Science.gov

Sample records for adsorbed water film

  1. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet. PMID:26374054

  2. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  3. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  4. Gaseous mixed adsorbed films of octadecanol and cholesterol at the oil/water interface

    SciTech Connect

    Matubayasi, Norihiro; Azumaya, Susumu; Kanaya, Kazuhiko

    1992-08-01

    Gaseous/expanded and expanded/condensed phase transitions have been observed in adsorbed films of cholesterol at oil/water interfaces, while only the expanded/condensed phase transition has been observed in adsorbed films of octadecanol. To confirm that the octadecanol films do not exhibit the gaseous/expanded transition and to make clear the gaseous adsorbed film, the interfacial tension was measured in a dilute concentration region as a function of the total concentration and composition of the octadecanol-cholesterol mixture at 25{degrees}C. The result indicated that the gaseous films are expressed by the two-dimensional ideal gas law and the gaseous/expanded transition at oil/water interfaces cannot be observed for octadecanol. Further, the mixed adsorbed film was shown to be enriched with cholesterol which is more surface active than octadecanol. 20 refs., 5 figs.

  5. Physicochemical controls on adsorbed water film thickness in unsaturated geological media

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.

    2011-08-01

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here the problem of adsorbed water film thickness is examined by combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable and showed that pendular rings within drained porous media retain most of the "residual" water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double-layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double-layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (<10 mol m-3) on surfaces with higher-magnitude electrostatic potentials (more negative than ≈-50 mV). Adsorbed water films are predicted to usually range in thickness from ≈1 to 20 nm in drained pores and fractures of unsaturated environments.

  6. Electron-Stimulated Oxidation of Thin Water Films Adsorbed on TiO2(110)

    SciTech Connect

    Lane, Christopher D.; Petrik, Nikolay G.; Orlando, Thomas M.; Kimmel, Greg A.

    2007-11-08

    Electron-stimulated reactions in thin (< 3 monolayer, ML) water films adsorbed on TiO2(110) are investigated. For electron fluences less than ~1×1016 e-/cm2, irradiation with 100 eV electrons results in electron-stimulated desorption (ESD) of atomic and molecular hydrogen, but no measurable O2. The ESD leaves adsorbed hydroxyls which oxidize the TiO2(110) surface and change the post-irradiation TPD spectra of the remaining water in characteristic ways. The species remaining on the TiO2(110) after irradiation of adsorbed water films are apparently similar to those produced without irradiation by co-dosing water and O2. Annealing above ~600 K reduces the oxidized surfaces, and water TPD spectra characteristic of ion sputtered and annealed TiO2(110) are recovered. The rate of electron-stimulated “oxidation” of the water films is proportional to the coverage of water in the first layer for coverages less than 1 ML. However, higher coverages suppress this reaction. When thin water films are irradiated, the rate of electron-stimulated oxidation is independent of the initial oxygen vacancy concentration, as is the final oxidized state achieved at high electron fluences. To explain the results, we propose that electron excitation of water molecules adsorbed on Ti4+ sites leads to desorption of hydrogen atoms and leaves an OH adsorbed at the site. If hydroxyls are present in the bridging oxygen rows, these react with the OH’s on the Ti4+ sites to reform water and heal the oxygen vacancy associated with the bridging OH. Once the bridge bonded hydroxyls have been eliminated, further irradiation increases the concentration of OH’s in the Ti4+ rows leading to the creation of species which block sites in the Ti4+ rows, perhaps H2O2 and/or HO2.

  7. Aging of the nanosized photochromic WO3 films and the role of adsorbed water in the photochromism

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, A. I.

    2016-02-01

    Here it has been reported on aging of the nanosized WO3 film, which is revealed is continuous reduction of the photochromic sensitivity over time. Water molecules physically adsorbed on the film surface from ambient air form donor-acceptor and hydrogen bonds, changing gradually the adsorption state to chemisorption which prevents an access of organic molecules that serve as hydrogen donors by the photochromism. The mechanism of the process has been investigated and discussed. The role of water in the photochromism has been highlighted. The difference in the efficiency for being of a hydrogen donor in the photochromic process between water and organic molecules is discussed.

  8. Infrared spectroscopy of water clusters co-adsorbed with hydrogen molecules on a sodium chloride film

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Fukutani, Katsuyuki

    2016-06-01

    Hydrogen gas containing a trace of water vapor was dosed on a vacuum-evaporated sodium chloride film at 13 K, and water clusters formed on the substrate were investigated by infrared absorption spectroscopy. Absorption bands due to (H2O)n clusters with n = 3-6 and an induced absorption band due to hydrogen were clearly observed. With increasing gas dosage, the intensities of the cluster bands increased linearly while the intensity of the hydrogen band was constant. This suggests that the water clusters were formed in two-dimensional matrices of hydrogen. We found that the water clusters did exist on the surface upon heating even after the hydrogen molecules had desorbed. A further rise of the substrate temperature up to 27 K yielded the formation of larger clusters, (H2O)n with n > 6 . We also discuss the origins of the two bands of the trimer in terms of pseudorotation and a metastable isomer.

  9. Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture - water interfaces.

    PubMed

    Tokiwa, Yuhei; Sakamoto, Hiroyasu; Takiue, Takanori; Aratono, Makoto; Matsubara, Hiroki

    2015-05-21

    Penetration of alkane molecules into the adsorbed film gives rise to a surface freezing transition of cationic surfactant at the alkane-water interface. To examine the effect of the alkane chain length and counterion on the surface freezing, we employed interfacial tensiometry and ellipsometry to study the interface of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride aqueous solutions against dodecane, tetradecane, hexadecane, and their mixtures. Applying theoretical equations to the experimental results obtained, we found that the alkane molecules that have the same chain length as the surfactant adsorb preferentially into the surface freezing film. Furthermore, we demonstrated that the freezing transition temperature of cationic surfactant adsorbed film was independent of the kind of counterion. PMID:25932500

  10. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  11. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  12. Structure and Reactivity of Adsorbed Fibronectin Films on Mica

    PubMed Central

    Hull, James R.; Tamura, Glen S.; Castner, David G.

    2007-01-01

    Understanding the interactions of adsorbed fibronectin (Fn) with other biomolecules is important for many biomedical applications. Fn is found in almost all body fluids, in the extracellular matrix, and plays a fundamental role in many biological processes. This study found that the structure (conformation, orientation) and reactivity of Fn adsorbed onto mica is dependent on the Fn surface concentration. Atomic force microscopy and x-ray photoelectron spectroscopy were used to determine the surface coverage of adsorbed Fn from isolated molecules at low surface coverage to full monolayers at high surface coverage. Both methods showed that the thickness of Fn film continued to increase after the mica surface was completely covered, consistent with Fn adsorbed in a more upright conformation at the highest surface-Fn concentrations. Time-of-flight secondary ion mass spectrometry showed that relative intensities of both sulfur-containing (cystine, methionine) and hydrophobic (glycine, leucine/isoleucine) amino acids varied with changing Fn surface coverage, indicating that the conformation of adsorbed Fn depended on surface coverage. Single-molecule force spectroscopy with collagen-related peptides immobilized onto the atomic force microscope tip showed that the specific interaction force between the peptide and Fn increases with increasing Fn surface coverage. PMID:17890402

  13. Role of Structure and Glycosylation of Adsorbed Protein Films in Biolubrication

    PubMed Central

    Veeregowda, Deepak H.; Busscher, Henk J.; Vissink, Arjan; Jager, Derk-Jan; Sharma, Prashant K.; van der Mei, Henny C.

    2012-01-01

    Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy), we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation of adsorbed protein

  14. The low-temperature loss tangent of adsorbed water in alumina

    NASA Astrophysics Data System (ADS)

    Khasawneh, Mazin; Sarabi, Bahman; Khalil, M. S.; Stoutimore, M. J. A.; Gladchenko, Sergiy; Wellstood, F. C.; Lobb, C. J.; Osborn, Kevin

    2012-02-01

    Superconducting quantum information circuits use various amorphous dielectrics for capacitors, and alumina is the ubiquitous barrier material for Josephson junctions within these devices. The exposure of the devices to air allows water molecules to penetrate the dielectric films along grain boundaries, and become adsorbed onto internal surfaces. In this study we plan to use ALD-grown alumina and titanium oxide to study the penetration of water through films. Using blocking layers to selectively prevent water penetration, we then plan to measure the difference in the low-temperature loss tangent between an alumina film which is exposed to air and one which is not.

  15. Dielectric exchange-force effect on the rupture force of adsorbed bilayers of self-assembled surfactant films

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-05-01

    We measured and formulated dielectric exchange forces between adsorbed layers of self-assembled surfactant films and atomic-force microscope tips in water. The dielectric exchange-force model is in agreement with the observation that the surfactant-layer rupture forces (tip-applied force necessary to obtain tip/substrate contact) are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy, a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  16. Structural and topographical characteristics of adsorbed WPI and monoglyceride mixed monolayers at the air-water interface.

    PubMed

    Patino, Juan M Rodríguez; Fernández, Marta Cejudo

    2004-05-25

    In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.

  17. Mechanical properties of hexadecane-water interfaces with adsorbed hydrophobic bacteria

    NASA Astrophysics Data System (ADS)

    Kang, Zhewen

    Certain strains of hydrophobic bacteria are known to play critical roles in petroleum-related applications. The aim of this study was to investigate how hydrophobic bacteria in their stationary phase could adsorb onto the hexadecane-water interface and alter its mechanical properties. The two strains of bacteria used in forming the interfacial films were Acinetobacter venetianus RAG-1 (a Gram-negative bacterium) and Rhodococcus erythropolis 20S-E1-c (Gram-positive). Experiments at two different length scales (millimetre and micrometre) were conducted and the results were compared. In addition, a simple flow experiment was designed in a constricted channel and the results were related to the intrinsic mechanical properties of bacteria-adsorbed films. On the millimetre scale, using the pendant drop technique, the film interfacial tension was monitored as the surface area was made to undergo changes. Under static conditions, both types of bacteria showed no significant effect on the interfacial tension. When subjected to transient excitations, the two bacterial films exhibited qualitatively similar, yet quantitative distinct rheological properties (including film elasticities and relaxation times). Under continuous reduction of surface area, the RAG-1 system showed a "paper-like" interface, while the interface of the 20S-E1-c system was "soap film-like." These macroscopic observations could be explained by the surface ultrastructures of the two cell strains. On the micrometre scale, using the micropipette technique, colloidal stability of the bacteria-coated oil droplets was examined through direct-contact experiments. Both types of bacteria were seen to function as effective stabilizers. In addition, the adsorbed bacteria also interacted with one another at the interface, giving rise to higher order 2-D rheological properties. A technique of directly probing the mechanical properties of the emulsion drop surfaces revealed that (a) the films behaved as purely elastic

  18. Crack healing in rocksalt via diffusion in adsorbed aqueous films: Microphysical modelling versus experiments

    NASA Astrophysics Data System (ADS)

    Houben, M. E.; ten Hove, A.; Peach, C. J.; Spiers, C. J.

    Microcracks within the excavation damaged or disturbed zone (EDZ) in a salt-based radioactive waste repository (or an energy storage facility) can heal/seal by mechanical closure driven by compaction creep, by surface-energy-driven processes like diffusive mass transfer, and by recrystallization. It follows that permeability evolution in the excavation damaged zone around a backfilled or plugged cavity will in the short term be dominated by mechanical closure of the cracks, while in the longer term diffusive mass transfer effects are expected to become more important. This paper describes a contribution to assessing the integrity of radioactive waste repositories sited in rocksalt formations by developing a microphysical model for single crack healing in rocksalt. More specifically, single crack healing models for cracks containing a thin adsorbed water film are developed. These microphysical models are compared with single crack healing experiments, which conclusively demonstrate diffusion controlled healing. Calibration of unknown model parameters, related to crack surface diffusivity, against the experimental data enable crack healing rates under repository conditions to be estimated. The results show that after the stress re-equilibration that follows repository sealing, crack disconnection can be expected on a timescale of a few years at laboratory humidity levels. However, much longer times are needed under very dry conditions where adsorbed aqueous films are very thin.

  19. Detection of adsorbed water and hydroxyl on the moon

    USGS Publications Warehouse

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  20. Detection of adsorbed water and hydroxyl on the Moon.

    PubMed

    Clark, Roger N

    2009-10-23

    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  1. Electrical properties of porous oxides with adsorbed water

    NASA Astrophysics Data System (ADS)

    Korolev, Feodor A.; Kytin, Vladimir G.; Nosova, Ludmila; Kozlov, Sergei N.

    2005-05-01

    The impedance of porous alumina (por-Al2O3) and titanium oxide (por-TiO2) with adsorbed water has been investigated in a wide frequency range and at temperatures near the water-ice phase transition. The equivalent circuit of the investigated structures has been determined. It has been shown that water adsorption in the pores of a solid-state matrix has a great influence on its electrical properties. The characteristics of the electrical properties of experimental structures related to the water-ice phase transition have been revealed.

  2. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further.

  3. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further. PMID:10048207

  4. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    SciTech Connect

    Kenny, T.W.

    1989-05-01

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  5. Adsorbate Effects on Film Evolution: Homoepitaxy on Ag(100)

    NASA Astrophysics Data System (ADS)

    Layson, A. R.; Thiel, P. A.

    2000-03-01

    We report the effects of various gases on the nucleation, and subsequent coarsening, of Ag islands on Ag(100). Both of these processes-nucleation and coarsening-are ultimately controlled by atomic-scale diffusional processes, and have been studied extensively for the clean surface [1]. Comparative study of these processes with and without background gases provides indirect evidence regarding their effect on atomic-scale diffusional processes. These UHV experiments were performed using High-Resolution Low Energy Electron Diffraction. Submonolayer films of Ag were deposited, with the sample held at 180 K and simultaneously exposed to the gas of choice, while subsequent coarsening was monitored after evacuation of the gas. Spot profile analysis shows the nucleation of islands is unaffected in the presence of oxygen, but the rate of subsequent coarsening is enhanced. Conversely, the presence of water vapor during deposition results in a decrease in the initial island density (indicating enhanced mobility), but shows no affect on subsequent coarsening. Exposure to CO had no effect on either nucleation density or coarsening. [1] P.A. Thiel and J.W. Evans, J. Phys. Chem. B 104 (2000) Feb.24

  6. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  7. Icelike water monolayer adsorbed on mica at room temperature

    SciTech Connect

    Miranda, P.B.; Xu, L.; Shen, Y.R.; Salmeron, M.

    1998-10-01

    The structure of a water film formed on mica at room temperature, in equilibrium with water vapor at various relative humidities (RH), was studied using sum-frequency-generation (SFG) vibrational spectroscopy and scanning polarization force microscopy (SPFM). Analysis of the O-D stretch modes in the SFG spectra of D{sub 2}O on mica indicates that as RH increases, the submonolayer water structure evolves into a more ordered hydrogen-bonding network. At full monolayer coverage ({approximately} 90% RH), the SFG spectrum suggests an icelike film with no dangling O-D groups, in agreement with a recent molecular dynamics simulation.

  8. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    PubMed

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

  9. Water adsorbate influence on the Cu(110) surface optical response

    NASA Astrophysics Data System (ADS)

    Baghbanpourasl, Amirreza; Schmidt, Wolf Gero; Denk, Mariella; Cobet, Christoph; Hohage, Michael; Zeppenfeld, Peter; Hingerl, Kurt

    2015-11-01

    Surface reflectance anisotropy may be utilized for characterizing surfaces, interfaces, and adsorption structures. Here, the reflectance anisotropy and surface dielectric functions of the thermodynamically most favored water adsorbate structures on the Cu(110) surface (i.e. hexagonal bilayers, pentagonal chains, and partially dissociated water structures) are calculated from density-functional theory and compared with recent experimental data. It is shown that the water overlayer structures modify in a geometry-specific way the optical anisotropy of the bare surface which can be exploited for in situ determination of the adsorption structures. For hexagonal bilayer overlayer geometries, strong features in the vacuum ultraviolet region are predicted. The theoretical analysis shows a noticeable influence of intraband transitions also for higher photon energies and rather slight influences of the van der Waals interaction on the spectral signatures. Water induced strain effects on the surface optical response are found to be negligible.

  10. Wetting transitions of simple liquid films adsorbed on selfassembled monolayer substrates: an ellipsometric study

    NASA Astrophysics Data System (ADS)

    Batchelder, D. N.; Cheng, Y. L.; Evans, S. D.; Henderson, J. R.

    We report on an ellipsometric experimental study designed to explore the relevance of the wetting phase diagram predicted by liquid state physics of basic models, to the wide class of simple organic liquid films that adsorb from saturated vapour onto planar substrates at room temperature. The wetting properties are explored by measuring adsorption isotherms in the approach to saturation, in particular, for adsorption of n -hexane on a variety of specially constructed substrates (self-assembled monolayers) spanning a wide range of surface energy, and by carrying out the microscopic equivalent of contact angle experiments at saturation. We locate a wetting transition, which in our case is continuous, and then study its properties in detail. The general prediction of the wetting phase diagram, that wetting transitions should be ubiquitous in nature and readily located via control over the substrate field, is supported by our data, but the quantitative nature of the thick film adsorption regime is not in agreement with Lifshitz theory. This conclusion supports the work of a variety of earlier related studies, but contrasts with recent results for adsorption onto the surface of water. In addition, the correlation length determined from our complete wetting adsorption isotherms is mesoscopic, suggesting that equilibrium statistical mechanics of simple models of inhomogeneous fluids cannot explain the data.

  11. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process.

  12. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate.

    PubMed

    Iyota, Hidemi; Krastev, Rumen

    2009-04-01

    The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride-sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.

  13. Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules

    PubMed Central

    Su, Jielong; Raghuwanshi, Vikram S.; Raverty, Warwick; Garvey, Christopher J.; Holden, Peter J.; Gillon, Marie; Holt, Stephen A.; Tabor, Rico; Batchelor, Warren; Garnier, Gil

    2016-01-01

    Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR. PMID:27796332

  14. Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films.

    PubMed

    Veeregowda, Deepak H; van der Mei, Henny C; Busscher, Henk J; Sharma, Prashant K

    2011-02-01

    The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal microbalance) of 2-h-old in vitro-adsorbed salivary-protein films were 43.5 nm and 9.4 MHz, respectively, whereas the dehydrated thickness, measured using X-ray photoelectron spectroscopy, was 2.4 nm. Treatment with toothpaste slurries decreased the thickness of the film, depending on the fluoride-detergent combination involved. Secondary exposure to saliva resulted in a regained thickness of the film to a level similar to its original thickness; however, no association was found between the thickness of hydrated and dehydrated films, indicating differences in film structure. Treatment with stannous fluoride/sodium lauryl sulphate (SnF(2)/SLS)-containing toothpaste slurries yielded a strong, immediate two-fold increase in characteristic film frequency (f(c)) with respect to untreated films, indicating cross-linking in adsorbed salivary-protein films by Sn(2+) that was absent when SLS was replaced with sodium hexametaphosphate (NaHMP). Secondary exposure to saliva of films treated with SnF(2) caused a strong, six-fold increase in f(c) compared with primary salivary-protein films, regardless of whether SLS or NaHMP was the detergent. This suggests that ionized stannous is not directly available for cross-linking in combination with highly negatively charged NaHMP, but becomes slowly available after initial treatment to cause cross-linking during secondary exposure to saliva.

  15. Thermodynamic study of argon films adsorbed on boron nitride

    SciTech Connect

    Migone, A.D.; Alkhafaji, M.T. ); Vidali, G. ); Karimi, M. )

    1993-03-15

    We have performed a detailed adsorption isotherm study of Ar on BN for temperatures between 65 and 80 K. The isothermal compressibility of the films was obtained from adsorption data. At monolayer coverages, a small isotherm substep is present at melting. We found two isothermal compressibility peaks in the first layer: a sharp peak, corresponding to the melting substep, and a smaller, broader peak that occurs at lower pressures. At multilayer coverages we found reentrant layering occurring in the third and fourth layers of the film. We compare our layering results with predictions for the preroughening transition. We also found a series of small steps in the isotherms between the second and third layers and between the third and fourth layers of the film. These small steps are evidence of individual layer melting for the second and third layers. Our results at monolayer and at multilayer coverages are extensively compared to those found for Ar on graphite. We have also performed calculations of the rare-gas--BN interaction potentials. Our calculations indicate the substrate corrugation is smaller for the rare-gas--BN systems than it is for the same rare gases on graphite. The implications of this result for the possible existence of monolayer-commensurate solids on BN are discussed.

  16. Forsterite Carbonation in Wet-scCO2: Dependence on Adsorbed Water Concentration

    NASA Astrophysics Data System (ADS)

    Loring, J.; Benezeth, P.; Qafoku, O.; Thompson, C.; Schaef, T.; Bonneville, A.; McGrail, P.; Felmy, A.; Rosso, K.

    2013-12-01

    Capturing and storing CO2 in basaltic formations is one of the most promising options for mitigating atmospheric CO2 emissions resulting from the burning of fossil fuels. These geologic reservoirs have high reactive potential for CO2-mineral trapping due to an abundance of divalent-cation containing silicates, such as forsterite (Mg2SiO4). Recent studies have shown that carbonation of these silicates under wet scCO2 conditions, e. g. encountered near a CO2 injection well, proceeds along a different pathway and is more effective than in CO2-saturated aqueous fluids. The presence of an adsorbed water film on the forsterite surface seems to be key to reactivity towards carbonation. In this study, we employed in situ high pressure IR spectroscopy to investigate the dependence of adsorbed water film thickness on forsterite carbonation chemistry. Post reaction ex situ SEM, TEM, TGA, XRD, and NMR measurements will also be discussed. Several IR titrations were performed of forsterite with water at 50 °C and 90 bar scCO2. Aliquots of water were titrated at 4-hour reaction-time increments. Once a desired total water concentration was reached, data were collected for about another 30 hours. One titration involved 10 additions, which corresponds to 6.8 monolayers of adsorbed water. Clearly, a carbonate was precipitating, and its spectral signature matched magnesite. Another titration involved 8 aliquots, or up to 4.4 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 4.4 monolayers showed an increase and then a plateau. We are currently unsure of the identity of the carbonate that precipitated, but it could be an amorphous anhydrous phase or magnesite crystals with dimensions of only several nanometers. A third titration only involved 3 additions, or up to 1.6 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 1.6 monolayers

  17. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    PubMed

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon. PMID:24499987

  18. Icelike Water Monolayer Adsorbed on Mica at Room Temperature

    SciTech Connect

    Miranda, P.B.; Xu, L.; Shen, Y.R.; Salmeron, M.

    1998-12-01

    The structure of a water film formed on mica at room temperature, in equilibrium with water vapor at various relative humidities (RH), was studied using sum-frequency-generation (SFG) vibrational spectroscopy and scanning polarization force microscopy (SPFM). Analysis of the O-D stretch modes in the SFG spectra of D{sub 2}O on mica indicates that as RH increases, the submonolayer water structure evolves into a more ordered hydrogen-bonding network. At full monolayer coverage ({approximately} 90{percent} RH) , the SFG spectrum suggests an icelike film with no dangling O-D groups, in agreement with a recent molecular dynamics simulation. {copyright} {ital 1998} {ital The American Physical Society}

  19. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  20. Aggregate formation of eosin-Y adsorbed on nanocrystalline TiO2 films

    NASA Astrophysics Data System (ADS)

    Yaguchi, Kaori; Furube, Akihiro; Katoh, Ryuzi

    2012-11-01

    We have studied the adsorption of eosin-Y on nanocrystalline TiO2 films with two different solvents namely acetonitrile (ACN) and ethanol (EtOH). A Langmuir-type adsorption isotherm was observed with ACN. In contrast, a Freundlich-type adsorption isotherm was observed with EtOH, suggesting that EtOH molecules co-adsorbed on TiO2 surface. Absorption spectra of the dye adsorbed films clearly show aggregate formation at high concentrations of dye in the solutions. From the analysis of the spectra, we conclude that head-to-tail type aggregates are observed with ACN, whereas various types of aggregates, including H-type and head-to-tail type aggregates, are observed with EtOH.

  1. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    SciTech Connect

    Birmingham, J.T. |

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  2. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-19

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  3. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-01

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  4. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed. PMID:21929380

  5. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    PubMed

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  6. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H{sub 2} multilayers

    SciTech Connect

    Phelps, R.B.

    1991-11-01

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx_lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx_lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  7. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H sub 2 multilayers

    SciTech Connect

    Phelps, R.B.

    1991-11-01

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  8. Structural features of polymer adsorbent LiChrolut EN and interfacial behavior of water and water/organic mixtures.

    PubMed

    Gun'ko, V M; Turov, V V; Zarko, V I; Nychiporuk, Y M; Goncharuk, E V; Pakhlov, E M; Yurchenko, G R; Kulik, T V; Palyanytsya, B B; Borodavka, T V; Krupskaya, T V; Leboda, R; Skubiszewska-Zieba, J; Osovskii, V D; Ptushinskii, Y G; Turov, A V

    2008-07-01

    The structural and adsorption characteristics of polymer adsorbent LiChrolut EN and the behavior of adsorbed water and water/organic mixtures were studied using adsorption, microcalorimetry, transmission and scanning electron microscopy, mass spectrometry, infrared spectroscopy, 1H NMR spectroscopy with layer-by-layer freezing-out of liquids (190-273 K), and thermally stimulated depolarization current method (90-265 K). This adsorbent is characterized by large specific surface area (approximately 1500 m2/g) and pore volume (0.83 cm3/g) with a major contribution of narrow pores (R<10 nm) of a complicated shape (long hysteresis loop is in nitrogen adsorption-desorption isotherm). The adsorbent includes aromatic and aliphatic structures and oxygen-containing functionalities and can effectively adsorb organics and water/organic mixtures. On co-adsorption of water and organics (dimethyl sulfoxide, chloroform, methane), there is a weak influence of one on another adsorbate due to their poor mixing in pores. Weakly polar chloroform displaces a fraction of water from narrow pores. These effects can explain high efficiency of the adsorbent in solid-phase extraction of organics from aqueous solutions. The influence of structural features of several carbon and polymer adsorbents on adsorbed nitrogen, water and water/organics is compared on the basis of the adsorption and 1H NMR data. PMID:18440015

  9. A study on Effective Thermal Conductivity of Packed Bed of Adsorbent Including Water

    NASA Astrophysics Data System (ADS)

    Hirasawa, Yoshio; Ohta, Ryuma; Takegoshi, Eisyun

    In the present study, an effective thermal conductivity of the packed bed of an adsorbent including water was measured experimentally by using the transient hot wire method in temperature range from about -40°C to room temperature. Zeolite particle and activated carbon particle were employed as the adsorbent. The water included in the adsorbent was classified to three kinds; namely, the adsorbed water in the adsorption site with a nanometer order in particle, the osmosis water existing in gap with lager size than the adsorption site and the free water around particle. The measurement was performed with changing the mass ratio of adsorbed water and osmosis water and was also performed for the particle filled by the free water. As the results, the effective thermal conductivity of the packed bed increased with the increase of temperature except the case containing free water. In zeolite, the effective thermal conductivity of the packed bed of particles with adsorbed water became bigger than that of the desorbed particle about 10% though the adsorbed water was trapped in the adsorption site as a single molecular in zeolite particle. In activated carbon, the effective thermal conductivity was larger than that of desorbed particle about 20%. Next, in the packed bed of particle with the osmosis water, the effective thermal conductivity indicated about two times of that of particle with the adsorbed water. In the packed bed of particle filled by free water, the effective thermal conductivity increased suddenly under 0°C. It is considered that the thermal conductivity of ice affected seriously to the effective thermal conductivity because ice was the continuous phase in the bed.

  10. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.

    PubMed

    Lo, Sut-I; Chen, Po-Cheng; Huang, Chih-Ching; Chang, Huan-Tsung

    2012-03-01

    We report a new adsorbent for removal of mercury species. By mixing Au nanoparticles (NPs) 13 nm in diameter with aluminum oxide (Al(2)O(3)) particles 50-200 μm in diameter, Au NP-Al(2)O(3) adsorbents are easily prepared. Three adsorbents, Al(2)O(3), Au NPs, and Au NP-Al(2)O(3), were tested for removal of mercury species [Hg(2+), methylmercury (MeHg(+)), ethylmercury (EtHg(+)), and phenylmercury (PhHg(+))]. The Au NP adsorbent has a higher binding affinity (dissociation constant; K(d) = 0.3 nM) for Hg(2+) ions than the Al(2)O(3) adsorbent (K(d) = 52.9 nM). The Au NP-Al(2)O(3) adsorbent has a higher affinity for mercury species and other tested metal ions than the Al(2)O(3) and Au NP adsorbents. The Au NP-Al(2)O(3) adsorbent provides a synergic effect and, thus, is effective for removal of most tested metal ions and organic mercury species. After preconcentration of mercury ions by an Au NP-Al(2)O(3) adsorbent, analysis of mercury ions down to the subppq level in aqueous solution was performed by inductively coupled plasma mass spectrometry (ICP-MS). The Au NP-Al(2)O(3) adsorbent allows effective removal of mercury species spiked in lake water, groundwater, and seawater with efficiencies greater than 97%. We also used Al(2)O(3) and Au NP-Al(2)O(3) adsorbents sequentially for selectively removing Hg(2+) and MeHg(+) ions from water. The low-cost, effective, and stable Au NP-Al(2)O(3) adsorbent shows great potential for economical removal of various mercury species.

  11. Removal of pesticides from water and wastewater by different adsorbents: a review.

    PubMed

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah; Ahmad, Anees

    2010-10-01

    In this review article, the use of various low-cost adsorbents for the removal of pesticides from water and wastewater has been reviewed. Pesticides may appear as pollutants in water sources, having undesirable impacts to human health because of their toxicity, carcinogenicity, and mutagenicity or causing aesthetic problems such as taste and odors. These pesticides pollute the water stream and it can be removed very effectively using different low-cost adsorbents. It is evident from a literature survey of about 191 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for pesticides. PMID:21069614

  12. Atomic force microscopy of AgBr crystals and adsorbed gelatin films

    SciTech Connect

    Haugstad, G.; Gladfelter, W.L.; Keyes, M.P.; Weberg, E.B.

    1993-06-01

    Atomic force microscopy of the (111) surface of macroscopic AgBr crystals revealed steps ranging in height from two atomic layers up to 10 nm, lying predominantly along the (110) and (112) families of crystal directions. Rods of elemental Ag, formed via photoreduction, were observed along the (110) family of directions. Images of adsorbed gelatin films revealed circular pores with diameters of order 10-100 nm, extending to the AgBr surface. The length of deposition time, the pH and concentration of the gelatin solution, and the presence of steps on the AgBr surface were observed to affect the size, number, and location of pores in the gelatin films. 12 refs., 7 figs.

  13. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2000-01-01

    Recent studies suggest that the tendency of many fault gouge minerals to take on adsorbed or interlayer water may strongly influence their frictional strength. To test this hypothesis, triaxial sliding experiments were conducted on 15 different single-mineral gouges with various water-adsorbing affinities. Vacuum dried samples were sheared at 100 MPa, then saturated with water and sheared farther to compare dry and wet strengths. The coefficients of friction, μ, for the dry sheet-structure minerals (0.2-0.8), were related to mineral bond strength, and dropped 20-60% with the addition of water. For non-adsorbing minerals (μ = 0.6-0.8), the strength remained unchanged after saturation. These results confirm that the ability of minerals to adsorb various amounts of water is related to their relative frictional strengths, and may explain the anomalously low strength of certain natural fault gouges.

  14. Water dispersible microbicidal cellulose acetate phthalate film

    PubMed Central

    Neurath, A Robert; Strick, Nathan; Li, Yun-Yao

    2003-01-01

    Background Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. Methods CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. Results The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. Conclusions Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not

  15. Retention of radium from thermal waters on sand filters and adsorbents.

    PubMed

    Elejalde, C; Herranz, M; Idoeta, R; Legarda, F; Romero, F; Baeza, A

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  16. Removal of arsenic from water using nano adsorbents and challenges: A review.

    PubMed

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents.

  17. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    PubMed

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  18. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  19. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process. PMID:26711813

  20. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  1. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  2. Mesoscopic Hamiltonian for the fluctuations of adsorbed Lennard-Jones liquid films.

    PubMed

    Fernández, Eva M; Chacón, Enrique; MacDowell, Luis G; Tarazona, Pedro

    2015-06-01

    We use Monte Carlo simulations of a Lennard-Jones fluid adsorbed on a short-range planar wall substrate to study the fluctuations in the thickness of the wetting layer, and we get a quantitative and consistent characterization of their mesoscopic Hamiltonian, H[ξ]. We have observed important finite-size effects, which were hampering the analysis of previous results obtained with smaller systems. The results presented here support an appealing simple functional form for H[ξ], close but not exactly equal to the theoretical nonlocal proposal made on the basis a generic density-functional analysis by Parry and coworkers. We have analyzed systems under different wetting conditions, as a proof of principle for a method that provides a quantitative bridge between the molecular interactions and the phenomenology of wetting films at mesoscopic scales. PMID:26172722

  3. Sputtering and secondary ion emission properties of alkali metal films and adsorbed monolayers

    SciTech Connect

    Krauss, A R; Gruen, D M

    1980-01-01

    The secondary ion emission of alkali metal adsorbed monlayer and multilayer films has been studied. Profiling with sub-monolayer resolution has been performed by Auger, x-ray photoemission and secondary ion mass spectroscopy. Characteristic differences in the sputtering yields, and ion fraction have been observed which are associated with both the surface bonding properties and the mechanism leading to the formation of secondary ions. By sputtering with a negative bias applied to the sample, positive secondary ions are returned to the surface, resulting in a reduced sputter-induced erosion rate. Comparison with the results obtained with K and Li overlayers sputtered without sample bias provides an experimental value of both the total and secondary ion sputtering yields. The first and second monolayers can be readily identified and the first monolayer exhibits a lower sputtering yield and higher secondary ion fraction. This result is related to adsorption theory and measured values are compared with those obtained by thermal desorption measurements.

  4. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  5. Vibrational spectra of CO adsorbed on oxide thin films: A tool to probe the surface defects and phase changes of oxide thin films

    SciTech Connect

    Savara, Aditya

    2014-03-15

    Thin films of iron oxide were grown on Pt(111) single crystals using cycles of physical vapor deposition of iron followed by oxidative annealing in an ultrahigh vacuum apparatus. Two procedures were utilized for film growth of ∼15–30 ML thick films, where both procedures involved sequential deposition+oxidation cycles. In procedure 1, the iron oxide film was fully grown via sequential deposition+oxidation cycles, and then the fully grown film was exposed to a CO flux equivalent to 8 × 10{sup −7} millibars, and a vibrational spectrum of adsorbed CO was obtained using infrared reflection-absorption spectroscopy. The vibrational spectra of adsorbed CO from multiple preparations using procedure 1 show changes in the film termination structure and/or chemical nature of the surface defects—some of which are correlated with another phase that forms (“phase B”), even before enough of phase B has formed to be easily detected using low energy electron diffraction (LEED). During procedure 2, CO vibrational spectra were obtained between deposition+oxidation cycles, and these spectra show that the film termination structure and/or chemical nature of the surface defects changed as a function of sequential deposition+oxidation cycles. The authors conclude that measurement of vibrational spectra of adsorbed CO on oxide thin films provides a sensitive tool to probe chemical changes of defects on the surface and can thus complement LEED techniques by probing changes not visible by LEED. Increased use of vibrational spectra of adsorbed CO on thin films would enable better comparisons between films grown with different procedures and by different groups.

  6. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Criswell, L.; Taub, H.

    2007-03-01

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  7. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure.

    PubMed

    Enevoldsen, A D; Hansen, F Y; Diama, A; Criswell, L; Taub, H

    2007-03-14

    The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D) tetracosane film is roughly the same as the bulk melting point, the surface strongly stabilizes the 2D squalane film such that its melting point is 91 K above its value in bulk. Therefore, squalane, like tetracosane, will be a poor lubricant in those nanoscale devices that require a fluid lubricant at room temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When the molecules are allowed to relax on the surface, they distort such that all six methyl groups point away from the surface. This results in a reduction in the monolayer's translational order characterized by a decrease in its coherence length and hence a broadening of the diffraction peaks. The MD simulations also show that the melting mechanism in the squalane monolayer is the same footprint reduction mechanism found in the tetracosane monolayer, where a chain melting drives the lattice melting.

  8. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica.

  9. Competition between Displacement and Dissociation of a Strong Acid Compared to a Weak Acid Adsorbed on Silica Particle Surfaces: The Role of Adsorbed Water.

    PubMed

    Fang, Yuan; Tang, Mingjin; Grassian, Vicki H

    2016-06-16

    The adsorption of nitric (HNO3) and formic (HCOOH) acids on silica particle surfaces and the effect of adsorbed water have been investigated at 296 K using transmission FTIR spectroscopy. Under dry conditions, both nitric and formic acids adsorb reversibly on silica. Additionally, the FTIR spectra show that both of these molecules remain in the protonated form. At elevated relative humidities (RH), adsorbed water competes both for surface adsorption sites with these acids as well as promotes their dissociation to hydronium ions and the corresponding anions. Compared to HNO3, the extent of dissociation is much smaller for HCOOH, very likely because it is a weaker acid. This study provides valuable insights into the interaction of HNO3 and HCOOH with silica surface on the molecular level and further reveals the complex roles of surface-adsorbed water in atmospheric heterogeneous chemistry of mineral dust particles-many of these containing silica. PMID:27220375

  10. A comparison of didodecyldimethylammonium bromide adsorbed at mica/water and silica/water interfaces using neutron reflection.

    PubMed

    Griffin, Lucy R; Browning, Kathryn L; Truscott, Chris L; Clifton, Luke A; Webster, John; Clarke, Stuart M

    2016-09-15

    The layer structure of the dichain alkyl ammonium surfactant, didodecyldimethylammonium bromide (DDAB), adsorbed from water on to silica and mica surfaces has been determined using neutron reflection. Although sometimes considered interchangeable surfaces for study, we present evidence of significant differences in the adsorbed layer structure below the critical micelle concentration. A complete DDAB bilayer was assembled at the water/mica interface at concentrations below the critical micelle concentration (CMC). In contrast it is not until the CMC was reached that the complete bilayer structure formed on the oxidised silicon crystal. Removal of the complete bilayer on both surfaces was attempted by both washing and ion exchange yet the adsorbed structure proved tenacious.

  11. Interactions between glycine and amorphous solid water nanoscale films

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Koller, Georg; Netzer, Falko P.

    2012-12-01

    The interactions of glycine (Gly) with amorphous solid water (ASW) nanolayers (≤ 100 ML), vapor-deposited on single crystalline AlOx surfaces at 100 K, have been investigated by near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K-edge, temperature-programmed thermal desorption (TPD), X-ray photoelectron spectroscopy (XPS), and temperature-dependent work function measurements. Gly-on-ASW, ASW-on-Gly, and Gly on top of ASW-on-Gly ultrathin films have been fabricated. In contrast to the uniform ASW films grown directly on the hydrophilic AlOx, water molecules adsorb on the hydrophobic Gly films in the form of 3D ASW clusters. This leads to significant differences in the NEXAFS and work function data obtained from ASW-on-AlOx and ASW-on-Gly films, respectively. Furthermore, these structural differences influence the chemical state of Gly molecules (neutral vs. zwitterionic) adsorbed on top of ASW films. N1s XPS measurements revealed an increased amount of neutral Gly molecules in the film top-deposited on the ASW-on-Gly structure in comparison to the neutral Gly in the films directly condensed on AlOx or grown on the ASW substrate. H2O TPD spectra demonstrate that the crystallization and desorption processes of ASW are affected in a different way by the Gly layers, top-deposited on to ASW-on-AlOx and ASW-on-Gly films. At the same time, Gly adlayers sink into the ASW film during crystallization/desorption of the latter and land softly on the alumina surface in the form of zwitterionic clusters.

  12. Raman spectroscopy of organic dyes adsorbed on pulsed laser deposited silver thin films

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Neri, F.; Valenti, A.; Ossi, P. M.; Trusso, S.; Ponterio, R. C.

    2013-08-01

    The results of a surface-enhanced Raman scattering (SERS) study performed on representative organic and inorganic dyes adsorbed on silver nanostructured thin films are presented and discussed. Silver thin films were deposited on glass slides by focusing the beam from a KrF excimer laser (wavelength 248 nm, pulse duration 25 ns) on a silver target and performing the deposition in a controlled Ar atmosphere. Clear Raman spectra were acquired for dyes such as carmine lake, garanza lake and brazilwood overcoming their fluorescence and weak Raman scattering drawbacks. UV-visible absorption spectroscopy measurements were not able to discriminate among the different chromophores usually referred as carmine lake (carminic, kermesic and laccaic acid), as brazilwood (brazilin and brazilein) and as garanza lake (alizarin and purpurin). SERS measurements showed that the analyzed samples are composed of a mixture of different chromophores: brazilin and brazilein in brazilwood, kermesic and carminic acid in carmine lake, alizarin and purpurin in garanza lake. Detection at concentration level as low as 10-7 M in aqueous solutions was achieved. Higher Raman intensities were observed using the excitation line of 632.8 nm wavelength with respect to the 785 nm, probably due to a pre-resonant effect with the molecular electronic transitions of the dyes.

  13. 4-Mercaptopyridine adsorbed on pure palladium island films: A combined SERS and DFT investigation

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Ding, Li; Zhang, Tianjie; Mo, Yujun

    2013-03-01

    Surface-enhanced Raman scattering (SERS) can provide vibrational information with molecular specificity and potential single-molecule sensitivity. SERS studies on pure transition metals, however, remain challenging due to the weak SERS activity of transition metals compared to coinage metals. Here we fabricated alumina-supported Pd island films by depositing laser-ablated Pd colloids onto an Al substrate. Robust SERS signal employing 4-mercaptopyridine (4-Mpy) as a probe was registered from the as-prepared films. The adsorption information of 4-Mpy molecules such as orientation and coordinating site was discussed in detail based on SERS data. It was inferred that 4-Mpy adsorbs via its sulfur atom to Pd surface with a tilted binding configuration. The Raman wavenumber and intensity of an adsorption model including one 4-Mpy and Pd atom were computed using density functional theory (DFT) at the Beck's three-parameter Lee-Yang-Parr (B3LYP) level with the LANL2DZ basis set. The simulated Raman spectrum was in good agreement with the experimental one except for the relative intensity. The current investigation could be helpful to gain a comprehensive understanding of SERS.

  14. Preparation of dye-adsorbing ZnO thin films by electroless deposition and their photoelectrochemical properties.

    PubMed

    Nagaya, Satoshi; Nishikiori, Hiromasa

    2013-09-25

    Dye-adsorbing ZnO thin films were prepared on ITO films by electroless deposition. The films were formed in an aqueous solution containing zinc nitrate, dimethylamine-borane, and eosin Y at 328 K. The film thickness was 1.2-2.0 μm. Thinner and larger-plane hexagonal columns were produced from the solution containing a higher concentration of eosin Y. A photocurrent was observed in the electrodes containing such ZnO films during light irradiation. The photoelectrochemical performance of the film was improved by increasing the concentration of eosin Y because of increases in the amount of absorbed photons and the electronic conductivity of ZnO. PMID:24020721

  15. Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation

    NASA Astrophysics Data System (ADS)

    Ito, D.; Nishimura, K.; Miura, O.

    2009-03-01

    Zirconium ferrite particles are good adsorbent for phosphate ions. Magnetic separation characteristics for removal of phosphate from treated water of sewage plants with the adsorbent have been studied to prevent eutrophication of semi-enclosed bay, e.g. the bay of Tokyo. Based on the adsorption for the phosphate ions and ferromagnetic properties of the zirconium ferrite adsorbent, high gradient magnetic separation characteristics with using superconducting magnet was discussed. Very rapid magnetic filtration velocity, i.e. 1m/s, and regeneration properties of the adsorbent indicate that the zirconium ferrite is the excellent adsorbent for phosphorus removal and recycle from treated water of large scale sewage plants.

  16. Preliminary results on the immobilisation of radionuclides from waters with specific adsorbers based on phosphate salts.

    PubMed

    Valentini Ganzerli, Maria Teresa; Maggi, Luigino; Crespi Caramella, Vera; Berzero, Antonella

    2004-11-01

    The present paper is focused on the ability of aluminium phosphate (ALPC), magnesium ammonium phosphate (MGPC), magnesium hydrogen phosphate (MGHPC), and calcium hydrogenphosphate (CAHPC), adsorbed onto charcoal, to immobilise actinides by adsorption from natural waters. The objective of this process is to evaluate the environmental pollution due to the actinides. Europium, thorium, protactinium, neptunyl, and uranyl ions were chosen to simulate actinides in the +3, +4, +5 and +6 oxidation state. The adsorbers were tested using natural waters samples. The adsorption trends and capacities were analysed. ALPC and MGPC exhibited a similar behaviour and adsorbed demonstrating that the +5, +4 and +3 actinide ions can be easily immobilised from natural waters and may be successfully used at pH 7-8. MGHPC may be used at a higher pH, whereas CAHPC is effective in the whole pH range. In all cases, thorium, protactinium and europium were strongly

  17. Preliminary results on the immobilisation of radionuclides from waters with specific adsorbers based on phosphate salts.

    PubMed

    Valentini Ganzerli, Maria Teresa; Maggi, Luigino; Crespi Caramella, Vera; Berzero, Antonella

    2004-11-01

    The present paper is focused on the ability of aluminium phosphate (ALPC), magnesium ammonium phosphate (MGPC), magnesium hydrogen phosphate (MGHPC), and calcium hydrogenphosphate (CAHPC), adsorbed onto charcoal, to immobilise actinides by adsorption from natural waters. The objective of this process is to evaluate the environmental pollution due to the actinides. Europium, thorium, protactinium, neptunyl, and uranyl ions were chosen to simulate actinides in the +3, +4, +5 and +6 oxidation state. The adsorbers were tested using natural waters samples. The adsorption trends and capacities were analysed. ALPC and MGPC exhibited a similar behaviour and adsorbed demonstrating that the +5, +4 and +3 actinide ions can be easily immobilised from natural waters and may be successfully used at pH 7-8. MGHPC may be used at a higher pH, whereas CAHPC is effective in the whole pH range. In all cases, thorium, protactinium and europium were strongly PMID:15626242

  18. Adsorption and removal kinetics of phosphonate from water using natural adsorbents.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G; Vasu, K

    2010-01-01

    The removal of phosphonate from water was studied using some natural adsorbents. Potassium phosphonate is a fungicide used for the control of Phytophthora capsici, which is prevalent in black pepper (Piper nigrum L.). Batch adsorption kinetic experiments were conducted on the adsorption of phosphonate onto the adsorbents. The concentration of phosphonate was measured on a high-performance liquid chromatograph fitted with a conductivity detector. The percentage removal of phosphonate by powdered laterite stone (PLS) from water was 40.4%, within a residence time of 15 minutes. The mechanisms of the rate of adsorption were analyzed and compared using the pseudo-second-order, Elovich, and intraparticle diffusion models. The experimental data was found to correlate well with the pseudo-second-order kinetic model, indicating adsorption as a chemisorption process. A possible reaction in the phosphonate-PLS system also has been proposed. The PLS can be used as a low-cost natural adsorbent for phosphonate removal from water.

  19. Structure of water adsorbed on a mica surface

    SciTech Connect

    Park, Sung-Ho; Sposito, Garrison

    2002-01-29

    Monte Carlo simulations of hydration water on the mica (001) surface under ambient conditions revealed water molecules bound closely to the ditrigonal cavities in the surface, with a lateral distribution of approximately one per cavity, and water molecules interposed between K{sup +} counter ions in a layer situated about 2.5 {angstrom} from a surface O along a direction normal to the (001) plane. The calculated water O density profile was in quantitative agreement with recent X-ray reflectivity measurements indicating strong lateral ordering of the hydration water but liquid-like disorder otherwise.

  20. Enhanced removal of nitrate from water using surface modification of adsorbents--a review.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya

    2013-12-15

    Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents. PMID:24211565

  1. Enhanced removal of nitrate from water using surface modification of adsorbents--a review.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya

    2013-12-15

    Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents.

  2. Adsorbed films of three-patch colloids: Continuous and discontinuous transitions between thick and thin films

    NASA Astrophysics Data System (ADS)

    Dias, C. S.; Araújo, N. A. M.; Telo da Gama, M. M.

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed.

  3. Adsorbed films of three-patch colloids: continuous and discontinuous transitions between thick and thin films.

    PubMed

    Dias, C S; Araújo, N A M; Telo da Gama, M M

    2014-09-01

    We investigate numerically the role of spatial arrangement of the patches on the irreversible adsorption of patchy colloids on a substrate. We consider spherical three-patch colloids and study the dependence of the kinetics on the opening angle between patches. We show that growth is suppressed below and above minimum and maximum opening angles, revealing two absorbing phase transitions between thick and thin film regimes. While the transition at the minimum angle is continuous, in the directed percolation class, that at the maximum angle is clearly discontinuous. For intermediate values of the opening angle, a rough colloidal network in the Kardar-Parisi-Zhang universality class grows indefinitely. The nature of the transitions was analyzed in detail by considering bond flexibility, defined as the dispersion of the angle between the bond and the center of the patch. For the range of flexibilities considered we always observe two phase transitions. However, the range of opening angles where growth is sustained increases with flexibility. At a tricritical flexibility, the discontinuous transition becomes continuous. The practical implications of our findings and the relation to other nonequilibrium transitions are discussed.

  4. Ion removal from waste water using immobilized adsorbents

    SciTech Connect

    Isaacson, A.E.; Jeffers, T.H.

