Science.gov

Sample records for adsorbent dose contact

  1. Zeta potential, contact angles, and AFM imaging of protein conformation adsorbed on hybrid nanocomposite surfaces.

    PubMed

    Pinho, Ana C; Piedade, Ana P

    2013-08-28

    The sputtering deposition of gold (Au) and poly(tetrafluoroethylene) (PTFE) was used to prepare a nanocomposite hybrid thin film suitable for protein adsorption while maintaining the native conformation of the biological material. The monolithic PTFE and the nanocomposite PTFE/Au thin films, with Au content up to 1 at %, were co-deposited by r.f. magnetron sputtering using argon as a discharge gas and deposited onto 316L stainless steel substrates, the most commonly used steel in biomaterials. The deposited thin films, before and after bovine serum albumin (BSA) adsorption, were thoroughly characterized with special emphasis on the surface properties/characteristics by atomic force microscopy (AFM), zeta potential, and static and dynamic contact angle measurements, in order to assess the relationship between structure and conformational changes. The influence of a pre-adsorbed peptide (RGD) was also evaluated. The nanotopographic and chemical changes induced by the presence of gold in the nanocomposite thin films enable RGD bonding, which is critical for the maintenance of the BSA native conformation after adsorption.

  2. Nineteen cases of persistent pruritic nodules and contact allergy to aluminium after injection of commonly used aluminium-adsorbed vaccines.

    PubMed

    Bergfors, Elisabet; Björkelund, Cecilia; Trollfors, Birger

    2005-11-01

    Rare cases of persistent pruritic nodules, sometimes associated with aluminium (Al) allergy, have been reported after the use of several Al adsorbed vaccines. During vaccine trials in the 1990s a high incidence of pruritic nodules (645 cases/76,000 recipients), in 77% associated with Al allergy, was observed after the administration of diphtheria-tetanus / acellular pertussis (DT/aP) vaccines from a single producer. In the present report 19 children with pruritic nodules after vaccination with Al hydroxide-adsorbed DTaP/polio+Hib (Infanrix, Pentavac) are described. The children had intensely itching nodules at the injection site, often aggravated during upper respiratory tract infections, and local skin alterations. So far, the symptoms have persisted for up to 7 years. The median time between vaccination and onset of symptoms was 1 month. 16 children were epicutaneously tested for Al, all with positive reactions indicating delayed hypersensitivity to Al. The condition is not commonly known but is important to recognise, as the child and the family may suffer considerably. Future vaccinations with Al-adsorbed vaccines may cause aggravation of the symptoms and the Al allergy. Al-containing skin products, such as antiperspirants, may cause contact dermatitis. Nodules may be mistaken for tumours. Even though the incidence of itching nodules and Al allergy after administration of Infanrix, Pentavac and other Al-adsorbed vaccines is probably low, research to replace Al adjuvants seems appropriate. We conclude that intensely itching subcutaneous nodules, lasting for many years, and hypersensitivity to aluminium may occur after DTaP/polio+Hib vaccination of infants.

  3. ESTIMATING CONTAMINANT DOSE FOR INTERMITTENT DERMAL CONTACT: MODEL DEVELOPMENT, TESTING, AND APPLICATION

    EPA Science Inventory

    Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure sc...

  4. LINKING DERMAL MODELING AND LOADING DATA TO PREDICT LONG-TERM DOSES FROM INTERMITTENT DERMAL CONTACT

    EPA Science Inventory

    In this paper we assess dermal exposure and dose resulting from intermittent contact with residue-contaminated surfaces. These estimates require an understanding of (1) the quantitative relationship between exposure and absorbed dose; (2) the impact of intermittent exposure on ...

  5. Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates

    NASA Astrophysics Data System (ADS)

    Rojas, M. I.; Leiva, E. P. M.

    2007-10-01

    The present work is based on the theoretical study of the behavior of a graphene sheet decorated with titanium, in contact with different molecules. When the substrate is exposed only to hydrogen molecules, it is found to store up to four molecules per adatom, as already seen in the literature for single wall carbon nanotubes. Thus, titanium decoration is seen to considerably improve the hydrogen storage capacity of these carbon systems. However, it is found that low quantities of oxygen present in the gas phase should yield the oxidation of the titanium atoms, even when hydrogen is stored in the system. It is concluded that if the experimental system is exposed to air, titanium atoms on these surfaces are expected to oxidize to titanium dioxide, showing oxygen molecules to be very reactive species. Other chemicals present in air such as nitrogen or water molecules could also be chemisorbed onto the titanium adatom, but are less competitive with hydrogen.

  6. Anthrax vaccine adsorbed: further evidence supporting continuing the vaccination series rather than restarting the series when doses are delayed.

    PubMed

    Pittman, Phillip R; Cavicchia, M A; Kingsbury, J L; Johnson, N A; Barrera-Oro, J G; Schmader, T; Korman, L; Quinn, X; Ranadive, M

    2014-09-01

    Whether to restart or continue the series when anthrax vaccine doses are missed is a frequent medical management problem. We applied the noninferiority analysis model to this prospective study comparing the Bacillus anthracis protective antigen (PA) IgG antibody response and lethal toxin neutralization activity at day 28 to the anthrax vaccine adsorbed (AVA) (Biothrax®) administered on schedule or delayed. A total of 600 volunteers were enrolled: 354 in the on-schedule cohort; 246 in the delayed cohort. Differences were noted in immune responses between cohorts (p<0.0001) and among the racial categories (p<0.0001). Controlling for covariates, the delayed cohort was non-inferior to the on-schedule cohort for the rate of 4-fold rise in both anti-PA IgG concentration (p<0.0001) and TNA ED50 titers (p<0.0001); as well as the mean log10-transformed anti-PA IgG concentration (p<0.0001) and the mean log10-transformed TNA ED50 titers (p<0.0001). Providing a missed AVA dose after a delay as long as 5-7 years, elicits anti-PA IgG antibody and TNA ED50 responses that are robust and non-inferior to the responses observed when the 6-month dose is given on-schedule. These important data suggest it is not necessary to restart the series when doses of the anthrax vaccine are delayed as long as 5 or more years.

  7. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  8. Contact Angle Measurements by AFM on Droplets of Intermediate-Length Alkanes Adsorbed on SiO2 Surfaces

    NASA Astrophysics Data System (ADS)

    Bai, M.; Taub, H.; Knorr, K.; Volkmann, U. G.; Hansen, F. Y.

    2007-03-01

    We have recently discovered that films of intermediate-length alkanes (n-CnH2n+2; 24 < n < 40) do not completely wet a SiO2 surface on a nanometer length scale [2]. In a narrow temperature range near the bulk melting point Tb, we observe a single layer of molecules oriented with their long axis perpendicular to the surface. On heating just above Tb, these molecules undergo a delayering transition to three-dimensional droplets that remain present up to their evaporation point. Here we report measurements by noncontact Atomic Force Microscopy of the contact angle of these droplets for a film of hexatriacontane (n-C36H74 or C36). Our preliminary measurements indicate that there is a weak maximum in the contact angle at ˜Tb + 3 C. Further measurements are planned to investigate whether the weak maximum in the contact angle is consistent with the droplets supporting a surface freezing effect as at the bulk fluid/air interface. ^2M. Bai, K. Knorr, M. J. Simpson, S. Trogisch, H. Taub, S. N. Ehrlich, H. Mo, U. G. Volkmann, F. Y. Hansen, cond-mat/0611497.

  9. Low dose hard x-ray contact microscopy assisted by a photoelectric conversion layer

    SciTech Connect

    Gomella, Andrew; Martin, Eric W.; Lynch, Susanna K.; Wen, Han; Morgan, Nicole Y.

    2013-04-15

    Hard x-ray contact microscopy provides images of dense samples at resolutions of tens of nanometers. However, the required beam intensity can only be delivered by synchrotron sources. We report on the use of a gold photoelectric conversion layer to lower the exposure dose by a factor of 40 to 50, allowing hard x-ray contact microscopy to be performed with a compact x-ray tube. We demonstrate the method in imaging the transmission pattern of a type of hard x-ray grating that cannot be fitted into conventional x-ray microscopes due to its size and shape. Generally the method is easy to implement and can record images of samples in the hard x-ray region over a large area in a single exposure, without some of the geometric constraints associated with x-ray microscopes based on zone-plate or other magnifying optics.

  10. Licensure of a Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed and Inactivated Poliovirus Vaccine and Guidance for Use as a Booster Dose.

    PubMed

    Liang, Jennifer; Wallace, Greg; Mootrey, Gina

    2015-09-01

    On March 24, 2015, the Food and Drug Administration licensed an additional combined diphtheria and tetanus toxoids and acellular pertussis adsorbed (DTaP) and inactivated poliovirus (IPV) vaccine (DTaP-IPV) (Quadracel, Sanofi Pasteur Inc.). Quadracel is the second DTaP-IPV vaccine to be licensed for use among children aged 4 through 6 years in the United States (1). Quadracel is approved for administration as a fifth dose in the DTaP series and as a fourth or fifth dose in the IPV series in children aged 4 through 6 years who have received 4 doses of DTaP-IPV-Hib (Pentacel, Sanofi Pasteur) and/or DTaP (Daptacel, Sanofi Pasteur) vaccine (2,3). This report summarizes the indications for Quadracel vaccine and provides guidance from the Advisory Committee on Immunization Practices (ACIP) for its use.

  11. The time-dose-response relationship for elicitation of contact dermatitis in isoeugenol allergic individuals.

    PubMed

    Andersen, K E; Johansen, J D; Bruze, M; Frosch, P J; Goossens, A; Lepoittevin, J P; Rastogi, S; White, I; Menné, T

    2001-02-01

    The elicitation response in allergic contact dermatitis is dose dependent, but the time-concentration relationship for elicitation has not previously been described. In this study 27 isoeugenol-sensitive patients participated in serial dilution patch tests with isoeugenol and a double-blinded Repeated Open Application Test (ROAT) using two concentrations of isoeugenol, 0.2 and 0.05%. Seven controls without isoeugenol allergy were also included. The participants applied 3.72 +/- 1.57 (mean +/- SD) mg/cm(2) of coded isoeugenol solutions twice a day to a 3 x 3 cm(2) area on the volar aspect of the right and left arm, respectively. For each test site the applications continued until a reaction appeared or for a maximum of 28 days. The minimal criteria for a positive reaction regarded as allergic contact dermatitis was persistent erythema at the ROAT test site. All controls were negative and 16/24 (66.7%) of the included isoeugenol-sensitive subjects showed a positive ROAT to the 0.2% solution within the study period (Fisher's test, p = 0.0024). Ten of the positive patients also reacted to the 0.05% solution. The median number of days until a positive reaction to the 0.2% solution was 7 days and was 15 days for the 0.05% solution. There was a highly significant correlation between the patients' patch test threshold and the number of days until a positive ROAT. In conclusion, the time until an isoeugenol allergic individual reacts in a ROAT depends on the individual sensitivity as well as the exposure concentrations; for low concentrations of the allergen or low degree of sensitivity, the allergic contact dermatitis may develop after several weeks of exposure. Therefore, a negative ROAT after 7 days may be a false negative.

  12. Methylprednisolone induces activation of the contact system in a dose-dependent manner. An in vitro study.

    PubMed

    Roeise, O; Nuijens, J H; Hack, C E; Bouma, B N; Stadaas, J O; Aasen, A O

    1990-03-15

    The effect of methylprednisolone sodium succinate (MP) on the contact system of plasma was studied in human citrated pool plasma. Contact activation was demonstrated by the presence of plasma kallikrein (KK) activity and activated Hageman factor (FXIIa) and/or KK in complex with C1 inhibitor (C1inh), detected by chromogenic peptide substrates or radioimmunoassays, using monoclonal antibodies directed to neodeterminants exposed on complexed C1inh, respectively. When plasma and different doses of MP were incubated for a period of 24 hours, the highest dose of MP (10 mg/ml) gave rapid and marked increases in KK activities and concentrations of C1inh complexes. MP at 5 mg/ml plasma also induced activation of the contact system, although this activation was less pronounced. Even the lower dose of MP (1 mg/ml), which is equivalent to doses used in humans, increased plasma concentrations of KK-C1inh complexes. In conclusion, this in vitro study shows that MP in a dose-dependent way activates the contact system of plasma.

  13. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  14. Using localized surface plasmon resonances to probe the nanoscopic origins of adsorbate-driven ordering transitions of liquid crystals in contact with chemically functionalized gold nanodots.

    PubMed

    Koenig, Gary M; Gettelfinger, Brian T; de Pablo, Juan J; Abbott, Nicholas L

    2008-08-01

    We report that localized surface plasmon resonances (LSPRs) of gold nanodots immersed under liquid crystals (LCs) can be used to characterize adsorbate-induced ordering transitions of the LCs on the surfaces of the nanodots. The nanoscopic changes in ordering of the LCs, as measured by LSPR, were shown to give rise to macroscopic ordering transitions of the LCs that were observed by polarized light microscopy. The results reported herein suggest that (i) LCs may be useful for enhancing the sensitivity of LSPR-based detection of binding events and (ii) that LSPR measurements of gold nanodots provide a means to characterize the nanoscopic origins of macroscopic, adsorbate-induced LC ordering transitions.

  15. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    SciTech Connect

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  16. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  17. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-ε-caprolactone based nanoparticles.

    PubMed

    Jesus, Sandra; Soares, Edna; Costa, João; Borchard, Gerrit; Borges, Olga

    2016-05-17

    Among new strategies to increase hepatitis B virus (HBV) vaccination, especially in developing countries, the development of self-administered vaccines is considered one of the most valuable. Nasal vaccination using polymeric nanoparticles (NPs) constitutes a valid approach to this issue. In detail, poly-ε-caprolactone (PCL)/chitosan NPs present advantages as a mucosal vaccine delivery system: the high resistance of PCL against degradation in biological fluids and the mucoadhesive and immunostimulatory properties of chitosan. In vitro studies revealed these NPs were retained in a mucus-secreting pulmonary epithelial cell line and were capable of entering into differentiated epithelial cells. The intranasal (IN) administration of 3 different doses of HBsAg (1.5 μg, 5 μg and 10 μg) adsorbed on a fixed amount of PCL/chitosan NPs (1614 μg) generated identical titers of serum anti-HBsAg IgG and anti-HBsAg sIgA in mice nasal secretions. Besides other factors, the NP surface characteristics, particularly, zeta potential differences among the administered formulations are believed to be implicated in the outcome of the immune response generated.

  18. Reduced-antigen, combined diphtheria, tetanus and acellular pertussis vaccine, adsorbed (Boostrix®): a review of its properties and use as a single-dose booster immunization.

    PubMed

    McCormack, Paul L

    2012-09-10

    Reduced-antigen, combined diphtheria, tetanus and three-component acellular pertussis vaccine (Tdap; Boostrix®) is indicated for booster vaccination against diphtheria, tetanus and pertussis in individuals from age four years onwards in Europe and from age 10 years onwards in the US. Compared with infant formulations used for primary vaccination, Tdap contains reduced quantities (10-50%) of all toxoids and antigens, which are adsorbed to either ≤0.39 mg/dose (US licensed formulation) or 0.5 mg/dose (rest-of-world formulation) of aluminium adjuvant. The reduced antigen content is designed to avoid the increasing reactogenicity historically seen with the fourth and fifth doses of infant vaccine. This article reviews the immunogenicity, protective efficacy and reactogenicity of Tdap booster administered to children, adolescents and adults, including those aged ≥65 years. In clinical trials, a single booster dose of Tdap induced seroprotective levels of antibodies to diphtheria and tetanus toxoids in virtually all children and adolescents, and in a high proportion of adults and elderly individuals at approximately 1 month post-vaccination irrespective of their vaccination history. In all age groups, seropositivity rates for antibodies against pertussis antigens were ≥90% (including in unvaccinated adolescents), and booster response rates were high. Tdap was safely co-administered with other common vaccines without significantly affecting the immune responses. The immunogenicity and reactogenicity profiles of booster doses of Tdap were generally similar to those of infant diphtheria-tetanus-whole-cell pertussis vaccine and infant diphtheria-tetanus-acellular pertussis vaccine in children aged 4-6 years, and infant diphtheria-tetanus vaccine in older children. In adolescents and adults, the immunogenicity and reactogenicity of Tdap were generally similar to those of reduced-antigen diphtheria-tetanus vaccine, reduced-antigen diphtheria

  19. A modeling framework for estimating children's residential exposure and dose to chlorpyrifos via dermal residue contact and nondietary ingestion.

    PubMed Central

    Zartarian, V G; Ozkaynak, H; Burke, J M; Zufall, M J; Rigas, M L; Furtaw, E J

    2000-01-01

    To help address the Food Quality Protection Act of 1996, a physically based probabilistic model has been developed to quantify and analyze dermal and nondietary ingestion exposure and dose to pesticides. The Residential Stochastic Human Exposure and Dose Simulation Model for Pesticides (Residential-SHEDS) simulates the exposures and doses of children contacting residues on surfaces in treated residences and on turf in treated residential yards. The simulations combine sequential time-location-activity information from children's diaries with microlevel videotaped activity data, probability distributions of measured surface residues and exposure factors, and pharmacokinetic rate constants. Model outputs include individual profiles and population statistics for daily dermal loading, mass in the blood compartment, ingested residue via nondietary objects, and mass of eliminated metabolite, as well as contributions from various routes, pathways, and media. To illustrate the capabilities of the model framework, we applied Residential-SHEDS to estimate children's residential exposure and dose to chlorpyrifos for 12 exposure scenarios: 2 age groups (0-4 and 5-9 years); 2 indoor pesticide application methods (broadcast and crack and crevice); and 3 postindoor application time periods (< 1, 1-7, and 8-30 days). Independent residential turf applications (liquid or granular) were included in each of these scenarios. Despite the current data limitations and model assumptions, the case study predicts exposure and dose estimates that compare well to measurements in the published literature, and provides insights to the relative importance of exposure scenarios and pathways. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10856023

  20. A new adsorbent for boron removal from aqueous solutions.

    PubMed

    Kluczka, Joanna; Korolewicz, Teofil; Zołotajkin, Maria; Simka, Wojciech; Raczek, Malwina

    2013-01-01

    A new adsorbent based on natural clinoptilolite and amorphous zirconium dioxide (ZrO2) was prepared for the uptake of boron from fresh water. The sorption behaviour of this adsorbent for boron was investigated using a batch system and found to obey Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The ZrO2 loading level, pH, temperature, contact time, initial boron concentration and adsorbent dose, on the removal of boron were studied. It was found that the removal of boron increased while the adsorbent dose increased and the temperature decreased at an optimum pH (pH = 8) and a contact time of 30 min. At optimum conditions, the maximum boron percentage removal was 75%. According to the D-R model, the maximum capacity was estimated to be > 3 mg B/g of the adsorbent. The adsorption energy value (calculated as 9.13 kJ/mol) indicated that the adsorption of boron on clinoptilolite modified with ZrO2 was physical in nature. The parameters of the adsorption models and the pH investigations pointed to the possibility of a chemisorption process. The thermodynamic parameters (standard entropy deltaS degrees, enthalpy deltaH degrees , and free energy deltaG degrees changes) of boron adsorption were also calculated. The negative value of deltaS degrees indicated a decreased randomness at the solid-solution interface during the boron adsorption. Negative values of deltaH degrees showed the exothermic nature of the process. The negative values of deltaG degrees implied that the adsorption of boron on clinoptilolite modified with amorphous ZrO2 at 25 degrees C was spontaneous. It was considered that boron dissolved in water had been adsorbed both physically and chemically on clinoptilolite modified with 30% ZrO2.

  1. A new adsorbent for boron removal from aqueous solutions.

    PubMed

    Kluczka, Joanna; Korolewicz, Teofil; Zołotajkin, Maria; Simka, Wojciech; Raczek, Malwina

    2013-01-01

    A new adsorbent based on natural clinoptilolite and amorphous zirconium dioxide (ZrO2) was prepared for the uptake of boron from fresh water. The sorption behaviour of this adsorbent for boron was investigated using a batch system and found to obey Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The ZrO2 loading level, pH, temperature, contact time, initial boron concentration and adsorbent dose, on the removal of boron were studied. It was found that the removal of boron increased while the adsorbent dose increased and the temperature decreased at an optimum pH (pH = 8) and a contact time of 30 min. At optimum conditions, the maximum boron percentage removal was 75%. According to the D-R model, the maximum capacity was estimated to be > 3 mg B/g of the adsorbent. The adsorption energy value (calculated as 9.13 kJ/mol) indicated that the adsorption of boron on clinoptilolite modified with ZrO2 was physical in nature. The parameters of the adsorption models and the pH investigations pointed to the possibility of a chemisorption process. The thermodynamic parameters (standard entropy deltaS degrees, enthalpy deltaH degrees , and free energy deltaG degrees changes) of boron adsorption were also calculated. The negative value of deltaS degrees indicated a decreased randomness at the solid-solution interface during the boron adsorption. Negative values of deltaH degrees showed the exothermic nature of the process. The negative values of deltaG degrees implied that the adsorption of boron on clinoptilolite modified with amorphous ZrO2 at 25 degrees C was spontaneous. It was considered that boron dissolved in water had been adsorbed both physically and chemically on clinoptilolite modified with 30% ZrO2. PMID:24191469

  2. Size-dependent contact angle and the wetting and drying transition of a droplet adsorbed onto a spherical substrate: Line-tension effect

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2016-10-01

    The size-dependent contact angle and the drying and wetting morphological transition are studied with respect to the volume change for a spherical cap-shaped droplet placed on a spherical substrate. The line-tension effect is included using the rigorous formula for the Helmholtz free energy in the droplet capillary model. A morphological drying transition from a cap-shaped to a spherical droplet occurs when the substrate is hydrophobic and the droplet volume is small, similar to the transition predicted on a flat substrate. In addition, a morphological wetting transition from a cap-shaped to a wrapped spherical droplet occurs for a hydrophilic substrate and a large droplet volume. The contact angle depends on the droplet size: it decreases as the droplet volume increases when the line tension is positive, whereas it increases when the line tension is negative. The spherical droplets and wrapped droplets are stable when the line tension is positive and large.

  3. Studies on the contact system of coagulation during therapy with high doses of recombinant IL-2: implications for septic shock.

    PubMed

    Hack, C E; Wagstaff, J; Strack van Schijndel, R J; Eerenberg, A J; Pinedo, H M; Thijs, L G; Nuijens, J H

    1991-05-01

    Patients treated with high doses of interleukin-2 (IL-2) because of cancer, develop hemodynamic and vasopermeability changes, that resemble those observed in sepsis. These patients thus provide a unique opportunity to study the early events in the development of septic shock. We analysed the changes that occurred in the contact system of coagulation in plasma from 4 patients, who together received seven 12-day cycles of high doses of IL-2. Levels of factor XII and prekallikrein during the cycles progressively fell to 50 and 30% of their initial levels, respectively, whereas significant increases in plasma factor XIIa- and kallikrein-C1-inhibitor complexes were not observed (in 3 out of 211 samples slightly increased levels of both complexes were found). The reductions in factor XII and prekallikrein were only in part due to protein leakage, since levels were still significantly lower, i.e., 80 and 50%, respectively, when corrected for albumin decreases. Levels of high molecular weight kininogen (HMWK) also decreased during IL-2 therapy, however, this decrease paralleled that of albumin. SDS-PAGE analysis of plasma HMWK did not reveal increased cleavage of this protein. The reduction of factor XII and prekallikrein, corrected for protein leakage, significantly correlated with albumin levels and inversely with daily cumulative weight gain in the patients. Thus, we demonstrate that factor XII and prekallikrein decrease during IL-2 therapy. As these decreases, already observed after 1 day treatment, were disproportional to that of albumin, a negative acute phase reactant, and correlated with signs of the vascular leak syndrome, we favor the explanation that they reflected activation rather than a decreased synthesis of the contact system proteins.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties.

    PubMed

    Vanamudan, Ageetha; Pamidimukkala, Padmaja

    2015-03-01

    The objective of this study was to investigate the use of chitosan-clay nanocomposite (CC) as an adsorbent for Rhodamine 6G (Rh-6G). The effects of adsorbent dose, contact time, and concentration on the adsorption process were systematically studied. Isotherm models were applied to the experimental equilibrium data obtained from spectrophotometric measurements of dye adsorption. Various Kinetic models were used to describe the kinetic data and evaluate of rate constants. Rh-6G loaded adsorbents were investigated for their optical and photophysical properties. PMID:25526692

  5. Experimental study of electric dipoles on an oxygen-adsorbed Si(100)-2 × 1 surface by non-contact scanning nonlinear dielectric microscopy

    SciTech Connect

    Suzuki, Masataka; Yamasue, Kohei Cho, Yasuo

    2015-07-20

    Oxygen-adsorption on a Si(100)-2 × 1 surface is investigated by using non-contact scanning nonlinear dielectric microscopy (NC-SNDM). On the Si(100)-2 × 1 surface exposed to oxygen (O{sub 2}) gas at room temperature, several variations in atomic configuration and electric dipole moment of dimers are observed. Models are proposed for oxygen adsorption which are consistent with the topographies and electric dipole moment distributions obtained by NC-SNDM.

  6. A quantitative structure activity/dose response relationship for contact allergic potential of alkyl group transfer agents.

    PubMed

    Roberts, D W; Basketter, D A

    1990-11-01

    As part of the investigation of structure activity relationships in contact allergy, it has been shown that methyl transfer agents are capable of acting as skin sensitizers. This work has now been extended to a more general examination of alkyl transfer reactions. The modified single injection adjuvant test has been used to investigate the sensitization potential of C12, C16 and unsaturated C18 alkyl transfer agents. Dose responses to challenge and the patterns of cross-reactivity between these materials and methyl transfer agents have been studied. All alkyl transfer agents examined were potent sensitizers in the guinea pig. There was evidence of mutual cross-reactivity between all alkyl transfer agents examined (including methyl transfer agents). Analysis of the data in terms of a modified relative alkylation index showed evidence of an overload effect. The sensitization data has been accurately modelled using a mathematical equation. These results emphasize the possibilities for relating physicochemical parameters and skin sensitization potential. Further studies with alkyl transfer agents are in progress of amplify the observations and conclusions presented in this report. No in vitro model is available for the prediction of skin sensitization potential. Therefore an approach based on a model using physicochemical criteria is the most likely route to a reduced requirement for animal testing. PMID:1965716

  7. Natural Iraqi palygorskite clay as low cost adsorbent for the treatment of dye containing industrial wastewater.

    PubMed

    Nassir Taha, Dakhil; Sadi Samaka, Isra'a

    2012-01-01

    In this study, natural Iraqi low- cost locally available clay (palygorskite) was studied for its potential use as an adsorbent for removal Congo red from aqueous solutions. Batch type experiments were conducted to study the effect of contact time, initial pH of the dye solution, initial dye concentration, adsorbent dosage, and particle size of adsorbent on adsorption capacity of Congo red. The adsorption occurred very fast initially and attains equilibrium within 60 min. When the effect of pH of solution dye on the yield adsorption has been carried in a range of 2-10, the adsorption obtained was nearly the same with very slightly effect of pH and it was reported that above 49.07 mg/g of Cong red by palygorskite clay occurred in the pH range 2 to 10. It was observed that the removal of Congo red increase with increasing initial dye concentration and adsorbent dose, but, adsorption capacity decrease with increasing adsorbent dose. The adsorption capacity increase with decreasing particle size of adsorbent. The equilibrium adsorption data were interpreted using Langmuir and Freundlich isotherm models. The obtained results revealed that the equilibrium data closely followed both models, but the Langmuir isotherm fitted the data better. The maximum adsorption capacity was found to be 99 mg/g at ambient temperature. Results indicate that Iraqi palygorskite clay could be employed as a low cost alternative to commercial activated carbon in wastewater treatment for the removal of colour and dyes. PMID:23196874

  8. Electrochemical behaviour of irreversibly adsorbed tellurium dosed from solution on Pt( h, k, l) single crystal electrodes in sulphuric and perchloric acid media

    NASA Astrophysics Data System (ADS)

    Feliu, J. M.; Llorca, M. J.; Gómez, R.; Aldaz, A.

    1993-11-01

    The voltammetric behaviour of irreversibly adsorbed tellurium on the three platinum basal planes has been studied. It has been shown that there exists a surface redox process on both Pt(111) and Pt(100) electrodes which involves 4 electrons per adatom species. This process leads to the formation of oxygenated tellurium adspecies that remain stable on the surface. For both Pt(111) and Pt(100) electrodes adatom desorption takes place at higher potential values than those corresponding to the surface redox process. However, in the case of Pt(110) electrodes the first oxidation process leads to the dissolution of the adlayer.

  9. Immunogenicity and Safety of Four Different Dosing Regimens of Anthrax Vaccine Adsorbed for Post-Exposure Prophylaxis for Anthrax in Adults

    PubMed Central

    Bernstein, David I.; Jackson, Lisa; Patel, Shital M.; El Sahly, Hana M.; Spearman, Paul; Rouphael, Nadine; Rudge, Thomas L.; Hill, Heather; Goll, Johannes B.

    2014-01-01

    Background Strategies to implement post exposure prophylaxis (PEP) in case of an anthrax bioterror event are needed. To increase the number of doses of vaccine available we evaluated reducing the amount of vaccine administered at each of the vaccinations, and reducing the number of doses administered. Methods Healthy male and non-pregnant female subjects between the ages of 18 and 65 were enrolled and randomized 1:1:1:1 to one of four study arms to receive 0.5 mL (standard dose) of vaccine subcutaneously (SQ) at: A) days 0, 14; B) days 0 and 28; C) days 0, 14, and 28; or D) 0.25 ml at days 0, 14, and 28. A booster was provided on day 180. Safety was assessed after each dose. Blood was obtained on days 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 100, 180, and 201 and both Toxin Neutralizing antibody and anti-PA IgG antibody measured. Results Almost all subjects developed some local reactions with 46% to 64% reported to be of moderate severity and 3.3% severe during the primary series. Vaccine groups that included a day 14 dose induced a ≥4 fold antibody rise in more subjects on days 21, 28 and 35 than the arm without a day 14 dose. However, schedules with a full day 28 dose induced higher peak levels of antibody that persisted longer. The half dose regimen did not induce antibody as well as the full dose study arms. Conclusion Depending on the extent of the outbreak, effectiveness of antibiotics and availability of vaccine, the full dose 0, 28 or 0, 14, 28 schedules may have advantages. PMID:25239484

  10. Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorber: implication for silicate precoating.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Green, Peter G; Darby, Jeannie L

    2012-10-15

    The individual and combined effects of changes in water quality (i.e. pH, initial concentrations of arsenate (As(V)) and competing ions) and empty bed contact time (EBCT) on As(V) removal performance of a fixed-bed adsorber (FBA) packed with a nanostructured goethite-based granular porous adsorbent were systematically studied under environmentally relevant conditions. Rapid small scale column tests (RSSCTs) were extensively conducted at different EBCTs with synthetic waters in which pH and the concentrations of competing ions (phosphate, silicate, and vanadate) were controlled. In the absence of the competing ions, the effects of initial As(V) concentration, pH, and EBCT on As(V) breakthrough curves were successfully predicted by the homogeneous surface diffusion model (HSDM) with adsorption isotherms predicted by the extended triple layer model (ETLM). The interference effects of silicate and phosphate on As(V) removal were strongly influenced by pH, their concentrations, and EBCT. In the presence of silicate (≤21 mg/L as Si), a longer EBCT surprisingly resulted in worse As(V) removal performance. We suggest this is because silicate, which normally exists at much higher concentration and moves more quickly through the bed than As(V), occupies or blocks adsorption sites on the media and interferes with later As(V) adsorption. Here, an alternative operating scheme of a FBA for As(V) removal is proposed to mitigate the silicate preloading. Silicate showed a strong competing effect to As(V) under the tested conditions. However, as the phosphate concentration increased, its interference effect dominated that of silicate. High phosphate concentration (>100 μg/L as P), as experienced in some regions, resulted in immediate As(V) breakthrough. In contrast to the observation in the presence of silicate, longer EBCT resulted in improved As(V) removal performance in the presence of phosphate. Vanadate was found to compete with As(V) as strongly as phosphate. This study

  11. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process. PMID:26711813

  12. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  13. MODELED RESIDENTIAL CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN VIA DERMAL SURFACE RESIDUE CONTACT AND NON-DIETARY INGESTION

    EPA Science Inventory

    A physically-based stochastic model has been applied to estimate residential chlorpyrifos exposure and dace to children via the non-dietary ingestion and dermal residue contact pathways. Time-location-activity data for 2825 children were sampled from national surveys to generat...

  14. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  15. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  16. Immunogenicity and safety of combined adsorbed low-dose diphtheria, tetanus and inactivated poliovirus vaccine (REVAXIS (®)) versus combined diphtheria, tetanus and inactivated poliovirus vaccine (DT Polio (®)) given as a booster dose at 6 years of age.

    PubMed

    Gajdos, Vincent; Soubeyrand, Benoit; Vidor, Emmanuel; Richard, Patrick; Boyer, Julie; Sadorge, Christine; Fiquet, Anne

    2011-05-01

    This randomized, comparative, phase-IIIb study conducted in France aimed to demonstrate whether seroprotection against diphtheria, tetanus and poliomyelitis 1 month after a single dose of REVAXIS (low-dose diphtheria) is non-inferior to seroprotection 1 month after a single dose of DT Polio (standard-dose diphtheria), both vaccines being given as a second booster to healthy children at 6 years of age. Children were randomly assigned to receive a single intramuscular dose of REVAXIS or DT Polio. Primary endpoints were the 1-month post-booster seroprotection rates for diphtheria, tetanus and poliovirus type-1, -2 and -3 antigens. Secondary endpoints were immunogenicity and safety observations. Of 788 children screened, 760 were randomized: REVAXIS group, 384 children; DT Polio group, 376 children. No relevant difference in demographic characteristics at baseline was observed between REVAXIS and DT Polio groups. Non-inferiority of REVAXIS compared with DT Polio for seroprotection was demonstrated against diphtheria (respectively 98.6% and 99.3%), tetanus (respectively 99.6% and 100%), and poliovirus antigens (100% for each types in both groups). No allergic reactions to REVAXIS were reported. A benefit/risk ratio in favor of REVAXIS was suggested by the trend towards a better tolerability of REVAXIS compared with DT Polio regarding the rate of severe solicited injection-site reactions. The results support the use of REVAXIS as a booster at 6 years of age in infants who previously received a three-dose primary series within the first 6 months of life and a first booster including diphtheria, tetanus and poliovirus vaccine(s) given before 2 years of age.

  17. Hysteresis during contact angles measurement.

    PubMed

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

  18. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  19. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  20. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    NASA Astrophysics Data System (ADS)

    Claonadh, Niall Ó.; Casey, Alan; Lyons, Sean; Higginbotham, Clement; Gupta Mukherjee, Sanchali; Chambers, Gordon

    2011-07-01

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  1. A Three-Dose Intramuscular Injection Schedule of Anthrax Vaccine Adsorbed Generates Sustained Humoral and Cellular Immune Responses to Protective Antigen and Provides Long-Term Protection against Inhalation Anthrax in Rhesus Macaques

    PubMed Central

    Sabourin, Carol L.; Niemuth, Nancy A.; Li, Han; Semenova, Vera A.; Rudge, Thomas L.; Mayfield, Heather J.; Schiffer, Jarad; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Brys, April M.; Hunt, Robert E.; Levesque, Denyse; Estep, James E.; Barnewall, Roy E.; Robinson, David M.; Plikaytis, Brian D.; Marano, Nina

    2012-01-01

    A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r2 = 0.89 for log10-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4+ cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses. PMID:22933399

  2. Batch technique to evaluate the efficiency of different natural adsorbents for defluoridation from groundwater

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Saraswat, Chitresh; Mishra, Binaya Kumar; Avtar, Ram; Patel, Hiral; Patel, Asha; Sharma, Tejal; Patel, Roshni

    2016-09-01

    Fluoride pollution (with concentration >1.0 mg/L) in groundwater has become a global threat in the recent past due to the lesser availability of potable groundwater resource. In between several defluoridation techniques discovered so far, the adsorption process proved to be most economic and efficient. This study is an effort to evaluate defluoridation efficiency of powdered rice husk, fine chopped rice husk and sawdust by the batch adsorption process. Optimum defluoridation capacity is achieved by optimizing various parameters, viz. dose of adsorbent, pH, contact time and initial concentration. It was found that all three materials can be employed for the defluoridation technique, but powdered rice husk is the best adsorbent in the midst of all three. Powdered rice husk showed fluoride removal efficiency ranging between 85 and 90 % in the contact period of 7 h only in conditions of all optimized parameter. Following this parameter optimization, adsorption efficiency was also evaluated at natural pH of groundwater to minimize the cost of defluoridation. No significant difference was found between fluoride adsorption at optimized pH (pH = 4) and natural one (pH = 7), which concludes that powdered rice husk can be efficiently used for the defluoridation technique at field scale. The adsorption isotherm using this adsorbent perfectly followed Langmuir isotherms. The value of calculated separation factor also suggests the favourable adsorption of fluoride onto this adsorbent under the conditions used for the experiments. The field application for defluoridation of groundwater using this adsorbent (based on pH of natural groundwater there and seasonal variation of temperature) showed the high success rate.

