Science.gov

Sample records for adsorbent dose ph

  1. pH Dependence of Adsorbed Fibrinogen Conformation and Its Effect on Platelet Adhesion.

    PubMed

    Hu, Yu; Jin, Jing; Liang, Haojun; Ji, Xiangling; Yin, Jinghua; Jiang, Wei

    2016-04-26

    Quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI) were used to investigate fibrinogen (Fib) adsorption behavior on different surfaces by changing the pH value. Moreover, integrin adhesion to the adsorbed Fibs was studied using DPI. Qualitative and quantitative studies of platelet adhesion to the adsorbed Fibs were performed using scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), and released lactate dehydrogenase (LDH) assay. Experimental results indicated that the conformation and orientation of the absorbed Fibs depended on surface property and pH cycling. For the hydrophilic surface, Fibs adsorbed at pH 7.4 and presented a αC-hidden orientation. As a result, no integrin adhesion was observed, and a small number of platelets were adhered because the αC-domains were hidden under the Fib molecule. By changing the rinsing solution pH from 7.4 to 3.2 and then back to 7.4, the adsorbed Fib orientation became αC-exposed via the transformation of Fib conformation during pH cycling. Therefore, integrin adhesion was more likely to occur, and more platelets were adhered and activated. For the hydrophobic surface, the adsorbed Fibs became more spread and stretched due to the strong interaction between the Fibs and surface. αC-exposed orientation remained unchanged when the rinsing solution pH changed from 7.4 to 3.2 and then back to 7.4. Therefore, a large number of integrins and platelets were adhered to the adsorbed Fibs, and almost all of the adhered platelets were activated. PMID:27035056

  2. A pH- and Temperature-Responsive Magnetic Composite Adsorbent for Targeted Removal of Nonylphenol.

    PubMed

    Zhen, Yang; Ning, Zhuo; Shaopeng, Zhang; Yayi, Dong; Xuntong, Zhang; Jiachun, Shen; Weiben, Yang; Yuping, Wang; Jianqiang, Chen

    2015-11-11

    A pH- and temperature-responsive magnetic adsorbent [poly(N-isopropylacrylamide) grafted chitosan/Fe3O4 composite particles, CN-MCP], was synthesized for the removal of the endocrine-disrupting chemical nonylphenol. According to the structural characteristics (changeable surface-charge and hydrophilic/hydrophobic properties) of the targeted contaminant, CN-MCP was designed owning special structure (pH- and temperature-responsiveness for the changeable surface-charge and adjustable hydrophilic/hydrophobic properties, respectively). Compared to chitosan magnetic composite particles without grafting modification (CS-MCP) and several other reported adsorbents, CN-MCP exhibited relatively high adsorption capacity for nonylphenol under corresponding optimal conditions (123 mg/g at pH 9 and 20 °C; 116 mg/g at pH 5 and 40 °C). Meanwhile, high selectivity of the novel adsorbent in selective adsorption of nonylphenol from bisolute solution of nonylphenol and phenol was found. Effects of grafting ratio of the grafted polymer branches and coexisting inorganic salts on the adsorption were systematically investigated. Moreover, CN-MCP demonstrated desired reusability during 20 times of adsorption-desorption recycling. The high adsorption capacity, high selectivity, and desired reusability aforementioned revealed the significant application potential of CN-MCP in the removal of NP. On the basis of the adsorption behaviors, isotherms equilibrium, thermodynamics and kinetics studies, and instrumental analyses including X-ray photoelectron spectroscopy, BET specific surface area, zeta potential, and static water contact angle measurements, distinct adsorption mechanisms were found under various conditions: charge attraction between CN-MCP and the contaminant, as well as binding between polymeric branches of CN-MCP and nonyls, contributed to the adsorption at pH 9 and 20 °C; whereas hydrophobic interaction between CN-MCP and nonylphenol played a dominant role at pH 5 and 40

  3. Abiotic peptide synthesis of glycine adsorbed on saponite at various pH and dry-thermal conditions

    NASA Astrophysics Data System (ADS)

    Mizuno, Y.; Fuchida, S.; Masuda, H.

    2012-12-01

    Amino acids are the most fundamental substances of life, and the stability of amino acids and the polymerization process on the primitive earth are important to the origin of life. The heat of submarine hydrothermal systems would be the driving force of amino acids polymerization, and the clay minerals in the system may be a field of polymerization. The polymerization of amino acids must be promoted under dry condition, since it is dehydration reaction, which is promoted at high pressure and temperature condition appearing in deep sediments. Adsorption behavior of amino acids on clay minerals depends on pH. In hydrothermal, there are various pH conditions and it would be effective in amino acids behavior. To observe the role of clay minerals and effect of pH on peptide formation under dehydration environments, glycine (Gly) was heated with saponite at 150 degree C, and observed the peptization reaction. Gly was adsorbed on saponite in Gly solutions (100mM), of which the pH was controlled at 3, 8, 12 by HCl and NaOH. After drying in a vacuum oven, the saponite was heated at 150 degree C for 72 hrs. The concentrations of DKP, GlyGly and GlyGlyGly remaining in the saponite controlled at pH3 were 193.39μmol/g, 28.32μmol/g and 22.13μmol/g respectively. Those controlled at pH8 and 12 were 141.22μmol/g, 25.00μmol/g and 18.82μmol/g, and the concentrations of DKP, GlyGly in the saponite controlled at pH12 were 2.47μmol/g, 43.07μmol/g and GlyGlyGly was not detected. The observation indicated that the DKP formation is promoted under acidic condition rather than neutral. GlyGly is abundantly formed under basic condition, although the following peptization to form the trimer does not occur. Polymerization of tri and/or the heavier glycine would be passed through the formation of cyclic peptides. Thus, the condensation of DKP must be important for the polymerization of amino acids as the precursor of life. Also, the pH, acidic to neutral condition, must be important to

  4. Wide pH range for fluoride removal from water by MHS-MgO/MgCO₃ adsorbent: kinetic, thermodynamic and mechanism studies.

    PubMed

    Zhang, Kaisheng; Wu, Shibiao; Wang, Xuelong; He, Junyong; Sun, Bai; Jia, Yong; Luo, Tao; Meng, Fanli; Jin, Zhen; Lin, Dongyue; Shen, Wei; Kong, Lingtao; Liu, Jinhuai

    2015-05-15

    A novel environment friendly adsorbent, micro-nano hierarchical structured flower-like MgO/MgCO3 (MHS-MgO/MgCO3), was developed for fluoride removal from water. The adsorbent was characterized and its defluoridation properties were investigated. Adsorption kinetics fitted well the pseudo-second-order model. Kinetic data revealed that the fluoride adsorption was rapid, more than 83-90% of fluoride could be removed within 30 min, and the adsorption equilibrium was achieved in the following 4 h. The fluoride adsorption isotherm was well described by Freundlich model. The maximum adsorption capacity was about 300 mg/g at pH=7. Moreover, this adsorbent possessed a very wide available pH range of 5-11, and the fluoride removal efficiencies even reached up to 86.2%, 83.2% and 76.5% at pH=11 for initial fluoride concentrations of 10, 20 and 30 mg/L, respectively. The effects of co-existing anions indicated that the anions had less effect on adsorption of fluoride except phosphate. In addition, the adsorption mechanism analysis revealed that the wide available pH range toward fluoride was mainly resulted from the exchange of the carbonate and hydroxyl groups on the surface of the MHS-MgO/MgCO3 with fluoride anions. PMID:25668780

  5. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Sileno, A. P.; deMeireles, J. C.; Dua, R.; Pimplaskar, H. K.; Xia, W. J.; Marinaro, J.; Langenback, E.; Matos, F. J.; Putcha, L.; Romeo, V. D.; Behl, C. R.

    2000-01-01

    PURPOSE: The present study was conducted to evaluate the effects of formulation pH and dose on nasal absorption of scopolamine hydrobromide, the single most effective drug available for the prevention of nausea and vomiting induced by motion sickness. METHODS: Human subjects received scopolamine nasally at a dose of 0.2 mg/0.05 mL or 0.4 mg/0.10 mL, blood samples were collected at different time points, and plasma scopolamine concentrations were determined by LC-MS/MS. RESULTS: Following administration of a 0.2 mg dose, the average Cmax values were found to be 262+/-118, 419+/-161, and 488+/-331 pg/ mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At the 0.4 mg dose the average Cmax values were found to be 503+/-199, 933+/-449, and 1,308+/-473 pg/mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At a 0.2 mg dose, the AUC values were found to be 23,208+/-6,824, 29,145+/-9,225, and 25,721+/-5,294 pg x min/mL for formulation pH 4.0, 7.0, and 9.0, respectively. At a 0.4 mg dose, the average AUC value was found to be high for pH 9.0 formulation (70,740+/-29,381 pg x min/mL) as compared to those of pH 4.0 (59,573+/-13,700 pg x min/mL) and pH 7.0 (55,298+/-17,305 pg x min/mL) formulations. Both the Cmax and AUC values were almost doubled with doubling the dose. On the other hand, the average Tmax, values decreased linearly with a decrease in formulation pH at both doses. For example, at a 0.4 mg dose, the average Tmax values were 26.7+/-5.8, 15.0+/-10.0, and 8.8+/-2.5 minutes at formulation pH 4.0, 7.0, and 9.0, respectively. CONCLUSIONS: Nasal absorption of scopolamine hydrobromide in human subjects increased substantially with increases in formulation pH and dose.

  6. Modeling the movement of a pH perturbation and its impact on adsorbed zinc and phosphate in a wastewater-contaminated aquifer

    USGS Publications Warehouse

    Kent, D.B.; Wilkie, J.A.; Davis, J.A.

    2007-01-01

    Chemical conditions were perturbed in an aquifer with an ambient pH of 5.9 and wastewater-derived adsorbed zinc (Zn) and phosphate (P) contamination by injecting a pulse of amended groundwater. The injected groundwater had low concentrations of dissolved Zn and P, a pH value of 4.5 resulting from equilibration with carbon dioxide gas, and added potassium bromide (KBr). Downgradient of the injection, breakthrough of nonreactive Br and total dissolved carbonate concentrations in excess of ambient values (excess TCO 2) were accompanied by a decrease in pH values and over twentyfold increases in dissolved Zn concentrations above preinjection values. Peak concentrations of Br and excess TCO2 were followed by slow increases in pH values accompanied by significant increases in dissolved P above preinjection concentrations. The injected tracers mobilized a significant mass of wastewater-derived Zn. Reactive transport simulations incorporating surface complexation models for adsorption of Zn, P, hydrogen ions, and major cations onto the aquifer sediments, calibrated using laboratory experimental data, captured most of the important trends observed during the experiment. These include increases in Zn concentrations in response to the pH perturbation, perturbations in major cation concentrations, attenuation of the pH perturbation with transport distance, and increases in alkalinity with transport distance. Observed desorption of P in response to chemical perturbations was not predicted, possibly because of a disparity between the range of chemical conditions in the calibration data set and those encountered during the field experiment. Zinc and P desorbed rapidly in response to changing chemical conditions despite decades of contact with the sediments. Surface complexation models with relatively few parameters in the form of logK values and site concentrations show considerable promise for describing the influence of variable chemistry on the transport of adsorbing

  7. Modeling the movement of a pH perturbation and its impact on adsorbed zinc and phosphate in a wastewater-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Kent, D. B.; Wilkie, J. A.; Davis, J. A.

    2007-07-01

    Chemical conditions were perturbed in an aquifer with an ambient pH of 5.9 and wastewater-derived adsorbed zinc (Zn) and phosphate (P) contamination by injecting a pulse of amended groundwater. The injected groundwater had low concentrations of dissolved Zn and P, a pH value of 4.5 resulting from equilibration with carbon dioxide gas, and added potassium bromide (KBr). Downgradient of the injection, breakthrough of nonreactive Br and total dissolved carbonate concentrations in excess of ambient values (excess TCO2) were accompanied by a decrease in pH values and over twentyfold increases in dissolved Zn concentrations above preinjection values. Peak concentrations of Br and excess TCO2 were followed by slow increases in pH values accompanied by significant increases in dissolved P above preinjection concentrations. The injected tracers mobilized a significant mass of wastewater-derived Zn. Reactive transport simulations incorporating surface complexation models for adsorption of Zn, P, hydrogen ions, and major cations onto the aquifer sediments, calibrated using laboratory experimental data, captured most of the important trends observed during the experiment. These include increases in Zn concentrations in response to the pH perturbation, perturbations in major cation concentrations, attenuation of the pH perturbation with transport distance, and increases in alkalinity with transport distance. Observed desorption of P in response to chemical perturbations was not predicted, possibly because of a disparity between the range of chemical conditions in the calibration data set and those encountered during the field experiment. Zinc and P desorbed rapidly in response to changing chemical conditions despite decades of contact with the sediments. Surface complexation models with relatively few parameters in the form of logK values and site concentrations show considerable promise for describing the influence of variable chemistry on the transport of adsorbing

  8. Simple Evaluation Method of Atmospheric Plasma Irradiation Dose using pH of Water

    NASA Astrophysics Data System (ADS)

    Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Seo, Hyunwoong; Itagaki, Naho; Nakatsu, Yoshimichi; Tanaka, Akiyo; Shiratani, Masaharu

    2015-09-01

    Atmospheric discharge plasmas are promising for agricultural productivity improvements and novel medical therapies, because plasma provides high flux of short-lifetime reactive species at low temperature, leading to low damage to living body. For the plasma-bio applications, various kinds of plasma systems are employed, thus common evaluation methods are needed to compare plasma irradiation dose quantitatively among the systems. Here we offer simple evaluation method of plasma irradiation dose using pH of water. Experiments were carried out with a scalable DBD device. 300 μl of deionized water was prepared into the quartz 96 microwell plate at 3 mm below electrode. The pH value has been measured just after 10 minutes irradiation. The pH value was evaluated as a function of plasma irradiation dose. Atmospheric air plasma irradiation decreases pH of water with increasing the dose. We also measured concentrations of chemical species such as nitrites, nitrates and H2O2. The results indicate our method is promising to evaluate plasma irradiation dose quantitatively.

  9. Study of the adsorption of Cd and Zn onto an activated carbon: Influence of pH, cation concentration, and adsorbent concentration

    SciTech Connect

    Seco, A.; Marzal, P.; Gabaldon, C.; Ferrer, J.

    1999-06-01

    The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overall surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.

  10. Dose validation of PhIP hair level as a biomarker of heterocyclic aromatic amines exposure: a feeding study.

    PubMed

    Le Marchand, Loïc; Yonemori, Kim; White, Kami K; Franke, Adrian A; Wilkens, Lynne R; Turesky, Robert J

    2016-07-01

    Hair measurement of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a promising biomarker of exposure to this carcinogen formed in cooked meats. However, the dose relationship between normal range intake and hair levels and the modulating effects of CYP1A2 metabolism and hair melanin need to be evaluated. We conducted a randomized, cross-over feeding study among 41 non-smokers using ground beef cooked to two different levels of doneness, 5 days a week for 1 month. PhIP was measured by liquid chromatography/mass spectrometry in food (mean low dose = 0.72 µg/serving; mean high dose = 2.99 µg/serving), and change in PhIP hair level was evaluated. CYP1A2 activity was assessed in urine with the caffeine challenge test and head hair melanin was estimated by UV spectrophotometry. We observed a strong dose-dependent increase in hair PhIP levels. This increase was highly correlated with dose received (ρ = 0.68, P < 0.0001). CYP1A2 activity and normalizing for hair melanin did not modify the response to the intervention. Consumption of PhIP at doses similar to those in the American diet results in a marked dose-dependent accumulation of PhIP in hair. Hair PhIP levels may be used as a biomarker of dietary exposure in studies investigating disease risk. PMID:27207666

  11. Geosciences help to protect human health: estimation of the adsorbed radiation doses while flight journeys, as important step to radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Chernov, Anatolii; Shabatura, Olexandr

    2016-04-01

    Estimation of the adsorbed radiation dose while flight journeys is a complex problem, which should be solved to get correct evaluation of equivalent effective doses and radiation risk assessment. Direct measurements of the adsorbed dose in the aircrafts during regional flights (3-10 hours) has shown that the radiation in the plane may increase 10-15 times (to 2-4 mSv/h) compared to the values on the surface of the Earth (0.2-0.5 mSv/h). Results of instrumental research confirmed by the other investigations. It is a fact that adsorbed doses per year while flight journeys are less than doses from medical tests. However, while flight journeys passengers get the same doses as nuclear power plant staff, people in zones of natural radiation anomalies and so should be evaluated. According to the authors' research, flight journeys are safe enough, when solar activity is normal and if we fly under altitude of 18 km (as usual, while intercontinental flights). Most of people travel by plane not so often, but if flight is lasting in dangerous periods of solar activity (powerful solar winds and magnetic field storms), passengers and flight crew can adsorb great amount of radiation doses. People, who spend more than 500 hours in flight journeys (pilots, business oriented persons', government representatives, etc.) get amount of radiation, which can negatively influence on health and provoke diseases, such as cancer. Authors consider that problem actual and researches are still going on. It is revealed, that radiation can be calculated, using special equations. Great part of radiation depends on very variable outer-space component and less variable solar. Accurate calculations of doses will be possible, when we will take into account all features of radiation distribution (time, season of year and exact time of the day, duration of flight), technical features of aircraft and logistics of flight (altitude, latitude). Results of first attempts of radiation doses modelling confirmed

  12. Natural Iraqi palygorskite clay as low cost adsorbent for the treatment of dye containing industrial wastewater.

    PubMed

    Nassir Taha, Dakhil; Sadi Samaka, Isra'a

    2012-01-01

    In this study, natural Iraqi low- cost locally available clay (palygorskite) was studied for its potential use as an adsorbent for removal Congo red from aqueous solutions. Batch type experiments were conducted to study the effect of contact time, initial pH of the dye solution, initial dye concentration, adsorbent dosage, and particle size of adsorbent on adsorption capacity of Congo red. The adsorption occurred very fast initially and attains equilibrium within 60 min. When the effect of pH of solution dye on the yield adsorption has been carried in a range of 2-10, the adsorption obtained was nearly the same with very slightly effect of pH and it was reported that above 49.07 mg/g of Cong red by palygorskite clay occurred in the pH range 2 to 10. It was observed that the removal of Congo red increase with increasing initial dye concentration and adsorbent dose, but, adsorption capacity decrease with increasing adsorbent dose. The adsorption capacity increase with decreasing particle size of adsorbent. The equilibrium adsorption data were interpreted using Langmuir and Freundlich isotherm models. The obtained results revealed that the equilibrium data closely followed both models, but the Langmuir isotherm fitted the data better. The maximum adsorption capacity was found to be 99 mg/g at ambient temperature. Results indicate that Iraqi palygorskite clay could be employed as a low cost alternative to commercial activated carbon in wastewater treatment for the removal of colour and dyes. PMID:23196874

  13. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  14. Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques.

    PubMed

    Pan, Chien-Hsiung; Nair, Nitya; Adams, Robert J; Zink, M Christine; Lee, Eun-Young; Polack, Fernando P; Singh, Manmohan; O'Hagan, Derek T; Griffin, Diane E

    2008-04-01

    Measles remains an important cause of vaccine-preventable child mortality. Development of a low-cost, heat-stable vaccine for infants under the age of 6 months could improve measles control by facilitating delivery at the time of other vaccines and by closing a window of susceptibility prior to immunization at 9 months of age. DNA vaccines hold promise for development, but achieving protective levels of antibody has been difficult and there is an incomplete understanding of protective immunity. In the current study, we evaluated the use of a layered alphavirus DNA/RNA vector encoding measles virus H (SINCP-H) adsorbed onto polylactide glycolide (PLG) microparticles. In mice, antibody and T-cell responses to PLG-formulated DNA were substantially improved compared to those to naked DNA. Rhesus macaques received two doses of PLG/SINCP-H delivered either intramuscularly (0.5 mg) or intradermally (0.5 or 0.1 mg). Antibody and T-cell responses were induced but not sustained. On challenge, the intramuscularly vaccinated monkeys did not develop rashes and had lower viremias than vector-treated control monkeys. Monkeys vaccinated with the same dose intradermally developed rashes and viremia. Monkeys vaccinated intradermally with the low dose developed more severe rashes, with histopathologic evidence of syncytia and intense dermal and epidermal inflammation, eosinophilia, and higher viremia compared to vector-treated control monkeys. Protection after challenge correlated with gamma interferon-producing T cells and with early production of high-avidity antibody that bound wild-type H protein. We conclude that PLG/SINCP-H is most efficacious when delivered intramuscularly but does not provide an advantage over standard DNA vaccines for protection against measles. PMID:18287579

  15. Formation of High-Capacity Protein-Adsorbing Membranes Through Simple Adsorption of Poly(acrylic acid)-Containing Films at low pH

    PubMed Central

    Bhattacharjee, Somnath; Dong, Jinlan; Ma, Yiding; Hovde, Stacy; Geiger, James H; Baker, Gregory L.; Bruening, Merlin L.

    2012-01-01

    Layer-by-layer polyelectrolyte adsorption is a simple, convenient method for introducing ion-exchange sites in porous membranes. This study demonstrates that adsorption of poly(acrylic acid) (PAA)-containing films at pH 3 rather than pH 5 increases the protein-binding capacity of such polyelectrolyte-modified membranes 3- to 6-fold. The low adsorption pH generates a high density of –COOH groups that function as either ion-exchange sites or points for covalent immobilization of metal-ion complexes that selectively bind tagged proteins. When functionalized with nitrilotriacetate (NTA)-Ni2+ complexes, membranes containing PAA/polyethyleneimine (PEI)/PAA films bind 93 mg of histidine6-tagged (His-tagged) ubiquitin per cm3 of membrane. Additionally these membranes isolate His-tagged COP9 signalosome complex subunit 8 from cell extracts and show >90% recovery of His-tagged ubiquitin. Although modification with polyelectrolyte films occurs by simply passing polyelectrolyte solutions through the membrane for as little as 5 min, with low-pH deposition the protein binding capacities of such membranes are as high as for membranes modified with polymer brushes and 2–3 fold higher than for commercially available IMAC resins. Moreover, the buffer permeabilities of polyelectrolyte-modified membranes that bind His-tagged protein are ~30% of the corresponding permeabilities of unmodified membranes, so protein capture can occur rapidly with low pressure drops. Even at a solution linear velocity of 570 cm/h, membranes modified with PAA/PEI/PAA exhibit a lysozyme dynamic binding capacity (capacity at 10% breakthrough) of ~ 40 mg/cm3. Preliminary studies suggest that these membranes are stable under depyrogenation conditions (1 M NaOH). PMID:22468687

  16. The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass.

    PubMed

    El-Hendawy, Abdel-Nasser A

    2009-08-15

    A deep understanding of adsorption of Pb(2+) and Cd(2+) ions from their aqueous solutions on activated carbons and their HNO(3)-oxidized forms has been attempted. These activated carbons were obtained from date pits using different activation methods. Adsorption isotherms of Pb(2+) and Cd(2+) ions were determined from solutions at pH 3 and 5.9. The results revealed that all obtained isotherms exhibited the model fitting according to Langmuir equation. The oxidized samples prone, slightly, to the high affinity isotherm type. The results revealed also that the investigated carbons removed appreciable amounts of lead and cadmium ions which increased by increasing pH of solutions from 3 to 5.9. The adsorption capacity of the investigated carbons also increased by HNO(3) acid surface treatment. The results were discussed in light of a possible chemical modification by nitric acid resulting in the creation of a large number of surface functional oxygen species. This interpretation was confirmed by FTIR investigation. The solution-pH and the surface chemistry of the carbons were found to play a decisive role in the uptake of these heavy metal ions from aqueous solutions rather than the carbon texture characteristics. PMID:19195774

  17. Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-ε-caprolactone based nanoparticles.

    PubMed

    Jesus, Sandra; Soares, Edna; Costa, João; Borchard, Gerrit; Borges, Olga

    2016-05-17

    Among new strategies to increase hepatitis B virus (HBV) vaccination, especially in developing countries, the development of self-administered vaccines is considered one of the most valuable. Nasal vaccination using polymeric nanoparticles (NPs) constitutes a valid approach to this issue. In detail, poly-ε-caprolactone (PCL)/chitosan NPs present advantages as a mucosal vaccine delivery system: the high resistance of PCL against degradation in biological fluids and the mucoadhesive and immunostimulatory properties of chitosan. In vitro studies revealed these NPs were retained in a mucus-secreting pulmonary epithelial cell line and were capable of entering into differentiated epithelial cells. The intranasal (IN) administration of 3 different doses of HBsAg (1.5μg, 5μg and 10μg) adsorbed on a fixed amount of PCL/chitosan NPs (1614μg) generated identical titers of serum anti-HBsAg IgG and anti-HBsAg sIgA in mice nasal secretions. Besides other factors, the NP surface characteristics, particularly, zeta potential differences among the administered formulations are believed to be implicated in the outcome of the immune response generated. PMID:26976502

  18. Electron-stimulated desorption of neutrals from methanol-dosed Al(111) - velocity distributions and adsorbate decomposition determined by nonresonant laser ionization

    NASA Astrophysics Data System (ADS)

    Whitten, J. E.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Jones, P. L.

    1991-01-01

    Electron-stimulated desorption (ESD) of neutrals from methanol-dosed Al(111) is studied using laser ionization at 193 nm coupled with time-of-flight (TOF) mass spectrometry. At room temperature and at very low laser intensity, mass spectrometry of the neutral ESD species indicates the presence of desorbing CH 3O, the methoxy radical. At higher laser intensity, this species is efficiently photolyzed to C + and HCO + fragments. The velocity distributions of these photofragments, indicative of the velocity distribution of the methoxy parent, are measured for methanol dosed onto both clean and pre-oxidized single crystal surfaces. Both of the surfaces yield similar non-Boltzmann distributions with peak velocities of ˜ 900 m/s, corresponding to a peak kinetic energy of ˜ 0.1 eV for the methoxy parent. The similar results may find explanation in terms of oxidation of the Al(111) surface by the initial methanol exposure. The major ionic desorbate observed from this methanol-dosed Al(111) is H +, and its kinetic energy distribution peaks at ˜ 4 eV, a value which is typical of that observed in other ESD studies of ionic desorbates. The order of magnitude difference in kinetic energies between the desorbed ions and neutrals is discussed in terms of possible desorption mechanisms. Neutral ESD, combined with X-ray photoelectron spectroscopy (XPS) is also used as a probe of changes in surface adsorbate composition as a function of temperature and of electron beam dose for methanol/Al(111). The surface concentration of the methoxy species, as monitored via the HCO + photofragment, is found to decrease linearly with increasing temperature. An increase in C + signal at ˜ 470 K is attributed to the formation of a thermal decomposition product with either a higher desorption cross section or a higher laser ionization/fragmentation cross section than the methoxy species. Electron beam damage studies of the methoxy/aluminum system at an electron beam energy of 3 keV give a cross

  19. Removal of lead and zinc ions from water by low cost adsorbents.

    PubMed

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal. PMID:19299083

  20. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    SciTech Connect

    Malfatti, M; Dingley, K; Nowell, S; Ubick, E; Mulakken, N; Nelson, D; Lang, N; Felton, J; Turteltaub, K

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosing for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.

  1. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion.