    1995-12-31

    This paper summarizes experiments investigating the removal of various anions from dilute aqueous streams using mixtures of ferric hydroxide and peat moss immobilized in porous polymer beads. Cyclic load-strip tests were conducted at aqueous-to-bead radios of 20, 10, and 5 for loading, stripping, and conditioning, respectively. Beads were stripped with a sodium hydroxide solution and regenerated with a dilute acid. Waste waters containing arsenic, chromium, molybdenum, selenium, tungsten, and vanadium were tested. The maximum waste loading on the beads was determined for each waste water; experimental isotherms are presented.

  5. SEIRA studies of uracil adsorbed on wet-chemically prepared gold nanoparticles film on glass substrate - Effect of morphology of film

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-08-01

    Surface-enhanced infrared absorption (SEIRA) studies of uracil adsorbed on wet-chemically prepared gold nanoparticles (AuNp) immobilized on silanised glass substrate were carried out using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The deposition time dependent evolution of morphological changes in AuNp films and its influence on the SEIRA spectra of uracil were investigated. The morphological changes were examined by atomic force microscopy (AFM). The spectrum of uracil adsorbed on AuNp film obtained with ½ an hour deposition time showed a clear enhancement than 2 and 4 h deposition times. The small shift seen in SEIRA spectra indicates weak interaction of the molecules with AuNp film.

  6. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    SciTech Connect

    Kimmel, Gregory A.; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D.

    2014-11-14

    We have examined the adsorption of the weakly bound species N2, O2, CO and Kr on the water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O2 have little effect on the structure and vibrational spectrum of the “ ” water monolayer while adsorption of both N2, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “ ” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

  7. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    SciTech Connect

    Kimmel, Greg A. E-mail: bruce.kay@pnnl.gov; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D. E-mail: bruce.kay@pnnl.gov

    2014-11-14

    We have examined the adsorption of the weakly bound species N{sub 2}, O{sub 2}, CO, and Kr on the (√(37)×√(37))R25.3{sup ∘} water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O{sub 2} have little effect on the structure and vibrational spectrum of the “√(37)” water monolayer while adsorption of both N{sub 2}, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “√(37)” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

  8. Formation of 1D adsorbed water structures on CaO(001)

    NASA Astrophysics Data System (ADS)

    Zhao, Xunhua; Bhattacharya, Saswata; Ghiringhelli, Luca M.; Levchenko, Sergey V.; Scheffler, Matthias

    2015-03-01

    Understanding the interaction of water with oxide surfaces is of fundamental importance for basic and engineering sciences. Recently, a spontaneous formation of one-dimensional (1D) adsorbed water structures have been observed on CaO(001). Interestingly, at other alkaline earth metal oxides, in particular MgO(001) and SrO(001), such structures have not been found experimentally. We calculate the relative stability of adsorbed water structures on the three oxides using density-functional theory combined with the ab initio atomistic thermodynamics. Low-energy structures at different coverages are obtained with a first-principles genetic algorithm. Finite-temperature vibrational spectra are calculated using ab initio molecular dynamics. We find a range of (T, p) conditions where 1D structures are thermodynamically stable on CaO(001). The orientation and vibrational spectra of the 1D structures are in agreement with the experiments. The formation of the 1D structures is found to be actuated by a symmetry breaking in the adsorbed water tetramer, as well as by a balance between water-water and water-substrate interactions, determined by the lattice constant of the oxide.

  9. Adsorption/Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    To clarify the operating and design concept of desiccant rotor, which is a most important component of an adsorptive desiccant cooling process, adsorption / desorption behavior of water vapor in a desiccant rotor has been investigated by means of computer simulation. Mass transfer coefficient in the mathematical model could be related to cycle time by applying the penetration theory. Considering this relationship, influences of the rotation speed of the desiccant rotor, process / regeneration air velocity and their velocity ratio were investigated. It was found that the optimum rotation speed tended to disappear when the regeneration air temperature was low and its humidity was considerably small compared to the process inlet air, since the product air condition approached to regeneration air condition as the rotation speed increased. Decrease of the dehumidifying performance was observed at higher air velocity and the corresponding higher rotation speed since the adsorbent rotor was not fully regenerated due to shorter regeneration time and shorter residence time of process / regeneration air in the adsorbent rotor prevented the mass transfer between air and adsorbent. It was also found that the dehumidifying performance was not improved even though the adsorbent was fully regenerated by higher regeneration air velocity as the sensible heat transferred from the regeneration zone via adsorbent itself increased and disturbed adsorption.

  10. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    SciTech Connect

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj

    2015-08-15

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized with concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.

  11. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water.

    PubMed

    Yao, Yuan; Volchek, Konstantin; Brown, Carl E; Robinson, Adam; Obal, Terry

    2014-01-01

    Perfluorinated compounds (PFCs) are emerging environmental pollutants. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are the two primary PFC contaminants that are widely found in water, particularly in groundwater. This study compared the adsorption behaviors of PFOS and PFOA on several commercially available adsorbents in water. The tested adsorbents include granular activated carbon (GAC: Filtrasorb 400), powdered activated carbon, multi-walled carbon nanotube (MCN), double-walled carbon nanotube, anion-exchange resin (AER: IRA67), non-ion-exchange polymer, alumina, and silica. The study demonstrated that adsorption is an effective technique for the removal of PFOS/PFOA from aqueous solutions. The kinetic tests showed that the adsorption onto AER reaches equilibrium rapidly (2 h), while it takes approximately 4 and 24 h to reach equilibrium for MCN and GAC, respectively. In terms of adsorption capacity, AER and GAC were identified as the most effective adsorbents to remove PFOS/PFOA from water. Furthermore, MCN, AER, and GAC proved to have high PFOS/PFOA removal efficiencies (≥98%). AER (IRA67) and GAC (Filtrasorb 400) were thus identified as the most promising adsorbents for treating PFOS/PFOA-contaminated groundwater at mg L(-1) level based on their equilibrium times, adsorption capacities, removal efficiencies, and associated costs. PMID:25521134

  12. ATR SEIR study of anions and water adsorbed on platinum electrode

    NASA Astrophysics Data System (ADS)

    Futamata, Masayuki; Luo, Liqiang; Nishihara, Chizuko

    2005-10-01

    Adsorbed species on bare Pt, and UPD-Pb or UPD-Cu/Pt electrodes were characterized in HClO 4 or H 2SO 4 solutions at various potentials using attenuated total reflection (ATR)-surface enhanced infrared absorption (SEIRA) spectroscopy. On the bare Pt electrode, ClO4- anions were observed at 1120-1095 cm -1 at +0.0 < E < +0.6 V, solvated by water molecules with OH stretching absorption at 3600 cm -1 and HOH bending mode at 1610-1620 cm -1. In addition to the S-OH totally symmetric mode at 950 cm -1, adsorbed sulfate species gave two bands at 1230-1100 cm -1 between 0.0 V < E < +0.8 V that are assigned to ν3 (symmetric stretch of S-O in SO 3) of HSO4- ions with different coordination based on the peak shift by isotope substitution. At more negative potential, solely water molecules adsorb on the bare Pt surfaces. In contrast, it was found that electrolyte anions such as bisulfate and ClO4- with hydrating water molecules adsorb onto the UPD-Pb/Pt and UPD-Cu/Pt electrodes even at much negative potentials, e.g. -0.2 V for UPD-Pb.

  13. Development of a Household Water Defluoridation Process Using Aluminium Hydroxide Based Adsorbent.

    PubMed

    Mulugeta, Eyobel; Zewge, Feleke; Chandravanshi, Bhagwan Singh

    2015-06-01

    In this study, the removal of fluoride from water using aluminium hydroxide based adsorbent has been investigated in continuous operation. The effect of fluoride influent concentration, feed flowrate, and adsorbent bed height onto the breakthrough characteristics of the adsorption system were examined. The fixed-bed adsorption system was found to perform better with lower influent fluoride concentration, lower flowrate, and higher bed depth. Thermodynamic evaluation using the bed depth service time model indicated that the fluoride adsorption capacity was 25.8 mg F-/g of adsorbent, which is high compared to commercially available activated alumina (1.8 to 1.9 mg/g). Kinetic studies showed that the rate of adsorption in continuous studies was in the range of 6.12×10(-3) to 39.3×10(-3) L/mg.h under different operating conditions. The household defluoridation unit (HDU) was tested at an up-flow mode and it was determined that the HDU packed with 0.9 kg of adsorbent with 28.3 cm of bed depth resulted in a specific safe water yield of 823.79 L. Regeneration of the exhaust media using 1% NaOH and 0.1 M HCl showed that the adsorbent could be reused. The estimated running cost of the unit was 2.0 U.S. dollar/m3 of treated water, with the potential to minimize further. Hence, it was concluded that the proposed method is simple and exhibits superior performance for the treatment of fluoride-contaminated water with the potential for household application. PMID:26459821

  14. Laser tracks in rainbow films on water

    SciTech Connect

    Startsev, Aleksandr V; Stoilov, Yurii Yu

    2012-08-31

    It is found that narrow non-diverging laser tracks, earlier studied in free soap films, can also arise in thin rainbow films, e.g., of petrol, on water. (laser applications and other topics in quantum electronics)

  15. The Impact of Adsorbed Triethylene Glycol on Water Wettability of the {1014} Calcium Carbonate Surface

    NASA Astrophysics Data System (ADS)

    Olsen, R.

    2015-12-01

    Water flooding is increasingly being used as a method of enhanced oil recovery and frequently involves calcium carbonate reservoirs. Very often, thermodynamic conditions in the upper few hundred meters allow for hydrate formation. One possible method of preventing hydrates is to inject hydrate inhibitors such as triethylene glycol (TEG) into the reservoir. Thus, it is of importance to know how such glycols affect water wettability, which is an important factor defining the oil behavior in such reservoirs. Wettability of a surface is defined by the contact angle of a liquid drop on the surface. The stronger the liquid is attracted to the surface, the smaller the wetting angle becomes, implying an increased degree of wetting. Therefore, it is possible to gain qualitative knowledge of the change in wetting properties with respect to external influences by studying corresponding changes in free energy of adsorption of the liquid. In our work [1], we used molecular dynamics (MD) and Born-Oppenheimer molecular dynamics (BOMD) to study how adsorbed TEG on the {1014} calcium carbonate surface affected adsorbed water. We used the changes in density profiles of water to estimate changes in adsorption free energy of water. The adaptive biasing force (ABF) method was applied to TEG to calculate the adsorption free energy of TEG on the calcium carbonate surface. We found that water wetting of the calcium carbonate surface decreased in the presence of adsorbed TEG. [1] - Olsen, R.; Leirvik, K.; Kvamme, B.; Kuznetsova, T. Adsorption Properties of Triethylene Glycol on a Hydrated {1014} Calcite Surface and Its Effect on Adsorbed Water, Langmuir 2015, DOI: 10.1021/acs.langmuir.5b02228

  16. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. II. Dynamics

    NASA Astrophysics Data System (ADS)

    Enevoldsen, A. D.; Hansen, F. Y.; Diama, A.; Taub, H.; Dimeo, R. M.; Neumann, D. A.; Copley, J. R. D.

    2007-03-01

    The dynamics of monolayer films of the n-alkane tetracosane (n-C24H52) and the branched alkane squalane (C30H62) adsorbed on graphite have been studied by quasielastic and inelastic neutron scattering and molecular dynamics (MD) simulations. Both molecules have 24 carbon atoms along their carbon backbone, and squalane has an additional six methyl side groups symmetrically placed along its length. The authors' principal objective has been to determine the influence of the side groups on the dynamics of the squalane monolayer and thereby assess its potential as a nanoscale lubricant. To investigate the dynamics of these monolayers they used both the disk chopper spectrometer (DCS) and the high flux backscattering spectrometer (HFBS) at the National Institute of Standards and Technology. These instruments made it possible to study dynamical processes such as molecular diffusive motions and vibrations on very different time scales: 1-40ps (DCS) and 0.1-4ns (HFBS). The MD simulations were done on corresponding time scales and were used to interpret the neutron spectra. The authors found that the dynamics of the two monolayers are qualitatively similar on the respective time scales and that there are only small quantitative differences that can be understood in terms of the different masses and moments of inertia of the two molecules. In the course of this study, the authors developed a procedure to separate out the low-frequency vibrational modes in the spectra, thereby facilitating an analysis of the quasielastic scattering. They conclude that there are no major differences in the monolayer dynamics caused by intramolecular branching. It remains to be seen whether this similarity in monolayer dynamics also holds for the lubricating properties of these molecules in confined geometries.

  17. Adsorption of prototypical amino acids on silica: Influence of the pre-adsorbed water multilayer

    NASA Astrophysics Data System (ADS)

    Remesal, Elena R.; Amaya, Javier; Graciani, Jesús; Márquez, Antonio M.; Sanz, Javier Fdez.

    2016-04-01

    We explore the interaction between acetic acid, some typical α-amino acids (α-AAs), and a fully hydroxylated (0001) surface of α-quartz by means of theoretical calculations based on the density functional theory (DFT) under periodic boundary conditions. The influence of microsolvation, represented by a water multilayer, and dispersion forces is analyzed. All the considered molecules strongly adsorb on the hydroxylated surface and prefer to adsorb molecularly. The inclusion of dispersion forces increases the interaction energies by 15-30 kJ/mol, without significant changes in structure and mode of adsorption except for histidine where the interaction is improved through protonation of the α-amine group. When the water multilayer is included a decrease in the surface-adsorbate interaction energies is observed. Also, some α-AAs, glycine and alanine, change their adsorption mode and, now, the more stable structure is the zwitterion. Adsorption as zwitterions is always favored with respect to molecular interaction when dispersion forces are taken into account. Comparing the energies of adsorbed and solvated α-AA zwitterions, it turns out that inclusion of dispersion forces predicts that solvated zwitterions are the lower energy configurations.

  18. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    PubMed

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  19. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface.

    PubMed

    Dulub, Olga; Meyer, Bernd; Diebold, Ulrike

    2005-09-23

    A combined scanning tunneling microscopy and density-functional theory (DFT) study shows a rich structure of water monolayers adsorbed on ZnO(1010) at room temperature. Most of the water is in a lowest-energy configuration where every second molecule is dissociated. It coexists with an energetically almost degenerate configuration consisting of a fully molecular water monolayer. Parts of the layer continuously switch back and forth between these two states. DFT calculations reveal that water molecules repeatedly associate and dissociate in this sustained dynamical process. PMID:16197151

  20. A comparison of didodecyldimethylammonium bromide adsorbed at mica/water and silica/water interfaces using neutron reflection.

    PubMed

    Griffin, Lucy R; Browning, Kathryn L; Truscott, Chris L; Clifton, Luke A; Webster, John; Clarke, Stuart M

    2016-09-15

    The layer structure of the dichain alkyl ammonium surfactant, didodecyldimethylammonium bromide (DDAB), adsorbed from water on to silica and mica surfaces has been determined using neutron reflection. Although sometimes considered interchangeable surfaces for study, we present evidence of significant differences in the adsorbed layer structure below the critical micelle concentration. A complete DDAB bilayer was assembled at the water/mica interface at concentrations below the critical micelle concentration (CMC). In contrast it is not until the CMC was reached that the complete bilayer structure formed on the oxidised silicon crystal. Removal of the complete bilayer on both surfaces was attempted by both washing and ion exchange yet the adsorbed structure proved tenacious. PMID:27318715

  1. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. PMID:26498500

  2. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water.

  3. Correlation between cellulose thin film supramolecular structures and interactions with water.

    PubMed

    Tammelin, Tekla; Abburi, Ramarao; Gestranius, Marie; Laine, Christiane; Setälä, Harri; Österberg, Monika

    2015-06-01

    Water interactions of ultra-thin films of wood-derived polysaccharides were investigated by using surface sensitive methods, Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). These approaches allow systematic molecular level detection and reveal information on the inherent behaviour of biobased materials with nanosensitivity. The influence of structural features of cellulose films i.e. crystallinity, surface roughness and porosity on water interactions was clarified. Cellulose films were prepared using spin-coating and Langmuir-Schaefer deposition to obtain thin films of equal thickness, identical cellulose origin, simultaneously with different supramolecular structures. The uptake/release of water molecules and swelling were characterized using QCM-D, and the structural features of the films were evaluated by AFM. More crystalline cellulose film possessed nanoporosity and as a consequence higher accessible surface area (more binding sites for water) and thus, it was capable of binding more water molecules in humid air and when immersed in water when compared to amorphous cellulose film. Due to the ordered structure, more crystalline cellulose film remained rigid and elastic although the water binding ability was more pronounced compared to amorphous film. The lower amount of bound water induced softening of the amorphous cellulose film and the elastic layer became viscoelastic at high humidity. Finally, cellulose thin films were modified by adsorbing a layer of 1-butyloxy-2-hydroxypropyl xylan, and the effect on moisture uptake was investigated. It was found that the supramolecular structure of the cellulose substrate has an effect not only on the adsorbed amount of xylan derivative but also on the water interactions of the material. PMID:25903294

  4. Interaction of transglutaminase with adsorbed and spread films of β-casein and к-casein.

    PubMed

    Ridout, Michael J; Paananen, Arja; Mamode, Anissa; Linder, Markus B; Wilde, Peter J

    2015-04-01

    Enzymes can be used to enable a specific and controlled approach for structural modifications of protein networks in food technology. Enzymatically induced cross-links between proteins in the continuous phase and/or at interfaces result in better stabilisation and enhanced material properties in foams and emulsions. In this work the interfacial properties of β-casein and к-casein films were investigated with a special focus on the mechanism of transglutaminase (TG) induced cross-linking at the air/water interface. The surface rheology results showed that for the enhanced interfacial strength the order and timing of TG addition matters: TG reaction was most effective when the enzyme was applied during adsorption of proteins to the interface. Differences observed between enzymatic cross-linking of β-casein and к-casein at the air/water interface verified the importance of molecular structure and close packing for formation of an elastic protein network.

  5. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents.

    PubMed

    Ding, Rui; Zhang, Pengfei; Seredych, Mykola; Bandosz, Teresa J

    2012-09-01

    Sewage sludge- and waste oil sludge-derived materials were tested as adsorbents of pharmaceuticals from diluted water solutions. Simultaneous retention of eleven antibiotics plus two anticonvulsants was examined via batch adsorption experiments. Virgin and exhausted adsorbents were examined via thermal and FTIR analyses to elucidate adsorption mechanisms. Maximum adsorption capacities for the 6 materials tested ranged from 80 to 300 mg/g, comparable to the adsorption capacities of antibiotics on various activated carbons (200-400 mg/g) reported in the literature. The performance was linked to surface reactivity, polarity and porosity. A large volume of pores similar in size to the adsorbate molecules with hydrophobic carbon-based origin of pore walls was indicated as an important factor promoting the separation process. Moreover, the polar surface of an inorganic phase in the adsorbents attracted the functional groups of target molecules. The presence of reactive alkali metals promoted reaction with acidic groups, formation of salts and their precipitation in the pore system. PMID:22673337

  6. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents.

    PubMed

    Ding, Rui; Zhang, Pengfei; Seredych, Mykola; Bandosz, Teresa J

    2012-09-01

    Sewage sludge- and waste oil sludge-derived materials were tested as adsorbents of pharmaceuticals from diluted water solutions. Simultaneous retention of eleven antibiotics plus two anticonvulsants was examined via batch adsorption experiments. Virgin and exhausted adsorbents were examined via thermal and FTIR analyses to elucidate adsorption mechanisms. Maximum adsorption capacities for the 6 materials tested ranged from 80 to 300 mg/g, comparable to the adsorption capacities of antibiotics on various activated carbons (200-400 mg/g) reported in the literature. The performance was linked to surface reactivity, polarity and porosity. A large volume of pores similar in size to the adsorbate molecules with hydrophobic carbon-based origin of pore walls was indicated as an important factor promoting the separation process. Moreover, the polar surface of an inorganic phase in the adsorbents attracted the functional groups of target molecules. The presence of reactive alkali metals promoted reaction with acidic groups, formation of salts and their precipitation in the pore system.

  7. A multifunctional azobenzene-based polymeric adsorbent for effective water remediation

    NASA Astrophysics Data System (ADS)

    Wan, Decheng; Chen, Feng; Geng, Qingrui; Lu, Hang; Willcock, Helen; Liu, Qiuming; Wang, Fangyingkai; Zou, Kaidian; Jin, Ming; Pu, Hongting; Du, Jianzhong

    2014-12-01

    The efficient removal of trace carcinogenic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and ionic dyes, from water is an important technical challenge. We report a highly effective recyclable multifunctional azobenzene (AZ)-based silica-supported polymeric adsorbent which can simultaneously remove both PAHs and anionic dyes from water to below parts per billion (ppb) level based on multiple interactions such as the hydrophobic effect, π-π stacking and electrostatic interactions, thus providing a new strategy for designer water remediation materials.

  8. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates.

    PubMed

    Jusys, Zenonas; Behm, R Jürgen

    2014-01-01

    As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm(-1) characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed.

  9. Adsorption and removal kinetics of phosphonate from water using natural adsorbents.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G; Vasu, K

    2010-01-01

    The removal of phosphonate from water was studied using some natural adsorbents. Potassium phosphonate is a fungicide used for the control of Phytophthora capsici, which is prevalent in black pepper (Piper nigrum L.). Batch adsorption kinetic experiments were conducted on the adsorption of phosphonate onto the adsorbents. The concentration of phosphonate was measured on a high-performance liquid chromatograph fitted with a conductivity detector. The percentage removal of phosphonate by powdered laterite stone (PLS) from water was 40.4%, within a residence time of 15 minutes. The mechanisms of the rate of adsorption were analyzed and compared using the pseudo-second-order, Elovich, and intraparticle diffusion models. The experimental data was found to correlate well with the pseudo-second-order kinetic model, indicating adsorption as a chemisorption process. A possible reaction in the phosphonate-PLS system also has been proposed. The PLS can be used as a low-cost natural adsorbent for phosphonate removal from water. PMID:20112539

  10. Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane.

    PubMed

    Doig, Michael; Warrens, Chris P; Camp, Philip J

    2014-01-14

    The structure and friction of fatty acid surfactant films adsorbed on iron oxide surfaces lubricated by squalane are examined using large-scale molecular dynamics simulations. The structures of stearic acid and oleic acid films under static and shear conditions, and at various surface coverages, are described in detail, and the effects of unsaturation in the tail group are highlighted. At high surface coverage, the measured properties of stearic acid and oleic acid films are seen to be very similar. At low and intermediate surface coverages, the presence of a double bond, as in oleic acid, is seen to give rise to less penetration of lubricant in to the surfactant film and less layering of the lubricant near to the film. The kinetic friction coefficient is measured as a function of shear rate within the hydrodynamic (high shear rate) lubrication regime. Lubricant penetration and layering are observed to be correlated with friction coefficient. The friction coefficient with oleic acid depends only weakly on surface coverage, while stearic acid admits more lubricant penetration, and its friction coefficient increases significantly with decreasing surface coverage. Connections between film structure and friction are discussed.

  11. Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent.

    PubMed

    Awual, Md Rabiul; Shenashen, M A; Yaita, Tsuyoshi; Shiwaku, Hideaki; Jyo, Akinori

    2012-11-01

    This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h(-1)) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.

  12. [Characteristics and comparative study of a new drinking-water defluoridation adsorbent Bio-F].

    PubMed

    Zhu, Chi; Zhao, Liang-Yuan; Yuan, Heng; Yang, Han-Ying; Li, Ang; Wang, Peng; Yang, Shao

    2009-04-15

    To evaluate the application potentiality pf a new type drinking-water defluoridation adsorbent Bio-F, comparative study on the defluoridation characteristics of common adsorbents activated alumina (AA), bone char (BC), activated clinoptilolite (AC) with Bio-F was conducted. The defluoridation characteristics under different conditions, such as particle diameter, pH, retention time, fluorine concentration, regeneration stability, were investigated by continuous-flow column experiments and static tests. The defluoridation efficiency of high fluoride underground water by four types of adsorbents was also compared. The results showed that F(-) adsorption kinetics of Bio-F fitted the Lagergren First-order equation (R2 = 0.9580). F(-) adsorption by Bio-F was found to fit the Langmuir adsorption isotherm (R2 = 0.9992). The results indicated that the static defluoridation capacity (DC) of Bio-F was 4.0883 mg x g(-1), which was about 1.8 folds and 5.8 folds of those of AA and AC respectively. DC of all four adsorbents was positively correlated with F(-) concentration and negatively correlated with particle size. High concentration of CO3(2-) and HCO3(-) reduced the DC of Bio-F (p < 0.05), while high concentration of Ca2+, NO3(-), HPO4(2-) favored defluoridation by Bio-F (p < 0.001). The optimal retention time of Bio-F was 3-4 min, which was less than that of AC (20 min) and AA (11 min). The DC of Bio-F remained relatively stable in pH 4.0-9.0 and in regeneration since the DC variation was not more than 15%. The above results indicated that Bio-F was superior to AA, BC and AC in drinking-water defluoridation.

  13. Adsorption / Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    Adsorption / desorption behavior of water vapor onto desiccant rotor has been investigated to improve the desiccant cooling system by means of computer simulation. In this paper, we paid attention to the relationship between the equilibrium amount of water adsorbed onto the desiccant material and the relative humidity, that is adsorption isotherm as a principal characteristic feature of adsorbent. Considering actual adsorbents, five types of adsorption isotherms were assumed to clarify the influence of adsorption isotherm on the dehumidifying performance. After the investigation on the influences of some operating conditions on the dehumidifying performance at each selected adsorption isotherm, it was found that higher dehumidifying performance and reduction of length of desiccant rotor could be achieved by selecting appropriate adsorption isotherm. It was also predicted that S-shaped adsorption isotherm which is raised sharply at relative humidity around 15 % could produce the lowest air humidity at regeneration air temperature 80 °C. Moreover influence of the intraparticle diffusion coefficient which significantly influence on the adsorption / desorption rate was discussed choosing two adsorption isotherm from the above five isotherms. It seems that effective range of the intraparticle diffusion coefficient for the significant improvement of the dehumidifying performance was strongly influenced by the shape of adsorption isotherm.

  14. Arsenic removal from water/wastewater using adsorbents--A critical review.

    PubMed

    Mohan, Dinesh; Pittman, Charles U

    2007-04-01

    Arsenic's history in science, medicine and technology has been overshadowed by its notoriety as a poison in homicides. Arsenic is viewed as being synonymous with toxicity. Dangerous arsenic concentrations in natural waters is now a worldwide problem and often referred to as a 20th-21st century calamity. High arsenic concentrations have been reported recently from the USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungary, Japan and India. Among 21 countries in different parts of the world affected by groundwater arsenic contamination, the largest population at risk is in Bangladesh followed by West Bengal in India. Existing overviews of arsenic removal include technologies that have traditionally been used (oxidation, precipitation/coagulation/membrane separation) with far less attention paid to adsorption. No previous review is available where readers can get an overview of the sorption capacities of both available and developed sorbents used for arsenic remediation together with the traditional remediation methods. We have incorporated most of the valuable available literature on arsenic remediation by adsorption ( approximately 600 references). Existing purification methods for drinking water; wastewater; industrial effluents, and technological solutions for arsenic have been listed. Arsenic sorption by commercially available carbons and other low-cost adsorbents are surveyed and critically reviewed and their sorption efficiencies are compared. Arsenic adsorption behavior in presence of other impurities has been discussed. Some commercially available adsorbents are also surveyed. An extensive table summarizes the sorption capacities of various adsorbents. Some low-cost adsorbents are superior including treated slags, carbons developed from agricultural waste (char carbons and coconut husk carbons), biosorbents (immobilized biomass, orange juice residue), goethite and some commercial adsorbents, which include resins, gels, silica

  15. Arsenic removal from water/wastewater using adsorbents--A critical review.

    PubMed

    Mohan, Dinesh; Pittman, Charles U

    2007-04-01

    Arsenic's history in science, medicine and technology has been overshadowed by its notoriety as a poison in homicides. Arsenic is viewed as being synonymous with toxicity. Dangerous arsenic concentrations in natural waters is now a worldwide problem and often referred to as a 20th-21st century calamity. High arsenic concentrations have been reported recently from the USA, China, Chile, Bangladesh, Taiwan, Mexico, Argentina, Poland, Canada, Hungary, Japan and India. Among 21 countries in different parts of the world affected by groundwater arsenic contamination, the largest population at risk is in Bangladesh followed by West Bengal in India. Existing overviews of arsenic removal include technologies that have traditionally been used (oxidation, precipitation/coagulation/membrane separation) with far less attention paid to adsorption. No previous review is available where readers can get an overview of the sorption capacities of both available and developed sorbents used for arsenic remediation together with the traditional remediation methods. We have incorporated most of the valuable available literature on arsenic remediation by adsorption ( approximately 600 references). Existing purification methods for drinking water; wastewater; industrial effluents, and technological solutions for arsenic have been listed. Arsenic sorption by commercially available carbons and other low-cost adsorbents are surveyed and critically reviewed and their sorption efficiencies are compared. Arsenic adsorption behavior in presence of other impurities has been discussed. Some commercially available adsorbents are also surveyed. An extensive table summarizes the sorption capacities of various adsorbents. Some low-cost adsorbents are superior including treated slags, carbons developed from agricultural waste (char carbons and coconut husk carbons), biosorbents (immobilized biomass, orange juice residue), goethite and some commercial adsorbents, which include resins, gels, silica

  16. Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent.

    PubMed

    Awual, Md Rabiul; Jyo, Akinori; Ihara, Toshihiro; Seko, Noriaki; Tamada, Masao; Lim, Kwon Taek

    2011-10-01

    This study was investigated for the trace phosphate removal at high feed flow rate by ligand exchange fibrous adsorbent. The zirconium(IV) loaded bifunctional fibers containing both phosphonate and sulfonate were used as a highly selective ligand exchange adsorbent for trace phosphate removal from water. The precursory fiber of the bifunctional fibers was co-grafted by polymerization of chloromethylstyrene and styrene onto polyethylene coated polypropylene fiber and then bifunctional fibers were prepared by Arbusov reaction followed by phosphorylation and sulfonation. Phosphate adsorption experimental work was carried out in column approach. Phosphate adsorption increased with decreasing the pH of feed solutions. An increase in the feeds flow rate brings a decrease in both breakthrough capacity and total adsorption. The effect of competing anions on phosphate adsorption systems was investigated. The experimental findings reveal that the phosphate adsorption was not affected in the presence of competing anions such as chloride and sulfate despite the enhancement of the breakthrough points and total adsorption. Due to high selectivity to phosphate species, low concentration level of phosphate (0.22 mg/L) was removed at high feed flow rate of 450 h(-1) in space velocity. The adsorbed phosphate on the Zr(IV) loaded fibrous column was quantitatively eluted with 0.1 M NaOH solution and then the column was regenerated by 0.5M H2SO4 for the next adsorption operation. During many adsorption-elution-regeneration cycles, no measurable Zr(IV) was found in the column effluents. Therefore, the Zr(IV) loaded bifunctional fibrous adsorbent is to be an effective means to treat wastewater to prevent eutrophication in the receiving water bodies for long time without any deterioration.

  17. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Liu, Ruiping; Qu, Jiuhui

    2009-07-15

    Phosphate removal is important in the control of eutrophication of water bodies and adsorption is one of the promising approaches for this purpose. A Fe-Mn binary oxide adsorbent with a Fe/Mn molar ratio of 6:1 for phosphate removal was synthesized by a simultaneous oxidation and coprecipitation process. Laboratory experiments were carried out to investigate adsorption kinetics and equilibrium, in batch mode. The effects of different experimental parameters, namely contact time, initial phosphate concentration, solution pH, and ionic strength on the phosphate adsorption were investigated. The adsorption data were analyzed by both Freundlich and Langmuir isotherm models and the data were well fit by the Freundlich isotherm model. Kinetic data correlated well with the pseudo-second-order kinetic model, suggesting that the adsorption process might be chemical sorption. The maximal adsorption capacity was 36 mg/g at pH 5.6. The phosphate adsorption was highly pH dependent. The effects of anions such as Cl(-),SO42-, and CO32- on phosphate removal were also investigated. The results suggest that the presence of these ions had no significant effect on phosphate removal. The phosphate removal was mainly achieved by the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. In addition, the adsorbed phosphate ions can be effectively desorbed by dilute NaOH solutions. This adsorbent, with large adsorption capacity and high selectivity, is therefore a very promising adsorbent for the removal of phosphate ions from aqueous solutions.

  18. Theoretical Study on Surface-Enhanced Raman Spectra of Water Adsorbed on Noble Metal Cathodes of Nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Pang, Ran; Tian, Zhong-Qun

    2016-06-01

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures. The basis is the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. How it is not completely understood the reason why the relative Raman intensity ratio of the bending and stretching vibrations of interfacial water increases at the very negative potential region. Density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present theoretical results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, the HO-H…Ag(Au) for silver and gold. In acidic solution, a surface electron-hydronium ion-pair was proposed as an adsorption configuration of interfacial water structures on silver and gold cathodes based on density functional theory (DFT) calculations. The EHIP is in the configuration of H3O+(H2O)ne-, where the hydronium H3O+ and the surface electron is separated by water layers. The electron bound in the EHIP can first be excited under light irradiation, subsequently inducing a structural relaxation into a hydrated hydrogen atom. Thus, Raman intensities of the interfacial water in the EHIP species are signifcantly enhanced due to the cathodic polarization on silver and gold electrodes.

  19. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  20. Adsorption of metal adatoms on FeO(111) and MgO(111) monolayers: Effects of charge state of adsorbate on rumpling of supported oxide film

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Noguera, Claudine; Giordano, Livia; Pacchioni, Gianfranco

    2009-09-01

    We present a theoretical density-functional theory study on the deposition of metal atoms (Ir, Pd, Pt, Ag, and Au) on FeO(111) and MgO(111) monolayers supported on Pt(111). We show the existence of a strong coupling between the charge state of the adsorbed adatom and the local polaroniclike distortion of the oxide film, and we identify two qualitatively different adsorption modes in which the distortion either reinforces the rumpling of the supported oxide film (positively charged adsorbates) or reduces or even reverses the cation-anion stacking (negatively charged adsorbates). Thus, the adsorption mode is a response to the charge state of the adsorbate and is driven mainly by the capacity of adatoms to exchange electrons with the support.

  1. The adsorption of water on Cu2O and Al2O3 thin films

    SciTech Connect

    Deng, Xingyi; Herranz, Tirma; Weis, Christoph; Bluhm, Hendrik; Salmeron, Miquel

    2008-06-27

    The initial stages of water condensation, approximately 6 molecular layers, on two oxide surfaces, Cu{sub 2}O and Al{sub 2}O{sub 3}, have been investigated by using ambient pressure X-ray photoelectron spectroscopy at relative humidity values (RH) from 0 to >90%. Water adsorbs first dissociatively on oxygen vacancies producing adsorbed hydroxyl groups in a stoichiometric reaction: O{sub lattic} + vacancies + H{sub 2}O = 2OH. The reaction is completed at {approx}1% RH and is followed by adsorption of molecular water. The thickness of the water film grows with increasing RH. The first monolayer is completed at {approx}15% RH on both oxides and is followed by a second layer at 35-40% RH. At 90% RH, about 6 layers of H{sub 2}O film have been formed on Al{sub 2}O{sub 3}.

  2. Feasibility of using drinking water treatment residuals as a novel chlorpyrifos adsorbent.

    PubMed

    Zhao, Yuanyuan; Wang, Changhui; Wendling, Laura A; Pei, Yuansheng

    2013-08-01

    Recent efforts have increasingly focused on the development of low-cost adsorbents for pesticide retention. In this work, the novel reuse of drinking water treatment residuals (WTRs), a nonhazardous ubiquitous byproduct, as an adsorbent for chlorpyrifos was investigated. Results showed that the kinetics and isothermal processes of chlorpyrifos sorption to WTRs were better described by a pseudo-second-order model and by the Freundlich equation, respectively. Moreover, compared with paddy soil and other documented absorbents, the WTRs exhibited a greater affinity for chlorpyrifos (log Koc = 4.76-4.90) and a higher chlorpyrifos sorption capacity (KF = 5967 mg(1-n)·L·kg(-1)) owing to the character and high content of organic matter. Further investigation demonstrated that the pH had a slight but statistically insignificant effect on chlorpyrifos sorption to WTRs; solution ionic strength and the presence of low molecular weight organic acids both resulted in concentration-dependent inhibition effects. Overall, these results confirmed the feasibility of using WTRs as a novel chlorpyrifos adsorbent.

  3. Electrophoretic deposition of adsorbed arsenic on fine iron oxide particles in tap water

    NASA Astrophysics Data System (ADS)

    Sharif, Syahira Mohd; Bakar, Noor Fitrah Abu; Naim, M. Nazli; Rahman, Norazah Abd; Talib, Suhaimi Abdul

    2016-02-01

    Electrophoretic deposition (EPD) technique has been demonstrated to remove arsenic with natural adsorbent (fine iron oxide particles) in tap water samples. Characterizations of metal element particularly arsenic and fine iron oxide particles in tap water from two different locations, i.e. commercial and residential areas, were conducted. Results showed that the concentration of arsenic in tap water from residential area was higher than commercial area samples i.e. 0.022 ± 0.004 and 0.016 ± 0.008 ppm, respectively. The same finding was observed in zeta potential value where it was higher in the residential area than commercial area, i.e. -42.27 ± 0.12 and -34.83 ± 0.23 mV, respectively. During the removal of arsenic using the EPD technique, direct current (DC) voltage was varied from 5 to 25V at a constant electrode distance of 30 mm. Effect of zeta potential, voltage and electrode type were intensively investigated. High percentage removal of arsenic was obtained from carbon plate than carbon fibre electrode. The percentage removal of arsenic from all samples slightly decreased with increasing of the applied voltage. EDX analysis confirmed that arsenic has adsorbed onto deposited iron oxide particles on the anode electrode. Overall, EPD technique was found to be successful in removing arsenic onto fine iron oxide particles in tap water with 26% ± 1.05 of removal.

  4. Stable freestanding thin films of pure water

    SciTech Connect

    Weon, B. M.; Je, J. H.; Hwu, Y.; Margaritondo, G.

    2008-03-10

    Obtaining water microstructures is very difficult because of low viscosity and high surface tension. We produced stable freestanding thin films of pure water by x-ray bombardment of small liquid volumes in capillary tubes. A detailed characterization with phase-contrast radiology demonstrated a lifetime beyond 1 h with no chemical stabilizer for micron-thickness films with half-millimeter-level diameter. This can be attributed to the interplay of two x-ray effects: water evaporation and surface charging.

  5. Adsorption characteristics of water vapor on gear-pellet and honeycomb-pellet types of adsorbents containing A-type zeolite

    SciTech Connect

    Nakamura, A.; Munakata, K.; Hara, K.; Narita, S.; Sugiyama, T.; Kotoh, K.; Tanaka, M.; Uda, T.

    2015-03-15

    It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritiated water vapor on adsorbents with high surface areas. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. In this study, attention was focused on new adsorbents, which are gear-type pellet MS5A adsorbent, gear-type pellet MS4A adsorbent and honeycomb-type pellet MS5A adsorbent. The adsorption characteristics of the new adsorbent were comparatively studied with conventional type of adsorbents (pellet-type MS5A adsorbent and pebble-type MS5A adsorbent), in terms of adsorption capacity, pressure loss and adsorption rate. It was found that the adsorption capacity of water vapor on the gear-type adsorbents is higher than that on a honeycomb-type adsorbent. The experimental breakthrough curves indicate that the adsorption rates of water vapor on gear-type and honeycomb-type adsorbents are smaller than that on conventional type adsorbents. Various adsorption models were also tested to correlate the experimental isotherms. It was found that the Langmuir-Freundlich model could properly correlate the experimental adsorption isotherms.

  6. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La).

  7. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). PMID:26070190

  8. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  9. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  10. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    PubMed

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.

  11. Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Pochard, Isabelle; Frykstrand, Sara; Ahlström, Olle; Forsgren, Johan; Strømme, Maria

    2014-01-01

    Porous materials are used in application areas ranging from drug and vaccine delivery, medical implants, molecular sieves and cosmetics to catalysis and humidity control. In the present work, we employed an alternative approach to gain in-depth understanding about water interaction properties in such materials by the use of dielectric spectroscopy and thereby show that it is possible to obtain information that is not accessible from the more commonly employed water interaction analysis techniques. Specifically, the complex dielectric response of Upsalite, a novel, super-hydroscopic, high-surface area, porous magnesium carbonate material was measured in isothermal frequency scans between 10-3 and 106 Hz at controlled relative humidity (RH). We found the dielectric constant of the dry material to be 1.82. The ratio of bound to free water present in Upsalite after adsorption at room temperature was found to be high irrespective of the surrounding humidity with values ranging from ˜67% to ˜90%. We further found that OH- ions are the charge carriers responsible for the electrode polarization observed in the dielectric response and that the amount of these ions that are free to move in the material corresponds to a concentration of the order of 1-10 μmol l-1 independent of RH. Finally, the OH- diffusion coefficient displayed a drastic decrease with decreasing RH, typical of transport in unsaturated conditions. The presented results provide detailed insight about water interactions in the novel water adsorbing material under study and it is foreseen that the employed analysis methods can be used to evaluate other types of moisture adsorbing materials as well as the movement of functional species in the pores of inorganic drug delivery materials and materials tailored for adsorption of harmful charged species.

  12. Novel Anionic Clay Adsorbents for Boiler-Blow-Down Waters Reclaim and Reuse

    SciTech Connect

    Muhammad Sahimi; Theodore Tsotsis

    2010-01-08

    Arsenic (As) and Selenium (Se) are found in water in the form of oxyanions. Relatively high concentrations of As and Se have been reported both in power plant discharges, as well as, in fresh water supplies. The International Agency for Research on Cancer currently classifies As as a group 1 chemical, that is considered to be carcinogenic to humans. In Phase I of this project we studied the adsorption of As and Se by uncalcined and calcined layered double hydroxide (LDH). The focus of the present work is a systematic study of the adsorption of As and Se by conditioned LDH adsorbents. Conditioning the adsorbent significantly reduced the Mg and Al dissolution observed with uncalcined and calcined LDH. The adsorption rates and isotherms have been investigated in batch experiments using particles of four different particle size ranges. As(V) adsorption is shown to follow a Sips-type adsorption isotherm. The As(V) adsorption rate on conditioned LDH increases with decreasing adsorbent particle size; the adsorption capacity, on the other hand, is independent of the particle size. A homogeneous surface diffusion model (HSDM) and a bi-disperse pore model (BPM) - the latter viewing the LDH particles as assemblages of microparticles and taking into account bulk diffusion in the intraparticle pore space, and surface diffusion within the microparticles themselves - were used to fit the experimental kinetic data. The HSDM estimated diffusivity values dependent on the particle size, whereas the BPM predicted an intracrystalline diffusivity, which is fairly invariant with particle size. The removal of As(V) on conditioned LDH adsorbents was also investigated in flow columns, where the impact of important solution and operational parameters such as influent As concentration, pH, sorbent particle size and flow rate were studied. An early breakthrough and saturation was observed at higher flow rates and at higher influent concentrations, whereas a decrease in the sorbent particle

  13. Oxygen Isotope Fractionation Effects in Soil Water via Cations Adsorbed to High-CEC Clays

    NASA Astrophysics Data System (ADS)

    Oerter, E.; Finstad, K.; Schaefer, J.; Goldsmith, G. R.; Dawson, T. E.; Amundson, R.

    2012-12-01

    In isotope-based approaches to hydrology, soil and sediment are implicitly considered to be an inert matrix in which water resides or moves. Yet, this assumption is inconsistent with the fact that soils contain a wide range of solutes, and highly variable concentrations of chemically reactive clay particles, all of which may react with bulk water and create pools of energetically differing water with varying isotope compositions. The empirical basis of this hypothesis is the work of Sofer and Gat (1972, EPSL, 15(3)), who showed that the formation of hydration spheres around cations in aqueous solutions fractionate oxygen isotopes of water in ways that appear to be dependent on the cation's ionic potential and concentration. Because soil solutions commonly have high solid to fluid ratios, the potential for solids to create substantial pools of low free energy water, with corresponding isotope fractionation of the free and low energy waters, may be a common process. The potential for this to create measurable isotopic effects would be most evident in soils with high Cation Exchange Capacity (CEC). In order to test this hypothesis, montmorillonite (CEC ≈ 100 meq/100g), kaolinite (CEC≈10) and quartz (CEC≈0) mineral powders were saturated with 3M MgCl2 and KCl solutions (separately), rinsed with methanol and dried to saturate all available CEC sites with either Mg or K cations. Triplicate sets of monominerallic-deionized water mixtures were created at 5, 25, 50, 75 and 95% gravimetric water content. Each set of samples was then subjected to one of three water extraction techniques designed to access specific "pools" of soil water: (1) direct equilibration with CO2 to sample the soil's "free water", i.e. water not adsorbed to cations via hydration spheres; (2) centrifugation to simulate permanent wilting point conditions, thereby yielding most micro-pore, macro-pore, and free water; and (3) cryogenic vacuum distillation to recover all the soil water (free, pore and

  14. Biotransformation of pink water TNT on the surface of a low-cost adsorbent pine bark.

    PubMed

    Chusova, O; Nõlvak, H; Odlare, M; Truu, J; Truu, M; Oopkaup, K; Nehrenheim, E

    2015-09-01

    This two-week anaerobic batch study evaluated 2,4,6-trinitrotoluene (TNT) removal efficiency from industrial pink water by (1) adsorption on low-cost adsorbent pine bark, and (2) adsorption coupled with TNT biotransformation by specialised microbial communities. Samples of the supernatant and acetonitrile extracts of pine bark were analysed by HPLC, while the composition of the bacterial community of the experimental batches, inocula and pine bark were profiled by high-throughput sequencing the V6 region of the bacterial 16S rRNA gene. Integrated adsorption and biotransformation proved to be the most efficient method for TNT removal from pink water. The type of applied inoculum had a profound effect on TNT removal efficiencies and microbial community structures, which were dominated by phylotypes belonging to the Enterobacteriaceae family. The analysis of acetonitrile extracts of pine bark supported the hypothesis that the microbial community indigenous to pine bark has the ability to degrade TNT. PMID:26142875

  15. Orientational and Translational Properties of Hydrogen Films Adsorbed onto Boron Nitride

    NASA Astrophysics Data System (ADS)

    Evans, Morgan David

    As physics continues to expand its knowledge base, physicists seek new frontiers to investigate. Quantum -mechanical, two-dimensional systems have proven to be a subject that is not only rich in new discoveries (e.g., Kousterlitz-Thoules transitions and new phases of matter), but also filled with exciting predictions (e.g., new superfluids). The physisorption of a gas onto the surface of a homogenous, spacious (on a molecular scale) substrate with a low adsorption potential is one physical analogue to the much-analyzed theoretical two-dimensional system. Hydrogen in reduced dimensions has been found to have suppressed melting and freezing points, thus possibly permitting the onset of Bose condensation and a new superfluid phase. The use of boron nitride as an adsorption substrate allows for the study of physisorbed systems with a lower adsorption potential than previous studies using similar substrates (i.e., graphite and magnesium oxide). This dissertation has two parts. The first concerns the translational properties and adsorption energies of hydrogen adsorbed onto boron nitride. These properties are investigated through the use of volumetric adsorption isotherm techniques. The data suggest that the adsorption of hydrogen occurs in a step-wise manner at temperatures below 20 Kelvin. Changes in the translational phases (vapor -liquid-solid) occur between 10 to 20 Kelvin for the first four adsorbed monolayers. Isotopic effects are investigated through the use of the three common forms of hydrogen: molecular hydrogen (H_2), deuterium hydride (HD), and deuterium (D_2). The critical temperatures of the second, third, and fourth layers are determined, presented, and compared with the known phase diagrams of hydrogen isotopes adsorbed onto graphite and MgO. While the adsorption potential of the hydrogen-boron nitride system is found to be less than that of previously studied substrates, it does not translate into lower critical temperatures. The second part of this

  16. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II.

    PubMed

    Kato, Masaru; Zhang, Jenny Z; Paul, Nicholas; Reisner, Erwin

    2014-09-21

    Photosynthesis is responsible for the sunlight-powered conversion of carbon dioxide and water into chemical energy in the form of carbohydrates and the release of O2 as a by-product. Although many proteins are involved in photosynthesis, the fascinating machinery of Photosystem II (PSII) is at the heart of this process. This tutorial review describes an emerging technique named protein film photoelectrochemistry (PF-PEC), which allows for the light-dependent activity of PSII adsorbed onto an electrode surface to be studied. The technique is straightforward to use, does not require highly specialised and/or expensive equipment, is highly selective for the active fractions of the adsorbed enzyme, and requires a small amount of enzyme sample. The use of PF-PEC to study PSII can yield insights into its activity, stability, quantum yields, redox behaviour, and interfacial electron transfer pathways. It can also be used in PSII inhibition studies and chemical screening, which may prove useful in the development of biosensors. PSII PF-PEC cells also serve as proof-of-principle solar water oxidation systems; here, a comparison is made against PSII-inspired synthetic photocatalysts and materials for artificial photosynthesis.

  17. Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells.

