with increasing adsorption an exclusion zone grows in the vicinity of the adsorbing plate, this slows down the kinetics. For end adsorption we study the kinetics and argue that two main processes are involved: the exploration of the brush by a free end and its adsorption through the exclusion zone.

  17. Theory of colloid depletion stabilization by unattached and adsorbed polymers.

    PubMed

    Semenov, A N; Shvets, A A

    2015-12-01

    The polymer-induced forces between colloidal particles in a semidilute or concentrated polymer solution are considered theoretically. This study is focussed on the case of partially adsorbing colloidal surfaces involving some attractive centers able to trap polymer segments. In the presence of free polymers the particles are covered by self-assembled fluffy layers whose structure is elucidated. It is shown that the free-polymer-induced interaction between the particles is repulsive at distances exceeding the polymer correlation length, and that this depletion repulsion can be strongly enhanced due to the presence of fluffy layers. This enhanced depletion stabilization mechanism (which works in tandem with a more short-range steric repulsion of fluffy layers) can serve on its own to stabilize colloidal dispersions. More generally, we identify three main polymer-induced interaction mechanisms: depletion repulsion, depletion attraction, and steric repulsion. Their competition is analyzed both numerically and analytically based on an asymptotically rigorous mean-field theory. It is shown that colloid stabilization can be achieved by simply increasing the molecular weight of polymer additives, or by changing their concentration. PMID:26400677

  18. Molecular Factors in Dendritic Cell Responses to Adsorbed Glycoconjugates

    PubMed Central

    Hotaling, Nathan A.; Cummings, Richard D.; Ratner, Daniel M.; Babensee, Julia E.

    2014-01-01

    Carbohydrates and glycoconjugates have been shown to exert pro-inflammatory effects on the dendritic cell (DC), supporting pathogen-induced innate immunity and antigen processing, as well as immunosuppressive effects in the tolerance to self-proteins. Additionally, the innate inflammatory response to implanted biomaterials has been hypothesized to be mediated by inflammatory cells interacting with adsorbed proteins, many of which are glycosylated. However, the molecular factors relevant for surface displayed glycoconjugate modulation of DC phenotype are unknown. Thus, in this study, a model system was developed to establish the role of glycan composition, density, and carrier cationization state on DC response. Thiol modified glycans were covalently bound to a model protein carrier, maleimide functionalized bovine serum albumin (BSA), and the number of glycans per BSA modulated. Additionally, the carrier isoelectric point was scaled from a pI of ~4.0 to ~10.0 using ethylenediamine (EDA). The DC response to the neoglycoconjugates adsorbed to wells of a 384 well plate was determined via a high throughput assay. The underlying trends in DC phenotype in relation to conjugate properties were elucidated via multivariate general linear models. It was found that glycoconjugates with more than 20 glycans per carrier had the greatest impact on the pro-inflammatory response from DCs, followed by conjugates having an isoelectric point above 9.5. Surfaces displaying terminal α1–2 linked mannose structures were able to increase the inflammatory DC response to a greater extent than did any other terminal glycan structure. The results herein can be applied to inform the design of the next generation of combination products and biomaterials for use in future vaccines and implanted materials. PMID:24746228

  19. DPPG Liposomes Adsorbed on Polymer Cushions: Effect of Roughness on Amount, Surface Composition and Topography.

    PubMed

    Duarte, Andreia A; Botelho do Rego, Ana M; Salerno, Marco; Ribeiro, Paulo A; El Bari, Nezha; Bouchikhi, Benachir; Raposo, Maria

    2015-07-01

    The adsorption of intact liposomes onto solid supports is a fundamental issue when preparing systems with encapsulated biological molecules. In this work, the adsorption kinetic of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) liposomes onto cushions prepared from commom polyelectrolytes by the layer-by-layer technique was investigated with the main objective of finding the surface conditions leading to the adsorption of intact liposomes. For this purpose, different cushion surface roughnesses were obtained by changing the number of cushion bilayers. The adsorbed amount per unit area was measured through quartz crystal microbalance, surface morphology was characterized by atomic force microscopy, and the surface composition was assessed by X-ray photoelectron spectroscopy. The results show that (1) the amount of adsorbed lipids depends on the number of cushion bilayers, (2) the cushions are uniformly covered by the adsorbed lipids, and (3) the surface morphology of polymer cushions tunes liposome rupture and its adsorption kinetics. The fraction of ruptured liposomes, calculated from the measured amount of adsorbed lipids, is a function of surface roughness together with other surface morphology parameters, namely the dominating in-plane spatial feature size, the fractal dimension, and other textural features as well as amplitude and hybrid parameters. PMID:26076391

  20. Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees.

    PubMed

    Poppinga, Lena; Janesch, Bettina; Fünfhaus, Anne; Sekot, Gerhard; Garcia-Gonzalez, Eva; Hertlein, Gillian; Hedtke, Kati; Schäffer, Christina; Genersch, Elke

    2012-01-01

    The gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a globally occurring, deathly epizootic of honey bee brood. AFB outbreaks are predominantly caused by two genotypes of P. larvae, ERIC I and ERIC II, with P. larvae ERIC II being the more virulent genotype on larval level. Recently, comparative proteome analyses have revealed that P. larvae ERIC II but not ERIC I might harbour a functional S-layer protein, named SplA. We here determine the genomic sequence of splA in both genotypes and demonstrate by in vitro self-assembly studies of recombinant and purified SplA protein in combination with electron-microscopy that SplA is a true S-layer protein self-assembling into a square 2D lattice. The existence of a functional S-layer protein is novel for this bacterial species. For elucidating the biological function of P. larvae SplA, a genetic system for disruption of gene expression in this important honey bee pathogen was developed. Subsequent analyses of in vivo biological functions of SplA were based on comparing a wild-type strain of P. larvae ERIC II with the newly constructed splA-knockout mutant of this strain. Differences in cell and colony morphology suggest that SplA is a shape-determining factor. Marked differences between P. larvae ERIC II wild-type and mutant cells with regard to (i) adhesion to primary pupal midgut cells and (ii) larval mortality as measured in exposure bioassays corroborate the assumption that the S-layer of P. larvae ERIC II is an important virulence factor. Since SplA is the first functionally proven virulence factor for this species, our data extend the knowledge of the molecular differences between these two genotypes of P. larvae and contribute to explaining the observed differences in virulence. These results present an immense advancement in our understanding of P. larvae pathogenesis. PMID:22615573

  1. Identification and Functional Analysis of the S-Layer Protein SplA of Paenibacillus larvae, the Causative Agent of American Foulbrood of Honey Bees