  3. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    NASA Astrophysics Data System (ADS)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2015-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model (R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  4. Fluoride removal from aqueous solution by Al(III)-Zr(IV) binary oxide adsorbent

    NASA Astrophysics Data System (ADS)

    Zhu, Jiuya; Lin, Xiaoyan; Wu, Pengwei; Zhou, Qiusheng; Luo, Xuegang

    2015-12-01

    In this study, a novel binary oxide adsorbent of Al2O3-ZrO2 was prepared via coprecipitation followed by calcination method, and the calcination temperatures were investigated. The adsorbent was characterized by XRD, EDX and XPS. The batch adsorption experiments were carried out at different parameters, such as solution pH, adsorbent dose, contact time, initial fluoride concentration and adsorption temperature, to evaluate the fluoride removal performance. The results showed that the adsorption isotherm was better described by the linear Langmuir model, and a maximum adsorption capacity was 114.54 mg/g. The adsorption kinetics was well fitted by the linear pseudo-second-order, and the correlation coefficient value (R2) was 0.997. The thermodynamic parameters of ΔH0, ΔS0 and ΔG0 were calculated, which showed that the fluoride adsorption process was spontaneous and exothermic. And the possible adsorption mechanism of the adsorbent for fluoride could involve the ligand-exchange and ion-exchange based on the results in the study.

  5. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  6. Using specialized adsorbents for remediation

    SciTech Connect

    Hochmuth, D.P.; Grant, A.

    1995-11-01

    This paper describes two remediation case studies in which specialized adsorbents were used. In one case, the adsorbents were used to treat effluent from a soil vapor extraction system. In the other case, the adsorbents were used to treat air from a groundwater air stripper. The specialized adsorbents effectively removed volatile organic compounds from each air stream.

  7. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  8. Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution.

    PubMed

    Indah, S; Helard, D; Sasmita, A

    2016-01-01

    Adsorption of iron from aqueous solution by using maize husk (Zea mays L.) as a low-cost adsorbent was studied. Batch experiments were carried out at ambient temperature, 0.075-0.250 mm of particle size and 100 rpm of agitation speed to determine the influence of initial pH, adsorbent dose, initial concentration and contact time on the removal of iron. Langmuir and Freundlich models were applied to describe the adsorption isotherm of iron by maize husk. The results showed that optimum condition of iron removal were 4 of pH solution, 20 g/L of adsorbent dose, 10 mg/L of Fe concentration and 15 min of contact time of adsorption with 0.499 mg Fe/g maize husk of adsorption capacity. Experimental data fitted well to Langmuir's adsorption equilibrium isotherm within the concentration range studied. This study demonstrated that maize husk, which is an agricultural waste, has potential for iron removal from groundwater or other polluted waters.

  9. Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution.

    PubMed

    Indah, S; Helard, D; Sasmita, A

    2016-01-01

    Adsorption of iron from aqueous solution by using maize husk (Zea mays L.) as a low-cost adsorbent was studied. Batch experiments were carried out at ambient temperature, 0.075-0.250 mm of particle size and 100 rpm of agitation speed to determine the influence of initial pH, adsorbent dose, initial concentration and contact time on the removal of iron. Langmuir and Freundlich models were applied to describe the adsorption isotherm of iron by maize husk. The results showed that optimum condition of iron removal were 4 of pH solution, 20 g/L of adsorbent dose, 10 mg/L of Fe concentration and 15 min of contact time of adsorption with 0.499 mg Fe/g maize husk of adsorption capacity. Experimental data fitted well to Langmuir's adsorption equilibrium isotherm within the concentration range studied. This study demonstrated that maize husk, which is an agricultural waste, has potential for iron removal from groundwater or other polluted waters. PMID:27332838

  10. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  11. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  12. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    NASA Astrophysics Data System (ADS)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  13. Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution.

    PubMed

    Chen, Nan; Zhang, Zhenya; Feng, Chuanping; Zhu, Dirui; Yang, Yingnan; Sugiura, Norio

    2011-02-15

    Porous granular ceramic adsorbents containing dispersed aluminum and iron oxides were synthesized by impregnating with salt solutions followed by precipitation at 600°C. In the present work detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH and co-existing anions. Characterization studies on the adsorbent by SEM, XRD, EDS, and BET analysis were carried out to clarify the adsorption mechanism. The adsorbents were sphere in shape, 2-3mm in particle size, highly porous and showed specific surface area of 50.69 sq m/g. The fluoride adsorption capacity of prepared adsorbent was 1.79 mg/g, and the maximum fluoride removal was obtained at pH 6. Both the Langmuir and Freundlich isotherm models were found to represent the measured adsorption data well. The experimental data were well explained with pseudo-second-order kinetic model. Results from this study demonstrated potential utility of Al/Fe dispersed in porous granular ceramics that could be developed into a viable technology for fluoride removal from aqueous solution.

  14. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  15. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  16. Contact Dermatitis

    MedlinePlus

    ... care Kids’ zone Video library Find a dermatologist Contact dermatitis Overview Contact dermatitis: Many health care workers ... to touching her face while wearing latex gloves. Contact dermatitis: Overview Almost everyone gets this type of ...

  17. Language Contact.

    ERIC Educational Resources Information Center

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  18. Contact radiotherapy using a 50 kV X-ray system: Evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc

    2012-06-01

    This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.

  19. A MODELING FRAMEWORK FOR ESTIMATING CHILDREN'S RESIDENTIAL EXPOSURE AND DOSE TO CHLORPYRIFOS VIA DERMAL RESIDUE CONTACT AND NON-DIETARY INGESTION

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based probabilistic model (Residential Stochastic Human Exposure and Dose Simulation Model for Pesticides; Residential-SHEDS) has been developed to quantify and analyze dermal and non-dietary ingestion exposu...

  20. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time.

  1. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.

    PubMed

    Xie, Ruzhen; Chen, Yao; Cheng, Ting; Lai, Yuguo; Jiang, Wenju; Yang, Zhishan

    2016-01-01

    In this work, an effective adsorbent for removing phosphate from aqueous solution was developed from modifying industrial waste--lithium silica fume (LSF). The characterization of LSF before and after modification was investigated using an N2 adsorption-desorption technique (Brunauer-Emmett-Teller, BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Studies were conducted to investigate the effect of adsorbent dose, initial solution pH, contact time, phosphate concentration, and temperature on phosphate removal using this novel adsorbent. The specific surface area for modified LSF (LLSF) is 24.4024 m(2)/g, improved 69.8% compared with unmodified LSF. XRD result suggests that the lanthanum phosphate complex was formed on the surface of LLSF. The maximum phosphate adsorption capacity was 24.096 mg P/g for LLSF, and phosphate removal was favored in the pH range of 3-8. The kinetic data fitted pseudo-second-order kinetic equation, intra-particle diffusion was not the only rate controlling step. The adsorption isotherm results illustrated that the Langmuir model provided the best fit for the equilibrium data. The change in free energy (△G(0)), enthalpy (△H(0)) and entropy (△S(0)) revealed that the adsorption of phosphate on LLSF was spontaneous and endothermic. It was concluded that by modifying with lanthanum, LSF can be turned to be a highly efficient adsorbent in phosphate removal.

  2. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.

    PubMed

    Xie, Ruzhen; Chen, Yao; Cheng, Ting; Lai, Yuguo; Jiang, Wenju; Yang, Zhishan

    2016-01-01

    In this work, an effective adsorbent for removing phosphate from aqueous solution was developed from modifying industrial waste--lithium silica fume (LSF). The characterization of LSF before and after modification was investigated using an N2 adsorption-desorption technique (Brunauer-Emmett-Teller, BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Studies were conducted to investigate the effect of adsorbent dose, initial solution pH, contact time, phosphate concentration, and temperature on phosphate removal using this novel adsorbent. The specific surface area for modified LSF (LLSF) is 24.4024 m(2)/g, improved 69.8% compared with unmodified LSF. XRD result suggests that the lanthanum phosphate complex was formed on the surface of LLSF. The maximum phosphate adsorption capacity was 24.096 mg P/g for LLSF, and phosphate removal was favored in the pH range of 3-8. The kinetic data fitted pseudo-second-order kinetic equation, intra-particle diffusion was not the only rate controlling step. The adsorption isotherm results illustrated that the Langmuir model provided the best fit for the equilibrium data. The change in free energy (△G(0)), enthalpy (△H(0)) and entropy (△S(0)) revealed that the adsorption of phosphate on LLSF was spontaneous and endothermic. It was concluded that by modifying with lanthanum, LSF can be turned to be a highly efficient adsorbent in phosphate removal. PMID:27120644

  3. The entropies of adsorbed molecules.

    PubMed

    Campbell, Charles T; Sellers, Jason R V

    2012-10-31

    Adsorbed molecules are involved in many reactions on solid surface that are of great technological importance. As such, there has been tremendous effort worldwide to learn how to predict reaction rates and equilibrium constants for reactions involving adsorbed molecules. Theoretical calculation of both the rate and equilibrium constants for such reactions requires knowing the entropy and enthalpy of the adsorbed molecule. While much effort has been devoted to measuring and calculating the enthalpies of well-defined adsorbates, few measurements of the entropies of adsorbates have been reported. We present here a new way to determine the standard entropies of adsorbed molecules (S(ad)(0)) on single crystal surfaces from temperature programmed desorption data, prove its accuracy by comparison to entropies measured by equilibrium methods, and apply it to published data to extract new entropies. Most importantly, when combined with reported entropies, we find that at high coverage, they linearly track the entropy of the gas-phase molecule at the same temperature (T), such that S(ad)(0)(T) = 0.70 S(gas)(0)(T) - 3.3R (R = the gas constant), with a standard deviation of only 2R over a range of 50R. These entropies, which are ~2/3 of the gas, are huge compared to most theoretical predictions. This result can be extended to reliably predict prefactors in the Arrhenius rate constant for surface reactions involving such species, as proven here for desorption. PMID:23033909

  4. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  5. The origin and characterization of conformational heterogeneity in adsorbed polymer layers

    NASA Astrophysics Data System (ADS)

    Douglas, Jack F.; Schneider, Hildegard M.; Frantz, Peter; Lipman, Robert; Granick, Steve

    1997-09-01

    The equilibration of polymer conformations tends to be sluggish in polymer layers adsorbed onto highly attractive substrates, so the structure of these layers must be understood in terms of the layer growth process rather than equilibrium theory. Initially adsorbed chains adopt a highly flattened configuration while the chains which arrive later must adapt their configurations to the increasingly limited space available for adsorption. Thus, the chains adsorbed in the late stage of deposition are more tenuously attached to the surface. This type of non-equilibrium growth process is studied for polymethylmethacrylate (PMMA) adsorbed on oxidized silicon where the segmental attraction is strong (0953-8984/9/37/005/img7/segment) and for polystyrene (PS) adsorbed on oxidized silicon from a carbon tetrachloride solution where the segmental attraction is relatively weak (0953-8984/9/37/005/img8/segment). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR - ATR). In both cases, the chains arriving first adsorbed more tightly, became flattened (as measured by the dichroic ratio), and occupied a disproportionately large fraction of the surface. This non-uniform structure persisted indefinitely for the strongly adsorbed PMMA chains, while the PS chains exhibited a gradual evolution, presumably reflecting an equilibration of the adsorbed layer occurring after long times. On the theoretical side, the initial heterogeneity of these adsorbed polymer layers is modelled using a random sequential adsorption (RSA) model where the size of the adsorbing species is allowed to adapt to the surface space available at the time of adsorption. The inhomogeneity in the size of adsorbing species (hemispheres) in this model is similar to the distribution of chain contacts in our measurements on adsorbed polymer layers. Owing to extensive variance around the mean, conformations having the mean number of chain contacts are least probable, which

  6. Theoretical framework for the interpretation of STM images of adsorbates.

    PubMed

    Kenkre, V M; Biscarini, F; Bustamante, C

    1992-07-01

    A theoretical formalism for the interpretation of STM images of adsorbates is developed by approaching the calculation of the observed current as a transport problem in quantum statistical mechanics. The STM configuration is treated as a system of three groups of states--the substrate, the adsorbate and the tip--in contact with a thermal reservoir, with which it exchanges energy. A new definition of current is introduced, and shown to be related to that given in the traditional transfer Hamiltonian approach. The transport instrument used for the description is the stochastic Liouville equation, known to have the advantage of allowing the incorporation of thermal effects as well as arbitrary degree of coherence in the quantum transport. Some preliminary calculations of STM images of simple adsorbate models are presented.

  7. Removal of bromophenols from water using industrial wastes as low cost adsorbents.

    PubMed

    Bhatnagar, Amit

    2007-01-01

    A comparative study of the adsorbents prepared from several industrial wastes for the removal of 2-bromophenol, 4-bromophenol and 2,4-dibromophenol has been carried out. The results show that maximum adsorption on carbonaceous adsorbent prepared from fertilizer industry waste has been found to be 40.7, 170.4 and 190.2 mg g(-1) for 4-bromophenol 2-bromophenol and 2,4-dibromophenol, respectively. As compared to carbonaceous adsorbent, the other three adsorbents (viz., blast furnace sludge, dust, and slag) adsorb bromophenols to a much smaller extent. This has been attributed to the carbonaceous adsorbent having a larger porosity and consequently higher surface area. The adsorption of bromophenols on this adsorbent has been studied as a function of contact time, concentration and temperature. The adsorption has been found to be endothermic, and the data conform to the Langmuir equation. The further analysis of data indicates that adsorption is a first order process. A comparative study of adsorption results with those obtained on standard activated charcoal sample shows that prepared carbonaceous adsorbent is about 45% as efficient as standard activated charcoal in removing bromophenols. To test the practical utility of this adsorbent, column operations were also carried out. The results were found satisfactory in removing bromophenols by column operations. Therefore, the present investigations recommend the use of carbon slurry waste as inexpensive adsorbent for small scale industries of developing/poor countries where disposal of solid waste of various industries and proper treatment of polluted wastewater is a serious problem.

  8. Nitric oxide releasing material adsorbs more fibrinogen.

    PubMed

    Lantvit, Sarah M; Barrett, Brittany J; Reynolds, Melissa M

    2013-11-01

    One mechanism of the failure of blood-contacting devices is clotting. Nitric oxide (NO) releasing materials are seen as a viable solution to the mediation of surface clotting by preventing platelet activation; however, NO's involvement in preventing clot formation extends beyond controlling platelet function. In this study, we evaluate NO's effect on factor XII (fibrinogen) adsorption and activation, which causes the initiation of the intrinsic arm of the coagulation cascade. This is done by utilizing a model plasticized poly(vinyl) chloride (PVC), N-diazeniumdiolate system and looking at the adsorption of fibrinogen, an important clotting protein, to these surfaces. The materials have been prepared in such a way to eliminate changes in surface properties between the control (plasticized PVC) and composite (NO-releasing) materials. This allows us to isolate NO release and determine the effect on the adsorption of fibrinogen, to the material surface. Surprisingly, it was found that an NO releasing material with a surface flux of 17.4 ± 0.5 × 10(-10) mol NO cm(-2) min(-1) showed a significant increase in the amount of fibrinogen adsorbed to the material surface compared to one with a flux of 13.0 ± 1.6 × 10(-10) mol NO cm(-2) min(-1) and the control (2334 ± 496, 226 ± 99, and 103 ±31% fibrinogen adsorbed of control, respectively). This study suggests that NO's role in controlling clotting is extended beyond platelet activation. PMID:23554300

  9. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.

    PubMed

    Bang, Sunbaek; Patel, Manish; Lippincott, Lee; Meng, Xiaoguang

    2005-07-01

    A novel granular titanium dioxide (TiO2) was evaluated for the removal of arsenic from groundwater. Laboratory experiments were carried out to investigate the adsorption capacity of the adsorbent and the effect of anions on arsenic removal. Batch experimental results showed that more arsenate [As(V)] was adsorbed on TiO2 than arsenite [As(III)] in US groundwater at pH 7.0. The adsorption capacities for As(V) and As(III) were 41.4 and 32.4 mgg(-1) TiO2, respectively. However, the adsorbent had a similar adsorption capacity for As(V) and As(III) (approximately 40 mgg(-1)) when simulated Bangladesh groundwater was used. Silica (20 mgl(-1)) and phosphate (5.8 mgl(-1)) had no obvious effect on the removal of As(V) and As(III) by TiO2 at neutral pH. Point-of-entry (POE) filters containing 3 l of the granular adsorbent were tested for the removal of arsenic from groundwater in central New Jersey, USA. Groundwater was continuously passed through the filters at an empty bed contact time (EBCT) of 3 min. Approximately 45,000 bed volumes of groundwater containing an average of 39 microgl(-1) of As(V) was treated by the POE filter before the effluent arsenic concentration increased to 10 microgl(-1). The total treated water volumes per weight of adsorbent were about 60,000 l per 1 kg of adsorbent. The field filtration results demonstrated that the granular TiO2 adsorbent was very effective for the removal of arsenic in groundwater. PMID:15924958

  10. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S.

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  11. Interlocking order parameter fluctuations in structural transitions between adsorbed polymer phases.

    PubMed

    Martins, Paulo H L; Bachmann, Michael

    2016-01-21

    By means of contact-density chain-growth simulations of a simple coarse-grained lattice model for a polymer grafted at a solid homogeneous substrate, we investigate the complementary behavior of the numbers of surface-monomer and monomer-monomer contacts under various solvent and thermal conditions. This pair of contact numbers represents an appropriate set of order parameters that enables the distinct discrimination of significantly different compact phases of polymer adsorption. Depending on the transition scenario, these order parameters can interlock in perfect cooperation. The analysis helps understand the transitions from compact filmlike adsorbed polymer conformations into layered morphologies and dissolved adsorbed structures, respectively, in more detail.

  12. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  13. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  14. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  15. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  16. Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent.

    PubMed

    Parande, Anand K; Sivashanmugam, A; Beulah, H; Palaniswamy, N

    2009-09-15

    Studies on reduction of chemical oxygen demand (COD) in effluent from sugar industry have been carried out by employing different absorbents optimizing various parameters, such as initial concentration of adsorbate, pH, adsorbent dosage and contact time. Experimental studies were carried out in batches using metakaolin, tamarind nut carbon and dates nut carbon as adsorbents by keeping initial adsorbent dosage at 1 g l(-1), agitation time over a range of 30-240 min, adsorbent dosage at 100-800 mg l(-1) by varying the pH range from 4 to 10. Characterization of there adsorbents were done using techniques such as Fourier transforms infra red spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The experimental adsorption data fitted well to Langmuir and Freundlich adsorption isotherms. The isotherms of the adsorbents indicate appreciable adsorption capacity. Higher COD removal was observed at neutral pH conditions. Studies reveal that maximum reduction efficiency of COD takes place using metakaolin as an absorbent at a dosage of 500 mg l(-1) in a contact time of 180 min at pH 7 and it could be used as an efficient absorbent for treating sugar industrial effluent.

  17. Unexpected loss of contact allergy to aluminium induced by vaccine

    PubMed Central

    Gente Lidholm, Anette; Bergfors, Elisabet; Inerot, Annica; Blomgren, Ulla; Gillstedt, Martin; Trollfors, Birger

    2013-01-01

    Background In studies in Gothenburg, Sweden, in the 1990s of an aluminium hydroxide-adsorbed pertussis toxoid vaccine, 745 of ∼76 000 vaccinated children developed long-lasting itchy subcutaneous nodules at the vaccination site. Of 495 children with itchy nodules patch tested for aluminium allergy, 376 (76%) were positive. Objectives To study the prognosis of the vaccine-induced aluminium allergy. Patients and methods Two hundred and forty-one children with demonstrated aluminium allergy in the previous study were patch tested again 5–9 years after the initial test, with the same procedure as used previously. Results Contact allergy to aluminium was no longer demonstrable in 186 of the retested 241 children (77%). A negative test result was more common in children who no longer had itching at the vaccination site; it was also related to the age of the child, the time after the first aluminium-adsorbed vaccine dose, and the strength of the reaction in the first test. Conclusions Patch test reactivity to aluminium seems to disappear or weaken with time. PMID:23601064

  18. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  19. Robust Maleimide-Functionalized Gold Surfaces and Nanoparticles Generated Using Custom-Designed Bidentate Adsorbates.

    PubMed

    Park, Chul Soon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2016-07-26

    A series of custom-designed alkanethioacetate ligands were synthesized to provide a facile method of attaching maleimide-terminated adsorbates to gold nanostructures via thiolate bonds. Monolayers on flat gold substrates derived from both mono- and dithioacetates, with and without oligo(ethylene glycol) (OEG) moieties in their alkyl spacers, were characterized using X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, ellipsometry, and contact angle goniometry. For all adsorbates, the resulting monolayers revealed that a higher packing density and more homogeneous surface were generated when the film was formed in EtOH, but a higher percentage of bound thiolate was obtained in THF. A series of gold nanoparticles (AuNPs) capped with each adsorbate were prepared to explore how adsorbate structure influences aqueous colloidal stability under extreme conditions, as examined visually and spectroscopically. The AuNPs coated with adsorbates that include OEG moieties exhibited enhanced stability under high salt concentration, and AuNPs capped with dithioacetate adsorbates exhibited improved stability against ligand exchange in competition with dithiothreitol (DTT). Overall, the best results were obtained with a chelating dithioacetate adsorbate that included OEG moieties in its alkyl spacer, imparting improved stability via enhanced solubility in water and superior adsorbate attachment owing to the chelate effect. PMID:27385466

  20. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: Kinetic, equilibrium and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    El-Bindary, Ashraf A.; El-Sonbati, Adel Z.; Al-Sarawy, Ahmad A.; Mohamed, Khaled S.; Farid, Mansour A.

    2015-02-01

    In this research, activated carbonmade from rice straw (ACRS) was synthesized simply by a low cost and nontoxic procedure and used for the adsorption of hazardous azopyrazole dye. The effect of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage and temperature were investigated and optimal experimental conditions were ascertaine. Surface modification of ACRS using scanning electron microscopy (SEM) was obtained. More than 75% removal efficiency was obtained within 75 min at adsorbent dose of 0.5 g for initial dye concentration of 30-100 mg L-1 at pH 3. The experimental equilibrium data were tested by the isotherm models namely, Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic data obtained with different initial concentration and temperature were analyzed using a pseudo-first-order and pseudo-second-order equations. The activation energy of adsorption was also evaluated and found to be +13.25 kJ mol-1 indicating that the adsorption is physisorption. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that ACRS could be employed as low-cost material for the removal of acid dyes from aqueous solution.

  1. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  2. Least cost process design for granular activated carbon adsorbers

    SciTech Connect

    Narbaitz, R.M.; Benedek, A.

    1983-10-01

    Although toxic organics may be removed from industrial effluents by activated carbon adsorbers, the cost of this process is relatively high. Also, adsorber design is complex because of the unsteady-state nature of the process and the numerous operational variables. A package of computer programs has been developed to help to minimise the ultimate cost of 4 types of column configurations. It determines the effect of treatment facility costs of different values for design and operational variables, such as empty bed contact time (EBCT), hydraulic loading, and column configurations. The results of a sample problem indicated that the optimum EBCT for all the column configurations was significantly higher than values typically used by designers.

  3. Contact hysteroscopy.

    PubMed

    Baggish, M S; Barbot, J

    1983-06-01

    In 1907 innovations in optics and illumination made by Maximilian Nitze were applied to hysteroscopy by Charles David, who wrote a treatise of hysteroscopy. David improved illumination by placing an electric incandescent bulb at the intrauterine end of his endoscope and also sealed the distal end of the tube with a piece of glass. The history of the contact endoscope that the authors personally used is connected to the invention by Vulmiere (1952) of a revolutionary illumination process in endoscopy--the "cold light" process. The components of cold light consist of a powerful external light source that is transmitted via a special optical guide into the endometrial cavity. The 1st application of his principle (1963) was an optical trochar contained in a metallic sheath. This simple endoscope was perfected, and in 1973 Barbot and Parent, in France, began to use it to examine the uterine cavity. Discussion focuses on methods, instrumentation, method for examination (grasping the instrument, setup, light source, anesthesia, dilatation, technique, and normal endometrium); cervical neoplasia; nonneoplastic lesions of the endometrium (endometrial polyp, submucous myoma, endometrial hyperplasia); intrauterine device localization; neoplastic lesions of the endometrium; precursors (adenocarcinoma); hysteroscopy in pregnancy (embryoscopy, hydatidiform mole, postpartum hemorrhage, incomplete abortion, spontaneous abortion, induced abortions, and amnioscopy); and examinations of children and infants. The contact endoscope must make light contact with the structure to be viewed. The principles of contact endoscopy depend on an interpretation of color, contour, vascular pattern, and a sense of touch. These are computed together and a diagnosis is made on the basis of previously learned clinical pathologic correlations. The contact endoscope is composed of 3 parts: an optical guide; a cylindric chamber that collects and traps ambient light; and a magnifying eyepiece. The phase of

  4. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  5. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  6. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  7. Effect of adsorbed chlorine and oxygen on the shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1976-01-01

    Static-friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration, 1.0). The coefficient of static friction decreased with increasing adsorbate concentration; however, it was independent of the type of metal and the adsorbate species. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio of the shear strength of the interface with an adsorbate concentration of 1.0 and the strength of the clean metal interface. This ratio was about 0.835 for all the systems tested.

  8. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents.

    PubMed

    Franca, Adriana S; Oliveira, Leandro S; Nunes, Anne A; Alves, Cibele C O

    2010-02-01

    Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as an adsorbent for removal of basic dyes (methylene blue--MB) from aqueous solutions. The adsorbent was prepared by microwave treatment, providing a significant reduction in processing time coupled to an increase in adsorption capacity in comparison to conventional carbonization in a muffle furnace. Batch adsorption tests were performed at 25 degrees C and the effects of particle size, contact time, adsorbent dosage and initial solution pH were investigated. Adsorption kinetics was better described by a second-order model. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Tempkin adsorption models, with Langmuir providing the best fit. The results presented in this study show that microwave activation presents great potential as an alternative method in the production of adsorbents. PMID:19767204

  9. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  10. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  11. Types of Contact Lenses

    MedlinePlus

    ... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...

  12. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  13. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  14. Experimental investigation of contact angle, curvature, and contact line motion in dropwise condensation and evaporation.

    PubMed

    Gokhale, Shripad J; Plawsky, Joel L; Wayner, Peter C

    2003-03-15

    Image-analyzing interferometry is used to measure the apparent contact angle and the curvature of a drop and a meniscus during condensation and evaporation processes in a constrained vapor bubble (CVB) cell. The apparent contact angle is found to be a function of the interfacial mass flux. The interfacial velocity for the drop during condensation and evaporation is a function of the apparent contact angle and the rate of change of radius of curvature. The dependence of velocity on the apparent contact angle is consistent with Tanner's scaling equation. The results support the hypothesis that evaporation/condensation is an important factor in contact line motion. The main purpose of this article is to present the experimental technique and the data. The equilibrium contact angle for the drop is found experimentally to be higher than that for the corner meniscus. The contact angle is a function of the stress field in the fluid. The equilibrium contact angle is related to the thickness of the thin adsorbed film in the microscopic region and depends on the characteristics of the microscopic region. The excess interfacial free energy and temperature jump were used to calculate the equilibrium thickness of the thin adsorbed film in the microscopic region.

  15. Bayer Electrofilter Fines as Potential Se(VI) Adsorbents

    NASA Astrophysics Data System (ADS)

    Ayala, Julia; Fernández, Begoña

    2015-11-01

    Removal of Se(VI) from an aqueous solution under different conditions was investigated using Bayer electrofilter fines (BEFs), a waste from alumina production, as an adsorbent. Adsorption selenate was studied using batch adsorption experiments as a function of pH (2-12), contact time (0.08-30 h), adsorbent concentration (4-80 g/L), initial selenium concentration (5-203 mg/L), and ionic strength (0-0.1 M NaCl). The results showed that adsorption was significantly affected by pH Se(VI) having the highest affinity for BEFs at pH 3. Sorption Se(VI) reached equilibrium in 4 h. Increasing ionic strength decreased selenate sorption. The adsorption of Se(VI) onto BEFs was found to fit the Langmuir isotherm. Maximum selenium uptake values were calculated as 2.3613 mg/g and 1.5608 mg/g when using adsorbent concentrations of 20 g/L and 40 g/L, respectively.

  16. Ion Implanted Passivated Contacts for Interdigitated Back Contacted Solar Cells

    SciTech Connect

    Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Reedy, Robert; Bateman, Nicholas; Stradins, Pauls

    2015-06-14

    We describe work towards an interdigitated back contacted (IBC) solar cell utilizing ion implanted, passivated contacts. Formation of electron and hole passivated contacts to n-type CZ wafers using tunneling SiO2 and ion implanted amorphous silicon (a-Si) are described. P and B were ion implanted into intrinsic amorphous Si films at several doses and energies. A series of post-implant anneals showed that the passivation quality improved with increasing annealing temperatures up to 900 degrees C. The recombination parameter, Jo, as measured by a Sinton lifetime tester, was Jo ~ 14 fA/cm2 for Si:P, and Jo ~ 56 fA/cm2 for Si:B contacts. The contact resistivity for the passivated contacts, as measured by TLM patterns, was 14 milliohm-cm2 for the n-type contact and 0.6 milliohm-cm2 for the p-type contact. These Jo and pcontact values are encouraging for forming IBC cells using ion implantation to spatially define dopants.

  17. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  18. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  19. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  20. NOx adsorber and method of regenerating same

    DOEpatents

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  1. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  2. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  3. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  4. EDITORIAL: Close contact Close contact

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  5. A PROBABILISTIC EXPOSURE ASSESSMENT FOR CHILDREN WHO CONTACT CCA-TREATED PLAYSETS AND DECKS USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL FOR THE WOOD PRESERVATIVE EXPOSURE SCENARIO

    EPA Science Inventory

    The U.S. Environmental Protection Agency has conducted a probabilistic exposure and dose assessment on the arsenic (As) and chromium (Cr) components of Chromated Copper Arsenate (CCA) using the Stochastic Human Exposure and Dose Simulation model for wood preservatives (SHEDS-Wood...

  6. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent.

    PubMed

    Wang, Hou; Yuan, Xingzhong; Zeng, Guangming; Leng, Lijian; Peng, Xin; Liao, Kailingli; Peng, Lijuan; Xiao, Zhihua

    2014-10-01

    Natural adsorbent (Cinnamomum camphora sawdust) modified by organic acid (oxalic acid, citric acid, and tartaric acid) was investigated as a potential adsorbent for the removal of hazardous malachite green (MG) dye in aqueous media in a batch process. The extent of MG adsorption onto modified sawdust increased with increasing organic acid concentrations, pH, contact time, and temperature but decreased with increasing adsorbent dosage and ionic strength. Kinetic study indicated that the pseudo-second-order kinetic model could best describe the adsorption kinetics of MG. Equilibrium data were found to fit well with the Langmuir model, and the maximum adsorption capacity of the three kinds of organic acid-modified sawdust was 280.3, 222.8, and 157.5 mg/g, respectively. Thermodynamic parameters suggested that the sorption of MG was an endothermic process. The adsorption mechanism, the application of adsorbents in practical wastewater, the prediction of single-stage batch adsorption system, and the disposal of depleted adsorbents were also discussed.

  7. Heat transfer to the adsorbent in solar adsorption cooling device

    NASA Astrophysics Data System (ADS)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  8. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  9. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  10. Rupture force of adsorbed self-assembled surfactant layers. Effect of the dielectric exchange force

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-08-01

    The tip applied force necessary to obtain tip/substrate contact, i.e., rupture force between adsorbed layers of self-assembled surfactant films and atomic force microscope (AFM) tips in water has been measured. A substantial contribution of this rupture force is due to the dielectric exchange force (DEF). The DEF model is in agreement with the observation that the surfactant layer rupture forces are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  11. Contact micromechanics in granular media with clay

    SciTech Connect

    Ita, S.L.

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  12. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.

    PubMed

    Srivastava, Niharika; Thakur, Amit K; Shahi, Vinod K

    2016-01-20

    Phosphorylated cellulose triacetate (CTA)/silica composite adsorbent was prepared by acid catalyzed sol-gel method using an inorganic precursor (3-aminopropyl triethoxysilane (APTEOS)). Reported composite adsorbent showed comparatively high adsorption capacity for Ni(II) in compare with different heavy metal ions (Cu(2+), Ni(2+), Cd(2+) and Pb(2+)). For Ni(II) adsorption, effect of time, temperature, pH, adsorbent dose and adsorbate concentration were investigated; different kinetic models were also evaluated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also estimated and equilibrium adsorption obeyed Langmuir and Freundlich isotherms. Developed adsorbent exhibited about 78.8% Ni(II) adsorption at pH: 6 and a suitable candidate for the removal of Ni(II) ions from wastewater. Further, about 65.5% recovery of adsorbed Ni(II) using EDTA solution was demonstrated, which suggested effective recycling of the functionalized beads would enable it to be used in the treatment of contaminated water in industry. PMID:26572476

  13. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  14. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  16. Mesoporous Silica: A Suitable Adsorbent for Amines

    PubMed Central

    2009-01-01

    Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices. PMID:20628459

  17. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  18. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  19. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    PubMed

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.

  20. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    PubMed

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  1. Adsorbent materials development and testing for the extraction of uranium from seawater

    SciTech Connect

    Felker, L.K.; Dai, S.; Hay, B.P.; Janke, C.J.; Mayes, R.T.; Sun, X.; Tsouris, C.

    2013-07-01

    The extraction of uranium from seawater has been the focus of a research project for the U.S. Department of Energy to develop amidoxime functional group adsorbents using radiation-induced graphing on polymer-based fiber materials and subsequent chemical conversion of the radical sites to form the desired adsorbent material. Materials with promising uranium adsorption capacities were prepared through a series of parametric studies on radiation dose, time, temperature, graphing solutions, and properties of the base polymer materials. A laboratory screening protocol was developed to determine the uranium adsorption capacity to identify the most promising candidate materials for seawater testing. (authors)

  2. Prediction of static contact angles on the basis of molecular forces and adsorption data.

    PubMed

    Diaz, M Elena; Savage, Michael D; Cerro, Ramon L

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations-particularly for alkanes with a low number of carbon atoms, for which adsorption is significant. PMID:27627371

  3. Prediction of static contact angles on the basis of molecular forces and adsorption data

    NASA Astrophysics Data System (ADS)

    Diaz, M. Elena; Savage, Michael D.; Cerro, Ramon L.

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations—particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.

  4. Prediction of static contact angles on the basis of molecular forces and adsorption data.

    PubMed

    Diaz, M Elena; Savage, Michael D; Cerro, Ramon L

    2016-08-01

    At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations-particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.

  5. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  6. Fly ash adsorbents for multi-cation wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Isac, Luminita; Duta, Anca

    2012-06-01

    Class "F" fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 proved good adsorbent properties, and was further used for obtaining a new substrate with good adsorption capacity for heavy metals from multi-cation wastewater treatment. Firstly, the new adsorbent was characterized by AFM, XRD, DSC, FTIR and the surface energy was evaluated by contact angle measurements. The experimental data suggested that the new type of substrate is predominant crystalline with highly polar surface. The substrate was used for removing the Pb2+, Cd2+ and Zn2+ cations from mixed solutions. The results show high efficiency and selective adsorption the Pb2+ and Zn2+ cations. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The Langmuir and Freundlich models were used to describe the processes. The pseudo-second order kinetics could well model all the processes, indicating a surface concentration of the adsorption sites with the same order of magnitude as the cation concentrations.

  7. Selective Response of Mesoporous Silicon to Adsorbants with Nitro Groups

    SciTech Connect

    McLeod, John A.; Kurmaev, Ernst Z.; Sushko, Petr V.; Boyko, Teak D.; Levitsky, Igor A.; Moewes, Alexander

    2012-01-30

    We demonstrate that the electronic structure of mesoporous silicon is affected by adsorption of nitrobased explosive molecules in a compound-selective manner. This selective response is demonstrated by probing the adsorption of two nitro-based molecular explosives (trinitrotoluene and cyclotrimethylenetrinitramine) and a nonexplosive nitro-based aromatic molecule (nitrotoluene) on mesoporous silicon using soft X-ray spectroscopy. The Si atoms strongly interact with adsorbed molecules to form Si-O and Si-N bonds, as evident from the large shifts in emission energy present in the Si L2,3 X-ray emission spectroscopy (XES) measurements. Furthermore, we find that the energy gap (band gap) of mesoporous silicon changes depending on the adsorbant, as estimated from the Si L2,3 XES and 2p X-ray absorption spectroscopy (XAS) measurements. Our ab initio molecular dynamics calculations of model compounds suggest that these changes are due to spontaneous breaking of the nitro groups upon contacting surface Si atoms. This compound-selective change in electronic structure may provide a powerful tool for the detection and identification of trace quantities of airborne explosive molecules.