    PubMed

    Srivastava, Niharika; Thakur, Amit K; Shahi, Vinod K

    2016-01-20

    Phosphorylated cellulose triacetate (CTA)/silica composite adsorbent was prepared by acid catalyzed sol-gel method using an inorganic precursor (3-aminopropyl triethoxysilane (APTEOS)). Reported composite adsorbent showed comparatively high adsorption capacity for Ni(II) in compare with different heavy metal ions (Cu(2+), Ni(2+), Cd(2+) and Pb(2+)). For Ni(II) adsorption, effect of time, temperature, pH, adsorbent dose and adsorbate concentration were investigated; different kinetic models were also evaluated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also estimated and equilibrium adsorption obeyed Langmuir and Freundlich isotherms. Developed adsorbent exhibited about 78.8% Ni(II) adsorption at pH: 6 and a suitable candidate for the removal of Ni(II) ions from wastewater. Further, about 65.5% recovery of adsorbed Ni(II) using EDTA solution was demonstrated, which suggested effective recycling of the functionalized beads would enable it to be used in the treatment of contaminated water in industry. PMID:26572476

  2. Defluoridation of groundwater using brick powder as an adsorbent.

    PubMed

    Yadav, Asheesh Kumar; Kaushik, C P; Haritash, Anil Kumar; Kansal, Ankur; Rani, Neetu

    2006-02-01

    Defluoridation of groundwater using brick powder as an adsorbent was studied in batch process. Different parameters of adsorption, viz. effect of pH, effect of dose and contact time were selected and optimized for the study. Feasible optimum conditions were applied to two groundwater samples of high fluoride concentration to study the suitability of adsorbent in field conditions. Comparison of adsorption by brick powder was made with adsorption by commercially available activated charcoal. In the optimum condition of pH and dose of adsorbents, the percentage defluoridation from synthetic sample, increased from 29.8 to 54.4% for brick powder and from 47.6 to 80.4% for commercially available activated charcoal with increasing the contact time starting from 15 to 120 min. Fluoride removal was found to be 48.73 and 56.4% from groundwater samples having 3.14 and 1.21 mg l(-1) fluoride, respectively, under the optimized conditions. Presence of other ions in samples did not significantly affect the deflouridation efficiency of brick powder. The optimum pH range for brick powder was found to be 6.0-8.0 and adsorption equilibrium was found to be 60 min. These conditions make it very suitable for use in drinking water treatment. Deflouridation capacity of brick powder can be explained on the basis of the chemical interaction of fluoride with the metal oxides under suitable pH conditions. The adsorption process was found to follow first order rate mechanism as well as Freundlich isotherm. PMID:16233952

  3. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  4. In vitro binding of zearalenone to different adsorbents.

    PubMed

    Bueno, Dante J; Di Marco, Liliana; Oliver, Guillermo; Bardón, Alicia

    2005-03-01

    Zearalenone (ZEA) is a potent estrogenic metabolite produced by some Fusarium species. No treatment has been successfully employed to get rid of the ZEA contained in foods. This study was conducted to evaluate the ability (adsorptive power) of five adsorbents--activated carbon, bentonite, talc, sandstone, and calcium sulfate--to trap ZEA in vitro. Activated carbon was the best adsorbent, binding 100% ZEA (pH 3 and 7.3) at 0.1, 0.25, 0.5, and 1% dose levels. Bentonite, talc,and calcium sulfate were less efficient than activated carbon but still could bind ZEA to some extent. On the other hand, sandstone was inactive in the experimental conditions employed. Our results indicate that activated carbon could be a good candidate for detoxification of ZEA present in foods. PMID:15771192

  5. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process. PMID:26711813

  6. Adsorption of phenolic compounds from aqueous solutions using carbon nanoporous adsorbent coated with polymer

    NASA Astrophysics Data System (ADS)

    Anbia, Mansoor; Ghaffari, Arezoo

    2009-09-01

    Phenolic compounds are a widespread class of water pollutants that are known to cause serious human health problems; and the demand for effective adsorbents for the removal of toxic compounds is increasing. In this work adsorption of phenol, resorcinol and p-cresol on mesoporous carbon material (CMK-1) and modified with polyaniline polymer (CMK-1/PANI) has been investigated in attempt to explore the possibility of using nanoporous carbon as an efficient adsorbent for pollutants. It was found that CMK-1/PANI exhibits significant adsorption for phenolic derivatives. Batch adsorption studies were carried out to study the effect of various parameters like adsorbent dose, pH, initial concentration and contact time. From the sorption studies it was observed that the uptake of resorcinol was higher than other phenolic derivatives. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data for phenolic compounds.

  7. Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution.

    PubMed

    Paşka, O; Ianoş, R; Păcurariu, C; Brădeanu, A

    2014-01-01

    A magnetic iron oxide nanopowder (MnP), prepared by a simple and efficient combustion synthesis technique, was tested for the removal of the anionic dye Congo Red (CR) from aqueous solution. The influence of solution pH, adsorbent dose, temperature, contact time and initial dye concentration on the adsorption of CR onto MnP were investigated. It was shown that the CR adsorption was pH dependent and the adsorption mechanism was governed by electrostatic forces. The adsorption kinetic was best described by the pseudo-second-order model and the equilibrium data were well fitted to the Langmuir isotherm, yielding maximum adsorption capacity of 54.46 mg g(-1). The undeniable advantages of the MnP adsorbent such as inexpensive preparation method, good adsorption capacity and easy separation using an external magnetic field, recommend it as a promising candidate for the removal of anionic dyes from polluted water. PMID:24647189

  8. Removal of aqueous nickel (II) using laterite as a low-cost adsorbent.

    PubMed

    Mukherjee, Somnath; Kumar, Sunil; Misra, A K; Acharya, P C

    2006-10-01

    The present paper describes the laboratory study of laterite as a low-cost adsorbent for removal of aqueous nickel (II). At pH 7 and a temperature of 30 degrees C, a sorbent dose of 15 mg/L resulted in approximately 90% removal of nickel (II) from its initial concentration of 10 mg/L. A maximum removal of 98% of the adsorbate was observed with an adsorbent particle size of 210 micro with the above conditions. Batch kinetics results were described by fitting in a Langmuir isotherm. Helffrich's half-time equation (Helffrich, 1962) has been applied to evaluate the adsorption process. It appears that film diffusion would be the rate-limiting step. The effect of pH on the sorption process was carried out to a value of 8.0. The removal rate of nickel was found to be the function of pH of the reaction mixture. The rate of nickel uptake by laterite with the decrease in pH value has been explained on the basis of aqueous-complex formation and the subsequent acid-base dissociation at the solid-solution interface. PMID:17120446

  9. Pharmacodynamic evaluation of intragastric pH and implications for famotidine dosing in the prophylaxis of non-steroidal anti-inflammatory drug induced gastropathy—a proof of concept analysis

    PubMed Central

    Kent, Jeffery D.; Holt, Robert J.; Jung, Donald; Tidmarsh, George F.; Grahn, Amy Y.; Ball, Julie; Peura, David A.

    2014-01-01

    Objective Famotidine given at a dose of 80 mg/day is effective in preventing NSAID-induced gastropathy. The aim of this proof of concept study was to compare twice a day (BID) vs 3-times a day (TID) administration of this total dose of famotidine on intragastric pH in healthy volunteers. Research design and methods Two analyses were undertaken: (1) a 13 subject controlled cross-over 24-h intragastric pH evaluation of the BID and TID administration of 80 mg/day of famotidine, as well as measures for drug accumulation over 5 days (EudraCT, number 2006-002930-39); and (2) a pharmacokinetic (PK)/pharmacodynamic (PD) model which predicted steady-state famotidine plasma concentrations and pH of the two regimens. Results For the cross-over study, gastric pH was above 3.5 for a mean of 20 min longer for TID dosing compared to BID dosing on Day 1. On Day 5, the mean time above this threshold was higher with the BID regimen by ∼25 min. For pH 4, subjects’ gastric pH was above this pH value for a mean of 25 min longer for TID dosing compared to BID dosing on Day 1. For Day 5, the pH was above 4 for ∼45 min longer with the TID regimen as compared with the BID regimen. The mean 24-h gastric pH values when taken in the upright position trended higher for the TID dosing period compared to the BID regimen on Day 1. The steady-state simulation model indicated that, following TID dosing, intragastric pH will be above 3 for 24 h vs 16 h for the BID regimen. There was no evidence for plasma accumulation of famotidine with TID dosing as compared to BID dosing from either analysis. Conclusion The data indicate that overall more time is spent above the acidic threshold pH values when 80 mg/day of famotidine is administered TID vs BID. Key limitations included small study size with a short duration and lack of a baseline examination, but was compensated for by the cross-over and PK/PD modeling design. Although most of the comparisons in this proof of concept study

  10. The gamma dose assessment and pH correlation for various soil types at Batu Pahat and Kluang districts, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Johar, Saffuwan Mohamed; Embong, Zaidi; Tajudin, Saiful Azhar Ahmad

    2016-01-01

    An assessment of absorbed dose and radiation hazard index as well as its relationship with soil pH was performed in this study. The area was chosen due to its variety of soil types from the Alluvial and the Sedentary group. The radioactivity concentration levels and the soil acidity were measured using the Canberra GC3518 high pure germanium with a relative efficiency of 35% at 1.3 MeV and the Takemura Soil pH and Moisture Tester (DM15), respectively. Overall results show the Holyrood-Lunas soil of Alluvial group recorded the highest external terrestrial gamma radiation dose rate (TGRD) of 286.4±37.9 nGy h-1 and radioactivity concentrations of 78.1±8.9 Bq kg-1 (226Ra), 410.5±55.4 Bq kg-1 (232Th) and 56.4±8.8 Bq kg-1 (40K), respectively, while the Peat soil of Alluvial group recorded the lowest TGRD of 4.4±2.7 nGy h-1 and radioactivity concentrations of 4.8±1.7 Bq kg-1 (226Ra), 3.1±1.1 Bq kg-1 (232Th) and 6.1±2.0 Bq kg-1 (40K), respectively. The estimated mean outdoor annual effective dose, the mean radium equivalent activity (Req) and the mean external (Hext) and internal hazard index (Hint) associated with the alluvial and sedentary soil group were evaluated at 0.15 and 0.20 mSv, 280 and 364 Bq kg-1, Hext = 0.78 and 1.01, and Hint = 0.93 and 1.26, respectively. Correlation analysis between 238U, 232Th and 40K with soil pH level for alluvial group was r = +0.68, +0.48 and 0, respectively, while for sedentary soil, the Pearson's, r = -0.30, -0.90 and +0.14, respectively.

  11. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    PubMed

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures. PMID:24044418

  12. Thiophilic adsorbents for RIA and ELISA procedures.

    PubMed

    Oscarsson, S; Chaga, G; Porath, J

    1991-10-25

    Three types of agarose derivatives have been prepared and investigated as adsorbents for radioimmunoassay and ELISA analysis. The analytical systems were evaluated using beta 2 microglobulin as a model. After a competitive reaction between the immunocomponents in solution, the formed immune complexes were adsorbed onto the adsorbent in the presence of 0.5 M potassium sulfate in 0.1 M Tris, pH 7.5. The binding constant between the interaction site on human IgG and the adsorbent 3-(2-pyridylthio)-2-hydroxypropylagarose (Py-S-gel) was determined to be 1.5 x 10(7) M-1 and the binding capacity was 20 mg/ml gel. The immune complex was desorbed by deleting potassium sulfate from the buffer, and only 0.5% of the total applied protein remained after washing the adsorbent with 0.5 M NaOH. The same adsorbent can be used repetitively with different systems. PMID:1940385

  13. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    NASA Astrophysics Data System (ADS)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2015-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model (R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  14. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    NASA Astrophysics Data System (ADS)

    López-Esquivel Kranksith, L.; Negrón-Mendoza, A.; Mosqueira, F. G.; Ramos-Bernal, Sergio

    2010-07-01

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a 60Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  15. Fluoride removal from aqueous solution by Al(III)-Zr(IV) binary oxide adsorbent

    NASA Astrophysics Data System (ADS)

    Zhu, Jiuya; Lin, Xiaoyan; Wu, Pengwei; Zhou, Qiusheng; Luo, Xuegang

    2015-12-01

    In this study, a novel binary oxide adsorbent of Al2O3-ZrO2 was prepared via coprecipitation followed by calcination method, and the calcination temperatures were investigated. The adsorbent was characterized by XRD, EDX and XPS. The batch adsorption experiments were carried out at different parameters, such as solution pH, adsorbent dose, contact time, initial fluoride concentration and adsorption temperature, to evaluate the fluoride removal performance. The results showed that the adsorption isotherm was better described by the linear Langmuir model, and a maximum adsorption capacity was 114.54 mg/g. The adsorption kinetics was well fitted by the linear pseudo-second-order, and the correlation coefficient value (R2) was 0.997. The thermodynamic parameters of ΔH0, ΔS0 and ΔG0 were calculated, which showed that the fluoride adsorption process was spontaneous and exothermic. And the possible adsorption mechanism of the adsorbent for fluoride could involve the ligand-exchange and ion-exchange based on the results in the study.

  16. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  17. Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent.

    PubMed

    Kaur, Kamalpreet; Mor, Suman; Ravindra, Khaiwal

    2016-05-01

    The application of cow dung ash was assessed for the removal of organic contamination from the wastewater using landfill leachate of known Chemical Oxygen Demand (COD) concentration in batch mode. The effect of various parameters like adsorbents dose, time, pH and temperature was investigated. Results indicate that upto 79% removal of COD could be achieved using activated cow dung ash (ACA) at optimum temperature of 30°C at pH 6.0 using 20g/L dose in 120min, whereas cow dung ash (CA) shows 66% removal at pH 8.0 using 20g/L dose, also in 120min. Data also shows that ACA exhibited 11-13% better removal efficiency than CA. COD removal efficiency of various adsorbents was also compared and it was found that ACA offers significantly higher efficiency. Freundlich and Langmuir adsorption isotherms were also applied, which depicts good correlations (0.921 and 0.976) with the experimental data. Scanning electron microscope (SEM) images shows that after the activation, carbon particles disintegrate and surface of particles become more rough and porous, indicating the reason for high adsorption efficiency of ACA. Hence, ACA offers a cost-effective solution for the removal of organic contaminants from the wastewater and for the direct treatment of landfill leachate. PMID:26919299

  18. Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution.

    PubMed

    Indah, S; Helard, D; Sasmita, A

    2016-01-01

    Adsorption of iron from aqueous solution by using maize husk (Zea mays L.) as a low-cost adsorbent was studied. Batch experiments were carried out at ambient temperature, 0.075-0.250 mm of particle size and 100 rpm of agitation speed to determine the influence of initial pH, adsorbent dose, initial concentration and contact time on the removal of iron. Langmuir and Freundlich models were applied to describe the adsorption isotherm of iron by maize husk. The results showed that optimum condition of iron removal were 4 of pH solution, 20 g/L of adsorbent dose, 10 mg/L of Fe concentration and 15 min of contact time of adsorption with 0.499 mg Fe/g maize husk of adsorption capacity. Experimental data fitted well to Langmuir's adsorption equilibrium isotherm within the concentration range studied. This study demonstrated that maize husk, which is an agricultural waste, has potential for iron removal from groundwater or other polluted waters. PMID:27332838

  19. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    NASA Astrophysics Data System (ADS)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  1. Copper loaded on sol-gel-derived alumina adsorbents for phosphine removal.

    PubMed

    Hsu, Jung-Nan; Bai, Hsunling; Li, Shou-Nan; Tsai, Chuen-Jinn

    2010-05-01

    The hydride gas of phosphine (PH3) is commonly used for semiconductor and optoelectronic industries. The local scrubbers must immediately abate it because of its high toxicity. In this study, copper (Cu) loaded on the sol-gel-derived gamma-alumina (Al2O3) adsorbents are prepared and tested to investigate the possibility of PH3 removal and sorbent regeneration. Test results showed that during the breakthrough time of over 99% PH3 removal efficiency, the maximum adsorption capacity of Cu loaded on the sol-gel-derived gamma-Al2O3 adsorbent is 18 mg-PH3/g-adsorbent. This is much higher than that of Cu loaded on the commercial gamma-Al2O3 adsorbent--8.6 mg-PH3/g-adsorbent. The high specific surface area, narrow pore size distribution, and well dispersion of Cu loaded on the sol-gel-derived gamma-Al2O3 could be the reasons for its high PH3 adsorption capacity. The regeneration test shows that Cu loaded on the sol-gel-derived gamma-Al2O3 adsorbent can be regenerated after a simple air purging procedure. The cumulative adsorption capacity for five regeneration cycles is 65 mg-PH3/g-adsorbent, which is approximately double that of the Cu/zeolite adsorbent demonstrated in the literature. PMID:20480862

  2. Adsorbent and adsorbent bed for materials capture and separation processes

    SciTech Connect

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  3. A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution.

    PubMed

    Jiang, Ruixue; Tian, Jiyu; Zheng, Hao; Qi, Jinqiu; Sun, Shujuan; Li, Xiaochen

    2015-05-15

    A new magnetic bioadsorbent, magnetic litchi peel (MLP), was synthesized by coating powdered litchi peel with Fe3O4, and was used for removing Pb(II) from aqueous solutions. The influencing factors, adsorption isotherms, kinetics, and thermodynamics of Pb(II) adsorption by MLP were investigated using batch assays. Optimum Pb(II) adsorption by MLP was achieved using a contact time of 120 min, an adsorbent dose of 5 g/L, and pH of 6.0. The adsorption equilibrium data conformed to the Langmuir isotherm model, yielding a maximum Pb(II) adsorption capacity of 78.74 mg/g. The adsorption kinetics for Pb(II) adsorption by MLP followed a pseudo-second-order model. The thermodynamic results suggested that Pb(II) adsorption by MLP was spontaneous and exothermic. Additionally, the magnetic adsorbent was easily and rapidly separated out of solution under an external magnetic field. PMID:25770959

  4. A scanning tunneling microscopy study of PH 3 adsorption on Si(1 1 1)-7 × 7 surfaces, P-segregation and thermal desorption

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Shen, T.-C.

    2007-04-01

    PH 3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH 3-, PH 2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PH x-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH 3 adsorbs dissociatively on the surface, generating H- and PH 2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH 2 adsorption. The saturation P coverage is ˜0.18 ML. Annealing of PH 3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH 3 at 900 K forms P/Si(1 1 1)- 6√{3} surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- 6√{3} surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.

  5. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.

    PubMed

    Xie, Ruzhen; Chen, Yao; Cheng, Ting; Lai, Yuguo; Jiang, Wenju; Yang, Zhishan

    2016-01-01

    In this work, an effective adsorbent for removing phosphate from aqueous solution was developed from modifying industrial waste--lithium silica fume (LSF). The characterization of LSF before and after modification was investigated using an N2 adsorption-desorption technique (Brunauer-Emmett-Teller, BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Studies were conducted to investigate the effect of adsorbent dose, initial solution pH, contact time, phosphate concentration, and temperature on phosphate removal using this novel adsorbent. The specific surface area for modified LSF (LLSF) is 24.4024 m(2)/g, improved 69.8% compared with unmodified LSF. XRD result suggests that the lanthanum phosphate complex was formed on the surface of LLSF. The maximum phosphate adsorption capacity was 24.096 mg P/g for LLSF, and phosphate removal was favored in the pH range of 3-8. The kinetic data fitted pseudo-second-order kinetic equation, intra-particle diffusion was not the only rate controlling step. The adsorption isotherm results illustrated that the Langmuir model provided the best fit for the equilibrium data. The change in free energy (△G(0)), enthalpy (△H(0)) and entropy (△S(0)) revealed that the adsorption of phosphate on LLSF was spontaneous and endothermic. It was concluded that by modifying with lanthanum, LSF can be turned to be a highly efficient adsorbent in phosphate removal. PMID:27120644

  6. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    NASA Astrophysics Data System (ADS)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  7. Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Tripathy, S.; Panigrahi, M. K.; Equeenuddin, Sk. Md.

    2013-09-01

    The coal fly ash (FA), mainly containing high unburnt carbon was modified by alkali hydrothermal treatment. The modified fly ash (MFA) contains lower amounts of Si and Al and has a higher surface area and pH than the untreated fly ash (FA). The objective of this study is to investigate the potential of MFA as a low cost adsorbent material for the removal of Al, Fe, Ni, Pb, Zn and Mn from acid mine drainage (AMD). The effect of dose, contact time and competing cations on the adsorption of metals was investigated. The results showed that the sorption process onto MFA was initially rapid, but slowed down thereafter. The optimum time for metal uptake was 180 min while the optimum dose of MFA for metal removal was 120 g/L. The adsorption data best fit to the Freundlich isotherm model, which demonstrates that the adsorption process is controlled by the heterogeneous nature of the adsorbent. Adsorption kinetics of Al, Fe, Ni, Pb, and Zn onto MFA follow a pseudo second-order reaction, which implies that chemisorption is the adsorption rate-limiting step for them, while for Mn it is intra-particle diffusion. Preliminary treatment of real mine drainage from Jaintia Hills coalfield indicates that MFA can be an effective and low-cost adsorbent for the treatment of AMD. The desorption data show that most of the metal ions were substantially desorbed in the acidic media, implying that the adsorbent can be regenerated and reused efficiently.

  8. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  9. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  10. SERS effect of isonicotinic acid adsorbed on a copper electrode

    NASA Astrophysics Data System (ADS)

    Noda, Lucia K.; Sala, O.

    1987-11-01

    The surface enhanced Raman spectra (SERS) of isonicotinic acid adsorbed on a copper electrode were obtained in order to verify their dependence on the type of electrolyte solution, pH and applied potential. The results are discussed considering the most characteristic bands of the species (protonated or nonprotonated) in the ring nitrogen and in the carboxylic group. In specifically adsorbed electrolytes (Cl - and mainly I -) the completely protonated species is more stabilized on the electrode surface than it is in non-specifically adsorbed anions (ClO -4), because of the formation of ion pairs with the coadsorbed halide ions. For more negative potentials, even at low pH values, the spectra are characteristic of the nonprotonated species.

  11. Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling

    PubMed Central

    Yazdani, Maryam; Bahrami, Hajir; Arami, Mokhtar

    2014-01-01

    Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable. PMID:24587722

  12. Gold recovery from low concentrations using nanoporous silica adsorbent

    NASA Astrophysics Data System (ADS)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  13. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects.

    PubMed

    Nguyen, Linh; Holland, Jaymes; Mamelok, Richard; Laberge, Marie-Kristine; Grenier, Julie; Swearingen, Dennis; Armas, Danielle; Lacy, Steven

    2015-11-01

    Cabozantinib is a small molecule tyrosine kinase inhibitor that has been approved for the treatment of patients with progressive, metastatic medullary thyroid cancer. Cabozantinib exhibits a pH-dependent solubility profile in vitro. Two phase 1 clinical pharmacology studies were conducted in healthy subjects to evaluate whether factors that may affect cabozantinib solubility and gastric pH could alter cabozantinib bioavailability: a food effect study (study 1) and a drug-drug interaction (DDI) study with the proton pump inhibitor (PPI) esomeprazole (study 2). Following a high-fat meal (study 1), cabozantinib Cmax and AUC were increased (40.5% and 57%, respectively), and the median tmax was delayed by 2 hours. Cabozantinib should thus not be taken with food (patients should not eat for at least 2 hours before and at least 1 hour after administration). In the DDI study (study 2), the 90% confidence intervals (CIs) around the ratio of least-squares means of cabozantinib with esomeprazole versus cabozantinib alone for AUC0-inf were within the 80%-125% limits; the upper 90%CI for Cmax was 125.1%. Because of the low apparent risk of a DDI, concomitant use of PPIs or weaker gastric pH-altering agents with cabozantinib is not contraindicated. PMID:25907407

  15. Removal of chromium from tannery industry effluents with (activated carbon and fly ash) adsorbents.

    PubMed

    Rao, S; Lade, H S; Kadam, T A; Ramana, T V; Krishnamacharyulu, S K G; Deshmukh, S; Gyananath, G

    2007-10-01

    Adsorption is a strong choice for removal operations as it is very simple to recover a high quality product from waste sludge. The efficiency of adsorbents like fly ash and activated carbon are tested based on their performance to remove chrome at various pH values, bed heights, and concentration of adsorbents. The removal efficiency was also tested for wastewater characteristics in a pilot plant in addition to the use of adsorbents. The concentration of chromium was determined by atomic absorption spectrophotometer (Perkin Elmer). The results depicted that the efficiency of removal increased with increasing pH and bed height and decreased with increasing concentration. The removal efficiency with fly ash as an adsorbent was comparatively better than activatedcarbon. Thus, adsorbents can be used for chromium removal from tannery industry effluent. PMID:18476371

  16. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    PubMed

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal. PMID:20120453

  17. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples.

    PubMed

    Anirudhan, T S; Deepa, J R; Christa, J

    2016-04-01

    A novel adsorbent, poly(itaconic acid/methacrylic acid)-grafted-nanocellulose/nanobentonite composite [P(IA/MAA)-g-NC/NB] with multi carboxyl functional groups for the effective removal of Cobalt(II) [Co(II)] from aqueous solutions. The adsorbent was characterized using FTIR, XRD, SEM-EDS, AFM and potentiometric titrations before and after adsorption of Co(II) ions. FTIR spectra revealed that Co(II) adsorption on to the polymer may be due to the involvement of COOH groups. The surface morphological changes were observed by the SEM images. The pH was optimized as 6.0. An adsorbent dose of 2.0g/L found to be sufficient for the complete removal of Co(II) from 100mg/L at room temperature. Pseudo-first-order and pseudo-second-order models were tested to describe kinetic data and adsorption of Co(II) follows pseudo-second-order model. The equilibrium attained at 120min. Isotherm studies were conducted and data were analyzed using Langmuir, Freundlich and Sips isotherm models and best fit was Sips model. Thermodynamic study confirmed endothermic and physical nature of adsorption of the Co(II) onto the adsorbent. Desorption experiments were done with 0.1MHCl proved that without significant loss in performance adsorbent could be reused for six cycles. The practical efficacy and effectiveness of the adsorbent were tested using nuclear industrial wastewater. A double stage batch adsorption system was designed from the adsorption isotherm data of Co(II) by constructing operating lines. PMID:26844393

  18. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow.

    PubMed

    Ghaedi, M; Hekmati Jah, A; Khodadoust, S; Sahraei, R; Daneshfar, A; Mihandoost, A; Purkait, M K

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%. PMID:22306446

  19. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  20. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    PubMed

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. PMID:27420911

  1. [The effect of pH and amount of antacids on bile acid binding in a quasi-natural reflux milieu].

    PubMed

    Kurtz, W; Güldütuna, S; Leuschner, U

    1991-05-01

    Bile acid adsorption may be one therapeutical mechanism of antacids. Little is known about the effect of pH and amount of antacid on bile acid adsorption. Therefore we carried out the following investigations using a lattice [correction of lettuce] layer antacid as a model substance. 5 ml of "quasi-natural reflux milieu" were mixed with 0.5, 1 or 2 ml of hydrotalcite and adjusted to pH 3, 5 or 7. The highest total bile acid adsorption was found at pH 3, the degree of bile acid adsorption correlated with bile acid lipophilicity, i.e. the most lipophilic and toxic bile acids are adsorbed best. High adsorption of lipophilic and particularly toxic bile acids even at low gastric pH may help to explain the good therapeutic effect of low-dose antacids in gastric ulcer. PMID:1950032

  2. Photocurrent response of bacteriorhodopsin adsorbed on bimolecular lipid membranes.

    PubMed

    Seta, P; Ormos, P; d'Epenoux, B; Gavach, C

    1980-06-10

    The photo response of bacteriorhodopsin adsorbed on a bimolecular lipid membrane has been investigated using short-circuit current measurements. The results revealed a biphasic current vs. time curve for the photocurrent at pH values of approx. 7. This phenomenon could be modified by altering either the value of the external applied electrical field or the proton concentration differences. The observed effects of the external applied voltage, pH gradient and lipophilic proton carriers enabled us to conclude that the bacteriorhodopsin can be adsorbed in two different states, which give rise to a pumping effect and a flux of protons in opposite directions. A theoretical analysis of the photocycle in relation to the electrical field which acts on the proton uptake and release is proposed. The main effect of this field is to diminish the pumping rate due to the proton motive force resulting from the creation of space-charge in the vicinity of purple membrane fragments. PMID:7388016

  3. Synthesis of arsenic graft adsorbents in pilot scale

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Aketagawa, Yasushi; Takahashi, Makikatsu; Yoshii, Akihiro; Tsunoda, Yasuhiko; Seko, Noriaki

    2012-08-01

    Synthesis of arsenic (As) adsorbents in pilot scale was carried out with a synthesizing apparatus by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid monomer (PA), which consists of phosphoric acid mono- (50%) and di- (50%) ethyl methacrylate esters onto a nonwoven cotton fabric (NCF), and following chemical modification by contact with a zirconium (Zr) solution. The apparatus which was equipped with reaction tanks, a washing tank and a pump can produce up to 0.3 m×14 m size of the As(V) adsorbent in one reaction. A degree of grafting of 150% was obtained at an irradiation dose of 20 kGy with 5% of PA solution mixed with deionized water for 1 h at 40 °C. Finally, after Zr(IV) was loaded onto a NCF with 5 mmol/L of Zr(IV) solution, the graft adsorbent for the removal of As(V) was achieved in pilot-scale. The adsorbent which was synthesized in pilot scale was evaluated in batch mode adsorption with 1 ppm (mg/l) of As(V) solution for 2 h at room temperature. As a result, the adsorption capacity for As(V) was 0.02 mmol/g-adsorbent.