    PubMed Central

    Poppinga, Lena; Janesch, Bettina; Fünfhaus, Anne; Sekot, Gerhard; Garcia-Gonzalez, Eva; Hertlein, Gillian; Hedtke, Kati; Schäffer, Christina; Genersch, Elke

    2012-01-01

    The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a globally occurring, deathly epizootic of honey bee brood. AFB outbreaks are predominantly caused by two genotypes of P. larvae, ERIC I and ERIC II, with P. larvae ERIC II being the more virulent genotype on larval level. Recently, comparative proteome analyses have revealed that P. larvae ERIC II but not ERIC I might harbour a functional S-layer protein, named SplA. We here determine the genomic sequence of splA in both genotypes and demonstrate by in vitro self-assembly studies of recombinant and purified SplA protein in combination with electron-microscopy that SplA is a true S-layer protein self-assembling into a square 2D lattice. The existence of a functional S-layer protein is novel for this bacterial species. For elucidating the biological function of P. larvae SplA, a genetic system for disruption of gene expression in this important honey bee pathogen was developed. Subsequent analyses of in vivo biological functions of SplA were based on comparing a wild-type strain of P. larvae ERIC II with the newly constructed splA-knockout mutant of this strain. Differences in cell and colony morphology suggest that SplA is a shape-determining factor. Marked differences between P. larvae ERIC II wild-type and mutant cells with regard to (i) adhesion to primary pupal midgut cells and (ii) larval mortality as measured in exposure bioassays corroborate the assumption that the S-layer of P. larvae ERIC II is an important virulence factor. Since SplA is the first functionally proven virulence factor for this species, our data extend the knowledge of the molecular differences between these two genotypes of P. larvae and contribute to explaining the observed differences in virulence. These results present an immense advancement in our understanding of P. larvae pathogenesis. PMID:22615573

  2. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  3. Anomalous conformational transitions in cytochrome C adsorbing to Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Kamatchi; Nair, B. U.; Dhathathreyan, A.

    2013-05-01

    Helix to beta conformational transitions in proteins has attracted much attention due to their relevance to fibril formation which is implicated in many neurological diseases. This study reports on unusual conformational transition of cytochrome C adsorbing to hydrophilic surface containing pure cationic lipid and mixed Langmuir-Blodgett films (LB films) of cationic and neutral lipids. Evidence for conformational changes of the protein from its native helical state to beta sheet comes from Circular dichroic spectroscopy (CD spectroscopy). Analysis of these samples using High resolution TEM (HRTEM) shows a typical fibrillar pattern with each strand spacing of about 0.41 nm across which can be attributed to the repeat distance of interdigitated neighboring hydrogen-bonded ribbons in a beta sheet. Changes in contact angles of protein adsorbing to the LB films together with the increased mass uptake of water using quartz crystal microbalance (QCM) confirm the role of positive charges in the conformational transition. Dehydration of the protein resulting from the excess water entrainment in the polar planes of the cationic lipid in hydrophilic surface seems to trigger the refolding of the protein to beta sheet while it retains its native conformation in hydrophobic films. The results suggest that drastic conformational changes in CytC adsorbing to cationic lipids may be of significance in its role as a peripheral membrane protein.

  4. Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration.

    PubMed

    Hladílková, Jana; Callisen, Thomas H; Lund, Mikael

    2016-04-01

    Surface adsorption of Thermomyces lanuginosus lipase (TLL)-a widely used industrial biocatalyst-is studied experimentally and theoretically at different pH and salt concentrations. The maximum achievable surface coverage on a hydrophobic surface occurs around the protein isoelectric point and adsorption is reduced when either increasing or decreasing pH, indicating that electrostatic protein-protein interactions in the adsorbed layer play an important role. Using Metropolis Monte Carlo (MC) simulations, where proteins are coarse grained to the amino acid level, we estimate the protein isoelectric point in the vicinity of charged surfaces as well as the lateral osmotic pressure in the adsorbed monolayer. Good agreement with available experimental data is achieved and we further make predictions of the protein orientation at hydrophobic and charged surfaces. Finally, we present a perturbation theory for predicting shifts in the protein isoelectric point due to close proximity to charged surfaces. Although this approximate model requires only single protein properties (mean charge and its variance), excellent agreement is found with MC simulations. PMID:26815664

  5. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.

    PubMed

    Fleischer, Candace C; Payne, Christine K

    2014-08-19

    The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a "protein corona". Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein-NP-cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein-NP complex. Although these protein-NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA-NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA-NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA-NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA-NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein may be responsible for the

  6. Interaction of Human Plasma Proteins with Thin Gelatin-Based Hydrogel Films: A QCM-D and ToF-SIMS Study

    PubMed Central

    2015-01-01

    In the fields of surgery and regenerative medicine, it is crucial to understand the interactions of proteins with the biomaterials used as implants. Protein adsorption directly influences cell-material interactions in vivo and, as a result, regulates, for example, cell adhesion on the surface of the implant. Therefore, the development of suitable analytical techniques together with well-defined model systems allowing for the detection, characterization, and quantification of protein adsorbates is essential. In this study, a protocol for the deposition of highly stable, thin gelatin-based films on various substrates has been developed. The hydrogel films were characterized morphologically and chemically. Due to the obtained low thickness of the hydrogel layer, this setup allowed for a quantitative study on the interaction of human proteins (albumin and fibrinogen) with the hydrogel by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). This technique enables the determination of adsorbant mass and changes in the shear modulus of the hydrogel layer upon adsorption of human proteins. Furthermore, Secondary Ion Mass Spectrometry and principal component analysis was applied to monitor the changed composition of the topmost adsorbate layer. This approach opens interesting perspectives for a sensitive screening of viscoelastic biomaterials that could be used for regenerative medicine. PMID:24956040

  7. Effect of supplementation of lysine producing microbes vis-a-vis source and level of dietary protein on performance and egg quality characteristics of post-peak layers

    PubMed Central

    Manju, G. U.; Reddy, B. S. V.; Gloridoss, Gideon; Prabhu, T. M.; Giridhar, K. S.; Suma, N.