  8. Contact voltage-induced softening of RF microelectromechanical system gold-on-gold contacts at cryogenic temperatures

    SciTech Connect

    Berman, D.; Krim, J.; Walker, M. J.

    2010-08-15

    A series of experiments were performed in vacuum environments to investigate the impact of rf micromechanical system switch contact voltage versus resistance for gold-on-gold contacts at cryogenic temperatures. The purpose of this work was twofold as follows: (1) to examine whether asperity heating models already validated for high temperature contacts were also applicable at cryogenic temperatures and (2) to explore the implications and validity of prior suggestions that contact temperatures between 338 and 373 K are high enough to dissociate adsorbed film and/or push them aside but low enough to prevent asperities from becoming soft and adherent. Measurements on two distinct switch types, fabricated at independent laboratories, were performed in the temperature range 79-293 K and for contact voltages ranging from 0.01 to 0.13 V. Contact resistance values at all temperatures were observed to be lower for higher contact voltages, consistent with the aforementioned asperity heating models, whereby increased contact currents are associated with increased heating and softening effects. In situ removal of adsorbed species by oxygen plasma cleaning resulted in switch adhesive failure. Switches that had not been cleaned meanwhile exhibited distinct reductions in resistance at contact temperatures close to 338 K, consistent with suggestions that films begin to desorb, disassociate, and/or be pushed aside at that temperature.

  9. Designing fixed-bed adsorbers to remove mixtures of organics

    SciTech Connect

    Hand, D.W.; Crittenden, J.C.; Arora, H.; Miller, J.M.; Lykins, B.W.

    1989-01-01

    A liquid-phase granular activated carbon (GAC) pilot plant and a full-scale GAC adsorber were designed, built, and operated in order to evaluate their performance for treating a groundwater contaminated with several volatile and synthetic organic chemicals. Several empty bed contact times (EBCTs) ranging from 1 to 30 min were used during the pilot-plant study, and a simple method for evaluating the GAC use rate as a function of the EBCT was developed and demonstrated for dichloroethene and trichloroethene (TCE). Pilot-plant data were compared with the pore surface diffusion model, which considers external and internal mass transfer mechanisms of pore and surface diffusion. Natural organic matter in the water was found to decrease GAC capacity and kinetics for TCE.

  10. Irritant Contact Dermatitis

    MedlinePlus

    ... and rashes clinical tools newsletter | contact Share | Irritant Contact Dermatitis Information for adults A A A This ... severe involvement in the patient's armpit. Overview Irritant contact dermatitis is an inflammatory rash caused by direct ...

  11. Contact Lens Risks

    MedlinePlus

    ... Health and Consumer Devices Consumer Products Contact Lenses Contact Lens Risks Share Tweet Linkedin Pin it More ... redness blurred vision swelling pain Serious Hazards of Contact Lenses Symptoms of eye irritation can indicate a ...

  12. Contact Lens Care

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More ... 1088, www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative ...

  13. Contact Lens Solution Toxicity

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Contact Lens Solution Toxicity Information for adults A A A This image shows a reaction to contact lens solution. The prominent blood vessels and redness ...

  14. Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes

    NASA Astrophysics Data System (ADS)

    Hastuti, B.; Masykur, A.; Hadi, S.

    2016-02-01

    Study on chitosan modification by swelling and crosslinking and its application as a selective adsorbent for heavy metals Cr (VI) in batik industry wastes was done. Swelling is intended to improve chitosan porosity, whereas crosslinking is to increase the resistance of chitosan against acid. Natural samples are generally acidic, thus limiting chitosan application as an adsorbent. Modification of chitosan by combining swelling and crosslinking is expected to increase its adsorption capacity in binding heavy metal ions in water. The modified chitosan was later contacted with Cr (VI) to test its adsorption capacity with a variation of pH and contact time. Finally, application of modified chitosan was done in batik industry waste containing Cr (IV). Based on the results, chitosan-ECH 25% (v/v) was the optimum concentration of crosslinker to adsorb Cr (VI) ions. Modified chitosan has a solubility resistance to acids, even though a strong acid. Modification of chitosan also improved its adsorption capacity to Cr (VI) from 74% (pure chitosan) to 89% with contact time 30 min at pH 3. On the application to the batik wastes, the modified chitosan were able to adsorb Cr (IV) up to the level of 5 ppm. Thus, the modified chitosan has a potential to be applied to as an adsorbent of Cr (VI) in batik industry wastes.

  15. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  16. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  17. Many-body dispersion effects in the binding of adsorbates on metal surfaces.

    PubMed

    Maurer, Reinhard J; Ruiz, Victor G; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches. PMID:26374001

  18. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-01

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  19. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  20. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  1. Electric contact phenomena in ultra clean and specifically contaminated systems.

    NASA Technical Reports Server (NTRS)

    Keller, D. V., Jr.

    1971-01-01

    Contact resistance has been used to characterize the processes of physical contact in metallic systems with ultraclean surfaces. The contact resistance versus load curves of iron and two cobalt alloys were used to demonstrate the existence of surface work hardening and interfacial creep during contact as well as the fracture characteristics of an interfacial junction as the load is removed. The presence of an adsorbed film of hydrogen or hydrogen ions on iron completely changes the contact process. A comparison of the contact resistance versus load data for ultrapure iron, and iron-cobalt alloy, and a cobalt molybdenum-chromium was used to illustrate the effect of substrate mechanical properties on static adhesion and the ability to convert these data for the estimation of the dynamic coefficient of friction under the particular experimental conditions.

  2. Electric contact phenomena in ultra clean and specifically contaminated systems.

    NASA Technical Reports Server (NTRS)

    Keller, D. V., Jr.

    1972-01-01

    Contact resistance has been used to characterize the processes of physical contact in metallic systems with ultra clean surfaces. The contact resistance versus load curves of iron and two cobalt alloys were used to demonstrate the existence of surface work hardening and interfacial creep during contact as well as the fracture characteristics of an interfacial junction as the load is removed. The presence of an adsorbed film of hydrogen or hydrogen ions on iron completely changes the contact process. A comparison of the contact resistance versus load data for ultra pure iron, an iron-cobalt alloy and a cobalt molybdenum-chromium was used to illustrate the effect of substrate mechanical properties on static adhesion and the ability to convert these data for the estimation of the dynamic coefficient of friction under the particular experimental conditions.

  3. Contact Dermatitis in Pediatrics.

    PubMed

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. PMID:27517356

  4. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent.

    PubMed

    Hameed, B H

    2009-02-15

    This study aimed at investigating the feasibility of using jackfruit peel (JFP), a solid waste, abundantly available in Malaysia, for the adsorption of methylene blue, a cationic dye. Batch adsorption studies were conducted to evaluate the effects of contact time, initial concentration (35-400mg/L), pH (2-11), and adsorbent dose (0.05-1.20g) on the removal of dye at temperature of 30 degrees C. The experimental data were analyzed by the four different types of linearized Langmuir isotherm, the Freundlich isotherm and the Temkin isotherm. The experimental data fitted well with the type 2 Langmuir model with a maximum adsorption capacity of 285.713mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-second-order kinetics was the best for the adsorption of MB by JFP with coefficients of correlation R(2)> or =0.9967 for all initial MB concentrations studied. The results demonstrated that the JFP is very effective for the adsorption of methylene blue (MB) from aqueous solutions.

  5. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    NASA Technical Reports Server (NTRS)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  6. Radon emanation from radium specific adsorbents.

    PubMed

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  7. Unoccupied electronic states in adsorbate systems

    NASA Astrophysics Data System (ADS)

    Bertel, E.

    1991-11-01

    Experimental work on unoccupied electronic states in adsorbate systems on metallic substrates is reviewed with emphasis on recent developments. The first part is devoted to molecular adsorbates. Weakly chemisorbed hydrocarbons are briefly discussed. An exhaustive inverse photoemission (IPE) study of the CO bond to the transition metals Ni, Pb, and Pt is presented. Adsorbed NO is taken as an example to demonstrate the persisting discrepancies in the interpretation of IPE spectra. Atomic adsorbates are discussed in the second part. The quantum well state model is applied to interpret the surface states in reconstructing and non-reconstructing adsorption systems of alkali metals and hydrogen. A recent controversy on the unoccupied electronic states of the Cu(110)/O p(2×1) surface is critically reviewed. The quantum well state model is then compared to tight binding and local-density-functional calculations of the unoccupied bands and the deficiencies of the various approaches are pointed out. Finally, the relation between the surface state model and more chemically oriented models of surface bonding is briefly discussed.

  8. Continuum elastic theory of adsorbate vibrational relaxation

    NASA Astrophysics Data System (ADS)

    Lewis, Steven P.; Pykhtin, M. V.; Mele, E. J.; Rappe, Andrew M.

    1998-01-01

    An analytical theory is presented for the damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. The system is treated classically, with the substrate modeled as a semi-infinite elastic continuum and the adsorbate overlayer modeled as an array of point masses connected to the surface by harmonic springs. The theory provides a simple expression for the relaxation rate in terms of fundamental parameters of the system: γ=mω¯02/AcρcT, where m is the adsorbate mass, ω¯0 is the measured frequency, Ac is the overlayer unit-cell area, and ρ and cT are the substrate mass density and transverse speed of sound, respectively. This expression is strongly coverage dependent, and predicts relaxation rates in excellent quantitative agreement with available experiments. For a half-monolayer of carbon monoxide on the copper (100) surface, the predicted damping rate of in-plane frustrated translations is 0.50×1012s-1, as compared to the experimental value of (0.43±0.07)×1012s-1. Furthermore it is shown that, for all coverages presently accessible to experiment, adsorbate motions exhibit collective effects which cannot be treated as stemming from isolated oscillators.

  9. Development and Testing of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  10. Bubble-surface interactions with graphite in the presence of adsorbed carboxymethylcellulose.

    PubMed

    Wu, Jueying; Delcheva, Iliana; Ngothai, Yung; Krasowska, Marta; Beattie, David A

    2015-01-21

    The adsorption of carboxymethylcellulose (CMC), and the subsequent effect on bubble-surface interactions, has been studied for a graphite surface. CMC adsorbs on highly oriented pyrolytic graphite (HOPG) in specific patterns: when adsorbed from a solution of low concentration it forms stretched, isolated and sparsely distributed chains, while upon adsorption from a solution of higher concentration, it forms an interconnected network of multilayer features. The amount and topography of the adsorbed CMC affect the electrical properties as well as the wettability of the polymer-modified HOPG surface. Adsorption of CMC onto the HOPG surface causes the zeta potential to be more negative and the modified surface becomes more hydrophilic. This increase in both the absolute value of zeta potential and the surface hydrophilicity originates from the carboxymethyl groups of the CMC polymer. The effect of the adsorbed polymer layer on wetting film drainage and bubble-surface/particle attachment was determined using high speed video microscopy to monitor single bubble-surface collision, and single bubble Hallimond tube flotation experiments. The time of wetting film drainage and the time of three-phase contact line spreading gets significantly longer for polymer-modified HOPG surfaces, indicating that the film rupture and three-phase contact line expansion were inhibited by the presence of polymer. The effect of longer drainage times and slower dewetting correlated with reduced flotation recovery. The molecular kinetic (MK) model was used to quantify the effect of the polymer on dewetting dynamics, and showed an increase in the jump frequency for the polymer adsorbed at the higher concentration.

  11. Role of Structure and Glycosylation of Adsorbed Protein Films in Biolubrication

    PubMed Central

    Veeregowda, Deepak H.; Busscher, Henk J.; Vissink, Arjan; Jager, Derk-Jan; Sharma, Prashant K.; van der Mei, Henny C.

    2012-01-01

    Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy), we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation of adsorbed protein

  12. Evaluation of pharmaceuticals removal by sewage sludge-derived adsorbents with rapid small-scale column tests

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ding, R.; Wallace, R.; Bandosz, T.

    2015-12-01

    New composite adsorbents were developed by pyrolyzing sewage sludge and fish waste (75:25 or 90:10 dry mass ratio) at 650 oC and 950 oC. Batch adsorption experiments demonstrated that the composite adsorbents were able to adsorb a wide range of organic contaminants (volatile organic compounds, pharmaceuticals and endocrine disrupting compounds (EDCs), and nitrosamine disinfection byproducts) with high capacities. Here we further examine the performance of the adsorbents for the simultaneous removal of 8 pharmaceuticals and EDCs with rapid small-scale column tests (RSSCT). Results show that the order of breakthrough in RSSCT is in general consistent with the affinity determined via batch tests. As expected, the maximum amount of adsorption for each compound obtained from RSSCT is identical to or less than that obtained from batch tests (with only one exception), due to adsorption kinetics. However, despite the very different input concentration (1 mg/L vs. 100 mg/L) and contact time (2 min empty bed contact time vs. 16 hour equilibrium time) used in RSSCT and batch tests, the maximum amount of pharmaceuticals and EDCs adsorbed under RSSCT is still about one half of that under equilibrium batch tests, validating the approach of using batch tests with much higher input concentrations to determine adsorption capacities. Results of a pilot-scale column test in a drinking water treatment plant for pharmaceuticals removal will also be presented.

  13. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  14. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  15. Contact reactions to food.

    PubMed

    Killig, Claudia; Werfel, Thomas

    2008-05-01

    Cutaneous adverse reactions to foods, spices, and food additives can occur both in occupational and nonoccupational settings in those who grow, handle, prepare, or cook food. Because spices are also utilized in cosmetics and perfumes, other exposures are encountered that can result in adverse cutaneous reactions. This article describes the reaction patterns that can occur upon contact with foods, including irritant contact dermatitis and allergic contact dermatitis. The ingestion of culprit foods by sensitized individuals can provoke a generalized eczematous rash, referred to as systemic contact dermatitis. Other contact reactions to food include contact urticaria and protein contact dermatitis provoked by high-molecular-weight food proteins often encountered in patients with atopic dermatitis. Phototoxic and photoallergic contact dermatitis are also considered.

  16. Allergic Contact Dermatitis

    MedlinePlus

    ... causes of allergic contact dermatitis include nickel, chromates, rubber chemicals, and topical antibiotic ointments and creams. Frequent ... construction workers who are in contact with cement. Rubber chemicals are found in gloves, balloons, elastic in ...

  17. Colored Contact Lens Dangers

    MedlinePlus

    ... Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Sep. 26, 2013 It ... the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By ...

  18. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  19. Magnesium silicates adsorbents of organic compounds

    NASA Astrophysics Data System (ADS)

    Ciesielczyk, Filip; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2007-08-01

    Studies were presented on production of highly dispersed magnesium silicate at a pilote scale. The process of silicate adsorbent production involved precipitation reaction using water glass (sodium metasilicate) solution and appropriate magnesium salt, preceded by an appropriate optimization stage. Samples of best physicochemical parameters were in addition modified (in order to introduce to silica surface of several functional groups) using the dry technique and various amounts of 3-isocyanatepropyltrimethoxysilane, 3-thiocyanatepropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane. The so prepared samples were subjected to a comprehensive physicochemical analysis. At the terminal stage of studies attempts were made to adsorb phenol from its aqueous solutions on the surface of unmodified and modified magnesium silicates. Particle size distributions were determined using the ZetaSizer Nano ZS apparatus. In order to define adsorptive properties of studied magnesium silicates isotherms of nitrogen adsorption/desorption on their surfaces were established. Efficiency of phenol adsorption was tested employing analysis of post-adsorption solution.

  20. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  1. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  2. Many-body dispersion effects in the binding of adsorbates on metal surfaces

    SciTech Connect

    Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre

    2015-09-14

    A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.

  3. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  4. Structural and sorption characteristics of adsorbed humic acid on clay minerals.

    PubMed

    Wang, Kaijun; Xing, Baoshan

    2005-01-01

    Clay-humic complexes are commonly distributed in natural environments. They play very important roles in regulating the transport and retention of hydrophobic organic contaminants in soils and sediments. This study examined the structural changes of humic acid (HA) after adsorption by clay minerals and determined phenanthrene sorption by clay-humic complexes. Solid- and liquid-state 13C nuclear magnetic resonance (NMR), for the first time, provided direct evidence for HA fractionation during adsorption on mineral surfaces, that is, aliphatic fractions were preferentially adsorbed by clay minerals while aromatic fractions were left in the solution. The ratio of UV absorbance of HA at 465 and 665 nm (E4 to E6 ratio), which is related to aromaticity, corroborated with the NMR results. For both montmorillonite and kaolinite, adsorbed HA fractions had higher sorption linearity (N) and affinity (K(oc)) than the source HA. The K(oc) of adsorbed HA for the clay-humic complexes could be up to several times higher than that of the source HA. This large increase may be contributed by the low polarity of the bound HA. Moreover, for each mineral, the N values of adsorbed HA increased with increasing HA loading. It is believed that HA may develop a more condensed structure on mineral surface at lower HA loading level due to the stronger interactions between HA and mineral surface as a result of close contacts. PMID:15647564

  5. Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria

    2012-12-01

    Used as adsorbent, alkali fly ash represents a low cost solution for advanced wastewater treatment. The alkali treatment raises sustainability issues therefore, in this research we aim to replace alkali fly ash with washed fly ash (FAw). For improving the adsorption capacity of washed fly ash, bentonite powder (B) was added, as a natural adsorbent with a composition almost identical to the fly ash. The new adsorbent was characterized by AFM, XRD, FTIR, SEM, EDS and the surface energy was evaluated by contact angle measurements. For understanding the complex adsorption process on this mixed substrate, preliminary tests were developed on synthetic wastewaters containing a single pollutant system (heavy metal), binary (two-heavy metals) and ternary (dye and two heavy metals) systems. Experiments were done on synthetic wastewaters containing methylene blue, cadmium and copper, using FAw, B and their powder mixtures. The pseudo-second order kinetics could well model all the processes, indicating a good adsorbent material which can be used for the pollutants removal from wastewater. After adsorption the substrates loaded with pollutants, annealed at 500 °C can be reused for padding in stone blocks.

  6. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent.

    PubMed

    Xing, Shengtao; Zhao, Meiqing; Ma, Zichuan

    2011-01-01

    The adsorption behaviors of heavy metals onto novel low-cost adsorbent, red loess, were investigated. Red loess was characterized by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectra. The results indicated that red loess mainly consisted of silicate, ferric and aluminum oxides. Solution pH, adsorbent dosage, initial metal concentration, contact time and temperature significantly influenced the efficiency of heavy metals removal. The adsorption reached equilibrium at 4 hr, and the experimental equilibrium data were fitted to Langmuir monolayer adsorption model. The adsorption of Cu(II) and Zn(II) onto red loess was endothermic, while the adsorption of Pb(II) was exothermic. The maximum adsorption capacities of red loess for Pb(II), Cu(II) and Zn(II) were estimated to be 113.6, 34.2 and 17.5 mg/g, respectively at 25 degrees C and pH 6. The maximum removal efficiencies were 100% for Pb(II) at pH 7, 100% for Cu(II) at pH 8, and 80% for Zn(II) at pH 8. The used adsorbents were readily regenerated using dilute HCl solution, indicating that red loess has a high reusability. All the above results demonstrated that red loess could be used as a possible alternative low-cost adsorbent for the removal of heavy metals from aqueous solution.

  7. Contact solution algorithms

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1989-01-01

    Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.

  8. Glasses and Contact Lenses

    MedlinePlus

    ... Here's Help White House Lunch Recipes Glasses and Contact Lenses KidsHealth > For Kids > Glasses and Contact Lenses Print A A A Text Size What's ... together the way they should. But eyeglasses or contact lenses, also called corrective lenses, can help most ...

  9. CONTACT URTICARIA: PRESENT SCENARIO

    PubMed Central

    Bhatia, Ruchi; Alikhan, Ali; Maibach, Howard I

    2009-01-01

    Immunological contact urticaria is a hypersensitivity reaction that appears on the skin following contact with an eliciting substance. Recent advances in our understanding of the molecular mechanism and pathogenesis of this reaction have altered its classification, diagnosis, and treatment. We discuss classification, epidemiology, diagnosis, testing, and treatment options that are available to patients with contact urticaria. PMID:20161861

  10. Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent: fixed bed column adsorption performance.

    PubMed

    Halim, Azhar Abdul; Aziz, Hamidi Abdul; Johari, Megat Azmi Megat; Ariffin, Kamar Shah; Adlan, Mohd Nordin

    2010-03-15

    The performance of a carbon-mineral composite adsorbent used in a fixed bed column for the removal of ammoniacal nitrogen and aggregate organic pollutant (COD), which are commonly found in landfill leachate, was evaluated. The breakthrough capacities for ammoniacal nitrogen and COD adsorption were 4.46 and 3.23 mg/g, respectively. Additionally, the optimum empty bed contact time (EBCT) was 75 min. The column efficiency for ammoniacal nitrogen and COD adsorption using fresh adsorbent was 86.4% and 92.6%, respectively, and these values increased to 90.0% and 93.7%, respectively, after the regeneration process. PMID:19945216

  11. Dielectric exchange-force effect on the rupture force of adsorbed bilayers of self-assembled surfactant films

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-05-01

    We measured and formulated dielectric exchange forces between adsorbed layers of self-assembled surfactant films and atomic-force microscope tips in water. The dielectric exchange-force model is in agreement with the observation that the surfactant-layer rupture forces (tip-applied force necessary to obtain tip/substrate contact) are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy, a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  12. Effective Thermal Conductivity of Adsorbent Packed Beds

    NASA Astrophysics Data System (ADS)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  13. Orbital tomography for highly symmetric adsorbate systems

    NASA Astrophysics Data System (ADS)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  14. Contact lens in keratoconus

    PubMed Central

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  15. Evaluation of raw soapstone (steatite) as adsorbent of trace elements present in Brazilian spirits.

    PubMed

    Louvera Silva, Karine Aparecida; da Costa Fernandes, Isabela; Bearzoti, Eduardo; Milani, Raquel Fernanda; Morgano, Marcelo Antonio; Quintaes, Kesia Diego

    2016-06-01

    The impact of soapstone (steatite) upon inorganic element contaminant concentrations in alcoholic beverages was investigated. Concentrations of As, Cd, Cu, Ni and Pb levels in 8 Brazilian spirits plus an alcoholic simulant were initially measured, and then measured following each 24h cycle of exposure to raw soapstone cups, for a total of 4 cycles/sample. The results were compared to the levels established by Brazilian and German regulations. The contact between the spirits and the soapstone reduced the Cu content by up to 50.4% and increased the Ni content by up to 622.2%, especially in the first contact cycle. The exposure of spirits to the soapstone exhibits a linear reduction in the Pb content (18.3-54.5%) while As and Cd levels remained unaltered throughout the experiments. In conclusion, crude soapstone in contact with alcoholic solutions acts as an adsorbent of trace elements (Cu and Pb) while releasing Ni. PMID:26830564

  16. Carbonised jackfruit peel as an adsorbent for the removal of Cd(II) from aqueous solution.

    PubMed

    Inbaraj, B Stephen; Sulochana, N

    2004-08-01

    The fruit of the jack (Artocarpus heterophyllus) is one of the popular fruits in India, where the total area under this fruit is about 13,460 ha. A significant amount of peel (approximately 2,714-11,800 kg per tree per year) is discarded as agricultural waste, as apart from its use as a table fruit, it is popular in many culinary preparations. Treatment of jackfruit peel with sulphuric acid produced a carbonaceous product which was used to study its efficiency as an adsorbent for the removal of Cd(II) from aqueous solution. Batch experiments were performed as a function of process parameters; agitation time, initial metal concentration, adsorbent concentration and pH. Kinetic analyses made with Lagergren pseudo-first-order, Ritchie second-order and modified Ritchie second-order models showed better fits with modified Ritchie second-order model. The Langmuir-Freundlich (Sips equation) model best defined the experimental equilibrium data among the three isotherm models (Freundlich, Langmuir and Langmuir-Freundlich) tested. Taking a particular metal concentration, the optimum dose and pH required for the maximum metal removal was established. A complete recovery of the adsorbed metal ions from the spent adsorbent was achieved by using 0.01 M HCl.

  17. Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal.

    PubMed

    Guo, Xiaoqing; Qu, Lijun; Tian, Mingwei; Zhu, Shifeng; Zhang, Xiansheng; Tang, Xiaoning; Sun, Kaikai

    2016-07-01

    Chitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated. The maximum adsorption capacity based on the Langmuir model was found to be 32.16 mg/g. In addition, experimental kinetic data were analyzed by the psuedo-first order and psuedo-second order equation models. The psuedo-second order model proved to be the best model for the adsorption system, which suggested that adsorption might be controlled by the chemical rate-limiting step through sharing of electrons or by covalent forces.

  18. Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal.

    PubMed

    Guo, Xiaoqing; Qu, Lijun; Tian, Mingwei; Zhu, Shifeng; Zhang, Xiansheng; Tang, Xiaoning; Sun, Kaikai

    2016-07-01

    Chitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated. The maximum adsorption capacity based on the Langmuir model was found to be 32.16 mg/g. In addition, experimental kinetic data were analyzed by the psuedo-first order and psuedo-second order equation models. The psuedo-second order model proved to be the best model for the adsorption system, which suggested that adsorption might be controlled by the chemical rate-limiting step through sharing of electrons or by covalent forces. PMID:27329054

  19. Interactions of benzalkonium chloride with soft and hard contact lenses.

    PubMed

    Chapman, J M; Cheeks, L; Green, K

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  20. Interactions of benzalkonium chloride with soft and hard contact lenses

    SciTech Connect

    Chapman, J.M.; Cheeks, L.; Green, K. )

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  1. Non-contact measurement of contact wire

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Ye, Xuemei; Li, Zhongke; Yue, Kaiduan

    2008-12-01

    The overhead contact system is the power supply unit of the electric locomotive. This article is to introduce our newly developed method to measure the height and pull out value of the contact wire. A carema dolly which can move on railway is applied to bear the weight of the measure equipment; two linear CCD cameras are installed on the dolly symmetrically about the midline of two rails. While the dolly move along the railway, two CCD cameras grasp the image synchronously, and a computer real-time process the images, the height and pull out value can be calculate out from the images.

  2. Tuning the Receding Contact Angle on Hydrogels by Addition of Particles.

    PubMed

    Boulogne, François; Ingremeau, François; Limat, Laurent; Stone, Howard A

    2016-06-01

    Control of the swelling, chemical functionalization, and adhesivity of hydrogels are finding new applications in a wide range of material systems. We investigate experimentally the effect of adsorbed particles on hydrogels on the depinning of contact lines. In our experiments, a water drop containing polystyrene microspheres is deposited on a swelling hydrogel, which leads to the drop absorption and particle deposition. Two regimes are observed: a decreasing drop height with a pinned contact line followed by a receding contact line. We show that increasing the particles concentration increases the duration of the first regime and significantly decreases the total absorption time. The adsorbed particles increase the pinning force at the contact line. Finally, we develop a method to measure the receding contact angle with the consideration of the hydrogel swelling. PMID:27185647

  3. Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents

    SciTech Connect

    Bill Batchelor; Dong Suk Han; Eun Jung Kim

    2010-01-31

    The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics for removing the target compounds from wastewaters from ash ponds and scrubber ponds and producing stable residuals.

  4. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong

    2013-05-01

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  5. [Contact dermatitis in Dakar].

    PubMed

    Niang, S O

    2007-01-01

    Because of the widespread repartition of allergens, allergic contact dermatitis is the most common inflammatory skin disease. It's the best model of dilated hypersensibility mediated by T lymphocytes cells. Atopic dermatitis and irritative dermatitis are to be distinguished to contact dermatitis. The aetiological diagnosis is the most important step of management of patients with that disease because it's the best way to avoid recurrences. The identification of cause is based on aetiological interrogatory and epicutaneous tests with 23 allergens completed with personnel products and specialised tests. Contact dermatitis can be classified according to results of aetiological management. In occupational contact dermatitis, contact dermatitis due to drugs, to metals, cosmetics, clothes and accessory and proteins. Management of patients with contact dermatitis is based on individual eviction, protection, cosmetovigilance, declaration of occupational dermatosis and allergovigilance. PMID:19102084

  6. New CO2 adsorbent containing aminated poly(glycidyl methacrylate) grafted onto irradiated PE-PP nonwoven sheet

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Abbasi, Ali; Ting, T. M.

    2014-10-01

    A new CO2 adsorbent containing triethylamine (TEA) was prepared by radiation induced grafting of glycidyl methacrylate (GMA) onto polyethylene coated polypropylene (PE-PP) non-woven sheet followed by amination reaction. The degree of grafting (DOG%) was controlled by variation of monomer concentration and absorbed dose. The incorporation of aminated poly(GMA) was investigated by Fourier transform infrared (FTIR) and scanning electron microscope (SEM). The adsorbent with DOG of 350% and amination yield of 60% exhibited CO2 adsorption capacity of 4.52 mol/kg at ambient temperature and pressure.

  7. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  8. Conformational properties of an adsorbed charged polymer.

    PubMed

    Cheng, Chi-Ho; Lai, Pik-Yin

    2005-06-01

    The behavior of a strongly charged polymer adsorbed on an oppositely charged surface of a low-dielectric constant is formulated by the functional integral method. By separating the translational, conformational, and fluctuational degrees of freedom, the scaling behaviors for both the height of the polymer and the thickness of the diffusion layer are determined. Unlike the results predicted by scaling theory, we identified the continuous crossover from the weak compression to the compression regime. All the analytical results are found to be consistent with Monte Carlo simulations. Finally, an alternative (operational) definition of a charged polymer adsorption is proposed. PMID:16089715

  9. Optical contact micrometer

    SciTech Connect

    Jacobson, Steven D.

    2014-08-19

    Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

  10. Adsorbed layers and the origin of Amontons' laws

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    2000-03-01

    Three hundred years ago, Amontons wrote down phenomenogical friction laws that are still used today. They state that the friction is proportional to load, and independent of the dimensions of the contacting surfaces. The molecular underpinning of these laws has remained unclear. Indeed, exact analytic results and experiments in ultra-high vacuum indicate that the static friction between clean crystalline surfaces almost always vanishes in the thermodynamic limit. Of course any surface exposed to air is typically coated by a thin layer of hydrocarbons, water and other small molecules. Simulations are presented that show that these layers naturally produce static and kinetic friction forces that are consistent with Amontons' laws and other aspects of macroscopic experiments.(G. He, M. H. Muser and M. O. Robbins, Science 284, 1650 (1999).) For example, the friction is only weakly dependent on parameters that are not controlled in most experiments, such as the areal density of adsorbed molecules, their length, the orientation of the surfaces and the direction of sliding. The kinetic friction is of the same order as the static friction and varies only logarithmically with velocity.

  11. Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements.

    PubMed

    Stadler, H; Mondon, M; Ziegler, C

    2003-01-01

    Adsorption of the protein bovine serum albumin (BSA) on gold has been tested at various concentrations in aqueous solution by dynamic contact-angle analysis (DCA) and quartz-crystal microbalance (QCM) measurements. With the Wilhelmy plate technique advancing and receding contact angles and the corresponding hysteresis were measured and correlated with the hydrophilicity and the homogeneity of the surface. With electrical admittance measurements of a gold-coated piezoelectrical quartz crystal, layer mass and viscoelastic contributions to the resonator's frequency shift during adsorption could be separated. A correlation was found between the adsorbed mass and the homogeneity and hydrophilicity of the adsorbed film.

  12. Mimetite Formation from Goethite-Adsorbed Ions.

    PubMed

    Kleszczewska-Zębala, Anna; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Borkiewicz, Olaf J

    2016-06-01

    Bioavailability of arsenic in contaminated soils and wastes can be reduced to insignificant levels by precipitation of mimetite Pb5(AsO4)3Cl. The objective of this study is to elucidate mechanisms of the reaction between solution containing lead ions and arsenates adsorbed on synthetic goethite (AsO4-goethite), or arsenate ions in the solution and goethite saturated with adsorbed Pb (Pb-goethite). These reactions, in the presence of Cl, result in rapid crystallization of mimetite. Formation of mimetite is faster than desorption of AsO4 but slower than desorption of Pb from the goethite surface. Slow desorption of arsenates from AsO4-goethite results in heterogeneous precipitation and formation of mimetite incrustation on goethite crystals. Desorption of lead from Pb-goethite is at least as fast as diffusion and advection of AsO4 and Cl in suspension allowing for homogeneous crystallization of mimetite in intergranular solution. Therefore, the mechanism of nucleation is primarily driven by the kinetics of constituent supply to the saturation front, rather than by the thermodynamics of nucleation. The products of the reactions are well documented using microscopy methods such as scanning electron microscopy, electron backscattered diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy.

  13. The persistence length of adsorbed dendronized polymers.

    PubMed

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-21

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role. PMID:27353115

  14. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  15. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  16. Contact and capillary forces at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng

    In this thesis I use molecular dynamics (MD) simulations to study the physics of nanoasperity contacts and contrast their behavior to predictions of traditional continuum theories. Contact area plays a central role in continuum theories of friction and adhesion. In Chapter II, I use simulations of nanoscopic contacts between clean surfaces with simple geometry to show that it is difficult to extend the continuum notion of contact to the atomic scale. Definitions of contact area based on interatomic forces have a strong dependence on temperature, atomic structure of the surfaces in contact, and length of time interval during which the contact area is measured. Even for atomically flat surfaces, contact area grows linearly with the load pushing surfaces together, and pressures comparable to the ideal hardness are needed to achieve full contact at typical temperatures. A simple harmonic mean-field theory is developed that provides a quantitative description of this behavior and explains why the instantaneous forces on atoms are found to have a universal exponential distribution. The mean field theory also describes single-asperity contact by a spherical tip. The static and kinetic friction for this latter geometry are shown to have different scaling with load and the effect of contact stiffness on kinetic friction is explored. The properties of these clean surfaces are strongly dependent on the detailed atomic structure of the solids. However, experimental surfaces are typically coated with an adsorbed layer of small molecules from the surrounding air. In Chapter III, I study the effect of an adsorbed monolayer on contact and friction of nanoasperities. Results show that monolayers reduce sensitivity to atomic structure and lead to a friction that scales more linearly with load than with contact area. Three different measures of contact area are studied and their load dependence is compared with the continuum prediction. In Chapter IV, I study capillary adhesion

  17. Preparation of adsorbent with magnesium sulfate and straw pulp black liquor and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Guo, Lugang; Wang, Haizeng

    2009-09-01

    A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 °C. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.

  18. Electron-Stimulated Oxidation of Thin Water Films Adsorbed on TiO2(110)

    SciTech Connect

    Lane, Christopher D.; Petrik, Nikolay G.; Orlando, Thomas M.; Kimmel, Greg A.

    2007-11-08

    Electron-stimulated reactions in thin (< 3 monolayer, ML) water films adsorbed on TiO2(110) are investigated. For electron fluences less than ~1×1016 e-/cm2, irradiation with 100 eV electrons results in electron-stimulated desorption (ESD) of atomic and molecular hydrogen, but no measurable O2. The ESD leaves adsorbed hydroxyls which oxidize the TiO2(110) surface and change the post-irradiation TPD spectra of the remaining water in characteristic ways. The species remaining on the TiO2(110) after irradiation of adsorbed water films are apparently similar to those produced without irradiation by co-dosing water and O2. Annealing above ~600 K reduces the oxidized surfaces, and water TPD spectra characteristic of ion sputtered and annealed TiO2(110) are recovered. The rate of electron-stimulated “oxidation” of the water films is proportional to the coverage of water in the first layer for coverages less than 1 ML. However, higher coverages suppress this reaction. When thin water films are irradiated, the rate of electron-stimulated oxidation is independent of the initial oxygen vacancy concentration, as is the final oxidized state achieved at high electron fluences. To explain the results, we propose that electron excitation of water molecules adsorbed on Ti4+ sites leads to desorption of hydrogen atoms and leaves an OH adsorbed at the site. If hydroxyls are present in the bridging oxygen rows, these react with the OH’s on the Ti4+ sites to reform water and heal the oxygen vacancy associated with the bridging OH. Once the bridge bonded hydroxyls have been eliminated, further irradiation increases the concentration of OH’s in the Ti4+ rows leading to the creation of species which block sites in the Ti4+ rows, perhaps H2O2 and/or HO2.

  19. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution. PMID:26876827

  20. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution.

  1. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal.