  4. Electric field cancellation on quartz by Rb adsorbate-induced negative electron affinity

    NASA Astrophysics Data System (ADS)

    Shaffer, James

    2016-05-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces a negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results are important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface. This work was supported by the DARPA Quasar program by a Grant through ARO (60181-PH-DRP) and the AFOSR (FA9550-12-1-0282),.

  5. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2015-10-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  6. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  7. Preliminary results on the immobilisation of radionuclides from waters with specific adsorbers based on phosphate salts.

    PubMed

    Valentini Ganzerli, Maria Teresa; Maggi, Luigino; Crespi Caramella, Vera; Berzero, Antonella

    2004-11-01

    The present paper is focused on the ability of aluminium phosphate (ALPC), magnesium ammonium phosphate (MGPC), magnesium hydrogen phosphate (MGHPC), and calcium hydrogenphosphate (CAHPC), adsorbed onto charcoal, to immobilise actinides by adsorption from natural waters. The objective of this process is to evaluate the environmental pollution due to the actinides. Europium, thorium, protactinium, neptunyl, and uranyl ions were chosen to simulate actinides in the +3, +4, +5 and +6 oxidation state. The adsorbers were tested using natural waters samples. The adsorption trends and capacities were analysed. ALPC and MGPC exhibited a similar behaviour and adsorbed demonstrating that the +5, +4 and +3 actinide ions can be easily immobilised from natural waters and may be successfully used at pH 7-8. MGHPC may be used at a higher pH, whereas CAHPC is effective in the whole pH range. In all cases, thorium, protactinium and europium were strongly PMID:15626242

  8. Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric

    NASA Astrophysics Data System (ADS)

    Sekine, Ayako; Seko, Noriaki; Tamada, Masao; Suzuki, Yoshio

    2010-01-01

    A fibrous adsorbent for Hg ions was synthesized by radiation-induced emulsion graft polymerization of glycidyl methacrylate (GMA) onto a nonwoven cotton fabric and subsequent chemical modification. The optimal pre-irradiation dose for initiation of the graft polymerization of GMA, which minimized the effects of radiation damage on the mechanical strength of the nonwoven cotton fabric, was found to be 10 kGy. The GMA-grafted nonwoven cotton fabric was subsequently modified with ethylenediamine (EDA) or diethylenetriamine (DETA) to obtain a Hg adsorbent. The resulting amine-type adsorbents were evaluated for batch and continuous adsorption of Hg. In batch adsorption, the distribution coefficients of Hg reached 1.9×10 5 and 1.0×10 5 for EDA- and DETA-type adsorbents, respectively. A column packed with EDA-type adsorbent removed Hg from 1.8 ppm Hg solution at a space velocity of 100 h -1, which corresponds to 16,000 times the volume of the packed adsorbent. The adsorbed Hg on the EDA-type adsorbent could be completely eluted by 1 M HCl solution. A microbial oxidative degradation test revealed that the EDA-type adsorbent is biodegradable.

  9. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  10. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-01

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. PMID:24001944

  11. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  12. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  13. Poliovirus concentration from tap water with electropositive adsorbent filters.

    PubMed

    Sobsey, M D; Glass, J S

    1980-08-01

    Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels. PMID:6258472

  14. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta).

    PubMed

    González, Aridane G; Jimenez-Villacorta, Felix; Beike, Anna K; Reski, Ralf; Adamo, Paola; Pokrovsky, Oleg S

    2016-05-01

    The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05-0.06 mmolg(dry)(-1) and a maximal adsorption capacity of 0.93-1.25 mmolg(dry)(-1) for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu(2+) yielded ∼20% of Cu(I) in the form of Cu-S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu(2+). PMID:26852210

  15. Suppression of alveolar macrophage membrane receptor-mediated phagocytosis by model and actual particle-adsorbate complexes. Initial contact with the alveolar macrophage membrane.

    PubMed Central

    Jakab, G J; Risby, T H; Sehnert, S S; Hmieleski, R R; Farrington, J E

    1990-01-01

    Alveolar macrophages were treated with carbon blacks and adsorbates in order to evaluate the biologic effect of adsorbate, adsorbent and adsorbate-adsorbent complexes. Their capacity to phagocytize a subsequent challenge via the Fc-membrane receptor was quantified. Phagocytosis was suppressed in a dose-related manner with increasing concentrations of both carbon blacks and adsorbates. Carbon black N339 covered with 0.5 monolayers of the adsorbates suppressed phagocytosis more than N339 without the adsorbates. Increasing the adsorbate acrolein coverage from 0.5 to greater than 2.0 monolayers suppressed phagocytosis in a dose-related manner. Finally, samples of diesel particulate matter collected from an engine operated on a pure hydrocarbon fuel with various oxidizers, air (PSU #1) and an oxidizer free of nitrogen (N-free) were tested. Treatment of the macrophages with PSU #1 had a negligible effect on phagocytosis whereas the N-free sample suppressed phagocytosis in a dose-related manner. The data show that alveolar macrophage Fc-receptor-mediated phagocytosis is affected by: carbon black and adsorbate identity and concentration, coverage of the carbon black with adsorbates, and the oxidizer used in the generation of particles emitted by a diesel engine. Images FIGURE 6. PMID:2401270

  16. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    PubMed

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. PMID:26706227

  17. Influence of pH and electrolyte composition on adsorption of poliovirus by soils and minerals.

    PubMed Central

    Taylor, D H; Moore, R S; Sturman, L S

    1981-01-01

    The pH and the nature an concentration of simple electrolytes influenced the interaction of poliovirus type 2 with three soils, a sand, and a clay mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent charge properties, as determined by whole-particle microelectrophoresis. Only when the pH was close to or above the critical region was uptake increased with electrolyte concentration. The transition region for all substrates was above pH 7.5 the isoelectric point of the virus. Thus, it appears that when both the virus and substrate are highly negative charged, repulsive electrostatic effects may exceed inherent attractive interactions, thereby inhibiting adsorption. PMID:6274260

  18. EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL

    EPA Science Inventory

    Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...

  19. Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents.

    PubMed

    Franca, Adriana S; Oliveira, Leandro S; Nunes, Anne A; Alves, Cibele C O

    2010-02-01

    Defective coffee press cake, a residue from coffee oil biodiesel production, was evaluated as an adsorbent for removal of basic dyes (methylene blue--MB) from aqueous solutions. The adsorbent was prepared by microwave treatment, providing a significant reduction in processing time coupled to an increase in adsorption capacity in comparison to conventional carbonization in a muffle furnace. Batch adsorption tests were performed at 25 degrees C and the effects of particle size, contact time, adsorbent dosage and initial solution pH were investigated. Adsorption kinetics was better described by a second-order model. The experimental adsorption equilibrium data were fitted to Langmuir, Freundlich and Tempkin adsorption models, with Langmuir providing the best fit. The results presented in this study show that microwave activation presents great potential as an alternative method in the production of adsorbents. PMID:19767204

  20. Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers

    PubMed Central

    Zhang, Yu; Cai, Xiyun; Xiong, Weina; Jiang, Hao; Zhao, Haitong; Yang, Xianhai; Li, Chao; Fu, Zhiqiang; Chen, Jingwen

    2014-01-01

    Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2+, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. PMID:24465975

  1. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  2. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  3. Candida albicans binds to saliva proteins selectively adsorbed to silicone.

    PubMed

    Holmes, Ann R; van der Wielen, Pauline; Cannon, Richard D; Ruske, Dean; Dawes, Patrick

    2006-10-01

    Explanted voice prostheses obtained from 5 patients at the time of prosthesis replacement were consistently colonized by yeast, in particular Candida albicans. A simple, reproducible, in vitro model of C. albicans adherence to saliva-coated voice prosthesis silicone was developed. Whole saliva promoted adherence of C. albicans to silicone in a dose-dependent manner. Saliva rinses from voice prosthesis patients also promoted binding of C. albicans to silicone in vitro (mean adherence 14.9% +/- 2.8% of input C. albicans cells). This was significantly higher than C. albicans adherence to silicone in the absence of saliva (P < .001) or adherence promoted by saliva rinses from healthy volunteers (P < .005). Polyacrylamide gel electrophoresis analysis and a blot overlay adherence assay revealed that certain salivary proteins were selectively adsorbed to silicone and that C. albicans yeast cells adhered specifically to the adsorbed salivary proteins. PMID:16997116

  4. Screening the toxicity of phosphorous-removal adsorbents using a bioluminescence inhibition test.

    PubMed

    Duranceau, Steven J; Biscardi, Paul G; Barnhill, Danielle K

    2016-04-01

    When found in excess, phosphorus (P) has been linked to surface water eutrophication. As a result, adsorbents are now used in P remediation efforts. However, possible secondary toxicological impacts on the use of new materials for P removal from surface water have not been reported. This study evaluated the toxicity of adsorbent materials used in the removal of P from surface water including: fly ash, bottom ash, alum sludge, a proprietary mix of adsorbents, and a proprietary engineered material. Toxicity screening was conducted by performing solid-liquid extractions (SLEs) followed by the bacterial bioluminescence inhibition test with a Microtox® M500. Of the materials tested, the samples extracted at lower pH levels demonstrated higher toxicity. The material exhibiting the most toxic response was the iron and aluminum oxide coated engineered material registering a 66-67% 15-min EC50 level for pH 4 and 5 SLEs, respectively. However, for SLEs prepared at pH 7, toxic effects were not detected for this engineered material. Fly ash and bottom ash demonstrated between 82 and 84% 15-min EC50 level, respectively, for pH 4 SLE conditions. Dried alum sludge and the proprietary mix of adsorbents were classified as having little to no toxicity. PMID:25348491

  5. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  6. Quasiparticle excitations of adsorbates on doped graphene

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Wickenburg, Sebastian; Wong, Dillon; Karrasch, Christoph; Wang, Yang; Lu, Jiong; Omrani, Arash A.; Brar, Victor; Tsai, Hsin-Zon; Wu, Qiong; Corsetti, Fabiano; Mostofi, Arash; Kawakami, Roland K.; Moore, Joel; Zettl, Alex; Louie, Steven G.; Crommie, Mike

    Adsorbed atoms and molecules can modify the electronic structure of graphene, but in turn it is also possible to control the properties of adsorbates via the graphene substrate. In my talk, I will discuss the electronic structure of F4-TCNQ molecules on doped graphene and present a first-principles based theory of quasiparticle excitations that captures the interplay of doping-dependent image charge interactions between substrate and adsorbate and electron-electron interaction effects on the molecule. The resulting doping-dependent quasiparticle energies will be compared to experimental scanning tunnelling spectra. Finally, I will also discuss the effects of charged adsorbates on the electronic structure of doped graphene.

  7. Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury

    NASA Astrophysics Data System (ADS)

    Arencibia, Amaya; Aguado, José; Arsuaga, Jesús M.

    2010-06-01

    The regeneration of thiol-functionalized SBA-15 adsorbents of mercury is presented in this article. The influence of temperature and pH on the adsorption process was studied. The effect due to the presence of complexing agents in aqueous solution on the desorption step was also evaluated. Hg(II) maximum adsorption capacities at different temperatures ranging from 20 °C to 60 °C were obtained and it was found that temperature does not affect the adsorption process. Mercury adsorption capacity was also determined in the presence of HNO 3 and HCl up to 3 M concentration. The comparison of the results showed that whereas hydrochloric acid exhibits an appreciable capacity to regenerate the thiol-functionalized SBA-15 adsorbent, the nitric acid results inefficient. The difference was attributed to the mercury complexing ability of chloride anion. Four complexing compounds, KBr, KSCN, (NH 2) 2CS, and HBr were tested for desorbing mercury in regeneration experiments. All agents were able to remove significant amounts of adsorbed mercury, being hydrobromic acid the complexing compound that yields the best results.

  8. Tunable surface charge of ZnS : Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater

    NASA Astrophysics Data System (ADS)

    Wang, Yongjing; Chen, Dagui; Wang, Yandi; Huang, Feng; Hu, Qichang; Lin, Zhang

    2012-05-01

    A novel environmentally friendly nano-adsorbent is developed by doping Cu+ cations into the lattice of ZnS microspheres. The adsorbent shows selective adsorbability for cationic dyes in low concentrations in wastewater. The adsorbed dye could be successfully eluted with alcohol, resulting in a 1000 fold enrichment of the dye solution.A novel environmentally friendly nano-adsorbent is developed by doping Cu+ cations into the lattice of ZnS microspheres. The adsorbent shows selective adsorbability for cationic dyes in low concentrations in wastewater. The adsorbed dye could be successfully eluted with alcohol, resulting in a 1000 fold enrichment of the dye solution. Electronic supplementary information (ESI) available: Synthesis, structural details of ZnS : Cu, adsorption isotherm of RhB on ZnS : Cu, control experiments for the adsorption measurements, pH effect on the adsorbability, and preliminary assessment of the adsorption efficiency for real industrial wastewater. See DOI: 10.1039/c2nr30689a

  9. Adsorption kinetic and mechanistic studies for pharmaceutical spherical carbon adsorbents: comparison of a brand product and two generics.

    PubMed

    Abe, Hiroyuki; Morikawa, Risa; Otsuka, Makoto

    2013-03-01

    The kinetic and mechanistic profiles of three pharmaceutical spherical carbon adsorbents, Kremezin as the brand product and two generics (Merckmezin and spherical carbon adsorbent "Mylan"), were compared. Five non-ionic active pharmaceutical ingredients with molecular weights of 136.1-424.1 Da were used as adsorbates. The results of Boehm titration, the standard method to qualify acidic or basic functional groups on a carbon surface, suggested distinctly different quantitative characteristics of each functional group among the three adsorbents. But those differences do not affect the adsorption to non-ionic adsorbates. The amount of theophylline adsorbed at equilibrium and surface area well correlated, suggesting that adsorptive ability was defined by surface area. In the tested molecular weight range, the order in terms of adsorption kinetics was spherical carbon adsorbent "Mylan">Kremezin>Merkmezin. The adsorption profile in the equilibrium and kinetic experiments, and the lack of an effect of pH on adsorption quantity suggested that the mechanism of adsorption for non-ionic substances to be Langmuir type monolayer adsorption. Kremezin and spherical carbon adsorbent "Mylan" are more likely to adsorb co-administered drugs than Merckmezin. PMID:23261577

  10. The effect of surface modification on heavy metal ion removal from water by carbon nanoporous adsorbent

    NASA Astrophysics Data System (ADS)

    Baniamerian, M. J.; Moradi, S. E.; Noori, A.; Salahi, H.

    2009-12-01

    In this work, chemically oxidized mesoporous carbon (COMC) with excellent lead adsorption performance was prepared by an acid surface modification method from mesoporous carbon (MC) by wet impregnation method. The structural order and textural properties of the mesoporous materials were studied by XRD, SEM, and nitrogen adsorption. The presence of carboxylic functional groups on the carbon surface was confirmed by FT-IR analysis. Batch adsorption experiments were conducted to study the effect of adsorbent dose, initial concentration and temperature for the removal of Pb(II) from aqueous systems. The adsorption was maximum for the initial pH in the range of 6.5-8.0. The kinetic data were best fitted to the pseudo-second order model. The adsorption of chemically oxidized mesoporous carbon to Pb(II) fits to the Langmuir model. The larger adsorption capacity of chemically oxidized mesoporous carbon for Pb(II) is mainly due to the oxygenous functional groups formed on the surface of COMC which can react with Pb(II) to form salt or complex deposited on the surface of MC.

  11. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGESBeta

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; et al

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  12. The Uranium from Seawater Program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary; Kuo, Li-Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T; Bonheyo, George; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang P; Bianucci, Laura; Wood, Jordana; Warner, Marvin G; Peterson, Sonja; Abrecht, David; Mayes, Richard T; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas; Addleman, Shane R; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Dr. Ken; Breier, Crystalline; D'Alessandro, Dr. Evan

    2016-01-01

    The Pacific Northwest National Laboratory s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole

  13. Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Jinshui; Ma, Shi; Zang, Lingjie

    2013-01-01

    Quaternary ammonium polyethylenimine (PEI) was successfully modified to silica nanoparticle (QPEI/SiO2) as a new adsorbent to remove methyl orange from aqueous solution. The isotherm and kinetics of dye adsorption were studied, which showed that Langmuir isotherm fit the experimental results well. The maximum adsorption capacity of QPEI/SiO2 for methyl orange is 105.4 mg/g. The equilibrium time for methyl orange adsorption onto QPEI/SiO2 was as short as 10 min, indicating that the adsorbent has a strong affinity for methyl orange. The adsorption capacities of the methyl orange are slightly influenced by the pH in the range of 3.2-9.6. The QPEI/SiO2 adsorbent can be used in the wide pH range, which is different from other adsorbent. This may attribute to the quaternary ammonium carrying positive charges in acidic and basic solution.

  14. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  15. Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black 5 from aqueous solutions.

    PubMed

    Bhaumik, Madhumita; McCrindle, Rob I; Maity, Arjun; Agarwal, Shilpi; Gupta, Vinod Kumar

    2016-03-15

    Polyaniline nanofibers (PANI NFs) with 50-80 nm in diameter were successfully prepared at room temperature (22 °C) using ferric chloride (FeCl3) as an oxidant via a simple rapid mixing polymerization method. The prepared PANI NFs were characterized by FE-SEM, HR-TEM, BET, ATR-FTIR and by Zeta potential measurement method. The adsorption of azo dye Reactive Black 5 (RB5) onto PANI NFs from aqueous solutions was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic data fitted well with the pseudo-second-order model while the equilibrium data were satisfactorily described by the Langmuir isotherm model. The Langmuir maximum adsorption capacity of RB5 at pH 6.0 was found to be 312.5, 389.1 and 434.7 mg/g at 25 °C, 35 °C and 45 °C, respectively. Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes indicated that the adsorption of RB5 onto PANI NFs was feasible, spontaneous, and endothermic. Moreover, desorption experiments revealed that the PANI NFs can be reused effectively for five consecutive adsorption-desorption cycles without any loss of its original capacity. PMID:26771507

  16. Fluorescence dynamics of microsphere-adsorbed sunscreens

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    Sunscreens are generally oily substances which are prepared in organic solvents, emulsions or dispersions with micro- or nanoparticles. These molecules adsorb to and integrate into skin cells. In order to understand the photophysical properties of the sunscreen, we compare steady-state and time-resolved fluorescence in organic solvent of varying dielectric constant ɛ and adsorbed to polystyrene microspheres and dispersed in water. Steady-state fluorescence is highest and average fluorescence lifetime longest in toluene, the solvent of lowest ɛ. However, there is no uniform dependence on ɛ. Sunscreens PABA and padimate-O show complex emission spectra. Microsphere-adsorbed sunscreens exhibit highly non-exponential decay, illustrative of multiple environments of the adsorbed molecule. The heterogeneous fluorescence dynamics likely characterizes sunscreen adsorbed to cells.

  17. Nanovalved Adsorbents for CH4 Storage.

    PubMed

    Song, Zhuonan; Nambo, Apolo; Tate, Kirby L; Bao, Ainan; Zhu, Minqi; Jasinski, Jacek B; Zhou, Shaojun J; Meyer, Howard S; Carreon, Moises A; Li, Shiguang; Yu, Miao

    2016-05-11

    A novel concept of utilizing nanoporous coatings as effective nanovalves on microporous adsorbents was developed for high capacity natural gas storage at low storage pressure. The work reported here for the first time presents the concept of nanovalved adsorbents capable of sealing high pressure CH4 inside the adsorbents and storing it at low pressure. Traditional natural gas storage tanks are thick and heavy, which makes them expensive to manufacture and highly energy-consuming to carry around. Our design uses unique adsorbent pellets with nanoscale pores surrounded by a coating that functions as a valve to help manage the pressure of the gas and facilitate more efficient storage and transportation. We expect this new concept will result in a lighter, more affordable product with increased storage capacity. The nanovalved adsorbent concept demonstrated here can be potentially extended for the storage of other important gas molecules targeted for diverse relevant functional applications. PMID:27124722

  18. NOx adsorber and method of regenerating same

    SciTech Connect

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  19. As(V) adsorption onto nanoporous titania adsorbents (NTAs): effects of solution composition.

    PubMed

    Han, Dong Suk; Batchelor, Bill; Park, Sung Hyuk; Abdel-Wahab, Ahmed

    2012-08-30

    This study has focused on developing two nanoporous titania adsorbents (NTA) to enhance removal efficiency of adsorption process for As(V) by characterizing the effects of pH and phosphate concentration on their sorption capacities and behaviors. One type of adsorbent is a mesoporous titania (MT) solid phase and the other is group of a highly ordered mesoporous silica solids (SBA-15) that can incorporate different levels of reactive titania sorption sites. Microscopic analysis showed that Ti((25))-SBA-15 (Ti/SBA=0.25 g/g) had titania nanostructured mesopores that do not rupture the highly ordered hexagonal silica framework. However, MT has disordered, wormhole-like mesopores that are caused by interparticle porosity. Adsorption experiments showed that Ti((25))-SBA-15 had a greater sorption capacity for As(V) than did Ti((15))-SBA-15 or Ti((35))-SBA-15 and the amount of As(V) adsorbed generally decreased as pH increased. Higher removal of As(V) was observed with Ti((25))-SBA-15 than with MT at pH 4, but MT had higher removals at higher pH (7, 9.5), even though MT has a lower specific surface area. However, in the presence of phosphate, MT showed higher removal of As(V) at low pH rather than did Ti((25))-SBA-15. As expected, the NTAs showed very fast sorption kinetics, but they followed a bi-phasic sorption pattern. PMID:22727482

  20. Investigation on removal of malachite green using EM based compost as adsorbent.

    PubMed

    Bhagavathi Pushpa, T; Vijayaraghavan, J; Sardhar Basha, S J; Sekaran, V; Vijayaraghavan, K; Jegan, J

    2015-08-01

    The discarded materials from different sources can be utilized as effective materials in wastewater remediation. This proposed study was aimed mainly to investigate the possibility of Effective Microorganisms based compost (EMKC), which is derived from the kitchen solid waste, as a non-conventional low cost adsorbent for the removal of malachite green from aqueous solution. Batch experiments were carried out to evaluate the optimum operating parameters like pH (2-9), initial dye concentration (50-1000mg/L), adsorbent particle size (0.6-2.36mm) and adsorbent dosage (2-12g/L). EMKC recorded maximum uptake of 136.6mg/g of MG at pH 8, initial dye concentration 1000mg/L, adsorbent particle size 1.18mm and adsorbent dosage 4g/L. Two and three parameter adsorption models were employed to describe experimental biosorption isotherm data. The results revealed that the Sips model resulted in better fit than other models. The pseudo-first and -second order models were applied to describe kinetic data, of which the pseudo-second order described experimental data better with high correlation coefficient. This investigation suggested that EMKC could be an effective and low cost material for the removal of malachite green dye from aqueous solution. PMID:25938698

  1. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Yu, Tianlin; Liu, Siqi; Xu, Min; Peng, Jing; Li, Jiuqiang; Zhai, Maolin

    2016-08-01

    A novel aminated cellulose microsphere adsorbent (CVN) was successfully prepared by radiation-induced graft polymerization of vinylbenzyl chloride (VBC) onto cellulose microsphere (CMS), followed by amination. Micro-FTIR, XPS and SEM confirmed the structure of CVN. The adsorption behavior of Cr(VI) onto CVN from solution was well fitted by the pseudo-second order kinetic model. The isothermal adsorption of Cr(VI) was observed at pH 4.68 with adsorption capacity of 129 mg/g in accordance with Langmuir thermal model, and the removal of Cr(VI) from solution could be 91% at a low amount (20 mg) of adsorbent. The best pH for adsorption of Cr(VI) was nearly 3.08, and with the increasing of temperature, the adsorption capacity of Cr(VI) increased. XPS analysis confirmed the adsorption mechanism of Cr(VI) was ion-exchange mechanism, while common co-ions such as Na+, Mg2+, Cu2+, Ca2+, Zn2+, Ni2+, Cl-, NO3- has no significant effect on the adsorption capacity of Cr(VI), and the Cr(VI) removal of 80% still could be obtained compared with that of fresh CVN adsorbent. Finally, spent CVN could be regenerated under 2 mol/L NaCl. The work indicated that aminated cellulose adsorbent could be prepared successfully by radiation-induced grafting and amination and CVN is a promising bio-adsorbent in the removing Cr(VI) from waste water.

  2. γ-Cyclodextrin-polyurethane copolymer adsorbent for selective removal of endotoxin from DNA solution.

    PubMed

    Sakata, Masayo; Uezono, Koji; Kimura, Kasane; Todokoro, Masami

    2013-12-01

    Copolymer particles for removal of endotoxins (lipopolysaccharides, LPSs) were prepared by suspension copolymerization of γ-cyclodextrin (CyD) and 1,6-hexamethylenediisocyanate. The LPS-removing activity of the copolymer particles was compared with that of poly(ε-lysine)-immobilized Cellufine (cationic adsorbent) or polystyrene particles (hydrophobic adsorbent) by a batch method. When DNA was present in solution with LPSs under physiological conditions (pH 6.0, ionic strength of μ = 0.05-0.8), LPS-removing activity of the cationic or hydrophobic adsorbent was unsatisfactory because both the DNA and the LPSs were adsorbed onto each adsorbent. By contrast, the copolymer particles with γ-CyD cavity (CyD content: 14-20 mol%) could selectively remove LPSs from a DNA solution (50 μg ml(-1), pH 6.0, and μ = 0.05-0.2) containing LPSs (15 EU ml(-1)) without the adsorption of DNA. The residual concentration of LPSs in the treated DNA solution was below 0.1 EU ml(-1), and the recovery of DNA was 99%. PMID:23969015

  3. Enhanced removal of Cr(VI) from aqueous solutions using polypyrrole wrapped oxidized MWCNTs nanocomposites adsorbent.

    PubMed

    Bhaumik, Madhumita; Agarwal, Shilpi; Gupta, Vinod Kumar; Maity, Arjun

    2016-05-15

    Polypyrrole wrapped oxidized multiwalled carbon nanotubes nanocomposites (PPy/OMWCNTs NCs) were prepared via in situ chemical polymerization of pyrrole (Py) monomer in the presence of OMWCNTs using FeCl3 as oxidant for the effective removal of hexavalent chromium [Cr(VI)]. The as-prepared PPy/OMWCNTs NCs were characterized by FE-SEM, HR-TEM, ATR-FTIR, XRD, XPS and BET method. Characterization results suggested that PPy was uniformly covered on the OMWCNTs surface and resulted in enhanced specific surface area. Adsorption experiments were carried out in batch sorption mode to investigate the effect of pH, dose of adsorbent, contact time, concentration of Cr(VI) and temperature. The adsorption of Cr(VI) on the nanocomposite surface was highly pH dependent and the kinetics of the adsorption followed the pseudo-second-order model. The adsorption isotherm data were in good conformity with the Langmuir isothermal model. The maximum adsorption capacity of the PPy/OMWCNTs NCs for Cr(VI) was 294mg/g at 25°C. The calculated values of the thermodynamic parameters such as ΔG(0) (-0.237kJ/mol), ΔH(0) (13.237kJ/mol) and ΔS(0) (0.0452kJ/mol/K) revealed that the adsorption process is spontaneous, endothermic and marked with an increase in randomness at the solid-liquid interface. The presence of co-existing ions slightly affected the Cr(VI) removal efficiency of the PPy/OMWCNTs. PMID:26962976

  4. Removal of arsenic from water using the adsorbent: New Zealand iron-sand.

    PubMed

    Panthi, Sudan Raj; Wareham, David Geraint

    2011-01-01

    Adsorption is a technology used to remove arsenic from water contaminated at levels above drinking water standards. In this study, New Zealand Iron-Sand (NZIS), a naturally-available adsorbent was investigated for its efficiency in removing both As (III) and As (V). Several batch tests were conducted with different concentrations of arsenic at different pH conditions. During the batch tests, the maximum adsorption of As (III) occurred at a pH of 7.5, while As (V) adsorption reached its maximum value at a pH of 3. Both Langmuir and Freundlich adsorption models were found to fit with R(2) values greater than 0.92. From the Langmuir adsorption model, the maximum adsorption capacity of NZIS for As (III) and As (V) were estimated to be 1,250 and 500 μg/g, respectively. These values were substantial enough to consider NZIS a promising new adsorbent for arsenic removal. PMID:21991930

  5. Separation of the attractive and repulsive contributions to the adsorbate-adsorbate interactions of polar adsorbates on Si(100)

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsiu; Jeng, Horng-Tay; Lin, Deng-Sung

    2015-11-01

    Dissociative adsorption of H2O, NH3, CH3OH and CH3NH2 polar molecules on the Si(100) surface results in a 1:1 mixture of two adsorbates (H and multi-atomic fragment A = OH, NH2, CH3O, CH3NH, respectively) on the surface. By using density functional theory (DFT) calculations, the adsorption geometry, the total energies and the charge densities for various possible ordered structures of the mixed adsorbate layer have been found. Analyzing the systematic trends in the total energies unveils concurrently the nearest-neighbor interactions ENN and the next nearest-neighbor interactions ENNN between two polar adsorbates A. In going from small to large polar adsorbates, ENN's exhibit an attractive-to-repulsive crossover behavior, indicating that they include competing attractive and repulsive contributions. Exploration of the charge density distributions allows the estimation of the degree of charge overlapping between immediately neighboring A's, the resulting contribution of the steric repulsions, and that of the attractive interactions to the corresponding ENN's. The attractive contributions to nearest neighboring adsorbate-adsorbate interactions between the polar adsorbates under study are shown to result from hydrogen bonds or dipole-dipole interactions.