    2015-01-01

    Aim: The aim was to study the effect of supplementation of lysine producing microbes (LPM) as an in vivo source of lysine on performance and egg quality characters of post-peak layers. Materials and Methods: BIS (1992) specified diets (except crude protein [CP] and lysine) were prepared using either soybean meal (SBM) or groundnut extractions (GNE) or sunflower extractions (SFE) with 16 and 15% CP resulting in six control diets. Further, each control diet was fortified with either synthetic lysine or LPM to meet BIS (1992) specified lysine requirement resulting in the set of 12 test diets. Each of the eighteen diets was offered to quadruplets groups of 4 post-peak (52 weeks) commercial laying hens in each. The trial lasted for 119 days. Result: The results revealed that the feed consumption and body weight changes and Roche yolk color and yolk index were significantly (p ≤ 0.05) different among different treatments. However, egg production, feed efficiency, egg weight, egg shape index, Haugh unit score, albumen index and shell thickness, and net returns remained non-significant (p ≤ 0.05) among different treatments. Among main factors, protein level (16% and 15% CP) made a significant (p ≤ 0.05) difference in egg production (79.6 and 75.1%) and feed efficiency (2.64 and 2.81 kg feed/kg egg mass, respectively). Among protein source GNE- and SFE-based diet fed groups showed significantly (p < 0.0%) higher feed consumption and body weight gain than SBM based diets fed birds. Yolk color (7.0, 7.3 and 7.3, respectively) and yolk index (0.40, 0.38 and 0.43, respectively) were significantly (p ≤ 0.05) different from the protein sources. CP level and Protein source interaction effects showed significant differences in albumen index and Haugh unit score. Conclusion: Optimum level of protein (16% CP) and GNE as a source of protein tended to be superior in increasing the performance and egg characteristics of post-peak layers and supplementation of lysine in either

  8. Hemoglobin-mimetic oxygen adsorbent prepared via self-assembly of cysteinyl bolaamphiphiles.

    PubMed

    Lee, Chaemyeong; Kim, Min-Chul; Lee, Sang-Yup

    2016-06-01

    In this study, a novel cysteinyl bolaamphiphilic molecule was synthesized and its self-assembled planar suprastructure was applied as a biomimetic matrix to create a hemoglobin-mimetic oxygen adsorbent that exploits the ability of cysteine thiols to bind hemin. Self-assembly of the cysteinyl bolaamphiphilic molecule exposed cysteine thiols on its surface in the presence of β-mercaptoethanol, known to reduce disulfide bonds, without which, helically coiled structures were generated. The self-assembled planar structure was used as a soft matrix to create a hemoglobin-mimetic oxygen adsorbent. The surface-exposed cysteine thiols were used to attach hemin, producing a hemin-bound, planar structure mimicking hemoglobin. This hemoglobin mimic strongly adsorbed oxygen and remained stable up to 50°C. The cysteinyl bolaamphiphile self-assembled structure provided a biomimetic platform that allowed for the association of biological substances in a manner similar to natural proteins. PMID:26970824

  9. An adsorbent monolith device to augment the removal of uraemic toxins during haemodialysis.

    PubMed

    Sandeman, Susan R; Howell, Carol A; Phillips, Gary J; Zheng, Yishan; Standen, Guy; Pletzenauer, Robert; Davenport, Andrew; Basnayake, Kolitha; Boyd, Owen; Holt, Stephen; Mikhalovsky, Sergey V

    2014-06-01

    Adsorbents designed with porosity which allows the removal of protein bound and high molecular weight uraemic toxins may improve the effectiveness of haemodialysis treatment of chronic kidney disease (CKD). A nanoporous activated carbon monolith prototype designed for direct blood contact was first assessed for its capacity to remove albumin bound marker toxins indoxyl sulphate (IS), p-cresyl sulphate (p-CS) and high molecular weight cytokine interleukin-6 in spiked healthy donor studies. Haemodialysis patient blood samples were then used to measure the presence of these markers in pre- and post-dialysis blood and their removal by adsorbent recirculation of post-dialysis blood samples. Nanopores (20-100 nm) were necessary for marker uraemic toxin removal during in vitro studies. Limited removal of IS and p-CS occurred during haemodialysis, whereas almost complete removal occurred following perfusion through the carbon monoliths suggesting a key role for such adsorbent therapies in CKD patient care. PMID:24573455

  10. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  11. S-Layer Homology Domain Proteins Csac_0678 and Csac_2722 Are Implicated in Plant Polysaccharide Deconstruction by the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus

    PubMed Central

    Ozdemir, Inci; Blumer-Schuette, Sara E.

    2012-01-01

    The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization. PMID:22138994

  12. Lysozyme fractionation from egg white at pilot scale by means of tangential flow membrane adsorbers: Investigation of the flow conditions.

    PubMed

    Brand, Janina; Voigt, Katharina; Zochowski, Bianca; Kulozik, Ulrich

    2016-03-18

    The application of membrane adsorbers instead of classical packed bed columns for protein fractionation is still a growing field. In the case of egg white protein fractionation, the application of classical chromatography is additionally limited due to its high viscosity that impairs filtration. By using tangential flow membrane adsorbers as stationary phase this limiting factor can be left out, as they can be loaded with particle containing substrates. The flow conditions existing in tangential flow membrane adsorbers are not fully understood yet. Thus, the aim of the present study was to gain a deeper understanding of the transport mechanisms in tangential flow membrane adsorbers. It was found that loading in recirculation mode instead of single pass mode increased the binding capacity (0.39 vs. 0.52mgcm(-2)). Further, it was shown that either higher flow rates (0.39mgcm(-2) vs. 0.57mgcm(-2) at 1CVmin(-1) or 20CVmin(-1), respectively) or higher amounts of the target protein in the feed (0.24mgcm(-2) vs. 0.85mgcm(-2) for 2.5 or 39.0g lysozyme, respectively) led to more protein binding. These results show that, in contrast to radial flow or flat sheet membrane adsorbers, the transport in tangential flow membrane adsorbers is not purely based on convection, but on a mix of convection and diffusion. Additionally, investigations concerning the influence of fouling formation were performed that can lead to transport limitations. It was found that this impact is neglectable. It can be concluded that the usage of tangential flow membrane adsorbers is very recommendable for egg white protein fractionations, although the transport is partly diffusion-limited. PMID:26898148

  13. Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron

    PubMed Central

    Makarova, Anna A.; Grachova, Elena V.; Neudachina, Vera S.; Yashina, Lada V.; Blüher, Anja; Molodtsov, Serguei L.; Mertig, Michael; Ehrlich, Hermann; Adamchuk, Vera K.; Laubschat, Clemens; Vyalikh, Denis V.

    2015-01-01

    The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide. PMID:25736576

  14. Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron

    NASA Astrophysics Data System (ADS)

    Makarova, Anna A.; Grachova, Elena V.; Neudachina, Vera S.; Yashina, Lada V.; Blüher, Anja; Molodtsov, Serguei L.; Mertig, Michael; Ehrlich, Hermann; Adamchuk, Vera K.; Laubschat, Clemens; Vyalikh, Denis V.

    2015-03-01

    The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide.

  15. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  16. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  17. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  18. Novel plasma-separation dilayer gellan-gellan-sulfate adsorber for direct removal of extra domain A containing fibronectin from the blood of rheumatoid arthritis patients.