    PubMed

    Wang, Yi; Qian, Weiping; Tan, Yong; Ding, Shaohua; Zhang, Haiqian

    2007-05-15

    Gold nanoshells (GNSs), consisting of a silica core and a thin gold shell, were self-assembled on the surface of 3-aminopropyltrimethoxysilane (APTES) modified indium tin oxide (ITO) electrode. The resulting novel GNSs-coated ITO (GNSs/APTES/ITO) electrode could provide a biocompatible surface for the adsorption of hemoglobin (Hb). The UV-visible (UV-vis) spectra indicated that Hb adsorbed on the GNSs interface retained the native structure. Electrochemical impedance spectra and cyclic voltammetric techniques were employed to evaluate the electrochemical behaviors of Hb, the results demonstrated that GNSs could act as electron tunnels to facilitate electron transfer between Hb and the electrode. Based on the activity of Hb adsorbed on the GNSs/APTES/ITO electrode toward the reduction of hydrogen peroxide, a mediator-free H(2)O(2) biosensor was constructed, which showed a broad linear range from 5muM to 1mM with a detection limit of 3.4muM (S/N=3). The apparent Michaelis-Menten constant was calculated to be 180muM, suggesting a high affinity.

  18. Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents.

    PubMed

    Huang, Yuxiong; Fulton, Aaron N; Keller, Arturo A

    2016-11-15

    Many industrial wastewaters are contaminated with both heavy metal ions and organic compounds, posing a major threat to public health and the environment. In this study, magnetic nanoparticle adsorbents, namely Mag-PCMA-T, which contain a maghemite core and a silica mesoporous layer that permanently confines surfactant micelles within the mesopores, were synthesized to achieve simultaneous removal of polycyclic aromatic hydrocarbons (PAHs) (1mg/L) and metal contaminants (1mg/L). The individual removal efficiency of Cd(2+) and acenaphthene using Mag-PCMA-T was evaluated under a range of initial ion concentrations and adsorbent dosages, as well as the competitive adsorption with Cd(2+) and acenaphthene simultaneously present. The isotherms and kinetics of Cd(2+) and acenaphthene sorption onto Mag-PCMA-T were determined. Mag-PCMA-T removed >85% of the acenaphthene in <30min, with relatively high sorption capacity (up to 1060mg/kg). Mag-PCMA-T also exhibited high sorption capacity for Cd(2+) (up to 2250mg/kg). The simultaneous sorption performance was stable across a wide pH range (4-9) as well as in the presence of competitive metal ions (Ca(2+) and Mg(2+)) or natural organic matters. The Mag-PCMA-T can be regenerated and reused, providing a sustainable, fast, convenient, and efficient approach for water treatment. PMID:27450251

  19. Development of a nanosphere adsorbent for the removal of fluoride from water.

    PubMed

    Zhang, Kaisheng; Wu, Shibiao; He, Junyong; Chen, Liang; Cai, Xingguo; Chen, Kai; Li, Yulian; Sun, Bai; Lin, Dongyue; Liu, Guqing; Kong, Lingtao; Liu, Jinhuai

    2016-08-01

    A new uniform-sized CeCO3OH nanosphere adsorbent was developed, and tested to establish its efficiency, using kinetic and thermodynamic studies, for fluoride removal. The results demonstrated that the CeCO3OH nanospheres exhibited much high adsorption capacities for fluoride anions due to electrostatic interactions and exchange of the carbonate and hydroxyl groups on the adsorbent surface with fluoride anions. Adsorption kinetics was fitted well by the pseudo-second-order model as compared to a pseudo-first-order rate expression, and adsorption isotherm data were well described by Langmuir model with max adsorption capacity of 45mg/g at pH 7.0. Thermodynamic examination demonstrated that fluoride adsorption on the CeCO3OH nanospheres was reasonably endothermic and spontaneous. Moreover, the CeCO3OH nanospheres have less influence on adsorption of F(-) by pH and co-exiting ions, such as SO4(2-), Cl(-), HCO3(-), CO3(2-), NO3(-) and PO4(3-), and the adsorption efficiency is very high at the low initial fluoride concentrations in the basis of the equilibrium adsorption capacities. This study indicated that the CeCO3OH nanospheres could be developed into a very viable technology for highly effective removal of fluoride from drinking water. PMID:27138842

  20. Development of long-life-cycle tablet ceramic adsorbent for geosmin removal from water solution

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhi; Xue, Qiang; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan; Li, Miao; Chen, Nan; Ying, Zhao; Lei, Zhongfang

    2011-01-01

    In this study, the tablet ceramic adsorbent (TCA), a silica/iron(III) oxide composite material, has been developed for geosmin (GSM) removal from the water solution. The physicochemical characteristics of TCA were examined with XRD, SEM, EDX and BET analyses. The sorption characteristics of GSM on TCA were investigated in a batch system. Attempts have been made to understand the adsorption kinetics, the effect of initial GSM concentration, solution pH, and reaction time. The batch experiments equilibrium data were well fitted to the Lagergren kinetic equation, which indicate the first-order nature adsorption. Over 82% of the GSM was removed by the TCA within 600 min at an initial concentration of 200 ng/L with 20 g/L of TCA dose. The batch and regeneration study indicated that the TCA is a cost-effective GSM adsorbent with sufficient mechanical strength to retain its physical integrity after long-time adsorption, and high regeneration performance for long-life-cycle application. Almost no second contamination (toxic sludge or leached iron) was observed after adsorption, and the gas resultant of thermal regeneration is harmless to atmospheric environment.

  1. Adsorption of HSA, IgG and laminin-1 on model titania surfaces--effects of glow discharge treatment on competitively adsorbed film composition.

    PubMed

    Santos, Olga; Svendsen, Ida E; Lindh, Liselott; Arnebrant, Thomas

    2011-10-01

    This study investigated the effect of glow discharge treatment of titania surfaces on plasma protein adsorption, by means of ellipsometry and mechanically assisted SDS elution. The adsorption and film elution of three plasma proteins, viz. human serum albumin (HSA), human immunoglobulin G (IgG) and laminin-1, as well as competitive adsorption from a mixture of the three proteins, showed that the adsorbed amount of the individual proteins after 1 h increased in the order HSA Film elutability showed that 30 min of SDS interaction resulted in almost complete removal of adsorbed films. No difference in the total adsorbed amounts of individual proteins, or from the mixture, was observed between untreated and glow discharge treated titania surfaces. However, the composition of the adsorbed films from the mixture differed between the untreated and glow discharge treated substrata. On glow discharge-treated titania the fraction of HSA increased, the fraction of laminin-1 decreased and the fraction of IgG was unchanged compared to the adsorption on the untreated titania, which was attributed to protein-protein interactions and competitive/associative adsorption behaviour.

  2. Dynamic mechanical properties of a polyelectrolyte adsorbed insoluble lipid monolayer at the air-water interface.

    PubMed

    Park, Chang Young; Kim, Mahn Won

    2015-04-23

    Polymers have been used to stabilize interfaces or to tune the mechanical properties of interfaces in various contexts, such as in oil emulsions or biological membranes. Although the structural properties of these systems are relatively well-studied, instrumental limitations continue to make it difficult to understand how the addition of polymer affects the dynamic mechanical properties of thin and soft films. We have solved this challenge by developing a new instrument, an optical-tweezer-based interface shear microrheometer (ISMR). With this technique, we observed that the interface shear modulus, G*, of a dioctadecyldimethylammonium chloride (DODAC) monolayer at the air-water interface significantly increased with adsorption of polystyrenesulfonate (PSS). In addition, the viscous film (DODAC monolayer) became a viscoelastic film with PSS adsorption. At a low salt concentration, 10 mM of NaCl in the subphase, the viscoelasticity of the DODAC/PSS composite was predominantly determined by a particular property of PSS, that is, it behaves as a Gaussian chain in a θ-solvent. At a high salt concentration, 316 mM of NaCl, the thin film behaved as a polymer melt excluding water molecules. PMID:25826703

  3. Selection of an adsorbent for lead removal from drinking water by a point-of-use treatment device.

    PubMed

    Sublet, Renaud; Simonnot, Marie-Odile; Boireau, Alain; Sardin, Michel

    2003-12-01

    The removal of lead from drinking water was investigated to develop a point-of-use water filter that could meet the regulation imposed by the new European Directive 98-83 lowering lead concentration in drinking water below 10 microgL(-1). The objective of this research was to assess the potential of different adsorbents (zeolites, resins, activated carbon, manganese oxides, cellulose powder) to remove lead from tap water with a very short contact time. To begin, the repartition of the lead species in a tap water and a mineral water was computed with the computer model CHESS. It showed that in bicarbonated waters lead is mainly under lead carbonate form, either in the aqueous or in the mineral phase. Batch experiments were then conducted to measure the equilibrium adsorption isotherms of the adsorbents. Then, for five of them, dynamic experiments in micro-columns were carried out to assess the outlet lead concentration level. Three adsorbents gave rise to a leakage concentration lower than 10 microgL(-1) and were then selected for prototypes experiments: chabasite, an activated carbon coated with a synthetic zeolite and a natural manganese oxide. The proposed method clearly showed that the measurement of equilibrium isotherms is not sufficient to predict the effectiveness of an adsorbent, and must be coupled with dynamic experiments.

  4. Rapid removal of aniline from contaminated water by a novel polymeric adsorbent.

    PubMed

    Huang, Yunhong; Xu, Yang; He, Qinghua; Cao, Yusheng; Du, Bibai

    2014-01-01

    Dummy molecularly imprinted polymers (DMIPs) for aniline were synthesized by a thermal polymerization method using acrylamide as a functional monomer, ethylene dimethacrylate as a crosslinker, 2,2-azobisisobutyronitrile as a free radical initiator, acetonitrile as a porogenic solvent, and analogues of aniline, namely sulfadiazine, as the template. The DMIPs that were obtained showed a high affinity to aniline compared to non-imprinted polymers. It was proven that the DMIPs obtained using sulfadiazine as the template were much better than the molecularly imprinted polymers using aniline as the template. The results indicated that the Freundlich model was fit for the adsorption model of DMIP for aniline and the adsorption model of the DMIP for aniline was multilayer adsorption. Furthermore, the results showed that the DMIP synthesized by bulk polymerization could be used as a novel adsorbent for removal of aniline from contaminated water.

  5. Arsenic adsorption and speciation in drinking water by GAC-based iron-containing adsorbents

    NASA Astrophysics Data System (ADS)

    Gim, Yewon; Terry, Jeff; Gu, Zhimang; Hua, B.; Deng, Baolin

    2008-04-01

    Granular Activated Carbon (GAC) with Iron adsorbents were developed for effective removal of arsenic from drinking water. The structure and proposed mechanism for As removal was studied using X-ray absorption spectroscopy. The oxidation state of As(III)GAC sample was calculated using XANES spectra and verified to be predominantly As(V). The structure was determined using EXAFS spectra of As(V) and Fe. The Fe spectra suggested thin layer of Fe oxide formation on GAC surface. As data showed As oxide formed bond on the Fe oxide surface. The spectra were calculated using multiple geometrically optimized models calculated using density functional theory. Further calculations were done to verify the structure, and further examine the structure.

  6. Removal of bromophenols from water using industrial wastes as low cost adsorbents.

    PubMed

    Bhatnagar, Amit

    2007-01-01

    A comparative study of the adsorbents prepared from several industrial wastes for the removal of 2-bromophenol, 4-bromophenol and 2,4-dibromophenol has been carried out. The results show that maximum adsorption on carbonaceous adsorbent prepared from fertilizer industry waste has been found to be 40.7, 170.4 and 190.2 mg g(-1) for 4-bromophenol 2-bromophenol and 2,4-dibromophenol, respectively. As compared to carbonaceous adsorbent, the other three adsorbents (viz., blast furnace sludge, dust, and slag) adsorb bromophenols to a much smaller extent. This has been attributed to the carbonaceous adsorbent having a larger porosity and consequently higher surface area. The adsorption of bromophenols on this adsorbent has been studied as a function of contact time, concentration and temperature. The adsorption has been found to be endothermic, and the data conform to the Langmuir equation. The further analysis of data indicates that adsorption is a first order process. A comparative study of adsorption results with those obtained on standard activated charcoal sample shows that prepared carbonaceous adsorbent is about 45% as efficient as standard activated charcoal in removing bromophenols. To test the practical utility of this adsorbent, column operations were also carried out. The results were found satisfactory in removing bromophenols by column operations. Therefore, the present investigations recommend the use of carbon slurry waste as inexpensive adsorbent for small scale industries of developing/poor countries where disposal of solid waste of various industries and proper treatment of polluted wastewater is a serious problem.

  7. Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent

    NASA Astrophysics Data System (ADS)

    Budiman, Faisal; Bashirom, Nurulhuda; Tan, Wai Kian; Razak, Khairunisak Abdul; Matsuda, Atsunori; Lockman, Zainovia

    2016-09-01

    Thermal oxidation of iron foil was done at 400 °C and 500 °C in for 2 h to form multilayered oxide scale with outer oxide layer of α-Fe2O3 comprising of nanowires and nanosheets respectively. Iron oxidized at 300 °C formed a rather compact film with no noticeable nanostructures. The morphologies of oxide formed in different oxidation environment (water vapour or dry air) were compared; densely packed nanostructures were produced in water vapour compared to dry air. Time variation study indicated rapid growth of nanostructure whereby for 1 min at 500 °C dense nanowires with some noticeable nanosheets were already observed. The nanowires and nanosheets were used to adsorb Cr(VI) from aqueous solution. Adsorption of 10 ppm of Cr(VI) on the nanowires and nanosheets was found to be successful with much faster removal efficiency for the nanosheets. Both samples displayed complete adsorption for less than 1 h.

  8. Water clusters adsorbed on polycyclic aromatic hydrocarbons: Energetics and conformational dynamics

    NASA Astrophysics Data System (ADS)

    Simon, Aude; Spiegelman, Fernand

    2013-05-01

    In this work, we present some classical molecular dynamics (MD) simulations and finite temperature infrared (IR) spectra of water clusters adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). The potential energy surface is obtained within the self-consistent-charge density-functional based tight-binding approach with modifications insuring the correct description of water-water and water-PAH interactions. This scheme is benchmarked for the minimal energy structures of (C24H12)(H2O)n (n = 3-10) against density-functional theory (DFT) calculations and for the low-energy isomers of (H2O)6 and (C6H6)(H2O)3 against correlated wavefunction and DFT calculations. A detailed study of the low energy isomers of (C24H12)(H2O)3, 6 complexes is then provided. On-the-fly Born-Oppenheimer MD simulations are performed in the temperature T range 10-350 K for (C24H12)(H2O)n (n = 3-7) complexes. The description of the evolution of the systems with T is provided with emphasis on (C24H12)(H2O)n (n = 3,6). For T in the range 50-150 K, isomerisation processes are observed and when T increases, a solid-to-liquid phase-change like behavior is shown. The desorption of one water molecule is frequently observed at 300 K. The isomerisation processes are evidenced on the finite temperature IR spectra and the results are presented for (C24H12)(H2O)n (n = 3,6). A signature for the edge-coordination of the water cluster on the PAH is also proposed.

  9. Magnetic adsorbents for actinide and heavy metal removal from waste water

    SciTech Connect

    Kochen, R.L.; Navratil, J.D.

    1994-08-01

    Magnetic adsorbents can be applied to the treatment of waste water in various physical forms. For example, barium ferrite (BaO{center_dot}Fe{sub 2}O{sub 3}) has been used successfully as powder, granules or pellets. Iron ferrite, or magnetite, a naturally occurring ore, can also be used in much the same manner. However, natural magnetic needs activation to have the same capacity as freshly prepared ferrite. Furthermore, ferrites have been used solely in a batch mode because of their finely divided nature. To permit utilization of activated magnetite in a column mode with good water flow-through properties, magnetic resins were prepared. In this work, the authors discovered a synergistic effect in using the magnetic resin in a column mode in conjunction with an external magnetic field for concentration of plutonium and americium from waste water. Thus ferrities in a column made surrounded by a magnetic field greatly surpasses the metal removal capacity of ferrite used in a batch mode.

  10. Anisotropic orientational motion of molecular adsorbates at the air-water interface

    SciTech Connect

    Zimdars, D.; Dadap, J.I.; Eisenthal, K.B.; Heinz, T.F.

    1999-04-29

    The ultrafast orientational motions of coumarin 314 (C314) adsorbed at the air/water interface were investigated by time-resolved surface second harmonic generation (TRSHG). The theory and method of using TRSHG to detect both out-of-plane and in-plane orientational motions are discussed. The interfacial solute motions were found to be anisotropic, with differing out-of-plane and in-plane reorientation time constants. This report presents the first direct observation of in-plane orientational motion of a molecule (C314) at the air/water interface using TRSHG. The in-plane reorientation time constant is 600 {+-} 40 ps. The out-of-plane reorientation time constant is 350 {+-} 20 ps. The out-of-plane orientational motion of C314 is similar to the previous results on rhodamine 6G at the air/water interface which indicated increased interfacial friction compared with bulk aqueous solution. The surface reorientation times are 2--3 times slower than the bulk isotropic orientational diffusion time.

  11. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water.

    PubMed

    Shen, Yi; Chen, Baoliang

    2015-06-16

    Graphene nanosheets, as a novel nanoadsorbent, can be further modified to optimize the adsorption capability for various pollutants. To overcome the structural limits of graphene (aggregation) and graphene oxide (hydrophilic surface) in water, sulfonated graphene (GS) was prepared by diazotization reaction using sulfanilic acid. It was demonstrated that GS not only recovered a relatively complete sp(2)-hybridized plane with high affinity for aromatic pollutants but also had sulfonic acid groups and partial original oxygen-containing groups that powerfully attracted positively charged pollutants. The saturated adsorption capacities of GS were 400 mg/g for phenanthrene, 906 mg/g for methylene blue and 58 mg/g for Cd(2+), which were much higher than the corresponding values for reduced graphene oxide and graphene oxide. GS as a graphene-based adsorbent exhibits fast adsorption kinetic rate and superior adsorption capacity toward various pollutants, which mainly thanks to the multiple adsorption sites in GS including the conjugate π region sites and the functional group sites. Moreover, the sulfonic acid groups endow GS with the good dispersibility and single or few nanosheets which guarantee the adsorption processes. It is great potential to expose the adsorption sites of graphene nanosheets for pollutants in water by regulating their microstructures, surface properties and water dispersion.

  12. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home. PMID:22129747

  13. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  14. Structure and dynamics of monolayer films of squalane molecules adsorbed on a solid surface

    NASA Astrophysics Data System (ADS)

    D. T Enevoldsen, A.; Hansen, F. Y.; Diama, A.; Taub, H.

    2003-03-01

    Squalane is a branched alkane (C_30H_62). It consists of a straight chain with 24 carbon atoms, as in tetracosane (C_24H_50), and has six methyl side groups. Branched polymers such as squalane are thought to be better lubricants than n-alkanes. At low temperature, our molecular dynamics (MD) simulations show that the molecules form an ordered monolayer which melts at approximately 325 K compared to the tetracosane monolayer melting point of ˜ 340 K. Our MD simulations indicate the same melting mechanism in the squalane monolayer that was found previously for tetracosane (F. Y. Hansen and H. Taub, Phys. Rev. Lett. 69, 652 (1992).) They also show that the adsorbed molecules are distorted from an all-trans carbon backbone in contrast to what was found for tetracosane. This may explain why the Bragg diffraction peaks were observed to be broader for the squalane monolayer than for tetracosane (D. Fuhrmann, A. P. Graham, L. Criswell, H. Mo, B. Matthies, K. W. Herwig, and H. Taub, Surf. Sci. 482-485, 77 (2001).). The diffusive motion in a squalane monolayer has been investigated by both quasielastic neutron scattering and MD simulations and compared to the dynamics in tetracosane monolayers. Focus will be on differences in the dynamics.

  15. Effect of adsorbed films on friction of Al2O3-metal systems

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  16. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

    PubMed Central

    Behm, R Jürgen

    2014-01-01

    Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512

  17. Waste water treatment for heavy metal toxins using plant and hair as adsorbents.

    PubMed

    Krishnan, S S; Cancilla, A; Jervis, R E

    1988-01-01

    The adsorption of cadmium, mercury and lead by Cattails (Typha Plant) and human hair has been investigated to assess their possible use as adsorbents in the treatment of industrial wastewater. Capacity experiments were performed, and it was found that significant amounts of cadmium, mercury and lead were adsorbed by Cattails, while only mercury was adsorbed by hair. Depending upon the concentration, adsorption capacities varied from 1 to 27 mg of metal per gram of adsorbent. The relatively fast uptake of cadmium and lead by Cattail leaves suggests that a continuous process is viable. The results are similar in the case of hair and mercury.

  18. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms.

    PubMed

    Phenrat, Tanapon; Liu, Yueqiang; Tilton, Robert D; Lowry, Gregory V

    2009-03-01

    The surfaces of reactive nanoscale zerovalent iron (NZVI) particles used for in situ groundwater remediation are modified with polymers or polyelectrolytes to enhance colloidal stability and mobility in the subsurface. However, surface modification decreases NZVI reactivity. Here, the TCE dechlorination rate and reaction products are measured as a function of adsorbed polyelectrolyte mass for three commercially available polyelectrolytes used for NZVI surface modification including poly(styrene sulfonate) (PSS), carboxymethyl cellulose (CMC), and polyaspartate (PAP). The adsorbed mass, extended layer thickness, and TCE-polyelectrolyte partition coefficient are measured and used to explain the effect of adsorbed polyelectrolyte on NZVI reactivity. For all modifiers, the dechlorination rate constant decreased nonlinearly with increasing surface excess, with a maximum of a 24-fold decrease in reactivity. The TCE dechlorination pathways were not affected. Consistent with Scheutjens-Fleer theory for homopolymer adsorption, the nonlinear relationship between the dechlorination rate and the surface excess of adsorbed polyelectrolyte suggests that adsorbed polyelectrolyte decreases reactivity primarily by blocking reactive surface sites at low surface excess where they adsorb relatively flat onto the NZVI surface, and by a combination of site blocking and decreasing the aqueous TCE concentration at the NZVI surface due to partitioning of TCE to adsorbed polyelectrolytes. This explanation is also consistent with the effect of adsorbed polyelectrolyte on acetylene formation. This conceptual model should apply to other medium and high molecular weight polymeric surface modifiers on nanoparticles, and potentially to adsorbed natural organic matter.

  19. Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Iaia, Vito; Menachekanian, Emin; Williams, Gary

    2014-03-01

    A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.

  20. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.

    PubMed

    Önnby, L; Pakade, V; Mattiasson, B; Kirsebom, H

    2012-09-01

    Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.

  1. Laser induced modification of mechanical properties of nanostructures: graphene-water adsorbate-substrate

    NASA Astrophysics Data System (ADS)

    Pivovarov, P. A.; Frolov, V. D.; Zavedeev, E. V.; Khomich, A. A.; Konov, V. I.

    2016-08-01

    The possibility of laser induced modification of local mechanical properties of polycrystalline chemical vapor deposition graphene on silicon substrate in air has been demonstrated. Nanosecond laser pulses (wavelength 532 nm) with focal spot diameter ~1 μm were used. Samples were placed and irradiated inside a scanning probe microscope (SPM) that allowed in situ studies of surface morphology and mechanical phase contrast in SPM tapping mode before and after multipulsed laser treatment. It was found that along with local profile transformation of graphene sheet (formation of nanopits and nanobumps), transformation of mechanical properties of graphene on a substrate structure took place. Such laser modified graphene area is larger than (but of the order of) the irradiation spot size. Its appearance is related to laser induced radial extension of an adsorbed water nanolayer intercalated between graphene and substrate. It is shown that the process of water layer lateral migration has a reversible character. This effect is proved by laser spot shift and sequential irradiation.

  2. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.

    PubMed

    Hlavay, József; Polyák, Klára

    2005-04-01

    A novel type adsorbent was prepared by in situ precipitation of Fe(OH)3 on the surface of activated Al2O3 as a support material. The iron content of the adsorbent was 0.31+/-0.003% m/m (56.1 mmol/g); its mechanical and chemical stability proved to be appropriate in solutions. The total capacity of the adsorbent was 0.12 mmol/g, and the pH of zero point of charge, pH(zpc) = 6.9+/-0.3. Depending on the pH of solutions, the adsorbent can be used for binding of both anions and cations, if pH(eq) < pH(zpc) anions are sorbed on the surface of adsorbent (S) through [SOH2+] and [SOH] groups. A graphical method was used for the determination of pH(iep) (isoelectric points) of the adsorbent and values of pH(iep) = 6.1+/-0.3 for As(III) and pH(iep) = 8.0+/-0.3 for As(V) ions were found. The amount of surface charged groups (Q) was about zero within the a pH range of 6.5-8.6, due to the practically neutral surface formed on the adsorption of As(V) ions. At acidic pH (pH 4.7), Q = 0.19 mol/kg was obtained. The adsorption of arsenate and arsenite ions from solutions of 0.1-0.4 mmol/L was represented by Langmuir-type isotherms. A great advantage of the adsorbent is that it can be used in adsorption columns, and low waste technology for removal of arsenic from drinking water can be developed.

  3. Neutron diffraction and quasielastic neutron scattering studies of films of intermediate-length alkanes adsorbed on a graphite surface

    NASA Astrophysics Data System (ADS)

    Diama, Armand

    Over the past several years, we have conducted a variety of elastic neutron diffraction and quasielastic neutron scattering experiments to study the structure and the dynamics of films of two intermediate-length alkane molecules (C nH2n+2), adsorbed on a graphite basal-plane surface. The two molecules are the normal alkane n-tetracosane [n-CH 3(CH2)22CH3] and the branched alkane squalane (C30H62 or 2, 6, 10, 15, 19, 23-hexamethyltetracosane) whose carbon backbone is the same length as teteracosane. The temperature dependence of the monolayer structure of tetracosane and squalane was investigated using elastic neutron diffraction and evidence of two phase transitions was observed. Both the low-coverage tetracosane (C 24H50) and squalane (C30H62) monolayers have crystalline-to-"smectic" and "smectic"-to-isotropic fluid phase transitions upon heating. The diffusive motion in the tetracosane and squalane monolayers has been investigated by quasielastic neutron scattering. Two different quasielastic neutron scattering spectrometers at the Center for Neutron Research, National Institute of Standards and Technology (NIST) have been used. The spectrometers differ in both their dynamic range and energy resolution allowing molecular motions to be investigated on time scales in the range 10-13--10 -9 s. On these time scales, we observe evidence of translational, rotational, and intermolecular diffusive motions in the tetracosane and squalane monolayers. We conclude that the molecular diffusive motion in the two monolayers is qualitatively similar. Thus, despite the three methyl sidegroups at each end of the squalane molecule, its monolayer structure, phase transitions, and dynamics are qualitatively similar to that of a monolayer of the unbranched tetracosane molecules. With the higher resolution spectrometer at NIST, we have also investigated the molecular diffusive motion in multilayer tetracosane films. The analysis of our measurements indicates slower diffusive motion in

  4. Interaction of benzene with amorphous solid water adsorbed on polycrystalline Ag.

    PubMed

    Bahr, S; Kempter, V

    2007-08-21

    The interaction of benzene with polycrystalline Ag and amorphous solid water (D(2)O) deposited thereupon at 124 K was investigated. Metastable impact electron spectroscopy, Reflection-absorption infrared spectroscopy, and temperature programmed desorption were utilized to obtain information on the electronic structure and the relative contribution to the bonding properties of the aromatic molecules among themselves and with D(2)O. On Ag, the benzene molecular plane is oriented parallel to the surface in the first layer. The second layer is tilted with respect to the first one. A total work function decrease of 0.8 eV takes place during the buildup of the first two layers. On amorphous solid water, the orientational distribution of the benzene molecular planes is initially peaked at an angle parallel to the water surface. During the completion of the first adlayer a coverage-induced reorientation takes place, inducing a tilt of the benzene molecules of the first adlayer. Still larger benzene exposures appear to lead to the formation of three-dimensional benzene clusters. Films produced by codepositing benzene and D(2)O or by postdepositing D(2)O layers on benzene films display "volcano like" benzene desorption during ice crystallization.

  5. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.

    PubMed

    Flores-Chaparro, Carlos E; Ruiz, Luis Felipe Chazaro; Alfaro-De la Torre, Ma Catalina; Rangel-Mendez, Jose Rene

    2016-06-01

    Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface.

  6. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.

    PubMed

    Flores-Chaparro, Carlos E; Ruiz, Luis Felipe Chazaro; Alfaro-De la Torre, Ma Catalina; Rangel-Mendez, Jose Rene

    2016-06-01

    Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface. PMID:26903130

  7. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  8. Measuring sub-nm adsorbed water layer thickness and desorption rate using a fused-silica whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Ganta, D.; Dale, E. B.; Rosenberger, A. T.

    2014-05-01

    We report an optical method for measuring the thickness of the water layer adsorbed onto the surface of a high-Q fused-silica microresonator. Light from a tunable diode laser operating near 1550 nm is coupled into the microresonator to excite whispering-gallery modes (WGMs). By observing thermal distortion or even bistability of the WGM resonances caused by absorption in the water layer, the contribution of that absorption to the total loss is determined. Thereby, the thickness of the water layer is found to be ˜0.1 nm (approximately one monolayer). This method is further extended to measure the desorption rate of the adsorbed water, which is roughly exponential with a decay time of ˜40 h when the fused-silica microresonator is held in a vacuum chamber at low pressure.

  9. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1990-10-01

    The objective of the project is to develop a method for the solar assisted oxidation of oil slicks. A semiconducting photocatalyst, titanium dioxide, is used. Upon absorbing a photon, an electron-hole pair is generated in the TiO{sub 2} microcrystal. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds. Titanium dioxide is denser than either oil or seawater; the density of its anatase phase is 3.8 and that of its rutile phase is 4.3. In order to keep the titanium dioxide at the air/oil interface, it is attached to a low density, floating material. The particles of the latter are sufficiently small to make the system economical. Specifically, the photocatalyst particles are attached to inexpensive hollow glass microbeads of about 100{mu}m diameter. Those areas of the microbeads that are not covered by photocatalyst are made oleophilic, so that the microbeads will follow the oil slick and not migrate to either the air/water or the water/oil interface.

  10. David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films

    NASA Astrophysics Data System (ADS)

    Krim, Jacqueline

    2015-03-01

    Studies of the fundamental origins of friction have undergone rapid progress in recent years, with the development of new experimental and computational techniques for measuring and simulating friction at atomic length and time scales. The increased interest has sparked a variety of discussions and debates concerning the nature of the atomic-scale and quantum mechanisms that dominate the dissipative process by which mechanical energy is transformed into heat. Measurements of the sliding friction of physisorbed monolayers and bilayers can provide information on the relative contributions of these various dissipative mechanisms. Adsorbed films, whether intentionally applied or present as trace levels of physisorbed contaminants, moreover are ubiquitous at virtually all surfaces. As such, they impact a wide range of applications whose progress depends on precise control and/or knowledge of surface diffusion processes. Examples include nanoscale assembly, directed transport of Brownian particles, material flow through restricted geometries such as graphene membranes and molecular sieves, passivation and edge effects in carbon-based lubricants, and the stability of granular materials associated with frictional and frictionless contacts. Work supported by NSFDMR1310456.

  11. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    NASA Astrophysics Data System (ADS)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  12. Cellulose based cationic adsorbent fabricated via radiation grafting process for treatment of dyes waste water.

    PubMed

    Goel, Narender Kumar; Kumar, Virendra; Misra, Nilanjal; Varshney, Lalit

    2015-11-01

    A cationized adsorbent was prepared from cellulosic cotton fabric waste via a single step-green-radiation grafting process using gamma radiation source, wherein poly[2-(methacryloyloxy) ethyl]trimethylammonium chloride (PMAETC) was covalently attached to cotton cellulose substrate. Radiation grafted (PMAETC-g-cellulose) adsorbent was investigated for removal of acid dyes from aqueous solutions using two model dyes: Acid Blue 25 (AB25) and Acid Blue 74 (AB74). The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherms, whereas kinetic data was analyzed by pseudo first order, pseudo second order, intra particle diffusion and Boyd's models. The PMAETC-g-cellulose adsorbent with 25% grafting yield exhibited equilibrium adsorption capacities of ∼ 540.0mg/g and ∼ 340.0mg/g for AB25 and AB74, respectively. Linear and nonlinear fitting of adsorption data suggested that the equilibrium adsorption process followed Langmuir adsorption isotherm model, whereas, the kinetic adsorption process followed pseudo-second order model. The multi-linearities observed in the intra-particle kinetic plots suggested that the intraparticle diffusion was not the only rate-controlling process in the adsorption of acid dyes on the adsorbent, which was further supported by Boyd's model. The adsorbent could be regenerated by eluting the adsorbed dye from the adsorbent and could be repeatedly used.

  13. Selective concentration of aromatic bases from water with a resin adsorbent

    USGS Publications Warehouse

    Stuber, H.A.; Leenheer, J.A.

    1983-01-01

    Aromatic bases are concentrated from water on columns of a resin adsorbent and recovered by aqueous-acid elution. The degree of concentration attainable depends on the ratio of the capacity factor (k) of the neutral form of the amine to that of the ionized form. Capacity factors of ionic forms of amines on XAD-8 resin (a methylacrylic ester polymer) are greater than zero, ranging from 20 to 250 times lower than those of their neutral forms; they increase with increasing hydrophobicity of the amine. Thus, desorption by acid is an edition (k during desorption >0) rather than a displacement (k during desorption = 0) process. The degree of concentration attainable on XAD-8 resin varies with the hydrophobicity of the amine, being limited for hydrophilic solutes (for example, pyridine) by small neutral-form k's, reaching a maximum for amines of intermediate hydrophobicity (for example, quinoline), and decreasing for more hydrophobc solutes (for example, acridine) because of their large ionic-form k's.

  14. A Comprehensive Study of Hydrogen Adsorbing to Amorphous Water ice: Defining Adsorption in Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.

    2016-11-01

    Gas–grain and gas–phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas–grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas–grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5–400 K] across seven different temperatures of dust grains [10–70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99–0.22.

  15. Coordination structure of adsorbed Zn(II) at Water-TiO2 interfaces

    SciTech Connect

    He, G.; Pan, G.; Zhang, M.; Waychunas, G.A.

    2011-01-15

    The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO{sub 2} interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average {approx}4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher-coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance effects, and the coexistence of different MEA states formed the multiple coordination environments.

  16. Water clustering on nanostructured iron oxide films

    NASA Astrophysics Data System (ADS)

    Merte, Lindsay R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Lægsgaard, Erik; Wendt, Stefan; Mavrikakis, Manos; Besenbacher, Flemming

    2014-06-01

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moiré structure.

  17. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule–molecule and molecule–surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire´-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire´ structure.

  18. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  19. Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents.

    PubMed

    Liu, Xiang; Chen, Guan-Ru; Lee, Duu-Jong; Kawamoto, Tohru; Tanaka, Hisashi; Chen, Man-Li; Luo, Yu-Kuo

    2014-05-01

    Radiocesium (Cs) removal from waters becomes an emerging issue after the Fukushima Daiichi Nuclear Power Plant Disaster, during which a total of approximately 3.3×10(16) Bq Cs was released to contaminate the environment. This mini-review provided a summary on literature works to develop efficient adsorbent for removing Cs from waters. Adsorbent made of raw and modified minerals, composites particles, and biosorbents that are highly specific to Cs in the presence of other alkali and alkali earth metals were summarized. Development of Prussian blue (PB) nanoparticles on Cs removal and its potential use in drinking waterworks was discussed. This review is a unique report for adsorption removal of Cs from contaminated waters.

  20. Effects of molecule-insulator interaction on geometric property of a single phthalocyanine molecule adsorbed on an ultrathin NaCl film

    NASA Astrophysics Data System (ADS)

    Miwa, Kuniyuki; Imada, Hiroshi; Kawahara, Shota; Kim, Yousoo

    2016-04-01

    The adsorption structure and orientation of a metal-free phthalocyanine (H2Pc ) and a magnesium phthalocyanine (MgPc) on a bilayer of NaCl films were investigated both theoretically and experimentally by means of first-principles calculations based on density functional theory and by scanning tunneling microscopy. H2Pc is adsorbed with its center over the sodium cation, and H-N bonds in the molecule are aligned with the [100] or [010] surface direction of a bilayer (001)-terminated NaCl film. The most stable structures of MgPc on the NaCl film show two kinds of orientations corresponding to the molecule rotated by ±7∘ relative to the [110] surface direction, with the Mg cation positioned over the chlorine anion in both cases. The energetic barrier for switching between these orientations is as low as 9.0 meV, and during an STM measurement, an orientational change of MgPc can be observed. The interaction between the adsorbed molecule and the NaCl film were analyzed in terms of dispersion interaction, Mg-Cl chemical bonding, and electrostatic interaction. It is found that the small electrostatic interaction between the molecule and the film gives a dominant contribution to determining the molecular orientation. Our detailed and comprehensive studies of the molecule-insulator interaction will provide knowledge to understand and control the properties of molecules on an insulating material.

  1. Interaction of alkali atoms with water multilayers adsorbed on TiO 2(1 1 0): a study with MIES and UPS

    NASA Astrophysics Data System (ADS)

    Krischok, S.; Höfft, O.; Kempter, V.

    2003-06-01

    The chemistry of alkali atoms (Li, Na, K, Cs) embedded in a multilayer aqueous environment was studied with metastable impact electron spectroscopy (MIES) and ultraviolet photoemission spectroscopy (UPS) (HeI and II) under ultra high vacuum (UHV) conditions. The water multilayers were grown at 130 K on a rutile, 1×1 reconstructed, TiO 2(1 1 0) single crystal. The behavior of the multilayer system was investigated as a function of the temperature (130-500 K). Due to the relatively large escape depth of the emitted electrons UPS provides spectroscopic information about several layers in contrast to MIES which is only sensitive to the outermost layer. This allows us to discriminate between species adsorbed at the water multilayer and species, which are embedded in the solvent or at the substrate-solvent interface. Furthermore, MIES is, in contrast to UPS, very sensitive to the outermost s-states of adsorbed alkali atoms, which are considered to be responsible for the high reactivity of these metals. The present study gives insight into the complicated chemistry of alkali atoms added to an aqueous multilayer system. The chosen combination of MIES and UPS allows us to distinguish clearly between various phases depending on the amount of offered alkali atoms. For low alkali concentrations the alkali atoms penetrate the water surface whereby they dissociate some water. With increasing exposure more and more water molecules become dissociated, whereby the outermost water layer remains intact. Finally, the chemistry between water and alkali atoms takes place at the outermost surface too, which is manifested by the formation of OH-groups at the surface. With further increasing alkali concentration the atoms start to adsorb as neutral atoms; whereby the spectrum of the alkali species is then strongly influenced by the underlying solvent system. For very high exposure the observed spectra are not influenced by the underlying aqueous system anymore; the formation of an alkali

  2. Application of ultradisperse magnetic adsorbents for removal of small concentrations of pollutants from large volumes of water

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Kuznetsov, Oleg

    2016-07-01

    Pollution of natural bodies of water (rivers, lakes, ground water, etc) is unfortunately very common, both from natural sources like volcanic activity; and, even more importantly, from human activity, including disposal of industrial and municipal waste, mining, etc. Many toxic substances are harmful for humans and other organisms even in very low concentrations (e.g., less than 1 µg/L of cadmium is harmful, for Hg it is 0.5 µg/L, for phenol - 1 µg/L), and can remain in water for decades or longer. Cleaning large volumes of water even from low concentrations of pollutants is a challenging technological task and is very expensive. We propose to use suspension of ultradisperse magnetic adsorbents, for example, nanostructured ferro-carbon particles, produced by plasmachemical technique, for removing small concentrations of pollutants from large volumes of water. The suspension is introduced into the water. Due to their small sizes and densities similar to water (we measured the density of FC-4 ferro-carbon to be about 1 g/cm3; presumably due to porosity) the particles do not sediment for a long time (hours, days or longer), move due to Brownian motion and adsorb a variety of substances from the water. The particle surface can be modified to provide selectivity of the adsorption. Sorption capacities of ferro-carbon adsorbents is in dozens of percent. Therefore, to collect 1 kg of a pollutant, 2 to 20 kg of the adsorbents is required. Then the particles with the adsorbed contaminant can be collected (e.g., downstream of the river) using a variety of magnetic traps. The traps can consist of ferromagnetic wires and permanent magnets, a variety of simple and inexpensive designs are available. As a model system, the kinetics of adsorption of a highly diluted (0.002 mg/ml) aqueous solution of a low molecular weight compound (toluidine blue) by a small concentration of a ferro-carbon powder (FC-4) was studied by spectrophotometry. Before each measurement, the particles

  3. Formation, disruption and mechanical properties of a rigid hydrophobin film at an air-water interface

    NASA Astrophysics Data System (ADS)

    Walker, Lynn; Kirby, Stephanie; Anna, Shelley; CMU Team

    Hydrophobins are small, globular proteins with distinct hydrophilic and hydrophobic regions that make them extremely surface active. The behavior of hydrophobins at surfaces has raised interest in their potential industrial applications, including use in surface coatings, food foams and emulsions, and as dispersants. Practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, both individually and in the presence of surfactants. Cerato-ulmin (CU) is a hydrophobin that has been shown to strongly stabilize air bubbles and oil droplets through the formation of a persistent protein film at the interface. In this work, we characterize the adsorption behavior of CU at air/water interfaces by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to strongly, irreversibly adsorb at air/water interfaces; the magnitude of the dilatational modulus increases with adsorption time and surface pressure, until the CU eventually forms a rigid film. The persistence of this film is tested through the addition of SDS, a strong surfactant, to the bulk. SDS is found to co-adsorb to interfaces pre-coated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU. These results lend insight into the complex interfacial interactions between hydrophobins and surfactants. Funding from GoMRI.

  4. Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Caldarola, Dario; Onida, Barbara

    2012-11-01

    High concentration of NO (3) (-) in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico-chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO (3) (-) and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.

  5. Water films and scaling of soil characteristic curves at low water contents

    NASA Astrophysics Data System (ADS)

    Tuller, Markus; Or, Dani

    2005-09-01

    Individual contributions of capillarity and adsorptive surface forces to the matric potential are seldom differentiated in determination of soil water characteristic (SWC) curves. Typically, capillary forces dominate at the wet end, whereas adsorptive surface forces dominate at the dry end of a SWC where water is held as thin liquid films. The amount of adsorbed soil water is intimately linked to soil specific surface area (SA) and plays an important role in various biological and transport processes in arid environments. Dominated by van der Waals adsorptive forces, surface-water interactions give rise to a nearly universal scaling relationship for SWC curves at low water contents. We demonstrate that scaling measured water content at the dry end by soil specific surface area yields remarkable similarity across a range of soil textures and is in good agreement with theoretical predictions based on van der Waals interactions. These scaling relationships are important for accurate description of SWC curves in dry soils and may provide rapid and reliable estimates of soil specific surface area from SWC measurements for matric potentials below -10 MPa conveniently measured with the chilled-mirror dew point technique. Surface area estimates acquired by fitting the scaling relationship to measured SWC data were in good agreement with SA data measured by standard methods. Preliminary results suggest that the proposed method could provide reliable SA estimates for natural soils with hydratable surface areas smaller than 200 m2/g.

  6. Water films and scaling of soil characteristic curves at low water contents

    NASA Astrophysics Data System (ADS)

    Tuller, Markus; Or, Dani

    2005-09-01

    Individual contributions of capillarity and adsorptive surface forces to the matric potential are seldom differentiated in determination of soil water characteristic (SWC) curves. Typically, capillary forces dominate at the wet end, whereas adsorptive surface forces dominate at the dry end of a SWC where water is held as thin liquid films. The amount of adsorbed soil water is intimately linked to soil specific surface area (SA) and plays an important role in various biological and transport processes in arid environments. Dominated by van der Waals adsorptive forces, surface-water interactions give rise to a nearly universal scaling relationship for SWC curves at low water contents. We demonstrate that scaling measured water content at the dry end by soil specific surface area yields remarkable similarity across a range of soil textures and is in good agreement with theoretical predictions based on van der Waals interactions. These scaling relationships are important for accurate description of SWC curves in dry soils and may provide rapid and reliable estimates of soil specific surface area from SWC measurements for matric potentials below ‒10 MPa conveniently measured with the chilled-mirror dew point technique. Surface area estimates acquired by fitting the scaling relationship to measured SWC data were in good agreement with SA data measured by standard methods. Preliminary results suggest that the proposed method could provide reliable SA estimates for natural soils with hydratable surface areas smaller than 200 m2/g.

  7. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents.

    PubMed

    Shanableh, Abdallah M; Elsergany, Moetaz M

    2013-01-01

    This study was part of a larger effort that involves evaluating alternatives to upgrading secondary treatment systems in the United Arab Emirates for the removal of nutrients. In this study, six modified bentonite (BNT) phosphate adsorbents were prepared using solutions that contained hydroxy-polycations of aluminum (Al-BNT), iron (Fe-BNT), and mixtures of aluminum and iron (Al-Fe-BNT). The adsorption kinetics and capacities of the six adsorbents were evaluated, and the adsorbents were used to remove phosphorus from synthetic phosphate solutions and from treated wastewater. The experimental adsorption kinetics results were well represented by the pseudo-second-order kinetic model, with R(2) values ranging from 0.99 to 1.00. Similarly, the experimental equilibrium adsorption results were well represented by the Freundlich and Langmuir isotherms, with R(2) values ranging from 0.98 to 1.00. The adsorption capacities of the adsorbents were dependent on the BNT preparation conditions; the types, quantities and combination of metals used; BNT particle size; and adsorption pH. The Langmuir maximum adsorption capacities of the six adsorbents ranged from 8.9-14.5 mg P/g-BNT. The results suggested that the BNT preparations containing Fe alone or in combination with Al achieved higher adsorption capacities than the preparations containing only Al. However, the Al-BNT preparations exhibited higher adsorption rates than the Fe-BNT preparation. Three of the six adsorbents were used to remove phosphate from secondarily treated wastewater samples, and the removal results were comparable to those obtained using synthetic phosphate solutions. The BNT adsorbents also exhibited adequate settling characteristics and significant regeneration potential.

  8. Expanded graphite loaded with lanthanum oxide used as a novel adsorbent for phosphate removal from water: performance and mechanism study.

    PubMed

    Zhang, Ling; Gao, Yan; Li, Mengxue; Liu, Jianyong

    2015-01-01

    A novel adsorbent of expanded graphite (EG) loaded with lanthanum oxide (EG-LaO) was prepared for phosphate removal from water and characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The effects of impregnation time, La3+ concentration, activation time, and activation temperature on the phosphate removal performance of the adsorbent were studied for optimization of preparation conditions. Isothermal adsorption studies suggested that the Langmuir model fits the experimental data well. Adsorption kinetics investigation showed that the pseudo-second-order model fits the experimental data quite well, indicating that the adsorption process is mainly a process of chemical adsorption, and chloride ions compete to react with the active sites of the adsorbent but do not prevent phosphate from adsorbing onto EG-LaO. The adsorption mechanism studies were performed by a pH dependence study of the adsorption amount. The results demonstrated that the probable mechanisms of phosphate adsorption on EG-LaO were electrostatic and Lewis acid-base interactions in addition to ion exchange.

  9. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.

    PubMed

    Cheng, Chong Sage; Deng, Jie; Lei, Bei; He, Ai; Zhang, Xiang; Ma, Lang; Li, Shuang; Zhao, Changsheng

    2013-12-15

    Recent studies showed that graphene oxide (GO) presented high adsorption capacities to various water contaminants. However, the needed centrifugation after adsorption and the potential biological toxicity of GO restricted its applications in wastewater treatment. In this study, a facile method is provided by using biopolymers to mediate and synthesize 3D GO based gels. The obtained hybrid gels present well-defined and interconnected 3D porous network, which allows the adsorbate molecules to diffuse easily into the adsorbent. The adsorption experiments indicate that the obtained porous GO-biopolymer gels can efficiently remove cationic dyes and heavy metal ions from wastewater. Methylene blue (MB) and methyl violet (MV), two cationic dyes, are chosen as model adsorbates to investigate the adsorption capability and desorption ratio; meanwhile, the influence of contacting time, initial concentration, and pH value on the adsorption capacity of the prepared GO-biopolymer gels are also studied. The GO-biopolymer gels displayed an adsorption capacity as high as 1100 mg/g for MB dye and 1350 mg/g for MV dye, respectively. Furthermore, the adsorption kinetics and isotherms of the MB were studied in details. The experimental data of MB adsorption fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, and the results indicated that the adsorption process was controlled by the intraparticle diffusion. Moreover, the adsorption data revealed that the porous GO-biopolymer gels showed good selective adsorbability to cationic dyes and metal ions.

  10. Abiotic properties of landfill leachate controlling arsenic release from drinking water adsorbents.

    PubMed

    Stuckman, Mengling Y; Lenhart, John J; Walker, Harold W

    2011-10-15

    In this study, As leaching from five arsenic bearing solid residuals (ABSRs) comprised of the iron hydroxide adsorbent Bayoxide E33 used in long-term operations was evaluated in leaching trials using California Waste Extraction Test (CalWET) and Toxicity Characteristic Leaching Protocol (TCLP) leachate solutions, a landfill leachate (LL), and synthetic leachate (SL). The initial As loading of the media, which reflects the influence of source water chemistry and varying treatment conditions at the point of removal, strongly influenced the magnitude of As release. The chemical composition of the leachate also influenced As release and demonstrated the relative importance of different release mechanisms, namely media dissolution, pH-dependent sorption/desorption, and ion exchange. The CalWET solution, which partially dissolved the iron-based media, resulted in 100 times more As release than did the TCLP solution, which did not dissolve the media. The LL had a higher pH than the TCLP solution, and even though its organic carbon content was lower it tended to release more As. Tests with the SL were conducted to determine the influence of variations in leachate pH, phosphate, bicarbonate, sulfate, silicate, and natural organic matter (NOM). Release increased at high pH, in the presence of high concentrations of phosphate and bicarbonate, and in the presence of high NOM concentrations. For pH, this reflects the pH-dependence of sorption reactions, whereas for the anions and NOM, direct competition appeared important. Similar to the CalWET solution, excess NOM dissolved portions of the media thereby facilitating As release. In general, our results suggest that estimating As release into landfills will remain a challenge as it depends upon As loading, which reflects site-specific properties, and the composition of the leachate, which varies from landfill to landfill.