    PubMed

    Rovani, Suzimara; Censi, Monique T; Pedrotti, Sidnei L; Lima, Eder C; Cataluña, Renato; Fernandes, Andreia N

    2014-04-30

    A new activated carbon (AC) material was prepared by pyrolysis of a mixture of coffee grounds, eucalyptus sawdust, calcium hydroxide and soybean oil at 800°C. This material was used as adsorbent for the removal of the endocrine disruptor compounds 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solutions. The carbon material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), N2 adsorption/desorption curves and point of zero charge (pHPZC). Variables including the initial pH of the adsorbate solutions, adsorbent masses and contact time were optimized. The optimum range of initial pH for removal of endocrine disruptor compounds (EDC) was 2.0-11.0. The kinetics of adsorption were investigated using general order, pseudo first-order and pseudo-second order kinetic models. The Sips isotherm model gave the best fits of the equilibrium data (298K). The maximum amounts of E2 and EE2 removed at 298K were 7.584 (E2) and 7.883mgg(-1) (EE2) using the AC as adsorbent. The carbon adsorbent was employed in SPE (solid phase extraction) of E2 and EE2 from aqueous solutions. PMID:24647264

  2. Impact of temperature and electrical potentials on the stability and structure of collagen adsorbed on the gold electrode

    NASA Astrophysics Data System (ADS)

    Meiners, Frank; Ahlers, Michael; Brand, Izabella; Wittstock, Gunther

    2015-01-01

    The morphology and structure of collagen type I adsorbed on gold electrodes were studied as a function of electrode potential and temperature by means of capacitance measurements, polarization modulation infrared reflection-absorption spectroscopy and scanning force microscopy at temperatures of 37 °C, 43 °C and 50 °C. The selected temperatures corresponded to the normal body temperature, temperature of denaturation of collagen molecules and denaturation of collagen fibrils, respectively. Independently of the solution temperature, collagen was adsorbed on gold electrodes in the potential range - 0.7 V < E < 0.4 V vs. Ag/AgCl, where the protein film was very stable. Fragments of collagen molecules made a direct contact to the gold surface and water was present in the film. Protein molecules were oriented preferentially with their long axis towards the gold surface. Collagen molecules in the adsorbed state preserved their native triple helical structure even at temperatures corresponding to collagen denaturation in aqueous solutions. Application of E < - 0.75 V vs. Ag/AgCl leads to the swelling of the protein film by water and desorption from the electrode surface. IR spectra provided no evidence of the thermal denaturation of adsorbed collagen molecules. A temperature increase to 50 °C leads to a distortion of the collagen film. The processes of aggregation and fibrilization were preferred over thermal denaturation for collagen adsorbed on the electrode surface and exposed to changing potentials.

  3. Language Contact: An Introduction.

    ERIC Educational Resources Information Center

    Thomason, Sarah G.

    This book surveys situations in which language contact arises and focuses on what happens to the languages themselves: sometimes nothing, sometimes the incorporation of new words, sometimes the spread of new sounds and sentence structures across many languages and wide swathes of territory. It outlines the origins and results of contact-induced…

  4. Noneczematous Contact Dermatitis

    PubMed Central

    Foti, Caterina; Vestita, Michelangelo; Angelini, Gianni

    2013-01-01

    Irritant or allergic contact dermatitis usually presents as an eczematous process, clinically characterized by erythematoedematovesicous lesions with intense itching in the acute phase. Such manifestations become erythematous-scaly as the condition progresses to the subacute phase and papular-hyperkeratotic in the chronic phase. Not infrequently, however, contact dermatitis presents with noneczematous features. The reasons underlying this clinical polymorphism lie in the different noxae and contact modalities, as well as in the individual susceptibility and the various targeted cutaneous structures. The most represented forms of non-eczematous contact dermatitis include the erythema multiforme-like, the purpuric, the lichenoid, and the pigmented kinds. These clinical entities must obviously be discerned from the corresponding “pure” dermatitis, which are not associated with contact with exogenous agents. PMID:24109520

  5. Contact dermatitis in athletes.

    PubMed

    Kockentiet, Brett; Adams, Brian B

    2007-06-01

    Athletes face numerous hazards in their daily activities. An athlete's skin, in particular, endures repeated exposure to trauma, heat, moisture, and numerous allergens and chemicals. These factors combine with other unique and less well-defined genetically predisposing factors in the athlete's skin to cause both allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). As with other cases of contact dermatitis, these eruptions in athletes present as a spectrum of acute to subacute to chronic dermatitis. Recognizing the unique environmental irritants and allergens encountered by athletes is paramount to facilitate appropriate therapy and prevention. This review comprehensively examines the literature on contact dermatitis in athletes. The different types of contact dermatitis have been classified under sport-specific subheadings. Furthermore, within each subheading, both ACD and ICD types are discussed.

  6. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    SciTech Connect

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs.

  7. Pyrolysis of heavy hydrocarbons under microwave heating of catalysts and adsorbents.

    PubMed

    Bolotov, Vasily A; Udalov, Evgeny I; Parmon, Valentin N; Tanashev, Yuriy Yu; Chernousov, Yuriy D

    2012-01-01

    The main features of high temperature chemical reactions under microwave (MW) heating have been considered. The efficiency of the MW power to heat conversion in a MW cavity is estimated, theoretically and experimentally, for different substances and conditions. The new approaches for MW processing of high-molecular hydrocarbons are proposed: (i) thermal decomposition in contact with microwave absorbing catalyst particles placed into liquid substrate; (ii) cracking of hydrocarbons pre-absorbed inside porous granules under rapid MW heating of adsorbent. It has been experimentally found that these approaches provide non-traditional conditions of reaction and can lead to the formation of valuable chemical products.

  8. Extraction of uranium from seawater using magnetic adsorbents

    SciTech Connect

    Yamashita, H.; Fujita, K.; Nakajima, F.; Ozawa, Y.; Murata, T.

    1981-01-01

    A new process for the extraction of uranium from seawater was developed. In the process, uranium adsorption is effected using powdered magnetic adsorbents; the adsorbents are then separated from seawater using magnetic separation technology. This process is superior to a column method using a granulated hydrous titanium oxide adsorber bed in the following ways: (1) a higher rate of adsorption is realized because smaller particles are used in the uranium adsorption; and (2) blocking, which is inevitable in an adsorber bed, is eliminated. The composite hydrous titanium-iron oxide as a magnetic adsorbent having high uranium adsorption capacity and magnetization can be prepared by adding urea to a mixed solution of titanium sulfate and ferrous sulfate. Adsorption and desoprtion of uranium and the removal of the adsorbent using a small-scale uranium extraction plant (about 15 m/sup 3//d) is reported, and the feasibility of uranium extraction from seawater by this process is demonstrated. 10 figures.

  9. Application of Glycyrrhiza glabra root as a novel adsorbent in the removal of toluene vapors: equilibrium, kinetic, and thermodynamic study.

    PubMed

    Mohammadi-Moghadam, Fazel; Amin, Mohammad Mehdi; Khiadani Hajian, Mehdi; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Hatamipour, Mohammad Sadegh

    2013-01-01

    The aim of this paper is to investigate the removal of toluene from gaseous solution through Glycyrrhiza glabra root (GGR) as a waste material. The batch adsorption experiments were conducted at various conditions including contact time, adsorbate concentration, humidity, and temperature. The adsorption capacity was increased by raising the sorbent humidity up to 50 percent. The adsorption of toluene was also increased over contact time by 12 h when the sorbent was saturated. The pseudo-second-order kinetic model and Freundlich model fitted the adsorption data better than other kinetic and isotherm models, respectively. The Dubinin-Radushkevich (D-R) isotherm also showed that the sorption by GGR was physical in nature. The results of the thermodynamic analysis illustrated that the adsorption process is exothermic. GGR as a novel adsorbent has not previously been used for the adsorption of pollutants.

  10. Application of Glycyrrhiza glabra Root as a Novel Adsorbent in the Removal of Toluene Vapors: Equilibrium, Kinetic, and Thermodynamic Study

    PubMed Central

    Mohammadi-Moghadam, Fazel; Amin, Mohammad Mehdi; Khiadani (Hajian), Mehdi; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Hatamipour, Mohammad Sadegh

    2013-01-01

    The aim of this paper is to investigate the removal of toluene from gaseous solution through Glycyrrhiza glabra root (GGR) as a waste material. The batch adsorption experiments were conducted at various conditions including contact time, adsorbate concentration, humidity, and temperature. The adsorption capacity was increased by raising the sorbent humidity up to 50 percent. The adsorption of toluene was also increased over contact time by 12 h when the sorbent was saturated. The pseudo-second-order kinetic model and Freundlich model fitted the adsorption data better than other kinetic and isotherm models, respectively. The Dubinin-Radushkevich (D-R) isotherm also showed that the sorption by GGR was physical in nature. The results of the thermodynamic analysis illustrated that the adsorption process is exothermic. GGR as a novel adsorbent has not previously been used for the adsorption of pollutants. PMID:23554821

  11. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  12. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    NASA Astrophysics Data System (ADS)

    Haldorai, Yuvaraj; Shim, Jae-Jin

    2014-02-01

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS-MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  13. Isomerization reactions on single adsorbed molecules.

    PubMed

    Morgenstern, Karina

    2009-02-17

    Molecular switches occur throughout nature. In one prominent example, light induces the isomerization of retinal from the compact 11-cis form to the elongated all-trans form, a conversion that triggers the transformation of light into a neural impulse in the eye. Applying these natural principles to synthetic systems offers a promising way to construct smaller and faster nanoelectronic devices. In such systems, electronic switches are essential components for storage and logical operations. The development of molecular switches on the single-molecule level would represent a major step toward incorporating molecules as building units into nanoelectronic circuits. Molecular switches must be both reversible and bistable. To meet these requirements, a molecule must have at least two different thermally stable forms and a way to repeatedly interconvert between those forms based on changes in light, heat, pressure, magnetic or electric fields, pH, mechanical forces, or electric currents. The conversion should be connected to a measurable change in electronic, optical, magnetic, or mechanical properties. Because isomers can differ significantly in physical and chemical properties, isomerization could serve as a molecular switching mechanism. Integration of molecular switches into larger circuits will probably require arranging them on surfaces, which will require a better understanding of isomerization reactions in these environments. In this Account, we describe our scanning tunneling microscopy studies of the isomerization of individual molecules adsorbed on metal surfaces. Investigating chlorobenzene and azobenzene derivatives on the fcc(111) faces of Ag, Cu, and Au, we explored the influence of substituents and the substrate on the excitation mechanism of the isomerization reaction induced by inelastically tunneling electrons. We achieved an irreversible configurational (cis-trans) isomerization of individual 4-dimethyl-amino-azobenzene-4-sulfonic acid molecules on Au

  14. Allergic contact dermatitis.

    PubMed

    Becker, Detlef

    2013-07-01

    Allergic contact dermatitis is a frequent inflammatory skin disease. The suspected diagnosis is based on clinical symptoms, a plausible contact to allergens and a suitable history of dermatitis. Differential diagnoses should be considered only after careful exclusion of any causal contact sensitization. Hence, careful diagnosis by patch testing is of great importance. Modifications of the standardized test procedure are the strip patch test and the repeated open application test. The interpretation of the SLS (sodium lauryl sulfate) patch test as well as testing with the patients' own products and working materials are potential sources of error. Accurate patch test reading is affected in particular by the experience and individual factors of the examiner. Therefore, a high degree of standardization and continuous quality control is necessary and may be supported by use of an online patch test reading course made available by the German Contact Dermatitis Research Group. A critical relevance assessment of allergic patch test reactions helps to avoid relapses and the consideration of differential diagnoses. Any allergic test reaction should be documented in an allergy ID card including the INCI name, if appropriate. The diagnostics of allergic contact dermatitis is endangered by a seriously reduced financing of patch testing by the German statutory health insurances. Restrictive regulations by the German Drug Law block the approval of new contact allergens for routine patch testing. Beside the consistent avoidance of allergen contact, temporary use of systemic and topical corticosteroids is the therapy of first choice.

  15. The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters.

    PubMed

    Cook, D; Newcombe, G; Sztajnbok, P

    2001-04-01

    Blooms of blue-green algae in reservoirs often produce the musty-earthy taste and odour algal metabolites 2-methylisoborneol (MIB) and geosmin. MIB and geosmin are not removed by conventional water treatment and their presence in the distribution system, even at low ng L-1 levels, can result in consumer complaints. Powdered activated carbon (PAC) can effectively remove MIB and geosmin when the correct dose is applied. The homogeneous surface diffusion model (HSDM) was used to predict PAC doses required to reduce MIB and geosmin concentrations to below 10 ng L-1 at four water treatment plants in Adelaide, South Australia. In jar tests, undertaken under treatment plant conditions, the predicted doses were found to produce water of the desired quality in three of the four waters. The poor predictions found in the fourth water, which had a considerably higher turbidity, were attributed to the incorporation of PAC in a larger, denser floc, leading to a reduced effective contact time of the adsorbent. It was found that higher doses of PAC were required for both compounds to produce acceptable quality water when turbidities rose above 26 NTU.

  16. Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater

    NASA Astrophysics Data System (ADS)

    Gao, Qianhong; Hu, Jiangtao; Li, Rong; Xing, Zhe; Xu, Lu; Wang, Mouhua; Guo, Xiaojing; Wu, Guozhong

    2016-05-01

    A new kind of highly efficient adsorbent material has been fabricated in this study for the purpose of extracting uranium from seawater. Ultra-high molecular weight polyethylene (UHMWPE) fiber was used as a trunk material for the adsorbent, which was prepared by a series of modification reactions, as follows: (1) grafting of glycidyl methacrylate (GMA) and methyl acrylate (MA) onto UHMWPE fibers via 60Co γ-ray pre-irradiation; (2) aminolyzation of UHMWPE fiber by the ring-opening reaction between of epoxy groups PGMA and ethylene diamine (EDA); (3) Michael addition of amino groups with acrylonitrile (AN) to yield nitrile groups; (4) amidoximation of the attached nitrile moieties by hydroxylamine in dimethyl sulfoxide-water mixture. Modified UHMWPE fibers were characterized by means of attenuated total reflectance-Fourier transformed infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) to confirm the attachment of amidoxime (AO) groups onto the UHMWPE fibers. The results of X-ray diffraction (XRD) and single fiber tensile strength verified that the modified UHMWPE fiber retained excellent mechanical properties at a low absorbed radiation dose. The adsorption performance of the UHMWPE fibrous adsorbent was evaluated by subjecting it to an adsorption test in simulated seawater using a continuous-flow mode. The amount of uranium adsorbed by this AO-based UHMWPE fibrous adsorbent was 1.97 mg-U/g after 42 days. This new adsorbent also showed high selectivity for the uranyl ion, and its selectivity for metal ions was found to decrease in the following order: U>Cu>Fe>Ca>Mg>Ni>Zn>Pb>V>Co. The adsorption selectivity for uranium is significantly higher than that for vanadium. In addition, preparation of this modified adsorbent consumes much smaller amounts of the toxic acrylonitrile monomer than the conventional preparation methods of AO-based polyethylene fibers.

  17. Air stripper VOC treatment using specialized adsorbents

    SciTech Connect

    Craven, C.N.; Blystone, P.G.; Grant, A.

    1994-12-31

    Abatement of volatile organic compound (VOC) emissions is required by federal, state and local regulatory agencies. Sources of VOC emissions include air stripping processes at groundwater remediation and industrial wastewater operations. The Purus A2000 system is an innovative emission control system that utilizes specialized adsorbent resins, on-site regeneration and solvent recovery for abatement of VOCs. This paper describes two applications in which air stripper off-gas is treated by the Purus A2000 Adsorption System. The first is a groundwater remediation pump-and-treat operation in which the air stripper off-gas contains chlorinated solvents. At the second site, benzene and styrene emissions from an industrial wastewater air stripper operation were successfully treated. At both sites the recovered solvent was recycled. Capital and operating costs will be compared to other treatment methods.

  18. Trends in adsorbate induced core level shifts

    NASA Astrophysics Data System (ADS)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  19. Linear transport models for adsorbing solutes

    NASA Astrophysics Data System (ADS)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  20. The persistence length of adsorbed dendronized polymers

    NASA Astrophysics Data System (ADS)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A. Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-01

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role.The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth

  1. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  2. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  3. Untangleing the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts

    SciTech Connect

    Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexei P; Sumpter, Bobby G.

    2015-06-11

    Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z), mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[ni(t,z)•ni(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.

  4. Untangleing the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts

    DOE PAGES

    Carrillo, Jan-Michael Y.; Cheng, Shiwang; Kumar, Rajeev; Goswami, Monojoy; Sokolov, Alexei P; Sumpter, Bobby G.

    2015-06-11

    Here, we present a detailed analysis of coarse-grained molecular dynamics simulations of semiflexible polymer melts in contact with a strongly adsorbing substrate. We have characterized the segments in the interfacial layer by counting the number of trains, loops, tails and unadsorbed segments. For more rigid chains, a tail and an adsorbed segment (a train) dominate while loops are more prevalent in more flexible chains. The tails exhibit a non-uniformly stretched conformation akin to the polydispersed pseudobrush envisioned by Guiselin. To probe the dynamics of the segments we computed the layer z-resolved intermediate coherent collective dynamics structure factor, S(q, t, z),more » mean-square displacement of segments, and the 2nd Legendre polynomial of the time-autocorrelation of unit bond vectors, 2[ni(t,z)•ni(0,z)]>. Our results show that segmental dynamics is slower for stiffer chains and there is a strong correlation between the structure and dynamics in the interfacial layer. There is no glassy layer, and the slowing down in dynamics of stiffer chains in the adsorbed region can be attributed to the densification and the more persistent layering of segments.« less

  5. Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution.

    PubMed

    Kakavandi, Babak; Esrafili, Ali; Mohseni-Bandpi, Anoushiravan; Jonidi Jafari, Ahmad; Rezaei Kalantary, Roshanak

    2014-01-01

    In the present study, powder activated carbon (PAC) combined with Fe(3)O(4) magnetite nanoparticles (MNPs) were used for the preparation of magnetic composites (MNPs-PAC), which was used as an adsorbent for amoxicillin (AMX) removal. The properties of magnetic activated carbon were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunaeur, Emmett and Teller and vibrating sample magnetometer. The operational factors affecting adsorption such as pH, contact time, adsorbent dosage, initial AMX concentration and temperature were studied in detail. The high surface area and saturation magnetization for the synthesized adsorbent were found to be 671.2 m(2)/g and 6.94 emu/g, respectively. The equilibrium time of the adsorption process was 90 min. Studies of adsorption equilibrium and kinetic models revealed that the adsorption of AMX onto MNPs-PAC followed Freundlich and Langmuir isotherms and pseudo-second-order kinetic models. The calculated values of the thermodynamic parameters, such as ΔG°, ΔH° and ΔS° demonstrated that the AMX adsorption was endothermic and spontaneous in nature. It could be concluded that MNPs-PAC have a great potential for antibiotic removal from aquatic media.

  6. Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication.

    PubMed

    Yamada, Shinji; Fujihara, Ami; Yusa, Shin-ichi; Tanabe, Tadao; Kurihara, Kazue

    2015-11-10

    The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(α-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is

  7. Fragrance allergic contact dermatitis.

    PubMed

    Cheng, Judy; Zug, Kathryn A

    2014-01-01

    Fragrances are a common cause of allergic contact dermatitis in Europe and in North America. They can affect individuals at any age and elicit a spectrum of reactions from contact urticaria to systemic contact dermatitis. Growing recognition of the widespread use of fragrances in modern society has fueled attempts to prevent sensitization through improved allergen identification, labeling, and consumer education. This review provides an overview and update on fragrance allergy. Part 1 discusses the epidemiology and evaluation of suspected fragrance allergy. Part 2 reviews screening methods, emerging fragrance allergens, and management of patients with fragrance contact allergy. This review concludes by examining recent legislation on fragrances and suggesting potential additions to screening series to help prevent and detect fragrance allergy.

  8. Occupational Contact Dermatitis

    PubMed Central

    2008-01-01

    Occupational contact dermatitis accounts for 90% of all cases of work-related cutaneous disorders. It can be divided into irritant contact dermatitis, which occurs in 80% of cases, and allergic contact dermatitis. In most cases, both types will present as eczematous lesions on exposed parts of the body, notably the hands. Accurate diagnosis relies on meticulous history taking, thorough physical examination, careful reading of Material Safety Data Sheets to distinguish between irritants and allergens, and comprehensive patch testing to confirm or rule out allergic sensitization. This article reviews the pathogenesis and clinical manifestations of occupational contact dermatitis and provides diagnostic guidelines and a rational approach to management of these often frustrating cases. PMID:20525126

  9. Contacting American Overseas Schools.

    ERIC Educational Resources Information Center

    Engelhardt, David

    1993-01-01

    Provides contacts for architects or educational consultants who wish to work overseas. Cites a directory, newsletters, newspapers, and associations focused on educators involved with independent overseas schools that are organized around the United States curriculum. (MLF)

  10. Relay contact monitoring system

    SciTech Connect

    Mehta, V.

    1994-01-11

    A switching system for switching on and off heating and air conditioning units in an environmental control system. The switching system includes a thermostat and a relay conductively coupled to the thermostat. The relay has a contact, which is responsive to a change signal for changing its position. The system further includes a programmable monitor having predetermined positions stored in a memory. The monitor is conductively coupled to the contact and to the thermostat for continually determining the position of the contact, and for sending a change signal to the relay for switching the position of the contact, as needed, to be in conformance with a predetermined position stored in the memory. 3 figs.

  11. The impact of contact

    NASA Astrophysics Data System (ADS)

    Finney, B.

    1986-10-01

    Scenarios of the impact on human society of radio contact with an extraterrestrial civilization are presented. Some believe that contact with advanced extraterrestrials would quickly devastate the human spirit, while others believe that these super-intelligent beings would show the inhabitants of the earth how to live in peace. It is proposed that the possible existence of extraterrestrial civilizations and the development of means of studying and communicating with them need to be considered.

  12. ELECTRIC CONTACT MEANS

    DOEpatents

    Grear, J.W. Jr.

    1959-03-10

    A switch adapted to maintain electrical connections under conditions of vibration or acceleration is described. According to the invention, thc switch includes a rotatable arm carrying a conductive bar arranged to close against two contacts spaced in the same plane. The firm and continuous engagement of the conductive bar with the contacts is acheived by utilizeing a spring located betwenn the vbar and athe a rem frzme and slidable mounting the bar in channel between two arms suspendef from the arm frame.

  13. Lettuce contact allergy.

    PubMed

    Paulsen, Evy; Andersen, Klaus E

    2016-02-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22%. The majority of cases are non-occupational, and may partly be caused by cross-reactivity. The sesquiterpene lactone mix seems to be a poor screening agent for lettuce contact allergy, as the prevalence of positive reactions is significantly higher in non-occupationally sensitized patients. Because of the easy degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-to-prick tests, and possibly scratch patch tests as well. Any person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy.

  14. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  15. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent.

    PubMed

    Zhang, Gaosheng; Liu, Huijuan; Liu, Ruiping; Qu, Jiuhui

    2009-07-15

    Phosphate removal is important in the control of eutrophication of water bodies and adsorption is one of the promising approaches for this purpose. A Fe-Mn binary oxide adsorbent with a Fe/Mn molar ratio of 6:1 for phosphate removal was synthesized by a simultaneous oxidation and coprecipitation process. Laboratory experiments were carried out to investigate adsorption kinetics and equilibrium, in batch mode. The effects of different experimental parameters, namely contact time, initial phosphate concentration, solution pH, and ionic strength on the phosphate adsorption were investigated. The adsorption data were analyzed by both Freundlich and Langmuir isotherm models and the data were well fit by the Freundlich isotherm model. Kinetic data correlated well with the pseudo-second-order kinetic model, suggesting that the adsorption process might be chemical sorption. The maximal adsorption capacity was 36 mg/g at pH 5.6. The phosphate adsorption was highly pH dependent. The effects of anions such as Cl(-),SO42-, and CO32- on phosphate removal were also investigated. The results suggest that the presence of these ions had no significant effect on phosphate removal. The phosphate removal was mainly achieved by the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. In addition, the adsorbed phosphate ions can be effectively desorbed by dilute NaOH solutions. This adsorbent, with large adsorption capacity and high selectivity, is therefore a very promising adsorbent for the removal of phosphate ions from aqueous solutions.

  16. The Impact of Adsorbed Triethylene Glycol on Water Wettability of the {1014} Calcium Carbonate Surface

    NASA Astrophysics Data System (ADS)

    Olsen, R.

    2015-12-01

    Water flooding is increasingly being used as a method of enhanced oil recovery and frequently involves calcium carbonate reservoirs. Very often, thermodynamic conditions in the upper few hundred meters allow for hydrate formation. One possible method of preventing hydrates is to inject hydrate inhibitors such as triethylene glycol (TEG) into the reservoir. Thus, it is of importance to know how such glycols affect water wettability, which is an important factor defining the oil behavior in such reservoirs. Wettability of a surface is defined by the contact angle of a liquid drop on the surface. The stronger the liquid is attracted to the surface, the smaller the wetting angle becomes, implying an increased degree of wetting. Therefore, it is possible to gain qualitative knowledge of the change in wetting properties with respect to external influences by studying corresponding changes in free energy of adsorption of the liquid. In our work [1], we used molecular dynamics (MD) and Born-Oppenheimer molecular dynamics (BOMD) to study how adsorbed TEG on the {1014} calcium carbonate surface affected adsorbed water. We used the changes in density profiles of water to estimate changes in adsorption free energy of water. The adaptive biasing force (ABF) method was applied to TEG to calculate the adsorption free energy of TEG on the calcium carbonate surface. We found that water wetting of the calcium carbonate surface decreased in the presence of adsorbed TEG. [1] - Olsen, R.; Leirvik, K.; Kvamme, B.; Kuznetsova, T. Adsorption Properties of Triethylene Glycol on a Hydrated {1014} Calcite Surface and Its Effect on Adsorbed Water, Langmuir 2015, DOI: 10.1021/acs.langmuir.5b02228

  17. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  18. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet. PMID:26374054

  19. Structure and properties of water film adsorbed on mica surfaces.

    PubMed

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-14

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  20. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    SciTech Connect

    Kimmel, Gregory A.; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D.

    2014-11-14

    We have examined the adsorption of the weakly bound species N2, O2, CO and Kr on the water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O2 have little effect on the structure and vibrational spectrum of the “ ” water monolayer while adsorption of both N2, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “ ” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

  1. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    SciTech Connect

    Kimmel, Greg A. E-mail: bruce.kay@pnnl.gov; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D. E-mail: bruce.kay@pnnl.gov

    2014-11-14

    We have examined the adsorption of the weakly bound species N{sub 2}, O{sub 2}, CO, and Kr on the (√(37)×√(37))R25.3{sup ∘} water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O{sub 2} have little effect on the structure and vibrational spectrum of the “√(37)” water monolayer while adsorption of both N{sub 2}, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “√(37)” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

  2. Removal of aqueous nickel (II) using laterite as a low-cost adsorbent.

    PubMed

    Mukherjee, Somnath; Kumar, Sunil; Misra, A K; Acharya, P C

    2006-10-01

    The present paper describes the laboratory study of laterite as a low-cost adsorbent for removal of aqueous nickel (II). At pH 7 and a temperature of 30 degrees C, a sorbent dose of 15 mg/L resulted in approximately 90% removal of nickel (II) from its initial concentration of 10 mg/L. A maximum removal of 98% of the adsorbate was observed with an adsorbent particle size of 210 micro with the above conditions. Batch kinetics results were described by fitting in a Langmuir isotherm. Helffrich's half-time equation (Helffrich, 1962) has been applied to evaluate the adsorption process. It appears that film diffusion would be the rate-limiting step. The effect of pH on the sorption process was carried out to a value of 8.0. The removal rate of nickel was found to be the function of pH of the reaction mixture. The rate of nickel uptake by laterite with the decrease in pH value has been explained on the basis of aqueous-complex formation and the subsequent acid-base dissociation at the solid-solution interface. PMID:17120446

  3. Vibrational dynamics of fullerene molecules adsorbed on metal surfaces studied with synchrotron infrared radiation

    SciTech Connect

    P. Rudolf; R. Raval; P. Dumas; Gwyn P. Williams

    2002-04-01

    Infrared (IR) spectroscopy of chemisorbed C{sub 60} on Ag (111), Au (110) and Cu (100) reveals that a non-IR-active mode becomes active upon adsorption, and that its frequency shifts proportionally with the charge transferred from the metal to the molecule by about 5 cm{sup -1} per electron. The temperature dependence of the frequency and the width of this IR feature have also been followed for C{sub 60>}/Cu (100) and were found to agree well with a weak anharmonic coupling (dephasing) to a low-frequency mode, which we suggest to be the frustrated translational mode of the adsorbed molecules.

    Additionally, the adsorption is accompanied by a broadband reflectance change, which is interpreted as due to the scattering of conduction electrons of the metal surface by the adsorbate. The reflectance change allows determination of the friction coefficient of the C{sub 60} molecules, which results in rather small values ({approx}2 x 10{sup 9}s{sup -1} for Ag and Au, and {approx}1.6 x 10{sup 9}s{sup -1} for Cu), consistent with a marked metallic character of the adsorbed molecules.

    Pre-dosing of alkali atoms onto the metal substrates drastically changes the IR spectra recorded during subsequent C{sub 60} deposition: anti-absorption bands, as well as an increase of the broadband reflectance, occur and are interpreted as due to strong electron-phonon coupling with induced surface states.

  4. Removal of aqueous nickel (II) using laterite as a low-cost adsorbent.

    PubMed

    Mukherjee, Somnath; Kumar, Sunil; Misra, A K; Acharya, P C

    2006-10-01

    The present paper describes the laboratory study of laterite as a low-cost adsorbent for removal of aqueous nickel (II). At pH 7 and a temperature of 30 degrees C, a sorbent dose of 15 mg/L resulted in approximately 90% removal of nickel (II) from its initial concentration of 10 mg/L. A maximum removal of 98% of the adsorbate was observed with an adsorbent particle size of 210 micro with the above conditions. Batch kinetics results were described by fitting in a Langmuir isotherm. Helffrich's half-time equation (Helffrich, 1962) has been applied to evaluate the adsorption process. It appears that film diffusion would be the rate-limiting step. The effect of pH on the sorption process was carried out to a value of 8.0. The removal rate of nickel was found to be the function of pH of the reaction mixture. The rate of nickel uptake by laterite with the decrease in pH value has been explained on the basis of aqueous-complex formation and the subsequent acid-base dissociation at the solid-solution interface.

  5. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    NASA Astrophysics Data System (ADS)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus

    2016-11-01

    A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.

  6. The contact caveat: negative contact predicts increased prejudice more than positive contact predicts reduced prejudice.

    PubMed

    Barlow, Fiona Kate; Paolini, Stefania; Pedersen, Anne; Hornsey, Matthew J; Radke, Helena R M; Harwood, Jake; Rubin, Mark; Sibley, Chris G

    2012-12-01

    Contact researchers have largely overlooked the potential for negative intergroup contact to increase prejudice. In Study 1, we tested the interaction between contact quantity and valence on prejudice toward Black Australians (n = 1,476), Muslim Australians (n = 173), and asylum seekers (n = 293). In all cases, the association between contact quantity and prejudice was moderated by its valence, with negative contact emerging as a stronger and more consistent predictor than positive contact. In Study 2, White Americans (n = 441) indicated how much positive and negative contact they had with Black Americans on separate measures. Although both quantity of positive and negative contact predicted racism and avoidance, negative contact was the stronger predictor. Furthermore, negative (but not positive) contact independently predicted suspicion about Barack Obama's birthplace. These results extend the contact hypothesis by issuing an important caveat: Negative contact may be more strongly associated with increased racism and discrimination than positive contact is with its reduction.

  7. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    SciTech Connect

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T.; Saito, Tomonori; Brown, Suree; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  8. Contact Lenses for Vision Correction

    MedlinePlus

    ... Contact Lenses Colored Contact Lenses Contact Lenses for Vision Correction Written by: Kierstan Boyd Reviewed by: Brenda ... on the surface of the eye. They correct vision like eyeglasses do and are safe when used ...

  9. NASA Applications of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.

  10. Bowl inversion of surface-adsorbed sumanene.

    PubMed

    Jaafar, Rached; Pignedoli, Carlo A; Bussi, Giovanni; Aït-Mansour, Kamel; Groening, Oliver; Amaya, Toru; Hirao, Toshikazu; Fasel, Roman; Ruffieux, Pascal

    2014-10-01

    Bowl-shaped π-conjugated compounds offer the possibility to study curvature-dependent host-guest interactions and chemical reactivity in ideal model systems. For surface-adsorbed π bowls, however, only conformations with the bowl opening pointing away from the surface have been observed so far. Here we show for sumanene on Ag(111) that both bowl-up and bowl-down conformations can be stabilized. Analysis of the molecular layer as a function of coverage reveals an unprecedented structural phase transition involving a bowl inversion of one-third of the molecules. On the basis of scanning tunneling microscopy (STM) and complementary atomistic simulations, we develop a model that describes the observed phase transition in terms of a subtle interplay between inversion-dependent adsorption energies and intermolecular interactions. In addition, we explore the coexisting bowl-up and -down conformations with respect to host-guest binding of methane. STM reveals a clear energetic preference for methane binding to the concave face of sumanene. PMID:25181621

  11. Morphological characterization of furfuraldehyde resins adsorbents

    SciTech Connect

    Sanchez, R.; Monteiro, S.N.; D`Almeida, J.R.

    1996-12-31

    Sugar cane is one of the most traditional plantation cultivated crops in large areas in Brazil. The State University of the North of Rio de Janeiro, UENF, is currently engaged in a program aimed to exploit the potentialities of sugar cane industry as a self sustained non-polluting enterprise. One of the projects being carried out at the UENF is the transformation of sugar cane bagasse in precursor materials for the industry of furan derivatives such as the furfuraldehyde resins obtained by acid catalysis. The possibility of employing acid catalyzed furfuraldehyde resins as selective adsorbents has arisen during a comprehensive study of physical-chemical adsorption properties of these materials. The morphology of these resins depend on the synthesis method. Scanning Electron Microscopic studies of these materials which were synthesized, in bulk (FH-M) and solution (FH-D), showed differences in surface density and particle size. Using mercury porosimeter techniques and BET adsorption methods, it was found different pore size distributions and a decrement in surface area when solvent was employed in the synthesis process. By thermogravimetric analysis it was found similar weight losses (6%) of water adsorption and a small differences in thermal stabilities.

  12. Shoe allergic contact dermatitis.

    PubMed

    Matthys, Erin; Zahir, Amir; Ehrlich, Alison

    2014-01-01

    Foot dermatitis is a widespread condition, affecting men and women of all ages. Because of the location, this condition may present as a debilitating problem to those who have it. Allergic contact dermatitis involving the feet is frequently due to shoes or socks. The allergens that cause shoe dermatitis can be found in any constituent of footwear, including rubber, adhesives, leather, dyes, metals, and medicaments. The goal of treatment is to identify and minimize contact with the offending allergen(s). The lack of product information released from shoe manufacturers and the continually changing trends in footwear present a challenge in treating this condition. The aim of this study is to review the current literature on allergic contact shoe dermatitis; clinical presentation, allergens, patch testing, and management will be discussed. PubMed and MEDLINE databases were used for the search, with a focus on literature updates from the last 15 years.

  13. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  14. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure. PMID:27391038

  15. Contact-active antibacterial aerogels from cellulose nanofibrils.

    PubMed

    Henschen, Jonatan; Illergård, Josefin; Larsson, Per A; Ek, Monica; Wågberg, Lars

    2016-10-01

    The use of cellulose aerogels as antibacterial materials has been investigated by applying a contact-active layer-by-layer modification to the aerogel surface. Studying the adsorption of multilayers of polyvinylamine (PVAm) and polyacrylic acid to aerogels comprising crosslinked cellulose nanofibrils and monitoring the subsequent bacterial adhesion revealed that up to 26mgPVAmgaerogel(-1) was adsorbed without noticeably affecting the aerogel structure. The antibacterial effect was tested by measuring the reduction of viable bacteria in solution when the aerogels were present. The results show that >99.9% of the bacteria adhered to the surface of the aerogels. Microscopy further showed adherence of bacteria to the surfaces of the modified aerogels. These results indicate that it is possible to create materials with three-dimensional cellulose structures that adsorb bacteria with very high efficiency utilizing the high specific surface area of the aerogels in combination with their open structure.