    PubMed

    Miyamoto, Keiichi; Sugihara, Katsuyuki; Abe, Yasunori; Nobori, Tsutomu; Tokita, Masayuki; Komai, Takashi

    2002-06-18

    Rheumatoid arthritis (RA) patients, in whom cryogelation occurs in the presence of heparin, exhibit abnormally high concentrations of extra domain A containing fibronectin [EDA(+)FN] in their plasma. The selective removal of EDA(+)FN from patient blood is therefore of potential therapeutic benefit. Gellan-sulfate is a candidate ligand for the removal of EDA(+)FN due to its high affinity for FN. In this study, we prepare a novel adsorber for the direct removal of EDA(+)FN from patient blood. The adsorber has both a plasma separation function and EDA(+)FN trapping zones, and is prepared by cross-linking gellan-sulfate with epichlorohydrine. The ratio of gellan-sulfate to gellan in the adsorber is 48%. The surface and internal structure of gellan beads were observed by a range of microscopic techniques, and the beads were found to have a dilayer structure, consisting of a porous outer layer and an underlying gellan-sulfate phase as the adsorber. The affinity constants of the gellan-sulfate beads for EDA(+)FN were almost the same in blood as in buffer because the porous gellan coating acts to separate plasma from the cellular fraction of the blood. The removal rate of plasma proteins and blood cells from mock RA blood was measured for coated and uncoated gellan-sulfate beads. Removal rates were 30-32% for EDA(+)FN, 6-10% for fibrinogen, 10-14% for antithrombin III, 8% for C3, 4-7% for C4, and 0% for albumin. The removal rates of uncoated beads were 11% for white blood cells, 0% for red blood cells and 33% for platelets, whereas removal rates of 0% for white blood cells, 0% for red blood cells and 20% for platelets were achieved for coated beads. The coating effectively inhibits the adsorption of white blood cells and platelets. Existing problems with direct adsorbers, including selectivity and plasma separation, have been solved by this material. PMID:12063122

  19. Potassium Niobate Nanolamina: A Promising Adsorbent for Entrapment of Radioactive Cations from Water

    PubMed Central

    Sun, Jin; Yang, Dongjiang; Sun, Cuihua; Liu, Long; Yang, Shuanglei; (Alec) Jia, Yi; Cai, Rongsheng; Yao, Xiangdong

    2014-01-01

    Processing and managing radioactive waste is a great challenge worldwide as it is extremely difficult and costly; the radioactive species, cations or anions, leaked into the environment are a serious threat to the health of present and future generations. We report layered potassium niobate (K4Nb6O17) nanolamina as adsorbent to remove toxic Sr2+, Ba2+ and Cs+ cations from wastewater. The results show that K4Nb6O17 nanolamina can permanently confine the toxic cations within the interlayer spacing via a considerable deformation of the metastable layered structure during the ion exchange process. At the same time, the nanolaminar adsorbent exhibits prompt adsorption kinetics, high adsorption capacity and selectivity, and superior acid resistance. These merits make it be a promising material as ion exchanger for the removal of radioactive cations from wastewater. PMID:25472721

  20. Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearothermophilus PV72/p2

    PubMed Central

    Sára, Margit; Egelseer, Eva M.; Dekitsch, Christine; Sleytr, Uwe B.

    1998-01-01

    First studies on the structure-function relationship of the S-layer protein from B. stearothermophilus PV72/p2 revealed the coexistence of two binding domains on its N-terminal part, one for peptidoglycan and another for a secondary cell wall polymer (SCWP). The peptidoglycan binding domain is located between amino acids 1 to 138 of the mature S-layer protein comprising a typical S-layer homologous domain. The SCWP binding domain lies between amino acids 240 to 331 and possesses a high serine plus glycine content. PMID:9852032

  1. Orbital tomography for highly symmetric adsorbate systems

    NASA Astrophysics Data System (ADS)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  2. Comparison of semen variables, sperm DNA damage and sperm membrane proteins in two male layer breeder lines.

    PubMed

    M, Shanmugam; T R, Kannaki; A, Vinoth

    2016-09-01

    Semen variables are affected by the breed and strain of chicken. The present study was undertaken to compare the semen quality in two lines of adult chickens with particular reference to sperm chromatin condensation, sperm DNA damage and sperm membrane proteins. Semen from a PD3 and White Leghorn control line was collected at 46 and 47 weeks and 55 weeks of age. The semen was evaluated for gross variables and sperm chromatin condensation by aniline blue staining. Sperm DNA damage was assessed by using the comet assay at 47 weeks of age and sperm membrane proteins were assessed at 55 weeks of age. The duration of fertility was studied by inseminating 100 million sperm once into the hens of the same line as well as another line. The eggs were collected after insemination for 15days and incubated. The eggs were candled on 18th day of incubation for observing embryonic development. The White Leghorn control line had a greater sperm concentration and lesser percentage of morphologically abnormal sperm at the different ages where assessments occurred. There was no difference in sperm chromatin condensation, DNA damage and membrane proteins between the lines. Only low molecular weight protein bands of less than 95kDa were observed in samples of both lines. The line from which semen was used had no effect on the duration over which fertility was sustained after insemination either when used in the same line or another line. Thus, from the results of the present study it may be concluded that there was a difference in gross semen variables between the lines that were studied, however, the sperm chromatin condensation, DNA damage, membrane proteins and duration over which fertility was sustained after insemination did not differ between the lines. PMID:27470200

  3. Inhibition of platelet spreading from plasma onto glass by an adsorbed layer of a novel fluorescent-labeled poly(ethylene oxide)/poly(butylene oxide) block copolymer: characteristics of the exclusion zone probed by means of polystyrene beads and macromolecules.

    PubMed

    Gingell, D; Owens, N

    1994-04-01

    We have investigated the anti-adhesive properties of a newly synthesized fluorescent triblock copolymer containing poly(ethylene oxide). This adsorbs from aqueous solution onto glass that has been rendered hydrophobic. When the polymer-treated surface was exposed to human platelet-rich plasma (PRP) or whole blood at 37 degrees C, platelet adhesion and spreading were prevented. Avid adhesion and rapid platelet spreading occurred along tracks scraped in the adsorbed polymer coating, as seen by video-enhanced interference reflection microscopy. Leukocytes from whole blood are eventually able to adhere to the polymer-treated surface and were seen to remove labeled polymer from their vicinity and accumulate it at the cell body. Interferometry using polystyrene spheres showed that they do not adhere to polymer-coated glass and are unable to approach closer than 70-95 nm. On scraped tracks, beads make molecular contacts with the glass. Because the fully extended solvated (EO)400 arms may extend up to 100 nm from the glass, this suggests that the polymer forms a monolayer with the hydrophilic arms projecting into the water, whereas the hydrophobic (BO)55 segment binds the molecule to the hydrophobic surface. Another tri-bloc copolymer with shorter hydrophilic arms allows particles to approach more closely. PMID:7516339

  4. Structure and Dynamics of Proteins Adsorbed to Biomaterial Interfaces

    SciTech Connect

    Drobny, Gary P.; Long, Joanna R.; Shaw, Wendy J.; Cotten, Myriam L.; Stayton, Partick S.