  11. Novel Anionic Clay Adsorbents for Boiler-Blow Down Waters Reclaim and Reuse

    SciTech Connect

    Muhammad Sahimi; Theodore T. Tsotsis

    2005-12-01

    Our goal in this study is to utilize novel anionic clay sorbents for treating and reclaiming/reusing power-plant effluents, in particular, boiler blow-down waters containing heavy metals, such as As and Se. Developing and using novel materials for such application is dictated by the challenge posed by reclaiming and recycling these too-clean-to-clean effluent streams, generated during electricity production, whose contaminant levels are in the ppm/ppb (or even less) trace levels. During the study model blow-down streams have been treated in batch experiments. Adsorption isotherms as a function of pH/temperature have been established for both As and Se. Adsorption rates have also measured as a function of concentration, temperature, pH, and space time. For both the equilibrium and rate measurements, we have studied the As/Se interaction, and competition from background anions. A homogeneous surface diffusion model is used to describe the experimental kinetic data. The estimated diffusivity values are shown to depend on the particle size. On the other hand, a model taking into account the polycrystalline nature of these adsorbent particles, and the presence of an intercrystallite porous region predicts correctly that the surface diffusivity is particle size independent. A mathematical model to describe flow experiments in packed-beds has also been developed during phase I of this project. The goal is to validate this model with flow experiments in packed-beds during the phase II of this project, to determine the adsorption capacity under flow conditions, and to compare it with the capacity estimated from the adsorption isotherms determined from the batch studies.

  12. Water films at grain-grain contacts: Debye-Hueckel, osmotic model of stress, salinity, and mineralogy dependence

    SciTech Connect

    Renard, F.; Ortoleva, P.

    1997-05-01

    Water film diffusion is one of the mechanisms proposed to explain the deformation of rocks by pressure-solution during geological processes in the upper crust. This mechanism assumes that matter is dissolved inside the contact between two grains. The resulting solutes are transported in the pore fluid through diffusion in an adsorbed water film. The main problem of this theory is that it requires the presence of a water film that is believed to be stable under large deviatoric stresses inside the contact between two grains. In this paper, we show that the electrically charged surface of a mineral can attract counter-ions from the pore and, by the related change of osmotic pressure, keep water within the contact. This is due to the counter ions in the water film that increase the salinity in the film relative to that in the pore. This lowers the free energy of water in the contact zone to a degree that balances the increase in free energy of water due to the elevated pressure in the film. These notions are made more precise by combining the theory of the Debye-Hueckle double layer with equations of osmotic pressure. The resulting D-H/O theory predicts the dependence of the water film thickness on stress across the contact, composition of the pore fluid, and the identity of the minerals involved. 33 refs., 4 figs., 1 tab.

  13. Effects of surface water on gas sorption capacities of gravimetric sensing layers analyzed by molecular descriptors of organic adsorbates.

    PubMed

    Sugimoto, Iwao; Mitsui, Kouta; Nakamura, Masayuki; Seyama, Michiko

    2011-02-01

    The gas sorption capacities of sputtered carbonaceous films are evaluated with quartz crystal resonators. These films are sensitive to 20 ppm organic vapors and exhibit structure-dependent responses. Films derived from synthetic polymers are hydrophobic, whereas films derived from biomaterials are amphiphilic or hydrophilic. Polyethylene (PE) film has an extremely high sorption capacity for a wide range of vapors. Transient sorption responses are investigated using a humidified carrier by employing carboxylic acid esters, whose aliphatic groups are systematically changed. Small esters with a higher affinity to water induce negative U-shaped responses from amphiphilic films derived from biomaterials. On the other hand, polymeric films exhibit positive exponential response curves. Even if the concentrations are decreased, the response intensities are enhanced with the incremental expansion of carbon chains of aliphatic groups. Only fluoropolymer film shows the opposite tendency. The modeling of quantitative structure property relationships has indicated that the sorption capacities of the PE film to the carboxylic acid esters are fundamentally governed by electrostatic interactions. The intermolecular attractive forces are basically attributable to interactions between the positively polarized sites in esters and the negatively polarized/charged sites in PE film.

  14. Characterisation of cellulose films regenerated from acetone/water coagulants.

    PubMed

    Geng, Hongjuan; Yuan, Zaiwu; Fan, Qingrui; Dai, Xiaonan; Zhao, Yue; Wang, Zhaojiang; Qin, Menghua

    2014-02-15

    A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration.

  15. [Melting in adsorbed films

    SciTech Connect

    Simon, M.I.

    1992-01-01

    Over the past several years we have been developing a new approach to cloning large fragments of mammalian DNA in E. coli. which will permit detailed analysis of complex genomes. In January 1992 we began construction of an arrayed total human genomic library prepared in our BAC vector. Our goal is to create a 4-5X library which will be accessible for screening both by colony hybridization and by PCR. Our efforts in 1992 have been focused on expanding this library, characterizing specific clones isolated from the library, and demonstrating the use of BACs and Fosmids in creating physical maps. As a Model for the use of BACs in physical mapping, we have begun mapping human chromosome 22. In addition to their stability and ease of handling, BACs and Fosniids offer the advantage of permitting isolation of relatively large amounts of pure DNA which should greatly facilitate contig construction. We have created a 7X chromosome 22-specific Fosmid library consisting of clones obtained from DNA from a hybrid cell line.

  16. Organo/LDH nanocomposite as an adsorbent of polycyclic aromatic hydrocarbons in water and soil-water systems.

    PubMed

    Bruna, F; Celis, R; Real, M; Cornejo, J

    2012-07-30

    Polycyclic aromatic hydrocarbons (PAHs) are considered as priority pollutants because of their high risk to human health. In this paper, we addressed the issue of using hydrotalcite-based nanocomposites as adsorbents of six low molecular weight PAHs (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) to reduce their negative effects on the environment. A nanocomposite (HT-DDS) was prepared by intercalating the organic anion dodecylsulfate (DDS) in a Mg-Al hydrotalcite (HT), and then characterized using several analytical techniques. A Mediterranean soil was selected for being a high-risk scenario of groundwater contamination by leaching of pollutants. The nanocomposite displayed enhanced affinity for the PAHs in water as compared to carbonate-hydrotalcite (HTCO(3)) and its calcined product (HT500), and showed a high irreversibility of the adsorption process (hysteresis coefficient, H<0.15). The results revealed an increase of the pollutants retention in the soil by the addition of the nanocomposite that depended on the nanocomposite application rate and also on the hydrophobicity of each PAH. Accordingly, the use of HT-DDS as an amendment or barrier in contaminated soil is proposed for reducing the mobility of PAHs and, consequently, the adverse effect derived from rapid transport losses of the pollutants to the adjoining environmental compartments.

  17. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected

  18. Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

    NASA Astrophysics Data System (ADS)

    Samadi, A.; Amjadi, M.

    2016-07-01

    Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

  19. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.

    PubMed

    Niinivaara, Elina; Faustini, Marco; Tammelin, Tekla; Kontturi, Eero

    2015-11-10

    Despite the relevance of water interactions, explicit analysis of vapor adsorption on biologically derived surfaces is often difficult. Here, a system was introduced to study the vapor uptake on a native polysaccharide surface; namely, cellulose nanocrystal (CNC) ultrathin films were examined with a quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). A significant mass uptake of water vapor by the CNC films was detected using the QCM-D upon increasing relative humidity. In addition, thickness changes proportional to changes in relative humidity were detected using SE. Quantitative analysis of the results attained indicated that in preference to being soaked by water at the point of hydration each individual CNC in the film became enveloped by a 1 nm thick layer of adsorbed water vapor, resulting in the detected thickness response. PMID:26461931

  20. Water-evaporation reduction by duplex films: application to the human tear film.

    PubMed

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized.

  1. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment.

  2. Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue.

    PubMed

    Zhao, Rui; Wang, Yong; Li, Xiang; Sun, Bolun; Jiang, Ziqiao; Wang, Ce

    2015-12-01

    A novel water-insoluble sericin/β-cyclodextrin/poly (vinyl alcohol) composite nanofiber adsorbent was prepared by electrospinning and followed by thermal crosslinking for removal of cationic dye methylene blue from aqueous solution. Fourier transform infrared spectroscopy and solubility experiments confirmed that sericin and β-cyclodextrin were incorporated into the nanofibers and the crosslinking reaction occurred successfully. Kinetics, isotherms and thermodynamics analysis were studied for adsorption of methylene blue. The adsorption process is better fitted with the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities are 187.97, 229.89, and 261.10mg/g at the temperatures 293, 313 and 333 K, respectively. Thermodynamic parameters showed that methylene blue adsorption was endothermic and spontaneous. In addition, the fiber membrane adsorbent could be easily separated from dye solution and showed high recyclable removal efficiency. All these results suggest that crosslinked sericin/β-cyclodextrin/poly(vinyl alcohol) composite nanofibers could be potential recyclable adsorbents in dye wastewater treatment. PMID:26433644

  3. Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water.

    PubMed

    Sun, Jin; Yang, Dongjiang; Sun, Cuihua; Liu, Long; Yang, Shuanglei; Alec Jia, Yi; Cai, Rongsheng; Yao, Xiangdong

    2014-12-04

    Processing and managing radioactive waste is a great challenge worldwide as it is extremely difficult and costly; the radioactive species, cations or anions, leaked into the environment are a serious threat to the health of present and future generations. We report layered potassium niobate (K4Nb6O17) nanolamina as adsorbent to remove toxic Sr(2+), Ba(2+) and Cs(+) cations from wastewater. The results show that K4Nb6O17 nanolamina can permanently confine the toxic cations within the interlayer spacing via a considerable deformation of the metastable layered structure during the ion exchange process. At the same time, the nanolaminar adsorbent exhibits prompt adsorption kinetics, high adsorption capacity and selectivity, and superior acid resistance. These merits make it be a promising material as ion exchanger for the removal of radioactive cations from wastewater.

  4. Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water.

    PubMed

    Ansar, Siyam M; Ameer, Fathima S; Hu, Wenfang; Zou, Shengli; Pittman, Charles U; Zhang, Dongmao

    2013-03-13

    The mechanism of sodium borohydride removal of organothiols from gold nanoparticles (AuNPs) was studied using an experimental investigation and computational modeling. Organothiols and other AuNP surface adsorbates such as thiophene, adenine, rhodamine, small anions (Br(-) and I(-)), and a polymer (PVP, poly(N-vinylpyrrolidone)) can all be rapidly and completely removed from the AuNP surfaces. A computational study showed that hydride derived from sodium borohydride has a higher binding affinity to AuNPs than organothiols. Thus, it can displace organothiols and all the other adsorbates tested from AuNPs. Sodium borohydride may be used as a hazard-free, general-purpose detergent that should find utility in a variety of AuNP applications including catalysis, biosensing, surface enhanced Raman spectroscopy, and AuNP recycle and reuse.

  5. Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water.

    PubMed

    Hu, Xiangang; Mu, Li; Wen, Jianping; Zhou, Qixing

    2012-04-30

    The contaminations of peptide toxins in drinking water lead directly to sickness and even death in both humans and animals. A smart RNA as aptamer is covalently immobilized on graphene oxide to form a polydispersed and stable RNA-graphene oxide nanosheet. RNA-graphene oxide nanosheets can resist nuclease and natural organic matter, and specifically adsorb trace peptide toxin (microcystin-LR) in drinking water. The adsorption data fit the pseudo-second-order kinetics and the Langmuir isotherm model. The adsorption capacity of RNA-graphene oxide nanosheets decreases at extreme pH, temperature, ionic strength and natural organic matter, but it is suitable to adsorb trance pollutants in contaminated drinking water. Compared with other chemical and biological sorbents, RNA-graphene oxide nanosheets present specific and competitive adsorption, and are easily synthesized and regenerated. Aptamer (RNA) covalently immobilized on graphene oxide nanosheets is a potentially useful tool in recognizing, enriching and separating small molecules and biomacromolecules in the purification of contaminated water and the preparation of samples.

  6. Ferrocene functionalized nanoscale mixed-oxides as a potent phosphate adsorbent from the synthetic and real (Persian Gulf) waters.

    PubMed

    Arshadi, M; Zandi, H; Akbari, J; Shameli, A

    2015-07-15

    The application of covalently attached ferrocene groups to the aluminum-silicate nanoparticles (ASNPs) for phosphate (P) removal from the synthetic and real waters has been studied and the prepared nanomaterials were analyzed by XPS, EDS, BET, TEM, chemical analysis (CHN), FTIR, and ICP-AES. The immobilization of the ferrocene on the surface of the inorganic support (mixed oxides) can lead to reduce the drawback of the pristine ferrocene molecules which may have strong tendency to agglomerate into larger particles, resulting in the negative effect on both available active sites and catalyst performance. XPS of Fe ions evidenced that most of the active sites of the nano-adsorbent is in the form of Fe(III) ions at the surface. The heterogeneous Fe(III) ions were effective toward removal of phosphate. The contact time to obtain equilibrium for maximum adsorption of phosphate (100%) was found to be 120 min. The adsorption kinetics of P has been evaluated in terms of pseudo-first- and -second-order kinetics, and the Freundlich and Langmuir isotherm models have also been tested to the equilibrium adsorption results. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. FTIR, EDS and XPS results confirmed the formation of Fe-O-P bond on the Si/Al@Fe surface after adsorption of P from aqueous media. The Si/Al@Fe displayed high reusability due to its high removal capacity after 10th adsorption-desorption runs. The proposed adsorbent could also be utilized to adsorb the P ions from the real sample (Persian Gulf water). The high removal capacity of P ions from the real water and the high levels of reusability confirmed the versatility of the heterogenized ferrocene groups on the ASNPs.

  7. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    PubMed

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants.

  8. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms.

    PubMed

    Guo, Guang-Jun; Li, Meng; Zhang, Yi-Gang; Wu, Chang-Hua

    2009-11-28

    By performing constrained molecular dynamics simulations in the methane-water system, we successfully calculated the potential of mean force (PMF) between a dodecahedral water cage (DWC) and dissolved methane for the first time. As a function of the distance between DWC and methane, this is characterized by a deep well at approximately 6.2 A and a shallow well at approximately 10.2 A, separated by a potential barrier at approximately 8.8 A. We investigated how the guest molecule, cage rigidity and the cage orientation affected the PMF. The most important finding is that the DWC itself strongly adsorbs methane and the adsorption interaction is independent of the guests. Moreover, the activation energy of the DWC adsorbing methane is comparable to that of hydrogen bonds, despite differing by a factor of approximately 10% when considering different water-methane interaction potentials. We explain that the cage-methane adsorption interaction is a special case of the hydrophobic interaction between methane molecules. The strong net attraction in the DWC shell with radii between 6.2 and 8.8 A may act as the inherent driving force that controls hydrate formation. A cage adsorption hypothesis for hydrate nucleation is thus proposed and discussed. PMID:19890529

  9. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms.

    PubMed

    Guo, Guang-Jun; Li, Meng; Zhang, Yi-Gang; Wu, Chang-Hua

    2009-11-28

    By performing constrained molecular dynamics simulations in the methane-water system, we successfully calculated the potential of mean force (PMF) between a dodecahedral water cage (DWC) and dissolved methane for the first time. As a function of the distance between DWC and methane, this is characterized by a deep well at approximately 6.2 A and a shallow well at approximately 10.2 A, separated by a potential barrier at approximately 8.8 A. We investigated how the guest molecule, cage rigidity and the cage orientation affected the PMF. The most important finding is that the DWC itself strongly adsorbs methane and the adsorption interaction is independent of the guests. Moreover, the activation energy of the DWC adsorbing methane is comparable to that of hydrogen bonds, despite differing by a factor of approximately 10% when considering different water-methane interaction potentials. We explain that the cage-methane adsorption interaction is a special case of the hydrophobic interaction between methane molecules. The strong net attraction in the DWC shell with radii between 6.2 and 8.8 A may act as the inherent driving force that controls hydrate formation. A cage adsorption hypothesis for hydrate nucleation is thus proposed and discussed.

  10. Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges.

    PubMed

    Romanelli, Giovanni; Senesi, Roberto; Zhang, Xuan; Loh, Kian Ping; Andreani, Carla

    2015-12-21

    We studied the single particle dynamics of water and ice adsorbed in graphene oxide (GO) sponges at T = 293 K and T = 20 K. We used Deep Inelastic Neutron Scattering (DINS) at the ISIS neutron and muon spallation source to derive the hydrogen mean kinetic energy, 〈EK〉, and momentum distribution, n(p). The goal of this work was to study the hydrogen dynamics under 2D confinement and the potential energy surface, fingerprinting the hydrogen interaction with the layered structure of the GO sponge. The observed scattering is interpreted within the framework of the impulse approximation. Samples of both water and ice adsorbed in GO show n(p) functions with almost harmonic and anisotropic line shapes and 〈EK〉 values in excess of the values found at the corresponding temperatures in the bulk. The hydrogen dynamics are discussed in the context of the interaction between the interfacial water and ice and the confining hydrophilic surface of the GO sponge. PMID:26556604

  11. Novel DGT method with tri-metal oxide adsorbent for in situ spatiotemporal flux measurement of fluoride in waters and sediments.

    PubMed

    Zhou, Chun-Yang; Guan, Dong-Xing; Williams, Paul N; Luo, Jun; Ma, Lena Q

    2016-08-01

    Natural mineral-water interface reactions drive ecosystem/global fluoride (F(-)) cycling. These small-scale processes prove challenging to monitoring due to mobilization being highly localized and variable; influenced by changing climate, hydrology, dissolution chemistries and pedogenosis. These release events could be captured in situ by the passive sampling technique, diffusive gradients in thin-films (DGT), providing a cost-effective and time-integrated measurement of F(-) mobilization. However, attempts to develop the method for F(-) have been unsuccessful due to the very restrictive operational ranges that most F(-)-absorbents function within. A new hybrid-DGT technique for F(-) quantification containing a three-phase fine particle composite (FeAlCe, FAC) adsorbent was developed and evaluated. Sampler response was validated in laboratory and field deployments, passing solution chemistry QC within ionic strength and pH ranges of 0-200 mmol L(-1) and 4.3-9.1, respectively, and exhibiting high sorption capacities (98 ± 8 μg cm(-2)). FAC-DGT measurements adequately predicted up to weeklong averaged in situ F(-) fluvial fluxes in a freshwater river and F(-) concentrations in a wastewater treatment flume determined by high frequency active sampling. While, millimetre-scale diffusive fluxes across the sediment-water interface were modeled for three contrasting lake bed sediments from a F(-)-enriched lake using the new FAC-DGT platform. PMID:27161886

  12. Water sorption, viscoelastic, and optical properties of thin NafionRTM films

    NASA Astrophysics Data System (ADS)

    Petrina, Stephanie Ann

    films were identified for spin cast films 10 to 1000 nm in thickness. A sharp decline in n was observed as film thickness decreased below 50 nm, and n was found to be influenced more by thickness (i.e. processing conditions) than the underlying substrate (Au or SiO2). The spin casting process caused polymer chains to preferentially align parallel to the substrate, leading to an increase in anisotropy of the refractive index as measured by variable angle spectroscopic ellipsometry. The incremental change in both thickness and refractive index was observed to increase more with greater humidity, especially above 75 % RH. Chain anisotropy decreased as birefringence was eliminated when NafionRTM was solvent annealed at high RH. Spin cast films exhibited hysteresis in mass uptake and swelling, confirming that some degree of polymer relaxation occurs as NafionRTM is swollen. Thin NafionRTM films on Au exhibited a lower percentage change in mass compared to thicker films and NafionRTM on SiO2. NafionRTM has been shown to form a hydrated layer at the interface of native oxide coated silicon which may account for the increased water sorption on SiO2 compared to Au. Additionally, there may be significant interaction between the sulfonate groups on Nafion and the Au surface. Mass uptake as a function of relative humidity was evaluated for NafionRTM films 80 to 1200 nm in thickness. By using two models to estimate mass uptake, the magnitude of viscoelastic losses were evaluated as a function of thickness and relative humidity. As film thickness increased above 600 nm, the divergence in mass predicted by the Voigt and Sauerbrey equations indicated that thick films exhibited significant viscoelastic loss. The significance of processing conditions in determining water uptake characteristics was evaluated by comparing adsorbed and spin cast substrate supported films. Adsorbed NafionRTM films exhibited different water uptake characteristics than spin cast polymer films, likely due to

  13. In situ x-ray photoelectron spectroscopic and density-functional studies of Si atoms adsorbed on a C60 film

    NASA Astrophysics Data System (ADS)

    Onoe, Jun; Nakao, Aiko; Hara, Toshiki

    2004-12-01

    The interaction between C60 and Si atoms has been investigated for Si atoms adsorbed on a C60 film using in situ x-ray photoelectron spectroscopy (XPS) and density-functional (DFT) calculations. Analysis of the Si 2p core peak identified three kinds of Si atoms adsorbed on the film: silicon suboxides (SiOx), bulk Si crystal, and silicon atoms bound to C60. Based on the atomic percent ratio of silicon to carbon, we estimated that there was approximately one Si atom bound to each C60 molecule. The Si 2p peak due to the Si-C60 interaction demonstrated that a charge transfer from the Si atom to the C60 molecule takes place at room temperature, which is much lower than the temperature of 670 K at which the charge transfer was observed for C60 adsorbed on Si(001) and (111) clean surfaces [Sakamoto et al., Phys. Rev. B 60, 2579 (1999)]. The number of electrons transferred between the C60 molecule and Si atom was estimated to be 0.59 based on XPS results, which is in good agreement with the DFT result of 0.63 for a C60Si with C2v symmetry used as a model cluster. Furthermore, the shift in binding energy of both the Si 2p and C 1s core peaks before and after Si-atom deposition was experimentally obtained to be +2.0 and -0.4 eV, respectively. The C60Si model cluster provides the shift of +2.13 eV for the Si 2p core peak and of -0.28 eV for the C 1s core peak, which are well corresponding to those experimental results. The covalency of the Si-C60 interaction was also discussed in terms of Mulliken overlap population between them.

  14. In situ x-ray photoelectron spectroscopic and density-functional studies of Si atoms adsorbed on a C60 film.

    PubMed

    Onoe, Jun; Nakao, Aiko; Hara, Toshiki

    2004-12-01

    The interaction between C(60) and Si atoms has been investigated for Si atoms adsorbed on a C(60) film using in situ x-ray photoelectron spectroscopy (XPS) and density-functional (DFT) calculations. Analysis of the Si 2p core peak identified three kinds of Si atoms adsorbed on the film: silicon suboxides (SiO(x)), bulk Si crystal, and silicon atoms bound to C(60). Based on the atomic percent ratio of silicon to carbon, we estimated that there was approximately one Si atom bound to each C(60) molecule. The Si 2p peak due to the Si-C(60) interaction demonstrated that a charge transfer from the Si atom to the C(60) molecule takes place at room temperature, which is much lower than the temperature of 670 K at which the charge transfer was observed for C(60) adsorbed on Si(001) and (111) clean surfaces [Sakamoto et al., Phys. Rev. B 60, 2579 (1999)]. The number of electrons transferred between the C(60) molecule and Si atom was estimated to be 0.59 based on XPS results, which is in good agreement with the DFT result of 0.63 for a C(60)Si with C(2v) symmetry used as a model cluster. Furthermore, the shift in binding energy of both the Si 2p and C 1s core peaks before and after Si-atom deposition was experimentally obtained to be +2.0 and -0.4 eV, respectively. The C(60)Si model cluster provides the shift of +2.13 eV for the Si 2p core peak and of -0.28 eV for the C 1s core peak, which are well corresponding to those experimental results. The covalency of the Si-C(60) interaction was also discussed in terms of Mulliken overlap population between them.

  15. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein.

    PubMed

    Yang, Jiayi; Xiong, Youling L

    2015-10-14

    This study investigated the role of interfacial myofibrillar protein (MFP) in the oxidative stabilization of meat emulsions. Emulsions with 10% oil were prepared using either 2% (w/v) Tween 20 or 0.25, 0.5, and 1% (w/v) MFP and then subjected to hydroxyl radical oxidation at 4 °C for 0, 2, and 24 h. MFP was more readily oxidized (intrinsic fluorescence quenching, sulfur losses, and carbonyl formation) than oil [conjugated dienes and 2-thiobarbituric acid-reactive substances (TBARS)]. However, oxidized MFP in the continuous phase stimulated lipid oxidation after 24 h, sharply contrasting with interface-adsorbed MFP that inhibited TBARS formation nearly 90% (p < 0.05). Interfacial MFP from 2 h oxidized samples exhibited greater losses of fluorescence and more extensive polymerization of myosin (detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) than MFP present in the continuous phase. Results indicated that, due to the physical localization, interface-adsorbed MFP in general and myosin in particular provided accentuated protection of emulsions against oxidation. PMID:26414649

  16. Spread Films of Human Serum Albumin at the Air-Water Interface: Optimization, Morphology, and Durability.

    PubMed

    Campbell, Richard A; Ang, Joo Chuan; Sebastiani, Federica; Tummino, Andrea; White, John W

    2015-12-22

    It has been known for almost one hundred years that a lower surface tension can be achieved at the air-water interface by spreading protein from a concentrated solution than by adsorption from an equivalent total bulk concentration. Nevertheless, the factors that control this nonequilibrium process have not been fully understood. In the present work, we apply ellipsometry, neutron reflectometry, X-ray reflectometry, and Brewster angle microscopy to elaborate the surface loading of human serum albumin in terms of both the macroscopic film morphology and the spreading dynamics. We show that the dominant contribution to the surface loading mechanism is the Marangoni spreading of protein from the bulk of the droplets rather than the direct transfer of their surface films. The films can be spread on a dilute subphase if the concentration of the spreading solution is sufficient; if not, dissolution of the protein occurs, and only a textured adsorbed layer slowly forms. The morphology of the spread protein films comprises an extended network with regions of less textured material or gaps. Further, mechanical cycling of the surface area of the spread films anneals the network into a membrane that approach constant compressibility and has increased durability. Our work provides a new perspective on an old problem in colloid and interface science. The scope for optimization of the surface loading mechanism in a range of systems leading to its exploitation in deposition-based technologies in the future is discussed.

  17. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  18. Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Wang, Haifeng

    2016-02-01

    A micron-sized magnetic adsorbent (MMA) for fluoride removal from drinking water was prepared by spray drying and subsequent calcination of a magnetic Fe3O4@Fe-Ti core-shell nanoparticle slurry. The MMA granules had high mechanical strength and stability against water scouring, can be easily separated from the water by a magnet, and had a high selectivity for fluoride versus common co-existing ions and high fluoride removal efficiency in a wide range of initial pH of 3-11. Abundant hydroxyl groups on the MMA surface acted as the active sites for fluoride adsorption, which resulted in a high affinity of the MMA for fluoride. The pH in the adsorption process affected the adsorption significantly. At neutral initial pH, the adsorption isotherm was well fitted with the Langmuir model, and the maximum adsorption capacity reached a high value of 41.8 mg/g. At a constant pH of 3, multilayer adsorption of fluoride occurred due to the abundant positive surface charges on the MMA, and the adsorption isotherm was well fitted with the Freundlich model. The MMA had a fast adsorption rate, and adsorption equilibrium was achieved within 2 min. The adsorption kinetics followed a quasi-second order model. The regeneration of the MMA was easy and fast, and can be completed within 2 min. After 10 recycles, the fluoride removal efficiency of the MMA still remained high. These properties showed that the MMA is a promising adsorbent for fluoride removal.

  19. Subharmonic excitation in amplitude modulation atomic force microscopy in the presence of adsorbed water layers

    SciTech Connect

    Santos, Sergio; Barcons, Victor; Verdaguer, Albert; Chiesa, Matteo

    2011-12-01

    In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.

  20. Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent.

    PubMed

    Aklil, A; Mouflih, M; Sebti, S

    2004-08-30

    Calcined phosphate (CP) has been employed in our laboratories as a heterogeneous catalyst in a variety of reactions. In this study, CP was evaluated as a new product for removal of heavy metals from aqueous solution. Removal of Pb2+, Cu2+, and Zn2+ on the CP was investigated in batch experiments. The kinetic of lead on CP adsorption efficiency and adsorption process were evaluated and analysed using the theories of Langmuir and Freundlich. The influence of pH was studied. The adsorption capacity obtained at pH 5 were 85.6, 29.8, and 20.6 mg g(-1) for Pb2+, Cu2+ and Zn2+, respectively. We hypothesize at pH 2 and 3, the dissolution of CP and precipitation of a fluoropyromorphite for lead and the formation of solid-solution type fluorapatite for copper. The results obtained show that CP is a good adsorbent for these toxic heavy metals. The abundance of natural phosphate, its low price and non-aggressive nature towards the environment are advantage for its utilisation in point of view of wastewater and wastes clean up.

  1. 3He Bilayer Film Adsorbed on Graphite Plated with a Bilayer of 4He: a New Frustrated 2D Magnetic System

    NASA Astrophysics Data System (ADS)

    Neumann, Michael; Nyéki, Ján; Cowan, Brian; Saunders, John

    2006-09-01

    The heat capacity and NMR response of a 3He bilayer adsorbed on graphite plated with a bilayer of 4He have been measured over the temperature range 1-80 mK. We find that the first 3He layer requires the presence of a 3He fluid overlayer before it solidifies. Solidification is completed at a total coverage close to 9.85 nm-2, On further increasing the coverage the heat capacity maximum grows from `antiferromagnetic-like' (AFM-like) to `ferromagnetic-like' (FM-like). On the other hand, when the 3He layer first solidifies, it has a low temperature saturation magnetisation corresponding to a significant fraction of full polarisation, and this increases with increasing coverage. Furthermore the effective exchange constant inferred from the high temperature magnetisation data is always ferromagnetic. The effective exchange constants inferred from the heat capacity and magnetisation are significantly larger than those observed in the second layer of pure 3He films adsorbed on bare graphite. Otherwise there are strong similarities in the coverage dependence of the heat capacity and magnetisation, providing fresh insights into how the magnetic ground state of such 2D magnets evolves as the frustration is tuned with increasing coverage.

  2. Use of industrial by-products and natural media to adsorb nutrients, metals and organic carbon from drinking water.

    PubMed

    Grace, Maebh A; Healy, Mark G; Clifford, Eoghan

    2015-06-15

    Filtration technology is well established in the water sector but is limited by inability to remove targeted contaminants, found in surface and groundwater, which can be damaging to human health. This study optimises the design of filters by examining the efficacy of seven media (fly ash, bottom ash, Bayer residue, granular blast furnace slag (GBS), pyritic fill, granular activated carbon (GAC) and zeolite), to adsorb nitrate, ammonium, total organic carbon (TOC), aluminium, copper (Cu) and phosphorus. Each medium and contaminant was modelled to a Langmuir, Freundlich or Temkin adsorption isotherm, and the impact of pH and temperature (ranging from 10 °C to 29 °C) on their performance was quantified. As retention time within water filters is important in contaminant removal, kinetic studies were carried out to observe the adsorption behaviour over a 24h period. Fly ash and Bayer residue had good TOC, nutrient and Cu adsorption capacity. Granular blast furnace slag and pyritic fill, previously un-investigated in water treatment, showed adsorption potential for all contaminants. In general, pH or temperature adjustment was not necessary to achieve effective adsorption. Kinetic studies showed that at least 60% of adsorption had occurred after 8h for all media. These media show potential for use in a multifunctional water treatment unit for the targeted treatment of specific contaminants.

  3. Magnetic nanoporous carbon as an adsorbent for the extraction of phthalate esters in environmental water and aloe juice samples.

    PubMed

    Liu, Li; Hao, Yunhui; Ren, Yiqian; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-05-01

    In this work, magnetic nanoporous carbon with high surface area and ordered structure was synthesized using cheap commercial silica gel as template and sucrose as the carbon source. The prepared magnetic nanoporous carbon was firstly used as an adsorbent for the extraction of phthalate esters, including diethyl phthalate, diallyl phthalate, and di-n-propyl-phthalate, from lake water and aloe juice samples. Several parameters that could affect the extraction efficiency were optimized. Under the optimum conditions, the limit of detection of the method (S/N = 3) was 0.10 ng/mL for water sample and 0.20 ng/mL for aloe juice sample. The linearity was observed over the concentration range of 0.50-150.0 and 1.0-200.0 ng/mL for water and aloe juice samples, respectively. The results showed that the magnetic nanoporous carbon has a high adsorptive capability toward the target phthalate esters in water and aloe juice samples.

  4. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Madathingal, Rajesh Raman

    The research investigated in this dissertation has focused on understanding the structure-property-function relationships of polymer nanocomposites. The properties of composite systems are dictated by the properties of their components, typically fillers in a polymer matrix. In nanocomposites, the polymer near an interface has significantly different properties compared with the bulk polymer, and the contribution of the adsorbed polymer to composite properties becomes increasingly important as the filler size decreases. Despite many reports of highly favorable properties, the behavior of polymer nanocomposites is not generally predictable, and thus requires a better understanding of the interfacial region. The ability to tailor the filler/matrix interaction and an understanding of the impact of the interface on macroscopic properties are keys in the design of nanocomposite properties. In this original work the surface of silica nanoparticles was tailored by: (a) Changing the number of sites for polymer attachment by varying the surface silanols and, (b) By varying the size/curvature of nanoparticles. The effect of surface tailoring on the dynamic properties after the adsorption of two model polymers, amorphous polymethyl methacrylate (PMMA) and semicrystalline polyethylene oxide (PEO) was observed. The interphase layer of polymers adsorbed to silica surfaces is affected by the surface silanol density as well as the relative size of the polymer compared with the size of the adsorbing substrate. The non-equilibrium adsorption of PMMA onto individual colloidal Stober silica (SiO2) particles, where Rparticle (100nm) > RPMMA (˜6.5nm) was compared with the adsorption onto fumed silica, where Rparticle (7nm) ˜ RPMMA (6.5nm) < Raggregate (˜1000nm), both as a function of silanol density [SiOH] and hydrophobility. In the former case, TEM images showed that the PMMA adsorbed onto individual nanoparticles, so that the number of PMMA chains/bead could be calculated, whereas

  5. Cleaning Water Contaminated with Heavy Metal Ions Using Pyrolyzed Biochar Adsorbents

    EPA Science Inventory

    The extraction of pollutants from water using activated biochar materials is a low cost, sustainable approach for providing safe water in developing countries. The adsorption of copper ions, Cu (II), onto banana peels that were dried, pyrolyzed and activated was studied and compa...

  6. Wire Frame Holds Water-Soap Film in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition 6 astronaut Dr. Don Pettit photographed a cube shaped wire frame supporting a thin film made from a water-soap solution during his Saturday Morning Science aboard the International Space Station's (ISS) Destiny Laboratory. Food coloring was added to several faces to observe the effects of diffusion within the film.

  7. Photoassisted oxidation of oil films on water

    SciTech Connect

    Heller, A.; Brock, J.R.

    1991-08-01

    The objective of the project is to develop TiO{sub 2}-based photocatalysts for the solar assisted oxidative dissolution of oil slicks. In a TiO{sub 2} crystal, absorption of a photon generates an electron-hole pair. The electron reacts with surface-adsorbed oxygen, reducing it to hydrogen peroxide; the hole directly oxidizes adsorbed organic compounds, usually via an intermediate OH radical. Since the density of TiO{sub 2} (3.8g/cc for anatase, 4.3 g/cc for rutile) is greater than that of either oil or seawater, TiO{sub 2} crystals are attached to inexpensive, engineered hollow glass microspheres to ensure flotation on the oil slick surface. Portions of the microsphere surface not covered by TiO{sub 2} are made oleophilic so that the microbeads will be preferentially attracted to the oil-air interface.

  8. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  9. Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents

    EPA Science Inventory

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffract...

  10. Water-insoluble Silk Films with Silk I Structure

    SciTech Connect

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  11. Water-Insoluble Silk Films with Silk I Structure

    PubMed Central

    Lu, Qiang; Hu, Xiao; Wang, Xiaoqin; Kluge, Jonathan A.; Lu, Shenzhou; Cebe, Peggy; Kaplan, David L.

    2009-01-01

    Water-insoluble regenerated silk materials are normally achieved by increasing β-sheet content (silk II). In the present study, water-insoluble silk films were prepared by controlling very slow drying of B. mori silk solutions, resulting in the formation of stable films with dominating silk I instead of silk II structure. Wide angle x-ray scattering (WAXS) indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared through slow drying had a globule-like structure in the core with nano-filaments. The core region was composed of silk I and silk II, and these regions are surrounded by hydrophilic nano-filaments containing random, turns, and α-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. DSC results revealed that silk I crystals had stable thermal properties up to 250°C, without crystallization above the Tg, but degraded in lower temperature than silk II structure. Compared with water- and methanol-annealed films, the films prepared through slow drying achieved better mechanical ductility and more rapid enzymatic degradation, reflective of the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated in the present approach of very slow drying, mimicking the natural process. The results also point to a new mode to generate new types of silk biomaterials, where mechanical properties can be enhanced, and degradation rates increased, yet water insolubility is maintained along with low beta sheet content. PMID:19874919

  12. Water-insoluble silk films with silk I structure.

    PubMed

    Lu, Qiang; Hu, Xiao; Wang, Xiaoqin; Kluge, Jonathan A; Lu, Shenzhou; Cebe, Peggy; Kaplan, David L

    2010-04-01

    Water-insoluble regenerated silk materials are normally produced by increasing the beta-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and alpha-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 degrees C, without crystallization above the T(g), but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low beta-sheet content.

  13. Ionic-liquid-functionalized magnetic particles as an adsorbent for the magnetic SPE of sulfonylurea herbicides in environmental water samples.

    PubMed

    He, Zeying; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-10-01

    In this paper, a new ionic-liquid-functionalized magnetic material was prepared based on the immobilization of an ionic liquid on silica magnetic particles that could be successfully used as an adsorbent for the magnetic SPE of five sulfonylurea herbicides (bensulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, chlorimuron-ethyl and triflusulfuron-methyl) from environmental water samples. The main parameters affecting the extraction efficiency such as desorption conditions, sample pH, extraction time and so on, were optimized using the Taguchi method. Good linearities were obtained with correlation coefficients ranging from 0.9992 to 0.9999 in the concentration range of 0.1-50 μg L(-1) and the LODs were 0.053-0.091 μg L(-1). Under the optimum conditions, the enrichment factors of the method were 1155-1380 and the recoveries ranged from 77.8 to 104.4%. The proposed method was reliable and could be applied to the residue analysis of sulfonylurea herbicides in environmental water samples (tap, reservoir and river).

  14. Nanogold-Decorated Silica Monoliths as Highly Efficient Solid-Phase Adsorbent for Ultratrace Mercury Analysis in Natural Waters.

    PubMed

    Huber, Jessica; Heimbürger, Lars-Eric; Sonke, Jeroen E; Ziller, Sebastian; Lindén, Mika; Leopold, Kerstin

    2015-11-01

    We propose a novel analytical method for mercury (Hg) trace determination based on direct Hg preconcentration from aqueous solution onto a gold nanoparticle-decorated silica monolith (AuNP@SiO2). Detection of Hg is performed after thermal desorption by means of atomic fluorescence spectrometry. This new methodology benefits from reagent-free, time- and cost-saving procedure, due to most efficient solid-phase adsorbent and results in high sensitive quantification. The excellent analytical performance of the whole procedure is demonstrated by a limit of detection as low as 1.31 ng L(-1) for only one-min accumulation duration. A good reproducibility with standard deviations ≤5.4% is given. The feasibility of the approach in natural waters was confirmed by a recovery experiment in spiked seawater with a recovery rate of 101%. Moreover, the presented method was validated through reference analysis of a submarine groundwater discharge sample by cold vapor-atomic fluorescence spectrometry resulting in a very good agreement of the found values. Hence the novel method is a very promising new tool for low-level Hg monitoring in natural waters providing easy-handling on-site preconcentration, reagent-free stabilization as well as reagent-free, highly sensitive detection.

  15. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control

    NASA Astrophysics Data System (ADS)

    Das, Sujoy K.; Khan, Md. Motiar R.; Parandhaman, T.; Laffir, Fathima; Guha, Arun K.; Sekaran, G.; Mandal, Asit Baran

    2013-05-01

    A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through

  16. Spectromicroscopy of C60 and azafullerene C59N: Identifying surface adsorbed water

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan; Susi, Toma; Rocquefelte, Xavier; Bittencourt, Carla; Scardamaglia, Mattia; Blaha, Peter; Guttmann, Peter; Rotas, Georgios; Tagmatarchis, Nikos; Zhu, Xiaohui; Hitchcock, Adam P.; Ewels, Chris P.

    2016-10-01

    C60 fullerene crystals may serve as important catalysts for interstellar organic chemistry. To explore this possibility, the electronic structures of free-standing powders of C60 and (C59N)2 azafullerenes are characterized using X-ray microscopy with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy, closely coupled with density functional theory (DFT) calculations. This is supported with X-ray photoelectron spectroscopy (XPS) measurements and associated core-level shift DFT calculations. We compare the oxygen 1s spectra from oxygen impurities in C60 and C59N, and calculate a range of possible oxidized and hydroxylated structures and associated formation barriers. These results allow us to propose a model for the oxygen present in these samples, notably the importance of water surface adsorption and possible ice formation. Water adsorption on C60 crystal surfaces may prove important for astrobiological studies of interstellar amino acid formation.

  17. Spectromicroscopy of C60 and azafullerene C59N: Identifying surface adsorbed water

    PubMed Central

    Erbahar, Dogan; Susi, Toma; Rocquefelte, Xavier; Bittencourt, Carla; Scardamaglia, Mattia; Blaha, Peter; Guttmann, Peter; Rotas, Georgios; Tagmatarchis, Nikos; Zhu, Xiaohui; Hitchcock, Adam P.; Ewels, Chris P.

    2016-01-01

    C60 fullerene crystals may serve as important catalysts for interstellar organic chemistry. To explore this possibility, the electronic structures of free-standing powders of C60 and (C59N)2 azafullerenes are characterized using X-ray microscopy with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy, closely coupled with density functional theory (DFT) calculations. This is supported with X-ray photoelectron spectroscopy (XPS) measurements and associated core-level shift DFT calculations. We compare the oxygen 1s spectra from oxygen impurities in C60 and C59N, and calculate a range of possible oxidized and hydroxylated structures and associated formation barriers. These results allow us to propose a model for the oxygen present in these samples, notably the importance of water surface adsorption and possible ice formation. Water adsorption on C60 crystal surfaces may prove important for astrobiological studies of interstellar amino acid formation. PMID:27748425

  18. Separation of ethanol/water azeotrope using compound starch-based adsorbents.

    PubMed

    Wang, Yanhong; Gong, Chunmei; Sun, Jinsheng; Gao, Hong; Zheng, Shuai; Xu, Shimin

    2010-08-01

    Comparing breakthrough cures of five starch-based materials experimentally prepared for ethanol dehydration, a compound adsorptive agent ZSG-1 was formulated with high adsorption capacity, low energy and material cost. The selective water adsorption was conducted in a fixed-bed absorber packed with ZSG-1 to find the optimum conditions yielding 99.7 wt% anhydrous ethanol with high efficiency. The adsorption kinetics is well described by Bohart-Adams equation. The adsorption heat, Delta H(abs), was calculated to be -3.16 x 10(4)J mol(-1) from retention data by inverse gas chromatography. Results suggested that water entrapment in ZSG-1 is a exothermic and physisorption process. Also, ZSG-1 is recyclable for on-site multiple-use and then adapt for upstream fermentation process after saturation, avoiding pollution through disposal.

  19. Cu-Zn powders as potential Cr(VI) adsorbents for drinking water.

    PubMed

    Kaprara, E; Seridou, P; Tsiamili, V; Mitrakas, M; Vourlias, G; Tsiaoussis, I; Kaimakamis, G; Pavlidou, E; Andritsos, N; Simeonidis, K

    2013-11-15

    This work examines the possibility of applying CuZn alloys as a reducing medium for the efficient removal of hexavalent chromium from drinking water. In an effort to develop a route for producing powders of CuZn alloys under mild conditions and investigate the optimum composition for such application, a series of alloys in the form of powders were prepared, by a sequence of Cu and Zn ball-milling and low temperature annealing. Batch Cr(VI) removal tests, performed to evaluate and compare the efficiency of the products under typical natural water parameters (pH 7 and natural-like water), indicated that the best performing material have a composition around 50 wt% Cu. The dominant reduction mechanisms are both the corrosion of the alloy surface and the electron transfer to the solution. The behavior of granulated CuZn media was tested in rapid-scale column tests using the commercial KDF which verified the high potential of CuZn alloys in Cr(VI) removal. Nevertheless, Cu and Zn leaching problems should be also considered.

  20. Stabilization of Oil-in-Water Emulsions with Noninterfacially Adsorbed Particles.

    PubMed

    Pilapil, Brandy K; Jahandideh, Heidi; Bryant, Steven L; Trifkovic, Milana

    2016-07-19

    Classical (surfactant stabilized) and Pickering (particle stabilized) type emulsions have been widely studied to elucidate the mechanisms by which emulsion stabilization is achieved. In Pickering emulsions, a key defining factor is that the stabilizing particles reside at the liquid-liquid interface providing a mechanical barrier to droplet coalescence. This interfacial adsorption is achieved through the use of nanoparticles that are partially wet by both liquid phases, often through covalent surface modification of or surfactant adsorption to the nanoparticle surfaces. Herein, we demonstrate particle-induced stabilization of an oil-in-water emulsion with fully water wet nanoparticles (no interfacial adsorption) via synergistic interaction with low concentrations of surfactants. Laser scanning confocal microscopy analysis allows for unique and vital insights into the properties of these emulsions via both three-dimensional imaging and real-time monitoring of particle dynamics at the oil-water interface. Investigation of these "non-Pickering" particle stabilized emulsions suggests that the nonadsorbed particles impart stability to the emulsion primarily via entropic forces imparted by the accumulation of silica nanoparticles in the coherent phase between dispersed oil droplets. PMID:27351486

  1. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control.

    PubMed

    Das, Sujoy K; Khan, Md Motiar R; Parandhaman, T; Laffir, Fathima; Guha, Arun K; Sekaran, G; Mandal, Asit Baran

    2013-06-21

    A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.

  2. Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper.

    PubMed

    Louis, Yoann; Cmuk, Petra; Omanović, Dario; Garnier, Cédric; Lenoble, Véronique; Mounier, Stéphane; Pizeta, Ivanka

    2008-01-01

    The influence of an adsorbed layer of the natural organic matter (NOM) on voltammetric behaviour of copper on a mercury drop electrode in natural water samples was studied. The adsorption of NOM strongly affects the differential pulse anodic stripping voltammogram (DPASV) of copper, leading to its distortion. Phase sensitive ac voltammetry confirmed that desorption of adsorbed NOM occurs in general at accumulation potentials more negative than -1.4V. Accordingly, an application of negative potential (-1.6V) for a very short time at the end of the accumulation time (1% of total accumulation time) to remove the adsorbed NOM was introduced in the measuring procedure. Using this protocol, a well-resolved peak without interferences was obtained. It was shown that stripping chronopotentiogram of copper (SCP) in the depletive mode is influenced by the adsorbed layer in the same manner as DPASV. The influence of the adsorbed NOM on pseudopolarographic measurements of copper and on determination of copper complexing capacity (CuCC) was demonstrated. A shift of the peak potential and the change of the half-peak width on the accumulation potential (for pseudopolarography) and on copper concentration in solution (for CuCC) were observed. By applying a desorption step these effects vanished, yielding different final results.

  3. Modelling and experimental investigation on the application of water super adsorbents in waste air biofilters.

    PubMed

    Danaee, Soroosh; Fazaelipoor, Mohammad Hassan; Gholami, Abdollah; Ataei, Seyed Ahmad; Afzali, Daryoush

    2015-01-01

    In this research work, a synthetic water super absorbent polymer was included in the bed of a perlite-based biofilter for the removal of ethanol from air. The performance of this biofilter was compared with the performance of a control perlite-based biofilter lacking the water super absorbent. With the empty bed residence time of 2 min, both biofilters were able to remove more than 90% of the entering pollutant with the concentration of 1 g /m3, when regular moistening was applied. After last irrigation on day 23, the performance of the control biofilter was unchanged until day 35. From day 36 onwards, the control biofilter lost its activity gradually and became totally inactive on day 45. The performance of the super absorbent containing biofilter, however, was unchanged until day 58 before starting to lose its activity. A mechanistic model was developed to describe the performance of a biofilter under drying effects. The model could predict the trends of experimental results reasonably well. The model was also applied to predict the trends of experimental data from a published paper on the removal of hexane in a perlite/super absorbent containing biofilter.

  4. Contaminants in drinking water and its mitigation using suitable adsorbents: an overview.

    PubMed

    Gopal, Krishna; Srivastava, Sachin Behari; Shukla, Satish; Bersillon, J L

    2004-10-01

    Various options are applicable for the removal of water pollutants included reverse osmosis, ion exchange, coagulation, co-precipitation, catalytic reduction, herbal filtration, electrodialysis and adsorption. This paper deals with the sorption phenomena for the removal of pollutants from drinking water. Attempts have been made to use low cost sorbents developed by pretreatment/activation/impregnation with alkalis, acids, iron oxide, manganese dioxide, ferric chloride, alum, lime, aluminum salts with natural products/indigenous minerals viz. activated alumina, activated carbon, groundnut husk, saw dust, chemically coated sand, fly ash, zeolites, clay minerals and other plant products. Application of Freundich and Langmuir isotherms were used to assess the adsorption capacity. Equilibrium isotherms were determined at optimum temperature and pH to characterize the sorption process. Statistical parameters such as mass transfer coefficients, multiple regression analysis were applied to establish the mechanism. It is suggested that the characterization of suitable, and exhausted sorbent through the application of fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF) is essential to establish its surface bonding. Scope for safety evaluation and risk assessment to human and biosphere may provide the guideline and predication to the regulatory agencies for its sustainable use and safe disposal The ecotoxicological assessment of the leachates and low cost removal technology are discussed in this paper.