  6. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono

    2016-02-01

    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  7. Analysis of Adsorbate-Adsorbate and Adsorbate-Adsorbent Interactions to Decode Isosteric Heats of Gas Adsorption.

    PubMed

    Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip

    2015-12-21

    A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. PMID:26538339

  8. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  9. Site blocking effects on adsorbed polyacrylamide conformation

    NASA Astrophysics Data System (ADS)

    Brotherson, Brett A.

    The use of polymers as flocculating additives is a common practice in many manufacturing environments. However, exactly how these polymers interact with surfaces is relatively unknown. One specific topic which is thought to be very important to flocculation is an adsorbed polymer's conformation. Substantial amounts of previous work, mainly using simulations, have been performed to elucidate the theory surrounding adsorbed polymer conformations. Yet, there is little experimental work which directly verifies current theory. In order to optimize the use of polymer flocculants in industrial applications, a better understanding of an adsorbed polymer's conformation on a surface beyond theoretical simulations is necessary. This work looks specifically at site blocking, which has a broad impact on flocculation, adsorption, and surface modification, and investigated its effects on the resulting adsorbed polymer conformation. Experimental methods which would allow direct determination of adsorbed polymer conformational details and be comparable with previous experimental results were first determined or developed. Characterization of an adsorbed polymer's conformation was then evaluated using dynamic light scattering, a currently accepted experimental technique to examine this. This commonly used technique was performed to allow the comparison of this works results with past literature. Next, a new technique using atomic force microscopy was developed, building on previous experimental techniques, to allow the direct determination of an adsorbed polymer's loop lengths. This method also was able to quantify changes in the length of adsorbed polymer tails. Finally, mesoscopic simulation was attempted using dissipative particle dynamics. In order to determine more information about an adsorbed polymer's conformation, three different environmental factors were analyzed: an adsorbed polymer on a surface in water, an adsorbed polymer on a surface in aqueous solutions of varying

  10. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  11. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  12. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  13. Performance of waste activated carbon as a low-cost adsorbent for the removal of anionic surfactant from aquatic environment.

    PubMed

    Gupta, Sandeep; Pal, Anjali; Ghosh, Pranab Kumar; Bandyopadhyay, Manas

    2003-02-01

    In the present study, different low cost adsorbents were screened for their sodium dodecyl sulfate (SDS, an anionic surfactant) removal capacity. Waste activated carbon (WAC) from the aqua purifier has shown high efficiency for SDS removal. The performance evaluation in the presence of various ions (Ca2+, SO4(2-), NO3-, and Cl-) and at various pH was studied. Desorption studies were conducted using simple sonication and pH variation technique. Column adsorption studies were performed. SEM and EDS studies were done on the adsorbing material before adsorption, after adsorption and after desorption of SDS. PMID:12638703

  14. Novel tannin-based adsorbent in removing cationic dye (Methylene Blue) from aqueous solution. Kinetics and equilibrium studies.

    PubMed

    Sánchez-Martín, J; González-Velasco, M; Beltrán-Heredia, J; Gragera-Carvajal, J; Salguero-Fernández, J

    2010-02-15

    Natural tannin-based adsorbent has been prepared on the basis of the gelification of Quebracho bark extract. The resulting product, Quebracho Tannin Gel (QTG) was tested as cationic dye adsorbent with Methylene Blue (MB). Kinetics of adsorption process were studied out and a period of 15 days was determined for reaching equilibrium. The influences of pH and temperature were evaluated. As pH or temperature raise q capacity of QTG increases. Theoretical modelization of dye-QTG adsorption was carried out by multiparametric adjustment according to Langmuir's hypothesis. Values of the k(l1), k(l2) and activation energies were calculated. PMID:19782466

  15. IR investigations of surfaces and adsorbates

    SciTech Connect

    Gwyn Williams

    2001-12-10

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  16. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  17. Examining Adsorbed Polymer Conformations with Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Parkes, Maria; Chennaoui, Mourad; Wong, Janet; Tribology Group, Dept. of Mechanical Engineering Team

    2011-03-01

    The conformation of adsorbed polymers can have significant impact on their properties such as dynamics and elasticity as well as their ability to take part in reactions with other molecules. Experimental research to determine adsorbed polymer conformation has relied mainly on atomic force microscopy (AFM) studies. During an AFM scan, the contact between the scanning probe and the polymer could affect the polymer conformation, particularly where parts of the polymer might have formed projected loops and tails. In this work, conformations of model polymers are examined with total internal reflection fluorescence microscopy (TIRFM). The advantage of TIRFM over AFM is that TIRFM is a non contact technique. Lambda DNA labelled along its length with fluorescent probes was adsorbed in a projected 2D -- 3D state. With TIRFM, the relationship between intensity and depth was used as a basis to determine how the conformation of the adsorbed polymers evolved with time using our custom algorithm.

  18. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution.

    PubMed

    Wei, Haoran; Deng, Shubo; Huang, Qian; Nie, Yao; Wang, Bin; Huang, Jun; Yu, Gang

    2013-08-01

    A novel granular carbon nanotubes (CNTs)/alumina (Al2O3) hybrid adsorbent with good sorption and regeneration properties was successfully prepared by mixing CNTs with surfactant Brij 35 and pseudo boehmite, followed by calcining to remove surfactant and form porous granules. Alumina binder increased the mechanical strength, hydrophilicity and porosity of the granular adsorbent, while the dispersed CNTs in the granular adsorbent were responsible for the sorption of diclofenac sodium (DS) and carbamazepine (CBZ). Scanning electron microscopy (SEM) showed that the CNTs and Al2O3 were mixed well and the porous structure was formed in the granular adsorbent. The high surface area and appropriate pore size of granular CNTs/Al2O3 adsorbent were favorable for sorption. The sorption of DS decreased with increasing solution pH, while pH had little effect on CBZ sorption. The maximum sorption capacities of CBZ and DS on the CNTs/Al2O3 adsorbent were 157.4 and 106.5 μmol/g according to the Langmuir fitting. Moreover, the spent CNTs/Al2O3 adsorbent can be thermally regenerated at 400 °C in air due to the thermal stability of CNTs. The removal of CBZ and DS changed a little in the initial reuse cycles and then kept relatively constant until tenth cycles. The adsorbed CBZ and DS were decomposed in the regeneration process. This regenerable adsorbent may find potential application in water or wastewater treatment for the removal of some micropollutants such as pharmaceuticals. PMID:23579087

  19. Determination of Points of Zero Charge of Natural and Treated Adsorbents

    NASA Astrophysics Data System (ADS)

    Nasiruddin Khan, M.; Sarwar, Anila

    Although particle size and its measurement are intuitively familiar to particle technologists, the concept of point of zero charge (pzc) is less widely understood and applied. This is unfortunate since it is at least as fundamentally important as particle size in determining the behavior of particulate materials, especially those with sizes in the colloidal range below a micrometer. pzc is related to the charge on the surface of the particle and strongly depends on the pH of the material; so it influences a wide range of properties of colloidal materials, such as their stability, interaction with electrolytes, suspension rheology, and ion exchange capacity. The pH dependence of surface charges was quantified for four different adsorbent-aqueous solution interfaces. The points of zero charge were determined for activated charcoal, granite sand, lakhra coal, and ground corn cob materials using three methods: (1) the pH drift method, measuring pH where the adsorbent behaves as a neutral specie; (2) potentiometric titration, measuring the adsorption of H+ and OH- on surfaces in solutions of varying ionic strengths; (3) direct assessment of the surface charge via nonspecific ion adsorption as a function of pH. The intrinsic acidity constants for acid and base equilibria, pK a1 s and pK a2 s, were also calculated. Lakhra coal was found to have the lowest pzc value among all other adsorbents studied owing to the presence of a large amount of humus material. The results were used to explain general connections among points of zero charges, cation exchange capacity, and base saturation % of adsorbents.

  20. Dispersed-phase adsorbents for biotechnology applications

    SciTech Connect

    Scott, C.D.

    1987-01-01

    A new type of adsorbent material has been developed in which very small adsorbent particles are entrapped in a hydrocolloidal gel matrix that is formed into small, monodisperse spherical beads. Examples of applications of this type of material include dispersed, hydrous transition metal oxides that can be used for the retention of biocatalysts, such as enzymes, and certain microorganisms or microbial fragments that can be dispersed into the gel matrix to accumulate and isolate various dissolved metals. 7 refs., 2 figs., 2 tabs.

  1. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  2. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  3. Mesoporous Silica: A Suitable Adsorbent for Amines

    PubMed Central

    2009-01-01

    Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices. PMID:20628459

  4. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  5. Photochemistry of Nitrate Adsorbed on Mineral Dust

    NASA Astrophysics Data System (ADS)

    Gankanda, A.; Grassian, V. H.

    2013-12-01

    Mineral dust particles in the atmosphere are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides including HNO3 and NO2. Although nitrate ion is a well-studied chromophore in natural waters, the photochemistry of adsorbed nitrate on mineral dust particles is yet to be fully explored. In this study, wavelength dependence of the photochemistry of adsorbed nitrate on different model components of mineral dust aerosol has been investigated using transmission FTIR spectroscopy. Al2O3, TiO2 and NaY zeolite were used as model systems to represent non-photoactive oxides, photoactive semiconductor oxides and porous materials respectively, present in mineral dust aerosol. In this study, adsorbed nitrate is irradiated with 254 nm, 310 nm and 350 nm narrow band light. In the irradiation with narrow band light, NO2 is the only detectable gas-phase product formed from nitrate adsorbed on Al2O3 and TiO2. The NO2 yield is highest at 310 nm for both Al2O3 and TiO2. Unlike Al2O3 and TiO2, in zeolite, adsorbed nitrate photolysis to nitrite is observed only at 310 nm during narrow band irradiation. Moreover gas phase products were not detected during nitrate photolysis in zeolite at all three wavelengths. The significance of these differences as related to nitrate photochemistry on different mineral dust components will be highlighted.

  6. Quantitative analysis of Cu and Co adsorbed on fish bones via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Rezk, R. A.; Galmed, A. H.; Abdelkreem, M.; Ghany, N. A. Abdel; Harith, M. A.

    2016-09-01

    In the present work, laser-induced breakdown spectroscopy (LIBS) has been applied for qualitative and quantitative analysis of heavy metals adsorbed by fish bones. Fish bones were used as a natural and low cost heavy metal sorbent (mainly Cu and Co) from synthetic wastewater. The removal efficiency of the adsorbent was studied as a function of initial metal concentration and pH value. Optimal experimental conditions were evaluated for improving the sensitivity of LIBS technique through parametric dependence studies. Furthermore, calibration curves were constructed based on X-ray fluorescence (XRF) analysis technique, whereas, the limits of detection (LOD) for Cu and Co were calculated. The results were validated by comparing LIBS data with those obtained by XRF spectrometry. The results of the two techniques are strongly correlated which verified the feasibility of using LIBS to detect traces of heavy metals adsorbed from wastewater by fish bones. This study reflects the potential of using LIBS in environmental applications.

  7. Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water.

    PubMed

    Kuśmierek, Krzysztof; Zarębska, Katarzyna; Świątkowski, Andrzej

    2016-01-01

    The potential use of raw hard coals as low-cost adsorbents for the removal of 4-chlorophenol (4-CP) from aqueous solutions was examined. The effect of experimental parameters such as the pH and salt presence was evaluated. The kinetic studies showed the equilibrium time was found to be 2 h for all of the adsorbents and that the adsorption process followed the pseudo-second order kinetic model. The adsorption isotherms of the 4-CP on the hard coals were fitted to the Langmuir, Freundlich, Langmuir-Freundlich, Sips and Redlich-Peterson equations. Based on the results obtained, hard coals appear to be a promising adsorbent for the removal of some hazardous water pollutants, like 4-CP and related compounds. PMID:27120657

  8. Effects of molecular oxygen and pH on the adsorption of aniline to activated carbon

    SciTech Connect

    Fox, P.; Pinisetti, K.

    1994-12-31

    This paper examines the influence of molecular oxygen and pH on the adsorption of aniline to F-300 Calgon Carbon. Molecular oxygen increased the adsorptive capacity of GAC for anilines by 250--400 % at pH 3, 30--83% at pH 5, 17--42% at pH 9, and B-45% at pH 11 (higher than those obtained in the absence of molecular oxygen). At pH 7, some of the products formed are poorly adsorbed as evidenced by an increase in UV absorbance in the oxic isotherms as compared to the other isotherms. Oxygen uptake measurements revealed significant consumption of molecular oxygen during the adsorption of aniline compounds. It is speculated that the increase in the GAC adsorptive capacity under oxic conditions was due to the polymerization of these adsorbates on the carbon surface.

  9. Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties.

    PubMed

    Vanamudan, Ageetha; Pamidimukkala, Padmaja

    2015-03-01

    The objective of this study was to investigate the use of chitosan-clay nanocomposite (CC) as an adsorbent for Rhodamine 6G (Rh-6G). The effects of adsorbent dose, contact time, and concentration on the adsorption process were systematically studied. Isotherm models were applied to the experimental equilibrium data obtained from spectrophotometric measurements of dye adsorption. Various Kinetic models were used to describe the kinetic data and evaluate of rate constants. Rh-6G loaded adsorbents were investigated for their optical and photophysical properties. PMID:25526692

  10. Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents

    SciTech Connect

    Bill Batchelor; Dong Suk Han; Eun Jung Kim

    2010-01-31

    The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics for removing the target compounds from wastewaters from ash ponds and scrubber ponds and producing stable residuals.

  11. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH.

    PubMed

    Wang, Bing; Lehmann, Johannes; Hanley, Kelly; Hestrin, Rachel; Enders, Akio

    2015-11-01

    The objective of this work was to investigate the retention mechanisms of ammonium in aqueous solution by using progressively oxidized maple wood biochar at different pH values. Hydrogen peroxide was used to oxidize the biochar to pH values ranging from 8.1 to 3.7, with one set being adjusted to a pH of 7 afterwards. Oxidizing the biochars at their lowered pH did not increase their ability to adsorb ammonium. However, neutralizing the oxygen-containing surface functional groups on oxidized biochar to pH 7 increased ammonia adsorption two to three-fold for biochars originally at pH 3.7-6, but did not change adsorption of biochars oxidized to pH 7 and above. The adsorption characteristics of ammonium are well described by the Freundlich equation. Adsorption was not fully reversible in water, and less than 27% ammonium was desorbed in water in two consecutive steps than previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 2M KCl increased from 34% to 99% of ammonium undesorbed by both preceding water extractions with increasing oxidation, largely irrespective of pH adjustment. Unrecovered ammonium in all extractions and residual biochar was negligible at high oxidation, but increased to 39% of initially adsorbed amounts at high pH, likely due to low amounts adsorbed and possible ammonia volatilization losses. PMID:26057391

  12. Insight into the adsorption of PPCPs by porous adsorbents: Effect of the properties of adsorbents and adsorbates.

    PubMed

    Zhu, Zengyin; Xie, Jiawen; Zhang, Mancheng; Zhou, Qing; Liu, Fuqiang

    2016-07-01

    Adsorption is an efficient method for removal of pharmaceuticals and personal care products (PPCPs). Magnetic resins are efficient adsorbents for water treatment and exhibit potential for PPCP removal. In this study, the magnetic hypercrosslinked resin Q100 was used for adsorption of PPCPs. The adsorption behavior of this resin was compared with those of two activated carbons, namely, Norit and F400D. Norit exhibited the fastest adsorption kinetics, followed by Q100. Norit featured a honeycomb shape and long-range ordered pore channels, which facilitated the diffusion of PPCPs. Moreover, the large average pore size of Q100 reduced diffusion resistance. The adsorbed amounts of 11 PPCPs on the three adsorbents increased with increasing adsorbate hydrophobicity. For Q100, a significant linear correlation was observed between the adsorption performance for PPCPs and hydrophobicity (logD value) of adsorbates (R(2) = 0.8951); as such, PPCPs with high logD values (>1.69) could be efficiently removed. Compared with those of Norit and F400D, the adsorption performance of Q100 was less affected by humic acid because of the dominant hydrophobic interaction. Furthermore, Q100 showed improved regeneration performance, which renders it promising for PPCP removal in practical applications. PMID:27131811

  13. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    PubMed Central

    Hur, Jin; Shin, Jaewon; Yoo, Jeseung; Seo, Young-Soo

    2015-01-01

    Competitive adsorption isotherms of Cu(II), Pb(II), and Cd(II) were examined on a magnetic graphene oxide (GO), multiwalled carbon nanotubes (MWCNTs), and powered activated carbon (PAC). A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II) > Cu(II) > Cd(II), which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation. PMID:25861683

  14. Pullulan Production by Aureobasidium pullulans ATCC 201253 Cells Adsorbed onto Cellulose Anion and Cation Exchangers

    PubMed Central

    West, Thomas P.

    2012-01-01

    The anion exchanger phosphocellulose and the cation exchanger triethylaminoethyl cellulose were used to immobilize cells of the fungus Aureobasidium pullulans ATCC 201253 and the adsorbed cells were subsequently investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The cells adsorbed on the triethylaminoethyl cellulose at pH 7.5 produced higher pullulan levels than those cells immobilized on phosphocellulose at pH 4.0 for 2 cycles of 168 h at 30 °C. Relative to the initial cycle of 168 h, pullulan production by the cells immobilized on the triethylaminoethyl cellulose decreased slightly after 168 h of the second production cycle while pullulan production by the phosphocellulose-immobilized cells remained about the same after 168 h of the second production cycle. PMID:23762749

  15. An ATR-FTIR study of different phosphonic acids adsorbed onto boehmite

    NASA Astrophysics Data System (ADS)

    Zenobi, María C.; Luengo, Carina V.; Avena, Marcelo J.; Rueda, Elsa H.

    2010-04-01

    An ATR-FTIR study of the vibrational spectra of N,N-bis(2-hydroxyethyl) aminomethylphosphonic acid (BHAMP), 1-hydroxyethane-1,1'-diphosphonic acid (HEDP) and nitrilotris(methylenephosphonic acid) (NTMP) adsorbed onto boehmite is presented. The study was performed in the pH range from 5 to 9, and bands assignments are given in the 1200-900 cm -1 wavenumber range, where the bands associated with various P-O(H) vibrations can be found. The three phosphonic acids adsorb onto boehmite by forming inner-sphere surface complexes. ATR-FTIR data indicates the presence of both protonated and deprotonated mononuclear surface species. In all cases, the surface-bound ions undergo protonation reactions as pH is decreased. The results are in good agreement with previously proposed surface complexation models.

  16. An ATR-FTIR study of different phosphonic acids adsorbed onto boehmite.

    PubMed

    Zenobi, María C; Luengo, Carina V; Avena, Marcelo J; Rueda, Elsa H

    2010-04-01

    An ATR-FTIR study of the vibrational spectra of N,N-bis(2-hydroxyethyl) aminomethylphosphonic acid (BHAMP), 1-hydroxyethane-1,1'-diphosphonic acid (HEDP) and nitrilotris(methylenephosphonic acid) (NTMP) adsorbed onto boehmite is presented. The study was performed in the pH range from 5 to 9, and bands assignments are given in the 1200-900 cm(-1) wavenumber range, where the bands associated with various P-O(H) vibrations can be found. The three phosphonic acids adsorb onto boehmite by forming inner-sphere surface complexes. ATR-FTIR data indicates the presence of both protonated and deprotonated mononuclear surface species. In all cases, the surface-bound ions undergo protonation reactions as pH is decreased. The results are in good agreement with previously proposed surface complexation models. PMID:20129815

  17. Mediated electron transfer between Fe(II) adsorbed onto hydrous ferric oxide and a working electrode.

    PubMed

    Klein, Annaleise R; Silvester, Ewen; Hogan, Conor F

    2014-09-16

    The redox properties of Fe(II) adsorbed onto mineral surfaces have been highly studied over recent years due to the wide range of environmental contaminants that react with this species via abiotic processes. In this work the reactivity of Fe(II) adsorbed onto hydrous ferric oxide (HFO) has been studied using ferrocene (bis-cyclopentadienyl iron(II); Fc) derivatives as electron shuttles in cyclic voltammetry (CV) experiments. The observed amplification of the ferrocene oxidation peak in CV is attributed to reaction between the electrochemically generated ferrocenium (Fc(+)) ion and adsorbed Fe(II) species in a catalytic process (EC' mechanism). pH dependence studies show that the reaction rate increases with Fe(II) adsorption and is maintained in the absence of aqueous Fe(2+), providing strong evidence that the electron transfer process involves the adsorbed species. The rate of reaction between Fc(+) and adsorbed Fe(II) increases with the redox potential of the ferrocene derivative, as expected, with bimolecular rate constants in the range 10(3)-10(5) M(-1) s(-1). The ferrocene-mediated electrochemical method described has considerable promise in the development of a technique for measuring electron-transfer rates in geochemical and environmental systems. PMID:25157830

  18. Improvement of cesium leaching resistance of solidified borate wastes with copper-ferrocyanide-vermiculite adsorbent

    SciTech Connect

    Huang, C.T.; Wu, G.

    1996-09-01

    Removal of cesium from deionized water, sea water, and lime water with copper ferrocyanide (CFC) and porous media including silica gel, bentonite, vermiculite, and zeolite were investigated; CFC and vermiculite were incorporated to prepare a compound adsorbent which was used to improve the Cs-leaching resistance of solidified borate wastes. It was shown that the Cs-removal efficiency by CFC is largely affected by pHs of the solutions, good cesium removal occurs in pHs ranged from 3 to 12 and the best from 7 to 10; the effect of Cs concentration is significantly only from lime water for Cs > 10{sup {minus}6} M at high pH and is insignificant from other solutions. Vermiculite and zeolite were shown to have better removal efficiency than silica gel and bentonite, and vermiculite was chosen to incorporate with CFC to make compound adsorbents because of its good compatibility with CFC. Compound adsorbents with different CFC contents were used as additives in the solidification of borate radwaste for improving the cesium leaching resistance of waste forms. Experimental results showed that the measured, cesium leaching index following ANSI/ANS 16.1, was increased from 7.96 to 9.76 by adding 0.25% of a compound adsorbent containing 20% CFC and 80% vermiculite, which indicated that the CFC-vermiculite compound adsorbent is very useful for improving cesium leaching resistance of the solidified borate radwastes.

  19. Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose.

    PubMed

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-01-01

    Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC). In particular, the adsorption capability of the PLC was effective over a wider pH range. This could be owing to its higher point of zero charge, which is more favorable for the uptake of the anionic dye. Adsorption isotherm models suggested a monolayer adsorption was predominant. The mean free energy of adsorption (E(DR)) was found to have values between 8 and 16 kJ mol(-1) which suggests that an electrostatic mechanism of adsorption predominated over other underlying mechanisms. The adsorption process was also found to be spontaneous, with increasing negative free energy values observed at higher temperatures. Chemisorption process was supported by the changes in enthalpy above 40 kJ mol(-1) and by the results of desorption studies. This new adsorbent was also reusable and regenerable over four successive adsorption-desorption cycles. The single stage adsorber design revealed that PLC can be applicable as an effective biosorbent for the treatment of industrial effluents containing EY dye. PMID:25256550

  20. The effects of surface chemistry of mesoporous silica materials and solution pH on kinetics of molsidomine adsorption

    SciTech Connect

    Dolinina, E.S.; Parfenyuk, E.V.

    2014-01-15

    Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbed molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.

  1. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  2. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  3. Method for modifying trigger level for adsorber regeneration

    DOEpatents

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  4. Evaluation of adsorption potential of adsorbents: a case of uptake of cationic dyes.

    PubMed

    Maurya, Nityanand Singh; Mittal, Atul Kumar; Cornel, Peter

    2008-01-01

    Adsorption potential of a commercial activated carbon (FS300) has been evaluated for the uptake of cationic dyes namely methylene blue (MB) and rhodamine B (RB). Though, there are numerous studies in literature which report the sorption of MB (more than 40 studies) and RB (more than 10), however none of these use a common parameter to report the capacity of the sorbent. A protocol, based on the equilibrium dye concentration has been proposed to measure the sorption potential of a sorbent. The Langmuir model can very well describe the experimental equilibrium data for both dyes (coefficient of correlation > 0.999). MB (Qm = 312.5 mg g(-1)) is more adsorbable than the RB (Qm = 144.9 mg g(-1)). Molecular weight and chemical structure of dye molecules seem to affect the dye uptake. The effect of pH on dye uptake has also been evaluated by varyingpH from 3 to 11. Uptake of MB increases with pH, wherein RB removal decreases with pH. Dyes could not be desorbed either by distilled water (0.06 and 0.11% for MB and RB respectively), or by 0.1 NHCl (0.136 and 3.0% for MB and RB respectively) indicating, chemical adsorption type of adsorbent-adsorbate interactions. PMID:18831328

  5. Dimensionally Frustrated Diffusion towards Fractal Adsorbers

    NASA Astrophysics Data System (ADS)

    Nair, Pradeep R.; Alam, Muhammad A.

    2007-12-01

    Diffusion towards a fractal adsorber is a well-researched problem with many applications. While the steady-state flux towards such adsorbers is known to be characterized by the fractal dimension (DF) of the surface, the more general problem of time-dependent adsorption kinetics of fractal surfaces remains poorly understood. In this Letter, we show that the time-dependent flux to fractal adsorbers (1

  6. Standoff Spectroscopy of Surface Adsorbed Chemicals

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2009-01-01

    Despite its immediate applications, selective detection of trace quantities of surface adsorbed chemicals, such as explosives, without physically collecting the sample molecules is a challenging task. Standoff spectroscopic techniques offer an ideal method of detecting chemicals without using a sample collection step. Though standoff spectroscopic techniques are capable of providing high selectivity, their demonstrated sensitivities are poor. Here we describe standoff detection of trace quantities of surface adsorbed chemicals using two quantum cascade lasers operated simultaneously, with tunable wavelength windows that match with absorption peaks of the analytes. This standoff method is a variation of photoacoustic spectroscopy, where scattered light from the sample surface is used for exciting acoustic resonance of the detector. We demonstrate a sensitivity of 100 ng/cm{sup 2} and a standoff detection distance of 20 m for surface adsorbed analytes such as explosives and tributyl phosphate.

  7. Utilization of Rice Husk as Pb Adsorbent in Blood Cockles

    NASA Astrophysics Data System (ADS)

    Rohaeti, Eti; Permata Sari, Wenny; Batubara, Irmanida

    2016-01-01

    Water pollution by lead affects blood cockles, a potential source of food. The aim of this research is to compare rice husk (RH) and rice husk carbon (RHC) in reducing the concentration of lead in blood cockles. RH and RHC were activated with NaOH 1 M, and then the optimal conditions and maximum capacity were determined. This research showed that RH and RHC had maximum adsorbancy capacities of 28.7326 mg/g and 51.5464 mg/g at optimal condition. The optimal adsorption condition for RH in 100 ml Pb solution is 0.32 gram, pH 5, for 4 hours. The optimal adsorption condition for RHC in 100 ml Pb solution is 0.20 gram, pH 5, for 2 hours. Lead content in blood cockles from the north waters of Jakarta (1.9658 mg/kg) is beyond the threshold limit. Lead adsorption by RH and RHC could reduce lead content in blood cockles by about 40% and 31%, respectively.

  8. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    NASA Technical Reports Server (NTRS)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  9. Unoccupied electronic states in adsorbate systems

    NASA Astrophysics Data System (ADS)

    Bertel, E.