    2002-10-31

    Biomineralization, defined as the organized deposition of inorganic materials in the cellular or extracellular matrix, may be as simple a process as the formation of an iron oxide crystal in the vesicle of a magnetobacterium, or as complex a process as the formation of the intricate calcium carbonate and calcium phosphate structures found in marine coccoliths, invertebrate shells, vertebrate skeletons and teeth. The phenomenon of Biomineralization has attracted a great deal of attention recently from the materials science community, which seeks to understand the way in which inorganic biological composites are synthesized and processed in nature.

  5. A comparison of didodecyldimethylammonium bromide adsorbed at mica/water and silica/water interfaces using neutron reflection.

    PubMed

    Griffin, Lucy R; Browning, Kathryn L; Truscott, Chris L; Clifton, Luke A; Webster, John; Clarke, Stuart M

    2016-09-15

    The layer structure of the dichain alkyl ammonium surfactant, didodecyldimethylammonium bromide (DDAB), adsorbed from water on to silica and mica surfaces has been determined using neutron reflection. Although sometimes considered interchangeable surfaces for study, we present evidence of significant differences in the adsorbed layer structure below the critical micelle concentration. A complete DDAB bilayer was assembled at the water/mica interface at concentrations below the critical micelle concentration (CMC). In contrast it is not until the CMC was reached that the complete bilayer structure formed on the oxidised silicon crystal. Removal of the complete bilayer on both surfaces was attempted by both washing and ion exchange yet the adsorbed structure proved tenacious. PMID:27318715

  6. Thermodynamic investigation of trichloroethylene adsorption in water-saturated microporous adsorbents

    SciTech Connect

    Farrell, J.; Hauck, B.; Jones, M.

    1999-08-01

    Adsorption of trichloroethylene (TCE) in adsorbents containing hydrophilic and hydrophobic micropores was investigated in order to determine the mechanisms responsible for TCE adsorption on mineral solids. A high-pressure liquid chromatography method was used to measure TCE adsorption isotherms on three microporous adsorbents. Silica gel and zeolite type NaX were used as hydrophilic model adsorbents, and hexamethyldisilazane (HMDS)-treated silica gel was used as a model hydrophobic adsorbent. Batch uptake and desorption isotherms were also measured on the hydrophilic silica gel. Uptake of TCE by all three adsorbents was linear over the concentration range investigated. However, the silica gel desorption isotherm was highly nonlinear, as indicated by its Freundlich isotherm exponent of 0.58. Capillary phase separation into hydrophobic micropores was postulated as being responsible for the isotherm hysteresis. Supporting this hypothesis was the conformance of the TCE adsorption isotherm to Dubinin-Radushkevitch volume filling of micropores theory. The enthalpies for TCE adsorption on all three solids were determined by van't Hoff analysis of distribution coefficients measured over a temperature range from 5 to 90 C. The TCE adsorption enthalpies on the silica gel and HMDS silica gel were exothermic, but on the zeolite adsorption was endothermic. High exothermic adsorption enthalpies on the silica gel adsorbents indicated that TCE adsorption was occurring in hydrophobic micropores, and that adsorption on surfaces with large radii of curvature contributed only minimally to the total uptake. This indicates that the predominant mechanism for TCE adsorption on these mineral solids is not partitioning into the vicinal water layer.

  7. A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression

    PubMed Central

    Settem, Rajendra P.; Honma, Kiyonobu; Nakajima, Takuma; Phansopa, Chatchawal; Roy, Sumita; Stafford, Graham P.; Sharma, Ashu

    2014-01-01

    Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium’s proteinacious surface(S)-layer lattice and other glycoproteins. Herein we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress Th17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen acts to ensure its persistence in the host by suppressing Th17 responses. In addition our data suggest that the bacterium then induces the TLR2-Th2 inflammatory axis that has previously shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases. PMID:22968422

  8. Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb.

    PubMed

    Tsutiya, Atsuhiro; Watanabe, Hikaru; Nakano, Yui; Nishihara, Masugi; Goshima, Yoshio; Ohtani-Kaneko, Ritsuko

    2016-05-01

    Collapsin response mediator protein 4 (CRMP4), a member of the CRMP family, is involved in the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Here, we first compared layer thickness of the olfactory bulb between wild-type (WT) and CRMP4-knockout (KO) mice. The mitral cell layer (MCL) was significantly thinner, whereas the external plexiform layer (EPL) was significantly thicker in CRMP4-KO mice at postnatal day 0 (PD0) compared with WTs. However, differences in layer thickness disappeared by PD14. No apoptotic cells were found in the MCL, and the number of mitral cells (MCs) identified with a specific marker (i.e. Tbx21 antibody) did not change in CRMP4-KO neonates. However, DiI-tracing showed that the length of mitral cell apical dendrites was greater in CRMP4-KO neonates than in WTs. In addition, expression of CRMP4 mRNA in WT mice was most abundant in the MCL at PD0 and decreased afterward. These results suggest that CRMP4 contributes to dendritic elongation. Our in vitro studies showed that deletion or knockdown of CRMP4 resulted in enhanced growth of MAP2-positive neurites, whereas overexpression of CRMP4 reduced their growth, suggesting a new role for CRMP4 as a suppressor of dendritic elongation. Overall, our data suggest that disruption of CRMP4 produces a temporary alteration in EPL thickness, which is constituted mainly of mitral cell apical dendrites, through the enhanced growth of these dendrites. PMID:26739921

  9. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  10. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  11. Mercury removal from incineration flue gas by organic and inorganic adsorbents.