  5. Elastic response of a protein monolayer adsorbed at decorated water surface

    NASA Astrophysics Data System (ADS)

    Singh, Amarjeet; Konovalov, Oleg

    2015-05-01

    Under the in-plane isothermal compression the self-assembled protein monolayer expand in the direction perpendicular to the applied force as a function of applied compression. The structure finally buckle beyond a critical compression, which finally returns to the initial structure when the compression force was removed, behaving like an elastic body. We modelled the layer as homogeneous elastic medium and calculated elastic constants. Young's modulus of the protein layer is 2 orders of magnitude smaller than the bulk lysozyme crystals. It is of fundamental significance to be able to predict the elastic properties of the proteins at air-water interface since protein remains in their natural environment unlike protein crystals.

  6. A Water-Stable Cationic Metal-Organic Framework as a Dual Adsorbent of Oxoanion Pollutants.

    PubMed

    Desai, Aamod V; Manna, Biplab; Karmakar, Avishek; Sahu, Amit; Ghosh, Sujit K

    2016-06-27

    A three-dimensional water-stable cationic metal-organic framework (MOF) pillared by a neutral ligand and with Ni(II)  metal nodes has been synthesized employing a rational design approach. Owing to the ordered arrangement of the uncoordinated tetrahedral sulfate (SO4 (2-) ) ions in the channels, the compound has been employed for aqueous-phase ion-exchange applications. The compound exhibits rapid and colorimetric aqueous-phase capture of environmentally toxic oxoanions (with similar geometries) in a selective manner. This system is the first example of a MOF-based system which absorbs both dichromate (Cr2 O7 (2-) ) and permanganate (MnO4 (-) ) ions, with the latter acting as a model for the radioactive contaminant pertechnetate (TcO4 (-) ). PMID:26855323

  7. Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents.

    PubMed

    Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya

    2016-07-13

    In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). PMID:27237837

  8. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    SciTech Connect

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  9. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  10. Adsorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  11. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  12. Mechanical Evolution of Bacterial Films at Oil-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Allan, Daniel; Vaccari, Liana; Sheng, Jian; Leheny, Robert; Stebe, Kathleen

    2014-03-01

    Bacteria can assemble at the interface between oil and water to form films that strongly affect the mechanical properties of the interface. In comparison with biofilms on solid substrates, such biofilm formation at fluid-fluid interfaces has been the subject of relatively little study. The microstructure of the films, which can include not only packings of bacteria but macromolecular surfactants secreted by the bacteria and the remains of dead bacteria, resembles a quasi-two-dimensional colloidal suspension in a polymer solution. We have characterized the mechanical response of bacterial films at oil-aqueous interfaces during their formation via passive microrheology and pendant drop imaging. With increasing age, the films undergo a transition from a viscous to an elastic interfacial shear rheology and eventually acquire a bending rigidity. These findings will be discussed in terms of viscoelstic models and in the context of the active nature of the bacteria in the films and in the adjoining aqueous suspension.

  13. Regenerable adsorbents for removal of arsenic from contaminated waters and synthesis and characterization of multifunctional magnetic nanoparticles for environmental and biomedical applications

    NASA Astrophysics Data System (ADS)

    Verdugo Gonzalez, Brenda

    The present work is divided into two sections. The first section deals with the synthesis of regenerable adsorbents for the removal of arsenic from contaminated waters. An adsorbent based on carboxymethylated polyethylenimine grafted agarose gels was synthesized and characterized as a regenerable synthetic ferric oxide adsorbent with high capacity for arsenate ions at pH 3.0. Similarly, four metal ion chelating adsorbents based on dipicolylamine were synthesized and characterized with respect to their Cu(II), Fe(III) and As(V) adsorption capacities. The most efficient adsorbents were Nov-PEI-DPA and Nov-TREN-DPA. Additionally, a commercial ion exchange resin was modified with permanganate to oxidize arsenite into arsenate. A complete oxidation-adsorption system was proposed in which a column packed with the oxidation resin was connected in series with an adsorbent column composed of the polyethylenimine grafted agarose gels. The second section involved work with magnetic nanoparticles. First, composite adsorbents consisting of magnetic particles encapsulated within agarose beads with and without grafted iminodiacetic acid (IDA) chelating groups were synthesized. The adsorption capacity of the adsorbents for Cu(II), Fe(III) and As(V) at different concentrations was investigated. Batch experiments were carried out to determine the Fe(III) and As(V) adsorption isotherms for the magnetic Novarose-IDA. Regenerability of the adsorbent was achieved with a pH change of the inlet solution, without affecting its magnetic or adsorption properties. Magnetic composite particles were synthesized for biomedical applications. First, magnetic nanoparticles were coated with silica and then used for gold nanoshell production. These nanoshells were functionalized with a Brij S10 derivative, containing carboxylic groups, using dodecanethiol as a bridging agent to incorporate a fluorescent biomolecule. Finally, magnetic and gold particles were encapsulated in PLGA nanoparticles

  14. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water.

    PubMed

    Du, Junyi; Sabatini, David A; Butler, Elizabeth C

    2014-04-01

    Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption. Addition of extra sulfate during synthesis of aluminum (hydr)oxides led to significantly higher fluoride adsorption capacity compared to aluminum (hydr)oxides prepared with extra citrate or no extra ligands. X-ray diffraction results suggest that extra sulfate led to the formation of both pseudoboehmite (γ-AlOOH) and basaluminite (Al4SO4(OH)10⋅4H2O) at 200 °C; energy dispersive X-ray spectroscopy confirmed the presence of sulfur in this solid. Treatment of aluminum (hydr)oxides with magnesium, manganese, and iron oxides did not significantly impact fluoride adsorption. While layered double hydroxides exhibited high maximum fluoride adsorption capacities, their adsorption capacities at dissolved fluoride concentrations close to the World Health Organization drinking water guideline of 1.5 mg L(-1) were much lower than those for the aluminum (hydr)oxides.

  15. Efficient removal of arsenic from water using a granular adsorbent: Fe-Mn binary oxide impregnated chitosan bead.

    PubMed

    Qi, Jianying; Zhang, Gaosheng; Li, Haining

    2015-10-01

    A novel sorbent of Fe-Mn binary oxide impregnated chitosan bead (FMCB) was fabricated through impregnating Fe-Mn binary oxide into chitosan matrix. The FMCB is sphere-like with a diameter of 1.6-1.8 mm, which is effective for both As(V) and As(III) sorption. The maximal sorption capacities are 39.1 and 54.2 mg/g, respectively, outperforming most of reported granular sorbents. The arsenic was mainly removed by adsorbing onto the Fe-Mn oxide component. The coexisting SO4(2-), HCO3(-) and SiO3(2-) have no great influence on arsenic sorption, whereas, the HPO4(2-) shows negative effects. The arsenic-loaded FMCB could be effectively regenerated using NaOH solution and repeatedly used. In column tests, about 1500 and 3200 bed volumes of simulated groundwater containing 233 μg/L As(V) and As(III) were respectively treated before breakthrough. These results demonstrate the superiority of the FMCB in removing As(V) and As(III), indicating that it is a promising candidate for arsenic removal from real drinking water.

  16. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  17. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  18. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  19. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxyethyl cellulose film, water-insoluble. 177... cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for... cellulose film consists of a base sheet manufactured by the ethoxylation of cellulose under...

  20. Preparation and characterization of γ-AlOOH @CS magnetic nanoparticle as a novel adsorbent for removing fluoride from drinking water.

    PubMed

    Wan, Zhen; Chen, Wei; Liu, Cheng; Liu, Yu; Dong, Changlong

    2015-04-01

    For this study, a novel adsorbent of γ-AlOOH @CS (pseudoboehmite and chitosan shell) magnetic nanoparticles (ACMN) with magnetic separation capabilities was developed to remove fluoride from drinking water. The adsorbent was first characterized, and then its performance in removing fluoride was evaluated. Kinetic data demonstrated rapid fluoride adsorption with more than 80% fluoride adsorption within the initial 20 min and equilibrium reached in 60 min. Based on the results of kinetic and isotherm models, the fluoride adsorption process on the ACMN's surface was a monolayer adsorption on a homogeneous surface. Thermodynamic parameters presented that the adsorption process is spontaneous and endothermic in nature. The mechanism for the adsorption involved electrostatic interaction and hydrogen bonding. Moreover, the calculated adsorption capacity of the ACMN for fluoride using the Langmuir model was 67.5 mg/g (20°C, pH=7.0±0.1), higher than other fluoride removal adsorbents. This nanoadsorbent performed well over a pH range of 4-10. The study found that PO4(3-) was the co-existing anion most able to hinder the nanoparticle's fluoride adsorption, followed by NO3(-) then Cl(-). Experimental results suggest that ACMN is a promising adsorbent for treating fluoride-contaminated water.

  1. The origin of 1560 cm-1 band in experimental IR spectra of water adsorbed on TiO2 surface: Ab initio assessment

    NASA Astrophysics Data System (ADS)

    Kevorkyants, Ruslan; Rudakova, Aida V.; Chizhov, Yuri V.; Bulanin, Kirill M.

    2016-10-01

    We present DFT study on vibrational spectrum of water layer on a surface of TiO2 which is modeled via Ti8O16 nanocluster. In contrast to ν2 mode's frequency of liquid water (1645 cm-1) for the water layer theory predicts considerably lower ν2 frequency (1570 cm-1) which matches experimentally observed shoulder in IR spectrum (1560 cm-1). We demonstrate that the calculated ν2 frequencies depend linearly on a distance between adsorbed water molecules and a surface of Ti8O16 nanocluster! We also show that hydrogen bonding strongly affects ν1 vibrational frequencies but leaves ν2 and ν3 ones almost intact.

  2. Strain-induced water dissociation on supported ultrathin oxide films

    PubMed Central

    Song, Zhenjun; Fan, Jing; Xu, Hu

    2016-01-01

    Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this work, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that the ability to split water on insulating surface closely depends on the lattice mismatch between ultrathin films and the underlying substrate, and substrate-induced in-plane tensile strain dramatically results in water dissociation on MgO(100). Three dissociative adsorption configurations of water with lower energy are predicted, and the structural transition going from molecular form to dissociative form is almost barrierless. Our results provide an effective avenue to achieve water dissociation at the single-molecule level and shed light on how to tune the chemical reactions of insulating surfaces by choosing the suitable substrates. PMID:26953105

  3. Hexagonal boron nitride nanosheets as adsorbents for solid-phase extraction of polychlorinated biphenyls from water samples.

    PubMed

    Jia, Shiliang; Wang, Zhenhua; Ding, Ning; Elaine Wong, Y-L; Chen, Xiangfeng; Qiu, Guangyu; Dominic Chan, T-W

    2016-09-14

    The adsorptive potential of hexagonal boron nitride nanosheets (h-BNNSs) for solid-phase extraction (SPE) of pollutants was investigated for the first time. Seven indicators of polychlorinated biphenyls (PCBs) were selected as target analytes. The adsorption of PCBs on the surface of the h-BNNSs in water was simulated by the density functional theory and molecular dynamics. The simulation results indicated that the PCBs are adsorbed on the surface by π-π, hydrophobic, and electrostatic interactions. The PCBs were extracted with an h-BNNS-packed SPE cartridge, and eluted by dichloromethane. Gas chromatography-tandem mass spectrometry working in the multiple reaction monitor mode was used for the sample quantification. The effect of extraction parameters, including the flow rate, pH value, breakthrough volume, and the ionic strength, were investigated. Under the optimal working conditions, the developed method showed low limits of detection (0.24-0.50 ng L(-1); signal-to-noise ratio = 3:1), low limits of quantification (0.79-1.56 ng L(-1); signal-to-noise ratio = 10:1), satisfactory linearity (r > 0.99) within the concentration range of 2-1000 ng L(-1), and good precision (relative standard deviation < 12%). The PCBs concentration in environmental water samples was determined by the developed method. This results demonstrate that h-BNNSs have high analytical potential in the enrichment of pollutants. PMID:27566347

  4. A Multiscale Approach for the Understanding of Water Film Formation

    SciTech Connect

    Baolin Deng; Bing Hua; Young Gan; Zhen Chen; Thornton, Edward

    2006-04-05

    Reductive immobilization of toxic and radioactive metals by gaseous hydrogen sulfide is a promising technology for in-situ remediation of soils and groundwater (Fig. 1 & 2). Rate of chromium(VI) reduction by gaseous hydrogen sulfide in the vadose zone soil is controlled by gas phase humidity and soil particle size (Fig. 3). It is believed that water film formation on solid surfaces is needed for effective contaminant reduction and immobilization (Fig. 4). Molecular Dynamics (MD) Simulation is used to understand the mechanism of water film formation.

  5. A comparison of different concentration methods for the detection of viruses present in bottled waters and those adsorbed to water bottle surfaces.

    PubMed

    Huguet, L; Carteret, C; Gantzer, C

    2012-04-01

    This study aimed to provide a tool for selecting the best approach to virological testing of bottled waters. Different methods were investigated. Method A examined the recovery of virus RNA following in situ lysis of virus particles in the aqueous phase and of those adhered to the bottle wall, method B examined the recovery of virus RNA following lysis of virus particles in the aqueous phase, and method C examined the recovery of intact virus particles. Method C generated the lowest genome recovery rate regardless of the water and virus type used, therefore comparison was mainly conducted between methods A and B.The effects of independent variables on the viral RNA recovery rate were determined by full factorial design. These independent variables included three waters (differing in mineral composition), four viruses (poliovirus 1, hepatitis A virus, Norovirus, and the MS2 phage), three incubation times (0, 10, and 20 days), and two methods (A and B). According to the results, each factor influenced the recovery rate of viral RNA with the exception of incubation time. Statistical analysis identified interactions between the factors. The strongest interactions involved the water and virus types, as well as the methods. The results suggested that method A should be used for the concentration and detection of hepatitis A virus, regardless of the divalent cation concentration of the bottled water. Method A was most suitable for water with the highest mineral content (divalent cation concentration of 250 mgL(-1)) and for the analysis of viruses capable of adsorbing onto the bottle walls (Poliovirus 1). Method B could be recommended for the analysis of water whose cation concentration is unknown.

  6. Isothermal dehydration of thin films of water and sugar solutions

    SciTech Connect

    Heyd, R.; Rampino, A.; Bellich, B.; Elisei, E.; Cesàro, A.; Saboungi, M.-L.

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  7. Isothermal dehydration of thin films of water and sugar solutions.

    PubMed

    Heyd, R; Rampino, A; Bellich, B; Elisei, E; Cesàro, A; Saboungi, M-L

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  8. Rupture force of adsorbed self-assembled surfactant layers. Effect of the dielectric exchange force

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-08-01

    The tip applied force necessary to obtain tip/substrate contact, i.e., rupture force between adsorbed layers of self-assembled surfactant films and atomic force microscope (AFM) tips in water has been measured. A substantial contribution of this rupture force is due to the dielectric exchange force (DEF). The DEF model is in agreement with the observation that the surfactant layer rupture forces are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  9. Morphology of nitric acid and water ice films

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Leu, Ming-Taun

    1993-01-01

    Ice films have been used to simulate stratospheric cloud surfaces in order to obtain laboratory data on solubilities and heterogeneous reaction rates. In the present study, environmental scanning electron microscopy (ESEM) is used to study thin films of both water ice and nitric acid ice near the composition of the trihydrate. The ices are formed by vapor deposition onto aluminum or borosilicate-glass substrates cooled to about 200 K. Micrographs are recorded during the deposition process and during subsequent annealing at higher temperatures. The results show that the ice films are composed of loosely consolidated granules, which range from about 1 to 20 microns in size at temperatures between 197 and 235 K. Cubic water ice is sometimes observed at 200 K, which converts to the hexagonal form at slightly higher temperatures. The loose packing of the granules confirms the high porosities of these films obtained from separate bulk porosity measurements. Average surface areas calculated from the observed granule sizes range from about 0.2 to 1 sq m/g and agree with surface areas obtained by gas-adsorption (BET) analysis of annealed ice films. For unannealed films, the BET areas are about an order of magnitude higher than the ESEM results, implying that the unannealed ices contain microporosity which is lost during the annealing process.

  10. Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of DSEP.

    PubMed

    Pang, Jinyu; Wang, Yajing; Xu, Guiying; Han, Tingting; Lv, Xin; Zhang, Jian

    2011-03-24

    The properties of adsorbed monolayers of three hydrocarbon surfactants with the same hydrophobic tail, sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB) and octaethylene glycol dodecyl ether (C(12)E(8)) at the air/water surface in the absence and presence of a dimethylsiloxane ethoxylate-propoxylate (DSEP) were studied via molecular dynamics simulations to compare the effect of the headgroups on the aggregation behaviors of surfactant mixtures. The structures and dynamical properties of the monolayers were greatly affected after adding DSEP. In the presence of DSEP, SDS monolayer was better ordered and more compact, whereas C(12)E(8) monolayer was relatively disordered. Some DTAB molecules immerged into water, and the others adsorbed at the surface were in less compact but well-ordered arrangement. The reason for the appearance of different types of monolayers was also discussed, with the goal of providing a theoretical approach for their further applications.

  11. A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water.

    PubMed

    Cao, Qing; Huang, Feng; Zhuang, Zanyong; Lin, Zhang

    2012-04-01

    This work aims at the investigation of nano-Mg(OH)(2) as a promising adsorbent for uranium recovery from water. Systematic analysis including the uranium adsorption isotherm, the kinetics and the thermodynamics of adsorption of low concentrations of uranyl tricarbonate (0.1-20 mg L(-1)) by nano-Mg(OH)(2) was carried out. The results showed a spontaneous and exothermic uranium adsorption process by Mg(OH)(2), which could be well described with pseudo second order kinetics. Surface site calculation and zeta potential measurement further demonstrated that UO(2)(CO(3))(3)(4-) was a monolayer adsorbed onto nano-Mg(OH)(2) by electrostatic forces. Accordingly, the adsorption behavior met the conditions of the Langmuir isotherm. Moreover, in most of the reported literature, nano-Mg(OH)(2) had a higher UO(2)(CO(3))(3)(4-) adsorption affinity b, which implied a higher adsorption amount at equilibrium in a dilute adsorbate system. The significance of the adsorption affinity b for choosing and designing adsorbents with respect to low concentration of resources/pollutants treatment has also been assessed.

  12. A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Huang, Feng; Zhuang, Zanyong; Lin, Zhang

    2012-03-01

    This work aims at the investigation of nano-Mg(OH)2 as a promising adsorbent for uranium recovery from water. Systematic analysis including the uranium adsorption isotherm, the kinetics and the thermodynamics of adsorption of low concentrations of uranyl tricarbonate (0.1-20 mg L-1) by nano-Mg(OH)2 was carried out. The results showed a spontaneous and exothermic uranium adsorption process by Mg(OH)2, which could be well described with pseudo second order kinetics. Surface site calculation and zeta potential measurement further demonstrated that UO2(CO3)34- was a monolayer adsorbed onto nano-Mg(OH)2 by electrostatic forces. Accordingly, the adsorption behavior met the conditions of the Langmuir isotherm. Moreover, in most of the reported literature, nano-Mg(OH)2 had a higher UO2(CO3)34- adsorption affinity b, which implied a higher adsorption amount at equilibrium in a dilute adsorbate system. The significance of the adsorption affinity b for choosing and designing adsorbents with respect to low concentration of resources/pollutants treatment has also been assessed.

  13. Tensile testing of ultra-thin films on water surface

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Han; Nizami, Adeel; Hwangbo, Yun; Jang, Bongkyun; Lee, Hak-Joo; Woo, Chang-Su; Hyun, Seungmin; Kim, Taek-Soo

    2013-10-01

    The surface of water provides an excellent environment for gliding movement, in both nature and modern technology, from surface living animals such as the water strider, to Langmuir-Blodgett films. The high surface tension of water keeps the contacting objects afloat, and its low viscosity enables almost frictionless sliding on the surface. Here we utilize the water surface as a nearly ideal underlying support for free-standing ultra-thin films and develop a novel tensile testing method for the precise measurement of mechanical properties of the films. In this method, namely, the pseudo free-standing tensile test, all specimen preparation and testing procedures are performed on the water surface, resulting in easy handling and almost frictionless sliding without specimen damage or substrate effects. We further utilize van der Waals adhesion for the damage-free gripping of an ultra-thin film specimen. Our approach can potentially be used to explore the mechanical properties of emerging two-dimensional materials.

  14. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent.

    PubMed

    Pan, Bingjun; Xiao, Lili; Nie, Guangze; Pan, Bingcai; Wu, Jun; Lv, Lu; Zhang, Weiming; Zheng, Shourong

    2010-01-01

    Selenite (SeO(3)(2-)) is an oxyanion of environmental significance due to its toxicity when taken in excess. In the present study, a hybrid adsorbent (HFO-201) was prepared by irreversibly impregnating hydrated ferric oxide (HFO) nanoparticles within a commercial available anion-exchange resin (D-201), and its adsorption towards selenite from water was investigated in batch and column tests. HFO-201 exhibited improved sorption selectivity toward selenite as compared to the polymeric anion exchanger D-201. Two possible adsorption interactions were responsible for selenite removal by HFO-201, the electrostatic interaction from the ammonium groups bound to the D-201 matrix, and the formation of inner-sphere complexes between the loaded HFO nanoparticles and selenite. In a wide pH range (i.e., 3-8), increasing solution pH was found to result in a decrease of selenite removal on HFO-201. Adsorption isotherms fit the Freundlich model well, and selenite adsorption increased with increasing ambient temperature, indicating its endothermic nature. Column adsorption tests suggested that satisfactory removal of selenite from 2 mg/L to less than 0.01 mg/L could be achieved by HFO-201 even in the presence of the commonly encountered anionic competition at greater concentration, with the treatment capacity of approximately 1200 bed volume (BV) per run, while that for D-201 was only less than 30 BV under otherwise identical conditions. Furthermore, the exhausted HFO-201 was amenable to efficient in situ regeneration with a binary NaOH-NaCl solution.

  15. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples.

    PubMed

    Rashidi Nodeh, Hamid; Wan Ibrahim, Wan Aini; Ali, Imran; Sanagi, Mohd Marsin

    2016-05-01

    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).

  16. Water Films: Moisture that Extends Beyond the Capillary Wetting Front

    NASA Astrophysics Data System (ADS)

    Dragila, M. I.; Ambrowiak, G.

    2015-12-01

    Imbibition dynamics were investigated by measuring upward imbibition rates in laboratory vertical columns that were filled with sandy loam soil media. The contribution of films and capillary water which drives the infiltrating wetting front was successfully quantified. It was demonstrated that films move ahead of the wetting front only after capillary water has ceased driving percolation, and that the hydraulic diffusion coefficient (Dh) of film flow varied from 10-70% of the hydraulic diffusion coefficient of capillary water. The magnitude of Dh depended upon particle size distribution, surface roughness and initial moisture content of the media. What is the potential value of this mechanism in soil moisture dynamics research? (1) In coarse textured soils with low capillary potential, film that stretches well beyond the capillary wetting front can provide moisture to microbiota and mycorhyza, thereby increasing nutrient diffusion to a broader area than by capillary based models (e.g., modeling of drip irrigation systems). Even though the potential role of films in these processes has been previously discussed, the magnitude of potential moisture delivery has not been measured. (2) Films surging ahead of a decelerating capillary front may reduce the effect of subsurface water repellency. It is known that over time, moisture decreases both the contact angle of water against silica and water repellent soils. Therefore, in time, a film may predispose sandy soil to greater imbibition capacity. (3) The need to maximize water efficiency becomes exceedingly important in drought threatened, semi-arid irrigated agriculture. A thoughtful, yet realistic balance must be reached between water conservation and crop production. As our climate changes and water needs increase, protecting against crop failure will require a more comprehensive understanding of the mechanisms that control soil moisture dynamics. This study adds to this conversation by investigating higher level

  17. Analyte induced water adsorbability in gas phase biosensors: the influence of ethinylestradiol on the water binding protein capacity.

    PubMed

    Snopok, Borys; Kruglenko, Ivanna

    2015-05-01

    An ultra-sensitive gas phase biosensor/tracer/bio-sniffer is an emerging technology platform designed to provide real-time information on air-borne analytes, or those in liquids, through classical headspace analysis. The desired bio-sniffer measures gaseous 17α- ethinylestradiol (ETED) as frequency changes on a quartz crystal microbalance (QCM), which is a result of the interactions of liquid sample components in the headspace (ETED and water) with a biorecognition layer. The latter was constructed by immobilization of polyclonal antiserum against a phenolic A-ring of estrogenic receptors through protein A. The QCM response exhibited stretched exponential kinetics of negative frequency shifts with reversible and "irreversible" components of mass uptake onto the sensor surface in static headspace conditions when exposed to water solutions of ETED over the sensor working range, from 10(-10) to 10(-17) g L(-1). It was shown that the variations in the QCM response characteristics are due to the change of the water-binding capacity of the sensing layer induced by protein transformations initiated by the binding of ETED molecules. This result is well correlated with the natural physiological function of estrogens in controlling the homeostasis of body fluids in living beings. PMID:25763411

  18. Three-Step Water Sorption of Thin Nafion Films

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Daisuke; Ogata, Yudai; Yamada, Norifumi; Tanaka, Keiji

    2015-03-01

    Nafion has been widely used as a proton exchange film in polymer electrolyte fuel cell (PEFC). Although downsizing PEFC is one of the interesting developments in the near future, it appears that most studies conducted so far are limited to bulk systems. Here we examined water sorption behavior in thin Nafion films based on optical and neutron reflectivity measurements. Nafion films were prepared on silver and silicon oxide substrates. It was found that the thicknesses of Nafion thin films increased with time after contacting water in three steps. The asymptotic swelling ratios in regimes I, II and III were 1.05, 1.26 and 1.41, respectively. These values were in-dependent of the substrate species, and were coincident with the transition points of different hydration states in the bulk Nafion; water binding to sulfonic acid groups, the formation of sphere-like ionic clusters, and bridge formation between clusters. The swelling was much slower in thin films than in the bulk due to the mobility restriction of Nafion near the substrate.

  19. Stability of aqueous films between bubbles. Part 2. Effects of trace impurities and evaporation.

    PubMed

    Yaminsky, Vassili V; Ohnishi, Satomi; Vogler, Erwin A; Horn, Roger G

    2010-06-01

    The stability of water films has been investigated with a Mysels-Scheludko type film balance. Minor trace impurities in water do not affect the lifetime of water films under vapor saturation, but significantly influence the stability in free evaporation. Trace amounts of positively adsorbed contaminants induce Marangoni-driven flow that destabilizes films under evaporation conditions whereas negatively adsorbed electrolytes actually prolong stability by reversing interfacial tension gradients and driving a steady circulation within the film. At high thinning rates, pure-water films develop exotic-appearing flow patterns and break due to a strong coupling between hydrodynamic and interfacial tension-gradient adsorption stresses. The most dominant factor of transient film stabilization in dynamic conditions under evaporation is a surface tension gradient created in the film. We discuss surface tension gradients in transient films created by temperature differences, impurity concentration, and expansion of the films. PMID:20146432

  20. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2015-11-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  1. Preliminary indications of water film distribution and thickness on an airfoil in a water spray

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Weinstein, L. M.

    1984-01-01

    A sensor for measuring water film thickness is evaluated. The test is conducted in a small flow apparatus with a 1 ft chord model wing in a water spray. Photographic and visual observations are made of the upper wing surface and film thickness is measured on the upper and lower wing surfaces. The performance of the sensor appears highly satisfactory, and where valid comparisons can be made, repeatable results are obtained.

  2. Formation of a Rigid Hydrophobin Film and Disruption by an Anionic Surfactant at an Air/Water Interface.

    PubMed

    Kirby, Stephanie M; Zhang, Xujun; Russo, Paul S; Anna, Shelley L; Walker, Lynn M

    2016-06-01

    Hydrophobins are amphiphilic proteins produced by fungi. Cerato-ulmin (CU) is a hydrophobin that has been associated with Dutch elm disease. Like other hydrophobins, CU stabilizes air bubbles and oil droplets through the formation of a persistent protein film at the interface. The behavior of hydrophobins at surfaces has raised interest in their potential applications, including use in surface coatings, food foams, and emulsions and as dispersants. The practical use of hydrophobins requires an improved understanding of the interfacial behavior of these proteins, alone and in the presence of added surfactants. In this study, the adsorption behavior of CU at air/water interfaces is characterized by measuring the surface tension and interfacial rheology as a function of adsorption time. CU is found to adsorb irreversibly at air/water interfaces. The magnitude of the dilatational modulus increases with adsorption time and surface pressure until CU eventually forms a rigid film. The persistence of this film is tested through the sequential addition of strong surfactant sodium dodecyl sulfate (SDS) to the bulk liquid adjacent to the interface. SDS is found to coadsorb to interfaces precoated with a CU film. At high concentrations, the addition of SDS significantly decreases the dilatational modulus, indicating disruption and displacement of CU by SDS. Sequential adsorption results in mixed layers with properties not observed in interfaces generated from complexes formed in the bulk. These results lend insight to the complex interfacial interactions between hydrophobins and surfactants. PMID:27164189

  3. Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment.

    PubMed

    Nehrenheim, E; Odlare, M; Allard, B

    2011-01-01

    Pine bark is a low cost sorbent originating from the forest industry. In recent years, it has been found to show promise as an adsorbent for metals and organic substances in contaminated water, especially landfill leachates and storm water. This study aims to investigate if pine bark can replace commercial adsorbents such as active carbon. An industrial effluent, collected from a treatment plant of a demilitarization factory, was diluted to form concentration ranges of contaminants and shaken with pine bark for 24 hours. Metals (e.g. Pb, Zn, Cd, As and Ni) and explosives, e.g., 2,4,6-trinitrotoluene (TNT), were analysed before and after treatment. The aim of the experiment was twofold; firstly, it was to investigate whether metals are efficiently removed in the presence of explosives and secondly, if adsorption of explosive substances to pine bark was possible. Langmuir and Freundlich isotherms were used to describe the adsorption process where this was possible. It was found that metal uptake was possible in the presence of TNT and other explosive contaminants. The uptake of TNT was satisfactory with up to 80% of the TNT adsorbed by pine bark.

  4. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    PubMed

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples.

  5. Experimental results of water film formation on various fuel forms from a fire suppression system

    SciTech Connect

    Ross, R.H.; Davis, J.R.

    1993-12-31

    The purpose of the study was to determine the thickness and coverage of water film formations on various materials during fire sprinkler deluge. An exhaustive literature search revealed that no applicable research data exists that governs water film formations from fire protection systems. Therefore, a controlled, infield, mockup was created to predict the thickness and coverage of water film on fissile material forms. This paper discusses the background, experimental procedure and the characterization of these water films.

  6. Analysis of the water film behavior and its breakup on profile using experimental and numerical methods

    NASA Astrophysics Data System (ADS)

    Muzik, Tomas; Safarik, Pavel; Tucek, Antonín

    2014-08-01

    This paper deals with the description of water film behaviour on the airfoil NACA0012 using experimental and numerical methods. Properties of the water film on the profile and its breakup into droplets behind the profile are investigated in the aerodynamic tunnel and using CFD methods. The characteristic parameters of the water film, like its thickness and shape for different flow modes are described. Hereafter are described droplets drifted by the air, which water film is broken behind the profile.

  7. Preparation, characterization and application of Saussurea tridactyla Sch-Bip as green adsorbents for preconcentration of rare earth elements in environmental water samples

    NASA Astrophysics Data System (ADS)

    Zhang, Qiangying; He, Man; Chen, Beibei; Hu, Bin

    2016-07-01

    This paper deals with preparation, characterization and application of the Saussurea tridactyla Sch-Bip (STSB) as a new green adsorbent for separation of matrix elements and preconcentration of rare earth elements (REEs) in environmental water samples. The pretreated STSB adsorbent with 2 mol L- 1 NaOH is characterized with higher surface area and adsorption capacities in comparison with a raw STSB material. The new adsorbent was used for the development of on-line solid phase extraction (SPE) for the determination of REEs by radial viewing 27 MHz inductively coupled plasma optical emission spectrometry (ICP-OES). Various parameters affecting the adsorption/desorption procedure were optimized. The adsorption capacities for the STSB were found to be 62.2 (Y)-153 mg g- 1 (Tm). Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.06 (Yb)-8.77 (Sm) ng mL- 1. The relative standard deviations (RSDs) for 7 replicate determinations of target REEs at low concentration level ranged from 2.4 (Yb) to 8.9 (Sm)%. The adsorption isotherm fitted Langmuir model and the adsorption kinetics fitted well with both Pseudo-first order and Pseudo-second order models. The predominant adsorption mechanism is ion exchange. The STSB pretreated with 2 mol L- 1 NaOH has been demonstrated to be low cost, green and environment friendly adsorbent, featuring with high adsorption capacity, wide pH range, and fast adsorption/desorption kinetics for target REEs with long lifetime. The proposed method was applied to the determination of REEs in East Lake, Yangtze River and rain water samples.

  8. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water. PMID:23602616

  9. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water.

  10. Ionic liquid coated carbon nanospheres as a new adsorbent for fast solid phase extraction of trace copper and lead from sea water, wastewater, street dust and spice samples.

    PubMed

    Tokalıoğlu, Şerife; Yavuz, Emre; Şahan, Halil; Çolak, Süleyman Gökhan; Ocakoğlu, Kasım; Kaçer, Mehmet; Patat, Şaban

    2016-10-01

    In this study a new adsorbent, ionic liquid (1,8-naphthalene monoimide bearing imidazolium salt) coated carbon nanospheres, was synthesized for the first time and it was used for the solid phase extraction of copper and lead from various samples prior to determination by flame atomic absorption spectrometry. The ionic liquid, carbon nanospheres and ionic liquid coated carbon nanospheres were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, (1)H NMR and (13)C NMR, Brunauer, Emmett and Teller surface area and zeta potential measurements. Various parameters for method optimization such as pH, adsorption and elution contact times, eluent volume, type and concentration, centrifuge time, sample volume, adsorption capacity and possible interfering ion effects were tested. The optimum pH was 6. The preconcentration factor, detection limits, adsorption capacity and precision (as RSD%) of the method were found to be 300-fold, 0.30µgL(-1), 60mgg(-1) and 1.1% for copper and 300-fold, 1.76µgL(-1); 50.3mgg(-1) and 2.2%, for lead, respectively. The effect of contact time results showed that copper and lead were adsorbed and desorbed from the adsorbent without vortexing. The equilibrium between analyte and adsorbent is reached very quickly. The method was rather selective for matrix ions in high concentrations. The accuracy of the developed method was confirmed by analyzing certified reference materials (LGC6016 Estuarine Water, Reference Material 8704 Buffalo River Sediment, and BCR-482 Lichen) and by spiking sea water, wastewater, street dust and spice samples. PMID:27474302

  11. Ionic liquid coated carbon nanospheres as a new adsorbent for fast solid phase extraction of trace copper and lead from sea water, wastewater, street dust and spice samples.

    PubMed

    Tokalıoğlu, Şerife; Yavuz, Emre; Şahan, Halil; Çolak, Süleyman Gökhan; Ocakoğlu, Kasım; Kaçer, Mehmet; Patat, Şaban

    2016-10-01

    In this study a new adsorbent, ionic liquid (1,8-naphthalene monoimide bearing imidazolium salt) coated carbon nanospheres, was synthesized for the first time and it was used for the solid phase extraction of copper and lead from various samples prior to determination by flame atomic absorption spectrometry. The ionic liquid, carbon nanospheres and ionic liquid coated carbon nanospheres were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, (1)H NMR and (13)C NMR, Brunauer, Emmett and Teller surface area and zeta potential measurements. Various parameters for method optimization such as pH, adsorption and elution contact times, eluent volume, type and concentration, centrifuge time, sample volume, adsorption capacity and possible interfering ion effects were tested. The optimum pH was 6. The preconcentration factor, detection limits, adsorption capacity and precision (as RSD%) of the method were found to be 300-fold, 0.30µgL(-1), 60mgg(-1) and 1.1% for copper and 300-fold, 1.76µgL(-1); 50.3mgg(-1) and 2.2%, for lead, respectively. The effect of contact time results showed that copper and lead were adsorbed and desorbed from the adsorbent without vortexing. The equilibrium between analyte and adsorbent is reached very quickly. The method was rather selective for matrix ions in high concentrations. The accuracy of the developed method was confirmed by analyzing certified reference materials (LGC6016 Estuarine Water, Reference Material 8704 Buffalo River Sediment, and BCR-482 Lichen) and by spiking sea water, wastewater, street dust and spice samples.

  12. 21 CFR 177.1400 - Hydroxyethyl cellulose film, water-insoluble.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydroxyethyl cellulose film, water-insoluble. 177... Repeated Use Food Contact Surfaces § 177.1400 Hydroxyethyl cellulose film, water-insoluble. Water-insoluble hydroxyethyl cellulose film may be safely used for packaging food in accordance with the following...

  13. Robust Maleimide-Functionalized Gold Surfaces and Nanoparticles Generated Using Custom-Designed Bidentate Adsorbates.

    PubMed

    Park, Chul Soon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2016-07-26

    A series of custom-designed alkanethioacetate ligands were synthesized to provide a facile method of attaching maleimide-terminated adsorbates to gold nanostructures via thiolate bonds. Monolayers on flat gold substrates derived from both mono- and dithioacetates, with and without oligo(ethylene glycol) (OEG) moieties in their alkyl spacers, were characterized using X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, ellipsometry, and contact angle goniometry. For all adsorbates, the resulting monolayers revealed that a higher packing density and more homogeneous surface were generated when the film was formed in EtOH, but a higher percentage of bound thiolate was obtained in THF. A series of gold nanoparticles (AuNPs) capped with each adsorbate were prepared to explore how adsorbate structure influences aqueous colloidal stability under extreme conditions, as examined visually and spectroscopically. The AuNPs coated with adsorbates that include OEG moieties exhibited enhanced stability under high salt concentration, and AuNPs capped with dithioacetate adsorbates exhibited improved stability against ligand exchange in competition with dithiothreitol (DTT). Overall, the best results were obtained with a chelating dithioacetate adsorbate that included OEG moieties in its alkyl spacer, imparting improved stability via enhanced solubility in water and superior adsorbate attachment owing to the chelate effect. PMID:27385466

  14. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    PubMed

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating. PMID:27308723

  15. Thin Water and Ice Films at Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  16. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  17. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    PubMed Central

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-01-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water. PMID:27695005

  18. Adsorptive Removal of Pharmaceuticals and Personal Care Products from Water with Functionalized Metal-organic Frameworks: Remarkable Adsorbents with Hydrogen-bonding Abilities

    NASA Astrophysics Data System (ADS)

    Seo, Pill Won; Bhadra, Biswa Nath; Ahmed, Imteaz; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2016-10-01

    Adsorption of typical pharmaceuticals and personal care products (PPCPs) (such as naproxen, ibuprofen and oxybenzone) from aqueous solutions was studied by using the highly porous metal-organic framework (MOF) MIL-101 with and without functionalization. Adsorption results showed that MIL-101s with H-donor functional groups such as –OH and –NH2 were very effective for naproxen adsorption, despite a decrease in porosity, probably because of H-bonding between O atoms on naproxen and H atoms on the adsorbent. For this reason, MIL-101 with two functional groups capable of H-bonding (MIL-101-(OH)2) exhibited remarkable adsorption capacity based on adsorbent surface area. The favorable contributions of –OH and –(OH)2 on MIL-101 in the increased adsorption of ibuprofen and oxybenzone (especially based on porosity) confirmed again the importance of H-bonding mechanism. The adsorbent with the highest adsorption capacity, MIL-101-OH, was very competitive when compared with carbonaceous materials, mesoporous materials, and pristine MIL-101. Moreover, the MIL-101-OH could be recycled several times by simply washing with ethanol, suggesting potential application in the adsorptive removal of PPCPs from water.

  19. Magnetic metal-organic framework-titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples.

    PubMed

    Su, Hao; Lin, Yunliang; Wang, Zhenhua; Wong, Y-L Elaine; Chen, Xiangfeng; Chan, T-W Dominic

    2016-09-30

    In this work, a core-shell Fe3O4@SiO2@MOF/TiO2 nanocomposite was synthesized and used to as adsorbent for magnetic solid-phase extraction (MSPE) of triazole fungicides from environmental water samples. Five triazole fungicides, namely, triadimenol, hexaconazole, diniconazole, myclobutanil, and tebuconazole, were selected as target analytes for MSPE. These analytes were quantitatively adsorbed on microspheres, and the sorbents were separated from the solution by using a magnet. The analytes were desorbed by methanol and determined through liquid-chromatography coupled with tandem mass spectrometry. The extraction parameters affecting the extraction efficiency were optimized through response surface methodology. The limits of detection and limits of quantification for the selected fungicides were 0.19-1.20ngL(-1) and 0.61-3.62ngL(-1), respectively. The proposed method was applied to determine the concentration of fungicides in actual environmental water samples. The accuracy of the proposed method was evaluated by measuring the recovery of the spiked samples. The satisfying recoveries of the four water samples ranged from 90.2% to 104.2%. Therefore, the magnetic metal-organic framework/TiO2 nanocomposite based MSPE is a potential approach to analyze fungicides in actual water samples. PMID:27592609

  20. Lubrication and load-bearing properties of human salivary pellicles adsorbed ex vivo on molecularly smooth substrata.

    PubMed

    Harvey, Neale M; Yakubov, Gleb E; Stokes, Jason R; Klein, Jacob

    2012-01-01

    In a series of Surface Force Balance experiments, material from human whole saliva was adsorbed to molecularly smooth mica substrata (to form an 'adsorbed salivary film'). Measurements were taken of normal (load bearing, F (n)) and shear (frictional, F (s)*) forces between two interacting surfaces. One investigation involved a salivary film formed by overnight adsorption from undiluted, centrifuged saliva, with the adsorbed film rinsed with pure water before measurement. Measurements were taken under pure water and 70 mM NaNO(3). In a second investigation, a film was formed from and measured under a solution of 7% filtered saliva in 10 mM NaNO(3). F (n) results for both systems showed purely repulsive layers, with an uncompressed thickness of 35-70 nm for the diluted saliva investigation and, prior to the application of shear, 11 nm for the rinsed system. F (s)* was essentially proportional to F (n) for all systems and independent of shear speed (in the range 100-2000 nm s(-1)), with coefficients of friction μ ≈ 0.24 and μ ≈ 0.46 for the unrinsed and rinsed systems, respectively. All properties of the rinsed system remained similar when the pure water measurement environment was changed to 70 mM NaNO(3). For all systems studied, shear gave rise to an approximately threefold increase in the range of normal forces, attributed to the ploughing up of adsorbed material during shear to form debris that stood proud of the adsorbed layer. The results provide a microscopic demonstration of the wear process for a salivary film under shear and may be of particular interest for understanding the implications for in vivo oral lubrication under conditions such as rinsing of the mouth cavity. The work is interpreted in light of earlier studies that showed a structural collapse and increase in friction for an adsorbed salivary film in an environment of low ionic strength.

  1. TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Kefi, Bochra Bejaoui; El Atrache, Latifa Latrous; Kochkar, Hafedh; Ghorbel, Abdelhamid

    2011-01-01

    An analytical method based on TiO2 nanotubes solid-phase extraction (SPE) combined with gas chromatography (GC) was established for the analysis of seven polycyclic aromatic hydrocarbons (PAHs): acenaphtylene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene and pyrene. Factors affecting the extraction efficiency including the eluent type and its volume, adsorbent amount, sample volume, sample pH and sample flow rate were optimized. The characteristic data of analytical performance were determined to investigate the sensitivity and precision of the method. Under the optimized extraction conditions, the method showed good linearity in the range of 0.01-0.8 microg/mL, repeatability of the extraction (RSD were between 6.7% and 13.5%, n = 5) and satisfactory detection limits (0.017-0.059 ng/mL). The developed method was successfully applied to the analysis of surface water (tap, river and dam) samples. The recoveries of PAHs spiked in environmental water samples ranged from 90% to 100%. All the results indicated the potential application of titanate nanotubes as solid-phase extraction adsorbents to pre-treat water samples.

  2. Impact of temperature and electrical potentials on the stability and structure of collagen adsorbed on the gold electrode

    NASA Astrophysics Data System (ADS)

    Meiners, Frank; Ahlers, Michael; Brand, Izabella; Wittstock, Gunther

    2015-01-01

    The morphology and structure of collagen type I adsorbed on gold electrodes were studied as a function of electrode potential and temperature by means of capacitance measurements, polarization modulation infrared reflection-absorption spectroscopy and scanning force microscopy at temperatures of 37 °C, 43 °C and 50 °C. The selected temperatures corresponded to the normal body temperature, temperature of denaturation of collagen molecules and denaturation of collagen fibrils, respectively. Independently of the solution temperature, collagen was adsorbed on gold electrodes in the potential range - 0.7 V < E < 0.4 V vs. Ag/AgCl, where the protein film was very stable. Fragments of collagen molecules made a direct contact to the gold surface and water was present in the film. Protein molecules were oriented preferentially with their long axis towards the gold surface. Collagen molecules in the adsorbed state preserved their native triple helical structure even at temperatures corresponding to collagen denaturation in aqueous solutions. Application of E < - 0.75 V vs. Ag/AgCl leads to the swelling of the protein film by water and desorption from the electrode surface. IR spectra provided no evidence of the thermal denaturation of adsorbed collagen molecules. A temperature increase to 50 °C leads to a distortion of the collagen film. The processes of aggregation and fibrilization were preferred over thermal denaturation for collagen adsorbed on the electrode surface and exposed to changing potentials.

  3. Arsenic Re-Mobilization in Water Treatment Adsorbents Under Reducing Conditions: Part II, XAS and Modeling Study

    SciTech Connect

    Liu,S.; Jing, C.; Meng, X.

    2008-01-01

    The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an average As(III)-O bond distance of 1.78 Angstroms and As(III)-Fe distance of 3.34 Angstroms . The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.

  4. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect

    Holinga IV, George Joseph

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  5. Graphene-modified TiO2 nanotube arrays as an adsorbent in micro-solid phase extraction for determination of carbamate pesticides in water samples.

    PubMed

    Zhou, Qingxiang; Fang, Zhi

    2015-04-15

    Graphene is a good adsorbent for organic pollutants, especially for compounds containing benzene rings. When used in TiO2 nanotube arrays for micro-solid phase extraction (μ-SPE), the combination of graphene's strong adsorptive properties with its good separation capabilities results in excellent sample preconcentration performance. In the present study, graphene-modified TiO2 nanotube arrays were prepared by electrodeposition using a cyclic voltammetric reduction method. Four carbamate pesticides, including metolcarb, carbaryl, isoprocarb, and diethofencarb, were used as model analytes to validate the enrichment properties of the prepared adsorbent in μ-SPE. Factors affecting the enrichment efficiency of the μ-SPE procedure were optimized and included sample pH, elution solvents, salting-out effect, adsorption time and desorption time. Under optimal conditions, graphene-modified TiO2 nanotube arrays exhibited excellent enrichment efficiency for carbamate pesticides. The detection limits of these carbamate pesticides ranged from 2.27 to 3.26 μg L(-1). The proposed method was validated using four environmental water samples, and yields of pesticides recovered from spiked test samples of the four analytes were in the range of 83.9-108.8%. These results indicate that graphene-modified TiO2 nanotube arrays exhibit good adsorption to the target pollutants, and the method described in this work could be used as a faster and easier alternative procedure for routine analysis of carbamate pesticides in real water samples. PMID:25818138

  6. Graphene-modified TiO2 nanotube arrays as an adsorbent in micro-solid phase extraction for determination of carbamate pesticides in water samples.

    PubMed

    Zhou, Qingxiang; Fang, Zhi

    2015-04-15

    Graphene is a good adsorbent for organic pollutants, especially for compounds containing benzene rings. When used in TiO2 nanotube arrays for micro-solid phase extraction (μ-SPE), the combination of graphene's strong adsorptive properties with its good separation capabilities results in excellent sample preconcentration performance. In the present study, graphene-modified TiO2 nanotube arrays were prepared by electrodeposition using a cyclic voltammetric reduction method. Four carbamate pesticides, including metolcarb, carbaryl, isoprocarb, and diethofencarb, were used as model analytes to validate the enrichment properties of the prepared adsorbent in μ-SPE. Factors affecting the enrichment efficiency of the μ-SPE procedure were optimized and included sample pH, elution solvents, salting-out effect, adsorption time and desorption time. Under optimal conditions, graphene-modified TiO2 nanotube arrays exhibited excellent enrichment efficiency for carbamate pesticides. The detection limits of these carbamate pesticides ranged from 2.27 to 3.26 μg L(-1). The proposed method was validated using four environmental water samples, and yields of pesticides recovered from spiked test samples of the four analytes were in the range of 83.9-108.8%. These results indicate that graphene-modified TiO2 nanotube arrays exhibit good adsorption to the target pollutants, and the method described in this work could be used as a faster and easier alternative procedure for routine analysis of carbamate pesticides in real water samples.

  7. Evaluation of the use of performance reference compounds in an oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater

    USGS Publications Warehouse

    Mazzella, N.; Lissalde, S.; Moreira, S.; Delmas, F.; Mazellier, P.; Huckins, J.N.