  16. From adsorption to condensation: the role of adsorbed molecular clusters.

    PubMed

    Yaghoubian, Sima; Zandavi, Seyed Hadi; Ward, C A

    2016-08-01

    The adsorption of heptane vapour on a smooth silicon substrate with a lower temperature than the vapour is examined analytically and experimentally. An expression for the amount adsorbed under steady state conditions is derived from the molecular cluster model of the adsorbate that is similar to the one used to derive the equilibrium Zeta adsorption isotherm. The amount adsorbed in each of a series of steady experiments is measured using a UV-vis interferometer, and gives strong support to the amount predicted to be adsorbed. The cluster distribution is used to predict the subcooling temperature required for the adsorbed vapour to make a disorder-order phase transition to become an adsorbed liquid, and the subcooling temperature is found to be 2.7 ± 0.4 K. The continuum approach for predicting the thickness of the adsorbed liquid film originally developed by Nusselt is compared with that measured and is found to over-predict the thickness by three-orders of magnitude. PMID:27426944

  17. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  18. Novel adhesion properties of irreversibly adsorbed polymer chains

    NASA Astrophysics Data System (ADS)

    Chen, Zhizhao; Sen, Mani; Cheung, Justin; Barkley, Deborah; Jiang, Naisheng; Zeng, Wenduo; Endoh, Maya K.; Koga, Tadanori

    The stability of thin polymer films on solids is of vital interest in traditional technologies and in new emerging nanotechnologies. We recently found that nanoscale structures of polymer chains adsorbed onto a silicon (Si) substrate (``adsorbed nanolayers'') play a crucial role in the thermal stability of the film. To understand the adhesion mechanism at the adsorbed polymer-free polymer interface, we mimicked the interface by preparing bilayers where a 200 nm-thick polymer film and an adsorbed nanolayer, both prepared on Si, were pressed together at high temperature. The bilayers were then subjected to an adhesion test by measuring the critical normal force required to separate the two films. Polystyrene was used as a model. The results are intriguing as they show an absence of adhesion between the ``flattened'' adsorbed chains, which lie flat on the solid, and the chemically identical free chains. On the other hand, the ``loosely adsorbed'' polymer chains, which are formed as a result of limited adsorption space on the solid surface, do display a degree of adhesion with the bulk polymer. We postulate that the loosely adsorbed chains act as ``connectors'' which promote adhesion effectively across the solid-polymer interface. We acknowledge the financial support from NSF Grant No. CMMI-1332499.

  19. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  20. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  1. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.

  2. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    SciTech Connect

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  3. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.

    PubMed

    Cheng, Chong Sage; Deng, Jie; Lei, Bei; He, Ai; Zhang, Xiang; Ma, Lang; Li, Shuang; Zhao, Changsheng

    2013-12-15

    Recent studies showed that graphene oxide (GO) presented high adsorption capacities to various water contaminants. However, the needed centrifugation after adsorption and the potential biological toxicity of GO restricted its applications in wastewater treatment. In this study, a facile method is provided by using biopolymers to mediate and synthesize 3D GO based gels. The obtained hybrid gels present well-defined and interconnected 3D porous network, which allows the adsorbate molecules to diffuse easily into the adsorbent. The adsorption experiments indicate that the obtained porous GO-biopolymer gels can efficiently remove cationic dyes and heavy metal ions from wastewater. Methylene blue (MB) and methyl violet (MV), two cationic dyes, are chosen as model adsorbates to investigate the adsorption capability and desorption ratio; meanwhile, the influence of contacting time, initial concentration, and pH value on the adsorption capacity of the prepared GO-biopolymer gels are also studied. The GO-biopolymer gels displayed an adsorption capacity as high as 1100 mg/g for MB dye and 1350 mg/g for MV dye, respectively. Furthermore, the adsorption kinetics and isotherms of the MB were studied in details. The experimental data of MB adsorption fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, and the results indicated that the adsorption process was controlled by the intraparticle diffusion. Moreover, the adsorption data revealed that the porous GO-biopolymer gels showed good selective adsorbability to cationic dyes and metal ions.

  4. Selection of an adsorbent for lead removal from drinking water by a point-of-use treatment device.

    PubMed

    Sublet, Renaud; Simonnot, Marie-Odile; Boireau, Alain; Sardin, Michel

    2003-12-01

    The removal of lead from drinking water was investigated to develop a point-of-use water filter that could meet the regulation imposed by the new European Directive 98-83 lowering lead concentration in drinking water below 10 microgL(-1). The objective of this research was to assess the potential of different adsorbents (zeolites, resins, activated carbon, manganese oxides, cellulose powder) to remove lead from tap water with a very short contact time. To begin, the repartition of the lead species in a tap water and a mineral water was computed with the computer model CHESS. It showed that in bicarbonated waters lead is mainly under lead carbonate form, either in the aqueous or in the mineral phase. Batch experiments were then conducted to measure the equilibrium adsorption isotherms of the adsorbents. Then, for five of them, dynamic experiments in micro-columns were carried out to assess the outlet lead concentration level. Three adsorbents gave rise to a leakage concentration lower than 10 microgL(-1) and were then selected for prototypes experiments: chabasite, an activated carbon coated with a synthetic zeolite and a natural manganese oxide. The proposed method clearly showed that the measurement of equilibrium isotherms is not sufficient to predict the effectiveness of an adsorbent, and must be coupled with dynamic experiments.

  5. Have Confidence in Contact

    ERIC Educational Resources Information Center

    Crisp, Richard J.; Turner, Rhiannon N.

    2010-01-01

    In an article in the May-June 2009 "American Psychologist," we discussed a new approach to reducing prejudice and encouraging more positive intergroup relations (Crisp & Turner, 2009). We named the approach imagined intergroup contact and defined it as "the mental simulation of a social interaction with a member or members of an outgroup category"…

  6. The Language Contact Profile

    ERIC Educational Resources Information Center

    Freed, Barbara F.; Dewey, Dan P.; Segalowitz, Norman; Halter, Randall

    2004-01-01

    Efforts to gather data of various sorts--demographics, language-learning history, contact with native speakers, use of the language in the field--as they relate to participants in SLA research studies are inherent to understanding more about language acquisition and use. Scholars frequently develop questionnaires of their own, which are rarely…

  7. Thermal Contact Conductance

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter

    1997-01-01

    The performance of cryogenic instruments is often a function of their operating temperature. Thus, designers of cryogenic instruments often are required to predict the operating temperature of each instrument they design. This requires accurate thermal models of cryogenic components which include the properties of the materials and assembly techniques used. When components are bolted or otherwise pressed together, a knowledge of the thermal performance of such joints are also needed. In some cases, the temperature drop across these joints represents a significant fraction of the total temperature difference between the instrument and its cooler. While extensive databases exist on the thermal properties of bulk materials, similar databases for pressed contacts do not. This has often lead to instrument designs that avoid pressed contacts or to the over-design of such joints at unnecessary expense. Although many people have made measurements of contact conductances at cryogenic temperatures, this data is often very narrow in scope and even more often it has not been published in an easily retrievable fashion, if published at all. This paper presents a summary of the limited pressed contact data available in the literature.

  8. [Contact allergies in musicians].

    PubMed

    Gasenzer, E R; Neugebauer, E A M

    2012-12-01

    During the last years, the problem of allergic diseases has increased. Allergies are errant immune responses to a normally harmless substance. In musicians the allergic contact dermatitis to exotic woods is a special problem. Exotic rosewood contains new flavonoids, which trigger an allergic reaction after permanent contact with the instrument. High quality woodwind instruments such as baroque flute or clarinets are made in ebony or palisander because of its great sound. Today instruments for non-professional players are also made in these exotic materials and non-professionals may have the risk to develop contact dermatitis, too. Brass-player has the risk of an allergic reaction to the different metals contained in the metal sheets of modern flutes and brass instruments. Specially nickel and brass alloys are used to product flute tubes or brass instruments. Special problem arises in children: patients who are allergic to plants or foods have a high risk to develop contact dermatitis. Parents don't know the materials of low-priced instruments for beginners. Often unknown cheap woods from exotic areas are used. Low-priced brass instruments contain high amount of brass and other cheap metals. Physicians should advice musician-patients or parents about the risks of the different materials and look for the reason of eczema on mouth, face, or hands. PMID:23233303

  9. Contact sensitivity to proflavine.

    PubMed

    Goh, C L

    1986-09-01

    Proflavine lotion is a commonly used topical antiseptic in the tropics, but its sensitizing potential was never emphasized and many who developed allergic contact dermatitis were never aware of it. In a study of 45 patients, most presented with acute or subacute dermatitis which started on the arms and legs. Concomitant cutaneous sensitivity to other medicaments and lanolin occurred in 66% of the patients.

  10. [Current contact allergens].

    PubMed

    Geier, J; Uter, W; Lessmann, H; Schnuch, A

    2011-10-01

    Ever-changing exposure to contact allergens, partly due to statutory directives (e.g. nickel, chromate, methyldibromo glutaronitrile) or recommendations from industrial associations (e.g. hydroxyisohexyl 3-cyclohexene carboxaldehyde), requires on-going epidemiologic surveillance of contact allergy. In this paper, the current state with special focus in fragrances and preservatives is described on the basis of data of the Information Network of Departments of Dermatology (IVDK) of the year 2010. In 2010, 12,574 patients were patch tested in the dermatology departments belonging to the IVDK. Nickel is still the most frequent contact allergen. However the continuously improved EU nickel directive already has some beneficial effect; sensitization frequency in young women is dropping. In Germany, chromate-reduced cement has been in use now for several years, leading to a decline in chromate sensitization in brick-layers. Two fragrance mixes are part of the German baseline series; they are still relevant. The most important fragrances in these mixes still are oak moss absolute and hydroxyisohexyl 3-cyclohexene carboxaldehyde. However, in relation to these leading allergens, sensitization frequency to other fragrances contained in the mixes seems to be increasing. Among the preservatives, MCI/MI has not lost its importance as contact allergen, in contrast to MDBGN. Sources of MCI/MI sensitization obviously are increasingly found in occupational context. Methylisothiazolinone is a significant allergen in occupational settings, and less frequently in body care products.

  11. Contact Efflorescence on Demand

    NASA Astrophysics Data System (ADS)

    Davis, R. D.; Lance, S.; Gordon, J. A.; Ushijima, S.; Tolbert, M. A.

    2014-12-01

    The phase state of atmospheric aerosols (liquid vs solid) plays an important role in particle growth, cloud formation, climate impact and visibility degradation. In the atmosphere, changes in relative humidity (RH) and temperature cause phase transitions in the atmospheric particulate. Efflorescence, the process of salt crystal nucleation from an aqueous electrolyte solution upon decreasing RH, often occurs at a lower RH than the reverse process of deliquescence. It has been shown that the efflorescence RH can occur at a higher RH in the presence of a heterogeneous surface immersed in a liquid particle. Here we present a new laboratory technique using optically levitated particles to study heterogeneous efflorescence initiated by contact with an external particle. In this work, collisions between aqueous microdroplets and heterogeneous nuclei are monitored in situ using scattered laser light to quantify the number of collisions and to detect phase transitions. We find that when contact initiates the phase transition, efflorescence occurs at a higher RH than when the same heterogeneous nucleus is immersed in the particle. The results of these experiments will be discussed in the context of understanding contact nucleation on a mechanistic level and predicting the relative importance of contact efflorescence in the atmosphere.

  12. Multigrid contact detection method

    NASA Astrophysics Data System (ADS)

    He, Kejing; Dong, Shoubin; Zhou, Zhaoyao

    2007-03-01

    Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.

  13. Compact contacting device

    NASA Technical Reports Server (NTRS)

    Acharya, Arun (Inventor); Gottzmann, Christian F. (Inventor); Lockett, Michael J. (Inventor); Schneider, James S. (Inventor); Victor, Richard A. (Inventor); Zawierucha, Robert (Inventor)

    1994-01-01

    An apparatus comprising a rotatable mass of structured packing for mass or heat transfer between two contacting fluids of different densities wherein the packing mass is made up of corrugated sheets of involute shape relative to the axis of the packing mass and form a logarithmic spiral curved counter to the direction of rotation.

  14. [Contact allergies in musicians].

    PubMed

    Gasenzer, E R; Neugebauer, E A M

    2012-12-01

    During the last years, the problem of allergic diseases has increased. Allergies are errant immune responses to a normally harmless substance. In musicians the allergic contact dermatitis to exotic woods is a special problem. Exotic rosewood contains new flavonoids, which trigger an allergic reaction after permanent contact with the instrument. High quality woodwind instruments such as baroque flute or clarinets are made in ebony or palisander because of its great sound. Today instruments for non-professional players are also made in these exotic materials and non-professionals may have the risk to develop contact dermatitis, too. Brass-player has the risk of an allergic reaction to the different metals contained in the metal sheets of modern flutes and brass instruments. Specially nickel and brass alloys are used to product flute tubes or brass instruments. Special problem arises in children: patients who are allergic to plants or foods have a high risk to develop contact dermatitis. Parents don't know the materials of low-priced instruments for beginners. Often unknown cheap woods from exotic areas are used. Low-priced brass instruments contain high amount of brass and other cheap metals. Physicians should advice musician-patients or parents about the risks of the different materials and look for the reason of eczema on mouth, face, or hands.

  15. Contact: Releasing the news

    NASA Astrophysics Data System (ADS)

    Pinotti, Roberto

    The problem of mass behavior after man's future contacts with other intelligences in the universe is not only a challenge for social scientists and political leaders all over the world, but also a cultural time bomb as well. In fact, since the impact of CETI (Contact with Extraterrestrial Intelligence) on human civilization, with its different cultures, might cause a serious socio-anthropological shock, a common and predetermined worldwide strategy is necessary in releasing the news after the contact, in order to keep possible manifestations of fear, panic and hysteria under control. An analysis of past studies in this field and of parallel historical situations as analogs suggests a definite "authority crisis" in the public as a direct consequence of an unexpected release of the news, involving a devastating "chain reaction" process (from both the psychological and sociological viewpoints) of anomie and maybe the collapse of today's society. The only way to prevent all this is to prepare the world's public opinion concerning contact before releasing the news, and to develop a long-term strategy through the combined efforts of scientists, political leaders, intelligence agencies and the mass media, in order to create the cultural conditions in which a confrontation with ETI won't affect mankind in a traumatic way. Definite roles and tasks in this multi-level model are suggested.

  16. Surface enhanced Raman scattering of pyrazole adsorbed on silver colloids

    NASA Astrophysics Data System (ADS)

    Muniz-Miranda, Maurizio; Neto, Natale; Sbrana, Giuseppe

    1999-05-01

    SERS spectra of pyrazole adsorbed on silver hydrosol at different pH values and on silver colloidal substrate deposited on filters were obtained and interpreted on the basis of the existence of three forms in equilibrium, cationic, neutral and anionic. SERS data indicate that the neutral molecule is preferentially adsorbed in acidic environment, pyrazolide anion is instead favoured over all the other pH values. Addition of chloride anions induces the formation of reaction products when pyrazole is adsorbed on silver hydrosols, while this effect is missing on dry silver substrate.

  17. Mysterious Lattice Rotations in Adsorbed Monolayers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.

    1997-03-01

    Lattice rotations due to a mismatch in structure have been observed in film growth for many years, probably beginning in the 1930's with the Nishiyama-Wasserman and Kurdjumov-Sachs orientations observed when fcc(111) films grow on bcc(110) surfaces, or vice versa. Early analysis of this problem was carried out with the aid of Moiré patterns and the observation that the preferred lattice orientations are those which maximize the Moiré fringe spacing. Later energy calculations indicated that the structures which were predicted by the the Moiré technique actually do correspond to energy minima. Epitaxial rotation in adsorbed monolayers is a conceptually simpler problem since in principle it involves only two planes of atoms, and it was first observed in 1977 for Ar on a graphite surface(C. G. Shaw, M. D. Chinn, S. C. Fain, Jr. Phys. Rev. Lett. 41 (1978) 955.). This observation came only a few months after a new theory, based on the expected elastic behavior of an overlayer, was developed by A. D. Novaco and J. P. McTague(A. D. Novaco and J. P. McTague, Phys. Rev. Lett. 38 (1977) 1286.), and the agreement with the experimental results was remarkable. It was later shown that a few symmetry principles similar to those used for the film growth studies sometimes can also predict the observed structures. However, the situation for incommensurate layers physisorbed on metal surfaces currently looks bleak. None of the existing theories or models appears to describe the experimental results. New data for physisorbed gases on metal surfaces will be presented, along with some half-baked (and probably wrong) ideas for what might be happening. This work was supported by NSF.

  18. Direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bricard, A.

    The working principle of direct contact heat exchanger, where heat transfer takes place between two immiscible fluids coming into direct contact, is described. Typical direct contact devices are outlined. A better understanding of the principles involved and the development of computational models for multiphase subsytems are concluded as stimulus for direct contact heat and mass transfer applications.

  19. Mechanical properties of hexadecane-water interfaces with adsorbed hydrophobic bacteria

    NASA Astrophysics Data System (ADS)

    Kang, Zhewen

    Certain strains of hydrophobic bacteria are known to play critical roles in petroleum-related applications. The aim of this study was to investigate how hydrophobic bacteria in their stationary phase could adsorb onto the hexadecane-water interface and alter its mechanical properties. The two strains of bacteria used in forming the interfacial films were Acinetobacter venetianus RAG-1 (a Gram-negative bacterium) and Rhodococcus erythropolis 20S-E1-c (Gram-positive). Experiments at two different length scales (millimetre and micrometre) were conducted and the results were compared. In addition, a simple flow experiment was designed in a constricted channel and the results were related to the intrinsic mechanical properties of bacteria-adsorbed films. On the millimetre scale, using the pendant drop technique, the film interfacial tension was monitored as the surface area was made to undergo changes. Under static conditions, both types of bacteria showed no significant effect on the interfacial tension. When subjected to transient excitations, the two bacterial films exhibited qualitatively similar, yet quantitative distinct rheological properties (including film elasticities and relaxation times). Under continuous reduction of surface area, the RAG-1 system showed a "paper-like" interface, while the interface of the 20S-E1-c system was "soap film-like." These macroscopic observations could be explained by the surface ultrastructures of the two cell strains. On the micrometre scale, using the micropipette technique, colloidal stability of the bacteria-coated oil droplets was examined through direct-contact experiments. Both types of bacteria were seen to function as effective stabilizers. In addition, the adsorbed bacteria also interacted with one another at the interface, giving rise to higher order 2-D rheological properties. A technique of directly probing the mechanical properties of the emulsion drop surfaces revealed that (a) the films behaved as purely elastic

  20. The effect of load in a contact with boundary lubrication. [reduction of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Georges, J. M.; Lamy, B.; Daronnat, M.; Moro, S.

    1978-01-01

    The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects.

  1. Contact Graph Routing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic

  2. Radiation grafted adsorbents for newly emerging environmental applications

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  3. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  4. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  5. Mycotoxin detoxication of animal feed by different adsorbents.

    PubMed

    Huwig, A; Freimund, S; Käppeli, O; Dutler, H

    2001-06-20

    The contamination of animal feed with mycotoxins represents a worldwide problem for farmers. These toxins originate from molds whose growth on living and stored plants is almost unavoidable particularly under moist conditions. Mycotoxin-containing feed can cause serious diseases in farm animals resulting in suffering and even death and thus can cause substantial economic losses. The most applied method for protecting animals against mycotoxicosis is the utilization of adsorbents mixed with the feed which are supposed to bind the mycotoxins efficiently in the gastro-intestinal tract. Aluminosilicates are the preferred adsorbents, followed by activated charcoal and special polymers. The efficiency of mycotoxin binders, however, differs considerably depending mainly on the chemical structure of both the adsorbent and the toxin. This review describes the most important types of adsorbents and the respective mechanisms of adsorption. Data of the in vitro and in vivo efficacy of detoxication are given.

  6. New insights into perfluorinated adsorbents for analytical and bioanalytical applications.

    PubMed

    Marchetti, Nicola; Guzzinati, Roberta; Catani, Martina; Massi, Alessandro; Pasti, Luisa; Cavazzini, Alberto

    2015-01-01

    Perfluorinated (F-) adsorbents are generally prepared by bonding perfluoro-functionalized silanes to silica gels. They have been employed for a long time essentially as media for solid-phase extraction of F-molecules or F-tagged molecules in organic chemistry and heterogeneous catalysis. More recently, this approach has been extended to proteomics and metabolomics. Owing to their unique physicochemical properties, namely fluorophilicity and proteinophilicity, and a better understanding of some fundamental aspects of their behavior, new applications of F-adsorbents in the field of environmental science and bio-affinity studies can be envisaged. In this article, we revisit the most important features of F-adsorbents by focusing, in particular, on some basic information that has been recently obtained through (nonlinear) chromatographic studies. Finally, we try to envisage new applications and possibilities that F-adsorbents will allow in the near future. PMID:25358910

  7. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  8. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  9. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  10. [Contact dermatitis from Agave americana].

    PubMed

    de la Cueva, Pablo; González-Carrascosa, Mateo; Campos, Minia; Leis, Vicente; Suárez, Ricardo; Lázaro, Pablo

    2005-10-01

    Numerous plant species and their derivatives can cause skin reactions through a variety of mechanisms: irritative contact dermatitis, allergic contact dermatitis, contact urticaria and photodermatitis. We present a case of irritative contact dermatitis after exposure to the sap of Agave americana. The skin symptoms in this case have only been described on rare occasions; although this condition usually presents with a papulovesicular rash, in this patient it appeared as purpuric lesions in the contact area.

  11. Residence time determination for adsorbent beds of different configurations

    SciTech Connect

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  12. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    SciTech Connect

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  13. Semiconductor ohmic contact

    NASA Technical Reports Server (NTRS)

    Hawrylo, Frank Zygmunt (Inventor); Kressel, Henry (Inventor)

    1977-01-01

    A semiconductor device has one surface of P type conductivity material having a wide energy bandgap and a large crystal lattice parameter. Applied to the P type surface of the semiconductor device is a degenerate region of semiconductor material, preferably a group III-V semiconductor material, having a narrower energy bandgap. The degenerate region is doped with tin to increase the crystal lattice of the region to more closely approximate the crystal lattice of the one surface of the semiconductor device. The degenerate region is compensatingly doped with a P type conductivity modifier. An electrical contact is applied to one surface of the degenerate region forming an ohmic contact with the semiconductor device.

  14. Contact dynamics math model

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  15. /Au Back Contacts

    NASA Astrophysics Data System (ADS)

    Paudel, Naba R.; Compaan, Alvin D.; Yan, Yanfa

    2014-08-01

    We report on the fabrication and characterization of CdTe thin-film solar cells with Cu-free MoO3- x /Au back contacts. CdTe solar cells with sputtered CdTe absorbers of thicknesses from 0.5 to 1.75 μm were fabricated on Pilkington SnO2:F/SnO2-coated soda-lime glasses coated with a 60- to 80-nm sputtered CdS layer. The MoO3- x /Au back contact layers were deposited by thermal evaporation. The incorporation of MoO3- x layer was found to improve the open circuit voltage ( V OC) but reduce the fill factor of the ultrathin CdTe cells. The V OC was found to increase as the CdTe thickness increased.

  16. [Contact allergy to cosmetics].

    PubMed

    Goossens, A; Merckx, L

    1997-12-01

    This article gives the results of contact allergic reactions to cosmetics seen between 1985 and 1990 (462 patients investigated) and between 1991 and 1996 (486 patients investigated). Perfume components remain the most frequently occurring allergens in cosmetics. They are followed by preservative agents, a class within which important shifts have occurred over time (e.g. as with the isothiazolinone mixture). Excipients and certainly emulsifiers (e.g. cocamidopropylbetaine) are potentially not only irritants but also allergens. Among the "active" or category-specific ingredients, oxidative hair dyes, based on paraphenylenediamine and derivatives, and nail care products, based on (meth)acrylates are particularly apt to cause professional dermatoses. Finally, the share of sunscreens as cosmetic allergens remains limited, which may well be because a contact or photocontactallergy is often not recognized since the differential diagnosis with a primary sun intolerance is not always obvious.

  17. Contact dermatitis from propolis.

    PubMed

    Wanscher, B

    1976-04-01

    Two patients with contact dermatitis due to the natural product propolis (bee glue) are reported. They presented perioral eczema and stomatitis which were recalcitrant until propolis was considered as the cause. Patch tests with propolis preparations were positive in both patients, and, furthermore, in the second patient the lesions relapsed after provocation tests. European standard patch test including balsam of Peru were negative. The complexity of propolis, its supposed anti-inflammatory effect due to flavonoids, and the sensitizing agents originating mainly from the poplar trees are discussed together with the cross-sensitization to balsam of Peru. Contact dermatitis due to propolis should be considered in unexplained eczemas, mainly perioral but also in other areas, as propolis preparations are available also as ointments and cosmetic creams.

  18. Contact dermatitis in children

    PubMed Central

    2010-01-01

    Contact dermatitis in pediatric population is a common but (previously) under recognized disease. It is usually divided into the allergic and the irritant forms. The diagnosis is usually obtained with the patch test technique after conducting a thorough medical history and careful physical examination but patch testing in infants may be particularly difficult, and false-positive reactions may occur. This study also provides an overview of the most common allergens in pediatric population and discusses various therapeutic modalities. PMID:20205907

  19. Contact dermatitis in children.

    PubMed

    Rademaker, M; Forsyth, A

    1989-02-01

    125 children under the age of 12 years were patch tested over a period of 7 years. 60 (48%) of the children had 1 or more positive (+ve) reactions, of which 92% (55/60) were considered relevant. The most common allergens were metals (35 + ves), fragrances (24 + ves) and rubber compounds (11 + ves). 40 of the children were also tested for contact urticaria against food additives and fragrances, of whom 20 were positive (benzoic acid 14, cinnamaldehyde 12).

  20. Contact stress sensor

    DOEpatents

    Kotovsky, Jack

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  1. Contact stress sensor

    DOEpatents

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  2. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  3. Activity of lactoperoxidase when adsorbed on protein layers.

    PubMed

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  4. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    NASA Astrophysics Data System (ADS)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  5. Synthesis and CO₂ adsorption properties of molecularly imprinted adsorbents.

    PubMed

    Zhao, Yi; Shen, Yanmei; Bai, Lu; Hao, Rongjie; Dong, Liyan

    2012-02-01

    A series of molecularly imprinted adsorbents of CO(2) were developed by molecular self-assembly procedures, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Textural properties of these adsorbents were characterized by N(2) adsorption experiment, thermo-gravimetric analysis, and Fourier transform infrared spectroscopy. CO(2) adsorption capacities of adsorbents were investigated by thermo-gravimetric balance under 15% CO(2)/85% Ar atmosphere. Adsorption selectivity of CO(2) was studied by fixed-bed adsorption/desorption experiments. All the adsorbents displayed good thermal stability at 200 °C. Among them, MIP1b, with the higher amine content, exhibited the largest CO(2) capacity, which maintained steady after 50 adsorption-desorption cycles. Although MIP3 showed the highest specific surface, the CO(2) capacity was lower than that of MIP1b. CO(2) adsorption mechanism of molecularly imprinted adsorbents was determined to be physical sorption according to the adsorption enthalpies integrated from the DSC heatflow profiles. The calculated separation factors of CO(2) under 15% CO(2)/85% N(2) atmosphere were above 100 for all adsorbents.

  6. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  7. Functional modular contact lens

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Cowan, Melissa; Lähdesmäki, Ilkka; Lingley, Andrew; Otis, Brian; Parviz, Babak A.

    2009-08-01

    Tear fluid offers a potential route for non-invasive sensing of physiological parameters. Utilization of this potential depends on the ability to manufacture sensors that can be placed on the surface of the eye. A contact lens makes a natural platform for such sensors, but contact lens polymers present a challenge for sensor fabrication. This paper describes a microfabrication process for constructing sensors that can be integrated into the structure of a functional contact lens in the future. To demonstrate the capabilities of the process, an amperometric glucose sensor was fabricated on a polymer substrate. The sensor consists of platinum working and counter electrodes, as well as a region of indium-tin oxide (ITO) for glucose oxidase immobilization. An external silver-silver chloride electrode was used as the reference electrode during the characterization experiments. Sensor operation was validated by hydrogen peroxide measurements in the 10- 20 μM range and glucose measurements in the 0.125-20 mM range.

  8. Gold recovery from low concentrations using nanoporous silica adsorbent

    NASA Astrophysics Data System (ADS)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  9. Multi-layer graphene oxide alone and in a composite with nanosilica: Preparation and interactions with polar and nonpolar adsorbates

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Turov, V. V.; Zarko, V. I.; Goncharuk, O. V.; Matkovsky, A. K.; Prykhod'ko, G. P.; Nychiporuk, Yu. M.; Pakhlov, E. M.; Krupska, T. V.; Balakin, D. Yu.; Charmas, B.; Andriyko, L. S.; Skubiszewska-Zięba, J.; Marynin, A. I.; Ukrainets, A. I.; Kartel, M. T.

    2016-11-01

    Freeze-dried multi-layer graphene oxide (MLGO), produced from natural flake graphite using ionic hydration method, demonstrates strong interactions of functionalized carbon sheets with polar or nonpolar adsorbates or co-adsorbates depending on the characteristics of dispersion media. Interactions of MLGO with a mixture of water and n-decane in chloroform media provide specific surface area (Su) in contact with unfrozen liquids greater than 1000 m2/g corresponding to stacks with 3-5 carbon layers. Electrostatic interactions between functionalized carbon sheets in dried MLGO are very strong. Therefore, nonpolar molecules (benzene, decane, nitrogen) cannot penetrate between the sheets. Water molecules can effectively penetrate between the sheets, especially if MLGO is located in weakly polar CDCl3 medium. In this case, n-decane molecules (co-adsorbate) can also penetrate into the sheet stacks and locate around nonpolar fragments of the sheets. The Su value of MLGO being in contact with unfrozen water can reach 360 m2/g, but upon co-adsorption of water with decane Su = 930 m2/g, i.e., hydrophobic interactions of the mentioned fragments with decane are stronger that with co-adsorbed water. Water alone (0.25 or 0.5 g/g) bound to MLGO in a mixture with fumed silica A-300 in air or CDCl3 media can provide Su = 30-50 m2/g. Pores in wetted MLGO or MLGO/A-300 mainly correspond to mesopores. Nanosilica does not provide significant opening of the MLGO sheet stacks during their mechanical mixing.

  10. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    PubMed

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

  11. Dual contact pogo pin assembly

    DOEpatents

    Hatch, Stephen McGarry

    2015-01-20

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  12. Dual contact pogo pin assembly

    DOEpatents

    Hatch, Stephen McGarry

    2016-06-21

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  13. Occupational contact dermatitis from propacetamol.

    PubMed

    Szczurko, C; Dompmartin, A; Michel, M; Castel, B; Leroy, D

    1996-11-01

    We report 4 cases of contact sensitization to propacetamol. They presented with lesions on the hands, forearms, crease of the elbows, and neck. They were all sensitized to multiple allergens and 2 of them were atopic. Patch tests to Pro-Dafalgan and propacetamol were positive; sodium citrate and paracetamol were negative. Our cases were similar to those published for the first time by Barbaud in 1995. The only allergen was propacetamol; patch tests with diethyglycine and paracetamol were negative. Propacetamol chlorhydrate is composed of a complex paracetamol-diethylglycine, which probably acts like a hapten capable of inducing cutaneous allergy. It is an occupational allergy affecting nurses who work in surgery departments or post-anesthesia recovery rooms, where high doses of analgesics are widely used. The patients were not allergic to oral paracetamol. Despite the usual precautions, the mixture of propacetamol chlorhydrate and solvent leaks onto the nurses' hands, suggesting that health care workers handling propacetamol chlorhydrate should wear gloves. PMID:9007376

  14. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  15. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies. PMID:27117598

  16. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  17. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies.

    PubMed

    Sherratt, Michael J; Bax, Daniel V; Chaudhry, Shazia S; Hodson, Nigel; Lu, Jian R; Saravanapavan, Priya; Kielty, Cay M

    2005-12-01

    In addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces. Using both cleaning and coating approaches on silicon wafers and glass coverslips we have produced chemically homogeneous, topographically similar substrates which cover a large amphiphilic range. Extremes of substrate amphiphilicity induced morphological changes in periodicity, curvature and lateral spreading which may mask binding sites or disrupt domain structure. Biological functionality, as assayed by the ability to support cell spreading, was significantly reduced for fibrillin microfibrils adsorbed on highly hydrophilic substrates (contact angle 20.7 degrees) compared with less hydrophilic (contact angle 38.3 degrees) and hydrophobic (contact angle 92.8 degrees) substrates. With an appropriate choice of surface chemistry, multifunctional ECM assemblies retain their native morphology and biological functionality.

  18. Contact tests for pentachlorophenol toxicity to earthworms

    SciTech Connect

    Spontak, D.A.

    1994-12-31

    The standardized contact filter paper test (EEC and OECD) provides an effective screening test for toxicity to earthworms in a laboratory setting. A need exists for a reliable and inexpensive technique for non-laboratory settings where screening is desired, but facilities cannot provide for the acquisition and maintenance of the glass vials required by the standardized test. This study evaluated two modifications of the standardized test using clear polyethylene bags, with and without filter paper, with Eisenia fetida and domesticated surface-feeding earthworms. The tests were conducted according to EEC and OECD guidelines. Results of the modified tests corresponded in dose and effect to the standardized contact filter paper test indicating the usefulness of the modified tests.

  19. Contact dermatitis to methylisothiazolinone*

    PubMed Central

    Scherrer, Maria Antonieta Rios; Rocha, Vanessa Barreto; Andrade, Ana Regina Coelho

    2015-01-01

    Methylisothiazolinone (MI) is a preservative found in cosmetic and industrial products. Contact dermatitis caused by either methylchloroisothiazolinone/methylisothiazolinone (MCI/MI or Kathon CG) or MI has shown increasing frequency. The latter is preferably detected through epicutaneous testing with aqueous MI 2000 ppm, which is not included in the Brazilian standard tray. We describe a series of 23 patients tested using it and our standard tray. A case with negative reaction to MCI/MI and positive to MI is emphasized. PMID:26734880

  20. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  1. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  2. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent.

    PubMed

    Niu, Yaolan; Ying, Diwen; Li, Kan; Wang, Yalin; Jia, Jinping

    2016-10-01

    Functional PET fiber (PET-AA-CS) was prepared by oxygen-plasma pretreatment and grafting of acrylic acid (AA) and low-molecular-weight chitosan (LMCS) on the polyethylene glycol terephthalate (PET) substrate. This adsorbent was targeted for quick removal of metal ion in river pollutions with an easy recycling of the fiber after emergency processing. The fabricated PET-AA-CS was characterized by the scanning electron microscope (SEM), contact angle, fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) to look into its morphology, surface functional groups, and adsorption mechanism of copper ions from the aqueous solution. The overall adsorption process of copper ions on the PET-AA-CS was pH-dependent with an optimal pH value of 5.0, at which a maximum capacity of 68.97 mg g(-1) was obtained. The result of fitting also shows that adsorption process follows the Langmuir isotherm and pseudo-second-order model. Moreover, the material shows good stability during 5 cycles of adsorption and desorption, and also shows no significant effect of co-existing ions including Ca(2+), Mg(2+), K(+), Cl(-), and et al. In general, PET-AA-CS developed in this study shows significant benefit of eco-friend and cost-efficiency for fast removal of copper ions in potential river metal pollutions comparing with traditional adsorbents.

  3. A comparison of adsorbed and grafted fibronectin coatings under static and dynamic conditions.

    PubMed

    Montaño-Machado, Vanessa; Hugoni, Ludivine; Díaz-Rodríguez, Sergio; Tolouei, Ranna; Chevallier, Pascale; Pauthe, Emmanuel; Mantovani, Diego

    2016-09-21

    Coatings for medical devices are expected to improve their surface biocompatibility mainly by being bioactive, i.e. stimulating healing-oriented interactions with living cells, tissues and organs. In particular, for stent applications, coatings are often designed to enhance the endothelialization process. The coating strategy will be primarily responsible for the interfacial properties between the substrate and the coating, which must show high stability. Therefore, the present work aims at comparing the stability of adsorbed and grafted fibronectin, a protein well-known to promote endothelialization. Fibronectin coatings were deposited on fluorocarbon films generated by a plasma-based process on stainless steel substrates. Then, deformation tests were performed in order to simulate the stenting procedure and stability tests were completed under static and under-flow conditions. Coatings were characterized by XPS, AFM, water contact angle, immunostaining and ToF-SIMS analyses. The results show higher stability for the grafted coatings; indeed, the integrity of the protein simply adsorbed was strongly compromised especially after under-flow tests. Both coatings exhibited similar behavior after deformation and static tests. These results clearly show the impact of the coating strategy on the overall stability of the coatings as well as the importance of under-flow investigations. PMID:27546569

  4. Extended DLVO calculations expose the role of the structural nature of the adsorbent beads during chromatography.

    PubMed

    Aasim, Muhammad; Bibi, Noor Shad; Vennapusa, Rami Reddy; Fernandez-Lahore, Marcelo

    2012-05-01

    Protein adsorption onto hydrophobic interaction chromatography supports was studied by a surface-thermodynamics approach. To gather relevant experimental information, contact angle measurements and zeta potential determinations were performed on three different commercial adsorbent beads, Phenyl Sepharose 6 Fast Flow, Toyopearl Phenyl 650-C and Source 15 Phenyl, having soft to rigid backbone structure. Similar information was obtained for a collection of model proteins, lysozyme, bovine serum albumin (BSA), polygalacturonase, aminopeptidase, chymosin, aspartic protease, beta-galactosidase, human immunoglobulin G, and lactoferrin, were evaluated in the hydrated and in the dehydrated state. Based on the mentioned experimental data, calculations were performed to obtain the (interfacial) energy versus distance profiles of nine individual (model) proteins on (commercial) beads of three different types. All of these beads harbored the phenyl-ligand onto a matrix of differentiated chemical nature. Extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) calculations were correlated with actual chromatographic behavior. Typical chromatography conditions were employed. The population of model proteins utilized in this study could be segregated into two groups, according to the minimum values observed for the resulting interaction energy pockets and the corresponding retention volumes (or times) during chromatography. Moreover, trends were also identified as a function of the type of adsorbent bead under consideration. This has revealed the influence of the physicochemical nature of the bead structure on the adsorption process and consequently, on the expected separation behavior.