    PubMed

    Jurng, Jongsoo; Lee, Tai Gyu; Lee, Gyo Woo; Lee, Sung-Jun; Kim, Byung Hwa; Seier, Jochen

    2002-06-01

    Experiments were performed to investigate various adsorbents for their mercury removal capabilities from incineration flue gases. Four different materials were tested; Zeolite, Bentonite, activated carbon (AC), and wood char. Real incineration off-gas and in-lab simulated combustion flue gases (N2 + Hg) were used. Three cylindrical-shaped sorbent columns with 5 cm in diameter and 20 cm in length were used. The gas flow rate was fixed at 660 l/h at all times. Concentrations of NO, CO, O2, CO2, SO2, H2O, HCl, and mercury were continuously monitored. Mercury removal efficiencies of natural Zeolite and Bentonite were found to be much lower than those of the referenced AC. Amount of Hg removed were 9.2 and 7.4 microg/g of Zeolite and Bentonite, respectively. Removal efficiencies of each layer consisted of inorganic adsorbents were no higher than 7%. No significant improvement was observed with sulfur impregnation onto the inorganic adsorbents. Organic adsorbents (wood char and AC) showed much higher mercury removal efficiencies than those of inorganic ones (Zeolite and Bentonite). Mercury removal efficiency of wood char reached over 95% in the first layer, showing almost same effectiveness as AC which currently may be the most effective adsorbents for mercury. Amount of mercury captured by wood char was approximately 0.6 mg/g of wood char, close to the amount captured by AC tested in this study. Hence, wood char, made from the waste woods through a gasification process, should be considered as a possible alternative to relatively expensive AC. PMID:12108697

  12. Innovative Nano-Layered Solid Sorbents for CO{sub 2} Capture

    SciTech Connect

    Li, Bengyun; Jiang, Bingbing; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A

    2011-01-01

    Nano-layered sorbents for CO{sub 2} capture, for the first time, were developed using layer-by-layer nanoassembly. A CO{sub 2}-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO{sub 2} adsorption and desorption properties and their CO{sub 2} capture capacity increased with increasing nano-layers of the CO{sub 2}-adsorbing polymer.

  13. Raman fingerprint of doping due to metal adsorbates on graphene.

    PubMed

    Iqbal, M W; Singh, Arun Kumar; Iqbal, M Z; Eom, Jonghwa

    2012-08-22

    The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene. PMID:22814217

  14. Raman fingerprint of doping due to metal adsorbates on graphene

    NASA Astrophysics Data System (ADS)

    Iqbal, M. W.; Singh, Arun Kumar; Iqbal, M. Z.; Eom, Jonghwa

    2012-08-01

    The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene.

  15. Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis.

    PubMed

    Novotny, René; Scheberl, Andrea; Giry-Laterriere, Marc; Messner, Paul; Schäffer, Christina

    2005-01-01

    The ~93-kDa surface layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a forms a regular crystalline array providing a nanopatterned matrix for the future display of biologically relevant molecules. Lactococcus lactis NZ9000 was established as a safe expression host for the controlled targeted production of SgsE based on the broad host-range plasmid pNZ124Sph, into which the nisA promoter was introduced. SgsE devoid of its signal peptide-encoding sequence was cloned into the new vector and purified from the cytoplasm at a yield of 220 mg l- of expression culture. Secretion constructs were based on the signal peptide of the Lactobacillus brevis SlpA protein or the L. lactis Usp45 protein, allowing isolation of 95 mg of secreted rSgsE l-1. N-terminal sequencing confirmed correct processing of SgsE in L. lactis NZ9000. The ability of rSgsE to self-assemble in suspension and to recrystallize on solid supports was demonstrated by electron and atomic force microscopy. PMID:15675069

  16. Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface.

    PubMed

    Allan, Daniel B; Firester, Daniel M; Allard, Victor P; Reich, Daniel H; Stebe, Kathleen J; Leheny, Robert L

    2014-09-28

    We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase. PMID:24969505

  17. Interaction of Moringa oleifera seed protein with a mineral surface and the influence of surfactants.

    PubMed

    Kwaambwa, Habauka M; Hellsing, Maja S; Rennie, Adrian R; Barker, Robert

    2015-06-15

    The paper describes the adsorption of purified protein from seeds of Moringa oleifera to a sapphire interface and the effects of addition of the anionic surfactant sodium dodecylsulfate (SDS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). Neutron reflection was used to determine the structure and composition of interfacial layers adsorbed at the solid/solution interface. The maximum surface excess of protein was found to be about 5.3 mg m(-2). The protein does not desorb from the solid/liquid interface when rinsed with water. Addition of SDS increases the reflectivity indicating co-adsorption. It was observed that CTAB is able to remove the protein from the interface. The distinct differences to the behavior observed previously for the protein at the silica/water interface are identified. The adsorption of the protein to alumina in addition to other surfaces has shown why it is an effective flocculating agent for the range of impurities found in water supplies. The ability to tailor different surface layers in combination with various surfactants also offers the potential for adsorbed protein to be used in separation technologies. PMID:25746187

  18. Arabidopsis HARMLESS TO OZONE LAYER protein methylates a glucosinolate breakdown product and functions in resistance to Pseudomonas syringae pv. maculicola.

    PubMed

    Nagatoshi, Yukari; Nakamura, Tatsuo

    2009-07-17

    Almost all of the chlorine-containing gas emitted from natural sources is methyl chloride (CH(3)Cl), which contributes to the destruction of the stratospheric ozone layer. Tropical and subtropical plants emit substantial amounts of CH(3)Cl. A gene involved in CH(3)Cl emission from Arabidopsis was previously identified and designated HARMLESS TO OZONE LAYER (hereafter AtHOL1) based on the mutant phenotype. Our previous studies demonstrated that AtHOL1 and its homologs, AtHOL2 and AtHOL3, have S-adenosyl-l-methionine-dependent methyltransferase activities. However, the physiological functions of AtHOLs have yet to be elucidated. In the present study, our comparative kinetic analyses with possible physiological substrates indicated that all of the AtHOLs have low activities toward chloride. AtHOL1 was highly reactive to thiocyanate (NCS(-)), a pseudohalide, synthesizing methylthiocyanate (CH(3)SCN) with a very high k(cat)/K(m) value. We demonstrated in vivo that substantial amounts of NCS(-) were synthesized upon tissue damage in Arabidopsis and that NCS(-) was largely derived from myrosinase-mediated hydrolysis of glucosinolates. Analyses with the T-DNA insertion Arabidopsis mutants (hol1, hol2, and hol3) revealed that only hol1 showed increased sensitivity to NCS(-) in medium and a concomitant lack of CH(3)SCN synthesis upon tissue damage. Bacterial growth assays indicated that the conversion of NCS(-) into CH(3)SCN dramatically increased antibacterial activities against Arabidopsis pathogens that normally invade the wound site. Furthermore, hol1 seedlings showed an increased susceptibility toward an Arabidopsis pathogen, Pseudomonas syringae pv. maculicola. Here we propose that AtHOL1 is involved in glucosinolate metabolism and defense against phytopathogens. Moreover, CH(3)Cl synthesized by AtHOL1 could be considered a byproduct of NCS(-) metabolism. PMID:19419967

  19. Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer.