    2010-01-01

    Passive samplers such as the Polar Organic Chemical Integrative Sampler (POCIS) are useful tools for monitoring trace levels of polar organic chemicals in aquatic environments. The use of performance reference compounds (PRC) spiked into the POCIS adsorbent for in situ calibration may improve the semiquantitative nature of water concentration estimates based on this type of sampler. In this work, deuterium labeled atrazine-desisopropyl (DIA-d5) was chosen as PRC because of its relatively high fugacity from Oasis HLB (the POCIS adsorbent used) and our earlier evidence of its isotropic exchange. In situ calibration of POCIS spiked with DIA-d5was performed, and the resulting time-weighted average concentration estimates were compared with similar values from an automatic sampler equipped with Oasis HLB cartridges. Before PRC correction, water concentration estimates based on POCIS data sampling ratesfrom a laboratory calibration exposure were systematically lower than the reference concentrations obtained with the automatic sampler. Use of the DIA-d5 PRC data to correct POCIS sampling rates narrowed differences between corresponding values derived from the two methods. Application of PRCs for in situ calibration seems promising for improving POCIS-derived concentration estimates of polar pesticides. However, careful attention must be paid to the minimization of matrix effects when the quantification is performed by HPLC-ESI-MS/MS. ?? 2010 American Chemical Society.

  8. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial

    2016-09-23

    The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. PMID:27578405

  9. Ultralayered Co3O4 as a new adsorbent for preconcentration of Pb(II) from water, food, sediment and tobacco samples.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2013-10-15

    In this study, ultralayered Co3O4 adsorbent was synthesized and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface area of the solid material was found to be 75.5m(2)g(-1) by BET method. The ultralayered Co3O4 was used for the first time as an effective adsorbent for the preconcentration of the Pb(II) ions in various samples prior to flame atomic absorption detection. Analytical parameters affecting the solid phase extraction of Pb(II) such as pH, adsorption and elution contact time, eluent volume and concentration, sample volume and common matrix ions were investigated. The recovery values for Pb(II) were found to be ≥ 92% even in the presence of 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), and 75,000 mg L(-1) Ca(II) ions. 10s vortexing time was enough for both adsorption and elution contact times. The elution was easily made with 2 mL of 2.0 mol L(-1) HNO3. The reusability (170 cycles) and adsorption capacity (35.5 mg g(-1)) of ultralayered Co3O4 were excellent. The preconcentration factor of the method and detection limit were found to be 175 and 0.72 µg L(-1), respectively. The described method was validated with certified reference material (RM 8704 Buffalo River Sediment, BCR-482 Licken and SPS-WW1 Batch 111-Wastewater) and spiked real samples. It was also applied for the preconcentration of Pb(II) ions in various water (well water, mineral water, waste water and sea water), food (cauliflower and barley), street sediment and tobacco samples.

  10. Ice-Accretion Scaling Using Water-Film Thickness Parameters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Feo, Alejandro

    2003-01-01

    Studies were performed at INTA in Spain to determine water-film thickness on a stagnation-point probe inserted in a simulated cloud. The measurements were correlated with non-dimensional parameters describing the flow and the cloud conditions. Icing scaling tests in the NASA Glenn Icing Research Tunnel were then conducted using the Ruff scaling method with the scale velocity found by matching scale and reference values of either the INTA non-dimensional water-film thickness or a Weber number based on that film thickness. For comparison, tests were also performed using the constant drop-size Weber number and the average-velocity methods. The reference and scale models were both aluminum, 61-cm-span, NACA 0012 airfoil sections at 0 deg. AOA. The reference had a 53-cm-chord and the scale, 27 cm (1/2 size). Both models were mounted vertically in the center of the IRT test section. Tests covered a freezing fraction range of 0.28 to 1.0. Rime ice (n = 1.0) tests showed the consistency of the IRT calibration over a range of velocities. At a freezing fraction of 0.76, there was no significant difference in the scale ice shapes produced by the different methods. For freezing fractions of 0.40, 0.52 and 0.61, somewhat better agreement with the reference horn angles was typically achieved with the average-velocity and constant-film thickness methods than when either of the two Weber numbers was matched to the reference value. At a freezing fraction of 0.28, the four methods were judged equal in providing simulations of the reference shape.

  11. Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics.

    PubMed

    Péroval, Claudine; Debeaufort, Frédéric; Despré, Denis; Voilley, Andrée

    2002-07-01

    Arabinoxylans (AX) are natural fibers extracted from maize bran, an industrial byproduct. To promote this polymer as a food ingredient, development of edible coatings and films had been proposed. Indeed, composite arabinoxylan-based films were prepared by emulsifying a fat: palmitic acid, oleic acid, triolein, or a hydrogenated palm oil (OK35). Lipid effects on water vapor permeability (WVP), surface hydrophobicity (contact angles), lipid particle size, and mechanical properties were investigated. Results showed that OK35-AX emulsion films had the lowest WVP. Emulsified films presented a bimodal particle size distribution; however, the smallest particle mean diameter (0.54 microm) was observed in OK35-AX emulsion films. Contact angles of water comparable to those observed for LDPE films (>90 degrees ) are measured on the OK35-AX film surface. Finally, only triolein-AX emulsion films had elongation higher than films without lipid. These results suggest that OK35 enhances functional properties of AX-based films and should be retained for further research.

  12. A Multi-technique Characterization of Adsorbed Protein Films: Orientation and Structure by ToF-SIMS, NEXAFS, SFG, and XPS

    NASA Astrophysics Data System (ADS)

    Baio, Joseph E.

    immobilization schemes. This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo- (ethylene glycol) (MEG)-terminated substrates. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv. Indicating that the HuLys Fv fragment when adsorbed into the NTA and MEG substrates will be induced into two different orientations. On the NTA substrate the protein's binding site is accessible, while on the MEG substrate the binding site is oriented towards the surface. By taking advantage of the electron pathway through the heme group in cytochrome c (CytoC) electrochemists have built sensors based upon CytoC immobilized onto functionalized metal electrodes. When immobilized onto a charged surface, CytoC, with its distribution of lysine and glutamate residues around its surface, should orient and form a well-ordered protein film. Here a detailed examination of CytoC orientation when electrostatically immobilized onto both amine (NH 3+) and carboxyl (COO-) functionalized gold is presented. Again, protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within CytoC, indicating opposite orientations of the protein on the two different surfaces. Spectral features within the in situ sum frequency generation vibrational spectra, acquired for the protein interacting with

  13. Surface rheology of PEO-PPO-PEO triblock copolymers at the air-water interface: comparison of spread and adsorbed layers.

    PubMed

    Blomqvist, B Rippner; Wärnheim, T; Claesson, P M

    2005-07-01

    The dilatational rheological properties of monolayers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-type block copolymers at the air-water interface have been investigated by employing an oscillating ring trough method. The properties of adsorbed monolayers were compared to spread layers over a range of surface concentrations. The studied polymers were PEO26-PPO39-PEO26 (P85), PEO103-PPO40-PEO103 (F88), and PEO99-PPO65-PEO99 (F127). Thus, two of the polymers have similar PPO block size and two of them have similar PEO block size, which allows us to draw conclusions about the relationship between molecular structure and surface dilatational rheology. The dilatational properties of adsorbed monolayers were investigated as a function of time and bulk solution concentration. The time dependence was found to be rather complex, reflecting structural changes in the layer. When the dilatational modulus measured at different concentrations was replotted as a function of surface pressure, one unique master curve was obtained for each polymer. It was found that the dilatational behavior of spread (Langmuir) and adsorbed (Gibbs) monolayers of the same polymer is close to identical up to surface concentrations of approximately 0.7 mg/m2. At higher coverage, the properties are qualitatively alike with respect to dilatational modulus, although some differences are noticeable. Relaxation processes take place mainly within the interfacial layers by a redistribution of polymer segments. Several conformational transitions were shown to occur as the area per molecule decreased. PEO desorbs significantly from the interface at segmental areas below 20 A(2), while at higher surface coverage, we propose that segments of PPO are forced to leave the interface to form a mixed sublayer in the aqueous region. PMID:15982044

  14. Water/carbonate stripping for CO.sub.2 capture adsorber regeneration and CO.sub.2 delivery to photoautotrophs

    SciTech Connect

    Chance, Ronald; Koros, William J.; McCool, Benjamin; Noel, James

    2015-08-11

    The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO.sub.2 capture and provides for effective CO.sub.2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO.sub.2 via a dense (non-porous) membrane from a carbonate-based CO.sub.2 snipping solution to a culture medium where the CO.sub.2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.

  15. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  16. Simultaneous removal of multiple pesticides from water: effect of organically modified clays as coagulant aid and adsorbent in coagulation-flocculation process.

    PubMed

    Shabeer, T P Ahammed; Saha, Ajoy; Gajbhiye, V T; Gupta, Suman; Manjaiah, K M; Varghese, Eldho

    2014-01-01

    Contamination of drinking water sources with agrochemical residues became a major concern in the twenty-first century. Coagulation-flocculation is the most widely used water-treatment process, but the efficiency to remove pesticides and other organic pollutants are limited compared to adsorption process. Thus, simultaneous action of adsorption on normal bentonite or organo-modified montmorillonite clays [modified with octadecylamine (ODA-M) and octadecylamine + amino-propyltriethoxysilane (ODAAPS-M)] followed by coagulation-flocculation by alum and poly aluminium chloride has been evaluated for removal of 10 different pesticides, namely atrazine, lindane, metribuzin, aldrin, chlorpyriphos, pendimethalin, alpha-endosulphan, beta-endosulphan, p,p'-DDT, cypermethrin and two of its metabolites, endosulphan sulphate and p,p'-DDE, from water. The coagulation without integration of adsorption was less effective (removal % varies from 12 to 49) than the adsorption-coagulation integrated system (removal % varies from 71 to 100). Further, coagulation integrated with adsorption was more effective when organically modified montmorillonite was used as adsorbent compared to normal bentonite. The removal efficiency of organic clay depends upon the concentration of pesticides, doses of clay minerals, and efficiency was more for ODAAPS-M as compared to ODA-M. The combination of ODAAPS-M-clay with coagulants was also used efficiently for the removal of pesticides from natural and fortified natural water collected and the results exhibit the usefulness of this remediation technique for application in water decontamination and in treatment of industrial and agricultural waste waters.

  17. Stretching Ultra-thin Polymer Films on Water

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Crosby, Alfred J.

    2014-03-01

    The mechanical properties of many materials, including polymers, are known to change as materials become dimensionally confined; however, the extent and mechanism for these transitions are difficult to quantify due to experimental challenges. Some methods allow a single property, such as the elastic modulus, to be determined, however relatively few, if any, allow the full constitutive relationship, including linear and nonlinear regimes, to be measured for thin, inherently fragile materials. Here, we describe a new method that overcomes these limitations. Specifically, we quantify the uniaxial tension stress-strain relationship for polystyrene (PS, MW =130kg/mol) and crosslinked polydimethylsiloxane (PDMS) elastomer as a function of film thickness (29nm-400nm for PS; 2 μm-200 μm for PDMS). We perform these measurements by floating thin films on a water surface and attaching one end of the film to a fixed boundary, and the other to a cantilever that is attached to a translating actuator. We use a reflective laser tracking system to measure cantilever displacement, hence the force, as a function of applied displacement. In addition to the elastic modulus as a function of thickness, we present observations of non-linear transitions and cyclic hysteresis as a function of strain.

  18. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  19. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  20. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  1. Gas-film coefficients for the volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tal, D.Y.

    1986-01-01

    Gas-film coefficients for the volatilization of ethylene dibromide (EDB) and water were determined in the laboratory as a function of wind speed and temperature. The ratio of the coefficients was independent of wind speed and increased slightly with temperature. Use of this ratio with an environmentally determined gas-film coefficient for the evaporation of water permits determination of the gas-film coefficient for the volatilization of EDB from environmental waters.

  2. Let's Talk About Water: Film Screenings as an Entrée to Water Science

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Lilienfeld, L.; Arrigo, J.

    2011-12-01

    "Let's Talk about Water" is a film symposium designed to bring together experts and the public to talk about the complex water issues facing society. The format of the event is quite simple: a panel of experts and the audience view a water documentary (such as "FLOW", "Liquid Assets", or "Gasland") together and there is an extended moderated discussion period following the film between the panel and the audience. Properly handled, this simple format can be very effective. A film creates a context of subject and language for the discussion--it gets the audience and the panel on the same page. The moderators must actively manage the discussion, both challenging the panelists with follow up questions, asking questions to simplify the language the expert is using, and passing a question among panelists to bring out different points of view. The panelists are provided with the film in advance to view and, most importantly, meet the day before the event to discuss the film. This makes for a much more convivial discussion at the event. We have found that these discussions can easily be sustained for 90 to 120 minutes with active audience participation. This format has been applied at college campuses with a target audience of lower-level undergraduates. Student clubs are engaged to help with publicity before the event and to assist with registration and ushering during the event. Appropriate classes offer extra credit for student attendance to ensure a strong turnout. A Hollywood film ("Chinatown" in southern California, "A Civil Action" in Boston) is shown on campus during the week preceding the event to help advertise the event. The event itself is typically held on a Saturday with a morning screening of the film. The audience is provided with index cards and pencils to write down questions they have about the film. A lunch is provided during which the questions are organized and used to initiate different discussion themes. The discussion begins with points raised by

  3. Effect of film morphology on oxygen and water interaction with copper phthalocyanine

    SciTech Connect

    Miller, Nicholas; Gredig, Thomas; Ivanov, Ilia N

    2016-01-01

    Copper phthalocyanine (CuPc) films of thickness 25 nm and 100 nm were grown by thermal sublimation at 25 C, 150 C, and 250 C in order to vary morphology. Using a source-measure unit and a quartz crystal microbalance (QCM), we measured changes in electrical resistance and film mass in situ during exposure to controlled pulses of O2 and H2O vapor. Mass loading by O2 was enhanced by a factor of 5 in films deposited at 250 C, possibly due to the ~200 C CuPc transition which allows higher O2 mobility between stacked molecules. While gas/vapor sorption occurred over timescales of < 10 minutes, resistance change occurred over timescales > 1 hour, suggesting that mass change occurs by rapid adsorption at active surface sites, whereas resistive response is dominated by slow diffusion of adsorbates into the film bulk. Resistive response generally increases with film deposition temperature due to increased porosity associated with larger crystalline domains. The 25 nm thick films exhibit higher resistive response than 100 nm thick films after an hour of O2/H2O exposure due to the smaller analyte diffusion length required for reaching the film/electrode interface. We found evidence of decoupling of CuPc from the gold-coated QCM crystal due to preferential adsorption of O2/H2O molecules on gold, which is consistent with findings of other studies.

  4. Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes

    NASA Astrophysics Data System (ADS)

    Zhu, Shuangmei; Fan, Chunzhen; Wang, Junqiao; He, Jinna; Liang, Erjun

    2014-06-01

    Polyvinylpyrrolidone (PVP)-protected silver nanostructures of various shapes, including nanocubes, nanospheres, and hybrid shapes with nanospheres and nanorods, on the surface of glass or Si substrates (PVP-Ag films) are prepared by using electrostatic self-assembly. With 4-mercaptobenzoic acid (4-MBA) as a probe molecule, it is demonstrated that the PVP-protected silver nanocubes films (PVP-Ag NCs) have better surface-enhanced Raman scattering (SERS) activity with an order of magnitude larger enhancement factors (EF) than the PVP-protected silver nanospheres films and the PVP-protected silver hybrid shapes films, which is confirmed by our numerical simulations. The EF of 4-MBA on the PVP-Ag NCs film are up to ~5.38 × 106, and the detection limit is at least down to ~10-8 M. The uniformity and reproducibility of the SERS signals on PVP-Ag NCs film are tested by point-to-point and batch-to-batch measurements. Meanwhile, the PVP-Ag films are also shown to be an excellent SERS substrate with good biocompatibility for hemoglobin detection. It is shown that the PVP-Ag NCs films can be used as excellent SERS substrate with good activity, uniformity, reproducibility, and biocompatibility and are promising for a myriad of chemical and biochemical sensing applications.

  5. Effect of addition of water-soluble chitin on amylose film.

    PubMed

    Suzuki, Shiho; Shimahashi, Katsumasa; Takahara, Junichi; Sunako, Michihiro; Takaha, Takeshi; Ogawa, Kozo; Kitamura, Shinichi

    2005-01-01

    Amylose films blended with chitosan, which were free from additives such as acid, salt, and plasticizer, were prepared by casting mixtures of an aqueous solution of an enzymatically synthesized amylose and that of water-soluble chitin (44.1% deacetylated). The presence of a small amount of chitin (less than 10%) increased significantly the permeability of gases (N2, O2, CO2, C2H4) and improved the mechanical parameters of amylose film; particularly, the elastic modulus and elongation of the blend films were larger than those of amylose or chitin films. No antibacterial activity was observed with either amylose or water-soluble chitin films. But amylose films having a small amount of chitin showed strong antibacterial action, suggesting a morphological change in water-soluble chitin on the film surface by blending with amylose molecule. These facts suggested the presence of a molecular complex of amylose and chitosan. PMID:16283751

  6. Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy (SERS) of Ag electrodes

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno; Philpott, Michael R.; Gordon, Joseph G., II

    1981-01-01

    Surface enhanced Raman scattering (SERS) has been observed from silver electrodes for water (H2O and D2O) in the frequency region of the librational, bending, and stretching modes. Simultaneously, SERS has been observed for halide ions and some organic impurities. The appearance of SERS from water and halide ions under the circumstances of the experiment is attributed to the formation of surface complexes involving silver adatoms, halide ions, and water molecules.

  7. X-ray diffraction studies of freezing and melting of water confined in a mesoporous adsorbent (MCM-41)

    NASA Astrophysics Data System (ADS)

    Morishige, K.; Nobuoka, K.

    1997-11-01

    In order to study the freezing/melting behavior of pore water, we performed x-ray diffraction measurements of water confined inside the cylindrical pores of two kinds of siliceous MCM-41 with different pore size and one kind of aluminosilicate MCM-41 as a function of temperature. The results show that its freezing/melting behavior is not affected by the incorporation of Al into the pore wall and the hysteresis effect between freezing and melting is very small or negligible. On cooling the water in the middle of the pores with a pore diameter of 4.2 nm, that is, the free water freezes abruptly around 232 K to give rise to cubic ice while the water confined in the pores with a pore diameter of 2.4 nm freezes very gradually at lower temperatures. The diffraction profile after the freezing of the free water suggests that the interfacial water confined between the surface of the pore wall and the frozen phase of the free water consists of randomly displaced water molecules.

  8. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films.

    PubMed

    Wang, Wenwang; Li, Cong; Zhang, Hongjie; Ni, Yonghao

    2016-05-01

    Improvement of mechanical and water barrier properties is critical for gelatin films when applied to edible food packaging. A liquid smoke (LS) obtained from hawthorn nucleus was used to improve the performance of gelatin film based on its abundant compounds. Through SPME-GC-MS analysis, 86 volatile and semi-volatile chemical compounds was detected in LS, in which the total carbonyl compounds were 27.60%, with the main aldehyde as 2-furaldehyde (9.83%). For gelatin films, an observable influence of LS on film transparency was observed in gelatin films, but not for its thickness and microstructure. Desirably, adding LS into gelatin solution increased the tensile strength of the films, with a better value of 16.38 MPa as 3 wt% LS added, compared with the control (10.30 MPa). Accordingly, film elongation decreased with a LS dependent manner. Furthermore, the water resistance properties of gelatin film were improved by the LS addition, which was supported by the results of water contact angle, water vapor permeability. Moreover, the addition of LS also led to a higher insolubility for gelatin films. Also, thermal stability of the LS treated gelatin films was slightly enhanced with the DSC analysis. According to the FTIR spectra and crosslinking degree detection results, all the above enhancing of gelatin film should be attributed to the crosslinking between carbonyl groups in LS and amide functionalities in gelatin based on nucleophilic reaction. PMID:27061211

  9. Using Liquid Smoke to Improve Mechanical and Water Resistance Properties of Gelatin Films.

    PubMed

    Wang, Wenwang; Li, Cong; Zhang, Hongjie; Ni, Yonghao

    2016-05-01

    Improvement of mechanical and water barrier properties is critical for gelatin films when applied to edible food packaging. A liquid smoke (LS) obtained from hawthorn nucleus was used to improve the performance of gelatin film based on its abundant compounds. Through SPME-GC-MS analysis, 86 volatile and semi-volatile chemical compounds was detected in LS, in which the total carbonyl compounds were 27.60%, with the main aldehyde as 2-furaldehyde (9.83%). For gelatin films, an observable influence of LS on film transparency was observed in gelatin films, but not for its thickness and microstructure. Desirably, adding LS into gelatin solution increased the tensile strength of the films, with a better value of 16.38 MPa as 3 wt% LS added, compared with the control (10.30 MPa). Accordingly, film elongation decreased with a LS dependent manner. Furthermore, the water resistance properties of gelatin film were improved by the LS addition, which was supported by the results of water contact angle, water vapor permeability. Moreover, the addition of LS also led to a higher insolubility for gelatin films. Also, thermal stability of the LS treated gelatin films was slightly enhanced with the DSC analysis. According to the FTIR spectra and crosslinking degree detection results, all the above enhancing of gelatin film should be attributed to the crosslinking between carbonyl groups in LS and amide functionalities in gelatin based on nucleophilic reaction.

  10. Water vapor permeability, mechanical properties and antioxidant effect of Mexican oregano-soy based edible films.

    PubMed

    Pruneda, E; Peralta-Hernández, J M; Esquivel, K; Lee, S Y; Godínez, L A; Mendoza, S

    2008-08-01

    Water-soluble extracts from Mexican oregano (Lippia graveolens) were incorporated into soy protein isolate (SPI) films. Water vapor permeability, mechanical properties, and antioxidant ability were evaluated. All the extracts were capable of scavenging DPPH radicals in a concentration-dependent fashion; the IC50 values were obtained. Oregano extracts were incorporated into SPI films plasticized with sorbitol, glycerol, and glycerol-sorbitol 1:1. The addition of the extracts resulted in an increase in the water vapor permeability values and provided a dark reddish film appearance. Changes in tensile strength as well as elongation values were observed. The oregano SPI films exhibited antioxidant properties in a concentration-dependent fashion.

  11. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    PubMed

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-01

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  12. Determination of copper in tap water using solid-phase spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Philipp, Warren H.; Tanner, Stephen P.

    1994-01-01

    A new application of ion exchange films is presented. The films are used in a simple analytical method of directly determining low concentrations of Cu(2+) in aqueous solutions, in particular, drinking water. The basis for this new test method is the color and absorption intensity of the ion when adsorbed onto the film. The film takes on the characteristic color of the adsorbed cation, which is concentrated on the film by many orders of magnitude. The linear relationship between absorbance (corrected for variations in film thickness) and solution concentration makes the determinations possible. These determinations agree well with flame atomic absorption determinations.

  13. Cigarette filters as adsorbents of solid-phase extraction for determination of fluoroquinolone antibiotics in environmental water samples coupled with high-performance liquid chromatography.

    PubMed

    Chen, Bo; Wang, Weidong; Huang, Yuming

    2012-01-15

    The potential use of cigarette filters (CFs) as solid-phase extraction (SPE) adsorbents for the preconcentration of six fluoroquinolones (FQs) antibacterial agents prior to liquid chromatography was examined in this paper. In order to find a suitable procedure for extraction of the target FQs in one single step, various parameters probably affecting the extraction efficiency including the eluent kind and volume, sample flow rate, pH, ion strength and sample volume were systematically optimized. Under the optimized conditions, the target FQs could be easily extracted by the proposed SPE cartridge. Combination of SPE with HPLC/UV provided detection limits for different FQs of 2-5 ng L(-1) when 500 mL of water sample was processed. The precision of the method, expressed as relative standard deviation, ranged from 4.1 to 6.3% for 2.5 μg L(-1) FQs. The recoveries of FQs spiked in environmental water samples ranged from 76 to 112%. The results obtained from the proposed method demonstrated that CFs-based solid-phase extraction combined with HPLC/UV was suitable for analyzing fluoroquinolones in water samples at ng L(-1) concentration level.

  14. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  15. Permeation of oxygen, water vapor, and limonene through printed and unprinted biaxially oriented polypropylene films.

    PubMed

    Rubino, M; Tung, M A; Yada, S; Britt, I J

    2001-06-01

    Oriented polypropylene (OPP) and coated OPP (acrylic/OPP/PVDC) films were printed with two commercially available inks to investigate the influence of inks on water vapor and oxygen transmission rates. The permeation of an aroma compound (d-limonene) through coated OPP film printed with these inks was also evaluated at 35 degrees C and 100% relative humidity. The water vapor transmission rate increased significantly through OPP film printed with nitrocellulose-based ink. The oxygen transmission rate was significantly lower through both OPP and coated OPP films printed with the nitrocellulose ink. The effect of inks on limonene permeation was minor compared to the marked increase in permeation measured when the PVDC side of the coated film was exposed to the aroma, compared to the acrylic side. Scanning electron micrographs of coated film cross sections revealed changes in film structure upon exposure to limonene vapors, which were most pronounced when the PVDC side was exposed to limonene.

  16. Isolation of enteroviruses from water, suspended solids, and sediments from Galveston Bay: survival of poliovirus and rotavirus adsorbed to sediments.

    PubMed Central

    Rao, V C; Seidel, K M; Goyal, S M; Metcalf, T G; Melnick, J L

    1984-01-01

    The distribution and quantitation of enteroviruses among water, suspended solids, and compact sediments in a polluted estuary are described. Samples were collected sequentially from water, suspended solids, fluffy sediments (uppermost layer of bottom sediments), and compact sediment. A total of 103 samples were examined of which 27 (26%) were positive for virus. Polioviruses were recovered most often, followed by coxsackie B viruses and echoviruses 7 and 29. Virus was found most often attached to suspended solids: 72% of these samples were positive, whereas only 14% of water samples without solids yielded virus. Fluffy sediments yielded virus in 47% of the samples, whereas only 5% of compact bottom-sediment samples were positive. When associated with solids, poliovirus and rotavirus retained their infectious quality for 19 days. The same viruses remained infectious for only 9 days when freely suspended in seawater. Collection of suspended solids at ambient water pH appears to be very useful for the detection of virus; it has advantages over collecting and processing large volumes of water, with accompanying pH adjustment and salt addition for processing. PMID:6091548

  17. Nitrogen cycling between sediment and the shallow-water column in the transition zone of the Potomac River and Estuary. II. The role of wind-driven resuspension and adsorbed ammonium

    USGS Publications Warehouse

    Simon, N.S.

    1989-01-01

    During periods of sediment resuspension, desorption of ammonium from sediment solids can be the major pathway for enriching the water column with the ammonium that is produced by bacterial degradation of organic matter in the bottom material. This hyopthesis is based on a three-year study of diffusive flux in the transition zone of the Potomac River at a site 35 m from the Virginia shore where the average water-column depth is approximately 1 m over sandy sediment. A diffusion-controlled sampler was used to collect water samples at the interface between the water column and sediment and at several tens of centimeters into the sediment. Interstitial water concentration gradients showed that diffusive flux of ammonium from the sandy shallow-water sediments was approximately 1% of the diffusive flux of ammonium from the silty channel sediments in the same zone of the Potomac River. Organic nitrogen and bound or adsorbed ammonium were the predominant nitrogen forms in the sediment. Adsorbed ammonium concentrations ranged from nondetectable to 3??7 ??mol g-1 of sediment. Concentrations of adsorbed ammonium per gram of sediment were one to three orders of magnitude more than interstitial water ammonium concentrations. Desorption of ammonium from sediment solids appeared to be the controlling factor in the degree of water-column ammonium enrichment. In laboratory experiments that simulated sediment resuspension, 40-80% of the adsorbed ammonium predicted to desorb did so after approximately 30 min of mixing. Based on calculations for 1 m2 to a depth of 4 cm, one resuspenion event lasting minutes could mix more ammonium into the water column from desorption of ammonium from sediment solids than could be delivered to the water column by diffusive flux from shallow-water sediments in 10-1000 days and would be comparable to enrichment by ammonium diffusive flux for 5-50 days from channel sediments in the same river zone. ?? 1989.

  18. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  19. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  20. Adsorption Properties of Thin Films Prepared by RF Sputtering with a Poly(biphenyltetracarboxylic dianhydride-paraphenylene diamine) Polyimide Target

    NASA Astrophysics Data System (ADS)

    Iwamori, Satoru; Yano, Satoshi; Sugimoto, Ryousuke; Uemura, Akihiro; Matsumoto, Hiroyuki; Noda, Kazutoshi

    2010-04-01

    Thin films were deposited onto a quartz crystal with a poly(biphenyltetracarboxylic dianhydride-paraphenylene diamine) (BPDA-PDA) polyimide target by RF sputtering, and the adsorption properties of these thin films for water, ethanol, acetone, acetaldehyde, toluene, and methyl salicylate were evaluated by the quartz crystal microbalance (QCM) method to characterize the surface properties of these thin films. Chemical structures, especially surface free energies of these thin films would affect the gas adsorption properties. In addition, the number of adsorbed gas molecules increased with decreasing molecular weight on each sputtered thin film. Furthermore, these gas molecules would be adsorbed inside the sputtered thin films as well as on the top surface. The number of adsorbed gas molecules increased with decreasing molecular size on each sputtered thin film.

  1. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    SciTech Connect

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi

    2015-01-15

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  2. Water Films, 2nd Edition, 1965-1974.

    ERIC Educational Resources Information Center

    Canadian National Committee, Ottawa (Ontario).

    This is an annotated listing of 455 films on hydrology, as well as on many allied fields. This second edition, much more comprehensive than the first, is not intended to serve as a critical evaluation, but should be used solely as a source of information as to what films are available. All films are listed alphabetically according to their titles…

  3. The effects of adsorbed water on tensile strength and Young's modulus of moldings determined by means of a three-point bending method.

    PubMed

    Tsukamoto, T; Chen, C Y; Okamoto, H; Danjo, K

    2000-06-01

    Young's moduli (E) of three representative tableting excipients and their mix powders were measured for compressed rectangular beam specimens over a range of porosities using a three-point bending technique. We also examined the effects of the amount of water adsorbed on the tensile strength of these specimens. The maximal tensile strength (sigma(max)) decreased with increasing water vapor adsorption for microcrystalline cellulose (MCC) and mixed powders of lactose and MCC. Sigma(max) increased with increasing compression stress and specimen weight for all samples. Sigma(max) of an alpha-lactose and cornstarch mixture with a ratio of 7:3 showed a large value. Young's modulus (E) and the crushing energy (CE) of MCC were larger than those of the other samples. Young's modulus of specimens decreased as the proportion of alpha-lactose increased. Disintegration time (DT) of tablets comprised of lactose and MCC mixture was much faster than those of tablets comprised of individual powders. This appeared to demonstrate the effect of MCC swelling on the disintegration time of the tablet. The disintegration time of the lactose/cornstarch series increased only when Young's modulus increased sharply. PMID:10866134

  4. Preparation of iron nanoparticles-loaded Spondias purpurea seed waste as an excellent adsorbent for removal of phosphate from synthetic and natural waters.

    PubMed

    Arshadi, M; Foroughifard, S; Etemad Gholtash, J; Abbaspourrad, A

    2015-08-15

    The synthesis and characterization of nanoscale zerovalent iron particles (NZVI) supported on Spondias purpurea seed waste (S-NaOH-NZVI) was performed for the adsorption of phosphate (P) ions from waste waters. The effects of various parameters, such as contact time, pH, concentration, reusability and temperature were studied. The adsorption of phosphate ions has been studied in terms of pseudo-first- and -second-order kinetics, and the Freundlich, and Langmuir isotherms models have also been used to the equilibrium adsorption data. The adsorption kinetics followed the mechanism of the pseudo-second-order equation. The thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the adsorption of phosphate ions were feasible, spontaneous and endothermic at 25-80 °C. No significant loss of activity was observed; confirming that the S-NaOH-NZVI has high stability during the adsorption process even after 12th runs. The suggested adsorbent in this paper was also implemented to remove P from the Persian Gulf water. XRD, FTIR and EDX analysis indicated the presence of Fe3 (PO4)2⋅8H2O (vivianite) on the S-NaOH-NZVI@P surface.

  5. Using nanoscale amorphous solid water films to create and study deeply supercooled liquid water at interfaces

    NASA Astrophysics Data System (ADS)

    Kay, Bruce

    Molecular beam vapor deposition of water on cryogenic substrates is known to produce amorphous solid films. When heated above their glass transition these films transform into deeply supercooled liquid water. These nanoscale liquid films can be used to study kinetic processes such as diffusion, isotope exchange, crystallization, and solvent mediated reactions in unprecedented detail. This talk will highlight our recent advances in this area. My colleagues Yuntao Xu, Chunqing Yuan, Collin Dibble, R. Scott Smith, Nick Petrik, and Greg Kimmel made important contributions to this work.This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle, operated for the U.S. DOE under Contract DE-AC05-76RL01830.

  6. Analysis of water film thickness on contact lens by reflectometry technique

    NASA Astrophysics Data System (ADS)

    Wang, Michael R.; Lu, Hui; Wang, Jianhua; Shen, Meixiao

    2011-03-01

    We report the use of optical reflectometry technique for evaluation of water film on contact lens. The water film can be measured through the spectral dependent reflectance evaluation, which is carried out by illuminating the contact lens with a white light and collecting the returning light with an optical fiber coupled to a spectrometer. Water film thinning process has been observed on different soft contact lenses and minimum measurable thickness is about 0.85 μm. The measurement is fast and accurate. The water film measurement can be valuable for contact lens design to improve its hydrophilic properties. The technique can be extended for the study of tear film dynamics in an eye.

  7. Static and dynamic evanescent wave light scattering studies of diblock copolymers adsorbed at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lin, Binhua; Rice, Stuart A.; Weitz, D. A.

    1993-11-01

    We report the results of static and dynamic evanescent wave light scattering studies of a monolayer of a diblock copolymer, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) with weight averaged molecular weights (Mw) of 880 000:290 000 supported at the air/water interface. Our studies probe the interfacial structural and dynamic properties of the monolayer on a length scale which is a fraction of the wavelength of light. The static light scattering studies were carried out as a function of polymer surface coverage and temperature; we also report some preliminary data for the dependence of the static structure function on the relative molecular weights of the PS and PMMA blocks. The complementary dynamic light scattering studies were carried out only as a function of surface coverage. Our data suggest that, upon spreading in the air/water interface, PS-b-PMMA (880:290 K) copolymers form thin disklike aggregates containing about 240 molecules. These data are consistent with a model in which each such aggregate is a ``furry disk'' with a dense core consisting of a layer of collapsed PS blocks atop a thin layer of extended PMMA blocks on the water surface and a brushlike boundary of extended PMMA blocks. The data show that the furry disks diffuse freely when the surface coverage is small, but when the surface coverage is large, they are immobile. Our data also suggest that the furry disks can aggregate to form even larger ``islands'' of disks with an extension greater than 20 μm. The static structure function of the assembly of furry disks is well described, over a wide range of surface coverage, by the structure factor of a two-dimensional hard disk fluid modulated by a two-dimensional hard disk form factor.

  8. Water Dissociation on CeO2(100) and CeO2(111) Thin Films

    SciTech Connect

    Mullins, David R; Albrecht, Peter M; Chen, Tsung-Liang; Calaza, Florencia C; Biegalski, Micahel; Christen, Hans; Overbury, Steven {Steve} H

    2012-01-01

    This study reports and compares the adsorption and dissociation of water on oxidized and reduced CeO{sub 2}(100) and CeO{sub 2}(111) thin films. Water adsorbs dissociatively on both surfaces. On fully oxidized CeO{sub 2}(100) the resulting surface hydroxyls are relatively stable and recombine and desorb as water over a range from 200 to 600 K. The hydroxyls are much less stable on oxidized CeO{sub 2}(111), recombining and desorbing between 200 and 300 K. Water produces 30% more hydroxyls on reduced CeO{sub 1.7}(100) than on oxidized CeO{sub 2}(100). The hydroxyl concentration increases by 160% on reduced CeO{sub 1.7}(111) compared to oxidized CeO{sub 2}(111). On reduced CeO{sub 1.7}(100) most of the hydroxyls still recombine and desorb as water between 200 and 750 K. Most of the hydroxyls on reduced CeO{sub 1.7}(111) react to produce H{sub 2} at 560 K, leaving O on the surface. A relatively small amount of H{sub 2} is produced from reduced CeO{sub 1.7}(100) between 450 and 730 K. The differences in the adsorption and reaction of water on CeO{sub X}(100) and CeO{sub X}(111) are attributed to different adsorption sites on the two surfaces. The adsorption site on CeO{sub 2}(100) is a bridging site between two Ce cations. This adsorption site does not change when the ceria is reduced. The adsorption site on CeO{sub 2}(111) is atop a single Ce cation, and the proton is transferred to a surface O in a site between three Ce cations. When the CeO{sub X}(111) is reduced, vacancy sites are produced which allows the water to adsorb and dissociate on the 3-fold Ce cation sites.

  9. Hybrid inorganic/organic alumina adsorbents-functionalized-purpurogallin for removal and preconcentration of Cr(III), Fe(III), Cu(II), Cd(II) and Pb(II) from underground water.

    PubMed

    Mahmoud, Mohamed E; Hafez, Osama F; Osman, Maher M; Yakout, Amr A; Alrefaay, Ahmed

    2010-04-15

    Metal pollution is well recognized as one of the major environmental problems that must be imperatively addressed and solved. In this study, three types of alumina adsorbents (I-III) were physically immobilized with purporogallin as a chelating ion exchangers. These were found to exhibit strong capability and selectivity characters for a series of heavy metal ions. Surface modification of hybrid alumina was characterized and identified from the determination of surface coverage and infrared analysis. Hybrid alumina adsorbents were identified for their strong resistivity to acid leaching in pH>2-7 as well as their high thermal stability up to 350 degrees C. The ability of newly synthesized hybrid inorganic/organic alumina adsorbents (I-III) to bind and extract various metal ions was examined and evaluated in various buffer solutions (pH 1.0-7.0) via determination of the metal adsorption capacity values. These were identified as high as 420-560, 500-580 and 500-590 micromol g(-1) for alumina adsorbents (I), (II) and (III), respectively in the case of high concentration levels of Cr(III), Fe(III) and Cu(II). The influence of alumina matrices were highly characterized when low concentration levels (microg ml(-1) and ng ml(-1)) of metal ions were used. Hybrid alumina adsorbents were successfully applied for selective extraction, removal and preconcentration of various heavy metals from underground water samples with percentage recovery values of 92-100+/-1-3%. PMID:20031308

  10. Hybrid inorganic/organic alumina adsorbents-functionalized-purpurogallin for removal and preconcentration of Cr(III), Fe(III), Cu(II), Cd(II) and Pb(II) from underground water.

    PubMed

    Mahmoud, Mohamed E; Hafez, Osama F; Osman, Maher M; Yakout, Amr A; Alrefaay, Ahmed

    2010-04-15

    Metal pollution is well recognized as one of the major environmental problems that must be imperatively addressed and solved. In this study, three types of alumina adsorbents (I-III) were physically immobilized with purporogallin as a chelating ion exchangers. These were found to exhibit strong capability and selectivity characters for a series of heavy metal ions. Surface modification of hybrid alumina was characterized and identified from the determination of surface coverage and infrared analysis. Hybrid alumina adsorbents were identified for their strong resistivity to acid leaching in pH>2-7 as well as their high thermal stability up to 350 degrees C. The ability of newly synthesized hybrid inorganic/organic alumina adsorbents (I-III) to bind and extract various metal ions was examined and evaluated in various buffer solutions (pH 1.0-7.0) via determination of the metal adsorption capacity values. These were identified as high as 420-560, 500-580 and 500-590 micromol g(-1) for alumina adsorbents (I), (II) and (III), respectively in the case of high concentration levels of Cr(III), Fe(III) and Cu(II). The influence of alumina matrices were highly characterized when low concentration levels (microg ml(-1) and ng ml(-1)) of metal ions were used. Hybrid alumina adsorbents were successfully applied for selective extraction, removal and preconcentration of various heavy metals from underground water samples with percentage recovery values of 92-100+/-1-3%.

  11. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water.

    PubMed

    Vipin, Adavan Kiliyankil; Hu, Baiyang; Fugetsu, Bunshi

    2013-08-15

    Prussian blue encapsulated in alginate beads reinforced with highly dispersed carbon nanotubes were prepared for the safe removal of cesium ions from aqueous solutions. Equilibrium and kinetic studies were conducted using different models and the goodness of mathematical fitting of the experimental data on the adsorption isotherms was in the order Langmuir>Freundlich, and that of the kinetic models were in the order of pseudo second order>pseudo first order. Fixed bed adsorption column analysis indicated that the beads can be used for large scale treatment of cesium contaminated water.

  12. Photochemistry of alkyl bromides trapped in water ice films

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Okaikwei, B.; Bluszcz, Th.

    2012-04-01

    Photochemical reactions of atmospheric trace gases taking place at the surface of atmospheric ice particles and in bulk ice are important in stratospheric and tropospheric chemistry but also in polar and alpine snowpack chemistry. Consequently, the understanding of the uptake und incorporation of atmospheric trace gases in water ice as well as their interactions with water molecules is very important for the understanding of processes which occur in ice particles and at the air/ice interface. Reactive atmospheric trace gases trapped in ice are subject of photochemical reactions when irradiated with solar UV radiation. Among such compounds bromine species are highly interesting due to their potential of depleting ozone both in the stratosphere and troposphere. Organic bromine gases can carry bromine to the stratosphere. Methyl bromide (CH3Br) is the largest bromine carrier to the stratosphere. It has both natural and anthropogenic sources. In this contribution we will present the results of our laboratory studies of alkyl bromides (methyl, bromide (CH3Br), dimethyl bromide (CH2Br2), n-propyl bromide (C3H7Br), 1,2-dibromoethane C2H4Br2)), trapped in water ice. We have simulated the UV photochemistry of these brominated alkanes isolated in ice films kept at 16 K and for comparison in solid argon matrices. The photoproducts formed in the ice have been identified by means of FTIR spectroscopy. Reflection absorption infrared spectroscopy (RAIRS) is especially useful to study nascent ice surfaces, kinetics of adsorption/decomposition, and heterogeneous catalysis. Among the observed photoproducts we could identify carbon monoxide and carbon dioxide for each alkyl bromide studied. The photoproduct HBr is dissociated in the bulk ice. Based on the experimental observations possible reaction mechanisms will be discussed.

  13. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  14. Spectral properties of mixtures of montmorillonite and dark grains - Implications for remote sensing minerals containing chemically and physically adsorbed water

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1983-01-01

    The spectral properties from 0.4 to 3 microns of montmorillonite plus dark carbon grains (called opaques) of various sizes are studied as a function of the weight fraction of opaques present. The reflectance level and band depths of the 1.4-, 1.9-, 2.2-, and 2.8-micron water and/or OH absorption features are analyzed using derived empirical relationships and scattering theory. It is found that the absorption band depths and reflectance level are a very nonlinear function of the weight fraction of opaques present but can be predicted in many cases by simple scattering theory. The 2.8-micron bound water fundamental band is the most difficult absorption feature to suppress. The overtone absorptions are suppressed a greater amount than the fundamental but are still apparent even when 10-20 wt pct opaques are present. The relationships observed and the simple scattering theory presented show that quantitative compositional remote sensing studies are feasible for surfaces containing complex mineral mixtures.

  15. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  16. A water-gated organic thin film transistor as a sensor for water-borne amines.

    PubMed

    Algarni, Saud A; Althagafi, Talal M; Naim, Abdullah Al; Grell, Martin

    2016-06-01

    The p-type semiconducting polymer Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) displays innate sensitivity to water-borne amines. We demonstrate this with the help of water-gated PBTTT thin film transistors (TFTs). When octylamine is added to the gating water, TFTs respond with a significantly reduced saturated drain current. Underlying TFT drift is minimised by initial conditioning, and remaining drift can be accounted for by normalising current response to the current level under purge immediately before exposure. Normalised current response vs. amine concentration is reproducible between different transistors, and can be modelled by a Langmuir surface adsorption isotherm, which suggests physisorption of analyte at the PBTTT surface, rather than bulk penetration. Same PBTTT transistors do not respond to 1- octanol, confirming the specific affinity between amines and thiophene- based organic semiconductors.

  17. Cassava root husks powder as green adsorbent for the removal of Cu(II) from natural river water

    NASA Astrophysics Data System (ADS)

    Jorgetto, A. O.; Silva, R. I. V.; Saeki, M. J.; Barbosa, R. C.; Martines, M. A. U.; Jorge, S. M. A.; Silva, A. C. P.; Schneider, J. F.; Castro, G. R.

    2014-01-01

    Through a series of simple processes, cassava root husks were turned into a fine powder of controlled particle size (63-75 μm). FTIR spectrum demonstrated the existence of alcohol, amine and carboxylic groups; and elemental analysis confirmed the presence of elements of interest such as sulphur, nitrogen and oxygen. Cross-polarized {1H}13C NMR technique indicated the existence of methionine and thiamine through the signals observed at 55 ppm and 54 ppm, respectively, and the point of zero charge (pHpzc) was achieved at pH 5.2. The material was applied in solid-phase extraction of Cu(II) via batch experiments. Optimum adsorption pH was found to be in range of 3-6 and in the kinetic experiment the equilibrium was attained in 1 min. The highest adsorption capacity was 0.14 mmol g-1. The adsorption data were fit to the modified Langmuir equation, and the maximum amount of metal species extracted from the solution, Ns, was determined to be ˜0.14 mmol g-1, which is an indicative that the main adsorption mechanism is through chemisorption. Under optimized conditions, the material was utilized in preconcentration experiments, which culminated in an enrichment factor of 41.3-fold. With the aid of the enrichment factor, experiments were carried out to determine the Cu(II) content in tap water and natural water. Preconcentration method was also applied to a certified reference material (1643e) and the concentration found was 23.03 ± 0.79 μg L-1, whereas the specified Cu(II) concentration was 22.7 ± 0.31 μg L-1.

  18. Correlating particle deformation with water concentration profiles during latex film formation: reasons that softer latex films take longer to dry.

    PubMed

    Carter, Farai T; Kowalczyk, Radoslaw M; Millichamp, Ian; Chainey, Malcolm; Keddie, Joseph L

    2014-08-19

    During the past two decades, an improved understanding of the operative particle deformation mechanisms during latex film formation has been gained. For a particular colloidal dispersion, the Routh-Russel deformation maps predict the dominant mechanism for particle deformation under a particular set of conditions (evaporation rate, temperature, and initial film thickness). Although qualitative tests of the Routh-Russel model have been reported previously, a systematic study of the relationship between the film-formation conditions and the resulting water concentration profiles is lacking. Here, the water distributions during the film formation of a series of acrylic copolymer latexes with varying glass-transition temperatures, Tg (values of -22, -11, 4, and 19 °C), have been obtained using GARField nuclear magnetic resonance profiling. A significant reduction in the rate of water loss from the latex copolymer with the lowest Tg was found, which is explained by its relatively low polymer viscosity enabling the growth of a coalesced skin layer. The set of processing parameters where the drying first becomes impeded occurs at the boundary between the capillary deformation and the wet sintering regimes of the Routh-Russel model, which provides strong confirmation of the model's validity. An inverse correlation between the model's dimensionless control parameter and the dimensionless drying time is discovered, which is useful for the design of fast-drying waterborne films.

  19. Application of Graphene Oxide-MnFe2O4 Magnetic Nanohybrids as Magnetically Separable Adsorbent for Highly Efficient Removal of Arsenic from Water

    NASA Astrophysics Data System (ADS)

    Huong, Pham Thi Lan; Huy, Le Thanh; Phan, Vu Ngoc; Huy, Tran Quang; Nam, Man Hoai; Lam, Vu Dinh; Le, Anh-Tuan

    2016-05-01

    In this work, a functional magnetic nanohybrid consisting of manganese ferrite magnetic nanoparticles (MnFe2O4) deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. The as-prepared GO-MnFe2O4 magnetic nanohybrids were characterized using x-ray diffraction, transmission electron microscopy, Fourier transformed infrared spectroscopy, and vibrating sample magnetometer measurements. Adsorption experiments were performed to evaluate the adsorption capacities and efficient removal of arsenic of the nanohybrid and compared with bare MnFe2O4 nanoparticles and GO nanosheets. Our obtained results reveal that the adsorption process of the nanohybrids was well fitted with a pseudo-second-order kinetic equation and a Freundlich isotherm model; the maximum adsorption capacity and removal efficiency of the nanohybrids obtained ~240.385 mg/g and 99.9% with a fast response of equilibrium adsorption time ~20 min. The larger adsorption capacity and shorter equilibrium time of the GO-MnFe2O4 nanohybrids showed better performance than that of bare MnFe2O4 nanoparticles and GO nanosheets. The advantages of reusability, magnetic separation, high removal efficiency, and quick kinetics make these nanohybrids very promising as low-cost adsorbents for fast and effective removal of arsenic from water.

  20. Carbon nanotube sponges as a solid-phase extraction adsorbent for the enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples.

    PubMed

    Wang, Lei; Wang, Xia; Zhou, Jia-Bin; Zhao, Ru-Song

    2016-11-01

    Carbon nanotube (CNT) sponges has recently attracted considerable attention in numerous fields because of its excellent properties, such as high porosity, light weight, and large surface area. The potential of CNT sponges for the solid-phase extraction (SPE) of organic pollutants at trace levels was investigated in this study for the first time. Seven polychlorinated biphenyls (PCBs) were selected as analytes, and gas chromatography-tandem mass spectrometry was employed for the detection. We optimized important parameters that may influence the efficiency of SPE, including the kind and volume of elution solvent, sample pH, and sample flow rate and volume. Under optimized conditions, low limits of detection (0.72-1.98ngL(-1)), wide range of linearity (10-1000ngL(-1)) and good repeatability (2.69-6.85%, n=5) were obtained. CNT sponges exhibited higher extraction performance than other adsorbent materials under the optimized conditions. Real environmental water samples were analyzed, and satisfactory recoveries (81.1-119.1%) were achieved. All these results demonstrated that CNT sponges are suitable SPE material for the enrichment and sensitive determination of PCBs at trace levels.