    1991-11-01

    Experimental work on unoccupied electronic states in adsorbate systems on metallic substrates is reviewed with emphasis on recent developments. The first part is devoted to molecular adsorbates. Weakly chemisorbed hydrocarbons are briefly discussed. An exhaustive inverse photoemission (IPE) study of the CO bond to the transition metals Ni, Pb, and Pt is presented. Adsorbed NO is taken as an example to demonstrate the persisting discrepancies in the interpretation of IPE spectra. Atomic adsorbates are discussed in the second part. The quantum well state model is applied to interpret the surface states in reconstructing and non-reconstructing adsorption systems of alkali metals and hydrogen. A recent controversy on the unoccupied electronic states of the Cu(110)/O p(2×1) surface is critically reviewed. The quantum well state model is then compared to tight binding and local-density-functional calculations of the unoccupied bands and the deficiencies of the various approaches are pointed out. Finally, the relation between the surface state model and more chemically oriented models of surface bonding is briefly discussed.

  10. Development and Testing of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin; Hasegawa, Mark; Straka, Sharon

    2012-01-01

    The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.

  11. Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents.

    PubMed

    Djati Utomo, H; Hunter, K A

    2006-01-01

    The adsorption of the divalent cations of Cu, Zn, Cd and Pb by tea leaves and coffee grounds from aqueous solutions is described. Both adsorbents exhibited strong affinity for these ions which could be described by a simple single-site equilibrium model. For coffee, the order of increasing adsorption equilibrium constant K was Cu < Pb < Zn < Cd, while for tea the opposite order was observed indicating that the adsorption sites on each adsorbent have a different chemical nature. Adsorption decreased at low pH < 4 through competition with H+ for adsorption sites, and for all metals except Cu, at high pH > 10, probably because of anion formation in the case of Zn2+ and also increased leaching of metal-binding soluble materials. The effect of metal ion concentration on the adsorptive equilibria indicated a threshold concentration above which overall adsorption became limited by saturation of the adsorption sites. Competition between two metal ions for the same sites was not observed with Cu(II) and Pb(II), however Zn(II) reacted competitively with Cd(II) binding sites on both tea and coffee. If fresh coffee or tea adsorbents were used, the fraction of metal ion taken up by the adsorbent was diminished by the competitive effects of soluble metal-binding ligands released by the tea or coffee. Experiments with coffee showed that roasting temperature controls the formation of metal ion adsorption sites for this adsorbent. PMID:16457172

  12. Modification of chitosan by swelling and crosslinking using epichlorohydrin as heavy metal Cr (VI) adsorbent in batik industry wastes

    NASA Astrophysics Data System (ADS)

    Hastuti, B.; Masykur, A.; Hadi, S.

    2016-02-01

    Study on chitosan modification by swelling and crosslinking and its application as a selective adsorbent for heavy metals Cr (VI) in batik industry wastes was done. Swelling is intended to improve chitosan porosity, whereas crosslinking is to increase the resistance of chitosan against acid. Natural samples are generally acidic, thus limiting chitosan application as an adsorbent. Modification of chitosan by combining swelling and crosslinking is expected to increase its adsorption capacity in binding heavy metal ions in water. The modified chitosan was later contacted with Cr (VI) to test its adsorption capacity with a variation of pH and contact time. Finally, application of modified chitosan was done in batik industry waste containing Cr (IV). Based on the results, chitosan-ECH 25% (v/v) was the optimum concentration of crosslinker to adsorb Cr (VI) ions. Modified chitosan has a solubility resistance to acids, even though a strong acid. Modification of chitosan also improved its adsorption capacity to Cr (VI) from 74% (pure chitosan) to 89% with contact time 30 min at pH 3. On the application to the batik wastes, the modified chitosan were able to adsorb Cr (IV) up to the level of 5 ppm. Thus, the modified chitosan has a potential to be applied to as an adsorbent of Cr (VI) in batik industry wastes.

  13. Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal.

    PubMed

    Rovani, Suzimara; Censi, Monique T; Pedrotti, Sidnei L; Lima, Eder C; Cataluña, Renato; Fernandes, Andreia N

    2014-04-30

    A new activated carbon (AC) material was prepared by pyrolysis of a mixture of coffee grounds, eucalyptus sawdust, calcium hydroxide and soybean oil at 800°C. This material was used as adsorbent for the removal of the endocrine disruptor compounds 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) from aqueous solutions. The carbon material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR), N2 adsorption/desorption curves and point of zero charge (pHPZC). Variables including the initial pH of the adsorbate solutions, adsorbent masses and contact time were optimized. The optimum range of initial pH for removal of endocrine disruptor compounds (EDC) was 2.0-11.0. The kinetics of adsorption were investigated using general order, pseudo first-order and pseudo-second order kinetic models. The Sips isotherm model gave the best fits of the equilibrium data (298K). The maximum amounts of E2 and EE2 removed at 298K were 7.584 (E2) and 7.883mgg(-1) (EE2) using the AC as adsorbent. The carbon adsorbent was employed in SPE (solid phase extraction) of E2 and EE2 from aqueous solutions. PMID:24647264

  14. Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent.

    PubMed

    Sheshmani, Shabnam; Ashori, Alireza; Hasanzadeh, Saeed

    2014-07-01

    Magnetic graphene/chitosan (MGCh) nanocomposite was fabricated through a facile chemical route and its application as a new adsorbent for Acid Orange 7 (AO7) removal was also investigated. After synthesis, the full characterization with various techniques (FTIR, XRD, VSM, and SEM) was achieved revealing many possible interactions/forces of dye-composite system. The results showed that, benefiting from the surface property of graphene oxide, the abundant amino and hydroxyl functional groups of chitosan, and from the magnetic property of Fe3O4, the adsorbent possesses quite a good and versatile adsorption capacity to the dye under investigation, and can be easily and rapidly extracted from water by magnetic attraction. The maximum absorption capacity was reached at initial pH 3 and 120min contact time. The batch adsorption experiments showed that the adsorption of the AO7 is considerably dependent on pH of milieu, amount of adsorbent, and contact time. The adsorption kinetics and isotherms were investigated to indicate that the kinetic and equilibrium adsorption were well-described by pseudo-first order kinetic and Langmuir isotherm model, respectively. The adsorption behavior suggested that the adsorbent surface was homogeneous in nature. The study suggests that the MGCh is a promising nano adsorbent for removal of anionic azo dyes from aqueous solution. PMID:24813679

  15. Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents

    NASA Astrophysics Data System (ADS)

    Engates, Karen Elizabeth

    Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster

  16. The effects of pH and surface composition on Pb adsorption to natural freshwater biofilms.

    PubMed

    Wilson, A R; Lion, L W; Nelson, Y M; Shuler, M L; Ghiorse, W C

    2001-08-01

    Two dominant variables that control the adsorption of toxic trace metals to suspended particulate materials and aquatic surface coatings are surface composition and solution pH. A model for the pH-dependent adsorption of Pbto heterogeneous particulate surface mixtures was derived from experimental evaluation of Pb adsorption to laboratory-derived surrogates. The surrogate materials were selected to represent natural reactive surface components. Pb adsorption to both the laboratory surrogates and natural biofilms was determined in chemically defined solutions under controlled laboratory conditions. Pb adsorption was measured over a pH range of 5-8, with an initial Pb concentration in solution of 2.0 microM. The surface components considered include amorphous Fe oxide, biogenic Mn oxide produced by a Mn(II) oxidizing bacterium (Leptothrix discophora SS-1), Al oxide, the common green alga Chlorella vulgaris, and Leptothrix discophora SS-1 cells. A linearization of Pb adsorption data for each adsorbent was used to quantify the relationship between Pb adsorption and pH. The parameters for individual adsorbents were incorporated into an additive model to predict the total Pb adsorption in multiple-adsorbent natural surface coatings that were collected from Cayuga Lake, NY. Pb adsorption experiments on the natural surface coatings at variable pH were utilized to verify the additive model predictions based on the pH dependent behavior of the experimental laboratory surrogates. Observed Pb adsorption is consistent with the model predictions (within 1-24%) over the range of solution pH values considered. The experimental results indicate that the combination of Fe and biogenic Mn oxides can contribute as much as 90% of Pb adsorbed on Cayuga Lake biofilms, with the dominant adsorbent switching from Mn to Fe oxide with increasing pH. PMID:11505999

  17. Natural Transformation of Azotobacter vinelandii by Adsorbed Chromosomal DNA: Role of Adsorbed DNA Conformation

    NASA Astrophysics Data System (ADS)

    Lv, N.; Zilles, J.; Nguyen, H.

    2008-12-01

    Recent increases in antibiotic resistance among pathogenic microorganisms and the accompanying public health concerns result both from the widespread use of antibiotics and from the transfer of antibiotic resistance genes among microorganisms. To understand the transfer of antibiotic resistance genes and identify efficient measures to minimize these transfers, an interdisciplinary approach was used to identify physical and chemical factors that control the fate and biological availability of extracellular DNA. Quartz crystal microbalance with dissipation (QCM-D) was used to study extracellular DNA adsorption and the conformation of the adsorbed DNA on silica and natural organic matter (NOM) surfaces. Solution chemistry was varied systematically to investigate the role of adsorbed DNA conformation on transformation. Gene transfer was assessed under the same conditions using natural transformation of chromosomal DNA into the soil bacteria Azotobacter vinelandii. DNA adsorbed to both silica and NOM surfaces has a more compact and rigid conformation in the presence of Ca2+ compared to Na+. Extracellular DNA adsorbed on silica and NOM surfaces transformed A. vinelandii. The transformation efficiency of adsorbed DNA was up to 4 orders of magnitude lower than that of dissolved DNA. Preliminary results suggest that the presence of Ca2+ in groundwater (e.g. hardness) reduces the availability of adsorbed DNA for transformation.

  18. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents

    NASA Astrophysics Data System (ADS)

    López-Muñoz, María-José; Arencibia, Amaya; Cerro, Luis; Pascual, Raquel; Melgar, Álvaro

    2016-03-01

    Titania and titanate nanotubes were evaluated as adsorbents for the removal of Hg(II) from aqueous solution. Commercial titanium dioxide (TiO2-P25, Evonik), a synthesized anatase sample obtained by the sol-gel method (TiO2-SG) and titanate nanotubes (TNT) prepared via hydrothermal treatment were compared. Mercury adsorption was analysed by kinetic and equilibrium experiments, studying the influence of pH and the type of adsorbents. The kinetics of Hg(II) adsorption on titania and titanate nanotubes could be well described by the pseudo-second order model. It was found that the process is generally fast with small differences between adsorbents, which cannot be explained by their dissimilarities in textural properties. Equilibrium isotherm data were best fitted with the Sips isotherm model. The maximum adsorption capacities of Hg(II) were achieved with titanate nanotubes sample, whereas between both titania samples, TiO2-SG exhibited the highest mercury uptake. For all adsorbents, adsorption capacities were enhanced as pH was increased, achieving at pH 10 Hg(II) adsorption capacities of 100, 121, and 140 mg g-1 for TiO2-P25, TiO2-SG, and TNT, respectively. Differences between samples were discussed in terms of their crystalline phase composition and chemical nature of both, mercury species and surface active sites.

  19. Comparison between Brazilian agro-wastes and activated carbon as adsorbents to remove Ni(II) from aqueous solutions.

    PubMed

    Dotto, Guilherme Luiz; Meili, Lucas; de Souza Abud, Ana Karla; Tanabe, Eduardo Hiromitsu; Bertuol, Daniel Assumpção; Foletto, Edson Luiz

    2016-01-01

    This research was performed to find an alternative, low-cost, competitive, locally available and efficient adsorbent to treat nickel (Ni) containing effluents. For this purpose, several Brazilian agro-wastes like sugarcane bagasse (SCB), passion fruit wastes (PFW), orange peel (OP) and pineapple peel (PP) were compared with an activated carbon (AC). The adsorbents were characterized. Effects of fundamental factors affecting the adsorption were investigated using batch tests. Kinetic and equilibrium studies were performed using conventional models. It was verified that the adsorption was favored at pH of 6.0 for all agro-wastes, being dependent of the Ni speciation, point of zero charge and surface area of the adsorbents. The Ni removal percentage was in the following order: SCB > OP > AC > PFW > PP. From the kinetic viewpoint, the Elovich model was appropriate to fit the Ni adsorption onto SCB, while for the other adsorbents, the pseudo-first-order model was the most suitable. For all adsorbents, the Langmuir model was the more adequate to represent the equilibrium data, being the maximum adsorption capacities of 64.1 mg g(-1), 60.7 mg g(-1), 63.1 mg g(-1), 48.1 mg g(-1) and 64.3 mg g(-1) for SCB, PFW, OP, PP and AC, respectively. These results indicated that mainly SCB and OP can be used as alternative adsorbents to treat Ni containing effluents. PMID:27232408

  20. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  1. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  2. Swelling induced regeneration of TiO2-impregnated chitosan adsorbents under visible light.

    PubMed

    Yang, Limin; Jiang, Lei; Hu, Di; Yan, Qingyun; Wang, Zhi; Li, Sisi; Chen, Cheng; Xue, Qi

    2016-04-20

    Since only the molecules that are in direct contact with the TiO2 surface undergo photosensitization, it is challenging to regenerate the TiO2-impregnated chitosan (TIC) adsorbent beads under visible light. This study focused on the role of chitosan swelling properties. It was found that dye-loaded TIC adsorbent exhibited a pH-dependent swelling owing to protonation/deprotonation of free amino groups on chitosan chains. In the acidic medium (pH<6.0), the adsorbent underwent a 'smart' phase transition from a dry contracted state to a hydrated swollen state, and its physicochemical properties were also significantly changed, which eventually enabled the photosensitized oxidation of dye. This swelling induced regeneration was further confirmed by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The involvement of oxygen radical species (O2(-)/HOO and OH) was also confirmed with electron spin resonance (ESR) spectroscopy. Moreover, the adsorption effectiveness of TIC adsorbent was mostly recovered after six regeneration cycles. PMID:26876871

  3. High efficient removal of fluoride from aqueous solution by a novel hydroxyl aluminum oxalate adsorbent.

    PubMed

    Wu, Shibiao; Zhang, Kaisheng; He, Junyong; Cai, Xingguo; Chen, Kai; Li, Yulian; Sun, Bai; Kong, Lingtao; Liu, Jinhuai

    2016-02-15

    A novel adsorbent, hydroxyl aluminum oxalate (HAO), for the high efficient removal of fluoride from aqueous solution was successfully synthesized. The adsorbent was characterized and its performance in fluoride (F(-)) removal was evaluated for the first time. Kinetic data reveal that the F(-) adsorption is rapid in the beginning followed by a slower adsorption process; 75.9% adsorption can be achieved within 1min and only 16% additional removal occurred in the following 239min. The F(-) adsorption kinetics was well described by the pseudo second-order kinetic model. The calculated adsorption capacity of this adsorbent for F(-) by Langmuir model was 400mgg(-1) at pH 6.5, which is one of the highest capabilities of today's materials. The thermodynamic parameters calculated from the temperature-dependent isotherms indicate that the adsorption reaction of F(-) on the HAO is a spontaneous process. The FT-IR spectra of HAO before and after adsorbing F(-) show adsorption mechanism should be hydroxyl and oxalate interchange with F(-). PMID:26624529

  4. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  5. Analysis of Adsorbed Natural Gas Tank Technology

    NASA Astrophysics Data System (ADS)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  6. Gas storage using fullerene based adsorbents

    NASA Technical Reports Server (NTRS)

    Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor); Mikhael, Michael G. (Inventor)

    2000-01-01

    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.

  7. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  8. Adsorption Removal of Environmental Hormones of Dimethyl Phthalate Using Novel Magnetic Adsorbent

    PubMed Central

    Chang, Chia-Chi; Tseng, Jyi-Yeong; Ji, Dar-Ren; Chiu, Chun-Yu; Lu, De-Sheng; Chang, Ching-Yuan; Yuan, Min-Hao; Chang, Chiung-Fen; Chiou, Chyow-San; Chen, Yi-Hung; Shie, Je-Lueng

    2015-01-01

    Magnetic polyvinyl alcohol adsorbent M-PVAL was employed to remove and concentrate dimethyl phthalate DMP. The M-PVAL was prepared after sequential syntheses of magnetic Fe3O4 (M) and polyvinyl acetate (M-PVAC). The saturated magnetizations of M, M-PVAC, and M-PVAL are 57.2, 26.0, and 43.2 emu g−1 with superparamagnetism, respectively. The average size of M-PVAL by number is 0.75 μm in micro size. Adsorption experiments include three cases: (1) adjustment of initial pH (pH0) of solution to 5, (2) no adjustment of pH0 with value in 6.04–6.64, and (3) adjusted pH0 = 7. The corresponding saturated amounts of adsorption of unimolecular layer of Langmuir isotherm are 4.01, 5.21, and 4.22 mg g−1, respectively. Values of heterogeneity factor of Freundlich isotherm are 2.59, 2.19, and 2.59 which are greater than 1, revealing the favorable adsorption of DMP/M-PVAL system. Values of adsorption activation energy per mole of Dubinin-Radushkevich isotherm are, respectively, of low values of 7.04, 6.48, and 7.19 kJ mol−1, indicating the natural occurring of the adsorption process studied. The tiny size of adsorbent makes the adsorption take place easily while its superparamagnetism is beneficial for the separation and recovery of micro adsorbent from liquid by applying magnetic field after completion of adsorption. PMID:26258169

  9. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  10. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  11. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  12. Simulations of noble gases adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Maiga, Sidi; Gatica, Silvina

    2014-03-01

    We present results of Grand Canonical Monte Carlo simulations of adsorption of Kr, Ar and Xe on a suspended graphene sheet. We compute the adsorbate-adsorbate interaction by a Lennard-Jones potential. We adopt a hybrid model for the graphene-adsorbate force; in the hybrid model, the potential interaction with the nearest carbon atoms (within a distance rnn) is computed with an atomistic pair potential Ua; for the atoms at r>rnn, we compute the interaction energy as a continuous integration over a carbon uniform sheet with the density of graphene. For the atomistic potential Ua, we assume the anisotropic LJ potential adapted from the graphite-He interaction proposed by Cole et.al. This interaction includes the anisotropy of the C atoms on graphene, which originates in the anisotropic π-bonds. The adsorption isotherms, energy and structure of the layer are obtained and compared with experimental results. We also compare with the adsorption on graphite and carbon nanotubes. This research was supported by NSF/PRDM (Howard University) and NSF (DMR 1006010).

  13. Orbital tomography for highly symmetric adsorbate systems

    NASA Astrophysics Data System (ADS)

    Stadtmüller, B.; Willenbockel, M.; Reinisch, E. M.; Ules, T.; Bocquet, F. C.; Soubatch, S.; Puschnig, P.; Koller, G.; Ramsey, M. G.; Tautz, F. S.; Kumpf, C.

    2012-10-01

    Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.

  14. Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal.

    PubMed

    Guo, Xiaoqing; Qu, Lijun; Tian, Mingwei; Zhu, Shifeng; Zhang, Xiansheng; Tang, Xiaoning; Sun, Kaikai

    2016-07-01

    Chitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated. The maximum adsorption capacity based on the Langmuir model was found to be 32.16 mg/g. In addition, experimental kinetic data were analyzed by the psuedo-first order and psuedo-second order equation models. The psuedo-second order model proved to be the best model for the adsorption system, which suggested that adsorption might be controlled by the chemical rate-limiting step through sharing of electrons or by covalent forces. PMID:27329054

  15. Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product.

    PubMed

    Delval, Franck; Crini, Grégorio; Vebrel, Joël

    2006-11-01

    Two series of crosslinked starch polymers were tested for their ability to adsorb organic pollutants in aqueous solutions. The polymers were prepared by a crosslinking reaction of starch-enriched flour using epichlorohydrin as the crosslinking agent, without and in the presence of NH(4)OH. These polymers were used as sorbent materials for the removal of phenolic derivatives from wastewater. The influence of several parameters (kinetics, pH and polymer structure) on the sorption capacity was evaluated using the batch and the open column methods. Results of adsorption experiments showed that the starch-based materials exhibited high sorption capacities toward phenolic derivatives. The study of the kinetics of pollutant uptake revealed that the adsorbents presented a relatively fast rate of adsorption. The experimental data were examined using the Langmuir and Freundlich models and it was found that the Freundlich model appeared to fit the isotherm data better than the Langmuir model. PMID:16275061

  16. Neutron Reflection Study of Bovine β-Casein Adsorbed on OTS Self- Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Fragneto, Giovanna; Thomas, Robert K.; Rennie, Adrian R.; Penfold, Jeffrey

    1995-02-01

    Specular neutron reflection has been used to determine the structure and composition of bovine β-casein adsorbed on a solid surface from an aqueous phosphate-buffered solution at pH 7. The protein was adsorbed on a hydrophobic monolayer self-assembled from deuterated octadecyltrichlorosilane solution on a silicon (111) surface. A two-layer structure formed consisting of one dense layer of thickness 23 ± 1 angstroms and a surface coverage of 1.9 milligrams per square meter adjacent to the surface and an external layer protruding into the solution of thickness 35 ± 1 angstroms and 12 percent protein volume fraction. The structure of the (β-casein) layer is explained in terms of the charge distribution in the protein.

  17. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  18. Surface-enhanced Raman spectroscopy of Omethoate adsorbed on silver surface

    NASA Astrophysics Data System (ADS)

    Kim, Hee Jin; Lee, Chul Jae; Karim, Mohammad Rezaul; Kim, Mak Soon; Lee, Mu Sang

    2011-01-01

    We have investigated surface-enhanced Raman spectroscopy (SERS) spectrum of Omethoate (O,O-dimethyl-S-methylcarbamoylmethylthiophosphate). It is found significant signals in the ordinary Raman spectrum for solid-state Omethoate as well as strong vibrational signals absorbed on the silver sol surface which is prepared by γ-irradiation technique at a very low concentration. Effects of pH and anions (Cl -, Br -, I -) on the adsorption orientation are investigated as well. Two different adsorption mechanisms are deduced, depending on the experimental conditions. The sulfur atom or the sulfur and two oxygen atoms are adsorbed onto the silver sol surface. Among halide ions, Br - and I - are more strongly adsorbed onto the silver sol surface. As a result, the adsorption of Omethoate is less effective due to their steric hindrance.

  19. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric

    PubMed Central

    2014-01-01

    A nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric was synthesized for selective removal of Cs ions from contaminated waters by a two-stage synthesis: radiation-induced graft polymerization of acrylic acid monomer onto the nonwoven polypropylene fabric surface with subsequent in situ formation of potassium nickel hexacyanoferrate (KNiHCF) nanoparticles within the grafted chains. Data of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy confirmed the formation of KNiHCF homogeneous phase on the fabric surface, which consisted of crystalline cubic-shaped nanoparticles (70 to 100 nm). The efficiency of the synthesized adsorbent for removal of cesium ions was evaluated under various experimental conditions. It has demonstrated a rapid adsorption process, high adsorption capacity over a wide pH range, and selectivity in Cs ion removal from model solutions with high concentration of sodium ions. PMID:24725367

  20. Kinetic regimes of polyelectrolyte exchange between the adsorbed state and free solution

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Svetlana A.; Granick, Steve

    1998-10-01

    We studied the exchange between the adsorbed state and free solution when polyelectrolyte chains, adsorbed to a solid surface of opposite charge, were displaced by chains of higher charge density. Metastable states of surface composition were extremely long-lived (>2-3 days). The system was a family of poly(1,4 vinyl)pyridines (PVP) with different fractions of charged segments (14%, 48%, and 98% quaternized and the same degree of polymerization); samples were exposed sequentially from aqueous D2O solution to a single silicon oxide substrate at pH where the surface carried a large negative charge (pH=9.2 or 10.5). Measurements were based on Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). As a first conclusion, we found charge of adsorbed polymer to be conserved during extended exchange times, suggesting that charge at the surface (not mass adsorbed) regulated the dynamics of adsorption and desorption. Except at the highest ionic strength charge of polymer at the surface during the displacement process considerably exceeded that for the initially-adsorbed layer, suggesting an intermediate state in which newly-adsorbed chains were more extended from the surface and not yet equilibrated in their conformations. Second, we concluded that desorption was the rate-limiting step in adsorption-desorption, since the desorption rate responded more to changes of ionic strength than did the adsorption rate onto previously-adsorbed polymer. Ionic strength appeared to modulate the intensity of sticking to the surface. Third, we found that the initial stages of desorption obeyed a simple functional form, exponential in the square root of elapsed time. This is conclusively slower than a first-order kinetic process and suggests that desorption in this polyelectrolyte system was diffusion-controlled during the initial stages. It is the same functional form observed for flexible polymers in nonpolar solvents. Fourth, we concluded that at relatively low

  1. Adsorption behavior of copper and zinc in soils: Influence of pH on adsorption characteristics

    SciTech Connect

    Msaky, J.J. ); Calvet, R. )

    1990-08-01

    The authors studied adsorption of copper and zinc on three different soils: a brown silty soil, an Oxisol, and a Podzol. They determined the amounts adsorbed and the shapes of adsorption isotherms as a function of the pH of the adsorbing medium at a constant ionic strength. The adsorbed amount-pH relationship depended strongly on the natures of the metallic cation and of the soil. The pH greatly influenced the characteristics of adsorption isotherms. They based interpretation on the variations with the pH of both adsorbent affinity for the metal in relation to the surface electric charge and chemical speciation in solution. The adsorption mechanism in the Oxisol probably involves monohydroxylated cations but is more determined by bivalent cations in the brown silty soil and the Podzol. From a general point of view, adsorption of copper and zinc cannot be represented with a single adsorption constant, but should be described by adsorption isotherms obtained at various pH values.

  2. Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies.

    PubMed

    Hassani, Aydin; Khataee, Alireza; Karaca, Semra; Shirzad-Siboni, Mehdi

    2015-01-01

    Surfactant-modified montmorillonites (MMT) were prepared using trimethyloctylammonium bromide (TMOAB) and employed as a nanosized adsorbent to remove diazinon from aqueous solutions. The prepared adsorbent was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The dependence of removal efficiency on initial diazinon concentration, amount of adsorbent, pH of the solution and ionic strength was investigated. The affinity sequence for ion adsorption on TMOAB/MMT was in the order: without anion> sodium carbonate> sodium bicarbonate> sodium sulphate> sodium chloride. The adsorption kinetic and isotherm were best fit by a pseudo-second-order kinetic and Langmuir isotherm models, respectively. PMID:26006742

  3. Structural investigations of adsorbed films of Methyl Halides on Boron Nitride

    NASA Astrophysics Data System (ADS)

    Sprung, Michael; Freitag, Andrea; Hanson, Jonathan; Larese, John

    2000-03-01

    The Methyl Halides are a group of molecules whose properties of thin adsorbed films on Graphite have been well characterized. Boron Nitride forms a hexagonal structure with a slightly larger (about 2% ) unit cell than Graphite. The study of thin films of Methyl Halides (CH_3R, R=Cl, Br and I) on Boron Nitride is motivated by the hope to gain a better understanding of adsorbate-substrate interaction. High resolution adsorption isotherms and x-ray powder diffraction have been used to investigate the monolayer structures of CH_3R adsorbed on Boron Nitride. The experiments were carried out at the Beamline X7B of the NSLS. The gases were dosed onto the sample with an automated gas handling system, and a Mar345 image plate detector was used to collect the data. The measurements were performed in a temperature range between 50 and 175 K. All three adsorbates form a solid monolayer structure on Boron Nitride at low temperature. The structure of Methyl Chloride and Methyl Bromide is very similar to the high-density structure of CH_3Cl on Graphite. This is surprising for CH_3Br because it forms a different structure on Graphite. Methyl Iodide forms similar structures on both substrates.

  4. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    DOE PAGESBeta

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Kuo, Li -Jung; Gill, Gary; Dai, Sheng; Kim, J.; et al

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration ofmore » ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long

  5. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    SciTech Connect

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Kuo, Li -Jung; Gill, Gary; Dai, Sheng; Kim, J.; Oyola, Y.; Wood, J. R.