    PubMed

    Granato, E; Ying, S C

    2000-12-18

    We study the response of an adsorbed monolayer under a driving force as a model of sliding friction phenomena between two crystalline surfaces with a boundary lubrication layer. Using Langevin-dynamics simulation, we determine the nonlinear response in the direction transverse to a high symmetry direction along which the layer is already sliding. We find that below a finite transition temperature there exist a critical depinning force and hysteresis effects in the transverse response in the dynamical state when the adlayer is sliding smoothly along the longitudinal direction. PMID:11135998

  20. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    SciTech Connect

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

  1. Adsorbed serum albumin is permissive to macrophage attachment to perfluorocarbon polymer surfaces in culture

    PubMed Central

    Godek, M.L.; Michel, R.; Chamberlain, L. M.; Castner, D. G.; Grainger, D.W.

    2013-01-01

    Monocyte/macrophage adhesion to biomaterials, correlated with foreign body response, occurs through protein-mediated surface interactions. Albumin-selective perfluorocarbon (FC) biomaterials are generally poorly cell-conducive due to insufficient receptor-mediated surface interactions, but macrophages bind to albumin-coated substrates and also preferentially to highly hydrophobic fluorinated surfaces. Bone marrow macrophages (BMMO) and IC-21, RAW 264.7 and J774A.1 monocyte/macrophage cells were cultured on FC surfaces. Protein deposition onto two distinct FC surfaces from complex and single-component solutions was tracked using fluorescence and time-of-flight secondary ion mass spectrometry (ToF-SIMS) methods. Cell adhesion and growth on protein pre-treated substrates were compared by light microscopy. Flow cytometry and integrin-directed antibody receptor blocking assessed integrins critical for monocyte/macrophage adhesion in vitro. Albumin predominantly adsorbs onto both FC surfaces from 10% serum. In cultures pre-adsorbed with albumin or serum-dilutions, BMMO responded similar to IC-21 at early time points. Compared to Teflon® AF, plasma-polymerized FC was less permissive to extended cell proliferation. The β2 integrins play major roles in macrophage adhesion to FC surfaces: antibody blocking significantly disrupted cell adhesion. Albumin-mediated cell adhesion mechanisms to FC surfaces could not be clarified. Primary BMMO and secondary IC-21 macrophages behave similarly on FC surfaces, regardless of pre-adsorbed protein biasing, with respect to adhesion, cell morphology, motility and proliferation. PMID:18306309

  2. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  3. Lead removal with adsorbing colloid flotation

    SciTech Connect

    Thackston, E.L.; Wilson, D.J.; Hanson, J.S.; Miller, D.L. Jr.

    1980-02-01

    A process that removes lead from industrial waste by adsorbing colloid foam flotation has been designed and demonstrated. A system of ferric chloride and sodium lauryl sulfate, both relatively inexpensive chemicals, gave good performance with optimum dosages of sodium lauryl sulfate at 40 mg/l and trivalent iron at 150 mg/l. With optimum chemical and hydraulic conditions, the pilot plant was able to produce effluents with lead concentrations of less than 0.5 mg/l. The process may be especially attractive where space for heavy metals removal equipment is extremely limited.

  4. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    PubMed Central

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo

    2015-01-01

    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation. PMID:25861683

  5. Dynamics of water molecules adsorbed by silica and resin SGK-7

    NASA Astrophysics Data System (ADS)

    Lisichkin, Yu. V.; Sakharova, L. A.; Tumanov, A. A.

    2014-01-01

    This paper has presented neutron spectroscopy data on the dynamics of light water molecules adsorbed in the cation exchanger (ion-exchange resin) SGK-7 and on the surface of aerosils (highly dispersed pyrogenic silica) with different levels of hydration. The measurements have been performed on a DIN-2PI spectrometer (Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research, Dubna, Russia). The characteristics of the diffusive and vibrational motions of adsorbed water molecules have been determined from the experimental neutron scattering spectra. The data obtained in the quasi-elastic neutron scattering region have been analyzed using a model accounting for the effects of restricted translational and rotational diffusion. The results have demonstrated a significant decrease in the diffusion mobility of adsorbed water molecules as compared to conventional (bulk) water. In particular, the self-diffusion coefficient decreases several times, and the diffusion rate is the lower, the smaller is the thickness of the hydration layer. The dependences of the intensity and half-width of the quasi-elastic scattering peak on the magnitude of the neutron momentum transfer q in the scattering process exhibit a nonmonotonic character. This indicates manifestation of the effects of restricted translational diffusion, rotational diffusion, and jump diffusion. The partial distributions of vibrational frequencies of hydrogen atoms of water molecules adsorbed by the cation exchanger and aerosils have been obtained from the inelastic neutron scattering data.

  6. Database for protein adsorption: update on developments

    NASA Astrophysics Data System (ADS)

    Paszek, Ewa; Vasina, Elena N.; Nicolau, Dan V.

    2008-12-01

    Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, protein hydrophobicity and spread of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable - the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided into two separate subsets representing protein adsorption on hydrophilic and hydrophobic surfaces. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the absorbed layer and the surface tension of the proteincovered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.

  7. First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene.

    PubMed

    Khosravi, Azadeh; Fereidoon, Abdolhosein; Ahangari, Morteza Ghorbanzadeh; Ganji, Masoud Darvish; Emami, Seyede Negar

    2014-05-01

    Ab initio vdW calculations with the DFT level of theory were used to investigate hydrogen (H₂) adsorption on Pt-adsorbed graphene (Pt-graphene). We have explored the most energetically favorable sites for single Pt atom adsorption on the graphene surface. The interaction of H₂ with the energetically favorable Pt-graphene system was then investigated. We found that H₂ physisorbs on pristine graphene with a binding energy of -0.05 eV, while the binding energy is enhanced to -1.98 eV when H₂ binds Pt-adsorbed graphene. We also found that up to four H₂ molecules can be adsorbed on the Pt-graphene system with a -0.74 eV/H₂ binding energy. The effect of graphene layer stretching on the Pt-graphene capacity/ability for hydrogen adsorption was evaluated. Our results show that the number of H₂ molecules adsorbed on the Pt-graphene surface rises to six molecules with a binding energy of approximately -0.29 eV/H₂. Our first-principles results reveal that the Young's modulus was slightly decreased for Pt adsorption on the graphene layer. The first-principles calculated Young's modulus for the H₂-adsorbed Pt-graphene system demonstrates that hydrogen adsorption can dramatically increase the Young's modulus of such systems. As a result, hydrogen adsorption on the Pt-graphene system might enhance the substrate strength. PMID:24777315

  8. Impact of temperature and electrical potentials on the stability and structure of collagen adsorbed on the gold electrode