  1. Carbon nanotube sponges as a solid-phase extraction adsorbent for the enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples.

    PubMed

    Wang, Lei; Wang, Xia; Zhou, Jia-Bin; Zhao, Ru-Song

    2016-11-01

    Carbon nanotube (CNT) sponges has recently attracted considerable attention in numerous fields because of its excellent properties, such as high porosity, light weight, and large surface area. The potential of CNT sponges for the solid-phase extraction (SPE) of organic pollutants at trace levels was investigated in this study for the first time. Seven polychlorinated biphenyls (PCBs) were selected as analytes, and gas chromatography-tandem mass spectrometry was employed for the detection. We optimized important parameters that may influence the efficiency of SPE, including the kind and volume of elution solvent, sample pH, and sample flow rate and volume. Under optimized conditions, low limits of detection (0.72-1.98ngL(-1)), wide range of linearity (10-1000ngL(-1)) and good repeatability (2.69-6.85%, n=5) were obtained. CNT sponges exhibited higher extraction performance than other adsorbent materials under the optimized conditions. Real environmental water samples were analyzed, and satisfactory recoveries (81.1-119.1%) were achieved. All these results demonstrated that CNT sponges are suitable SPE material for the enrichment and sensitive determination of PCBs at trace levels. PMID:27591590

  2. Influence of organic films on the evaporation and condensation of water in aerosol.

    PubMed

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  3. Influence of Water Vapors and Hydrogen on the Energy Band Bending in the SnO2 Microcrystals of Polycrystalline Tin Dioxide Films

    NASA Astrophysics Data System (ADS)

    Gaman, V. I.; Almaev, A. V.; Sevast'yanov, E. Yu.; Maksimova, N. K.

    2015-06-01

    The results of studying the dependence of the energy band bending at the interface of contacting SnO2 microcrystals in the polycrystalline tin dioxide film on the humidity level of clean air and hydrogen concentration in the gas mixture of clean air + H2 are presented. The experimental results showed that the bending of energy bands in SnO2 is decreased under exposure to the water vapors and molecular hydrogen. The presence of two types of the adsorption centers for water molecules on the surface of SnO2 is found. It is shown that at the absolute humidity of the gas mixture above 12 g/m3, the H2O and H2 molecules are adsorbed on the same centers, whose surface density is of 1012 сm-2 at a concentration of donor impurity in SnO2 equal to 1018 сm-3.

  4. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  5. Photothermal configuration applied to the study of water vapor permeability in biodegradable films under several water activities

    NASA Astrophysics Data System (ADS)

    Lopez-Bueno, G.; Martín-Martínez, E. San; Cruz-Orea, A.; Tomas, S. A.; Tufiño, M.; Sanchez, F.

    2003-01-01

    A photothermal configuration was used to determine the water vapor permeability of biodegradable films (nixtamalized corn pericarps). The films were obtained from corn grains boiled in an alkaline solution containing water and Ca(OH)2. Samples were exposed to saturated salt solutions with relative humidity in the range 7%-97%. The water vapor diffusion coefficient was determined as a function of relative humidity. The obtained coefficients agreed with data available in the literature. It was also found that the photoacoustic amplitude shows a linear dependence on the water activity, in agreement with our theoretical model.

  6. Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 2: Kinetic parameters.

    PubMed

    Al Mardini, Fadi; Legube, Bernard

    2009-10-30

    The application of several monosolute equilibrium models has previously shown that Bromacil adsorption on SA-UF (Norit) powdered activated carbon (PAC) is probably effective on two types of sites. High reactivity sites were found to be 10-20 less present in a carbon surface than lower reactivity sites, according to the q(m) values calculated by isotherm models. The aims of this work were trying, primarily, to identify the kinetic-determinant stage of the sorption of Bromacil at a wide range of initial pesticide concentrations (approximately 5 to approximately 500 microg L(-1) at pH 7.8), and secondly, to specify the rate constants and other useful design parameters for the application in water treatment. It was therefore not possible to specify a priori whether the diffusion or surface reaction is the key step. It shows that many of the tested models which describe the stage of distribution or the surface reaction are correctly applied. However, the diffusivity values (D and D(0)) were found to be constant only constants for some specific experimental concentrations. The HSDM model of surface diffusion in pores was also applied but the values of the diffusion coefficient of surface (D(s)) were widely scattered and reduce significantly with the initial concentration or the equilibrium concentration in Bromacil. The model of surface reaction of pseudo-second order fitted particularly well and led to constant values which are independent of the equilibrium concentration, except for the low concentrations where the constants become significantly more important. This last observation confirms perfectly the hypothesis based on two types of sites as concluded by the equilibrium data (part 1).

  7. Nickel-oxido structure of a water-oxidizing catalyst film.

    PubMed

    Risch, Marcel; Klingan, Katharina; Heidkamp, Jonathan; Ehrenberg, David; Chernev, Petko; Zaharieva, Ivelina; Dau, Holger

    2011-11-21

    The atomic structure of an electrodeposited Ni catalyst film is dominated by extensive di-μ-oxido bridging between Ni(III/IV) ions, as revealed by X-ray absorption spectroscopy. The structure is surprisingly similar to that of an analogous Co-based film and colloidal Mn-based catalysts. Structural requirements for water oxidation are discussed.

  8. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

    PubMed

    Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J

    2013-10-15

    This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content.

  9. Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect

    Kittle, Joshua D.; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R.

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  10. Development of Molecularly Imprinted Polymer in Porous Film Format for Binding of Phenol and Alkylphenols from Water

    PubMed Central

    Gryshchenko, Andriy O.; Bottaro, Christina S.

    2014-01-01

    Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a “sandwich” technique giving ~20 μm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L−1). The isotherm was of a Freundlich type over 0.1–40 mg·L−1 and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network. PMID:24447925

  11. Water sorption behaviour of two series of PHA/montmorillonite films and determination of the mean water cluster size.

    PubMed

    Follain, N; Crétois, R; Lebrun, L; Marais, S

    2016-07-27

    Biodegradable polyester-based films constituted of poly(hydroxyalkanoates) (PHA) were successfully extruded with various Cloisite 30B contents. The morphology was highly dependent on the matrix, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), the polymer crystalline phase fraction, the matrix/nanoclay interfacial regions as well as the nanoclay content. Water vapour resistance was investigated through sorption kinetics, isotherms, modelling aspect, and diffusivity. A typical sigmoid-shaped isotherm was obtained in every case. It emerges that the nanoclay highly contributed to the increase of water solubility of matrices. The dependence of polymer crystallinity on the affinity of the nanocomposite films for water was highlighted. Thermodynamic and kinetic contributions of the sorption process were also correlated with the film morphology. According to the matrix used, water diffusivity in films was differently impacted by the sorbed water amount. The access of sorbed water molecules within films was examined through a mathematical modelling approach and the deduced mean cluster size of water vs. its activity was corroborated by sorption kinetics. PMID:27401600

  12. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  13. Characterization of spherical domains at the polystyrene thin film-water interface.

    PubMed

    Ahmad, Khurshid; Zhao, Xuezeng; Pan, Yunlu; Hussain, Danish

    2016-01-01

    Spherical domains that readily form at the polystyrene (PS)-water interface were studied and characterized using atomic force microscopy (AFM). The study showed that these domains have similar characteristics to micro- and nanobubbles, such as a spherical shape, smaller contact angle, low line tension, and they exhibit phase contrast and the coalescence phenomenon. However, their insensitivity to lateral force, absence of long-range hydrophobic attraction, and the presence of possible contaminants and scratches on these domains suggested that these objects are most likely blisters formed by the stretched PS film. Furthermore, the analysis of the PS film before and after contact with water suggested that the film stretches and deforms after being exposed to water. The permeation of water at the PS-silicon interface, caused by osmosis or defects present on the film, can be a reasonable explanation for the nucleation of these spherical domains. PMID:27335748

  14. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.

    PubMed

    El Miri, Nassima; Abdelouahdi, Karima; Barakat, Abdellatif; Zahouily, Mohamed; Fihri, Aziz; Solhy, Abderrahim; El Achaby, Mounir

    2015-09-20

    This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications. PMID:26050901

  15. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.

    PubMed

    El Miri, Nassima; Abdelouahdi, Karima; Barakat, Abdellatif; Zahouily, Mohamed; Fihri, Aziz; Solhy, Abderrahim; El Achaby, Mounir

    2015-09-20

    This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications.

  16. Novel adhesion properties of irreversibly adsorbed polymer chains

    NASA Astrophysics Data System (ADS)

    Chen, Zhizhao; Sen, Mani; Cheung, Justin; Barkley, Deborah; Jiang, Naisheng; Zeng, Wenduo; Endoh, Maya K.; Koga, Tadanori

    The stability of thin polymer films on solids is of vital interest in traditional technologies and in new emerging nanotechnologies. We recently found that nanoscale structures of polymer chains adsorbed onto a silicon (Si) substrate (``adsorbed nanolayers'') play a crucial role in the thermal stability of the film. To understand the adhesion mechanism at the adsorbed polymer-free polymer interface, we mimicked the interface by preparing bilayers where a 200 nm-thick polymer film and an adsorbed nanolayer, both prepared on Si, were pressed together at high temperature. The bilayers were then subjected to an adhesion test by measuring the critical normal force required to separate the two films. Polystyrene was used as a model. The results are intriguing as they show an absence of adhesion between the ``flattened'' adsorbed chains, which lie flat on the solid, and the chemically identical free chains. On the other hand, the ``loosely adsorbed'' polymer chains, which are formed as a result of limited adsorption space on the solid surface, do display a degree of adhesion with the bulk polymer. We postulate that the loosely adsorbed chains act as ``connectors'' which promote adhesion effectively across the solid-polymer interface. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  17. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.

    PubMed

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10μg/L for drinking water. Moreover, an uptake capacity of 7.2μg/mg at breakthrough concentration of 10μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents.

  18. TiO2 and Fe2O3 films for photoelectrochemical water splitting.

    PubMed

    Krysa, Josef; Zlamal, Martin; Kment, Stepan; Brunclikova, Michaela; Hubicka, Zdenek

    2015-01-01

    Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC) water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic film could be explained by ability to address some of the hematite drawbacks by deposition of very thin films (25 nm) consisting of small densely packed particles and by doping with Sn.

  19. Characterization and antimicrobial properties of water chestnut starch-chitosan edible films.

    PubMed

    Mei, Jun; Yuan, Yilin; Guo, Qizhen; Wu, Yan; Li, Yunfei; Yu, Huaning

    2013-10-01

    The characterization and antimicrobial properties of water chestnut starch-chitosan (WSC) films containing Cornus officinalis fruit extract (COE 1% w/w), glycerol monolaurate (GML 1% w/w), nisin (10,000 IU/g), pine needle essential oil (PNEO 0.35% v/v), and their combinations were evaluated. Incorporation of COE decreased pH value of the film-forming solution, the moisture content and the water absorption expansion ability (WAEA). GML-incorporated film had lower WAEA, tensile strength, elongation and puncture strength. However, films with nisin displayed good mechanical properties. All the treated films were less transparent and higher in water vapour permeability values. For film microstructure, the presence of PNEO caused discontinuities with lipid droplets or holes embedded in a continuous network and the incorporation of GML led to abaisse-like structures. The COE, GML, nisin, PNEO and their combinations incorporated in the WSC films are effective in inhibiting the growth of Escherichia coli O157:H7, Staphylococcus aureus and Listeria monocytogenes at different levels. The results showed that WSC films containing COE and GML, GML and nisin, COE and nisin were able to reduce the number of E. coli O157:H7, S. aureus and L. monocytogenes. This research has potential applications to the extension of the shelf life of food products. PMID:23831899

  20. Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik; Salmeron, Miquel

    2010-03-31

    The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.

  1. Water repellent porous silica films by sol-gel dip coating method.

    PubMed

    Rao, A Venkateswara; Gurav, Annaso B; Latthe, Sanjay S; Vhatkar, Rajiv S; Imai, Hiroaki; Kappenstein, Charles; Wagh, P B; Gupta, Satish C

    2010-12-01

    The wetting of solid surfaces by water droplets is ubiquitous in our daily lives as well as in industrial processes. In the present research work, water repellent porous silica films are prepared on glass substrate at room temperature by sol-gel process. The coating sol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), water (H(2)O) constant at 1:12.90:4.74, respectively, with 2M NH(4)OH throughout the experiments and the molar ratio (M) of MTES/Ph-TMS was varied from 0 to 0.22. A simple dip coating technique is adopted to coat silica films on the glass substrates. The static water contact angle as high as 164° and water sliding angle as low as 4° was obtained for silica film prepared from M=0.22. The surface morphological studies of the prepared silica film showed the porous structure with pore sizes typically ranging from 200nm to 1.3μm. The superhydrophobic silica films prepared from M=0.22 retained their superhydrophobicity up to a temperature of 285°C and above this temperature the films became superhydrophilic. The porous and water repellent silica films are prepared by proper alteration of the Ph-TMS in the coating solution. The prepared silica films were characterized by surface profilometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, humidity tests, chemical aging tests, static and dynamic water contact angle measurements.

  2. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    "AOX" is the abbreviation of the sum parameter for water soluble "adsorbable organic halogens" in which 'A' stands for adsorbable, 'O' for organic and 'X' for the halogens chlorine, bromine and iodine. After the introduction of the AOX in 1976, this parameter has been correctly used for "real" AOX constituents (DDT and its metabolites, PCBs, etc.) but also misused for non-adsorbable adsorbed OX-compounds, mostly high molecular organohalogens in plants and even to inorganic compounds being neither organic nor adsorbable. The question of natural "Adsorbable Organic Halogens" (AOX) formed by living organisms and/or during natural abiogenic processes has been definitively solved by the known existence of already more than 3650 organohalogen compounds, amongst them the highly reactive, cancerogenic vinyl chloride (VC). The extension of the AOX to AOX-S18 for Sludges and Sediments, in which A stands for adsorbed (not for adsorbable) is questionable. It includes the most important water insoluble technical organochlorine product: polyvinyl chloride, PVC. In addition to organic halogens it also includes inorganic, mineralogenic halides, incorporated mainly in the crystal lattice of fine grained phyllosilicates, the typical clay minerals (kaolinite, montmorillonite, illite and chlorite) which are main constituents of sediments and sedimentary rocks representing the major part of the sedimentary cover of the earth. Other phyllosilicates, biotite and muscovite, major constituents of granites and many metamorphic rocks (gneiss and mica schist) will also contribute to the AOX-S18 especially in soils as result of weathering processes. Since chlorine is incorporated into the mineral structure and, as a consequence, not soluble by the nitric acid analytical step (pH 0.5) of the S18 determination, it will account to the AOX-S18 in the final charcoal combustion step at temperatures >950 degrees C. After heavy rainfalls sewage sludge composition is strongly influenced by

  3. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.

    PubMed

    Müller, German

    2003-07-01

    "AOX" is the abbreviation of the sum parameter for water soluble "adsorbable organic halogens" in which 'A' stands for adsorbable, 'O' for organic and 'X' for the halogens chlorine, bromine and iodine. After the introduction of the AOX in 1976, this parameter has been correctly used for "real" AOX constituents (DDT and its metabolites, PCBs, etc.) but also misused for non-adsorbable adsorbed OX-compounds, mostly high molecular organohalogens in plants and even to inorganic compounds being neither organic nor adsorbable. The question of natural "Adsorbable Organic Halogens" (AOX) formed by living organisms and/or during natural abiogenic processes has been definitively solved by the known existence of already more than 3650 organohalogen compounds, amongst them the highly reactive, cancerogenic vinyl chloride (VC). The extension of the AOX to AOX-S18 for Sludges and Sediments, in which A stands for adsorbed (not for adsorbable) is questionable. It includes the most important water insoluble technical organochlorine product: polyvinyl chloride, PVC. In addition to organic halogens it also includes inorganic, mineralogenic halides, incorporated mainly in the crystal lattice of fine grained phyllosilicates, the typical clay minerals (kaolinite, montmorillonite, illite and chlorite) which are main constituents of sediments and sedimentary rocks representing the major part of the sedimentary cover of the earth. Other phyllosilicates, biotite and muscovite, major constituents of granites and many metamorphic rocks (gneiss and mica schist) will also contribute to the AOX-S18 especially in soils as result of weathering processes. Since chlorine is incorporated into the mineral structure and, as a consequence, not soluble by the nitric acid analytical step (pH 0.5) of the S18 determination, it will account to the AOX-S18 in the final charcoal combustion step at temperatures >950 degrees C. After heavy rainfalls sewage sludge composition is strongly influenced by

  4. Multifractal characterization of water soluble copper phthalocyanine based films surfaces

    NASA Astrophysics Data System (ADS)

    Ţălu, Ştefan; Stach, Sebastian; Mahajan, Aman; Pathak, Dinesh; Wagner, Tomas; Kumar, Anshul; Bedi, R. K.; Ţălu, Mihai

    2014-07-01

    This paper presents a multifractal approach to characterize the structural complexity of 3D surface roughness of CuTsPc films on the glass and quartz substrate, obtained with atomic force microscopy (AFM) analysis. CuTsPc films prepared by drop cast method were investigated. CuTsPc films surface roughness was studied by AFM in tapping-mode™, in an aqueous environment, on square areas of 100 μm2 and 2500 μm2. A detailed methodology for CuTsPc films surface multifractal characterization, which may be applied for AFM data, was also presented. Analysis of surface roughness revealed that CuTsPc films have a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f( α) provided quantitative values that characterize the local scale properties of CuTsPc films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  5. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  6. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  7. Using Zn/Al layered double hydroxide as a novel solid-phase extraction adsorbent to extract polycyclic aromatic hydrocarbons at trace levels in water samples prior to the determination of gas chromatography-mass spectrometry.

    PubMed

    Liu, Yan-Long; Zhou, Jia-Bin; Zhao, Ru-Song; Chen, Xiang-Feng

    2012-09-01

    This paper demonstrates, for the first time, the great potential of using Zn/Al layered double hydroxide intercalated sodium dodecyl benzene sulfonate (Zn/Al-SDBS-LDH) as a solid-phase extraction (SPE) material in the extraction of persistent organic pollutants prior to the determination of gas chromatography-mass spectrometry in environmental water samples. Zn/Al-SDBS-LDH, a relatively inexpensive and simply prepared material, was synthesized and used as a SPE adsorbent to quantitatively determine the concentration of five polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Factors affecting extraction efficiency, such as, eluent type, eluent volume, flow rate of sample, sample volume, and amount of adsorbent, were investigated and optimized in detail. Experimental results indicate that there is an excellent linear relationship between peak area and the concentration of PAHs over the range of 5-500 ng L(-1), and the precisions (relative standard deviation (RSD)) were 2.5-6.3% under the optimum conditions. Based on the ratio of chromatographic signal-to-base line noise (S/N = 3), the limits of detection could reach 1.2-3.2 ng L(-1). This novel method was successfully applied to the analysis of PAHs in environmental water samples. As such, we show here that the use of Zn/Al-SDBS-LDH as SPE adsorbent materials, coupled with gas chromatography-mass spectrometry, is an excellent improvement in the routine analysis of PAHs at trace levels in the environment.

  8. The role of glycerol and water in flexible silk sericin film.

    PubMed

    Yun, Haesung; Kim, Moo Kon; Kwak, Hyo Won; Lee, Jeong Yun; Kim, Min Hwa; Lee, Ki Hoon

    2016-01-01

    Silk sericin (SS) can be obtained as a byproduct during the silk fiber process, but its application has been limited due to the brittleness of the SS film. To enhance the flexibility of the SS film, glycerol (Glc) has been added as a plasticizer. The addition of Glc enhanced the elongation property of the SS film when the Glc content was 50-70 wt% of SS. Glc also induced the structural transition of SS from a random coil structure to a β-sheet structure. The inconsistent increase of elongation and β-sheet structure of the SS/Glc film were explained by the content of moisture in the SS/Glc film. The moisture content of the SS/Glc film increased proportionally when the Glc content was higher than 50 wt% of SS, which was the same Glc content range that exhibited the plasticizing effect. Therefore, the plasticizing effect on the SS film may occur not only because of Glc but also because of water. Furthermore, water also contributed to the increase in the β-sheet structure development. Our results suggest that the moisture content in the plasticized protein film may play an important role when the plasticizer has hygroscopic properties.

  9. Carbon dioxide (C{sup 16}O{sub 2} and C{sup 18}O{sub 2}) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size

    SciTech Connect

    Pragati Galhotra; Juan G. Navea; Sarah C. Larsen; Vicki H. Grassian

    2009-07-01

    In this study, CO{sub 2} adsorption in the presence and absence of co-adsorbed H{sub 2}O was investigated in zeolite Y. Several different zeolite Y materials were investigated including commercial NaY, commercial NaY ion-exchanged with Ba{sup 2+} and nanocrystalline NaY; herein referred to as NaY, BaY and nano-NaY. Following heating of these zeolites to 573 K and cooling to room temperature, CO{sub 2} was adsorbed as a function of pressure. FTIR spectra show that a majority of CO{sub 2} adsorbs in the pores of these three zeolites (NaY, BaY and nano-NaY) in a linear complex with the exchangeable cation, as indicated by the intense absorption band near 2350 cm{sup -1}, assigned to the 3 asymmetric stretch of adsorbed CO{sub 2}. Most interestingly is the formation of carbonate and bicarbonate on the external surface of nano-NaY zeolites as indicated by the presence of several broad absorption bands in the 1200-1800 cm{sup -1} region, suggesting unique sites for CO{sub 2} adsorption on the surface of the nanomaterial. For the other two zeolite materials investigated, bicarbonate formation is only evident in BaY zeolite in the presence of co-adsorbed water. Adsorption of {sup 18}O-labeled carbon dioxide and theoretical quantum chemical calculations confirm these assignments and conclusions. 28 refs., 9 figs., 3 tabs.

  10. Using specialized adsorbents for remediation

    SciTech Connect

    Hochmuth, D.P.; Grant, A.

    1995-11-01

    This paper describes two remediation case studies in which specialized adsorbents were used. In one case, the adsorbents were used to treat effluent from a soil vapor extraction system. In the other case, the adsorbents were used to treat air from a groundwater air stripper. The specialized adsorbents effectively removed volatile organic compounds from each air stream.

  11. Preparation of self-supporting Au thin films on perforated substrate by releasing from water-soluble sacrificial layer

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yu; Fujii, Yuma; Yamano, Masafumi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Kawano, Takeshi; Nishiuchi, Mamiko; Sakaki, Hironao; Kondo, Kiminori

    2016-07-01

    A self-supporting thin film is useful as a target material for laser-driven ion acceleration experiments. In this study, 100-nm-thick sputtered gold (Au) thin films were released from substrates using water-soluble sacrificial layers, and the released films were subsequently scooped up on perforated substrates. Au thin films were deposited by DC plasma sputtering on the sacrificial layers. In the releasing test, sodium chloride (NaCl) was shown to be most suitable as a sacrificial layer for Au thin films. In addition, sputtered Au thin films with thicknesses of 50 and 150 nm were deposited onto NaCl sacrificial layers, released on water, and scooped up on perforated substrates. Self-supporting Au thin films were obtained for all film thicknesses, but wrinkles and cracks appeared in the 50 nm film.

  12. The detection of pesticides in water using ZnCdSe quantum dot films

    NASA Astrophysics Data System (ADS)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Yahaya, M.

    2011-06-01

    This paper reports an attempt to develop a sensor system for detecting pesticides based on the effect of an analyte on the photoluminescence (PL) intensity of ZnCdSe quantum dot (QD) films. The ZnCdSe QDs were synthesized using a wet-chemical process. The sensor system comprises an excitation light source made of a laser diode, a dual arm fibre optic probe, a spectrometer and a sensor chamber. The QD films were deposited by dropping QD solution onto the probe surface and drying them at ambient temperature. The pesticides used in this study were Dipel, Siven 85% WP and Water-Dispersible Granules WG insecticides. The detection of pesticides was done by comparing the photoluminescence (PL) spectra of the films dipped in the deionized water and in pesticide solutions by varying the concentration of the pesticide solutions from 2.5 to 2500 μg l-1. It was observed that the PL intensity of the films was quenched by the presence of the pesticide molecules. The quenching degree increased with the concentration of the pesticide solutions. There is a linear relationship between the pesticide solution concentrations and the QD film sensor sensitivities. The sensitivity of the sensor system depended on the type of pesticides successively from the highest to lowest sensitivity in the order Siven 85% WP, Dipel and Water-Dispersible Granules WG. The QD films could be used as fluorescence sensors to detect water that is contaminated by pesticides.

  13. A method for measuring the thickness of transparent oil film on water surface using laser trigonometry

    NASA Astrophysics Data System (ADS)

    Qieni, Lü; Baozhen, Ge; Wenda, Yao; Yimo, Zhang

    2011-01-01

    We present a method for measurement of thickness of transparent oil film on water surface based on laser trigonometry. With an oblique incident mode of single-point laser triangulation ranging system, laser light is incident on the upper and lower surfaces of the oil film being measured and an ellipse light spot is formed on the upper and lower surfaces of the oil film. The two light spots are imaged on an image plane CCD by an imaging lens and the image spot is formed and stored in a computer. The thickness of oil film being measured can be obtained by displacement of the image spot and the configuration parameter of the imaging system. The experiment is conducted using edible peanut oil and diesel oil. The research results show that the method presented in this paper is feasible and applicable to dynamic on-line measurement of oil film thickness of oil spill on sea surface.

  14. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  15. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations. PMID:27402100

  16. Flow field distribution of liquid film of water lubricated bearing-rotor coupling systems

    NASA Astrophysics Data System (ADS)

    Hu, Q. L.; Hu, J. N.; Ye, X. Y.; Zhang, D. S.; Zheng, J. B.

    2016-05-01

    According to the desalination high-pressure pump water lubricated bearing-rotor coupling systems flow field distribution of liquid film in the starting transient process and its power transmission mechanism can lay the foundation of further exploring and judging lubrication state at the boot process. By using the computational fluid dynamics Fluent secondary development platform and calling the relevant DEFINE macro function to achieve the translation and rotation movement of the journal, we will use the dynamic grid technique to realize the automatic calculation and grid update of water lubricated bearings 3d unsteady liquid film flow field, and finally we will dispose the results of numerical simulation and get the pressure. When the eccentricity is large, film thickness was negatively correlated with the pressure, and positive with the velocity. Differential pressure was negatively correlated with velocity. When the eccentricity is small, film thickness is no significant relationship with differential pressure and velocity. Differential pressure has little difference with velocity.

  17. Effects of water in film boiling over liquid metal melts

    SciTech Connect

    Greene, G.A.; Finfrock, C.; Burson, S.B.

    1986-01-01

    Liquid-liquid boiling experiments have been performed with H/sub 2/O and liquid metal melts in the 100-series test matrix (Runs 121, 126, 127) and the VE test matrix. Some of the pre-explosion unstable film boiling data as well as observations from the explosive series have been previously reported.

  18. Spreading dynamics of a partially wetting water film atop a MHz substrate vibration

    SciTech Connect

    Altshuler, Gennady; Manor, Ofer

    2015-10-15

    A MHz vibration, or an acoustic wave, propagating in a solid substrate may support the convective spreading of a liquid film. Previous studies uncovered this ability for fully wetting silicon oil films under the excitation of a MHz Rayleigh surface acoustic wave (SAW), propagating in a lithium niobate substrate. Partially wetting de-ionized water films, however, appeared immune to this spreading mechanism. Here, we use both theory and experiment to reconsider this situation and show partially wetting water films may spread under the influence of a propagating MHz vibration. We demonstrate distinct capillary and convective (vibrational/acoustic) spreading regimes that are governed by a balance between convective and capillary mechanisms, manifested in the non-dimensional number θ{sup 3}/We, where θ is the three phase contact angle of the liquid with the solid substrate and We ≡ ρU{sup 2}H/γ; ρ, γ, H, and U are the liquid density, liquid/vapour surface tension, characteristic film thickness, and the characteristic velocity amplitude of the propagating vibration on the solid surface, respectively. Our main finding is that the vibration will support a continuous spreading motion of the liquid film out of a large reservoir if the convective mechanism prevails (θ{sup 3}/We < 1); otherwise (θ{sup 3}/We > 1), the dynamics of the film is governed by the capillary mechanism.

  19. Water-free titania-bronze thin films with superfast lithium-ion transport.

    PubMed

    Zhang, Kui; Katz, Michael B; Li, Baihai; Kim, Sung Joo; Du, Xianfeng; Hao, Xiaoguang; Jokisaari, Jacob R; Zhang, Shuyi; Graham, George W; Van der Ven, Anton; Bartlett, Bart M; Pan, Xiaoqing

    2014-11-19

    Using pulsed laser deposition, TiO2 (-) B and its recently discovered variant Ca:TiO2 (-) B (CaTi5O11) are synthesized as highly crystalline thin films for the first time by a completely water-free process. Significant enhancement in the Li-ion battery performance is achieved by manipulating the crystal orientation of the films, used as anodes, with a demonstration of extraordinary structural stability under extreme conditions.

  20. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  1. Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.; Karabchevsky, Alina; Patzig, Christian; Rauschenbach, Bernd; Fuhrmann, Bodo; Eltzov, Evgeni; Marks, Robert; Xu, Jian; Zhang, Fan; Lakhtakia, Akhlesh

    2009-02-01

    Surface-enhanced fluorescence from porous, metallic sculptured thin films (STFs) was demonstrated for sensing of bacteria in water. Enhancement factors larger than 15 were observed using STFs made of silver, aluminum, gold, and copper with respect to their dense film counterparts. The STFs used are assemblies of tilted, shaped, parallel nanowires prepared with several variants of the oblique-angle-deposition technique. Comparison between the different films indicates that the enhancement factor is higher when the tilt is either small (<30 deg) or large (>80 deg); thus, the enhancement is higher when only a single resonance in the nanowires is excited.

  2. Water-insoluble thin films from palmitoyl hyaluronan with tunable properties.

    PubMed

    Foglarová, Marcela; Chmelař, Josef; Huerta-Angeles, Gloria; Vágnerová, Hana; Kulhánek, Jaromír; Bartoň Tománková, Kateřina; Minařík, Antonín; Velebný, Vladimír

    2016-06-25

    Hyaluronan (HA) films exhibit properties suitable for various biomedical applications, but the solubility of HA limits their use in aqueous environments. Therefore, we developed water insoluble films based on palmitoyl esters of HA (pHA). Films were prepared from pHA samples with various degrees of substitution (DS) and molecular weights and their mechanical properties and swelling were characterized. Additionally, scanning electron microscopy and atomic force microscopy were used for visualization. Despite being prepared by solution casting, the films had a very smooth surface and were homogeneous in thickness. The film properties were in accordance with the polymer DS and molecular weight, enabling to tailor them for future applications by choosing a suitable pHA material. The behavior of the films toward cells was assessed in vitro. All films were non-cytotoxic and showed no adhesion of cells. These results show that the developed films are suitable candidates for various biomedical applications such as tissue engineering or wound healing. PMID:27083794

  3. Titanium and Magnesium Co-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting

    SciTech Connect

    Tang, H.; Yin, W. J.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M. M.; Turner, J. A.; Yan, Y.

    2012-04-01

    Using a combination of density functional theory calculation and materials synthesis and characterization we examine the properties of charge-compensated Ti and Mg co-alloyed hematite thin films for the application of photoelectrochemical (PEC) water splitting. We find that the charge-compensated co-alloying results in the following effects: (1) It enhances the solubility of Mg and Ti, which leads to reduced electron effective mass and therefore increased electron mobility; (2) It tunes the carrier density and therefore allows the optimization of electrical conductivity; and (3) It reduces the density of charged defects and therefore reduces carrier recombination. As a result, the Ti and Mg co-alloyed hematite thin films exhibit improved water oxidation photocurrent magnitudes as compared to pure hematite thin films. Our results suggest that charge-compensated co-alloying is a plausible approach for engineering hematite for the application of PEC water splitting.

  4. Formation of Hydroxyl and Water Layers on MgO Films Studied with Ambient Pressure XPS

    SciTech Connect

    Newberg, J.T.; Starr, D.; Yamamoto, S.; Kaya, S.; Kendelewicz, T.; Mysak, E.R.; Porsgaard, S.; Salmeron, M.B.; Brown Jr., G.E.; Nilsson, A.; Bluhm, H.

    2011-01-01

    To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H{sub 2}O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H{sub 2}O, OH and Ox thickness changes as a function of relative humidity.

  5. Trace determination of chromium(VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO₂ adsorbent for solid phase extraction and UV-vis spectrophotometry.

    PubMed

    Sereshti, Hassan; Farahani, Mina Vasheghani; Baghdadi, Majid

    2016-01-01

    An innovative thermally reduced graphene (TRG) modified silica-supported 3-aminopropyltriethoxysilane (SiO2-APTES) composite was synthesized and characterized using Fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy SEM techniques. The adsorbent was then used in the solid phase extraction (SPE) of Cr (VI) as the Cr (VI)-diphenylcarbazide (DPC) complex with the subsequent measurement by UV-vis spectrophotometry. The adsorbent surface was activated by adding sodium dodecyl sulfate (SDS) to the sample solution. The effect of the main experimental parameters such as type and volume of the extraction solvent, pH, dosage of DPC, SDS, the adsorbent, time of the extraction, and salt concentration on the extraction efficiency were investigated and optimized. A linear dynamic range of 1.3-40 ng mL(-1) with a satisfactory determination coefficient (R(2)) of 0.9930 was obtained. A detection limit of 0.4 ng mL(-1) Cr (VI) was attained when a sample volume of 25 mL was used. Intraday and inter-day precisions were obtained equal to 2.3% and 7.9%, respectively. The enrichment factor (EF) was calculated to be equal to 167. The technique was applied successfully to the determination of Cr (VI) at trace levels in tap, river, sewage and ground water samples and the relative recoveries of the added chromium were in the range of 92.6-109.9%.

  6. Elastic Properties of Films of Water and Noble Gases Condensed at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pohl, Robert O.

    2003-01-01

    We have shown that there are extensive similarities between the quench-condensed noble gas films and those of amorphous water ice. In particular, both can be quite soft upon deposition and can stiffen considerably when annealed. Furthermore, this stiffening follows a logarithmic time dependence for all substances. The temperature dependence of these behaviors scales with the triple point. The results shown here show a strong thickness dependence, which has implications for any study of mechanical properties of films on substrates. The temperature dependence of the stiffening and the stiffening rate have now been characterized for the noble gases, and these observations provide a roadmap for new experiments on amorphous water ice.

  7. Comparative study of GeO2/Ge and SiO2/Si structures on anomalous charging of oxide films upon water adsorption revealed by ambient-pressure X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mori, Daichi; Oka, Hiroshi; Hosoi, Takuji; Kawai, Kentaro; Morita, Mizuho; Crumlin, Ethan J.; Liu, Zhi; Watanabe, Heiji; Arima, Kenta

    2016-09-01

    The energy difference between the oxide and bulk peaks in X-ray photoelectron spectroscopy (XPS) spectra was investigated for both GeO2/Ge and SiO2/Si structures with thickness-controlled water films. This was achieved by obtaining XPS spectra at various values of relative humidity (RH) of up to ˜15%. The increase in the energy shift is more significant for thermal GeO2 on Ge than for thermal SiO2 on Si above ˜10-4% RH, which is due to the larger amount of water molecules that infiltrate into the GeO2 film to form hydroxyls. Analyzing the origins of this energy shift, we propose that the positive charging of a partially hydroxylated GeO2 film, which is unrelated to X-ray irradiation, causes the larger energy shift for GeO2/Ge than for SiO2/Si. A possible microscopic mechanism of this intrinsic positive charging is the emission of electrons from adsorbed water species in the suboxide layer of the GeO2 film to the Ge bulk, leaving immobile cations or positively charged states in the oxide. This may be related to the reported negative shift of flat band voltages in metal-oxide-semiconductor diodes with an air-exposed GeO2 layer.

  8. Determination of pyrazole and pyrrole pesticides in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography.

    PubMed

    Ma, Jiping; Lu, Xi; Xia, Yan; Yan, Fengli

    2015-02-01

    A solid-phase extraction (SPE) method using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography was developed for the determination of four pyrazole and pyrrole pesticides (fenpyroximate, chlorfenapyr, fipronil and flusilazole) in environmental water samples. Several parameters, such as extraction adsorbent, elution solvent and volume and sample loading flow rate were optimized to obtain high SPE recoveries and extraction efficiency. The calibration curves for the pesticides extracted were linear in the range of 0.05-10 μg L(-1) for chlorfenapyr and fenpyroximate and 0.05-20 μg L(-1) for fipronil and flusilazole, with the correlation coefficients (r(2)) between 0.9966 and 0.9990. The method gave good precisions (relative standard deviation %) from 2.9 to 10.1% for real spiked samples from reservoir water and seawater; method recoveries ranged 92.2-105.9 and 98.5-103.9% for real spiked samples from reservoir water and seawater, respectively. Limits of detection (S/N = 3) for the method were determined to be 8-19 ng L(-1). The optimized method was successfully applied to the determination of four pesticides of pyrazoles and pyrroles in real environmental water samples.

  9. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  10. Application of novel, low-cost, laterite-based adsorbent for removal of lead from water: Equilibrium, kinetic and thermodynamic studies.

    PubMed

    Chatterjee, Somak; De, Sirshendu

    2016-01-01

    Contamination of groundwater by carcinogenic heavy metal, e.g., lead is an important issue and possibility of using a natural rock, laterite, is explored in this work to mitigate this problem. Treated laterite (TL- prepared using hydrochloric acid and sodium hydroxide) was successfully utilized for this purpose. The adsorbent was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier Transform Infrared Spectroscopy (FTIR) to highlight its physical and chemical properties. Optimized equilibrium conditions were 1 g L(-1) adsorbent concentration, 0.26 mm size and a pH of 7 ± 0.2. Monolayer adsorption capacity of lead on treated laterite was 15 mg/g, 14.5 and 13 mg g(-1) at temperatures of 303 K, 313 K and 323 K, respectively. The adsorption was exothermic and physical in nature. At 303 K, value of effective diffusivity of (De) and mass transfer co-efficient (Kf) of lead onto TL were 6.5 × 10(-10) m(2)/s and 3.3 × 10(-4) m/s, respectively (solved from shrinking core model of adsorption kinetics). Magnesium and sulphate show highest interference effect on the adsorption of lead by TL. Efficacy of the adsorbent has been verified using real-life contaminated groundwater. Thus, this work demonstrates performance of a cost-effective media for lead removal. PMID:26646980

  11. Application of novel, low-cost, laterite-based adsorbent for removal of lead from water: Equilibrium, kinetic and thermodynamic studies.

    PubMed

    Chatterjee, Somak; De, Sirshendu

    2016-01-01

    Contamination of groundwater by carcinogenic heavy metal, e.g., lead is an important issue and possibility of using a natural rock, laterite, is explored in this work to mitigate this problem. Treated laterite (TL- prepared using hydrochloric acid and sodium hydroxide) was successfully utilized for this purpose. The adsorbent was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier Transform Infrared Spectroscopy (FTIR) to highlight its physical and chemical properties. Optimized equilibrium conditions were 1 g L(-1) adsorbent concentration, 0.26 mm size and a pH of 7 ± 0.2. Monolayer adsorption capacity of lead on treated laterite was 15 mg/g, 14.5 and 13 mg g(-1) at temperatures of 303 K, 313 K and 323 K, respectively. The adsorption was exothermic and physical in nature. At 303 K, value of effective diffusivity of (De) and mass transfer co-efficient (Kf) of lead onto TL were 6.5 × 10(-10) m(2)/s and 3.3 × 10(-4) m/s, respectively (solved from shrinking core model of adsorption kinetics). Magnesium and sulphate show highest interference effect on the adsorption of lead by TL. Efficacy of the adsorbent has been verified using real-life contaminated groundwater. Thus, this work demonstrates performance of a cost-effective media for lead removal.

  12. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    PubMed

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-01

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins.

  13. Tunable surface wettability and water adhesion of Sb2S3 micro-/nanorod films

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Zhao, Huiping; Yang, Hao; Liu, Yunling; Yan, Guoping; Chen, Rong

    2014-01-01

    Antimony sulfide (Sb2S3) films were successfully prepared by spin coating Sb2S3 micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb2S3 micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb2S3 films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb2S3 micro-/nanorod. Sb2S3 film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, 'Gecko' state and Cassie's state for Sb2S3 film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb2S3 films.

  14. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    PubMed

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-01

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins. PMID:25899288

  15. Preparation of magnetic graphene/mesoporous silica composites with phenyl-functionalized pore-walls as the restricted access matrix solid phase extraction adsorbent for the rapid extraction of parabens from water-based skin toners.

    PubMed

    Feng, Jianan; He, Xinying; Liu, Xiaodan; Sun, Xueni; Li, Yan

    2016-09-23

    In this work, phenyl-functionalized magnetic graphene/mesoporous silica composites (MG-mSiO2-Ph) were prepared and applied as restricted access matrix solid phase extraction (RAM-SPE) adsorbents to determine the parabens in commercially available retail cosmetics. MG-mSiO2-Ph composites were synthesized by a surfactant-mediated co-condensation reaction in which mesoporous silica with phenyl-functionalized pore-walls was coated on a magnetic graphene sheet. The obtained nano-composites were proven to be of sufficient quality for an ideal RAM-SPE adsorbent with a large specific surface area of 369m(2)g(-1), uniform mesopores of 2.8nm, and special phenyl-functionalized pore-walls. Parabens, such as methyl paraben, ethyl paraben and propyl paraben, were extracted from water-based skin toners using one step of the RAM-SPE and were then analysed by a HPLC-DAD system. The SPE conditions were optimized by studying the parameters, such as the adsorbent amount, elution solvent type, adsorption time and desorption time, that influence the extraction efficiency. For each analyte, there were good linearities of approximately 0.10-120μgmL(-1) with determination coefficients (R(2))>0.995. The sensitivity was as low as 0.01-0.025μgmL(-1) for the LOD, and the percent recoveries were 98.37-105.84%. The intra-day and inter-day RSDs were 1.44-6.11% (n=6) and 3.12-11.70% (n=6), respectively. The results indicated that this method with novel RAM-SPE adsorbents is sensitive and convenient. The results also offered an attractive alternative for the extraction and determination of paraben preservatives in a complex matrix, such as cosmetics. PMID:27575922

  16. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-01

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. PMID:26772130

  17. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-01

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples.

  18. A novel approach for structure quantification of fatty acids films on rain water

    NASA Astrophysics Data System (ADS)

    Mazurek, Adriana Z.; Pogorzelski, Stanisław J.; Kogut, Anna D.

    A complete compositional or structural description of naturally occurring surfactants on rainwater is not currently feasible. A main limitation of previous work has been the lack of means for correlating force-area characteristics with the chemical makeup of the films. Instead of analyzing the chemical composition of rain water film-forming organics, it is postulated here to introduce the novel scaling procedures (2D virial equation of state and 2D polymer film scaling theory) applied to the surface pressure-area ( π- A) isotherms and surface pressure-temperature ( π- T) isochors, and resulting from generalized physical formalisms modified to a multicomponent surfactant film. A set of the introduced structural film state parameters could become sensitive indicators for surface-active source-specific organic matter pathways tracing, where the measurement of surfactant concentration and chemical analyses are avoided. Performed comprehensive film studies on rain, marine and snow-melted water samples exhibited significant and differentiated film structural parameters variability. The developed procedure allows one to recover the film parameters ( π, Γ, Alim, Eisoth) present originally at the raindrop surface from the Langmuir trough data supplemented with the simultaneously taken rain event characteristics (rain rate and rain drop diameter distribution). It requires the partitioning effect of the surfactant molecules between the surface and bulk phases to be estimated where the entering quantities are: the partitioning coefficient Kp= Γ/ c and a degree of the rain water interfacial system area development Ar/ Vr evaluated here using the fatty acids concentrations as model input data. The latter parameter depends on the rain rate and the form of the drop size distribution function differing significantly from the Marshall-Palmer one at low Ir (<1 mm h -1). The partitioning factor Kp related to the physicochemical composition of the film-composing material exhibited

  19. Let's Talk About Water: Using Film Screenings to Engage Students and the Public in Water Science and Policy

    NASA Astrophysics Data System (ADS)

    Saleem Arrigo, J. A.; Berry, K.; Hooper, R. P.; Lilienfeld, L.

    2013-12-01

    "Let's Talk about Water" is a film symposium designed to bring together experts and the public to talk about the complex water issues facing society. The format of the event is quite simple: a panel of experts and the audience view a water documentary (such as "FLOW", "Liquid Assets", or "Gasland") together and there is an extended moderated discussion period following the film between the panel and the audience. Over the course of several events, we have developed best practices that make this simple format very effective. A film creates a context of subject and language for the discussion--it gets the audience and the panel on the same page. The moderators must actively manage the discussion, both challenging the panelists with follow up questions, asking questions to simplify the language the expert is using, and passing a question among panelists to bring out different points of view. The panelists are provided with the film in advance to view and, most importantly, meet the day before the event to discuss the film. This makes for a much more convivial discussion at the event. We have found that these discussions can easily be sustained for 90 to 120 minutes with active audience participation. We have found key element of the event is local relevance. Films should be carefully chosen to resonate with the audience, and the local host is critical in defining the audience, goals and identified panel members. Having local experts from universities and representatives from local water authorities and environmental groups bring a sense of community and a confidence in the audience that the panel members have local knowledge that is important for sustaining discussion. The discussion begins with points raised by the movie (are these issues real? Do they apply here? What are the scientific, engineering, and policy solutions to these problems?) and then segues into a discussion about career opportunities in the water sector, volunteer opportunities in the community or

  20. Superparamagnetic core-shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit, vegetable and water samples.

    PubMed

    Mahpishanian, Shokouh; Sereshti, Hassan; Baghdadi, Majid

    2015-08-01

    A novel adsorbent composed of silica coated magnetic microparticles (Fe3O4@SiO2) and graphene oxide (GO) functionalized with phenylethyl amine (PEA) was synthesized and characterized using Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), and CHN elemental analysis techniques. The adsorbent (Fe3O4@SiO2@GO-PEA) was then used in a magnetic solid phase extraction (MSPE) of six organophosphorous pesticides (OPPs) including methyl parathion, fenitrothion, methidathion, ethion, methyl azinphos and coumaphos prior to gas chromatography-nitrogen phosphorus detection (GC-NPD). The fabricated adsorbent combines the advantages of superior adsorption capability of modified GO and magnetic separability of magnetite microparticles to provide high adsorption capacity, and easy isolation from sample solutions. The main experimental parameters affecting the extraction recovery of OPPs including extraction time, pH, adsorbent dosage, salt concentration, and desorption conditions were investigated and optimized. Under the optimal conditions, linear responses were obtained in the concentration range of 0.06-200μgL(-1) with the determination coefficients (R(2)) between 0.9945 and 0.9996. The limits of detection were from 0.02 to 0.1μgL(-1) and the intraday and inter-day relative standard deviations (RSDs) were less than 4.8 and 6.4%, respectively. The method was successfully applied for determination of the OPPs in apple, grape, pear, bell pepper, celery and water samples. The obtained recoveries were in the range of 90.4-108.0% (RSDs=1.9-6.6%, n=3) for fruits and vegetables, and 94.6-104.2% (RSDs=2.0-4.8%, n=3) for water samples. The excellent extraction performance of the adsorbent can be attributed to its structure characteristics where the phenyl rings of PEA grafted on the GO nanosheets are accessible to interact effectively with OPPs via delocalized π-electron system. PMID:26129984

  1. Friction and Viscous Forces in Sub-Nanometer Water Films

    NASA Astrophysics Data System (ADS)

    Li, Tai-De; Riedo, Elisa

    2007-03-01

    Water under nano-confinement is ubiquitous, with examples including clay swelling, aquaporines, ion channels, and water menisci in micro-electrical-mechanical-systems. However, the structural and rheological characteristics of nano-confined pure and ionized water continue to be the subject of discussion and debate. Here, we report an experiment in which an atomic force microscope tip approaches a flat solid surface in purified water, while small lateral oscillations are applied to the tip. Direct measurements of the lateral forces encountered by a nano-size tip approaching a solid surface in purified water are reported for tip-surface distances, 0±0.03 nm < d < 2 nm. We find that, for hydrophilic surfaces, the dynamic viscosity is measured to grow up orders of magnitude in respect to bulk water, whereas no significant increase in the viscosity has been detected when the confining solid surface is hydrophobic. The origin of the observed different behavior is discussed.

  2. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-01

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  3. Differential laser trigonometry for measuring the oil film thickness on water

    NASA Astrophysics Data System (ADS)

    Lü, Qieni; Lu, Lin; Ge, Baozhen; Wu, Di; Wu, Hao

    2012-06-01

    A differential laser trigonometry method is presented for measurement of the oil film thickness on a water surface. The thickness of an oil film can be obtained with two off-plane displacements to a benchmark plane obtained by the imaging spot displacement and the configuration parameter of the imaging system subtracted. The method has been tested in the laboratory via the examination of diesel oil and petroleum films. An experimental system setup has been developed, by which the maximum measurable thickness is 12 mm and the average measurement error is 6.05 µm. The results show that the method presented is feasible, and applicable to dynamic online measurement of oil film thickness of oil spills on the sea surface.