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration of ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long conditioning

  6. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Liu, Yun-Hai; Wang, You-Qun; Zhang, Zhi-Bin; Cao, Xiao-Hong; Nie, Wen-Bin; Li, Qin; Hua, Rong

    2013-05-01

    In this study, a low-cost and high-efficient carbonaceous adsorbent (HTC-COOH) with carboxylic groups was developed for U(VI) removal from aqueous solution compared with the pristine hydrothermal carbon (HTC). The structure and chemical properties of resultant adsorbents were characterized by Scanning electron microscope (SEM), N2 adsorption-desorption, Fourier transform-infrared spectra (FT-IR) and acid-base titration. The key factors (solution pH, contact time, initial U(VI) concentrations and temperature) affected the adsorption of U(VI) on adsorbents were investigated using batch experiments. The adsorption of U(VI) on HTC and HTC-COOH was pH-dependent, and increased with temperature and initial ion concentration. The adsorption equilibrium of U(VI) on adsorbents was well defined by the Langmuir isothermal equation, and the monolayer adsorption capacity of HTC-COOH was found to be 205.8 mg/g. The kinetics of adsorption was very in accordance with the pseudo-second-order rate model. The adsorption processes of U(VI) on HTC and HTC-COOH were endothermic and spontaneous in nature according to the thermodynamics of adsorption. Furthermore, HTC-COOH could selectively adsorption of U(VI) in aqueous solution containing co-existing ions (Mg2+, Co2+, Ni2+, Zn2+ and Mn2+). From the results of the experiments, it is found that the HTC-COOH is a potential adsorbent for effective removal of U(VI) from polluted water.

  7. Direct electrochemistry of Penicillium chrysogenum catalase adsorbed on spectroscopic graphite.

    PubMed

    Dimcheva, Nina; Horozova, Elena

    2013-04-01

    The voltammetric studies of Penicillium chrysogenum catalase (PcCAT) adsorbed on spectroscopic graphite, showed direct electron transfer (DET) between its active site and the electrode surface. Analogous tests performed with the commercially available bovine catalase revealed that mammalian enzyme is much less efficient in the DET process. Both catalases were found capable to catalyse the electrooxidation of phenol, but differed in the specifics of catalytic action. At an applied potential of 0.45V the non-linear regression showed the kinetics of the bioelectrochemical oxidation catalysed by the PcCAT obeyed the Hill equation with a binding constant K=0.034±0.002 M(2) (Hill's coefficient n=2.097±0.083, R(2)=0.997), whilst the catalytic action of the bovine catalase was described by the Michaelis-Menten kinetic model with the following parameters: V(max,app)=7.780±0.509 μA, and K(M,app)=0.068±0.070 mol L(-1). The performance of the electrode reaction was affected by the electrode potential, the pH, and temperature. Based on the effect of pH and temperature on the electrode response in presence of phenol a tentative reaction pathway of its bioelectrocatalytic oxidation has been hypothesised. The possible application of these findings in biosensing phenol up to concentration 30 mM at pHs below 7 and in absence of oxidising agents (oxygen or H(2)O(2)) was considered. PMID:23103554

  8. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    PubMed

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH. PMID:22841705

  9. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  10. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.

    PubMed

    Önnby, L; Pakade, V; Mattiasson, B; Kirsebom, H

    2012-09-01

    Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity. PMID:22687522

  11. Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties.

    PubMed

    Sander, Sylvia; Mosley, Luke M; Hunter, Keith A

    2004-09-15

    The nature of interparticle forces acting on colloid particle surfaces with adsorbed surface films of the internationally used humic acid standard material, Suwannee River Humic Acid (SHA), has been investigated using an atomic force microscope (AFM). Two particle surfaces were used, alumina and a hydrous iron oxide film coated onto silica particles. Adsorbed SHA dominated the interactive forces for both surface types when present. At low ionic strength and pH > 4, the force curves were dominated by electrostatic repulsion of the electrical double layers, with the extent of repulsion decreasing as electrolyte (NaCl) concentration increased, scaling with the Debye length (kappa(-1)) of the electrolyte according to classical theory. At pH approximately 4, electrostatic forces were largely absent, indicating almost complete protonation of carboxylic acid (-COOH) functional groups on the adsorbed SHA. Under these conditions and also at high electrolyte concentration ([NaCl] > 0.1 M), the absence of electrostatic forces allowed observation of repulsion forces arising from steric interaction of adsorbed SHA as the oxide surfaces approached closely to each other (separation < 10 nm). This steric barrier shrank as electrolyte concentration increased, implying tighter coiling of the adsorbed SHA molecules. In addition, adhesive bridging between surfaces was observed only in the presence of SHA films, implying a strong energy barrier to spontaneous detachment of the surfaces from each other once joined. This adhesion was especially strong in the presence of Ca2+ which appears to bridge SHA layers on each surface. Overall, our results show that SHA is a good model for the NOM adsorbed on colloids. PMID:15487789

  12. Surface geometry of tryptophan adsorbed on gold colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hussain, Shafqat; Pang, Yoonsoo

    2015-09-01

    Two distinct surface-enhanced Raman (SER) spectra of tryptophan depending on the surface adsorption geometry were obtained by using colloidal gold nanoparticles reduced by borohydride and citrate ions. According to the vibrational assignments based on DFT simulations, the SER spectra of tryptamine and 3-indolepropionic acid, and the pH dependence of tryptophan SER spectrum, we found that some indole ring vibrations are very sensitive to the surface adsorption geometry of the molecules. With citrate-reduced gold colloids, tryptophan and related molecules mainly adsorb via the protonated amine group while maintaining a perpendicular geometry of the indole ring to the surface. However, a flat geometry of the indole ring to the surface is preferred on the borohydride-reduced gold colloids where the surface adsorption occurs mainly through the indole ring π electrons. By comparing our results with previous reports on the SER spectra of tryptophan on various silver and gold surfaces, we propose a general adsorption model of tryptophan on metal nanosurfaces.

  13. Adsorption of copper cyanide on chemically active adsorbents

    SciTech Connect

    Lee, J.S.; Deorkar, N.V.; Tavlarides, L.L.

    1998-07-01

    An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN){sub 2}{sup {minus}}), divalent (Cu(CN){sub 3}{sup 2{minus}}), and trivalent (Cu(CN){sub 4}{sup 3{minus}}) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

  14. Conformational properties of an adsorbed charged polymer.

    PubMed

    Cheng, Chi-Ho; Lai, Pik-Yin

    2005-06-01

    The behavior of a strongly charged polymer adsorbed on an oppositely charged surface of a low-dielectric constant is formulated by the functional integral method. By separating the translational, conformational, and fluctuational degrees of freedom, the scaling behaviors for both the height of the polymer and the thickness of the diffusion layer are determined. Unlike the results predicted by scaling theory, we identified the continuous crossover from the weak compression to the compression regime. All the analytical results are found to be consistent with Monte Carlo simulations. Finally, an alternative (operational) definition of a charged polymer adsorption is proposed. PMID:16089715

  15. Recovery of Technetium Adsorbed on Charcoal

    SciTech Connect

    Engelmann, Mark D.; Metz, Lori A.; Ballou, Nathan E.

    2006-05-01

    Two methods capable of near complete recovery of technetium adsorbed on charcoal are presented. The first involves liquid extraction of the technetium from the charcoal by hot 4M nitric acid. An average recovery of 98% (n=3) is obtained after three rounds of extraction. The second method involves dry ashing with air in a quartz combustion tube at 400-450 C. This method yields an average recovery of 96% (n=5). Other thermal methods were attempted, but resulted in reduced recovery and incomplete material balance

  16. Lead removal with adsorbing colloid flotation

    SciTech Connect

    Thackston, E.L.; Wilson, D.J.; Hanson, J.S.; Miller, D.L. Jr.

    1980-02-01

    A process that removes lead from industrial waste by adsorbing colloid foam flotation has been designed and demonstrated. A system of ferric chloride and sodium lauryl sulfate, both relatively inexpensive chemicals, gave good performance with optimum dosages of sodium lauryl sulfate at 40 mg/l and trivalent iron at 150 mg/l. With optimum chemical and hydraulic conditions, the pilot plant was able to produce effluents with lead concentrations of less than 0.5 mg/l. The process may be especially attractive where space for heavy metals removal equipment is extremely limited.

  17. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE. PMID:23626602

  18. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation

    PubMed Central

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE. PMID:23626602

  19. Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity.

    PubMed

    Koenig, Meike; Bittrich, Eva; König, Ulla; Rajeev, Bhadra Lakshmi; Müller, Martin; Eichhorn, Klaus-Jochen; Thomas, Sabu; Stamm, Manfred; Uhlmann, Petra

    2016-10-01

    Polyelectrolyte brushes can be utilized to immobilize enzymes on macroscopic surfaces. This report investigates the influence of the pH value of the surrounding medium on the amount and the activity of enzymes adsorbed to poly(2-vinylpyridine) and poly(acrylic acid) brushes, as well as the creation of thermoresponsive biocatalytically active coatings via the adsorption of enzymes onto a mixed brush consisting of a polyelectrolyte and temperature-sensitive poly(N-isopropylacryl amide). Spectroscopic ellipsometry and attenuated total reflection-Fourier transform infrared spectroscopy are used to monitor the adsorption process. Additionally, infrared spectra are evaluated in terms of the secondary structure of the enzymes. Glucose oxidase is used as a model enzyme, where the enzymatic activity is measured after different adsorption conditions. Poly(acrylic acid) brushes generally adsorb larger amounts of enzyme, while less glucose oxidase is found on poly(2-vinylpyridine), which however exhibits higher specific activity. This difference in activity could be attributed to a difference in secondary structure of the adsorbed enzyme. For glucose oxidase adsorbed to mixed brushes, switching of enzymatic activity between an active state at 20°C and a less active state at 40°C as compared to the free enzyme in solution is observed. However, this switching is strongly depending on pH in mixed brushes of poly(acrylic acid) and poly(N-isopropylacryl amide) due to interactions between the polymers. PMID:27447452

  20. Iron(III) hydroxide-loaded coral limestone as an adsorbent for arsenic(III) and arsenic (V)

    SciTech Connect

    Maeda, Shigeru; Ohki, Akira; Saikoji, Shunsuke; Naka, Kensuke )

    1992-04-01

    Trace levels of As(III) and As(V) in aqueous media were effectively adsorbed onto a coral limestone loaded by Fe(OH){sub 3}. The adsorption of As(III) was almost comparable to that of As(V). The adsorption of As(III) and As(V) was almost independent of the pH of the aqueous phase (pH range: 3-10) because of a self-buffering effect of the coral. The addition of such anions as chloride, nitrate, sulfate, and acetate in the aqueous phase did not significantly affect the adsorption of As(III), whereas the addition of phosphate brought about a great decrease in the adsorption. The arsenic adsorption was effectively applied to the column method. Unloaded coral itself was effective as an adsorbent for As(V) when Fe(III) coexisted in the aqueous solutions.

  1. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGESBeta

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary; Janke, Christopher James; Wai, Chien

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. Themore » Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  2. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    SciTech Connect

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary; Janke, Christopher James; Wai, Chien

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.

  3. Rapid enrichment of rare-earth metals by carboxymethyl cellulose-based open-cellular hydrogel adsorbent from HIPEs template.

    PubMed

    Zhu, Yongfeng; Wang, Wenbo; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-04-20

    A series of monolithic open-cellular hydrogel adsorbents based on carboxymethylcellulose (CMC) were prepared through high internal phase emulsions (HIPEs) and used to enrich the rare-earth metals La(3+) and Ce(3+). The changes of pore structure, and the effects of pH, contact time, initial concentration on the adsorption performance were systematically studied. The results show that the as-prepared monolithic hydrogel adsorbents possess good open-cellular framework structure and have fast adsorption kinetics and high adsorption capacity for La(3+) and Ce(3+). The involved adsorption system can reach equilibrium within 30min and the maximal adsorption capacity is determined to be 384.62mg/g for La(3+) and 333.33mg/g for Ce(3+). Moreover, these porous hydrogel adsorbents show an excellent adsorptive reusability for La(3+) and Ce(3+) through five adsorption-desorption cycles. Such a pore hierarchy structure makes this monolithic open-cellular hydrogel adsorbent be an effective adsorbent for effective enrichment of La(3+) and Ce(3+) from aqueous solution. PMID:26876827

  4. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    SciTech Connect

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo; De la Cruz-Hernandez, Wencel; Gomez-Salazar, Sergio

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  5. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    1996-10-01

    Charcoal in itself is porous making it an excellent material for activated charcoal manufacture. However, few studies have been conducted in harnessing its potential for adsorption purposes, especially in water treatment. This paper describes the possibility of utilizing charcoal materials from Sugi (Cryptomeria japonica) for adsorbing heavy metals like mercury from aqueous solutions of different concentrations. The effect of soaking time, pore analyses and chemical properties on the adsorption capabilities of the carbonized materials were discussed. The pH value and chemical oxygen demand (COD) monitored during the soaking period were also described.

  6. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  7. Nitric oxide releasing material adsorbs more fibrinogen.

    PubMed

    Lantvit, Sarah M; Barrett, Brittany J; Reynolds, Melissa M

    2013-11-01

    One mechanism of the failure of blood-contacting devices is clotting. Nitric oxide (NO) releasing materials are seen as a viable solution to the mediation of surface clotting by preventing platelet activation; however, NO's involvement in preventing clot formation extends beyond controlling platelet function. In this study, we evaluate NO's effect on factor XII (fibrinogen) adsorption and activation, which causes the initiation of the intrinsic arm of the coagulation cascade. This is done by utilizing a model plasticized poly(vinyl) chloride (PVC), N-diazeniumdiolate system and looking at the adsorption of fibrinogen, an important clotting protein, to these surfaces. The materials have been prepared in such a way to eliminate changes in surface properties between the control (plasticized PVC) and composite (NO-releasing) materials. This allows us to isolate NO release and determine the effect on the adsorption of fibrinogen, to the material surface. Surprisingly, it was found that an NO releasing material with a surface flux of 17.4 ± 0.5 × 10(-10) mol NO cm(-2) min(-1) showed a significant increase in the amount of fibrinogen adsorbed to the material surface compared to one with a flux of 13.0 ± 1.6 × 10(-10) mol NO cm(-2) min(-1) and the control (2334 ± 496, 226 ± 99, and 103 ±31% fibrinogen adsorbed of control, respectively). This study suggests that NO's role in controlling clotting is extended beyond platelet activation. PMID:23554300

  8. Adsorbents as antiendotoxin agents in experimental colitis.

    PubMed Central

    Gardiner, K R; Anderson, N H; McCaigue, M D; Erwin, P J; Halliday, M I; Rowlands, B J

    1993-01-01

    The intestinal mucosa protects the body from a large reservoir of intraluminal pathogenic bacteria and endotoxins. This mucosal barrier is disrupted by the inflammation and ulceration of inflammatory bowel disease and may permit the absorption of toxic bacterial products. Systemic endotoxaemia has been demonstrated in ulcerative colitis and Crohn's disease and correlates with the extent and activity of disease. In this study the efficacy of absorbents as antiendotoxin agents in a hapten induced rat model of colitis is investigated. Induction of colitis was associated with systemic endotoxaemia. Enteral administration of terra fullonica and kaolin, but not of charcoal, significantly reduced systemic endotoxaemia (terra fullonica 4.2 (1.40) pg/ml; kaolin 5.29 (1.86) pg/ml; charcoal 32.7 (16.6) pg/ml; water 39.8 (12.6) pg/ml). Data expressed as mean (SE). With increasing severity of colitis, there was a decreasing ability of adsorbent therapy (terra fullonica) to control systemic endotoxaemia. Enteral administration of adsorbents controls gut derived systemic endotoxaemia in experimental colitis in animals and may be a useful antiendotoxin treatment in patients with inflammatory bowel disease. PMID:8432452

  9. Block copolymer adsorbed layers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Gowd, Bhoje; Endoh, Maya; Koga, Tadanori

    Block copolymer thin films offer a simple and effective route to fabricate highly ordered periodic microdomain structures. The fundamental, yet unsolved question is whether these highly oriented microdomain structures persist even near an impenetrable solid wall. We here report the adsorbed structures of polystyrene-block-poly (4-vinylpyridine) (PS-block-P4VP, Mw = 41,000, PS (weight fraction =0.81) formed on planar silicon substrates. Perpendicularly aligned cylindrical microdomains were created by solvent vapor annealing (Gowd et al., Soft Matter, 2014, 10, 7753), and the adsorbed layer was derived by solvent leaching with chloroform, a good solvent for the polymers and thereafter characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle x-ray scattering, and x-ray reflectivity. The results showed that both PS and P4VP chains lie flat on the substrate, forming a microphase-separated structure (MSS) without long-range order. Moreover, a spin-coated PS-block-P4VP thin film annealed under vacuum at 190 °C showed similar MSS on the substrate, indicating the generality of the interfacial polymer structure. Details will be discussed in the presentation. NSF Grant No. CMMI-1332499.

  10. Mimetite Formation from Goethite-Adsorbed Ions.

    PubMed

    Kleszczewska-Zębala, Anna; Manecki, Maciej; Bajda, Tomasz; Rakovan, John; Borkiewicz, Olaf J

    2016-06-01

    Bioavailability of arsenic in contaminated soils and wastes can be reduced to insignificant levels by precipitation of mimetite Pb5(AsO4)3Cl. The objective of this study is to elucidate mechanisms of the reaction between solution containing lead ions and arsenates adsorbed on synthetic goethite (AsO4-goethite), or arsenate ions in the solution and goethite saturated with adsorbed Pb (Pb-goethite). These reactions, in the presence of Cl, result in rapid crystallization of mimetite. Formation of mimetite is faster than desorption of AsO4 but slower than desorption of Pb from the goethite surface. Slow desorption of arsenates from AsO4-goethite results in heterogeneous precipitation and formation of mimetite incrustation on goethite crystals. Desorption of lead from Pb-goethite is at least as fast as diffusion and advection of AsO4 and Cl in suspension allowing for homogeneous crystallization of mimetite in intergranular solution. Therefore, the mechanism of nucleation is primarily driven by the kinetics of constituent supply to the saturation front, rather than by the thermodynamics of nucleation. The products of the reactions are well documented using microscopy methods such as scanning electron microscopy, electron backscattered diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy. PMID:27329315

  11. The persistence length of adsorbed dendronized polymers.

    PubMed

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-21

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role. PMID:27353115

  12. Photodecomposition of chloromethanes adsorbed on silica surfaces

    NASA Technical Reports Server (NTRS)

    Ausloos, P.; Rebbert, R. E.; Glasgow, L.

    1977-01-01

    Irradiation of CCl4, CFCl3, and CF2Cl2 in the presence of C2H6 in vessels containing silica sand or fused quartz tubing results in the formation of chlorine-containing products. The formation of these compounds occurs at wavelengths extending up to approximately 400 nm, that is, at wavelengths well beyond the absorption threshold of the chloromethanes in the gas phase. It is suggested that CCl4 adsorbed on silica surfaces photodissociates to yield CCl3 and CCl2 species. The poor material balance obtained in these experiments indicates that several of the chlorine-containing fragments are strongly adsorbed on the surface. At a CCl4 pressure of 13 Pa (0.1 torr), photolysis with 366 nm light in the presence of sand results in the decomposition of one molecule for every 10,000 photons striking the surface. Under otherwise identical conditions, the photon-induced breadkdown of CFCl3 and CF2Cl2 is respectively only 10% or 3% as efficient.

  13. Investigation of drug-porous adsorbent interactions in drug mixtures with selected porous adsorbents.

    PubMed

    Madieh, Shadi; Simone, Michael; Wilson, Wendy; Mehra, Dev; Augsburger, Larry

    2007-04-01

    The adsorption of drugs onto porous substrates may prove to be a convenient method by which to enhance the dissolution rate of certain poorly water-soluble drugs in body fluids. The purpose of this research is to provide a better understanding of the type of interactions occurring between drugs and certain pharmaceutically acceptable porous adsorbents that leads to enhanced drug dissolution rates. The interactions between ibuprofen (acidic drug), acetaminophen (acidic drug), dipyridamole (basic drug), and the porous adsorbents used (calcium silicate and silica gel) were investigated using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform infrared spectroscopy (FTIR). DSC and PXRD results indicated a significant loss of crystallinity of both ibuprofen and acetaminophen but not dipyridamole. In the case of ibuprofen, FTIR results indicated the ionization of the carboxylic group based on the shift in the FTIR carboxylic band. Dissolution of ibuprofen from its mixtures with porous adsorbents was found to be significantly higher compared to the neat drug, whereas dipyridamole dissolution from its mixtures with porous adsorbents was not significantly different from that of the neat drug. PMID:17221849

  14. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  15. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    NASA Astrophysics Data System (ADS)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  16. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent

    NASA Astrophysics Data System (ADS)

    Haldorai, Yuvaraj; Shim, Jae-Jin

    2014-02-01

    We report a novel multi-functional magnesium oxide (MgO) immobilized chitosan (CS) composite was prepared by chemical precipitation method. The CS-MgO composite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy and zeta potential. The composite was applied as a novel adsorbent for removal of methyl orange model dye and the effect of adsorbent dosage, pH and contact time were studied. The adsorption kinetics followed a pseudo second order reaction. The adsorbent efficiency was unaltered even after five cycles of reuse. In addition, the composite exhibited a superior antibacterial efficacy of 93% within 24 h against Escherichia coli as measured by colony forming units. Based on the data of present investigation the composite being a biocompatible, eco-friendly and low-cost adsorbent with antibacterial activity could find potential applications in variety of fields and in particular environmental applications.

  17. Electron-Stimulated Oxidation of Thin Water Films Adsorbed on TiO2(110)

    SciTech Connect

    Lane, Christopher D.; Petrik, Nikolay G.; Orlando, Thomas M.; Kimmel, Greg A.

    2007-11-08

    Electron-stimulated reactions in thin (< 3 monolayer, ML) water films adsorbed on TiO2(110) are investigated. For electron fluences less than ~1×1016 e-/cm2, irradiation with 100 eV electrons results in electron-stimulated desorption (ESD) of atomic and molecular hydrogen, but no measurable O2. The ESD leaves adsorbed hydroxyls which oxidize the TiO2(110) surface and change the post-irradiation TPD spectra of the remaining water in characteristic ways. The species remaining on the TiO2(110) after irradiation of adsorbed water films are apparently similar to those produced without irradiation by co-dosing water and O2. Annealing above ~600 K reduces the oxidized surfaces, and water TPD spectra characteristic of ion sputtered and annealed TiO2(110) are recovered. The rate of electron-stimulated “oxidation” of the water films is proportional to the coverage of water in the first layer for coverages less than 1 ML. However, higher coverages suppress this reaction. When thin water films are irradiated, the rate of electron-stimulated oxidation is independent of the initial oxygen vacancy concentration, as is the final oxidized state achieved at high electron fluences. To explain the results, we propose that electron excitation of water molecules adsorbed on Ti4+ sites leads to desorption of hydrogen atoms and leaves an OH adsorbed at the site. If hydroxyls are present in the bridging oxygen rows, these react with the OH’s on the Ti4+ sites to reform water and heal the oxygen vacancy associated with the bridging OH. Once the bridge bonded hydroxyls have been eliminated, further irradiation increases the concentration of OH’s in the Ti4+ rows leading to the creation of species which block sites in the Ti4+ rows, perhaps H2O2 and/or HO2.

  18. Preparation of adsorbent with magnesium sulfate and straw pulp black liquor and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Guo, Lugang; Wang, Haizeng

    2009-09-01

    A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 °C. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.

  19. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  20. Fundamental characteristics of synthetic adsorbents intended for industrial chromatographic separations.

    PubMed

    Adachi, Tadashi; Isobe, Eiji

    2004-05-14

    With the aim of obtaining comprehensive information on the selection of synthetic adsorbents for industrial applications, effect of pore and chemical structure of industrial-grade synthetic adsorbents on adsorption capacity of several pharmaceutical compounds was investigated. For relatively low molecular mass compounds, such as cephalexin, berberine chloride and tetracycline hydrochloride, surface area per unit volume of polystyrenic adsorbents dominated the equilibrium adsorption capacity. On the contrary, effect of pore size of the polystyrenic adsorbents on the equilibrium adsorption capacity was observed for relatively high molecular mass compounds, such as rifampicin, Vitamin B12 and insulin. Polystyrenic adsorbent with high surface area and small pore size showed small adsorption capacity for relatively high molecular mass compounds, whereas polystyrenic adsorbent with relatively small surface area but with large pore size showed large adsorption capacity. Effect of chemical structure on the equilibrium adsorption capacity of several pharmaceutical compounds was also studied among polystyrenic, modified polystyrenic and polymethacrylic adsorbents. The modified polystyrenic adsorbent showed larger adsorption capacity for all compounds tested in this study due to enhanced hydrophobicity. The polymethacrylic adsorbent possessed high adsorption capacity for rifampicin and insulin, but it showed lower adsorption capacity for the other compounds studied. This result may be attributed to hydrogen bonding playing major role for the adsorption of compounds on polymethacrylic adsorbent. Furthermore, column adsorption experiments were operated to estimate the effect of pore characteristics of the polystyrenic adsorbents on dynamic adsorption behavior, and it is found that both surface area and pore size of the polystyrenic adsorbents significantly affect the dynamic adsorption capacity as well as flow rate. PMID:15139411

  1. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  2. Systemic antibody response to nano-size calcium phospate biocompatible adjuvant adsorbed HEV-71 killed vaccine

    PubMed Central

    2015-01-01

    Purpose Since 1980s, human enterovirus-71 virus (HEV-71) is one of the common infectious disease in Asian Pacific region since late 1970s without effective commercial antiviral or protective vaccine is unavailable yet. The work examines the role of vaccine adjuvant particle size and the route of administration on postvaccination antibody response towards HEV-71 vaccine adsorbed to calcium phosphate (CaP) adjuvant. Materials and Methods First, CaP nano-particles were compared to a commercial micro-size and vaccine alone. Secondly, intradermal reduced dosage was compared to the conventional intramuscular immunization. Killed HEV-71 vaccines adsorbed to CaP nano-size (73 nm) and commercial one of micro-size (1.7 µm) were administered through intradermal, intramuscular, rabbits received vaccine alone and unvaccinated animals. Results CaP nano-particles adsorbed HEV-71 vaccine displayed higher antibody than the micro-size or unadsorbed vaccine alone, through both parenteral immunization routes. Moreover, the intradermal route (0.5 µg/mL) of 0.1-mL volume per vaccine dose induced equal IgG antibody level to 1.0-mL intramuscular route (0.5 µg/mL). Conclusion The intradermal vaccine adsorbed CaP nano-adjuvant showed safer and significant antibody response after one-tenth reduced dose quantity (0.5 µg/mL) of only 0.1-mL volume as the most suitable protective, cost effective and affordable formulation not only for HEV-71; but also for developing further effective vaccines toward other human pathogens. PMID:25649429

  3. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  4. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  5. Video STM Studies of Adsorbate Diffusion at Electrochemical Interfaces

    NASA Astrophysics Data System (ADS)

    Tansel, T.; Magnussen, O. M.

    2006-01-01

    Direct in situ studies of the surface diffusion of isolated adsorbates at an electrochemical interface by high-speed scanning tunneling microscopy (video STM) are presented for sulfide adsorbates on Cu(100) in HCl solution. As revealed by a quantitative statistical analysis, the adsorbate motion can be described by thermally activated hopping between neighboring adsorption sites with an activation energy that increases linearly with electrode potential by 0.50 eV per V. This can be explained by changes in the adsorbate dipole moment during the hopping process and contributions from coadsorbates.

  6. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  7. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    PubMed

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. PMID:27474562

  8. Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline [gamma]-Alumina

    SciTech Connect

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L.

    2012-03-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.

  9. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode.

    PubMed

    Solovyeva, Elena V; Myund, Liubov A; Denisova, Anna S

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd(2+) ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd(2+) complex which desorption causes the loss of SERS signal. PMID:25956332

  10. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    NASA Astrophysics Data System (ADS)

    Khan, Taimur; Chaudhuri, Malay

    2013-06-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants Kf and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  11. Linear transport models for adsorbing solutes

    NASA Astrophysics Data System (ADS)

    Roth, K.; Jury, W. A.

    1993-04-01

    A unified linear theory for the transport of adsorbing solutes through soils is presented and applied to analyze movement of napropamide through undisturbed soil columns. The transport characteristics of the soil are expressed in terms of the travel time distribution of the mobile phase which is then used to incorporate local interaction processes. This approach permits the analysis of all linear transport processes, not only the small subset for which a differential description is known. From a practical point of view, it allows the direct use of measured concentrations or fluxes of conservative solutes to characterize the mobile phase without first subjecting them to any model. For complicated flow regimes, this may vastly improve the identification of models and estimation of their parameters for the local adsorption processes.