    NASA Astrophysics Data System (ADS)

    Meiners, Frank; Ahlers, Michael; Brand, Izabella; Wittstock, Gunther

    2015-01-01

    The morphology and structure of collagen type I adsorbed on gold electrodes were studied as a function of electrode potential and temperature by means of capacitance measurements, polarization modulation infrared reflection-absorption spectroscopy and scanning force microscopy at temperatures of 37 °C, 43 °C and 50 °C. The selected temperatures corresponded to the normal body temperature, temperature of denaturation of collagen molecules and denaturation of collagen fibrils, respectively. Independently of the solution temperature, collagen was adsorbed on gold electrodes in the potential range - 0.7 V < E < 0.4 V vs. Ag/AgCl, where the protein film was very stable. Fragments of collagen molecules made a direct contact to the gold surface and water was present in the film. Protein molecules were oriented preferentially with their long axis towards the gold surface. Collagen molecules in the adsorbed state preserved their native triple helical structure even at temperatures corresponding to collagen denaturation in aqueous solutions. Application of E < - 0.75 V vs. Ag/AgCl leads to the swelling of the protein film by water and desorption from the electrode surface. IR spectra provided no evidence of the thermal denaturation of adsorbed collagen molecules. A temperature increase to 50 °C leads to a distortion of the collagen film. The processes of aggregation and fibrilization were preferred over thermal denaturation for collagen adsorbed on the electrode surface and exposed to changing potentials.

  9. O the Transition from - to Three-Dimensional Behavior in Adsorbed Films

    NASA Astrophysics Data System (ADS)

    Day, Peter Kenneth

    1993-01-01

    Argon and krypton films adsorbed on graphite foam have been studied in detail using vapor pressure and high resolution, heat capacity measurements. Heat capacity features near the bulk triple point temperature, previously associated with the surface melting of the uniform film, are shown to be due to the melting of bulk material condensed in pores in the substrate. The melting curve of the capillary condensate agrees with the prediction of a modified Clausius -Claperon equation. The second and third layers in argon and the second layer in krypton have a triple point at which two-dimensional solid, liquid, and gas phases coexist atop a solid lower layer. Commensurate-incommensurate transitions are found in the first two layers of argon and in the second layer of krypton, so that monolayer argon melts from a registered phase, but the second layers of both systems melt from incommensurate bilayer phases. The melting of the second and third layers in both systems are likely to be first order, but the data are not conclusive. At coverages starting with 3{1over 2} layers, heat capacity features that are due to reentrant layering-transitions are seen in both systems, confirming the result of recent ellipsometry studies. Further heat capacity peaks suggest phase transitions that join the newly observed reentrant layering-transitions with the well studied layering-transitions at low temperature. These heat capacity peaks may be related to the recently proposed preroughening transition. A mean field theory is developed that reproduced the reentrant layering behavior for ratios of nearest and next nearest neighbor interaction energies greater than a critical value. The mean field theory gives an explanation for the appearance of reentrant layering -transitions at different film thicknesses depending on the substrate-adsorbate interaction parameter. Multilayer phase diagrams are drawn from the data that suggest a crossover from two-dimensional behavior in the second layer to

  10. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy.

    PubMed

    Toma, Mana; Tawa, Keiko

    2016-08-31

    Polydopamine (PDA) thin films are introduced to the surface modification of biosensor surfaces utilizing surface plasmon enhanced fluorescence spectroscopy (SPFS) as the linker layer of capture antibody on to the sensor surfaces. The capture antibody can be directly attached to the sensor surface without using any coupling agent by functionalizing the gold sensor surface with PDA thin films. The PDA coating is performed by a single-step preparation process by applying the dopamine solution on the sensor surface, which requires an extremely short incubation time (10 min). The real-time in situ measurement of the adsorption kinetics of the capture antibody onto the PDA-coated sensor surface is studied by surface plasmon resonance (SPR) spectroscopy. It reveals that the immobilization of capture antibody immediately occurs after introduction of a solution containing capture antibody, and the sensor surface is fully covered with the capture antibody. The sensitive detection of the cytokine marker interleukin-6 (IL-6) is performed by SPFS using a sandwich assay format with fluorescently labeled detection antibody. The sensor chips functionalized by PDA chemistry exhibited sensitive sensor responses with low nonspecific adsorption of the detection antibody onto the sensor surface. The detection limit of IL-6 with the developed SPFS biosensor is determined to be 2 pg/mL (100 fM), which is within the range of the diagnostic criteria. Our observation elucidates the remarkable utility of PDA coatings for chemical modification of the metallic sensor surfaces by a simple, brief, and inexpensive manner. PMID:27484114

  11. Adsorbents as antiendotoxin agents in experimental colitis.

    PubMed Central

    Gardiner, K R; Anderson, N H; McCaigue, M D; Erwin, P J; Halliday, M I; Rowlands, B J

    1993-01-01

    The intestinal mucosa protects the body from a large reservoir of intraluminal pathogenic bacteria and endotoxins. This mucosal barrier is disrupted by the inflammation and ulceration of inflammatory bowel disease and may permit the absorption of toxic bacterial products. Systemic endotoxaemia has been demonstrated in ulcerative colitis and Crohn's disease and correlates with the extent and activity of disease. In this study the efficacy of absorbents as antiendotoxin agents in a hapten induced rat model of colitis is investigated. Induction of colitis was associated with systemic endotoxaemia. Enteral administration of terra fullonica and kaolin, but not of charcoal, significantly reduced systemic endotoxaemia (terra fullonica 4.2 (1.40) pg/ml; kaolin 5.29 (1.86) pg/ml; charcoal 32.7 (16.6) pg/ml; water 39.8 (12.6) pg/ml). Data expressed as mean (SE). With increasing severity of colitis, there was a decreasing ability of adsorbent therapy (terra fullonica) to control systemic endotoxaemia. Enteral administration of adsorbents controls gut derived systemic endotoxaemia in experimental colitis in animals and may be a useful antiendotoxin treatment in patients with inflammatory bowel disease. PMID:8432452

  12. Mimetite Formation from Goethite-Adsorbed Ions.

    PubMed

    Kleszczewska-Zębala, Anna; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Borkiewicz, Olaf J

    2016-06-01

    Bioavailability of arsenic in contaminated soils and wastes can be reduced to insignificant levels by precipitation of mimetite Pb5(AsO4)3Cl. The objective of this study is to elucidate mechanisms of the reaction between solution containing lead ions and arsenates adsorbed on synthetic goethite (AsO4-goethite), or arsenate ions in the solution and goethite saturated with adsorbed Pb (Pb-goethite). These reactions, in the prese