  4. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    PubMed

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future. PMID:25274424

  5. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    PubMed

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.

  6. Superhydrophobic and superoleophilic nanoparticle film: synthesis and reversible wettability switching behavior.

    PubMed

    Zhang, Xia; Guo, Yonggang; Zhang, Pingyu; Wu, Zhishen; Zhang, Zhijun

    2012-03-01

    The present work describes a one-step facile spray deposition process for the fabrication of superhydrophobic and superoleophilic nanoparticle film. The film shows fast response wettability transition between superhydrophobicity and hydrophilicity. The reversible superhydrophobicity to hydrophilicity switching can be easily carried out by adjusting the temperature. The film also demonstrates oil uptake ability and can selectively adsorb oil floating on water surface. Furthermore, the film surface shows the antifouling performance for organic solvents, which can self-remove the organic solvents layer and recover its superhydrophobic behavior. The advantage of the present approach is that the damaged film can be easily repaired by spraying again.

  7. Marangoni spreading due to a localized alcohol supply on a thin water film

    NASA Astrophysics Data System (ADS)

    Hernández-Sánchez, José Federico; Eddi, Antonin; Snoeijer, J. H.

    2015-03-01

    Bringing two miscible fluids into contact naturally generates strong gradients in surface tension. Here, we investigate such a Marangoni-driven flow by continuously supplying isopropyl alcohol (IPA) on a film of water, using micron-sized droplets of IPA-water mixtures. These droplets create a localized depression in surface tension that leads to the opening of a circular, thin region in the water film. At the edge of the thin region, there is a growing rim that collects the water of the film, reminiscent of Marangoni spreading due to locally deposited surfactants. In contrast to the surfactant case, the driving by IPA-water drops gives rise to a dynamics of the thin zone that is independent of the initial layer thickness. The radius grows as r ˜ t1/2, which can be explained from a balance between Marangoni and viscous stresses. We derive a scaling law that accurately predicts the influence of the IPA flux as well as the thickness of the thin film at the interior of the spreading front.

  8. Measurements of water film characteristics on airfol surfaces from wind-tunnel tests with simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Manuel, G. S.

    1985-01-01

    This paper discusses some of the surface water characteristics obtained during recent simulated heavy rain experiments conducted at the Langley Research Center. Water film distributions and discrete film thickness measurements on several model wings are discussed. The water film distributions on the upper surfaces are shown in photographs from cameras mounted above the models, and film thickness data are presented which were obtained using resistance sensors mounted flush with the upper and lower wing model surfaces. The paper also discusses potential sources of performance decrements indicated by the data.

  9. Imbibition of oil in film form over water present in edges of capillaries with an angular cross section

    SciTech Connect

    Dong, M.; Dullien, F.A.L.; Chatzis, I.

    1995-06-01

    In this paper it is shown, for the first time, that a nonspreading oil can form films over water films present in the edges of pores in a water-wet porous medium. Both the water and the oil wet the solid surface preferentially to air, but water wets the solid preferentially to oil. The mechanism of the film formation is capillary imbibition, i.e., spontaneous displacement of air by the oil, and it is similar to the formation of water films in the edges of a clean glass capillary of angular cross section filled with air. The principal difference is that, whereas the water imbibes over a solid surface, the oil imbibes over a surface consisting partly of water and partly of a solid wetted by oil. It is shown, by a combination of applications of Laplace`s equation of capillarity with the condition of minimum surface free energy, that if a ``critical`` oil film thickness is exceeded by the addition of excess oil, then this excess oil will imbibe over the water film in the edge until the equilibrium critical oil film thickness is established. The equations have been solved by iteration for the critical oil film thickness, using representative values of the parameters involved. Further, it is shown that an oil blob placed in a capillary of polygonal (e.g., square or equilateral triangle) cross section, containing water films in the edges of the capillary, will imbibe in the form of films over the water present in the edges, subject to certain limitations, specified in the paper. The theoretical predictions are supported by photomicrographs showing imbibition of benzene equilibrated with water and a paraffin oil over water present in the edges of a 2D glass micromodel. The spreading coefficient is negative for both systems.

  10. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Zheng, Peichao; Liu, Keming; Wang, Jinmei; Dai, Yu; Yu, Bin; Zhou, Xianju; Hao, Honggang; Luo, Yuan

    2012-10-01

    The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the hydrophobic character partly recovers after long-term storage in ambient air.

  11. Reduction of the water wettability of cellulose film through controlled heterogeneous modification.

    PubMed

    Li, Wei; Wu, Yuehan; Liang, Weiwei; Li, Bin; Liu, Shilin

    2014-04-23

    A facile method had been applied to introduce hydrophobic properties to cellulose materials by incorporation of polyurethane acrylate (PUA) prepolymers into the porous structured cellulose matrix through dip-coating; then, PUA prepolymers were cured around interconnected cellulose fibers under UV light, encapsulating a cellulose matrix with a hydrophobic polymer shell. The characterization of the composite films confirmed the success of the heterogeneous modification, and the chemical structure of the cellulose matrix was preserved. The composite films integrated the merits of cellulose and PUA resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties and an obvious reduction in the water uptake and the permeability toward water vapor gas at different relative humidity was also observed. The transmittance of the composite films at 550 nm was about 85%. The thermal and mechanical properties of the composite films were improved when compared with that of PUA resin. The obtained composite based on cellulose and UV curing technology was a good choice for the development of biomass materials with modified surface properties. PMID:24666422

  12. Sensing of contaminants in potable water using TiO2 functional film

    NASA Astrophysics Data System (ADS)

    Akshatha, N.; Poonia, Monika; Gupta, R. K.; Manjuladevi, V.; Shukla, P.; Gupta, Rajiv

    2016-04-01

    The piezoelectric based quartz crystal microbalance is employed for sensing contaminants in potable water. A spin coated thin layer of TiO2 nanoparticles was formed at the sensing area of a 5 MHz AT-cut quartz wafer. The thin film of TiO2 nanoparticles forms a mesoporous functional layer for the trapping of water borne contaminants. The morphology of the thin film of TiO2 nanoparticles was studied using field emission scanning electron microscope (FESEM). The surface morphology of the TiO2 nanoparticles reveals the mesoporous structures indicating large number of defects and porous sites. Such film was employed for the detection of water borne contaminants by detecting the piezoelectric response from a quartz crystal microbalance. We found the film to be very sensitive to the contaminants. The minimum detection limit was found to be 330 ppb. The effect of surface recharging was also studied by altering the physical conditions so that the film can be used for repetitive usage.

  13. Morphology and water-barrier properties of silane films on aluminum and silicon

    SciTech Connect

    Pan, Guirong; Schaefer, Dale W.

    2010-12-03

    The goal of this study is to understand the effect of the substrate on the morphology and water-barrier properties of bis-silane films. Silane films are deposited on both Si and Al. Neutron reflectivity is used to assess the effect of hydrothermal conditioning on the films. Aluminum on silicon (no silane) was characterized first to facilitate understanding of the more complicated silane on Al-coated Si. A 200-{angstrom} Al layer with 55-{angstrom} oxide covers the surface of the silicon wafer. The reflectivity data show that water penetrates into the oxide layer. Silane films deposited on either Al or Si substrates have similar bulk and top-surface morphology. Studies of silanes on Si wafers, therefore, can be generalized to include Al. The substrate-silane interface, however, does depend on both the substrate and the silane. Because pH of the bis-sulfur silane solution is outside of the stability range for Al{sub 2}O{sub 3}, dissolution of the thin oxide film occurs during solution deposition. A water-depletion area is formed at the interface region due to this reaction.

  14. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Yao, Kui; Lim, Yee-Fun; Liang, Yung C.; Suwardi, Ady

    2013-08-01

    Considering energy band alignment and polarization effect, ferroelectric BiFeO3 thin films are proposed as the photoanode in a monolithic cell to achieve unassisted photocatalytic water splitting. Significant anodic photocurrent was observed in our epitaxial ferroelectric BiFeO3 films prepared from sputter deposition. Both negative polarization charges and thinner films were found to promote the anodic photocatalytic reaction. Ultraviolet photoelectron spectroscopy proved that the conduction and valence band edges of BiFeO3 straddle the water redox levels. Theoretical analyses show that the large switchable polarization can modify the surface properties to promote the hydrogen and oxygen evolutions on the surfaces with positive and negative polarization charges, respectively.

  15. Epitaxial ferroelectric BiFeO{sub 3} thin films for unassisted photocatalytic water splitting

    SciTech Connect

    Ji, Wei; Yao, Kui; Lim, Yee-Fun; Suwardi, Ady; Liang, Yung C.

    2013-08-05

    Considering energy band alignment and polarization effect, ferroelectric BiFeO{sub 3} thin films are proposed as the photoanode in a monolithic cell to achieve unassisted photocatalytic water splitting. Significant anodic photocurrent was observed in our epitaxial ferroelectric BiFeO{sub 3} films prepared from sputter deposition. Both negative polarization charges and thinner films were found to promote the anodic photocatalytic reaction. Ultraviolet photoelectron spectroscopy proved that the conduction and valence band edges of BiFeO{sub 3} straddle the water redox levels. Theoretical analyses show that the large switchable polarization can modify the surface properties to promote the hydrogen and oxygen evolutions on the surfaces with positive and negative polarization charges, respectively.

  16. Thin film composite polyamide membrane parameters estimation for phenol-water system by reverse osmosis

    SciTech Connect

    Murthy, Z.V.P.; Gupta, S.K.

    1998-12-01

    A commercial thin film composite polyamide reverse osmosis membrane is used to separate an aqueous phenol-water binary system. The separation data are analyzed using a combined film theory-solution-diffusion (CFSD) model and a combined film theory-Spiegler-Kedem (CFSK) model. In the present investigation a new phenomenon is observed: there exists a maximum in the rejection when it is plotted against the product flux through the membrane. This behavior is explained for both models. An equation for J{sub v,min}, which is the value of the product flux J{sub v} at which the rejection reaches a maximum, is derived from both models. Although the parameters for both models are consistent over the range of operating conditions, the CFSK model is more accurate for the phenol-water system.

  17. Efficiency of macroporous poly(vinylphosphoramidic acid) resin adsorbing of selected elements and determination of trace dysprosium, holmium, erbium, and ytterbium in waste water by inductively coupled plasma optical emission spectrometry

    SciTech Connect

    Zhan Guangyao; Su Zhixing; Lou Xingyin; Chang Xijun )

    1992-03-01

    A macroporous poly(vinylphosphoramidic acid) resin is synthesized through the reaction of macroporous poly(vinylethylenediamine) resin with formaldehyde and phosphorus acid. The adsorption efficiency of the resin to selected elements is determined. An ICP-OES method has been established for the resin enrichment and separation of trace Dy, Ho, Er and Yb ions in waste water. The ability of the Na-form resin to adsorb Dy, Ho, Er, and Yb ions is far better than the H-form resin. The IR spectra of the resin before and after adsorbing Dy are shown. The mechanism of resin adsorption of Dy is explored. The results of resin enriched waste water analysis from a smelter plant are 31.0 ng/ml for dy, 41.1 ng/ml for Hl, 20.6 ng/ml for Er and 20.2 ng/ml for Yb ions. The recovery of standard additions of Dy, Ho, Er, and Yb to the waste water is in the range of 97.0-98.5%.

  18. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  19. Nonlinear vibration induced by the water-film whirl and whip in a sliding bearing rotor system

    NASA Astrophysics Data System (ADS)

    Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Kitauchi, Seishiro; Miyagawa, Kazuyoshi

    2016-03-01

    Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.

  20. Oil film thickness measurement using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1980-01-01

    The use of laser-induced water Raman backscatter for remote thin oil film detection and thickness measurement is reported here for the first time. A 337.1-nm nitrogen laser was used to excite the 3400-cm-1 OH stretch band of natural ocean water beneath the oil slick from an altitude of 150 m. The signal strength of the 381-nm water Raman backscatter was always observed to depress when the oil was encountered and then return to its original undepressed value after complete aircraft traversal of the floating slick. After removal of background and oil fluorescence contributions, the ratio of the depressed-to-undepressed airborne water Raman signal intensities, together with laboratory measured oil extinction coefficients, is used to calculate the oil film thickness.

  1. Detection of dimethyl methylphosphonate by thin water film confined surface-enhanced Raman scattering method.

    PubMed

    Wang, Jingjing; Duan, Guotao; Liu, Guangqiang; Li, Yue; Chen, Zhengxing; Xu, Lei; Cai, Weiping

    2016-02-13

    It is important and necessary to effectively detect the chemical warfare agents, such as highly toxic never agent sarin. However, based on the surface-enhanced Raman scattering (SERS) effect, detection of nerve agent simulant dimethyl methylphosphonate (DMMP) which is weakly interacted with SERS-active substrate has been the most challenge for the routine SERS detection method. To overcome this challenge, we put forward a thin water film confined SERS strategy. Under the space-confinement of water film, Raman measurements are carried out in the water evaporation process. The subsequent water evaporation induces concentrating of the DMMP molecules, which are thus successfully restricted within the strong electromagnetic field enhanced area above the SERS substrates, leading to the enhancement of their Raman signals. This study provides a new way to achieve the efficient SERS-based detection of the target molecules weakly interacted with the metal substrates. PMID:26513568

  2. [Melting in adsorbed films]. Progress report 1992

    SciTech Connect

    Simon, M.I.

    1992-12-31

    Over the past several years we have been developing a new approach to cloning large fragments of mammalian DNA in E. coli. which will permit detailed analysis of complex genomes. In January 1992 we began construction of an arrayed total human genomic library prepared in our BAC vector. Our goal is to create a 4-5X library which will be accessible for screening both by colony hybridization and by PCR. Our efforts in 1992 have been focused on expanding this library, characterizing specific clones isolated from the library, and demonstrating the use of BACs and Fosmids in creating physical maps. As a Model for the use of BACs in physical mapping, we have begun mapping human chromosome 22. In addition to their stability and ease of handling, BACs and Fosniids offer the advantage of permitting isolation of relatively large amounts of pure DNA which should greatly facilitate contig construction. We have created a 7X chromosome 22-specific Fosmid library consisting of clones obtained from DNA from a hybrid cell line.

  3. Effect of porous polymer films (track membranes) on the isothermal evaporation kinetics of water

    NASA Astrophysics Data System (ADS)

    Novikov, S. N.; Ermolaeva, A. I.; Timoshenkov, S. P.; Korobova, N. E.; Goryunova, E. P.

    2016-06-01

    The kinetics of isothermal evaporation of distilled water that was in remote (10-15-mm) contact with porous polymer films (track membranes (TMs)) was studied by microgravimetry (derivatograph). When the H2O-TM system contained a disperse medium, the supramolecular structure of water changed, and the number of clusters (coherent domains) drastically decreased. The extraction of the light phase from liquid water was correlated with the chemisorption of H2O molecules containing the para-isomer of hydrogen, which predominantly form coherent domains of water.

  4. Water vapor permeability, mechanical, optical and sensorial properties of plasticized guar gumedible films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible films were prepared by casting method using guar gum and glycerol in different ratios. The concentration of guar gum was 1.0, 1.5 and 2.0% whereas glycerol concentration was 20, 30 and 40% (w/v). The water vapor permeability (WVP), mechanical properties (tensile strength and elongation), thic...

  5. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    PubMed

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm.

  6. Diode laser-based standoff absorption measurement of water film thickness in retro-reflection

    NASA Astrophysics Data System (ADS)

    Pan, R.; Brocksieper, C.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-09-01

    A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.

  7. Molecular layer-by-layer assembled thin-film composite membranes for water desalination.

    PubMed

    Gu, Joung-Eun; Lee, Seunghye; Stafford, Christopher M; Lee, Jong Suk; Choi, Wansuk; Kim, Bo-Young; Baek, Kyung-Youl; Chan, Edwin P; Chung, Jun Young; Bang, Joona; Lee, Jung-Hyun

    2013-09-14

    Molecular layer-by-layer (mLbL) assembled thin-film composite membranes fabricated by alternating deposition of reactive monomers on porous supports exhibit both improved salt rejection and enhanced water flux compared to traditional reverse osmosis membranes prepared by interfacial polymerization. Additionally, the well-controlled structures achieved by mLbL deposition further lead to improved antifouling performance.

  8. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.

    PubMed

    Bonke, Shannon A; Wiechen, Mathias; Hocking, Rosalie K; Fang, Xi-Ya; Lupton, David W; MacFarlane, Douglas R; Spiccia, Leone

    2015-04-24

    Efficient catalysis of water oxidation represents one of the major challenges en route to efficient sunlight-driven water splitting. Cobalt oxides (CoOx ) have been widely investigated as water oxidation catalysts, although the incorporation of these materials into photoelectrochemical devices has been hindered by a lack of transparency. Herein, the electrosynthesis of transparent CoOx catalyst films is described by utilizing cobalt(II) aminopolycarboxylate complexes as precursors to the oxide. These complexes allow control over the deposition rate and morphology to enable the production of thin, catalytic CoOx films on a conductive substrate, which can be exploited in integrated photoelectrochemical devices. Notably, under a bias of 1.0 V (vs. Ag/AgCl), the film deposited from [Co(NTA)(OH2 )2 ](-) (NTA=nitrilotriacetate) decreased the transmission by only 10 % at λ=500 nm, but still generated >80 % of the water oxidation current produced by a [Co(OH2 )6 ](2+) -derived oxide film whose transmission was only 40 % at λ=500 nm. PMID:25826458

  9. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.

    PubMed

    Verruto, Vincent J; Kilpatrick, Peter K

    2008-11-18

    The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film

  10. Photoassisted oxidation of oil films on water. Final performance report, January 1, 1990--March 31, 1993

    SciTech Connect

    Heller, A.

    1994-04-19

    The objective of the project has been the development of a technology for cleaning up oil spills on water through their photocatalytic oxidation. The photocatalyst used was titanium dioxide. Nanocrytalline TiO{sub 2}, of anatase or anatase/rutile phase, was bound to hollow ceramic microspheres of sufficiently low density to be buoyant on water. In the presence of these, under sunlight, oil films were photocatalytically oxidized by dissolved oxygen.

  11. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M

    2004-07-01

    Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.

  12. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications.

    PubMed

    Sousa, Ana M M; Gonçalves, Maria P

    2015-11-01

    Agar films possess several properties adequate for food packaging applications. However, their high cost-production and quality variations caused by physiological and environmental factors affecting wild seaweeds make them less attractive for industries. In this work, native (NA) and alkali-modified (AA) agars obtained from sustainably grown seaweeds (integrated multi-trophic aquaculture) were mixed with locust bean gum (LBG) to make 'knife-coated' films with fixed final concentration (1 wt%) and variable agar/LBG ratios. Agar films were easier to process upon LBG addition (viscosity increase and gelling character decrease of the film-forming solutions observed by dynamic oscillatory and steady shear measurements). The mechanical properties and water resistance were optimal for films with 50 and/or 75% LBG contents and best in the case of NA (cheaper to extract). These findings can help reduce the cost-production of agar packaging films. Moreover, the controlled cultivation of seaweeds can provide continuous and reliable feedstock for transformation industries. PMID:26256341

  13. Investigation of Mixed Surfactant Films at Water Surface Using Molecular Dynamics Simulations.

    PubMed

    Habartová, Alena; Roeselová, Martina; Cwiklik, Lukasz

    2015-10-27

    Multicomponent Langmuir monolayers are important models of organic coatings of naturally occurring water-vapor interfaces such as the surfaces of oceans or aerosol particles. We investigated mixed monolayers comprised of palmitic acid, C15H31COOH (PA) and 1-bromoalkanes of different chain length (C5, C10, and C16) at the air-water interface employing classical molecular dynamics simulations. Different composition ratios and lateral compression of the monolayers were considered. The structural parameters, such as density profiles, and deuterium order parameter, evaluated as functions of composition and the lateral film packing, provide microscopic information about organization and dynamics of the mixed monolayers. Simulations demonstrate that stable and well mixed monolayers are formed by the mixtures of PA and BrC16H33 (BrCl6), whereas the two considered shorter bromoalkanes, BrC5H11 (BrC5) and BrC10H21 (BrC10), do not form stable films. This is in accord with earlier experimental studies. Under high lateral pressures, in PA/BrC10 mixed systems molecules of the bromoalkane readily flip in the monolayer and subsequently leave the film, while the molecules of the longer BrC16 are expelled from the PA film but no flipping occurs. These results suggest that the film collapse under pressure is preceded by squeezing-out of bromoalkanes from the PA monolayer. PMID:26439598

  14. Flame Synthesized Single Crystal Nanocolumn-Structured WO3 Thin Films for Photoelectrochemical Water Splitting.

    PubMed

    Ding, Jin-Rui; Kim, Kyo-Seon

    2016-02-01

    Tungsten oxide thin films have been found as an active visible light driven photoanode material for photoelectrochemical water splitting due to its good stability in aqueous solution and energetically favorable valence band position for water oxidation. Morphology control, which determines the performance of WO3 photoanode, is one of most focuses of recent research interests. In this work, we successfully prepared monoclinic WO3 thin films on ITO glass at low range of substrate temperature with a fabrication rate around 100 nm per minute by using aerosol flame deposition process. Single crystal nanocolumns with both triangular pyramid-like and triangular prism-like structure were obtained at certain process conditions. Photoelectrochemical properties of photoelectrodes assembled with both structured WO3 thin films were investigated. The prism-like nanocolumn-structured thin film generated the current density of 1.58 mAcm(-2) at potential of 1.0 V versus Ag/AgCl in 0.5 M H2SO4 solution under illumination of AM 1.5 simulated solar light (100 mVcm(-2)). It presented superior photoelectrochemical performance to pyramid-like nanocolumn-structured WO3 thin film. PMID:27433624

  15. Effect of Water on Elastic and Creep Properties of Self-Standing Clay Films.

    PubMed

    Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland J-M; Bornert, Michel; Ferrage, Eric; Hubert, Fabien; Van Damme, Henri

    2016-02-01

    We characterized experimentally the elastic and creep properties of thin self-standing clay films, and how their mechanical properties evolved with relative humidity and water content. The films were made of clay montmorillonite SWy-2, obtained by evaporation of a clay suspension. Three types of films were manufactured, which differed by their interlayer cation: sodium, calcium, or a mixture of sodium with calcium. The orientational order of the films was characterized by X-ray diffractometry. The films were mechanically solicited in tension, the resulting strains being measured by digital image correlation. We measured the Young's modulus and the creep over a variety of relative humidities, on a full cycle of adsorption-desorption for what concerns the Young's modulus. Increasing relative humidity made the films less stiff and made them creep more. Both the elastic and creep properties depended significantly on the interlayer cation. For the Young's modulus, this dependence must originate from a scale greater than the scale of the clay layer. Also, hysteresis disappeared when plotting the Young's modulus versus water content instead of relative humidity. Independent of interlayer cation and of relative humidity greater than 60%, after a transient period, the creep of the films was always a logarithmic function of time. The experimental data gathered on these mesoscale systems can be of value for modelers who aim at predicting the mechanical behavior of clay-based materials (e.g., shales) at the engineering macroscopic scale from the one at the atomistic scale, for them to validate the first steps of their upscaling scheme. They provide also valuable reference data for bioinspired clay-based hybrid materials.

  16. Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation.

    PubMed

    Kung, Chung-Wei; Mondloch, Joseph E; Wang, Timothy C; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M; Klet, Rachel C; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2015-12-30

    Thin films of the metal-organic framework (MOF) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co(2+) ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation.

  17. Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation.

    PubMed

    Kung, Chung-Wei; Mondloch, Joseph E; Wang, Timothy C; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M; Klet, Rachel C; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2015-12-30

    Thin films of the metal-organic framework (MOF) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co(2+) ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation. PMID:26636174

  18. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  19. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  20. Nano sponge Mn₂O ₃ as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2014-10-01

    In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples.

  1. Influence of Water on Chemical Vapor Deposition of Ni and Co thin films from ethanol solutions of acetylacetonate precursors

    PubMed Central

    Weiss, Theodor; Zielasek, Volkmar; Bäumer, Marcus

    2015-01-01

    In chemical vapor deposition experiments with pulsed spray evaporation (PSE-CVD) of liquid solutions of Ni and Co acetylacetonate in ethanol as precursors, the influence of water in the feedstock on the composition and growth kinetics of deposited Ni and Co metal films was systematically studied. Varying the water concentration in the precursor solutions, beneficial as well as detrimental effects of water on the metal film growth, strongly depending on the concentration of water and the β-diketonate in the precursor, were identified. For 2.5 mM Ni(acac)2 precursor solutions, addition of 0.5 vol% water improves growth of a metallic Ni film and reduces carbon contamination, while addition of 1.0 vol% water and more leads to significant oxidation of deposited Ni. By tuning the concentration of both, Ni(acac)2 and water in the precursor solution, the fraction of Ni metal and Ni oxide in the film or the film morphology can be adjusted. In the case of Co(acac)2, even smallest amounts of water promote complete oxidation of the deposited film. All deposited films were analyzed with respect to chemical composition quasi in situ by XPS, their morphology was evaluated after deposition by SEM. PMID:26658547

  2. Influence of Water on Chemical Vapor Deposition of Ni and Co thin films from ethanol solutions of acetylacetonate precursors

    NASA Astrophysics Data System (ADS)

    Weiss, Theodor; Zielasek, Volkmar; Bäumer, Marcus

    2015-12-01

    In chemical vapor deposition experiments with pulsed spray evaporation (PSE-CVD) of liquid solutions of Ni and Co acetylacetonate in ethanol as precursors, the influence of water in the feedstock on the composition and growth kinetics of deposited Ni and Co metal films was systematically studied. Varying the water concentration in the precursor solutions, beneficial as well as detrimental effects of water on the metal film growth, strongly depending on the concentration of water and the β-diketonate in the precursor, were identified. For 2.5 mM Ni(acac)2 precursor solutions, addition of 0.5 vol% water improves growth of a metallic Ni film and reduces carbon contamination, while addition of 1.0 vol% water and more leads to significant oxidation of deposited Ni. By tuning the concentration of both, Ni(acac)2 and water in the precursor solution, the fraction of Ni metal and Ni oxide in the film or the film morphology can be adjusted. In the case of Co(acac)2, even smallest amounts of water promote complete oxidation of the deposited film. All deposited films were analyzed with respect to chemical composition quasi in situ by XPS, their morphology was evaluated after deposition by SEM.

  3. Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations.

    PubMed

    Gebäck, Tobias; Marucci, Mariagrazia; Boissier, Catherine; Arnehed, Johan; Heintz, Alexei

    2015-04-23

    Understanding how the pore structure influences the mass transport through a porous material is important in several applications, not the least in the design of polymer film coatings intended to control drug release. In this study, a polymer film made of ethyl cellulose and hydroxypropyl cellulose was investigated. The 3D structure of the films was first experimentally characterized using confocal laser scanning microscopy data and then mathematically reconstructed for the whole film thickness. Lattice Boltzmann simulations were performed to compute the effective diffusion coefficient of water in the film and the results were compared to experimental data. The local porosities and pore sizes were also analyzed to determine how the properties of the internal film structure affect the water effective diffusion coefficient. The results show that the top part of the film has lower porosity, lower pore size, and lower connectivity, which results in a much lower effective diffusion coefficient in this part, largely determining the diffusion rate through the entire film. Furthermore, the local effective diffusion coefficients were not proportional to the local film porosity, indicating that the results cannot be explained by a single tortuosity factor. In summary, the proposed methodology of combining microscopy data, mass transport simulations, and pore space analysis can give valuable insights on how the film structure affects the mass transport through the film.

  4. [Magnetic multi-walled carbon nanotubes as a solid phase extraction adsorbent for the determination of 13 phthalate acid esters in water samples by gas chromatography-mass spectrometry].

    PubMed

    Fu, Shanliang; Ding, Li; Zhu, Shaohua; Jiao, Yanna; Gong, Qiang; Chen, Jitao; Wang, Libing

    2011-08-01

    A method based on solid phase extraction (SPE) with magnetic multi-walled carbon nanotubes (MWCNTs) as adsorbent was developed for the determination of 13 phthalate acid esters (PAEs) in water samples by gas chromatography-mass spectrometry (GC-MS). The factors affecting the extraction efficiency, such as extraction time, pH of water sample, desorption solvent, and desorption time, were carefully investigated. The optimized conditions were as follows: extraction time, 10 min; pH of water samples, 5 - 7; desorption solvent, 2 mL acetone; desorption time, 5 min. The extraction efficiencies were 89.7% - 100.5% under the optimized conditions. The method was sensitive with the detection limits (S/N = 3) between 0.08 -0.47 microg/L for the 13 PAEs. The developed method was successfully applied for the analysis of tap water, bottle drinking water and lake water, and none of the 13 PAEs was detected. The recoveries ranged from 84.5% to 107.5% for the 3 real spiked samples, and the relative standard deviations were between 1.9% and 12.8%. The developed method has proved convenient, time-saving, accurate, sensitive, and environmental-friendly, and can be used for the determination of PAEs in water samples.

  5. Modeling the interaction Between Ethylene Diamine and Water Films on the Surface of a Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Walther, Jens H.; Zimmerli, Urs; Koumoutsakos, Petros

    2004-01-01

    It has been observed that a carbon nanotube (CNT) AFM tip coated with ethylene diamine (EDA) penetrates the liquid water-air interface more easily than an uncoated nanotube tip. The EDA coating remains intact through repeated cycles of dipping and removal. In order to understand the physical basis for this observation, we use ab initio quantum chemistry calculations to study the EDA-CNT-water interaction and to parameterize a force field describing this system. Molecular dynamics (MD) simulations are carried out for EDA-water mixtures and an EDA-coated carbon nanotube immmed in water. These simulations are similar to our earlier MD study that characterized the CNT-water interface. The attractive CNT-EDA and CNT-water interactions arise primarily from van der Waals forces, and the EDA-EDA, EDA-water and water-water interactions are mainly due to hydrogen bond formation. The binding energ of single EDA molecule to the nanotube is nearly three times larger than the corresponding value found for water (4.3 versus 1.5 kcal mol, respectively). The EDA molecules readily stick to and diffuse along the CNT surface. As a resulf mixing of the EDA and water films does not occur on the timescale of the MD simulations. The EDA film reduces the hydrophobicity of the nanotube surface and acts like a prototypical surfactant in stabilizing the suspension of carbon nanotubes in water. For this presentation, we use the MD simulations to determine how the presence of the carbon nanotube surface perturbs the properties of EDA-water mixtures.

  6. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba; Leemans, Wim P.

    2010-08-15

    A plasma mirror based on a laminar water film with low flow speed (0.5-2 cm/s) has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as a target surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does not produce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70% reflectivity, while maintaining high-quality of the reflected spot.

  7. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  8. Drying temperature effect on water vapor permeability and mechanical properties of whey protein-lipid emulsion films.

    PubMed

    Perez-Gago, M B; Krochta, J M

    2000-07-01

    The water vapor permeability (WVP) and mechanical properties of whey protein isolate (WPI) and WPI-lipid emulsion films dried at different conditions were investigated. As drying temperature increased, WVPs decreased significantly. Significantly lower WVP was observed for emulsion films compared to WPI films. WPI-Beeswax (BW) and WPI-anhydrous milkfat fraction emulsion films dried at 80 degrees C and 40% RH gave the lowest WVP compared to 25 degrees C, 40% RH and 40 degrees C, 40% RH. A large drop in WVP of WPI-BW emulsion films was observed at 20% BW content. The decrease in WVP for emulsion films as drying temperature increased could be due to change in the lipid crystalline morphology and/or lipid distribution within the matrix. Mechanical properties of WPI and WPI-lipid emulsion films, on the other hand, were not modified by drying conditions.

  9. Assessing the capabilities of hyperspectral remote sensing to map oil films on waters

    NASA Astrophysics Data System (ADS)

    Liu, Bingxin; Li, Ying; Zhu, Xueyuan

    2014-11-01

    The harm of oil spills has caused extensive public concern. Remote sensing technology has become one of the most effective means of monitoring oil spill. However, how to evaluate the information extraction capabilities of various sensors and choose the most effective one has become an important issue. The current evaluation of sensors to detect oil films was mainly using in-situ measured spectra as a reference to determine the favorable band, but ignoring the effects of environmental noise and spectral response function. To understand the precision and accuracy of environment variables acquired from remote sensing, it is important to evaluate the target detection sensitivity of the entire sensor-air-target system corresponding to the change of reflectivity. The measurement data associated with the evaluation is environmental noise equivalent reflectance difference (NEΔRE ), which depends on the instrument signal to noise ratio(SNR) and other image data noise (such as atmospheric variables, scattered sky light scattering and direct sunlight, etc.). Hyperion remote sensing data is taken as an example for evaluation of its oil spill detection capabilities with the prerequisite that the impact of the spatial resolution is ignored. In order to evaluate the sensor's sensitivity of the film of water, the reflectance spectral data of light diesel and crude oil film were used. To obtain Hyperion reflectance data, we used FLAASH to do the atmospheric correction. The spectral response functions of Hyperion sensor was used for filtering the measured reflectance of the oil films to the theoretic spectral response. Then, these spectral response spectra were normalized to NEΔRE, according to which, the sensitivity of the sensor in oil film detecting could be evaluated. For crude oil, the range for Hyperion sensor to identify the film is within the wavelength from 518nm to 610nm (Band 17 to Band 26 of Hyperion sensors), within which the thin film and thick film can also be

  10. Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine

    SciTech Connect

    Pan, Guirong; Schaefer, Dale W.; van Ooij, Wim J.; Kent, Michael S.; Majewski, Jaroslaw; Yim, Hyun

    2010-12-03

    Functional organosilanes are powerful interface-active agents that find applications as adhesion promoters as well as optical, dielectric and protective coatings. Bis-silanes are of particular interest because they are highly crosslinked leading to very robust films. In almost all applications, the water resistance of the films is a critical performance measure. Here we use neutron reflectivity to address the effect of bridging group on the hydrothermal response of bis-silane films prepared using bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine. Neat and mixed films are examined as-prepared, after exposure to water vapor and then in the re-dried state. The bridging group is the key factor that controls the morphology and water resistance of silane films. Although bis-sulfur silane is not as condensed as bis-amino silane, bis-sulfur swells less in water because of the hydrophobic nature of bridging group. The reflectivity of bis-sulfur silane film is reversible after room-temperature water conditioning but not at 80 C, indicating chemical alternation of the film at 80 C. The water resistance of mixed silane is roughly that of both components weighted by their volume fraction. But based on the enhanced shrinkage that occurs following water-vapor conditioning of the mixed film, condensation is accelerated in the mixed silane. Regarding the precursor solution, bis-amino silane may act as a catalyst in the hydrolysis of bis-sulfur silane leading to more silanols in the solution and further condensation in the film. Variation in the structure normal to the substrate is also examined by swelling the film with d-nitrobenzene, a non-reacting swelling agent.

  11. Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning.

    PubMed

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J; Lu, Haidong; Lee, Jung-Woo; Zhou, Hua; Chang, Wansoo; Mahanthappa, Mahesh K; Tsymbal, Evgeny Y; Gruverman, Alexei; Eom, Chang-Beom

    2016-04-13

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. PMID:26901570

  12. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  13. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.

    PubMed

    Moir, Jonathon; Soheilnia, Navid; Liao, Kristine; O'Brien, Paul; Tian, Yao; Burch, Kenneth S; Ozin, Geoffrey A

    2015-05-11

    Thermal treatment of ultrathin films of hematite (α-Fe2 O3 ) under an atmosphere of 5 % H2 in Ar is presented as a means of activating α-Fe2 O3 towards the photoelectrochemical splitting of water. Spin-coated films annealed in air exhibited no photoactivity, whereas films treated in hydrogen exhibited a photocurrent response. X-ray photoelectron spectroscopy and UV/Vis absorption spectroscopy results showed that the H2 -treated films contain oxygen vacancies, which suggests improved charge transport. However, Tafel slopes, scan-rate dependent measurements, and kinetic analyses performed by using H2 O2 as a hole scavenger suggested that surface modification may also contribute to their induced photoactivity. Electrochemical impedance spectroscopy results revealed the buildup of a surface trap capacitance at the point of photocurrent onset for the hydrogen-treated films under illumination. A decrease in charge trapping resistance was also observed, which suggests improved transport of charges away from the surface.

  14. Enhancing water repellence and mechanical properties of gelatin films by tannin addition.

    PubMed

    Peña, Cristina; de la Caba, Koro; Eceiza, Arantxa; Ruseckaite, Roxana; Mondragon, Iñaki

    2010-09-01

    In order to reduce pollution caused by traditional non-biodegradable plastic films, renewable raw materials from plants and wastes of meat industries have been employed in this work. A hydrolysable chestnut-tree tannin was used for gelatin modification. Films of gelatin and gelatin-tannin were obtained by casting at room conditions. Transition temperatures of both gelatin and gelatin-tannin systems were determined by differential scanning calorimetry (DSC). Glass transition temperatures of modified gelatin occurred at higher temperatures than for neat gelatin. Enthalpy and temperature of helix-coil transition decreased when tannin content increased due to variations in the helical structure of gelatin as a consequence of tannin presence in agreement with X-ray analysis. Mechanical and thermal behaviour varied as a function of the content of tannin, showing optimum values for films modified with 10 wt% tannin. The transparency of films was maintained after modification with tannin. Solubility and swelling tests of the films revealed that the presence of tannin reduced the water affinity of gelatin.

  15. Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting.

    PubMed

    Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C

    2015-09-30

    Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.

  16. Acoustic spreading of thin films of water: balancing capillary, viscous, and vibrational mechanisms

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Altshuler, Gennady; Small Scale Trasport laboratory Team

    2014-11-01

    Substrate vibrations at frequencies comparable to HF radio frequencies and in contact with liquid generate flow at submicron length scales that may result in spreading of liquid films. This spreading mechanism is thought as a way of manipulating liquids on microfluidic platforms. In previous studies we used silicon oil as a model liquid; silicon oil spread easily and smoothly as long as the oil and substrate vibrations are in contact. Water films under similar conditions, however, were observed to spread to a minute extent and only under high power levels that further render intense capillary instabilities. In this presentation we use theory and experimental evidence to discuss the physical mechanisms associated with acoustic spreading of water films. We highlight mechanisms associated with acoustic spreading of arbitrary liquids, and we show the various influences of these mechanisms on liquid spreading is encapsulated within one dimensionless number whose value determines whether spreading is to take place. We further elucidate the discrepancy, observed in earlier literature, between the response of oil and water to acoustic excitation and highlight an intermediate parametric region, where precise manipulation of water spreading is achieved by carefully balancing the governing mechanisms.

  17. Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting.

    PubMed

    Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C

    2015-09-30

    Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required. PMID:26372163

  18. From adsorption to condensation: the role of adsorbed molecular clusters.

    PubMed

    Yaghoubian, Sima; Zandavi, Seyed Hadi; Ward, C A

    2016-08-01

    The adsorption of heptane vapour on a smooth silicon substrate with a lower temperature than the vapour is examined analytically and experimentally. An expression for the amount adsorbed under steady state conditions is derived from the molecular cluster model of the adsorbate that is similar to the one used to derive the equilibrium Zeta adsorption isotherm. The amount adsorbed in each of a series of steady experiments is measured using a UV-vis interferometer, and gives strong support to the amount predicted to be adsorbed. The cluster distribution is used to predict the subcooling temperature required for the adsorbed vapour to make a disorder-order phase transition to become an adsorbed liquid, and the subcooling temperature is found to be 2.7 ± 0.4 K. The continuum approach for predicting the thickness of the adsorbed liquid film originally developed by Nusselt is compared with that measured and is found to over-predict the thickness by three-orders of magnitude. PMID:27426944

  19. Investigation of film formation in water-distribution systems by field-emission SEM and spectroscopy techniques

    SciTech Connect

    Liu, J.; Friedman, R.M.; Cortez, E.

    1996-12-31

    EPA has set limits on the concentration of heavy metals in drinking water supplies to protect the public health. Furthermore, the failure of pipes in the water distribution system from corrosion represents a massive investment in rebuilding its infrastructure. We have initiated a program to study the formation of corrosion-inhibition films formed in potable water delivery systems using various chemical phosphate treatments. In particular, blends of ortho- and polyphosphates have recently been used to reduce both lead and copper leaching. Several factors are important to the successful implementation of the phosphate technologies, including film thickness and porosity, rate and stability of formation and water quality conditions. In an attempt to understand the performance of these phosphate blends, advanced analytical techniques have been employed to study the nucleation and growth mechanisms of the passivation films in a variety of water systems. We report here some preliminary results on the study of the film formation by field emission scanning electron microscopy (FESEM) technique.

  20. Polymer-Carbon Nanotube Composite Films at the Oil/Water Interface: Assembly and Properties

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Feng, Tao; Russell, Thomas P.

    2015-03-01

    Efficient carbon nanotube assembly at the oil/water interface was achieved by dissolving cationic polymers in the oil phase and oxidized nanotubes in the water phase, the two components spontaneously forming salt bridges to produce a composite interfacial film of nanoscopic thickness. As seen by pendant drop tensiometry, parameters such as carbon nanotube and polymer concentration, pH, polymer molecular weight, and degree of nanotube oxidation all affect assembly strongly, with measured trends to be described and explained. The frequency-dependent elastic and viscous moduli of films in dilation were characterized by interfacial pendant drop rheology. Structural (fast, minutes) and adsorption/desorption (slow, tens of minutes) relaxations were both noted, and at frequencies intermediate to the two, almost insensitive to assembly parameters, the films displayed expected behaviors for 2D critical gels, i.e., at the crossover between fluid and solid. Tan(delta) was frequency-independent over one to two decades of frequency, and the modulus of linear stress relaxation was a power law in time. Films wrinkled by larger (nonlinear) strains recovered over the structural relaxation time. Support: NSF-sponsored UMass MRSEC and the US DoE Office of Basic Energy Science through Contract DE-FG02-04ER46126.

  1. Electrodeposited Ni-P alloy thin films for alkaline water splitting reaction

    NASA Astrophysics Data System (ADS)

    Elias, Liju; Damle, Vinayaka H.; Chitharanjan Hegde, A.

    2016-09-01

    Ni-P alloy thin films was developed as a robust electrode material for alkaline water splitting for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), through electrodeposition technique. The influence of alloy composition, achieved through induced codeposition of the reluctant non-metal, i.e. phosphorous (P) on its electrocatalytic activity was studied, and arrived at the best composition of alloy for HER and OER. The water splitting efficacy of the alloy films was tested in 1.0 M KOH using electrochemical methods such as cyclic voltammetry and chronopotentiometry. The experimental observation shows that the alloy thin film with 9.0 wt.% of P and 4.2 wt.% of P are the best electrode materials for HER and OER, respectively. The electrocatalytic performance of alloy films towards HER and OER were related to its surface topography, composition and crystal structure through field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses, respectively.

  2. Synthesis of Cu2O nanoparticle films at room temperature for solar water splitting.

    PubMed

    Lin, Yan-Gu; Hsu, Yu-Kuei; Lin, Yu-Chang; Chang, Yu-Hsueh; Chen, San-Yuan; Chen, Ying-Chu

    2016-06-01

    A Cu2O nanoparticle film using ZnO nanorods as a sacrificial scaffold was fabricated near 23°C, for applications in photoelectrochemical (PEC) water splitting. Three chemical solutions were utilized to convert ZnO nanorods to a Cu2O nanoparticle film - solutions of CuCl2 and NaOH, NaBH4 and NaOH, respectively. The structural evolution from ZnO through Cu(OH)2 and metallic Cu to Cu2O phase was analyzed at each stage with X-ray diffraction and X-ray absorption spectra. The energy bandgap was deduced from IPCE; the concentration of carriers and flat-band of a Cu2O nanoparticle film were obtained from a Mott-Schottky plot. Significantly, the Cu2O nanoparticle film exhibited a useful PEC response to water oxidation. This nanostructure synthesized with no energy requirement can not only illustrate a great prospect for solar generation of hydrogen but also offer a blueprint for the future design of photocatalysts. PMID:26990954

  3. Scanning white-light interferometer for measurement of the thickness of a transparent oil film on water.

    PubMed

    Sun, Changsen; Yu, Longcheng; Sun, Yuxing; Yu, Qingxu

    2005-09-01

    The thickness of a transparent layer of oil upon the surface of water is measured as the distance between the surface of oil film and the interface of the oil with the water. Two experimental results have demonstrated that the interface can reflect a white-light beam well enough to form an interferogram, even if the light is subjected to oil-film dispersion. When a beam of white light is incident vertically onto the oil-film surface, a scanning white-light interferometer in the Michelson configuration is employed to locate two serial reflections, surface reflection and interface reflection. The thickness of the transparent oil film on water is calculated based on the separation of these two interferograms. A limitation thickness, approximately 250 microm with 1.25 microm resolution, is achieved under the condition that there is 50 nW of optical power incident onto the oil-film surface with a wavelength centered at 1310 nm.

  4. Probing interactions between TiO 2 photocatalyst and adsorbing species using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Morand, R.; Noworyta, K.; Augustynski, J.

    2002-10-01

    Photoactivity of nanocrystalline TiO 2 films is shown to be strongly affected by the presence in aqueous solution of salicylic acid, known to form Ti(IV)salicylate surface complexes. In particular, the photooxidation of methanol - an effective hole scavenger - at TiO 2 appears to be in part, or even completely inhibited by the additions of increasing amounts of salicylic acid. The chemisorption of salicylic and also phthalic acid on TiO 2 was followed using quartz crystal microbalance, QCM. The observed resonant frequency changes of the quartz crystal bearing TiO 2 films, accompanying increasing additions of the benzoic acids to the contacting solutions, indicate large displacement of water as a consequence of the adsorbent-imparted hydrophobicity of the interface.

  5. Pulsed erbium laser ablation of hard dental tissue: the effects of atomized water spray versus water surface film

    NASA Astrophysics Data System (ADS)

    Freiberg, Robert J.; Cozean, Colette D.

    2002-06-01

    It has been established that the ability of erbium lasers to ablate hard dental tissue is due primarily to the laser- initiated subsurface expansion of the interstitial water trapped within the enamel and that by maintaining a thin film of water on the surface of the tooth, the efficiency of the laser ablation is enhanced. It has recently been suggested that a more aggressive ablative mechanism, designated as a hydrokinetic effect, occurs when atomized water droplets, introduced between the erbium laser and the surface of the tooth, are accelerated in the laser's field and impact the tooth's surface. It is the objective of this study to determine if the proposed hydrokinetic effect exists and to establish its contribution to the dental hard tissue ablation process. Two commercially available dental laser systems were employed in the hard tissue ablation studies. One system employed a water irrigation system in which the water was applied directly to the tooth, forming a thin film of water on the tooth's surface. The other system employed pressurized air and water to create an atomized mist of water droplets between the laser hand piece and the tooth. The ablative properties of the two lasers were studied upon hard inorganic materials, which were void of any water content, as well as dental enamel, which contained interstitial water within its crystalline structure. In each case the erbium laser beam was moved across the surface of the target material at a constant velocity. When exposing material void of any water content, no ablation of the surfaces was observed with either laser system. In contrast, when the irrigated dental enamel was exposed to the laser radiation, a linear groove was formed in the enamel surface. The volume of ablated dental tissue associated with each irrigation method was measured and plotted as a function of the energy within the laser pulse. Both dental laser systems exhibited similar enamel ablation rates and comparable ablated surface

  6. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed

  7. Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films.

    PubMed

    Hakalahti, Minna; Salminen, Arto; Seppälä, Jukka; Tammelin, Tekla; Hänninen, Tuomas

    2015-08-01

    TEMPO/NaClO2 oxidized cellulosic nanofibrils (TCNF) were covalently bonded with poly(vinyl alcohol) (PVA) to render water stable films. Pure TCNF films and TCNF-PVA films in dry state showed similar humidity dependent behavior in the elastic region. However, in wet films PVA had a significant effect on stability and mechanical characteristics of the films. When soaked in water, pure TCNF films exhibited strong swelling behavior and poor wet strength, whereas covalently bridged TCNF-PVA composite films remained intact and could easily be handled even after 24h of soaking. Wet tensile strength of the films was considerably enhanced with only 10 wt% PVA addition. At 25% PVA concentration wet tensile strengths were decreased and films were more yielding. This behavior is attributed to the ability of PVA to reinforce and plasticize TCNF-based films. The developed approach is a simple and straightforward method to produce TCNF films that are stable in wet conditions.

  8. Evaluation of the Water Film Weber Number in Glaze Icing Scaling

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Kreeger, Richard E.; Feo, Alejandro

    2010-01-01

    Icing scaling tests were performed in the NASA Glenn Icing Research Tunnel to evaluate a new scaling method, developed and proposed by Feo for glaze icing, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number. For comparison purpose, tests were also conducted using the constant We(sub L) method for velocity scaling. The reference tests used a full-span, fiberglass, 91.4-cm-chord NACA 0012 model with velocities of 76 and 100 knot and MVD sizes of 150 and 195 microns. Scale-to-reference model size ratio was 1:2.6. All tests were made at 0deg AOA. Results will be presented for stagnation point freezing fractions of 0.3 and 0.5.

  9. Nanoimprint lithography for green water-repellent film derived from biomass with high-light transparency

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2015-03-01

    Newly eco-friendly high light transparency film with plant-based materials was investigated to future development of liquid crystal displays and optical devices with water repellency as a chemical design concept of nanoimprint lithography. This procedure is proven to be suitable for material design and the process conditions of ultraviolet curing nanoimprint lithography for green water-repellent film derived from biomass with high-light transparency. The developed formulation of advanced nanoimprinted materials design derived from lactulose and psicose, and the developmen