  5. Novel simulated moving-bed adsorber for the fractionation of gas mixtures.

    PubMed

    Rao, D P; Sivakumar, S V; Mandal, Susmita; Kota, Sridevi; Ramaprasad, B S G

    2005-03-25

    The separation of propylene-propane mixture is an energy intensive operation commercially practiced using cryogenic distillation. The separation by pressure swing adsorption has been studied as an alternative. A fixed-bed pressure swing adsorption yields the heavy component as a pure product. The product recovery and the productivity are not high. In a moving-bed process, because of the counter-current solid-gas contact, the separation achieved is similar to that of the fractionation by distillation. Although the moving-bed operation offers the upper limit for the performance of a cyclic adsorptive process, due to mechanical complexities in the handling of solids the 'simulated' moving-bed is preferred. By moving the inlet and outlet ports of streams located along the length of the bed, a moving-bed process can be realized in a fixed bed. We describe here a 'moving-port' system which permits injection or withdrawal of the fluid along the axial direction in a fixed bed. A fixed bed embedded with the moving-port systems emulates a simulated moving-bed adsorber. The proposed adsorber can fractionate a binary gas mixture into two product streams with high purities. It is similar to the Sorbex process of UOP but does not have the eluent as an additional separating agent. A parametric study indicates that high purity products and a higher productivity by an order of magnitude can be achieved with simulated moving-beds compared to the fixed beds.

  6. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent.

    PubMed

    Niu, Yaolan; Ying, Diwen; Li, Kan; Wang, Yalin; Jia, Jinping

    2016-10-01

    Functional PET fiber (PET-AA-CS) was prepared by oxygen-plasma pretreatment and grafting of acrylic acid (AA) and low-molecular-weight chitosan (LMCS) on the polyethylene glycol terephthalate (PET) substrate. This adsorbent was targeted for quick removal of metal ion in river pollutions with an easy recycling of the fiber after emergency processing. The fabricated PET-AA-CS was characterized by the scanning electron microscope (SEM), contact angle, fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) to look into its morphology, surface functional groups, and adsorption mechanism of copper ions from the aqueous solution. The overall adsorption process of copper ions on the PET-AA-CS was pH-dependent with an optimal pH value of 5.0, at which a maximum capacity of 68.97 mg g(-1) was obtained. The result of fitting also shows that adsorption process follows the Langmuir isotherm and pseudo-second-order model. Moreover, the material shows good stability during 5 cycles of adsorption and desorption, and also shows no significant effect of co-existing ions including Ca(2+), Mg(2+), K(+), Cl(-), and et al. In general, PET-AA-CS developed in this study shows significant benefit of eco-friend and cost-efficiency for fast removal of copper ions in potential river metal pollutions comparing with traditional adsorbents. PMID:27470942

  7. Theoretical study of line and boundary tension in adsorbed colloid-polymer mixtures.

    PubMed

    Koning, Jesper; Vandecan, Yves; Indekeu, Joseph

    2014-07-28

    An extended theoretical study of interface potentials in adsorbed colloid-polymer mixtures is performed. To describe the colloid-polymer mixture near a hard wall, a simple Cahn-Nakanishi-Fisher free-energy functional is used. The bulk phase behaviour and the substrate-adsorbate interaction are modelled by the free-volume theory for ideal polymers with polymer-to-colloid size ratios q = 0.6 and q = 1. The interface potentials are constructed with help from a Fisher-Jin crossing constraint. By manipulating the crossing density, a complete interface potential can be obtained from natural, single-crossing, profiles. The line tension in the partial wetting regime and the boundary tension along prewetting are computed from the interface potentials. The line tensions are of either sign, and descending with increasing contact angle. The line tension takes a positive value of 10(-14)-10(-12) N near a first-order wetting transition, passes through zero and decreases to minus 10(-14)-10(-12) N away from the first-order transition. The calculations of the boundary tension along prewetting yield values increasing from zero at the prewetting critical point up to the value of the line tension at first-order wetting. PMID:25084953

  8. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions.

    PubMed

    Ibrahim, M N Mohamad; Ngah, W S Wan; Norliyana, M S; Daud, W R Wan; Rafatullah, M; Sulaiman, O; Hashim, R

    2010-10-15

    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.

  9. Probing interactions between TiO 2 photocatalyst and adsorbing species using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Morand, R.; Noworyta, K.; Augustynski, J.

    2002-10-01

    Photoactivity of nanocrystalline TiO 2 films is shown to be strongly affected by the presence in aqueous solution of salicylic acid, known to form Ti(IV)salicylate surface complexes. In particular, the photooxidation of methanol - an effective hole scavenger - at TiO 2 appears to be in part, or even completely inhibited by the additions of increasing amounts of salicylic acid. The chemisorption of salicylic and also phthalic acid on TiO 2 was followed using quartz crystal microbalance, QCM. The observed resonant frequency changes of the quartz crystal bearing TiO 2 films, accompanying increasing additions of the benzoic acids to the contacting solutions, indicate large displacement of water as a consequence of the adsorbent-imparted hydrophobicity of the interface.

  10. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals

    PubMed Central

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-01-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water. PMID:26602613

  11. Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals.

    PubMed

    Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam

    2015-01-01

    Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water.

  12. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    NASA Astrophysics Data System (ADS)

    Khan, Taimur; Chaudhuri, Malay

    2013-06-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants Kf and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  13. Graphdiyne-metal contacts and graphdiyne transistors

    NASA Astrophysics Data System (ADS)

    Pan, Yuanyuan; Wang, Yangyang; Wang, Lu; Zhong, Hongxia; Quhe, Ruge; Ni, Zeyuan; Ye, Meng; Mei, Wai-Ning; Shi, Junjie; Guo, Wanlin; Yang, Jinbo; Lu, Jing

    2015-01-01

    Graphdiyne was prepared on a metal surface, and the preparation of devices using it inevitably involves its contact with metals. Using density functional theory with dispersion correction, we systematically studied, for the first time, the interfacial properties of graphdiyne that is in contact with a series of metals (Al, Ag, Cu, Au, Ir, Pt, Ni, and Pd). Graphdiyne forms an n-type Ohmic or quasi-Ohmic contact with Al, Ag, and Cu, while it forms a Schottky contact with Pd, Au, Pt, Ni, and Ir (at the source/drain-channel interface), with high Schottky barrier heights of 0.21, 0.46 (n-type), 0.30, 0.41, and 0.46 (p-type) eV, respectively. A graphdiyne field effect transistor (FET) with Al electrodes was simulated using quantum transport calculations. This device exhibits an on-off ratio up to 104 and a very large on-state current of 1.3 × 104 mA mm-1 in a 10 nm channel length. Thus, a new prospect has opened up for graphdiyne in high performance nanoscale devices.Graphdiyne was prepared on a metal surface, and the preparation of devices using it inevitably involves its contact with metals. Using density functional theory with dispersion correction, we systematically studied, for the first time, the interfacial properties of graphdiyne that is in contact with a series of metals (Al, Ag, Cu, Au, Ir, Pt, Ni, and Pd). Graphdiyne forms an n-type Ohmic or quasi-Ohmic contact with Al, Ag, and Cu, while it forms a Schottky contact with Pd, Au, Pt, Ni, and Ir (at the source/drain-channel interface), with high Schottky barrier heights of 0.21, 0.46 (n-type), 0.30, 0.41, and 0.46 (p-type) eV, respectively. A graphdiyne field effect transistor (FET) with Al electrodes was simulated using quantum transport calculations. This device exhibits an on-off ratio up to 104 and a very large on-state current of 1.3 × 104 mA mm-1 in a 10 nm channel length. Thus, a new prospect has opened up for graphdiyne in high performance nanoscale devices. Electronic supplementary information (ESI

  14. Extended delivery of an anionic drug by contact lens loaded with a cationic surfactant.

    PubMed

    Bengani, Lokendrakumar C; Chauhan, Anuj

    2013-04-01

    Drug eluding contact lenses can be very effective vehicles for ophthalmic drug delivery, but are incapable of releasing drug for more than a few hours. We propose to optimize the interactions of the polymer matrix of the contact lens with the hydrophobic tails of ionic surfactants to adsorb the surfactant molecules on the polymer with high packing and thus create a high surface charge. Ionic drugs can then adsorb on the charged surfactant coated surfaces with high affinity to reduce the transport rates, leading to extended release. Specifically, we show control release of an anionic drug dexamethasone 21-disodium phosphate from poly-hydroxyethyl methacrylate (p-HEMA) contact lenses by utilizing cationic surfactant (cetalkonium chloride). The partition coefficient of the drug increase exponentially with surfactant loading in the gel in at least qualitative agreement with the Debye-Hückel theory. The drug adsorbs on the surfactant covered polymer, and can also diffuse along the surface with diffusivity lower than that for the free drug, leading to a reduction in the effective diffusivity, which is the weighted combination of the free and surface diffusivities. The addition of surfactant did not impact transparency of lenses, and had additional benefits of increase in wettability and significant reduction in protein absorption. With a surfactant loading of about 10%, the drug release duration was increased from about 2 h to 50 h in 1-day ACUVUE(®) contact lenses, proving the viability of using surfactant for increasing drug release durations.

  15. Contact Lenses in the Laboratory.

    ERIC Educational Resources Information Center

    Kingston, David W.

    1981-01-01

    Summarizes results of a three-item questionnaire returned by 43 Michigan institutions expressing views on wearing contact lenses in chemical laboratories. Questions focused on eye protection, type of protection, and use of contact lenses. (SK)

  16. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  17. [Systemic contact dermatitis].

    PubMed

    Nowak, Daria; Gomułka, Krzysztof; Dziemieszonek, Paulina; Panaszek, Bernard

    2016-01-01

    Systemic contact dermatitis (SCD) is a skin inflammation occurring in a patient after systemic administration of a hapten, which previously caused an allergic contact skin reaction in the same person. Most frequently, hypersensitivity reactions typical for SCD occur after absorption of haptens with food or inhalation. Haptens occur mainly in the forms of metals and compounds present in natural resins, preservatives, food thickeners, flavorings and medicines. For many years, several studies have been conducted on understanding the pathogenesis of SCD in which both delayed type hypersensitivity (type IV) and immediate type I are observed. Components of the complement system are also suspected to attend there. Helper T cells (Th) (Th1 and Th2), cytotoxic T lymphocytes (Tc), and NK cells play a crucial role in the pathogenesis of SCD. They secrete a number of pro-inflammatory cytokines. In addition, regulatory T cells (Tregs) have an important role. They control and inhibit activity of the immune system during inflammation. Tregs release suppressor cytokines and interact directly with a target cell through presentation of immunosuppressive particles at the cell surface. Diagnostic methods are generally the patch test, oral provocation test, elimination diet and lymphocyte stimulation test. There are many kinds of inflammatory skin reactions caused by systemic haptens' distribution. They are manifested in a variety of clinical phenotypes of the disease. PMID:26943310

  18. Allergic Contact Dermatitis

    PubMed Central

    Nelson, Jenny L.

    2010-01-01

    Epicutaneous patch testing is the gold standard method for the diagnosis of allergic contact dermatitis. Despite this knowledge, many clinical dermatologists do not offer patch testing in their offices or offer testing with only a limited number of allergens. Introduced in 1995, the Thin-Layer Rapid Use Epicutaneous Test originally contained 23 allergens and one control. In 2007, five additional allergens were added. This United States Food and Drug Administration-approved patch testing system made patch testing more convenient, and after its introduction, more dermatologists offered patch testing services. However, the number of allergens in the Thin-Layer Rapid Use Epicutaneous Test remains relatively low. Every two years, the North American Contact Dermatitis Group collects and reports the data from patch testing among its members to a standardized series of allergens. In 2005-2006, the Group used a series of 65 allergens. Of the top 30 allergens reported in 2005-2006, 10 were not included in the Thin-Layer Rapid Use Epicutaneous Test. Knowledge of and testing for additional allergens such as these may increase patch testing yield. PMID:20967194

  19. [Genetics of contact allergy].

    PubMed

    Schnuch, A

    2011-10-01

    The genetics of contact allergy (CA) is still only partly understood, despite decades of research. This might be due to inadequately defined phenotypes used in the past. Therefore we suggested studying an extreme phenotype, namely, polysensitization (sensitization to 3 or more unrelated allergens). Another approach to unravel the genetics of CA has been the study of candidate genes. In this review, we summarize studies on the associations between genetic variation (e.g. SNPs) in certain candidate genes and CA. The following polymorphisms and mutations were studied: (1) filaggrin, (2) N-acetyltransferase (NAT1 and 2), (3) glutathione-S-transferase (GST M and T), (4) manganese superoxide dismutase, (5) angiotensin-converting enzyme (ACE), (6) tumor necrosis factor (TNF), and (7) interleukin-16 (IL16). The polymorphisms of NAT1/2, GST M/T, ACE, TNF, and IL16 were shown to be associated with an increased risk of CA. In one of our studies, the increased risk conferred by the TNF and IL16 polymorphisms was confined to polysensitized individuals. Other relevant candidate genes may be identified by studying diseases related to CA in terms of clinical symptoms, a more general pathology (inflammation) and possibly an overlapping genetic background, such as irritant contact dermatitis. PMID:21904893

  20. Electrolyte interactions with vapor dosed and solution dosed carbon monoxide on platinum (111)

    NASA Astrophysics Data System (ADS)

    Borup, R. L.; Sauer, D. E.; Stuve, E. M.

    1997-03-01

    Carbon monoxide adsorption and interactions with electrolyte species were examined for a Pt(111) electrode in 0.1M HClO 4. The experiments were conducted with an ex situ ultrahigh vacuum (UHV)-electrochemical system, with CO being adsorbed either from the vapor phase in the vacuum chamber or from solution. CO oxidation coulometry and cyclic voltammetry were used to characterize CO coverage in solution, and thermal desorption spectroscopy was used to measure CO coverage in vacuum, desorption kinetics and to detect coadsorbed electrolyte species. In agreement with earlier studies, the saturation coverage of 0.68 ML of CO from solution dosing is nearly 40% greater than the saturation coverage of 0.50 ML in vacuum at room temperature. The higher saturation coverages survive transfer to vacuum, but only in the presence of coadsorbed electrolyte species (H 2O and ClO 4) retained after removal of the electrode from the electrolyte. In the absence of coadsorbed electrolyte species, saturated, solution dosed CO transferred to vacuum exhibits the same coverage as vapor dosed CO. Interaction between CO and electrolyte species was confirmed through detection of both in thermal desorption following immersion of a vapor dosed CO adlayer into solution and back-transfer to vacuum. Kinetic modeling of CO thermal desorption showed that, regardless of whether CO is adsorbed from solution or from vapor, the COCO repulsive interactions are approximately 40% less when electrolyte species are retained than when they are absent.

  1. Determination of the Actual Contact Surface of a Brush Contact

    NASA Technical Reports Server (NTRS)

    Holm, Ragnar

    1944-01-01

    The number of partial contact surfaces of a brush-ring contact is measured by means of a statistical method. The particular brush is fitted with wicks - that is, insulated and cemented cylinders of brush material, terminating in the brush surface. The number of partial contact surfaces can be computed from the length of the rest periods in which such wicks remain without current. Resistance measurements enable the determination of the size of the contact surfaces. The pressure in the actual contact surface of a recently bedded brush is found to be not much lower than the Brinell hardness of the brush.

  2. Structure and Reactivity of Adsorbed Fibronectin Films on Mica

    PubMed Central

    Hull, James R.; Tamura, Glen S.; Castner, David G.

    2007-01-01

    Understanding the interactions of adsorbed fibronectin (Fn) with other biomolecules is important for many biomedical applications. Fn is found in almost all body fluids, in the extracellular matrix, and plays a fundamental role in many biological processes. This study found that the structure (conformation, orientation) and reactivity of Fn adsorbed onto mica is dependent on the Fn surface concentration. Atomic force microscopy and x-ray photoelectron spectroscopy were used to determine the surface coverage of adsorbed Fn from isolated molecules at low surface coverage to full monolayers at high surface coverage. Both methods showed that the thickness of Fn film continued to increase after the mica surface was completely covered, consistent with Fn adsorbed in a more upright conformation at the highest surface-Fn concentrations. Time-of-flight secondary ion mass spectrometry showed that relative intensities of both sulfur-containing (cystine, methionine) and hydrophobic (glycine, leucine/isoleucine) amino acids varied with changing Fn surface coverage, indicating that the conformation of adsorbed Fn depended on surface coverage. Single-molecule force spectroscopy with collagen-related peptides immobilized onto the atomic force microscope tip showed that the specific interaction force between the peptide and Fn increases with increasing Fn surface coverage. PMID:17890402

  3. High capacity cryogel-type adsorbents for protein purification.

    PubMed

    Singh, Naveen Kumar; Dsouza, Roy N; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2014-08-15

    Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties.

  4. High capacity cryogel-type adsorbents for protein purification.

    PubMed

    Singh, Naveen Kumar; Dsouza, Roy N; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2014-08-15

    Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties. PMID:24980092

  5. Adsorption of Th4+, U6+, Cd2+, and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Dastbaz, Abolfazl.; Keshtkar, Ali Reza.

    2014-02-01

    In this study, SiO2 nanoparticles were modified by 3-aminopropyltriethoxysilane (APTES) and then applied to prepare a novel polyacrylonitrile (PAN) composite nanofiber adsorbent by the electrospinning method. In addition, the adsorbent was characterized by SEM, BET, and FTIR analyses. Then the effects of pH, SiO2 and APTES content, adsorbent dosage, contact time and temperature were investigated. Moreover, adsorption experiments were carried out with initial concentrations in the range of 30-500 mg L-1 and the adsorbent affinity for metal ions was in order of Th4+ > U6+ > Cd2+ > Ni2+. Furthermore, it was observed that the optimum pH for adsorption was different for each metal. Some isotherm and kinetic models were applied to analyze the experimental data, among which the Langmuir and pseudo-second order models were better than the others. The regeneration study showed that the adsorbent could be used for industrial processes repeatedly without any significant reduction in its adsorption capacity. Based on the Langmuir model, the maximum adsorption capacity of Th4+, U6+, Cd2+, and Ni2+ at 45 °C was 249.4, 193.1, 69.5 and 138.7 mg g-1, respectively. Besides, the calculated thermodynamic parameters showed an endothermic as well as chemical nature through the adsorption process.

  6. Contact position sensor using constant contact force control system

    NASA Technical Reports Server (NTRS)

    Sturdevant, Jay (Inventor)

    1995-01-01

    A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).

  7. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  8. A pH- and Temperature-Responsive Magnetic Composite Adsorbent for Targeted Removal of Nonylphenol.

    PubMed

    Zhen, Yang; Ning, Zhuo; Shaopeng, Zhang; Yayi, Dong; Xuntong, Zhang; Jiachun, Shen; Weiben, Yang; Yuping, Wang; Jianqiang, Chen

    2015-11-11

    A pH- and temperature-responsive magnetic adsorbent [poly(N-isopropylacrylamide) grafted chitosan/Fe3O4 composite particles, CN-MCP], was synthesized for the removal of the endocrine-disrupting chemical nonylphenol. According to the structural characteristics (changeable surface-charge and hydrophilic/hydrophobic properties) of the targeted contaminant, CN-MCP was designed owning special structure (pH- and temperature-responsiveness for the changeable surface-charge and adjustable hydrophilic/hydrophobic properties, respectively). Compared to chitosan magnetic composite particles without grafting modification (CS-MCP) and several other reported adsorbents, CN-MCP exhibited relatively high adsorption capacity for nonylphenol under corresponding optimal conditions (123 mg/g at pH 9 and 20 °C; 116 mg/g at pH 5 and 40 °C). Meanwhile, high selectivity of the novel adsorbent in selective adsorption of nonylphenol from bisolute solution of nonylphenol and phenol was found. Effects of grafting ratio of the grafted polymer branches and coexisting inorganic salts on the adsorption were systematically investigated. Moreover, CN-MCP demonstrated desired reusability during 20 times of adsorption-desorption recycling. The high adsorption capacity, high selectivity, and desired reusability aforementioned revealed the significant application potential of CN-MCP in the removal of NP. On the basis of the adsorption behaviors, isotherms equilibrium, thermodynamics and kinetics studies, and instrumental analyses including X-ray photoelectron spectroscopy, BET specific surface area, zeta potential, and static water contact angle measurements, distinct adsorption mechanisms were found under various conditions: charge attraction between CN-MCP and the contaminant, as well as binding between polymeric branches of CN-MCP and nonyls, contributed to the adsorption at pH 9 and 20 °C; whereas hydrophobic interaction between CN-MCP and nonylphenol played a dominant role at pH 5 and 40

  9. Partial purification and characterization of contact activation cofactor.

    PubMed Central

    Schiffman, S; Lee, P

    1975-01-01

    The contact phase of intrinsic clotting involves Factor XI, Factor XII, Fletcher factor, and a fourth activity that we call contact activation cofactor (CAC). All four of these activities are reduced or absent in Dicalite-adsorbed plasma. A modified activated partial thromboplastin time assay for CAC has been defined by using a substrate of Dicalite-adsorbed plasma combined with partially purified sources of Factors XI and XII, and Fletcher factor. The following properties of CAC in plasma have been determined by using the assay: it is stable up to 60 min at 56 degrees C; gradually loses activity at 80 degrees C; is stable between pH 6 and 9; is precipitated by ammonium sulfate between 40% and 50% saturation; is slightly adsorbed by A1(OH)3; and is eluted from DEAE-cellulose after the major protein peaks. A purification procedure has been devised that separates CAC from other known clotting factors. Isolated CAC was less stable than CAC in plasma, but in the presence of dilute human serum albumin it retained full activity for 80 min at 56 degrees C. On gel filtration CAC had an apparent mol wt of 220,000 daltons. These properties are consistent with those described for Fitzgerald factor, which further supports the conclusion that CAC and Fitzgerald factor represent the same activity. Isolated CAC promoted the generation of activated Factor XI (XIa) in a mixture containing purified Factor XI, Factor XII, and kaolin. The amount of Factor XIa generated was proportional to the amount of added CAC. No time-consuming reaction between Factor XI or Factor XII and CAC could be demonstrated. PMID:1184736

  10. Ultraviolet and electron radiation induced fragmentation of adsorbed ferrocene

    SciTech Connect

    Welipitiya, D.; Green, A.; Woods, J.P.; Dowben, P.A.; Robertson, B.W.; Byun, D.; Zhang, J.

    1996-06-01

    From thermal desorption spectroscopy we find that ferrocene, Fe(C{sub 5}H{sub 5}){sub 2}, adsorbs and desorbs associatively on Ag(100). Photoemission results indicate that the initially adsorbed surface species closely resembles that of molecular ferrocene. The shift in photoemission binding energies relative to the gas phase is largely independent of the molecular orbital. We find that ultraviolet light does lead to partial fragmentation of the ferrocene and that the molecular fragments are much more strongly bound to the surface than the associatively adsorbed ferrocene. Since fragmentation occurs only in the presence of incident radiation, selective area deposition from this class of molecules is possible. Using a focused electron beam in a scanning transmission electron microscope, we show that selective area deposition of features with resolution of a few hundred angstroms is readily achieved. {copyright} {ital 1996 American Institute of Physics.}

  11. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  12. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  13. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  14. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  15. Contact dermatitis in blacks.

    PubMed

    Berardesca, E; Maibach, H I

    1988-07-01

    Black skin is characterized by structural and functional differences such as increased stratum corneum cohesion, melanin content, and stratum corneum layers. These differences seem to make black skin difficult for irritants and light to penetrate, thus explaining the common opinion that skin in blacks is harder and develops contact dermatitis less frequently. The paucity of interpretable epidemiologic data and of clinical and experimental studies does not permit confirmation of this hypothesis, and the few data available are controversial. This article describes the main physiologic differences between black and white barrier function and reviews the literature on irritation, sensitization, and transcutaneous penetration. We found that the data are still too incomplete to generalize on the resistance, or lack thereof, of black skin (versus white skin) to chemical irritation, sensitization, and penetration. PMID:3048818

  16. Update on contact lithotripsy.

    PubMed

    Michel, M S; Köhrmann, K U; Alken, P

    2000-11-01

    Despite the development of extracorporeal shockwave lithotripsy, endoscopic stone removal, with or without intracorporeal lithotripsy, is still an effective minimally invasive alternative for special indications. There is no defined all-purpose lithotripsy procedure for contact lithotripsy. The choice of the lithotripsy procedure for endoscopic stone disintegration depends on a number of different factors, the main one being stone localization. Small calibre, flexible probes (electrohydraulic, pneumatic, laser) are especially appropriate for ureterorenoscopy, but the speed of stone disintegration is a limiting factor. In contrast, large calibre rigid probes (ultrasound) are clearly more effective, but are unsuitable in size for flexible ureterorenoscopy. This indicates that the type and size of the endoscope decisively influences the choice of devices for endoscopic stone disintegration. Additional inhibiting factors are the flexibility or the rigidity of the instrument and the diameter of the working channel. It must be noted that total costs are not only calculated on the purchase of the equipment, but must also cover disposable materials.

  17. Contact dermatitis to fragrances.

    PubMed

    Santucci, B; Cristaudo, A; Cannistraci, C; Picardo, M

    1987-02-01

    2 groups of patients (1200 and 1500 respectively) were patch tested with different concentrations of perfume mix and fragrance raw materials. The study was to evaluate the incidence of contact dermatitis to fragrances in Roma, Italy, and the influence of limited variations in fragrance and perfume mix concentrations on patch test responses. The results showed that a decrease in the perfume mix concentration from 16% to 8% correlated with a decrease in the % of positive patients (from 5.2% to 3.6%). Variations in the concentration of fragrance raw materials did not influence the % of positive reactions in the 2 groups. The perfume mixture at 16% or 8% gave some positive results, without a corresponding reaction to any of the constituents, that were not related to an excited skin syndrome.

  18. Contact dermatitis in blacks.

    PubMed

    Berardesca, E; Maibach, H I

    1988-07-01

    Black skin is characterized by structural and functional differences such as increased stratum corneum cohesion, melanin content, and stratum corneum layers. These differences seem to make black skin difficult for irritants and light to penetrate, thus explaining the common opinion that skin in blacks is harder and develops contact dermatitis less frequently. The paucity of interpretable epidemiologic data and of clinical and experimental studies does not permit confirmation of this hypothesis, and the few data available are controversial. This article describes the main physiologic differences between black and white barrier function and reviews the literature on irritation, sensitization, and transcutaneous penetration. We found that the data are still too incomplete to generalize on the resistance, or lack thereof, of black skin (versus white skin) to chemical irritation, sensitization, and penetration.

  19. Contact dermatitis to Alstroemeria.

    PubMed

    Santucci, B; Picardo, M; Iavarone, C; Trogolo, C

    1985-04-01

    A study was carried out on 50 workers in a floriculture centre to evaluate the incidence of contact dermatitis to Alstroemeria. 3 subjects gave positive reactions to aqueous and ethanolic extracts of cut flowers, stems and leaves. By column chromatography, the allergen was isolated and its chemical structure identified as 6-tuliposide A by proton magnetic resonance and carbon-13 magnetic resonance. Only 6-tuliposide A was isolated from cut flowers, and this gave positive reactions when patch tested at 0.01%; a-methylene-gamma-butyrolactone at 10(-5) (v/v) was positive in the same 3 subjects. Other lactones (gamma-methylene-gamma-butyrolactone, alantolactone, isoalantolactone) were negative at all concentrations used.

  20. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  1. Development of long-life-cycle tablet ceramic adsorbent for geosmin removal from water solution

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhi; Xue, Qiang; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan; Li, Miao; Chen, Nan; Ying, Zhao; Lei, Zhongfang

    2011-01-01

    In this study, the tablet ceramic adsorbent (TCA), a silica/iron(III) oxide composite material, has been developed for geosmin (GSM) removal from the water solution. The physicochemical characteristics of TCA were examined with XRD, SEM, EDX and BET analyses. The sorption characteristics of GSM on TCA were investigated in a batch system. Attempts have been made to understand the adsorption kinetics, the effect of initial GSM concentration, solution pH, and reaction time. The batch experiments equilibrium data were well fitted to the Lagergren kinetic equation, which indicate the first-order nature adsorption. Over 82% of the GSM was removed by the TCA within 600 min at an initial concentration of 200 ng/L with 20 g/L of TCA dose. The batch and regeneration study indicated that the TCA is a cost-effective GSM adsorbent with sufficient mechanical strength to retain its physical integrity after long-time adsorption, and high regeneration performance for long-life-cycle application. Almost no second contamination (toxic sludge or leached iron) was observed after adsorption, and the gas resultant of thermal regeneration is harmless to atmospheric environment.

  2. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  3. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  4. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further.

  5. Extracting uranium from seawater: Promising AF series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.

  6. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  7. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further. PMID:10048207

  8. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  9. Reducing contact resistance in graphene devices through contact area patterning.

    PubMed

    Smith, Joshua T; Franklin, Aaron D; Farmer, Damon B; Dimitrakopoulos, Christos D

    2013-04-23

    Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are oriented normal to the channel and facilitate bonding between the contact metal and carbon atoms at the graphene cut edges, reproducibly maximizing "edge-contacted" injection. Despite the reduction in M-G contact area caused by these cuts, we find that a 32% reduction in contact resistance results in Cu-contacted, two-terminal devices, while a 22% reduction is achieved for top-gated graphene transistors with Pd contacts as compared to conventionally fabricated devices. The crucial role of contact annealing to facilitate this improvement is also elucidated. This simple approach provides a reliable and reproducible means of lowering contact resistance in graphene devices to bolster performance. Importantly, this enhancement requires no additional processing steps.

  10. Point contacts in encapsulated graphene

    SciTech Connect

    Handschin, Clevin; Fülöp, Bálint; Csonka, Szabolcs; Makk, Péter; Blanter, Sofya; Weiss, Markus; Schönenberger, Christian; Watanabe, Kenji; Taniguchi, Takashi

    2015-11-02

    We present a method to establish inner point contacts with dimensions as small as 100 nm on hexagonal boron nitride (hBN) encapsulated graphene heterostructures by pre-patterning the top-hBN in a separate step prior to dry-stacking. 2- and 4-terminal field effect measurements between different lead combinations are in qualitative agreement with an electrostatic model assuming point-like contacts. The measured contact resistances are 0.5–1.5 kΩ per contact, which is quite low for such small contacts. By applying a perpendicular magnetic field, an insulating behaviour in the quantum Hall regime was observed, as expected for inner contacts. The fabricated contacts are compatible with high mobility graphene structures and open up the field for the realization of several electron optical proposals.

  11. A Prototype Antifungal Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hudson, Sarah P.; Mobbs, Ashley N.; Hoare, Todd R.; Iwata, Naomi G.; Fink, Gerald R.

    2011-01-01

    Purpose. To design a contact lens to treat and prevent fungal ocular infections. Methods. Curved contact lenses were created by encapsulating econazole-impregnated poly(lactic-co-glycolic) acid (PLGA) films in poly(hydroxyethyl methacrylate) (pHEMA) by ultraviolet photopolymerization. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. The contact lenses and their release media were tested in an antifungal assay against Candida albicans. Cross sections of the pre- and postrelease contact lenses were characterized by scanning electron microscopy and by Raman spectroscopy. Results. Econazole-eluting contact lenses provided extended antifungal activity against Candida albicans fungi. Fungicidal activity varied in duration and effectiveness depending on the mass of the econazole-PLGA film encapsulated in the contact lens. Conclusions. An econazole-eluting contact lens could be used as a treatment for fungal ocular infections. PMID:21527380

  12. Nature, strength, and consequences of indirect adsorbate interactions on metals

    SciTech Connect

    BOGICEVIC,ALEXANDER; OVESSON,S.; HYLDGAARD,P.; LUNDQVIST,B.I.; JENNISON,DWIGHT R.

    2000-02-14

    Atoms and molecules adsorbed on metals affect each other even over considerable distances. In a tour-de-force of density-functional methods, the authors establish the nature and strength of such indirect interactions, and explain for what adsorbate systems they can critically affect important materials properties. These perceptions are verified in kinetic Monte Carlo simulations of epitaxial growth, and help rationalize a cascade of recent experimental reports on anomalously low diffusion prefactors. The authors focus their study on two metal systems: Al/Al(111) and Cu/Cu(111).

  13. Adsorbates in a Box: Titration of Substrate Electronic States

    NASA Astrophysics Data System (ADS)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  14. Carbon adsorbents from products of solid fuel processing

    SciTech Connect

    Pokonova, Yu.V.; Grabovskii, A.I.

    1995-01-10

    Total shale phenols (mixture of alkylresorcinols) or their solution in commercial-grade furfural can be used for forming carbon adsorbents with high mechanical strength (up to 97%), high microporosity (up to 0.41 cm{sup 3}{center_dot}cm{sup -3}), and higher sorption capacity. Samples with medium burnout exhibit higher selectivity (than those molded from conventional wood tar) in the recovery of noble metals from multicomponent metal salt solutions. In these parameters they surpass commercial adsorbents as well. Samples with low burnout exhibit high selectivity and separation ability with respect to gas mixtures.

  15. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    USGS Publications Warehouse

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  16. Structural characterization of adsorbed helical and beta-sheet peptides

    NASA Astrophysics Data System (ADS)

    Samuel, Newton Thangadurai

    Adsorbed peptides on surfaces have potential applications in the fields of biomaterials, tissue engineering, peptide microarrays and nanobiotechnology. The surface region, the "biomolecular interface" between a material and the biological environment, plays a crucial role in these applications. As a result, characterization of adsorbed peptide structure, especially with respect to identity, concentration, spatial distribution, conformation and orientation, is important. The present research employs NEXAFS (near-edge X-ray absorption fine structure spectroscopy) and SFG (sum frequency generation spectroscopy) to provide information about the adsorbed peptide structure. Soft X-ray NEXAFS is a synchrotron-based technique which typically utilizes polarized X-rays to interrogate surfaces under ultra-high vacuum conditions. SFG is a non-linear optical technique which utilizes a combination of a fixed visible and a tunable infrared laser beams to generate a surface-vibrational spectrum of surface species. SFG has the added advantage of being able to directly analyze the surface-structure at the solid-liquid interface. The main goals of the present research were twofold: characterize the structure of adsorbed peptides (1) ex situ using soft X-ray NEXAFS, and (2) in situ using non-linear laser spectroscopy (SFG). Achieving the former goal involved first developing a comprehensive characterization of the carbon, nitrogen and oxygen k-edge NEXAFS spectra for amino acids, and then using a series of helical and beta-sheet peptides to demonstrate the sensitivity of polarization-dependent NEXAFS to secondary structure of adsorbed peptides. Characterizing the structure of adsorbed peptides in situ using SFG involved developing a model system to probe the solid-liquid interface in situ; demonstrating the ability to probe the molecular interactions and adsorbed secondary structure; following the time-dependent ordering of the adsorbed peptides; and establishing the ability to obtain

  17. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  18. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  19. Adherence of Pseudomonas aeruginosa to contact lenses

    SciTech Connect

    Miller, M.J.

    1988-01-01

    The purpose of this research was to examined the interactions of P. aeruginosa with hydrogel contact lenses and other substrata, and characterize adherence to lenses under various physiological and physicochemical conditions. Isolates adhered to polystyrene, glass, and hydrogel lenses. With certain lens types, radiolabeled cells showed decreased adherence with increasing water content of the lenses, however, this correlation with not found for all lenses. Adherence to rigid gas permeable lenses was markedly greater than adherence to hydrogels. Best adherence occurred near pH 7 and at a sodium chloride concentration of 50 mM. Passive adhesion of heat-killed cells to hydrogels was lower than the adherence obtained of viable cells. Adherence to hydrogels was enhanced by mucin, lactoferrin, lysozyme, IgA, bovine serum albumin, and a mixture of these macromolecules. Adherence to coated and uncoated lenses was greater with a daily-wear hydrogel when compared with an extended-wear hydrogel of similar polymer composition. Greater adherence was attributed to a higher concentration of adsorbed macromolecules on the 45% water-content lens in comparison to the 55% water-content lens.