  12. The persistence length of adsorbed dendronized polymers

    NASA Astrophysics Data System (ADS)

    Grebikova, Lucie; Kozhuharov, Svilen; Maroni, Plinio; Mikhaylov, Andrey; Dietler, Giovanni; Schlüter, A. Dieter; Ullner, Magnus; Borkovec, Michal

    2016-07-01

    The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth generation polymer adsorbed on mica, which is a hydrophilic and highly charged substrate. However, the observed dependence on the ionic strength is much weaker than the one predicted by the Odijk, Skolnik, and Fixman (OSF) theory for semi-flexible chains. Low-generation polymers show a variation with the ionic strength that resembles the one observed for simple and flexible polyelectrolytes in solution. For high-generation polymers, this dependence is weaker. Similar dependencies are found for silica and gold substrates. The observed behavior is probably caused by different extents of screening of the charged groups, which is modified by the polymer generation, and to a lesser extent, the nature of the substrate. For highly ordered pyrolytic graphite (HOPG), which is a hydrophobic and weakly charged substrate, the electrostatic contribution to the persistence length is much smaller. In the latter case, we suspect that specific interactions between the polymer and the substrate also play an important role.The persistence length of cationic dendronized polymers adsorbed onto oppositely charged substrates was studied by atomic force microscopy (AFM) and quantitative image analysis. One can find that a decrease in the ionic strength leads to an increase of the persistence length, but the nature of the substrate and of the generation of the side dendrons influence the persistence length substantially. The strongest effects as the ionic strength is being changed are observed for the fourth

  13. Interfacial pH during mussel adhesive plaque formation.

    PubMed

    Martinez Rodriguez, Nadine R; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N; Waite, J Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8. PMID:25875963

  14. Interfacial pH during mussel adhesive plaque formation

    PubMed Central

    Rodriguez, Nadine R. Martinez; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2−3.3, which is well below the seawater pH of ~8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8. PMID:25875963

  15. Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater

    NASA Astrophysics Data System (ADS)

    Gao, Qianhong; Hu, Jiangtao; Li, Rong; Xing, Zhe; Xu, Lu; Wang, Mouhua; Guo, Xiaojing; Wu, Guozhong

    2016-05-01

    A new kind of highly efficient adsorbent material has been fabricated in this study for the purpose of extracting uranium from seawater. Ultra-high molecular weight polyethylene (UHMWPE) fiber was used as a trunk material for the adsorbent, which was prepared by a series of modification reactions, as follows: (1) grafting of glycidyl methacrylate (GMA) and methyl acrylate (MA) onto UHMWPE fibers via 60Co γ-ray pre-irradiation; (2) aminolyzation of UHMWPE fiber by the ring-opening reaction between of epoxy groups PGMA and ethylene diamine (EDA); (3) Michael addition of amino groups with acrylonitrile (AN) to yield nitrile groups; (4) amidoximation of the attached nitrile moieties by hydroxylamine in dimethyl sulfoxide-water mixture. Modified UHMWPE fibers were characterized by means of attenuated total reflectance-Fourier transformed infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) to confirm the attachment of amidoxime (AO) groups onto the UHMWPE fibers. The results of X-ray diffraction (XRD) and single fiber tensile strength verified that the modified UHMWPE fiber retained excellent mechanical properties at a low absorbed radiation dose. The adsorption performance of the UHMWPE fibrous adsorbent was evaluated by subjecting it to an adsorption test in simulated seawater using a continuous-flow mode. The amount of uranium adsorbed by this AO-based UHMWPE fibrous adsorbent was 1.97 mg-U/g after 42 days. This new adsorbent also showed high selectivity for the uranyl ion, and its selectivity for metal ions was found to decrease in the following order: U>Cu>Fe>Ca>Mg>Ni>Zn>Pb>V>Co. The adsorption selectivity for uranium is significantly higher than that for vanadium. In addition, preparation of this modified adsorbent consumes much smaller amounts of the toxic acrylonitrile monomer than the conventional preparation methods of AO-based polyethylene fibers.

  16. Origin of the instability of octadecylamine Langmuir monolayer at low pH

    DOE PAGESBeta

    Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; Phan, Minh Dinh; Shin, Kwanwoo; Vaknin, David; Kim, Doseok

    2015-11-30

    In this paper, it has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284–285, 166–174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure–area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as comparedmore » to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl– counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.« less

  17. Origin of the instability of octadecylamine Langmuir monolayer at low pH

    SciTech Connect

    Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; Phan, Minh Dinh; Shin, Kwanwoo; Vaknin, David; Kim, Doseok

    2015-11-30

    In this paper, it has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf. A 2006, 284–285, 166–174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure–area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as compared to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl– counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity.

  18. pH profile of the adsorption of nucleotides onto montmorillonite

    NASA Astrophysics Data System (ADS)

    Lawless, J. G.; Banin, A.; Church, F. M.; Mazzurco, J.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-06-01

    The effect of adsorbed ions and pH on the adsorption of several purine and pyrimidine nucleotides on montmorillonite was studied. The cations used to prepare homoionic montmorillonite were Na+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+. The nucleotides studied were 5'-, 3'-, and 2'-AMP, and 5'-CMP in the pH range 2 through 12. The results show that preferential adsorption amongst nucleotides and similar molecules is dependent upon pH and the nature of the substituted metal cation in the clay. At neutral pH, it was observed that 5'-AMP was more strongly adsorbed than 2'-AMP, 3'-AMP, and 5'-CMP. Cu2+ and Zn2+ clays showed enhanced adsorption of 5'-AMP compared to the other cation clays studied in the pH range 4 8. Below pH 4, the adsorption is attributed to cation and anion exchange adsorption mechanisms; above pH 4, anion exchange may also occur, but the adsorption (when it occurs) likely depends on a complexation mechanism occurring between metal cation in the clay exchange site and the biomolecule. It is thus proposed that homoionic clays may have played a significant role in the concentration mechanism of biomonomers in the prebiotic environment, a prerequisite step necessary for the formation of biopolymers in the remaining steps leading to the origin of life.

  19. Two-dimensional electron gas formed on the indium-adsorbed Si(111)3×3-Au surface

    NASA Astrophysics Data System (ADS)

    Kim, J. K.; Kim, K. S.; McChesney, J. L.; Rotenberg, E.; Hwang, H. N.; Hwang, C. C.; Yeom, H. W.

    2009-08-01

    Electronic structure of the In-adsorbed Si(111)3×3-Au surface was investigated by core-level and angle-resolved photoelectron spectroscopy. On the Si(111)3×3-Au surface, In adsorbates were reported to remove the characteristic domain-wall network and produce a very well-ordered 3×3 surface phase. Detailed band dispersions and Fermi surfaces were mapped for the pristine and In-dosed Si(111)3×3-Au surfaces. After the In adsorption, the surface bands shift toward a higher binding energy, increasing substantially the electron filling of the metallic band along with a significant sharpening of the spectral features. The resulting Fermi surface indicates the formation of a perfect isotropic two-dimensional electron-gas system filled with 0.3 electrons. This band structure agrees well with that expected, in a recent density-functional theory calculation, for the conjugate-honeycomb trimer model of the pristine Si(111)3×3-Au surface. Core-level spectra indicate that In adsorbates interact mostly with Si surface atoms. The possible origins of the electronic structure modification by In adsorbates are discussed. The importance of the domain wall and the indirect role of In adsorbates are emphasized. This system provides an interesting playground for the study of two-dimensional electron gas on solid surfaces.

  20. Adsorption properties of the nanozirconia/anionic polyacrylamide system-Effects of surfactant presence, solution pH and polymer carboxyl groups content

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2016-05-01

    The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.

  1. Adsorption of Sulfamethazine from Environmentally Relevant Aqueous Matrices onto Hypercrosslinked Adsorbent MN250.

    PubMed

    Grimmett, Maria E

    2015-07-01

    Four hundred tons of sulfamethazine are fed to livestock annually in North America for disease prevention and growth promotion, but the majority is excreted unmetabolized into the environment. Due to its slow degradation and high mobility, sulfamethazine contaminates groundwater and causes aquatic ecosystem damage. Sulfamethazine remediation methods are not universally effective, necessitating newer techniques. Hypercrosslinked polystyrene adsorbents show promise because of high surface areas, durability, and regenerable properties. Using batch techniques, sulfamethazine adsorption onto Purolite MN250 was evaluated in the presence of dissolved humic acid and under variable pH and ionic strength. The adsorption capacity () of MN250 for sulfamethazine with humic acid was 109.3 mg g. In simulated groundwater, at pH 5 was 51 to 62% higher than at pH 9. The maximum at pH 7 (144.0 mg g) exceeded pH 5 performance (128.3 mg g). In 0.005 M KCl, was 181.0 mg g, which decreased by 34% in 0.05 M KCl. In 0.5 M, KCl, (153.4 mg g) increased 26% over 0.05 M KCl. For all matrices, equilibration was attained between 120 and 168 h, best fit by Ho's pseudo-second-order model. Overall, is pH dependent because the sulfamethazine speciation and the zeta potential of MN250 vary as a function of pH. Increasing ionic strength initially decreases by altering the activity coefficient of sulfamethazine and by altering the properties of the electrical double layer, while salting-out becomes prominent at seawater concentration. MN250's high sulfamethazine capacity in environmentally relevant aqueous matrices highlights its potential for groundwater remediation. PMID:26437099

  2. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). PMID:26070190

  3. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water.

    PubMed

    Mohan, Dinesh; Pittman, Charles U

    2006-09-21

    Hexavalent chromium is a well-known highly toxic metal, considered a priority pollutant. Industrial sources of Cr(VI) include leather tanning, cooling tower blowdown, plating, electroplating, anodizing baths, rinse waters, etc. The most common method applied for chromate control is reduction of Cr(VI) to its trivalent form in acid (pH approximately 2.0) and subsequent hydroxide precipitation of Cr(III) by increasing the pH to approximately 9.0-10.0 using lime. Existing overviews of chromium removal only cover selected technologies that have traditionally been used in chromium removal. Far less attention has been paid to adsorption. Herein, we provide the first review article that provides readers an overview of the sorption capacities of commercial developed carbons and other low cost sorbents for chromium remediation. After an overview of chromium contamination is provided, more than 300 papers on chromium remediation using adsorption are discussed to provide recent information about the most widely used adsorbents applied for chromium remediation. Efforts to establish the adsorption mechanisms of Cr(III) and Cr(VI) on various adsorbents are reviewed. Chromium's impact environmental quality, sources of chromium pollution and toxicological/health effects is also briefly introduced. Interpretations of the surface interactions are offered. Particular attention is paid to comparing the sorption efficiency and capacities of commercially available activated carbons to other low cost alternatives, including an extensive table. PMID:16904258

  4. Development of a nanosphere adsorbent for the removal of fluoride from water.

    PubMed

    Zhang, Kaisheng; Wu, Shibiao; He, Junyong; Chen, Liang; Cai, Xingguo; Chen, Kai; Li, Yulian; Sun, Bai; Lin, Dongyue; Liu, Guqing; Kong, Lingtao; Liu, Jinhuai

    2016-08-01

    A new uniform-sized CeCO3OH nanosphere adsorbent was developed, and tested to establish its efficiency, using kinetic and thermodynamic studies, for fluoride removal. The results demonstrated that the CeCO3OH nanospheres exhibited much high adsorption capacities for fluoride anions due to electrostatic interactions and exchange of the carbonate and hydroxyl groups on the adsorbent surface with fluoride anions. Adsorption kinetics was fitted well by the pseudo-second-order model as compared to a pseudo-first-order rate expression, and adsorption isotherm data were well described by Langmuir model with max adsorption capacity of 45mg/g at pH 7.0. Thermodynamic examination demonstrated that fluoride adsorption on the CeCO3OH nanospheres was reasonably endothermic and spontaneous. Moreover, the CeCO3OH nanospheres have less influence on adsorption of F(-) by pH and co-exiting ions, such as SO4(2-), Cl(-), HCO3(-), CO3(2-), NO3(-) and PO4(3-), and the adsorption efficiency is very high at the low initial fluoride concentrations in the basis of the equilibrium adsorption capacities. This study indicated that the CeCO3OH nanospheres could be developed into a very viable technology for highly effective removal of fluoride from drinking water. PMID:27138842

  5. Surface-enhanced Raman spectroscopic analysis of maleic hydrazide adsorbed on gold surface.

    PubMed

    Wang, Can; Gu, Huaimin; Lv, Meng; He, Ruoyu; Zhang, Juling

    2014-03-25

    In this paper, surface-enhanced Raman scattering (SERS) spectra of maleic hydrazide (MH, 6-hydroxy-3(2H)-pyridazinone) were studied by using citrate-reduced gold colloidal nanoparticles. Comparisons between the prominent SERS bands and the precise mode descriptions predicted through density functional theory (DFT) simulations at the B3LYP/6-311++g(d,p) level allowed an in-depth orientation analysis of the adsorbed species on gold surfaces. And main forms of hydrogen bonds in the solid state of MH were also determined to be O-H⋯O. Furthermore, the effects of concentration and pH on the SERS spectra of the molecule were discussed. It is found that with the different adsorbate concentration, the SERS spectra of MH show significant changes in their features, indicating different orientations and adsorption sites of the molecule on the gold colloidal surface. The SERS and absorption spectra under different pH conditions show that a basic environment leads to the deprotonation of N2 and the nearly parallel orientation of the MH molecule on the gold surface. Moreover, the enhanced characteristic bands were observed at MH concentrations down to about 1 ppm with the gold colloids, demonstrating a potential of the technique in the analysis of MH residues. PMID:24295778

  6. Process development for removal of substituted phenol by carbonaceous adsorbent obtained from fertilizer waste

    SciTech Connect

    Srivastava, S.K.; Mohan, D.; Tyagi, R.; Pal, N.

    1997-09-01

    Waste slurry, generated in local fertilizer plants, is converted into a cheap carbonaceous material. The product so obtained has been characterized and utilized for the removal of 2,4-dinitrophenol (DNP). The removal of DNP is 100% weight-to-weight (w/w) at low concentrations, while it is 80% w/w at higher concentrations. Several factors affecting the removal of DNP from water (e.g., particle size distribution, solution pH, contact time, loading of DNP on the adsorbent, etc.) have been studied at optimum pH (4.0). Both batch and column studies were performed. The adsorption capacities, adsorption rates, and break-through curves are used to optimize the contactors and identify design correlations. Some feasibility experiments have been performed, with an aim to recover DNP and chemical regeneration of the spent column. It is observed that 60 mL of 5% w/w NaOH is sufficient for almost complete desorption of DNP (loaded 57.5 mg, desorbed 55.2 mg). After regeneration with 1M HNO{sub 3}, the sorption capacity of the column is almost the same as that of virgin adsorbent material.

  7. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-02-01

    Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  8. Chromium(VI) removal via reduction-sorption on bi-functional silica adsorbents.

    PubMed

    Zaitseva, Nataliya; Zaitsev, Vladimir; Walcarius, Alain

    2013-04-15

    Organically-modified silica gels bearing mercaptopropyl and ethylenediaminetriacetate groups (SiO2-SH/ED3A) have been used for reduction and subsequent sequestration of Cr(VI) species. The uptake mechanism involves Cr(VI) reduction by thiol groups (SH) and further immobilization of the so-generated Cr(III) species via complexation to the ethylenediaminetriacetate moieties (ED3A). The most appropriate pH range (1-3) for complete Cr(VI) reduction-sorption by SiO2-SH/ED3A originates from the balance between full reduction of Cr(VI) by SH, requiring low pH values, and quantitative complexation of Cr(III) by ED3A, which is favored in less acidic media. Such bi-functional adsorbents are considerably more effective at removal of Cr(VI) than those simply modified with thiol groups alone. The whole reduction-sorption process was characterized by fast kinetics, thus permitting efficient use of the SiO2-SH/ED3A adsorbent in dynamic conditions (column experiments). Monitoring the amount of immobilized chromium species on the solid was achieved using X-ray fluorescence spectroscopy and UV-vis spectroscopy. Studying the influence of ionic strength and presence of heavy metals revealed few interference on Cr(VI) removal. PMID:23500426

  9. Polyethyleneimine-iron phosphate nanocomposite as a promising adsorbent for the isolation of DNA.

    PubMed

    Hu, Lin-Lin; Hu, Bo; Shen, Li-Ming; Zhang, Dan-Dan; Chen, Xu-Wei; Wang, Jian-Hua

    2015-01-01

    A polyethyleneimine (PEI)-iron phosphate (FePO4) nanocomposite is prepared by immobilization of PEI onto the surface of FePO4 nanoparticles via electrostatic interaction. The obtained PEI-FePO4 nanocomposites are spherical with a size centered in ca. 100 nm. They provide a novel adsorbent for the solid-phase extraction of DNA from complex sample matrices. At pH 4, 50 μg mL(-1) of DNA (salmon sperm DNA sodium salt) in 1.0 mL aqueous solution are quantitatively adsorbed (100%) by 2mg of the PEI-FePO4 nanocomposites, and meanwhile the coexisting albumin at a same concentration level is not retained, demonstrating the favorable selectivity of the nanocomposites to DNA against proteins. The adsorption behaviors of DNA onto the PEI-FePO4 nanocomposites fit Langmuir model, corresponding to an adsorption capacity of 61.88 mg g(-1). The adsorbed DNA could be readily recovered by using a 0.04 mol L(-1) Britton-Robinson (BR) buffer at pH 10, resulting in a recovery of 85%. The nanocomposites have been further used for the isolation of DNA from a series of real sample matrices, including synthetic λ-DNA sample, human whole blood and Escherichia coli cell lysate. The extraction efficiency and the purity of the recovered DNA are at least comparable to those achieved by using the reported sorbent materials or commercial kits. In addition, the DNAs isolated from human whole blood and E. coli cell lysate are of high quality, which have been further demonstrated by using them as templates for successful PCR amplifications. PMID:25476388

  10. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  11. SORPTION PROPERTIES OF MODEL COMPOUNDS ON C18 ADSORBENTS

    EPA Science Inventory

    The bonded silica adsorbent Bondapak-C18 was evaluated for removing organic matter from secondary sewage effluents and from solutions of pure organic compounds. The adsorbent is hydrophobic and its behavior with water samples may be erratic unless first wet with a solvent. Howeve...

  12. Development of a Desulfurization Strategy for a NOx Adsorber Catalyst

    SciTech Connect

    Tomazic, Dean

    2000-08-20

    Improve NOx regeneration calibration developed in DECSE Phase I project to understand full potential of NOx adsorber catalyst over a range of operating temperatures. Develop and demonstrate a desulfurization process to restore NOx conversion efficiency lost to sulfur contamination. Investigate effect of desulfurization process on long-term performance of the NOx adsorber catalyst.

  13. Kinetic study of lead adsorption to composite biopolymer adsorbent

    SciTech Connect

    Seki, H.; Suzuki, A.

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M.G. Rao and A.K. Gupta was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for both the cases was well described and average apparent lead diffusion coefficients of about 6 {times} 10{sup {minus}6} and 7 {times} 10{sup {minus}6} cm{sup 2}/s were found for the spherical and membranous adsorbents, respectively.

  14. Structure and properties of water film adsorbed on mica surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  15. Kinetic Study of Lead Adsorption to Composite Biopolymer Adsorbent.

    PubMed

    Seki; Suzuki

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M. G. Rao and A. K. Gupta (Chem. Eng. J. 24, 181, 1982) was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for the both cases was well described and average apparent lead diffusion coefficients of about 6 x 10(-6) and 7 x 10(-6) cm2 s-1 were found for the spherical and membranous adsorbents, respectively. Copyright 1999 Academic Press. PMID:10049553

  16. Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media.

    PubMed

    Rodríguez-López, Joaquín; Alpuche-Avilés, Mario A; Bard, Allen J

    2008-12-17

    We introduce a new in situ electrochemical technique based on the scanning electrochemical microscope (SECM) operating in a transient feedback mode for the detection and direct quantification of adsorbed species on the surface of electrodes. A SECM tip generates a titrant from a reversible redox mediator that reacts chemically with an electrogenerated or chemically adsorbed species at a substrate of about the same size as the tip, which is positioned at a short distance from it (ca.1 microm). The reaction between the titrant and the adsorbate provides a transient positive feedback loop until the adsorbate is consumed completely. The sensing mechanism is provided by the contrast between positive and negative feedback, which allows a direct quantification of the charge neutralized at the substrate. The proposed technique allows quantification of the adsorbed species generated at the substrate at a given potential under open circuit conditions, a feature not attainable with conventional electrochemical methods. Moreover, the feedback mode allows the tip to be both the titrant generator and detector, simplifying notably the experimental setup. The surface interrogation technique we introduce was tested for the quantification of electrogenerated oxides (adsorbed oxygen species) on gold and platinum electrodes at neutral pH in phosphate and TRIS buffers and with two different mediator systems. Good agreement is found with cyclic voltammetry at the substrate and with previous results in the literature, but we also find evidence for the formation of "incipient oxides" which are not revealed by conventional voltammetry. The mode of operation of the technique is supported by digital simulations, which show good agreement with the experimental results. PMID:19053403

  17. Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent.

    PubMed

    Kim, Hye-Ran; Jang, Jun-Won; Park, Jae-Woo

    2016-11-01

    Carboxymethyl chitosan-modified magnetic-cored dendrimers (CCMDs) were successfully synthesized in a three step method. The synthesized samples were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetry analysis, zeta potential analyzer, X-ray photoelectron spectroscopy, surface area analysis, and Fourier transform infrared spectroscopy. The CCMD exhibited selective adsorption for anionic and cationic compounds at specific pH conditions. With the substitution of amino groups of MD with carboxymethyl chitosan moieties, the adsorption sites for cationic compounds were greatly increased. Since the adsorption onto CCMD was mainly electrostatic interaction, the adsorption of MB and MO was significantly affected by the pHs. The optimal adsorption pH values were 3 and 11 for MO and MB. The maximal adsorption of MO and MB on the CCMD at pH values of 3 and 11 were 20.85mgg(-1) and 96.31mgg(-1), respectively. Reuse of the CCMD as an adsorbent was experimentally tested through adsorption and desorption with simple pH control. More than 99% and 91% of the initial adsorption of MB and MO on the CCMD was maintained with five consecutive recycling. PMID:27351905

  18. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    SciTech Connect

    Kimmel, Greg A. E-mail: bruce.kay@pnnl.gov; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D. E-mail: bruce.kay@pnnl.gov

    2014-11-14

    We have examined the adsorption of the weakly bound species N{sub 2}, O{sub 2}, CO, and Kr on the (√(37)×√(37))R25.3{sup ∘} water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O{sub 2} have little effect on the structure and vibrational spectrum of the “√(37)” water monolayer while adsorption of both N{sub 2}, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “√(37)” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

  19. Vibrational dynamics of fullerene molecules adsorbed on metal surfaces studied with synchrotron infrared radiation

    SciTech Connect

    P. Rudolf; R. Raval; P. Dumas; Gwyn P. Williams

    2002-04-01

    Infrared (IR) spectroscopy of chemisorbed C{sub 60} on Ag (111), Au (110) and Cu (100) reveals that a non-IR-active mode becomes active upon adsorption, and that its frequency shifts proportionally with the charge transferred from the metal to the molecule by about 5 cm{sup -1} per electron. The temperature dependence of the frequency and the width of this IR feature have also been followed for C{sub 60>}/Cu (100) and were found to agree well with a weak anharmonic coupling (dephasing) to a low-frequency mode, which we suggest to be the frustrated translational mode of the adsorbed molecules.

    Additionally, the adsorption is accompanied by a broadband reflectance change, which is interpreted as due to the scattering of conduction electrons of the metal surface by the adsorbate. The reflectance change allows determination of the friction coefficient of the C{sub 60} molecules, which results in rather small values ({approx}2 x 10{sup 9}s{sup -1} for Ag and Au, and {approx}1.6 x 10{sup 9}s{sup -1} for Cu), consistent with a marked metallic character of the adsorbed molecules.

    Pre-dosing of alkali atoms onto the metal substrates drastically changes the IR spectra recorded during subsequent C{sub 60} deposition: anti-absorption bands, as well as an increase of the broadband reflectance, occur and are interpreted as due to strong electron-phonon coupling with induced surface states.

  20. Turning things downside up: Adsorbate induced water flipping on Pt(111)

    SciTech Connect

    Kimmel, Gregory A.; Zubkov, Tykhon; Smith, R. Scott; Petrik, Nikolay G.; Kay, Bruce D.

    2014-11-14

    We have examined the adsorption of the weakly bound species N2, O2, CO and Kr on the water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up). Instead, the non-hydrogen-bonded OH groups are oriented downward (H-down) to maximize their interaction with the underlying Pt(111) substrate. Adsorption of Kr and O2 have little effect on the structure and vibrational spectrum of the “ ” water monolayer while adsorption of both N2, and CO are effective in “flipping” H-down water molecules into an H-up configuration. This “flipping” occurs readily upon adsorption at temperatures as low as 20 K and the water monolayer transforms back to the H-down, “ ” structure upon adsorbate desorption above 35 K, indicating small energy differences and barriers between the H-down and H-up configurations. The results suggest that converting water in the first layer from H-down to H-up is mediated by the electrostatic interactions between the water and the adsorbates.

  1. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    SciTech Connect

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra; Mayes, Richard T.; Saito, Tomonori; Brown, Suree; Gill, Gary; Kuo, Li-Jung; Wood, Jordana

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  2. Imaging the wave functions of adsorbed molecules

    PubMed Central

    Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter

    2014-01-01

    The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291

  3. Mesoporous carbon nanomaterials as environmental adsorbents.

    PubMed

    Tripathi, Pranav K; Gan, Lihua; Liu, Mingxian; Rao, Nageswara N

    2014-02-01

    The transportation and diffusion of the guest objects or molecules in the porous carbon nanomaterials can be facilitated by reducing the pathway and resistance. The reduced pathway depends on the porous nature of carbon nanomaterials. Classification of porous carbon materials by the International Union of Pure and Applied Chemistry (IUPAC) has given a new opportunity to design the pores as per their applicability and to understand the mobility of ions, atoms, and molecules in the porous network of carbon materials and also advanced their countless applicability. However, synthesis of carbon nanomaterials with a desired porous network is still a great challenge. Although, remarkable developments have taken place in the recent years, control over the pores size and/or hierarchical porous architectures, especially in the synthesis of carbon nanospheres (CNSs) and ordered mesoporous carbon (OMCs) is still intriguing. The micro and mesoporous CNSs and OMCs have been prepared by a variety of procedures and over a wide range of compositions using various different surfactant templates and carbon precursors etc. The mechanisms of formation of micromesopore in the CNSs and OMCs are still evolving. On the other hand, the urge for adsorbents with very high adsorption capacities for removing contaminants from water is growing steadily. In this review, we address the state-of-the-art synthesis of micro and mesoporous CNSs and OMCs, giving examples of their applications for adsorptive removals of contaminants including our own research studies. PMID:24749459

  4. NASA Applications of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.

  5. Morphological characterization of furfuraldehyde resins adsorbents

    SciTech Connect

    Sanchez, R.; Monteiro, S.N.; D`Almeida, J.R.

    1996-12-31

    Sugar cane is one of the most traditional plantation cultivated crops in large areas in Brazil. The State University of the North of Rio de Janeiro, UENF, is currently engaged in a program aimed to exploit the potentialities of sugar cane industry as a self sustained non-polluting enterprise. One of the projects being carried out at the UENF is the transformation of sugar cane bagasse in precursor materials for the industry of furan derivatives such as the furfuraldehyde resins obtained by acid catalysis. The possibility of employing acid catalyzed furfuraldehyde resins as selective adsorbents has arisen during a comprehensive study of physical-chemical adsorption properties of these materials. The morphology of these resins depend on the synthesis method. Scanning Electron Microscopic studies of these materials which were synthesized, in bulk (FH-M) and solution (FH-D), showed differences in surface density and particle size. Using mercury porosimeter techniques and BET adsorption methods, it was found different pore size distributions and a decrement in surface area when solvent was employed in the synthesis process. By thermogravimetric analysis it was found similar weight losses (6%) of water adsorption and a small differences in thermal stabilities.

  6. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study.

    PubMed

    Evers, Florian; Shokuie, Kaveh; Paulus, Michael; Sternemann, Christian; Czeslik, Claus; Tolan, Metin

    2008-09-16

    The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution. PMID:18715021

  7. Simulation of dye adsorption by beech sawdust as affected by pH.

    PubMed

    Batzias, F A; Sidiras, D K

    2007-03-22

    The effect of pH on the batch kinetics of methylene blue adsorption on beech sawdust was simulated, in order to evaluate sawdust potential use as low cost adsorbent for wastewater dye removal. The zero point of charge pH(pzc) of the sawdust, in order to explain the effect of pH in terms of pH(pzc), was measured by the mass titration and the automatic titration methods. The adsorption capacity, estimated according to Freundlich's model, indicate that increase of the pH enhances the adsorption behaviour of the examined material. The lower adsorption of methylene blue at acidic pH is due to the presence of excess H(+) ions that compete with the dye cation for adsorption sites. As the pH of the system increases, the number of positively charged sites decreases while the number of the negatively charged sites increases. The negatively charged sites favour the adsorption of dye cation due to electrostatic attraction. The increase in initial pH from 8.0 to 11.5 increases the amount of dye adsorbed. PMID:16934396

  8. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  9. Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization.