  20. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents.

    PubMed

    Saucier, Caroline; Adebayo, Matthew A; Lima, Eder C; Cataluña, Renato; Thue, Pascal S; Prola, Lizie D T; Puchana-Rosero, M J; Machado, Fernando M; Pavan, Flavio A; Dotto, G L

    2015-05-30

    Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  1. Silver and zinc oxide nanostructures loaded on activated carbon as new adsorbents for removal of methylene green: a comparative study.

    PubMed

    Ghaedi, M; Karimi, H; Yousefi, F

    2014-09-01

    In this study, the removal of methylene green (MG) from aqueous solution based on two new adsorbents including silver nanoparticles and zinc oxide nanorods loaded on activated carbon (Ag-NP-AC and ZnO-NR-AC, respectively) has been carried out. The dependency of removal process to variables such as contact time, pH, amount of adsorbents, and initial MG concentration were examined and optimized. It was found that the maximum MG removal percentage was achieved at pH = 7.0 following stirring at 400 r min(-1) for 7 and 6 min for Ag-NP-AC and ZnO-NR-AC, respectively. Equilibrium data were well fitted with the Langmuir model having maximum adsorption capacity of 166.7 and 200 mg g(-1) for Ag-NP-AC and ZnO-NR-AC, respectively. Thermodynamic parameters of MG adsorption on Ag-NP-AC such as enthalpy and entropy changes, activation energy, sticking probability, and Gibbs free energy changes show the spontaneous and endothermic nature of the removal process. Among different conventional kinetic models, the pseudo second-order kinetics in addition to particle diffusion mechanism is the best and efficient model for the prediction and explanation of experimental data of MG adsorption onto both adsorbents.

  2. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies.

    PubMed

    Aly, Zaynab; Graulet, Adrien; Scales, Nicholas; Hanley, Tracey

    2014-03-01

    Economic adsorbents in bead form were fabricated and utilised for the adsorption of Al(3+) from aqueous solutions. Polyacrylonitrile (PAN) beads, PAN powder and the thermally treated PAN beads (250 °C/48 h/Ar and 600 °C/48 h/Ar-H2) were characterised using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, specific surface analysis (Brunauer-Emmett-Teller), thermogravimetric analysis as well as scanning electron microscopy. Effects of pH, contact time, kinetics and adsorption isotherms at different temperatures were investigated in batch mode experiments. Aluminium kinetic data best fit the Lagergren pseudo-second-order adsorption model indicating a one-step, surface-only, adsorption process with chemisorption being the rate limiting step. Equilibrium adsorption data followed a Langmuir adsorption model with fairly low monolayer adsorption capacities suitable for freshwater clean-up only. Various constants including thermodynamic constants were evaluated from the experimental results obtained at 20, 40 and 60 °C. Positive values of ΔH° indicated that the adsorption of Al(3+) onto all three adsorbents was endothermic with less energy input required for PAN powder compared to PAN beads and low-temperature thermally treated PAN. Negative ΔG° values indicated that the aluminium adsorption process was spontaneous for all adsorbents examined.

  3. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution.

    PubMed

    Ma, Fang; Du, Hongtao; Li, Ronghua; Zhang, Zengqiang

    2016-01-01

    In this work, pyridinium-functionalized silica nanoparticles adsorbent (PC/SiO2/Fe3O4) was synthesized for phosphate removal from aqueous solutions. The removal efficiency of phosphate on the PC/SiO2/Fe3O4 was carried out and investigated under various conditions such as pH, contact temperature and initial concentration. The results showed that the adsorption equilibrium could be reached within 10 min, which fitted a Langmuir isotherm model, with maximum adsorption capacity of 94.16 mg/g, and the kinetic data were fitted well by pseudo-second-order and intra-particle diffusion models. Phosphate loaded on the adsorbents could be easily desorbed with 0.2 mol/L of NaOH, and the adsorbents showed good reusability. The adsorption capacity was still around 50 mg/g after 10 times of reuse. All the results demonstrated that this pyridinium-functionalized mesoporous material could be used for the phosphate removal from aqueous solution and it was easy to collect due to its magnetic properties. PMID:27642832

  4. Carboxylated carbon nanotubes as an efficient and cost-effective adsorbent for sustainable removal of insecticide fenvalerate from contaminated solutions

    NASA Astrophysics Data System (ADS)

    Naeimi, Atena; Saeidi, Mahboubeh; Baroumand, Naser

    2016-10-01

    In this study, carboxylic multiwall carbon nanotubes (CMNTs) were used as an adsorbent for removing fenvalerate as a toxic insecticide from solution through batch experiments. The influence of four independent parameters of HCl, initial fenvalerate concentration, CMNTs dosage, and contact time on the fenvalerate adsorption process was investigated. Raman spectroscopy and thermogravimetric analysis confirmed that the adsorption and maximum adsorption capacity (40.0 mg g-1) showed high adsorption potential of the proposed sorbent. The kinetic, isothermic, and thermodynamic of fenvalerate adsorptionon CMNTs were evaluated to better understand this environmental friendly adsorption strategy. A pseudo-first-order kinetic described very well the experimental data of the adsorption kinetics. The experimental data found to be properly fitted to Freundlich model, which indicates that the sorption takes place on a heterogeneous material. The thermodynamic results showed the negative value of the standard free energy (Δ G0 ) and standard enthalpy change (Δ H0 ) showing an exothermic and spontaneous system. Repeated availability of adsorbent investigated and SEM and HRTEM of reused adsorbent showed stability and non-aggregatable attributes of CMNTs.

  5. Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus 2AW immobilized to hair-based adsorbent mats.

    PubMed

    Luckarift, Heather R; Sizemore, Susan R; Farrington, Karen E; Fulmer, Preston A; Biffinger, Justin C; Nadeau, Lloyd J; Johnson, Glenn R

    2011-01-01

    The natural attenuation of hydrocarbons can be hindered by their rapid dispersion in the environment and limited contact with bacteria capable of oxidizing hydrocarbons. A functionalized composite material is described herein, that combines in situ immobilized alkane-degrading bacteria with an adsorbent material that collects hydrocarbon substrates, and facilitates biodegradation by the immobilized bacterial population. Acinetobacter venetianus 2AW was isolated for its ability to utilize hydrophobic n-alkanes (C10-C18) as the sole carbon and energy source. Growth of strain 2AW also resulted in the production of a biosurfactant that aided in the dispersion of complex mixtures of hydrophobic compounds. Effective immobilization of strain 2AW to the surface of Ottimat™ adsorbent hair mats via vapor phase deposition of silica provided a stable and reproducible biocatalyst population that facilitates in situ biodegradation of n-alkanes. Silica-immobilized strain 2AW demonstrated ca. 85% removal of 1% (v/v) tetradecane and hexadecane within 24 h, under continuous flow conditions. The methodology for immobilizing whole bacterial cells at the surface of an adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. Published 2011 American Institute of Chemical Engineers Biotechnol Prog., 2011. PMID:21948333

  6. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent.

    PubMed

    Jing, Chuanyong; Meng, Xiaoguang; Calvache, Edwin; Jiang, Guibin

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 microg L(-1) As(III), 246 microg L(-1) As(V), 151 microg L(-1) MMA, and 202 microg L(-1) DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11,000, 14,000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 microg L(-1). However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III).

  7. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  8. Polyvinylamine-graft-TEMPO adsorbs onto, oxidizes, and covalently bonds to wet cellulose.

    PubMed

    Pelton, Robert; Ren, Pengchao; Liu, Jieyi; Mijolovic, Darijo

    2011-04-11

    Described is a new, greener approach to increasing adhesion between wet cellulose surfaces. Polyvinylamine (PVAm) with grafted TEMPO spontaneously adsorbs onto cellulose and oxidizes the C6 hydroxyl to aldehyde groups that react to form covalent bonds with primary amines on PVAm. Grafted TEMPO offers two important advantages over solutions of low-molecular-weight water-soluble TEMPO derivatives. First, the oxidation of porous cellulose wood fibers is restricted to the exterior surfaces accessible to high-molecular-weight PVAm. Thus, fibers are not weakened by excessive oxidation of the interior fiber wall surfaces. The second advantage of tethered TEMPO is that the total dose of TEMPO required to oxidize dilute fiber suspensions is much less than that required by water-soluble TEMPO derivatives. PVAm-TEMPO is stable under oxidizing conditions. The oxidation activity of the immobilized TEMPO was demonstrated by the conversion of methylglyoxal to pyruvic acid.

  9. Extracorporeal Elimination of Piperacillin/Tazobactam during Molecular Adsorbent Recirculating System Therapy.

    PubMed

    Personett, Heather A; Larson, Scott L; Frazee, Erin N; Nyberg, Scott L; El-Zoghby, Ziad M

    2015-08-01

    Use of the Molecular Adsorbent Recirculating System (MARS) as a liver support device continues to grow worldwide. Various components of the MARS circuit remove both protein-bound and water-soluble molecules. Little is known about the extent of the enhanced clearance mechanisms used in MARS therapy on drug elimination. Of particular interest to acute care practitioners is the impact of MARS on antibiotic clearance, as suboptimal concentrations of such drugs can negatively impact patient outcomes. The properties of piperacillin/tazobactam suggest that elimination may be enhanced in the setting of MARS therapy. We describe two cases in which this was studied. Piperacillin concentrations were determined at various points within the MARS circuit, and patient serum concentrations were reported throughout the dosing interval while receiving MARS therapy. Piperacillin concentrations in both cases were in excess of the desired goal minimum inhibitory concentrations for treatment of gram-negative infections. Use of an extended-infusion strategy of piperacillin/tazobactam 3.375 or 4.5 g given every 8 hours maintained desired serum levels throughout the dosing interval. To our knowledge, this is the second published report on the use of piperacillin/tazobactam during MARS therapy. These case reports reveal successful dosing strategies for patients requiring piperacillin/tazobactam while receiving MARS therapy, as well as quantify the influence of individual MARS elements on drug extraction. PMID:26289310

  10. Contact hypersensitivity response to isophorone diisocyanate in mice

    SciTech Connect

    Stern, M.L.; Brown, T.A.; Brown, R.D.; Munson, A.E. )

    1989-09-01

    Isophorone diisocyanate was evaluated for its potential as a sensitizing agent for allergic contact hypersensitivity in mice. Female B6C3F1 mice were sensitized with 0.1, 0.3, and 1.0% isophorone diisocyanate and challenged with 3.0% isophorone diisocyanate. Doses of isophorone diisocyanate were selected from assays for primary irritancy. Mice received 20 microliters by direct dermal application, for 5 days, to sites prepared by shaving, dermabrading and, in some mice, with intra dermal injection of complete Freund's adjuvant. The rest period was 7 days. Measurement of the contact hypersensitivity response in mice was by radioisotopic assay two days after challenge and mouse ear swelling one and two days after challenge. Mice demonstrated statistically significant dose-dependent contact hypersensitivity responses to isophorone diisocyanate with or without adjuvant pretreatment.

  11. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30 °C at pH 6.0 using 20 g/L dose in 120 min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20 g/L dose, also in 120 min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate.

  12. Determining a Surrogate Contact Pair in a Hertzian Contact Problem.

    PubMed

    Sanders, Anthony P; Brannon, Rebecca M

    2011-04-01

    Laboratory testing of contact phenomena can be prohibitively expensive if the interacting bodies are geometrically complicated. This work demonstrates means to mitigate such problems by exploiting the established observation that two geometrically dissimilar contact pairs may exhibit the same contact mechanics. Specific formulas are derived that allow a complicated Hertzian contact pair to be replaced with an inexpensively manufactured and more easily fixtured surrogate pair, consisting of a plane and a spheroid, which has the same (to second-order accuracy) contact area and pressure distribution as the original complicated geometry. This observation is elucidated by using direct tensor notation to review a key assertion in Hertzian theory; namely, geometrically complicated contacting surfaces can be described to second-order accuracy as contacting ellipsoids. The surrogate spheroid geometry is found via spectral decomposition of the original pair's combined Hessian tensor. Some numerical examples using free-form surfaces illustrate the theory, and a laboratory test validates the theory under a common scenario of normally compressed convex surfaces. This theory for a Hertzian contact substitution may be useful in simplifying the contact, wear, or impact testing of complicated components or of their constituent materials.

  13. Non Contact Measuring Machine

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Sebastiao, Pedro; Henriques, Bernardo G.

    1989-01-01

    One of the problems of the production of cables is the measurement of the thickness plastic cover at the production line. If for some reason the thickness of the plastic is smaller than the minimum necessary several meters of cable may be lost. If the problem exists in the middle of a long cable and the default is not detected in time, the loss will be significant. To solve this problem it is possible to use automatic measuring machines which may detect a default as soon as it happens. It is also possible to interact with the production line in order to avoid any losses. In this paper it is presented a non contact measuring machine, developed for this purpose. The machine uses a laser which is scanned through a field of 80 mm. The interruption of the beam gives information about the external dimension of the object. The technical study of the resolution, sensitivity and precision are presented on the paper. Also the hardware solution and the software are presented. The machine has an interface which allows communication with a PC. The PC may receive information from several measuring units and to interact with machines installed at the production line. The prototype is finished and is going to be tested in the industry.

  14. Extracting uranium from seawater: Promising AI series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  15. EVALUATING VARIOUS ADSORBENTS AND MEMBRANES FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    Field studies were conducted in Lemont, Ill., to evaluate specific adsorbents and reverse osmosis (RO) membranes for removing radium from groundwater. A radium-selective complexer and barium-sulfate-loaded alumina appeared to have the best potential for low-cost adsorption of ra...

  16. Activation volumes of enzymes adsorbed on silica particles.

    PubMed

    Schuabb, Vitor; Czeslik, Claus

    2014-12-30

    The immobilization of enzymes on carrier particles is useful in many biotechnological processes. In this way, enzymes can be separated from the reaction solution by filtering and can be reused in several cycles. On the other hand, there is a series of examples of free enzymes in solution that can be activated by the application of pressure. Thus, a potential loss of enzymatic activity upon immobilization on carrier particles might be compensated by pressure. In this study, we have determined the activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase (HRP), when they are adsorbed on silica particles and free in solution. The experiments have been carried out using fluorescence assays under pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied pressure, suggesting different compressions of the enzyme-substrate complex and the transition state. The volume profiles of free and adsorbed HRP are similar. For α-CT, larger activation volumes are found in the adsorbed state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on silica particles, is characterized by a negative activation volume. This observation suggests that application of pressure might indeed be useful to enhance the activity of enzymes on carrier particles.

  17. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  18. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  19. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  20. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  1. Gd uptake experiments for preliminary set of functionalized adsorbents

    SciTech Connect

    Clinton Noack

    2015-03-16

    These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.

  2. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  3. Chitosan membrane adsorber for low concentration copper ion removal.

    PubMed

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  4. Oil adsorbent produced by the carbonization of rice husks.

    PubMed

    Kumagai, Seiji; Noguchi, Yosuke; Kurimoto, Yasuji; Takeda, Koichi

    2007-01-01

    In this study, rice husks considered to be agricultural waste are converted into an adsorbent intended for use in the disposal of oil spills. The raw and refined (defiberized) husks of Japanese Akita Komachi rice were pyrolyzed in a vacuum (500 Pa) at 300-800 degrees C. The amount of A-heavy and B-heavy oils adsorbed on the carbonized rice husk were then evaluated. Oil adsorption is dependent on the type of oil. Rice husks refined and then pyrolyzed at 600-700 degrees C (1.0 g) adsorbed >6.0 g of B-heavy oil and <1.5 g of water, which indicates their usefulness as an adsorbent for oil spill cleanup in Japan. The refining process contributes to an improvement in the oil adsorption capacity, while the carbonization time (at 600 degrees C) has only a minor influence. The residual fluid components in the carbonized rice husks, rather than their porosity, are closely related to oil adsorption capacity.

  5. EMERGING TECHNOLOGY REPORT: DEMONSTRATION OF AMBERSORB™ 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    The Ambersorb™ (Rohm and Haas) Adsorbent technology demonstration was conducted over a 12-week period during the spring/summer of 1994 at Site 32/36 of the former Pease Air Force Base, Newington, N.H. The groundwater in this area is contaminated with a number of chlorinated organ...

  6. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  7. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  8. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  9. DESIGNING FIXED-BED ADSORBERS TO REMOVE MIXTURES OF ORGANICS.

    EPA Science Inventory

    A liquid-phase granular activated carbon (GAC) pilot plant and a full-scale GAC adsorber were designed, built, and operated in order to evaluate their performance for treating a groundwater contaminated with several volatile and synthetic organic chemicals. Several empty bed con...

  10. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  11. Contact pressure-aided spectroscopy.

    PubMed

    Bregar, Maksimilijan; Bürmen, Miran; Aljancic, Uroš; Cugmas, Blaž; Pernuš, Franjo; Likar, Boštjan

    2014-02-01

    Contact pressure induced by manually operated fiber optic probes can significantly affect the optical properties of the studied tissue. If the contact pressure and the changes in optical properties are measured properly, then the complementary information can be used to obtain additional insight into the tissue physiology. However, as reliable assessment of the contact pressure in the existing diffuse reflectance setups is difficult, the impact of contact pressure is usually neglected or considered as a source of errors. We introduce a measurement system for controlled application of contact pressure and for the acquisition of diffuse reflectance spectra, which is suitable for in vivo studies and for overcoming the limitations of the existing measurement setups. A spectral-contact-pressure plane is proposed to present the combined information, highlighting the unique tissue response to the applied pressure.

  12. A tire contact solution technique

    NASA Technical Reports Server (NTRS)

    Tielking, J. T.

    1983-01-01

    An efficient method for calculating the contact boundary and interfacial pressure distribution was developed. This solution technique utilizes the discrete Fourier transform to establish an influence coefficient matrix for the portion of the pressurized tire surface that may be in the contact region. This matrix is used in a linear algebra algorithm to determine the contact boundary and the array of forces within the boundary that are necessary to hold the tire in equilibrium against a specified contact surface. The algorithm also determines the normal and tangential displacements of those points on the tire surface that are included in the influence coefficient matrix. Displacements within and outside the contact region are calculated. The solution technique is implemented with a finite-element tire model that is based on orthotropic, nonlinear shell of revolution elements which can respond to nonaxisymmetric loads. A sample contact solution is presented.

  13. Protein folding using contact maps.

    PubMed

    Vendruscolo, M; Domany, E

    2000-01-01

    We discuss the problem of representations of protein structure and give the definition of contact maps. We present a method to obtain a three-dimensional polypeptide conformation from a contact map. We also explain how to deal with the case of nonphysical contact maps. We describe a stochastic method to perform dynamics in contact map space. We explain how the motion is restricted to physical regions of the space. First, we introduce the exact free energy of a contact map and discuss two simple approximations to it. Second, we present a method to derive energy parameters based on perception learning. We prove in an extensive number of situations that the pairwise contact approximation both when alone and when supplemented with a hydrophobic term is unsuitable for stabilizing proteins' native states. PMID:10668399

  14. Novel insights in Al-MCM-41 precursor as adsorbent for regulated haloacetic acids and nitrate from water.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Sarzanini, Corrado; Caldarola, Dario; Onida, Barbara

    2012-11-01

    High concentration of NO (3) (-) in groundwater has raised concern over possible contamination of drinking water supplies. In addition, the formation of haloacetic acids (HAAs) as by-products during disinfection with chlorine-based agents is still a relevant issue, since HAAs pose serious health hazard. In this work, we investigated the affinity of a precursor of Al-MCM-41 (a mesostructured hexagonal aluminosilicate containing the template surfactant) towards nitrate and HAAs, for its possible application in the removal of these pollutants from natural and drinking waters. Additionally, adsorption kinetics and isotherms were studied. The adsorbent was synthesized using cetyltrimethylammonium bromide as surfactant and characterized by physico-chemical techniques. Simulated drinking water was spiked with the EPA-regulated HAAs (monochloroacetic (MCAA), monobromoacetic (MBAA), dichloroacetic (DCAA), dibromoacetic (DBAA), and trichloroacetic (TCAA) acids) and placed in contact with the adsorbent. The effect of matrix composition was studied. Adsorption kinetic studies were performed testing three kinetics models. For the adsorption studies, three adsorption isotherm approaches have been tested to experimental data. The pollutant recoveries were evaluated by suppressed ion chromatography. The affinity of the adsorbent was TCAA = DBAA = DCAA > MBAA > MCAA with DCAA, DBAA, and TCAA completely removed. A removal as high as 77 % was achieved for 13 mg/L nitrate. The adsorption isotherms of NO (3) (-) and monochloroacetic acid can be modeled by the Freundlich equation, while their adsorption kinetics follow a pseudo-second-order rate mechanism. The adsorbent exhibited high affinity towards HAAs in simulated drinking water even at relevant matrix concentrations, suggesting its potential application for water remediation technologies.

  15. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  16. Contact dermatitis to homomenthyl salicylate.

    PubMed

    Rietschel, R L; Lewis, C W

    1978-03-01

    Two patients with follicular dermatitis were found to have a contact sensitivity to homomenthyl salicylate, a sunscreening chemical present in a commercially available suntan lotion. One patient did not use the product, but her boyfriend did, and contact between the two individuals resulted in a follicular dermatitis developing in her. A second patient with contact dermatitis to homomenthyl salicylate also had a follicular eruption. Both patients appear to represent true allergic sensitivities.

  17. Point contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1987-01-01

    A new type of silicon solar cell has been developed. It is called the point-contact cell because the metal semiconductor contacts are restricted to an array of small points on the back of the cell. The point contact cell has recently demonstrated 22 percent conversion efficiency at one sun and 27.5 percent at 100 suns under an AM1.5 spectrum.

  18. Method for forming metal contacts

    DOEpatents

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  19. Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose

    NASA Technical Reports Server (NTRS)

    Welton, Andrew; Lee, Kerry

    2010-01-01

    While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

  20. Effect of adsorbent addition on floc formation and clarification.

    PubMed

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. PMID:27064206

  1. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study.

    PubMed

    Shanehsaz, Maryam; Seidi, Shahram; Ghorbani, Yousefali; Shoja, Seyed Mohammad Reza; Rouhani, Shohre

    2015-01-01

    The present work deals with the first attempt to study the removal of synthetic textile dye, reactive blue 19 (RB19), using the magnetic Fe3O4 nanoparticles modified by pyrrole (PPy@Fe3O4 MNPs) as an efficient adsorbent. The nanoadsorbent was synthesized using chemical co-precipitation. Scanning electron microscopy and FT-IR were used to characterize nanoparticles. Factors affecting the dye adsorption including the pH of the dye solution, amount of adsorbent and contact time were also further investigated. Sorption of the RB19 on PPy@Fe3O4 MNPs reached to equilibrium at contact time less than 10 min and fitted well to the Langmuir adsorption model with a maximum adsorption capacity of 112.36 mg g(-1). Experiments for adsorption kinetic were carried out and the data fitted well according to a pseudo-second-order kinetic model. Moreover, the MNPs were recovered with over than 90% efficiency using methanol as elution agent.

  2. Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study.

    PubMed

    Shanehsaz, Maryam; Seidi, Shahram; Ghorbani, Yousefali; Shoja, Seyed Mohammad Reza; Rouhani, Shohre

    2015-01-01

    The present work deals with the first attempt to study the removal of synthetic textile dye, reactive blue 19 (RB19), using the magnetic Fe3O4 nanoparticles modified by pyrrole (PPy@Fe3O4 MNPs) as an efficient adsorbent. The nanoadsorbent was synthesized using chemical co-precipitation. Scanning electron microscopy and FT-IR were used to characterize nanoparticles. Factors affecting the dye adsorption including the pH of the dye solution, amount of adsorbent and contact time were also further investigated. Sorption of the RB19 on PPy@Fe3O4 MNPs reached to equilibrium at contact time less than 10 min and fitted well to the Langmuir adsorption model with a maximum adsorption capacity of 112.36 mg g(-1). Experiments for adsorption kinetic were carried out and the data fitted well according to a pseudo-second-order kinetic model. Moreover, the MNPs were recovered with over than 90% efficiency using methanol as elution agent. PMID:25978015

  3. Wastewater treatment by batch adsorption method onto micro-particles of dried Withania frutescens plant as a new adsorbent.

    PubMed

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel

    2012-03-01

    A new adsorbent for removing metallic elements, nitrate and phosphate ions from municipal and industrial wastewaters has been investigated. This new adsorbent consists of micro-particles of dried Withania frutescens plant (<500 μm). Batch experiments were conducted to evaluate the removal of metallic elements and anions from raw wastewaters by W. frutescens particles. The results show that the micro-particles of W. frutescens plant presented a good adsorption of metallic elements, nitrate and phosphate ions from both real wastewaters. This adsorption increased with increasing of contact time. The percentage of metallic elements removal from industrial wastewater by W. frutescens plant was 98 ≈ 99% for Pb(II), 92 ≈ 93% for Cd(II), 91 ≈ 92% for Cu(II) and 92 ≈ 93% for Zn(II). The maximum adsorption capacity was dependent on the type of ions. The results also indicate that the values of chemical oxygen demand (COD) decrease after the contact with W. frutescens particles. Based on the results it can be concluded that the dried W. frutescens plant appears to be an economical and environmentally friendly material for wastewater treatment.

  4. Ocular cytotoxicity evaluation of medical devices such as contact lens solutions and benefits of a rinse step in cleaning procedure.

    PubMed

    Dutot, Mélody; Vincent, Jacques; Martin-Brisac, Nicolas; Fabre, Isabelle; Grasmick, Christine; Rat, Patrice

    2013-01-01

    Contact lens care solutions are known to have toxic effects on the ocular surface. The ISO 10993-5 standard describes test methods to assess the cytotoxicity of medical devices, but it needs some improvements to discriminate contact lens care multipurpose solutions. First we evaluated the biological hazards associated with the use of ophthalmic solutions, running a collaborative study with the French medical agency to propose adapted tools to study contact lens care solutions' ocular cytotoxicity (human cell line, short incubation times, and no dilution of solutions to test). Then we took into account the potential risk of these ophthalmic solutions adsorbed on contact lenses and released on the ocular surface, highlighting the addition of a rinse step with unpreserved marine solution in the contact lens cleaning procedure to avoid side effects of contact lens care solutions.

  5. TCDD Adsorbed on Silica as a Model for TCDD Contaminated Soils: Evidence for Suppression of Humoral Immunity in Mice

    PubMed Central

    Kaplan, Barbara L. F.; Crawford, Robert B.; Kovalova, Natalia; Arencibia, Amaya; Kim, Seong Su; Pinnavaia, Thomas J.; Boyd, Stephen A.; Teppen, Brian J.; Kaminski, Norbert E.

    2011-01-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical aryl hydrocarbon receptor (AhR) ligand, exhibits immune suppression in vivo and in vitro. Suppression of primary humoral immune responses in particular has been well characterized as one of the most sensitive functional immune endpoints in animals treated with TCDD. Previous studies have used purified TCDD to elucidate the mechanisms by which TCDD and dioxin-like compounds (DLC) impair IgM production by B cells, but did not represent the route by which animals and humans are likely to be exposed environmentally. In the studies reported here, mice were treated with TCDD adsorbed onto a well-defined synthetic silica phase of known purity and physical properties, followed by sensitization with sheep erythrocytes to initiate a humoral immune. We found that surfactant-templated mesoporous forms of amorphous silica provided an ideal combination of purity, dispersibility and textural properties for immobilizing TCDD. TCDD-adsorbed silica distributed to the spleen and liver after oral administration as assessed by induction of cyp1a1 gene expression. Most notably, TCDD delivered in the adsorbed state on amorphous silica and as a solute in corn oil (CO) produced similar suppression of the anti-sheep red blood cell immunoglobulin M antibody forming cell response (sRBC IgM AFC) response at equivalent doses of TCDD. These results suggest that TCDD immobilized on silicate particles found in soils distributes to the spleen and suppresses humoral immunity. PMID:21272611

  6. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems.

    PubMed

    Gupta, Anjali; Yunus, M; Sankararamakrishnan, Nalini

    2012-01-01

    Evaluation of Chitosan zerovalent Iron Nanoparticle (CIN) towards arsenic removal is presented. Addition of chitosan enhances the stability of Fe(0) nano particle. Prepared adsorbent was characterized by FT-IR, SEM EDX, BET and XRD. It was found that, with an initial dose rate of 0.5 g L(-1), concentrations of As (III) and As (V) were reduced from 2 mg L(-1) to <5 μg L(-1) in less than 180 min and the adsorbent was found to be applicable in wide range of pH. Langmuir monolayer adsorption capacity was found to be 94±1.5 mg g(-1) and 119±2.6 mg g(-1) at pH 7 for As (III) and As (V) respectively. Major anions including sulfate, phosphate and silicate did not cause significant interference in the adsorption behavior of both arsenite and arsenate. The adsorbent was successfully recycled five times and applied to the removal of total inorganic arsenic from real life groundwater samples.

  7. Effect of interfacial species on shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1979-01-01

    The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.

  8. Benchmark Dose Modeling

    EPA Science Inventory

    Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

  9. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    NASA Astrophysics Data System (ADS)

    Yang, Chunyan; Persson, Bo

    2008-03-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load [1-4]. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the interfacial separation approaches to zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids. References: [1] C. Yang and B.N.J. Persson, arXiv:0710.0276, (to appear in Phys. Rev. Lett.) [2] B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007) [3] L. Pei, S. Hyun, J.F. Molinari and M.O. Robbins, J. Mech. Phys. Sol. 53, 2385 (2005) [4] M. Benz, K.J. Rosenberg, E.J. Kramer and J.N. Israelachvili, J. Phy. Chem. B.110, 11884 (2006)

  10. Forcing contact inhibition of locomotion.

    PubMed

    Roycroft, Alice; Mayor, Roberto

    2015-07-01

    Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon.

  11. Fabricating customized hydrogel contact lens

    PubMed Central

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies. PMID:27748361

  12. Fabricating customized hydrogel contact lens

    NASA Astrophysics Data System (ADS)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  13. Forcing contact inhibition of locomotion

    PubMed Central

    Roycroft, Alice; Mayor, Roberto

    2015-01-01

    Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon. PMID:25981318

  14. Contact modeling for robotics applications

    SciTech Connect

    Lafarge, R.A.; Lewis, C.

    1998-08-01

    At Sandia National Laboratories (SNL), the authors are developing the ability to accurately predict motions for arbitrary numbers of bodies of arbitrary shapes experiencing multiple applied forces and intermittent contacts. In particular, the authors are concerned with the simulation of systems such as part feeders or mobile robots operating in realistic environments. Preliminary investigation of commercial dynamics software packages led them to the conclusion that they could use commercial software to provide everything they needed except for the contact model. They found that ADAMS best fit their needs for a simulation package. To simulate intermittent contacts, they need collision detection software that can efficiently compute the distances between non-convex objects and return the associated witness features. They also require a computationally efficient contact model for rapid simulation of impact, sustained contact under load, and transition to and from contact conditions. This paper provides a technical review of a custom hierarchical distance computation engine developed at Sandia, called the C-Space Toolkit (CSTk). In addition, they describe an efficient contact model using a non-linear damping term developed by SNL and Ohio State. Both the CSTk and the non-linear damper have been incorporated in a simplified two-body testbed code, which is used to investigate how to correctly model the contact using these two utilities. They have incorporated this model into the ADAMS software using the callable function interface. An example that illustrates the capabilities of the 9.02 release of ADAMS with their extensions is provided.

  15. Extended drug delivery by contact lenses for glaucoma therapy.

    PubMed

    Peng, Cheng-Chun; Burke, Michael T; Carbia, Blanca E; Plummer, Caryn; Chauhan, Anuj

    2012-08-20

    We combine laboratory-based timolol release studies and in vivo pharmacodynamics studies in beagle dogs to evaluate the efficacy of glaucoma therapy through extended wear contact lenses. Commercial contact lenses cannot provide extended delivery of ophthalmic drugs and so the studies here focused on increasing the release duration of timolol from ACUVUE TruEye contact lenses by incorporating vitamin E diffusion barriers. The efficacy of timolol delivered via extended wear contact lenses was then compared to eye drops in beagle dogs that suffer from spontaneous glaucoma. The lenses were either replaced every 24h or continuously worn for 4 days, and the pharmacodynamics effect of changes in the intraocular pressure (IOP) of timolol from the ACUVUE TruEye contact lenses can be significantly increased by incorporation of vitamin E. The in vivo studies showed that IOP reduction from baseline by pure contact lens on daily basis was comparable with that by eye drops but with only 20% of drug dose, which suggested higher drug bioavailability for contact lenses. In addition, by inclusion of vitamin E into the lenses, the IOP was reduced significantly during the 4-day treatment with continuous wear of lens.

  16. Novel adsorbent applicability for decontamination of printing wastewater

    NASA Astrophysics Data System (ADS)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ < B = pure C < C with PEG 600 addition. The adsorption equilibrium data of Zn(II) ion on NZ, B, pure C and C with PEG 600 were analyzed in terms of the Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The characteristic parameters for each isotherms and related correlation coefficients were determined. The values of correlation coefficient (R2) indicated the following order of the isotherm models: Freundlich > Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential

  17. Nanofiber adsorbents for high productivity continuous downstream processing.

    PubMed

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2015-11-10

    An ever increasing focus is being placed on the manufacturing costs of biotherapeutics. The drive towards continuous processing offers one opportunity to address these costs through the advantages it offers. Continuous operation presents opportunities for real-time process monitoring and automated control with potential benefits including predictable product specification, reduced labour costs, and integration with other continuous processes. Specifically to chromatographic operations continuous processing presents an opportunity to use expensive media more efficiently while reducing their size and therefore cost. Here for the first time we show how a new adsorbent material (cellulosic nanofibers) having advantageous convective mass transfer properties can be combined with a high frequency simulated moving bed (SMB) design to provide superior productivity in a simple bioseparation. Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area material that allows for rapid convective flow operations. A proof of concept study demonstrated the performance of an anion exchange nanofiber adsorbent based on criteria including flow and mass transfer properties, binding capacity, reproducibility and life-cycle performance. Binding capacities of the DEAE adsorbents were demonstrated to be 10mg/mL, this is indeed only a fraction of what is achievable from porous bead resins but in combination with a very high flowrate, the productivity of the nanofiber system is shown to be significant. Suitable packing into a flow distribution device has allowed for reproducible bind-elute operations at flowrates of 2,400 cm/h, many times greater than those used in typical beaded systems. These characteristics make them ideal candidates for operation in continuous chromatography systems. A SMB system was developed and optimised to

  18. Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption

    SciTech Connect

    Feng, X.; Pan, C.Y.; McMinis, C.W.; Ivory, J.; Ghosh, D.

    1998-07-01

    Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption (PSA) was studied experimentally. The high efficiency of hollow-fiber-based adsorbers for gas separation was illustrated by hydrogen separation using fine-powder-activated carbon and molecular sieve as adsorbents. The adsorption equilibrium and dynamics of the hollow-fiber adsorbers were determined. The pressure drop of the gas flowing through the adsorbers was also examined. The adsorbers were tested for hydrogen separation from nitrogen, carbon dioxide, and a multicomponent gas mixture simulating ammonia synthesis purge gas. The PSA systems using the hollow-fiber adsorbers were very effective for hydrogen purification. The high separation efficiency is derived from the fast mass-transfer rate and low pressure drop, two key features of hollow-fiber-based adsorbers.

  19. Detecting the mass and position of an adsorbate on a drum resonator

    PubMed Central

    Zhang, Y.; Zhao, Y. P.

    2014-01-01

    The resonant frequency shifts of a circular membrane caused by an adsorbate are the sensing mechanism for a drum resonator. The adsorbate mass and position are the two major (unknown) parameters determining the resonant frequency shifts. There are infinite combinations of mass and position which can cause the same shift of one resonant frequency. Finding the mass and position of an adsorbate from the experimentally measured resonant frequencies forms an inverse problem. This study presents a straightforward method to determine the adsorbate mass and position by using the changes of two resonant frequencies. Because detecting the position of an adsorbate can be extremely difficult, especially when the adsorbate is as small as an atom or a molecule, this new inverse problem-solving method should be of some help to the mass resonator sensor application of detecting a single adsorbate. How to apply this method to the case of multiple adsorbates is also discussed. PMID:25294971

  20. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    PubMed

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon. PMID:24499987

  1. Contact lens management of keratoconus.

    PubMed

    Downie, Laura E; Lindsay, Richard G

    2015-07-01

    Contact lenses are the primary form of visual correction for patients with keratoconus. Contemporary advances in contact lens designs and materials have significantly expanded the available fitting options for patients with corneal ectasia. Furthermore, imaging technology, such as corneal topography and anterior segment optical coherence tomography, can be applied to both gain insight into corneal microstructural changes and to guide contact lens fitting. This paper provides a comprehensive review of the range of contact lens modalities, including soft lenses, hybrid designs, rigid lenses, piggyback configurations, corneo-scleral, mini-scleral and scleral lenses that are currently available for the optical management of keratoconus. The review also discusses the importance of monitoring for disease progression in patients with keratoconus, in particular children, who tend to undergo more rapid progressive changes, so as to facilitate appropriate modification to contact lens fitting and/or potential referral for corneal collagen cross-linking treatment, as appropriate. PMID:26104589

  2. Influences of impurities on iodine removal efficiency of silver alumina adsorbent

    SciTech Connect

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Kondo, Yoshikazu

    1997-08-01

    Silver impregnated alumina adsorbent (AgA), which was developed for iodine removal from off-gas of nuclear power and reprocessing plants has been tested laying emphasis on investigation of the influences gaseous impurities have on adsorbent chemical stability and iodine removal efficiency. The influences of the major impurities such as nitrogen oxides and water vapor were checked on the chemical state of impregnated silver compound (AgNO{sub 3}) and decontamination factor (DF) value. At 150{degrees}C, a forced air flow with 1.5% nitrogen oxide (NO/NO{sub 2}=1/1) reduced silver nitrate to metallic silver, whereas pure air and air with 1.5% NO{sub 2} had no effect on the chemical state of silver. Metallic silver showed a lower DF value for methyl iodide in pure air (without impurities) than silver nitrate and the lower DF of metallic silver was improved when impurities were added. At 40{degrees}C, a forced air flow with 1.5% nitrogen dioxide (NO{sub 2}) increased the AgA weight by about 20%, which was caused by the adsorption of nitric acid solution on the AgA surface. AgA with l0wt% silver showed higher weight increase than that with 24wt% silver which had lower porosity. Adsorption of acid solution lowered the DF value, which would be due to the hindrance of contact between methyl iodide and silver. The influences of other gaseous impurities were also investigated and AgA showed superior characteristics at high temperatures. 14 refs., 11 figs.

  3. CORRIGENDUM: Multiscale electrical contact resistance in clustered contact distribution Multiscale electrical contact resistance in clustered contact distribution

    NASA Astrophysics Data System (ADS)

    Lee, Sangyoung; Cho, Hyun; Jang, Yong Hoon

    2010-06-01

    The authors wish to explain the similarity between some figures in the above paper (hereafter called the JPD paper) and in their other publication, Lee S, Jang Y H and Kim W 2008 Effects of nanosized contact spots on thermal contact resistance J. Appl. Phys.103 074308 (hereafter called the JAP paper), and to explain the differences between the two papers, which are not explicitly stated in the JPD paper. The main objective of the JAP paper is to calculate the thermal contact resistance of the nanosized contact spots in multiscale contact. During the process of multiscale analysis, the thermal conductivity varies, especially below the phonon mean free path. The JPD paper deals with the electrical contact resistance in the multiscale contact distribution with an assumption of constant electrical resistivity, which is known as a different kind of physics in a larger characteristic length scale. There are similar figures in the JPD paper and the JAP paper: figures 6, 7 and 8 in the JPD paper and figures 3, 4 and 5 in the JAP paper. Two research works were performed on the basis of a specific microcontact distribution. In the JAP paper, the scale of the contact distribution is in the range of the phonon mean free path of Si, which is a very small size of contact distribution. In the JPD paper, the scale of contact distribution is in the continuum scale, which is larger than the phonon mean free path. In addition, due to the characteristics of a fractal surface which repeatedly generates a similar shape of contact distribution in the different length scales, the shape of contact distribution looks similar, but the total sizes of domain in the JPD and JAP figures are different. The projected areas L × L of fractal surface of the JAP paper and JPD paper are 10 μm × 10 μm and 10 mm × 10 mm, respectively. The length scale is already stated in the JAP paper, but not in the JPD paper. Thus, we have to state that the figures were adapted from the JAP paper without clear

  4. 3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors.

    PubMed

    Kim, Jiye; Lee, So Hee; Kim, Haekyoung; Kim, Se Hyun; Park, Chan Eon

    2015-07-01

    We successfully fabricated high performance bottom-contact organic field-effect transistors (OFETs) using silver nanowire (AgNW) network electrodes by spray deposition. The synthesized AgNWs have the dimensions of 40-80 nm in diameter and 30-80 μm in length and are randomly distributed and interconnected to form a 3D hollow framework. The AgNWs networks, deposited by spray coating, yield an average optical transmittance of up to 88% and a sheet resistance as low as 10 ohm/sq. For using AgNWs as source/drain electrodes of OFETs with a bottom-contact configuration, the large contact resistance at the AgNWs/organic channel remains a critical issue for charge injection. To enhance charge injection, we fabricate semiconductor crystals on the AgNW using an adsorbed residual poly(N-vinylpyrrolidone) layer. The resulting bottom-contact OFETs exhibit high mobility up to 1.02 cm(2)/(V s) and are similar to that of the top-contact Au electrodes OFETs with low contact resistance. A morphological study shows that the pentacene crystals coalesced to form continuous morphology on the nanowires and are highly interconnected with those on the channel. These features contribute to efficient charge injection and encourage the improvement of the bottom-contact device performance. Furthermore, the large contact area of individual AgNWs spreading out to the channel at the edge of the electrode also improves device performance.

  5. Reflectivity studies on adsorbed block copolymers under shear

    SciTech Connect

    Smith, G.S.; Wages, S.; Baker, S.M.; Toprakcioglu, C.; Hadziioannou, G.

    1994-12-01

    The authors report neutron reflectivity data on (poly)styrene-(poly)ethylene oxide (PS-PEO) diblock copolymers adsorbed onto quartz from the selective solvent cyclohexane (a non-solvent for PEO and a poor solvent for PS). The PEO ``anchor block`` adsorbs strongly to form a thin layer on the quartz substrate, while the deuterated PS chains dangle into the solvent. They find that under static conditions the density profile of the PS block in a poor solvent can be well described by a Schultz function which is indicative of a polymer ``mushroom.`` Furthermore, they have studied the same system under shear at shear rates from 0--400s{sup {minus}1}. They find that there is a dramatic increase in the thickness of the PS layer under shear in cyclohexane and that the relaxation time from the shear-on profile back to the static profile is on the order of several days.

  6. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    SciTech Connect

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.

  7. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127

  8. Modeling diffusion of adsorbed polymer with explicit solvent.

    PubMed

    Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve

    2007-05-25

    Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.

  9. Monte Carlo lattice models for adsorbed polymer conformation

    NASA Technical Reports Server (NTRS)

    Good, B. S.

    1985-01-01

    The adhesion between a polymer film and a metal surface is of great technological interest. However, the prediction of adhesion and wear properties of polymer coated metals is quite difficult because a fundamental understanding of the polymer surface interaction does not yet exist. A computer model for the conformation of a polymer molecule adsorbed on a surface is discussed. The chain conformation is assumed to be described by a partially directed random walk on a three dimensional simple cubic lattice. An attractive surface potential is incorporated into the model through the use of a random walk step probability distribution that is anisotropic in the direction normal to the attractive surface. The effects of variations in potential characteristics are qualitatively included by varying both the degree of anisotropy of the step distribution and the range of the anisotropy. Polymer conformation is characterized by the average end to end distance, average radius of gyration, and average number of chain segments adsorbed on the surface.

  10. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    DOE PAGES

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites thatmore » is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.« less

  11. Adsorbate-induced curvature and stiffening of graphene.

    PubMed

    Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H

    2015-01-14

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  12. Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems

    PubMed Central

    Yang, Y. T.; Callegari, C.; Feng, X. L.; Roukes, M. L.

    2013-01-01

    Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption–desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems. PMID:21388120

  13. Nanorheology of adsorbed polymer chains immersed in pure solvent.

    PubMed

    Lapique, Fabrice; Montfort, Jean Pierre; Derail, Christophe

    2015-06-01

    Long linear chains of polybutadiene are adsorbed on the two surfaces of a surface force apparatus and immersed in pure tetradecane. The hydrodynamic force was measured by drainage experiments and by frequency sweeps at constant distances. We related the hydrodynamic thickness to the chain dimension. The complex modulus encompasses the shear modulus and, at distances lower than the hydrodynamic thickness, a compression modulus. The compression term was related to the static force which appears when the two adsorbed layers are overlapped. The complex shear modulus was interpreted by a two-components hydrodynamic model proposed by P. Sens et al. We first complemented the theoretical model. Then, our experimental data fit the proposed viscoelastic expressions in the entire range of distances. The storage modulus is supposed to be affected by a residue of free chains and by the dispersion of the loop lengths. PMID:26087919

  14. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-01

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance.

  15. Topological features of engineered arrays of adsorbates in honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Gonzalez-Arraga, Luis A.; Lado, J. L.; Guinea, Francisco

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin-orbit coupling. The combination of magnetism and spin-orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin-orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin-orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley-Hall effect.

  16. Forces and pressures in adsorbing partially directed walks

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Prellberg, T.

    2016-05-01

    Polymers in confined spaces lose conformational entropy. This induces a net repulsive entropic force on the walls of the confining space. A model for this phenomenon is a lattice walk between confining walls, and in this paper a model of an adsorbing partially directed walk is used. The walk is placed in a half square lattice {{{L}}}+2 with boundary \\partial {{{L}}}+2, and confined between two vertical parallel walls, which are vertical lines in the lattice, a distance w apart. The free energy of the walk is determined, as a function of w, for walks with endpoints in the confining walls and adsorbing in \\partial {{{L}}}+2. This gives the entropic force on the confining walls as a function of w. It is shown that there are zero force points in this model and the locations of these points are determined, in some cases exactly, and in other cases asymptotically.

  17. Dynamics in Adsorbed Homopolymer Layers: Entanglements and Osmotic Effects

    NASA Astrophysics Data System (ADS)

    Santore, Maria; Mubarekyan, Ervin

    2001-03-01

    This work seeks the dynamic mechanism for the exchange of homopolymer chains between a dilute solution and a layer adsorbed at the solid-liquid interface. With the model system of polyethylene oxide (PEO) adsorbed onto silica from aqueous solution, it is shown that the behavior of saturated interfaces compared to starved layers reveals an interesting trend: The characteristic self exchange time is dependent only on coverage, not molecular weight, for chains of 100K or less. Therefore, it is concluded that classical entanglements do not play a role below 100K. For all molecular weights, when the coverage of 0.2 mg/m2 is exceeded, the interfacial dynamics become slow. At lower coverages, chains lie flat in train, with no loops or tails, and no lateral interactions either. The onset of slow dynamics at higher coverages may be a result of both surface crowding and the resistance of loops and tails to new chains approaching the layer.

  18. Adsorbate-Induced Curvature and Stiffening of Graphene

    PubMed Central

    2014-01-01

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon–carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  19. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    NASA Astrophysics Data System (ADS)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  20. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  1. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines.

  2. Use of waste materials--Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions.

    PubMed

    Mittal, Alok; Kurup Krishnan, Lisha; Gupta, Vinod K

    2005-01-31

    Bottom Ash, a power plan t waste material and De-Oiled Soya, an agriculture waste product were successfully utilized in removing trisodium 2-hydroxy-1-(4-sulphonato-1-naphthylazo)naphthalene-3,6-disulphonate--a water-soluble hazardous azo dye (Amaranth). The paper incorporates thermodynamic and kinetic studies for the adsorption of the dye on these two waste materials as adsorbents. Characterization of each adsorbent was carried out by I.R. and D.T.A. curves. Batch adsorption studies were made by measuring effects of pH, adsorbate concentration, sieve size, adsorbent dosage, contact time, temperature etc. Specific rate constants for the processes were calculated by kinetic measurements and a first order adsorption kinetics was observed in each case. Langmuir and Freundlich adsorption isotherms were applied to calculate thermodynamic parameters. The adsorption on Bottom Ash takes place via film diffusion process at lower concentrations and via particle diffusion process at higher concentrations, while in the case of De-Oiled Soya process only particle diffusion takes place in the entire concentration range.

  3. From cellular doses to average lung dose.

    PubMed

    Hofmann, W; Winkler-Heil, R

    2015-11-01

    Sensitive basal and secretory cells receive a wide range of doses in human bronchial and bronchiolar airways. Variations of cellular doses arise from the location of target cells in the bronchial epithelium of a given airway and the asymmetry and variability of airway dimensions of the lung among airways in a given airway generation and among bronchial and bronchiolar airway generations. To derive a single value for the average lung dose which can be related to epidemiologically observed lung cancer risk, appropriate weighting scenarios have to be applied. Potential biological weighting parameters are the relative frequency of target cells, the number of progenitor cells, the contribution of dose enhancement at airway bifurcations, the promotional effect of cigarette smoking and, finally, the application of appropriate regional apportionment factors. Depending on the choice of weighting parameters, detriment-weighted average lung doses can vary by a factor of up to 4 for given radon progeny exposure conditions.

  4. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  5. Development of the Molecular Adsorber Coating for Spacecraft and Instrument Interiors

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin

    2011-01-01

    On-orbit Molecular Contamination occurs when materials outgas and deposit onto very sensitive interior surfaces of the spacecraft and instruments. The current solution, Molecular Adsorber Pucks, has disadvantages, which are reviewed. A new innovative solution, Molecular Adsorber Coating (MAC), is currently being formulated, optimized, and tested. It is a sprayable alternative composed of Zeolite-based coating with adsorbing properties.

  6. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    NASA Astrophysics Data System (ADS)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  7. MOFs as adsorbents for low temperature heating and cooling applications.

    PubMed

    Henninger, Stefan K; Habib, Hesham A; Janiak, Christoph

    2009-03-01

    The 3D metal-organic framework (MOF) (3)(infinity){[Ni(3)(mu(3)-btc)(2)(mu(4)-btre)(2)(mu-H(2)O)(2)]. approximately 22H(2)O} is found to be a reversibly dehydratable-hydratable water-stable MOF material with a large loading spread of 210 g/kg as a candidate for solid adsorbents in heat transformation cycles for refrigeration, heat pumping, and heat storage. PMID:19206233

  8. Carbonaceous adsorbents in cryosorption pump applications; Future trends

    NASA Astrophysics Data System (ADS)

    Tripathi, S. Vijai; Kasthurirengan, S.; Udgata, S. S.; Gangradey, R.; Krishnamoorthy, V.; Surendra, Bhati

    2013-06-01

    Use of granular activated carbon in commercial cryosorption pumps is now, more or less well established. The development of advanced polymeric precursor based activated carbon adsorbents in various forms has opened a flood gate of possibilities vis-a-vis improvements in performance of cryosorption pumps, both in rate of adsorption and their ultimate capacity. This paper gives a summary of indigenous efforts towards this direction.

  9. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  10. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  11. Silver diffusion over silicon surfaces with adsorbed tin atoms

    SciTech Connect

    Dolbak, A. E. Olshanetskii, B. Z.

    2015-02-15

    Silver diffusion over the (111), (100), and (110) surfaces of silicon with preliminarily adsorbed tin atoms is studied by Auger electron spectroscopy and low-energy electron diffraction. Diffusion is observed only on the surface of Si(111)-2√3 × 2√3-Sn. The diffusion mechanism is established. It is found that the diffusion coefficient depends on the concentration of diffusing atoms. The diffusion coefficient decreases with increasing silver concentration, while the activation energy and the preexponential factor increase.

  12. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    SciTech Connect

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  13. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  14. Incorporation of molecular adsorbers into future Hubble Space Telescope instruments

    NASA Astrophysics Data System (ADS)

    Thomson, Shaun R.; Hansen, Patricia A.; Chen, Philip T.; Triolo, Jack J.; Carosso, Nancy P.

    1996-11-01

    The Hubble Space Telescope (HST) has been designed to accommodate changeout and/or repair of many of the primary instruments and subsystem components, in an effort to prolong the useful life of this orbiting observatory. In order to achieve the science goals established for this observatory, many HST instruments must operate in regimes that are greatly influenced by the presence of on-orbit propagated contaminants. To insure that the required performance of each instrument is not compromised due to these contaminant effects, great efforts have been made to minimize the level of on-orbit contamination. These efforts include careful material selection, performing extensive pre-flight vacuum bakeouts of parts and assemblies, assuring instrument assembly is carried out in strict cleanroom environments, performing precision cleaning of various parts, and most recently, the incorporation of a relatively new technology -- molecular adsorbers -- into the basic design of future replacement instruments. Molecular adsorbers were included as part of the wide field/planetary camera 2 (WFPC-2) instrument, which was integrated into the HST during the servicing mission 1 (SM1) in 1993. It is generally recognized that these adsorbers aided in the reductio of on-orbit contamination levels for the WFPC-2 instrument. This technology is now being implemented as part of the basic design for several new instruments being readied for the servicing mission 2 (SM2), scheduled for early 1997. An overview of the concept, design, applications, and to-date testing and predicted benefits associated with the molecular adsorbers within these new HST instruments are presented and discussed in this paper.

  15. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Galbičková, Blanka; Ševčíková, Janka; Soldán, Maroš

    2014-12-01

    The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  16. [Activity of methane-oxidizing bacteria in the adsorbed state].

    PubMed

    Nesterov, A I; Nazarenko, A V

    1975-01-01

    Adsorption of pure cultures of methane oxidizing bacteria, Methylosinus trichosporium 20 and Methylococcus ucrainicus 21, on glass and coal was studied; the former strain was sorbed on both sorbents, the latter strain was sorbed on coal but not on glass. The rate of methane oxidation by the cells of adsorbed microorganisms was higher than in the case of free cells, and increased with a decrease in dimensions of the sorbent particles. PMID:1207502

  17. Revisiting mask contact hole measurements

    NASA Astrophysics Data System (ADS)

    Higuchi, Masaru; Gallagher, Emily; Ceperley, Daniel; Brunner, Timothy; Bowley, Reg; McGuire, Anne

    2006-10-01

    Contact holes represent one of the biggest critical dimension (CD) mask metrology challenges for 45nm technology mask development. The challenge is a consequence of both wafer and mask sensitivities. Large mask error factors and the small process windows found when contact holes are imaged on wafers impose very tight mask specifications for CD uniformity. The resultant CD error budget leaves little room for mask metrology. Current advanced mask metrology deploys a CD-SEM to characterize the mask contact hole CD uniformity. Measuring a contact hole is complex since it is inherently two-dimensional and is not always well-characterized by one-dimensional x- and y-axis measurements. This paper will investigate contact metrics such as line edge roughness (LER), region of interest (ROI) size, area, and CD sampling methods. The relative merits of each will be explored. Ultimately, an understanding of the connection between what is physically measured on the mask and what impacts wafer imaging must be understood. Simulations will be presented to explore the printability of a contact hole's physical attributes. The results will be summarized into a discussion of optimal contact hole metrology for 45nm technology node masks.

  18. Elastohydrodynamic lubrication of elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1981-01-01

    The determination of the minimum film thickness within contact is considered for both fully flooded and starved conditions. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. The fully flooded results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. These results are applied to materials of high elastic modulus (hard EHL), such as metal, and to materials of low elastic modulus(soft EHL), such as rubber. In addition to the film thickness equations that are developed, contour plots of pressure and film thickness are given which show the essential features of elastohydrodynamically lubricated conjunctions. The crescent shaped region of minimum film thickness, with its side lobes in which the separation between the solids is a minimum, clearly emerges in the numerical solutions. In addition to the 3 presented for the fully flooded results, 15 more cases are used for hard EHL contacts and 18 cases are used for soft EHL contacts in a theoretical study of the influence of lubricant starvation on film thickness and pressure. From the starved results for both hard and soft EHL contacts, a simple and important dimensionless inlet boundary distance is specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Contour plots of pressure and film thickness in and around the contact are shown for conditions.

  19. ZnO nanowires with Au contacts characterised in the as-grown real device configuration using a local multi-probe method

    NASA Astrophysics Data System (ADS)

    Lord, Alex M.; Walton, Alex S.; Maffeis, Thierry G.; Ward, Michael B.; Davies, Peter; Wilks, Steve P.

    2014-10-01

    We demonstrate here a method using a multi-probe UHV instrument to isolate and measure individual metal contacts controllably fabricated on the tips of free standing ZnO nanowires (NWs). The measurements show Au can form reliable Ohmic and rectifying contacts by exercising control over the surface properties. In the as-grown state the Au contacts display low-resistance characteristics which are determined by the adsorbed species and defects on the NW surface. Subjecting the NWs to an oxidising agent (H2O2) increases the surface potential barrier creating more rectifying contacts. These developments are crucial for controllable NW array devices.

  20. Characterization of carbon cryogel microspheres as adsorbents for VOC.

    PubMed

    Yamamoto, Takuji; Kataoka, Sho; Ohmori, Takao

    2010-05-15

    Adsorption characteristics of carbon cryogel microspheres (CC microspheres) with controlled porous structure composed of mesopores (2 nmadsorbents for a volatile organic compound (VOC). The amount of toluene, as a model VOC, adsorbed on the CC microspheres could be changed by varying either the size of the mesopores or the volume of the micropores. The peak temperature of the temperature-programmed desorption profiles of toluene from the CC microspheres was higher than that from granular activated carbon (GAC) with numerous micropores, indicating that toluene is adsorbed more strongly on CC microspheres than on GAC. To permit the practical use of CC microspheres, the adsorption characteristic of moisture on CC microspheres and GAC were evaluated. The effect of adsorption of moisture on the gas permeation property of an adsorption module prepared from the CC microspheres was also examined. PMID:20042276

  1. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  2. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  3. Heterogeneous Ozonolysis of Surface Adsorbed Lignin Pyrolysis Products

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.

    2012-12-01

    Biomass combustion releases semi-volatile organic compounds into the troposphere, including many phenols and methoxyphenols as the result of lignin pyrolysis. Given their relatively low vapor pressures, these compounds readily adsorb on inorganic and organic aerosol substrates where they may alter aerosol properties and undergo heterogeneous chemistry. We use infrared spectroscopy (DRIFTS and ATR-FTIR) to monitor the adsorption and subsequent heterogeneous ozonolysis of model lignin pyrolysis products, including catechol, eugenol, and 4-propylguaiacol. Ozonolysis reaction kinetics were compared on various inorganic substrates - such as Al2O3 and NaCl, which serve as mineral and sea salt aerosol substrates, respectively - and as a function of ozone concentration and relative humidity. Following in situ FTIR analysis, the adsorbed organics were extracted and analyzed using gas chromatography-mass spectroscopy to identify reaction products and quantify product branching ratios. Ozonolysis of catechol and 4-propylguaiacol readily resulted in ring cleavage forming dicarboxylic acids (e.g., muconic acid). Eugenol ozonolysis proceeded rapidly at the alkene side chain producing homovanillic acid and homovanillin in an approximate 2:1 branching ratio at 0% RH; ring cleavage was also observed. For all lignin pyrolysis products, heterogeneous ozonolysis was faster on NaCl versus Al2O3. Implications for the atmospheric chemistry of semi-volatile methoxylphenols adsorbed on aerosol substrates will be discussed.

  4. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  5. Fluctuations in the number of irreversibly adsorbed particles

    NASA Astrophysics Data System (ADS)

    Adamczyk, Zbigniew; Szyk-Warszyńska, Lilianna; Siwek, B.; Weroński, P.

    2000-12-01

    Fluctuations in the number of colloid particles adsorbed irreversibly under pure diffusion transport conditions were determined as a function of surface density and ionic strength of the suspension. The experiments were carried out for monodisperse polystyrene latex particles of micrometer size range adsorbing irreversibly at mica surface. The surface density of adsorbed particles at various areas was determined using the direct microscope observation method. A new experimental cell was used enabling in situ observations of particles adsorption under conditions of negligible gravity effects. It was found that the particle density fluctuations for high ionic strength were in a good agreement with the theoretical results derived from the random sequential adsorption (RSA) model. Also, the theoretical results stemming from the equilibrium scaled particle theory reflected the experimental data satisfactorily. For lower ionic strength a deviation from the hard sphere behavior was experimentally demonstrated. This effect due to the repulsive electrostatic interactions was interpreted in terms of the effective hard particle concept. The universal dependence of variance on particle density obtained in this way was found in a good agreement with the RSA model for all ionic strength. These results proved that fluctuations in particle density of monolayer formed under diffusional conditions differ fundamentally from these obtained under ballistic transport conditions.

  6. Vanadium removal by metal (hydr)oxide adsorbents.

    PubMed

    Naeem, A; Westerhoff, P; Mustafa, S

    2007-04-01

    Vanadium is listed on the United States Environment Protection Agency (USEPA) candidate contaminant list # 2 (CCL2), and regulatory guidelines for vanadium exist in some US states. The USEPA requires treatability studies before making regulatory decisions on CCL2 contaminants. Previous studies have examined vanadium adsorption onto some metal hydroxides but not onto commercially available adsorbents. This paper briefly summarizes known vanadium occurrence in North American groundwater and assesses vanadium removal by three commercially available metal oxide adsorbents with different mineralogies. GTO (Dow) is TiO2 based and E-33 (Seven Trents) and GFH (US Filter) are iron based. Preliminary vanadate adsorption kinetics onto GFH, E-33 and GTO has been studied and the homogenous surface diffusion model (HSDM) is used to describe the adsorption kinetics data. The effects of pH, vanadium concentration, and volume/mass ratio are assessed. Vanadium adsorption decreases with increasing pH, with maximum adsorption capacities achieved in at pH 3-4. Results indicate that all adsorbents remove vanadium; GFH has the highest adsorption capacity, followed by GTO and E-33. Data are best fit with the Langmuir model rather than Freundlich isotherms. Both the sorption maxima (Xm) and binding energy constant (b) follow the trend GFH>GTO>E-33. Naturally occurring vanadium is also removed from Arizona ground water in rapid small-scale column tests (RSSCTs). Metal oxide adsorption technologies currently used for arsenic removal may also remove vanadium but not always with the same effectiveness.

  7. Cell membrane-mimicking coating for blood-contacting polyurethanes.

    PubMed

    Butruk-Raszeja, Beata; Trzaskowski, Maciej; Ciach, Tomasz

    2015-01-01

    The aim of the present work was to develop simple modification technique for polyurethanes (PUs) intended for use in blood-contacting implants (vascular grafts, heart prosthesis, ventricular assist devices). PU surface was modified with soybean-derived phosphatidylcholine (PC) via one-step dip coating technique. In order to evaluate blood compatibility of the obtained materials, samples were contacted with human blood under static and arterial flow-simulated conditions. The PC-modified surfaces were thoroughly characterized and tested for fibrinogen resistance, the ability to resist platelet adhesion and activation, hemolysis percentage and plasma recalcification time. Results demonstrated significant, more than three-fold reduction in the amount of fibrinogen adsorbed to PC-modified materials as compared to non-modified PU. Analysis of the samples' surface after incubation with blood showed high reduction in platelet adhesion. The results were confirmed by analysis of blood samples collected after shear-stress tests--the percentage of free (non-aggregated) platelets remaining in blood samples contacted with PC-coated materials exceeded 70%. The same parameter measured for non-modified PU was significantly lower and equaled 28%.

  8. Cell membrane-mimicking coating for blood-contacting polyurethanes.

    PubMed

    Butruk-Raszeja, Beata; Trzaskowski, Maciej; Ciach, Tomasz

    2015-01-01

    The aim of the present work was to develop simple modification technique for polyurethanes (PUs) intended for use in blood-contacting implants (vascular grafts, heart prosthesis, ventricular assist devices). PU surface was modified with soybean-derived phosphatidylcholine (PC) via one-step dip coating technique. In order to evaluate blood compatibility of the obtained materials, samples were contacted with human blood under static and arterial flow-simulated conditions. The PC-modified surfaces were thoroughly characterized and tested for fibrinogen resistance, the ability to resist platelet adhesion and activation, hemolysis percentage and plasma recalcification time. Results demonstrated significant, more than three-fold reduction in the amount of fibrinogen adsorbed to PC-modified materials as compared to non-modified PU. Analysis of the samples' surface after incubation with blood showed high reduction in platelet adhesion. The results were confirmed by analysis of blood samples collected after shear-stress tests--the percentage of free (non-aggregated) platelets remaining in blood samples contacted with PC-coated materials exceeded 70%. The same parameter measured for non-modified PU was significantly lower and equaled 28%. PMID:25234122

  9. Hanford Dose Overview Program: standardized methods and data for Hanford environmental dose calculations. Rev. 1

    SciTech Connect

    McCormack, W.D.; Ramsdell, J.V.; Napier, B.A.

    1984-05-01

    This document serves as a guide to Hanford contractors for obtaining or performing Hanford-related environmental dose calculations. Because environmental dose estimation techniques are state-of-the-art and are continually evolving, the data and standard methods presented herein will require periodic revision. This document is scheduled to be updated annually, but actual changes to the program will be made more frequently if required. For this reason, PNL's Occupational and Environmental Protection Department should be contacted before any Hanford-related environmental dose calculation is performed. This revision of the Hanford Dose Overview Program Report primarily reflects changes made to the data and models used in calculating atmospheric dispersion of airborne effluents at Hanford. The modified data and models are described in detail. In addition, discussions of dose calculation methods and the review of calculation results have been expanded to provide more explicit guidance to the Hanford contractors. 19 references, 30 tables.

  10. Contact Pressure and Shear Stress Analysis on Conforming Contact Problem

    NASA Astrophysics Data System (ADS)

    Nagatani, Haruo; Imou, Akitoshi

    Two methods to solve a conforming contact problem are proposed. First method is general and can be applicable to the contact case between elastic arbitrary shape bodies. For verification FEA is performed on the convex-concave sphere contact, and the result of this method is well corresponding to the FEA result. However, the accuracy deteriorates when the mesh aspect ratio is extremely large. This phenomenon is caused by the usage of numerical integration for the calculation of influence coefficient. The second method is devised to avoid this problem, while this improved method is applicable only to the case when the contact area can be considered to be on a cylinder surface. By using this method, the contact pressure can be obtained without the deterioration even in the case of edge load occurring between ball bearing race shoulder and ball. The results of the contact pressure and the shear stress that is necessary for bearing life estimation are compared with the FEA result, which showed well correspondence.

  11. [Contact allergy from cigarette smoking].

    PubMed

    Rat, J P; Larregue, M

    1987-04-01

    Usually, recorded cases of allergic contact dermatitis to tobacco are confined to occupational diseases and involve agricultural workers and those engaged in manufacturing or selling the products, all of whom are in contact with tobacco leaves. We have found three cases of contact dermatitis caused by cigarette smoke, which are not occupational disease. We do not know what offending agent is, but in one case the patient is allergic to perfume and this may be the factor responsible, since she smokes only flavoured cigarettes. In addition, we need to know whether the allergen only appears during combustion and is therefore present only in cigarette smoke.

  12. Allergic contact dermatitis from ketoconazole.

    PubMed

    Liu, Jing; Warshaw, Erin M

    2014-09-01

    Ketoconazole is a widely used imidazole antifungal agent. True contact allergy to topical ketoconazole is rare, and few cases of patients with contact allergy to ketoconazole have been reported. We present the case of a patient with a history of undiagnosed recurrent dermatitis who developed acute facial swelling and pruritus after using ketoconazole cream and shampoo for the treatment of seborrheic dermatitis. Patch testing revealed true contact allergy to ketoconazole without cross-reactivity to 4 other imidazole antifungals. Review of the patient's medical record suggested that prior incidences of dermatitis might have been due to ketoconazole exposure. When the patient avoided this imidazole agent, the dermatitis resolved. PMID:25279470

  13. Photomaximization test for identifying photoallergic contact sensitizers.

    PubMed

    Kaidbey, K H; Kligman, A M

    1980-04-01

    The photomaximization procedure was designed to identify topical photocontact sensitizers following the format of the maximization test for contact sensitizers. The test agent is applied for 24 hours followed by exposure to three Minimal Erythema Doses (MED) of solar simulated radiation twice weekly for 3 weeks (six exposures) in a panel of 25 white Caucasoids. The subjects are challenged 2 weeks later with 4.0 J/cm2 of long-wave ultraviolet radiation (UV-A). Photocontact sensitization was induced to 3,3'4',5-tetrachlorosalicylanilide (TCSA); dibromosalicylanilide (DBS) but not to tribomosalicylanilide unless the latter was contaminated with DBS. Jadit and bithionol were weak photoallergens. The highest rate of sensitization was given by 6-methylcoumarin, a widely used synthetic fragrance. Hexachlorophene and trichlorocarbanilide were negative. PMID:7389322

  14. Photomaximization test for identifying photoallergic contact sensitizers.

    PubMed

    Kaidbey, K H; Kligman, A M

    1980-04-01

    The photomaximization procedure was designed to identify topical photocontact sensitizers following the format of the maximization test for contact sensitizers. The test agent is applied for 24 hours followed by exposure to three Minimal Erythema Doses (MED) of solar simulated radiation twice weekly for 3 weeks (six exposures) in a panel of 25 white Caucasoids. The subjects are challenged 2 weeks later with 4.0 J/cm2 of long-wave ultraviolet radiation (UV-A). Photocontact sensitization was induced to 3,3'4',5-tetrachlorosalicylanilide (TCSA); dibromosalicylanilide (DBS) but not to tribomosalicylanilide unless the latter was contaminated with DBS. Jadit and bithionol were weak photoallergens. The highest rate of sensitization was given by 6-methylcoumarin, a widely used synthetic fragrance. Hexachlorophene and trichlorocarbanilide were negative.

  15. Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance

    PubMed Central

    Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua

    2014-01-01

    The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g−1 and 3.07 mg g−1, respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4–10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water. PMID:24967645

  16. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  17. States modulation in graphene nanoribbons through metal contacts.

    PubMed

    Archambault, Chloé; Rochefort, Alain

    2013-06-25

    We are reporting the results of density functional calculations of the electronic structure of finite graphene nanoribbons adsorbed on Au, Pd, and Ti electrodes. While the interaction of nanoribbons with the Au contact is more characteristic of a physisorbed state, the adsorption of Pd and Ti involves much stronger state mixing as in chemisorption. Metal-induced gap states, which can potentially short-circuit the device, are clearly revealed for the first time, allowing us to evaluate their penetration length. The evanescence of MIGS is primarily governed by the band gap of the nanoribbon, and we can estimate an acceptable minimal length for an effective transport channel to a few nanometers. Different impacts of the presence of metal-induced gap states on the properties of graphene nanoribbons are discussed in terms of charge transfer and electrostatics.

  18. Pyrite in contact with supercritical water: the desolation of steam.

    PubMed

    Stirling, András; Rozgonyi, Tamás; Krack, Matthias; Bernasconi, Marco

    2015-07-14

    The supercritical water-pyrite interface has been studied by ab initio molecular dynamics simulation. Extreme conditions are relevant in the iron-sulfur world (ISW) theory where prebiotic chemical reactions are postulated to occur at the mineral-water interface. We have investigated the properties of this interface under such conditions. We have come to the conclusion that hot-pressurized water on pyrite leads to an interface where a dry pyrite surface is in contact with the nearby SC water without significant chemical interactions. This picture is markedly different from that under ambient conditions where the surface is fully covered with adsorbed water molecules which is of relevance for the surface reactions of the ISW hypothesis.

  19. Insulator - Insulator Contact Charging as a Function of Pressure

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mucciolo, E. R.; Calle, C. I.

    2006-01-01

    Metal - metal and metal - insulator contact or triboelectric charging are well known phenomena with good theoretical understanding of the charge exchange mechanism. However, insulator - insulator charging is not as well understood. Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. A two-phase equilibrium model based on an ideal gas of singly charged ions in equilibrium with a submonolayer adsorbed film was developed to describe the pressure dependence of the surface charge on an insulator. The resulting charge density equation is an electrostatic version of the Langmuir isotherm.

  20. Pyrite in contact with supercritical water: the desolation of steam.

    PubMed

    Stirling, András; Rozgonyi, Tamás; Krack, Matthias; Bernasconi, Marco

    2015-07-14

    The supercritical water-pyrite interface has been studied by ab initio molecular dynamics simulation. Extreme conditions are relevant in the iron-sulfur world (ISW) theory where prebiotic chemical reactions are postulated to occur at the mineral-water interface. We have investigated the properties of this interface under such conditions. We have come to the conclusion that hot-pressurized water on pyrite leads to an interface where a dry pyrite surface is in contact with the nearby SC water without significant chemical interactions. This picture is markedly different from that under ambient conditions where the surface is fully covered with adsorbed water molecules which is of relevance for the surface reactions of the ISW hypothesis. PMID:26077541