    PubMed

    Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J

    2013-11-30

    For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. PMID:24071717

  10. From adsorption to condensation: the role of adsorbed molecular clusters.

    PubMed

    Yaghoubian, Sima; Zandavi, Seyed Hadi; Ward, C A

    2016-08-01

    The adsorption of heptane vapour on a smooth silicon substrate with a lower temperature than the vapour is examined analytically and experimentally. An expression for the amount adsorbed under steady state conditions is derived from the molecular cluster model of the adsorbate that is similar to the one used to derive the equilibrium Zeta adsorption isotherm. The amount adsorbed in each of a series of steady experiments is measured using a UV-vis interferometer, and gives strong support to the amount predicted to be adsorbed. The cluster distribution is used to predict the subcooling temperature required for the adsorbed vapour to make a disorder-order phase transition to become an adsorbed liquid, and the subcooling temperature is found to be 2.7 ± 0.4 K. The continuum approach for predicting the thickness of the adsorbed liquid film originally developed by Nusselt is compared with that measured and is found to over-predict the thickness by three-orders of magnitude. PMID:27426944

  11. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    NASA Astrophysics Data System (ADS)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  12. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  13. Influence of surface charge on the rate, extent, and structure of adsorbed Bovine Serum Albumin to gold electrodes.

    PubMed

    Beykal, Burcu; Herzberg, Moshe; Oren, Yoram; Mauter, Meagan S

    2015-12-15

    The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies. PMID:26348658

  14. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  15. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  16. Functionalized paper--A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water.

    PubMed

    Setyono, Daisy; Valiyaveettil, Suresh

    2016-01-25

    Paper, a readily available renewable resource, comprises of interwoven cellulosic fibers, which can be functionalized to develop interesting low-cost adsorbent material for water purification. In this study, polyethyleneimine (PEI)-functionalized paper was used for the removal of hazardous pollutants such as Au and Ag nanoparticles, Cr(VI) anions, Ni(2+), Cd(2+), and Cu(2+) cations from spiked water samples. Compared to untreated paper, the PEI-coated paper showed significant improvement in adsorption capacities toward the pollutants investigated in this study. Kinetics, isotherm models, pH, and desorption studies were carried out to study the adsorption mechanism of pollutants on the adsorbent surface. Adsorption of pollutants was better described by pseudo-second order kinetics and Langmuir isotherm model. Maximum adsorption of anionic pollutants was achieved at pH 5 while that of cations was at pH>6. Overall, the PEI-functionalized paper showed interesting Langmuir adsorption capacities for heavy metal ions such as Cr(VI) (68 mg/g), Ni(2+) (208 mg/g), Cd(2+) (370 mg/g), and Cu(2+) (435 mg/g) ions at neutral pH. In addition, the modified paper was also used to remove Ag-citrate (79 mg/g), Ag-PVP (46 mg/g), Au-citrate (30 mg/g), Au-PVP (17 mg/g) nanoparticles from water. Desorption of NPs from the adsorbent was done by washing with 2 M HCl or thiourea solution, while heavy metal ions were desorbed using 1 M NaOH or HNO3 solution. The modified paper retained its extraction efficiencies upon desorption of pollutants. PMID:26452090

  17. Alkylammonium montmorillonites as adsorbents for organic vapors from air

    SciTech Connect

    Harper, M.; Purnell, C.J. )

    1990-01-01

    Montmorillonite clays may be modified by the exchange of the inorganic interlayer cations with alkylammonium ions, resulting in a fixed internal porosity. The pore size and shape depend on the nature of the alkylammonium ion. A number of different ions were used to prepare adsorbents with varying properties, and these were examined for their potential application to sampling organic vapors in air. Characterization involved determination of nitrogen and water contents, surface area, interlayer spacing, thermal stability, and breakthrough volumes of organic vapors. The adsorbent that showed the most promise (tetramethylammonium montmorillonite (TMA)) was further evaluated for use as an adsorbent in both thermal- and solvent-desorable sampling systems.

  18. Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal.

    PubMed

    Koriche, Yamina; Darder, Margarita; Aranda, Pilar; Semsari, Saida; Ruiz-Hitzky, Eduardo

    2014-07-21

    Functional bionanocomposites based on two layered silicates, the commercial montmorillonite known as Cloisite®Na and a natural bentonite from Algeria, were prepared by intercalation of cationic starch, synthesized with two different degrees of substitution, 0.85 and 0.55. After characterization of the prepared bionanocomposites by XRD and zeta potential measurements, batch studies were conducted to evaluate the adsorption capacity of hexavalent chromium anions from aqueous solution. The adsorption isotherms, adsorption kinetics, and the effect of pH on the process were studied. The removal efficiency was evaluated in the presence of competing anions such as NO3(-), ClO4(-), SO4(2-) and Cl(-). In order to regenerate the adsorbent for its repeated use, the regeneration process was studied in two different extractant solutions, 0.1 M NaCl at pH 10 and 0.28 M Na2CO3 at pH 12. PMID:24658793

  19. Orientation and order of aqueous organic ions adsorbed to a solid surface

    SciTech Connect

    Sukhishvili, S.A.; Granick, S.

    1999-01-21

    The adsorption and orientation of an aqueous organic ion with anisotropic shape (1,4-dimethylpyridinium, P{sup +}) at the surface of oxidized silicon carrying opposite charge (produced by conditions of high pH) were studied using polarized infrared spectroscopy in attenuated total reflection (FTIR-ATR). Orientation relative to the surface was quantified from the dichroic ratio of in-plane skeletal vibrations of the pyridinium ring (1643 and 1523 cm{sup {minus}1}), and the adsorbed amount was inferred from the intensity of these bands. The sticking energy of the organic ion was slightly larger than that of small inorganic ions of the same charge (Li{sup +}, Na{sup +}, Cs{sup +}). From relative quantities adsorbed in competitive adsorption, the relative sticking energy was quantified ({approximately}7k{sub B}T relative to Na{sup +} at pH = 9.2 and varying in the order Cs{sup +} > Na{sup +} > Li{sup +} by the total amount of 0.6k{sub B}T). At low ionic strength (no inorganic ions present except those in the buffer solution), P{sup +} stood preferably parallel to the surface when the surface coverage was low but more nearly upright both as its surface coverage increased and as the concentration of coadsorbed small ions increased. This shows the influence of steric packing on the orientation of this ion of asymmetric shape. The larger the hydrated diameter of the coadsorbed ion, the more the P{sup +} ion tilted away from the surface (H{sup +} < Li{sup +}, Na{sup +}, Cs{sup +} < Mg{sup 2+}). Furthermore, if the mass adsorbed exceeded a critical level, both the tilt and the amount adsorbed jumped in response to increasing P{sup +} concentration in bulk solution, with hysteresis upon dilution. This jump, together with the measured ellipsometric thickness and contact angle, suggests that the discontinuity involved structural change within a single monolayer. The organic ion thus behaved at the surface as an embryonic amphiphile, although in the bulk, micelle formation has

  20. Novel Anionic Clay Adsorbents for Boiler-Blow-Down Waters Reclaim and Reuse

    SciTech Connect

    Muhammad Sahimi; Theodore Tsotsis

    2010-01-08

    Arsenic (As) and Selenium (Se) are found in water in the form of oxyanions. Relatively high concentrations of As and Se have been reported both in power plant discharges, as well as, in fresh water supplies. The International Agency for Research on Cancer currently classifies As as a group 1 chemical, that is considered to be carcinogenic to humans. In Phase I of this project we studied the adsorption of As and Se by uncalcined and calcined layered double hydroxide (LDH). The focus of the present work is a systematic study of the adsorption of As and Se by conditioned LDH adsorbents. Conditioning the adsorbent significantly reduced the Mg and Al dissolution observed with uncalcined and calcined LDH. The adsorption rates and isotherms have been investigated in batch experiments using particles of four different particle size ranges. As(V) adsorption is shown to follow a Sips-type adsorption isotherm. The As(V) adsorption rate on conditioned LDH increases with decreasing adsorbent particle size; the adsorption capacity, on the other hand, is independent of the particle size. A homogeneous surface diffusion model (HSDM) and a bi-disperse pore model (BPM) - the latter viewing the LDH particles as assemblages of microparticles and taking into account bulk diffusion in the intraparticle pore space, and surface diffusion within the microparticles themselves - were used to fit the experimental kinetic data. The HSDM estimated diffusivity values dependent on the particle size, whereas the BPM predicted an intracrystalline diffusivity, which is fairly invariant with particle size. The removal of As(V) on conditioned LDH adsorbents was also investigated in flow columns, where the impact of important solution and operational parameters such as influent As concentration, pH, sorbent particle size and flow rate were studied. An early breakthrough and saturation was observed at higher flow rates and at higher influent concentrations, whereas a decrease in the sorbent particle

  1. A multi-spectral approach to differentiate the effects of adsorbent pretreatments on the characteristics of NOM and membrane fouling.

    PubMed

    Wang, Long-Fei; Benjamin, Mark M

    2016-07-01

    Pretreatment of feed water is widely applied to mitigate NOM-induced fouling of low-pressure membranes. This research investigated the effectiveness of two pretreatment modes for NOM removal by heated aluminum oxide particles (HAOPs) and the associated reductions in membrane fouling and trihalomethane (THM) formation potential. One mode, referred to here as pre-adsorption, is the conventional process in which adsorbent particles are added to and thoroughly mixed with the feed, after which the particles are separated from the water either upstream of or by the membrane. By contrast, in the pre-deposition mode, a thin layer of adsorbent particles is deposited on a support media (which could be the membrane) prior to passing feed through the layer and the membrane. Although both pretreatment methods remove similar amounts of DOC at the same adsorbent dose, pre-deposition is superior with respect to mitigating membrane fouling and reducing DBP formation. UV and fluorescence spectroscopy and HPSEC analysis indicate that a pre-deposited adsorbent layer removes more chromophores and low apparent molecular weight (AMW) material than pre-adsorption does. Based on absorbance ratios at selected wavelengths, a pre-deposited HAOPs layer removes more aromatic moieties than aliphatic carboxyls, especially at higher HAOPs doses. In addition, pre-deposition is more effective than pre-adsorption at reducing the THM formation potential. The results provide new insights into the interactions between HAOPs and NOM molecules and shed light on the significantly different effects of different adsorbent contacting modes on the fouling potential of the pretreated water. PMID:27082692

  2. Effect of pH on phosphorus, copper, and zinc elution from swine wastewater activated sludge.

    PubMed

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Suzuki, Kazuyoshi

    2014-01-01

    With the goal of reducing the amounts of phosphorus (P), copper (Cu), and zinc (Zn) discharged from swine wastewater activated sludge treatment facilities, we studied the elution of these elements from activated sludge at various pH values. Sludge samples with neutral pH collected from three farms were incubated at pH values ranging from 3 to 10. The soluble concentrations of these elements changed dramatically with pH and were highest at pH 3. We assumed that P present in the sludge under neutral and alkaline conditions was in insoluble form bound up with magnesium (Mg) and calcium (Ca), because Ca and Mg also eluted from the sludge at low pH. To clarify forms of Zn and Cu in the sludge, we performed a sequential extraction analysis. Zinc in adsorbed, organically bound, and sulfide fractions made up a large proportion of the total Zn. Copper in organically bound, carbonate, and sulfide fractions made up a large proportion of the total Cu. The soluble P concentrations were lowest at pH 9 or 10 (11-36 mg/L), the soluble Zn concentrations were lowest at pH 8 or 9 (0.07-0.15 mg/L), and the soluble Cu concentrations were lowest at pH 6-9 (0.2 mg/L, the detection limit). PMID:25116486

  3. Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

    NASA Astrophysics Data System (ADS)

    Samadi, A.; Amjadi, M.

    2016-07-01

    Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

  4. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent.

    PubMed

    Ghorai, Soumitra; Sarkar, Amit Kumar; Panda, A B; Pal, Sagar

    2013-09-01

    The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q0=209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. PMID:23896441

  5. Radiation grafted adsorbents for newly emerging environmental applications

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  6. SUPERCRITICAL FLUID EXTRACTION OF PARTICULATE AND ADSORBENT MATERIALS

    EPA Science Inventory

    The report is a summary of work performed by PNL on the extraction of semivolatile organic materials (SVOCs), for example, polynuclear aromatic compounds, from various adsorbents and environmental matrices, using supercritical fluids (SCFs) as extractants. The results of the work...

  7. Anomalous thermal denaturing of proteins adsorbed to nanoparticles

    NASA Astrophysics Data System (ADS)

    Teichroeb, J. H.; Forrest, J. A.; Ngai, V.; Jones, L. W.

    2006-09-01

    We have used localized surface plasmon resonance (LSPR) to monitor the structural changes that accompany thermal denaturing of bovine serum albumin (BSA) adsorbed onto gold nanospheres of size 5nm-60nm. The effect of the protein on the LSPR was monitored by visible extinction spectroscopy. The position of the resonance is affected by the conformation of the adsorbed protein layer, and as such can be used as a very sensitive probe of thermal denaturing that is specific to the adsorbed protein. The results are compared to detailed calculations and show that full calculations can lead to significant increases in knowledge where gold nanospheres are used as biosensors. Thermal denaturing on spheres with diameter > 20 nm show strong similarity to bulk calorimetric studies of BSA in solution. BSA adsorbed on nanospheres with d ⩽ 15nm shows a qualitative difference in behavior, suggesting a sensitivity of denaturing characteristics on local surface curvature. This may have important implications for other protein-nanoparticle interactions.

  8. Removal of adsorbed gases with CO2 snow

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    1991-09-01

    During the outgassing of orbiting astronomical observatories, the condensation of molecular species on optical surfaces can create difficulties for astronomers. The problem is particularly severe in ultraviolet astronomy where the adsorption of only a few atomic layers of some substances can be very damaging. In this paper the removal of adsorbed atomic layers using carbon dioxide snow is discussed. The rate of removal of adsorbed layers of isopropyl alcohol, Freon TF, and deionized distilled water on Teflon substrates was experimentally determined. The removal of fingerprints (containing fatty acids such as stearic acid) from optical surfaces is also demonstrated. The presence and rate of removal of the multilayers was monitored by detecting the molecular dipole field of adsorbed molecular species. For isopropyl alcohol, Freon TF (trichlorotrifluoroethane), and water adsorbed multilayers were removed in under 1.5 seconds. Fingerprint removal was much more difficult and required 20 seconds of spraying with a mixture of carbon dioxide snow flakes and atomized microdroplets of isopropyl alcohol.

  9. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  10. Trace contaminant studies of HSC adsorbent. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yieh, D. T. N.

    1978-01-01

    The adsorption and desorption of fifteen trace contaminants on HSC (polyethylenimine coated acrylic ester) adsorbent were experimentally investigated with the following two objectives: to test the removal potential and the adsorption reversibility of the selected trace contaminants, and to test the effect a preadsorbed trace contaminant has on the CO2 adsorption capacity. The experimental method for acquiring the adsorption equilibrium data used is based on the volumetric (or displacement) concept of vacuum adsorption. From the experimental results, it was found that the HSC adsorbent has good adsorption potential for contaminants of alcohol compounds, esters, and benzene compounds; whereas, adsorption of ketone compounds, oxidizing and reducing agents are detrimental to the adsorbent. In addition, all liquid contaminants reduce the CO2 capacity of HSC adsorbent.

  11. New insights into perfluorinated adsorbents for analytical and bioanalytical applications.

    PubMed

    Marchetti, Nicola; Guzzinati, Roberta; Catani, Martina; Massi, Alessandro; Pasti, Luisa; Cavazzini, Alberto

    2015-01-01

    Perfluorinated (F-) adsorbents are generally prepared by bonding perfluoro-functionalized silanes to silica gels. They have been employed for a long time essentially as media for solid-phase extraction of F-molecules or F-tagged molecules in organic chemistry and heterogeneous catalysis. More recently, this approach has been extended to proteomics and metabolomics. Owing to their unique physicochemical properties, namely fluorophilicity and proteinophilicity, and a better understanding of some fundamental aspects of their behavior, new applications of F-adsorbents in the field of environmental science and bio-affinity studies can be envisaged. In this article, we revisit the most important features of F-adsorbents by focusing, in particular, on some basic information that has been recently obtained through (nonlinear) chromatographic studies. Finally, we try to envisage new applications and possibilities that F-adsorbents will allow in the near future. PMID:25358910

  12. Adsorption of β-galactosidase on silica and aluminosilicate adsorbents

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

    2015-03-01

    It is shown that adsorption of β-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-β-D-galactopyranoside. It is concluded that β-galactosidase displays its maximum activity on the surface of biporous adsorbents.

  13. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  14. Residence time determination for adsorbent beds of different configurations

    SciTech Connect

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  15. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    SciTech Connect

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-03-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested.

  16. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    SciTech Connect

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  17. Application of Silver Impregnated Iodine Adsorbent to Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Fukasawa, Tetsuo; Nakamura, Tomotaka; Kondo, Yoshikazu; Funabashi, Kiyomi

    Radioactive iodine is one of the most important nuclides to be prevented for release from nuclear facilities and many facilities have off-gas treatment systems to minimize the volatile nuclides dispersion to the environment. Silver impregnated inorganic adsorbents were known as inflammable and stable fixing materials for iodine and the authors started to develop 25 years ago a kind of inorganic adsorbent that has better capability compared with conventional ones. Aluminum oxide (Alumina) was selected as a carrier material and silver nitrate as an impregnated one. Pore diameters were optimized to avoid the influence of impurities such as humidity in the off-gas stream at lower temperatures. Experiments and improvements were alternately conducted for the new adsorbent. The tests were carried out in various conditions to confirm the performance of the developed adsorbent, which clarified its good ability to remove iodine. Silver nitrate impregnated alumina adsorbent (AgA) has about twice the capacity for iodine adsorption and higher iodine removal efficiency at relatively high humidity than conventional ones. The AgA chemically and stably fixes radioactive iodine and fits the storage and disposal of used adsorbent. AgA is now and will be applied to nuclear power plants, reprocessing plants, and research facilities.

  18. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  19. Control of acid gases using a fluidized bed adsorber.

    PubMed

    Chiang, Bo-Chin; Wey, Ming-Yen; Yeh, Chia-Lin

    2003-08-01

    During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time. PMID:12935758

  20. Effect of pH on protein adsorption capacity of strong cation exchangers with grafted layer.

    PubMed

    Wrzosek, Katarzyna; Polakovič, Milan

    2011-09-28

    The effect of pH on the static adsorption capacity of immunoglobulin G, human serum albumin, and equine myoglobin was investigated for a set of five strong cation exchangers with the grafted tentacle layer having a different ligand density. A sharp maximum of adsorption capacity with pH was observed for adsorbents with a high ligand density. The results were elucidated using the protein structure and calculations of pK(a) of ionizable groups of surface basic residues. Inverse size-exclusion experiments were carried out to understand the relation between the adsorption capacity and pore accessibility of the investigated proteins. PMID:21855072

  1. pH-dependent conformational changes of diphtheria toxin adsorbed to lipid monolayers by neutron and X-ray reflection

    NASA Astrophysics Data System (ADS)

    Kent, Michael; Yim, Hyun; Satija, Sushil; Kuzmenko, Ivan

    2006-03-01

    Several important bacterial toxins, such as diphtheria, tetanus, and botulinum, invade cells through a process of high affinity binding, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. These toxins are composed of three domains: a binding domain, a translocation domain, and an enzyme. The translocation process is not well understood with regard to the detailed conformational changes that occur at each step, To address this, we performed neutron reflectivity measurements for diphtheria toxin bound to lipid monolayers as a function of pH. While the final membrane inserted conformation will not be reproduced with the present monolayer system, important insights can still be gained into several intermediate stages. In particular, we show that no adsorption occurs at pH = 7.6, but strong adsorption occurs over at a pH range from 6.5 to 6.0. Following binding, at least two stages of conformational change occur, as the thickness increases from pH 6.3 to 5.3 and then decreases from pH 5.3 to 4.5. In addition, the dimension of the adsorbed layer substantially exceeds that of the largest dimension in the crystal structure of monomeric diphtheria, suggesting that the toxin may be present as multimers.

  2. Sulfonated modification of cotton linter and its application as adsorbent for high-efficiency removal of lead(II) in effluent.

    PubMed

    Dong, Cuihua; Zhang, Haiguang; Pang, Zhiqiang; Liu, Yu; Zhang, Fulong

    2013-10-01

    Sulfonated modification of cotton linter and its novel application as adsorbent for Pb(2+) in effluent were investigated. Results show that sulfonated cotton linter (SCL) has strong adsorbability for Pb(2+), more than 85% of Pb(2+) can be removed at lower Pb(2+) concentration (<20 mg/L). Its adsorbability for Pb(2+) is related to effluent pH, temperature, and initial Pb(2+) concentration. The adsorption process can reach equilibrium within 8 min, which can be described through the pseudo-second-order kinetic model. The adsorption isotherm is closely fitted with the Temkin isotherm model, which suggests that the adsorption of Pb(2+) on SCL can be regarded as chemical adsorption. The adsorption process of Pb(2+) on SCL is non-spontaneous and endothermic, based on the value of Gibbs free energy and enthalpy. Compared with commercial activated carbon, SCL is simple to prepare and does not require any special technology. PMID:23973968

  3. Esophageal pH monitoring

    MedlinePlus

    pH monitoring - esophageal; Esophageal acidity test ... esophagitis You may need to have the following tests if your doctor suspects esophagitis : Barium swallow Esophagogastroduodenoscopy (also called upper GI endoscopy)

  4. Modified Mesoporous Silica (SBA–15) with Trithiane as a new effective adsorbent for mercury ions removal from aqueous environment

    PubMed Central

    2014-01-01

    Background Removal of mercury from aqueous environment has been highly regarded in recent years and different methods have been tested for this purpose. One of the most effective ways for mercury ions (Hg+2) removal is the use of modified nano porous compounds. Hence, in this work a new physical modification of mesoporous silica (SBA-15) with 1, 3, 5 (Trithiane) as modifier ligand and its application for the removal of Hg+2 from aqueous environment has been investigated. SBA-15 and Trithiane were synthesized and the presence of ligand in the silica framework was demonstrated by FTIR spectrum. The amounts of Hg+2 in the samples were determined by cold vapor generation high resolution continuum source atomic absorption spectroscopy. Also, the effects of pH, stirring time and weight of modified SBA-15 as three major parameters for effective adsorption of Hg+2 were studied. Results The important parameter for the modification of the adsorbent was Modification ratio between ligand and adsorbent in solution which was 1.5. The results showed that the best Hg+2 removal condition was achieved at pH = 5.0, stirring time 15 min and 15.0 mg of modified adsorbent. Moreover, the maximum percentage removal of Hg+2 and the capacity of adsorbent were 85% and 10.6 mg of Hg+2/g modified SBA-15, respectively. Conclusions To sum up, the present investigation introduced a new modified nano porous compound as an efficient adsorbent for removal of Hg+2 from aqueous environment. PMID:25097760

  5. Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye.

    PubMed

    Karthika, J S; Vishalakshi, B

    2015-11-01

    In this study, gellan gum-grafted-poly((2-dimethylamino) ethyl methacrylate) (GG-g-poly(DMAEMA)) hydrogel was made by free radical polymerization in aqueous media employing microwave irradiation technique. Ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TMEDA) were used as initiator-accelerator pair. N,N'-methylenebisacrylamide (MBA) has been used as crosslinker. The gel was characterized by FTIR, XRD, TGA, DSC and SEM techniques. The characteristic peaks at 1724, 2630, 1147, 1650 and 1535cm(-1) in the IR spectrum confirms grafting and gel formation. The TGA data reveals that synthesized gels were thermally more stable than gellan gum. The XRD studies confirm the crystalline nature of the synthesized material. Swelling behaviour of the hydrogel under different temperatures and pH conditions was investigated. The results indicated drastic changes in swelling around pH 7.0 and 50°C. The gels were evaluated as an adsorbent to remove an anionic dye, methyl orange (MO), from aqueous solution. The pH conditions for maximum adsorption were optimized, the adsorption data is observed to fit best to the Freundlich isotherm model and the maximum adsorption capacity was found to be 25.8mgg(-1). The kinetic analysis revealed a second-order adsorption process. The thermodynamic parameters showed the adsorption to be exothermic and non-spontaneous at high temperatures. PMID:26325677

  6. PhEDEx Data Service

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-04-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  7. Voltammetric pH Nanosensor.

    PubMed

    Michalak, Magdalena; Kurel, Malgorzata; Jedraszko, Justyna; Toczydlowska, Diana; Wittstock, Gunther; Opallo, Marcin; Nogala, Wojciech

    2015-12-01

    Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid-liquid, liquid-liquid, and liquid-gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (-54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH(-)) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions. PMID:26516786

  8. Neutron Reflectometry Studies of the Adsorbed Structure of the Amelogenin, LRAP

    SciTech Connect

    Tarasevich, Barbara J.; Perez-Salas, Ursula; Masica, David L.; Philo, John; Krueger, Susan; Majkrzak, Charles F.; Gray, Jeffrey J.; Shaw, Wendy J.

    2013-03-21

    Amelogenins make up over 90 percent of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayers (SAMs) surfaces. Sedimentation velocity experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ~33 Å thick layers at ~70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. Sedimentation velocity experiments and Rosetta simulation show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal region (~8-24)) located near the surface is consistent with the higher scattering length density (SLD) and higher protein hydration found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.

  9. Neutron Reflectometry Studies of the Adsorbed Structure of the Amelogenin, LRAP

    PubMed Central

    Tarasevich, Barbara J.; Perez-Salas, Ursula; Masica, David L.; Philo, John; Kienzle, Paul; Krueger, Susan; Majkrzak, Charles F.; Gray, Jeffrey L.; Shaw, Wendy J.

    2013-01-01

    Amelogenins make up over 90 percent of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayers (SAMs) surfaces. Sedimentation velocity (SV) experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ~32 Å thick layers at ~70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. SV experiments and Rosetta simulation show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal region (residues ~8–24) located near the surface is consistent with the higher scattering length density (SLD) found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins. PMID:23477285

  10. Evaluation of Adsorbed Arsenic and Potential Contribution to Shallow Groundwater in Tulare Lake Bed Area, Tulare Basin, California

    USGS Publications Warehouse

    Gao, S.; Fujii, R.; Chalmers, A.T.; Tanji, K.K.

    2004-01-01

    Elevated As concentrations in shallow groundwater in parts of the Tulare Basin, California, are a concern because of potential migration into deeper aquifers that could serve as a source of future drinking water. The objectives of this study were to evaluate adsorbed As and the potential contribution to groundwater using (i) isotopic dilution, (ii) successive extraction with an electrolyte solution resembling the pore-water chemical composition, and (iii) PO4 exchange for As. Sediment samples collected from 2 to 4 m below land surface in the Tulare Lake bed area contained a total As concentration of 24 mg As kg-1. Pore water extracted under hydraulic pressure contained a total As concentration of 590 ??g As L-1, which predominantly contained As as arsenate [As(V), 97%], a minor amount of arsenite [As(III), 3%], and non-detectable organic As. The isotopic dilution method [73As(V)] estimated that the concentration of adsorbed As(V) on the sediment was 5.7 mg As kg-1 at pH 8.5 and 6.7 mg As kg-1 at pH 7.5, respectively. Fourteen successive 24-h extractions with the artificial pore water released up to 57 to 61% of the adsorbed As(V) that was determined by isotopic dilution, indicating that only a portion of the adsorbed As could be released to groundwater. The phosphate-exchangeable As (0.1 M PO4, pH 8.5 or 7.5) was 63% of the isotopically exchangeable As(V). Thus, extraction of As by 0.1 M PO4 at ambient pHs is recommended as a method to determine the potential amount of As(V) on sediments that could be released to the solution phase. The overall results indicated that adsorbed As could be a significant source of As to groundwater. However, other factors that affect As transport such as the leaching rate need to be considered.

  11. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  12. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies. PMID:27117598

  13. Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.

    PubMed

    Kumar, Eva; Bhatnagar, Amit; Hogland, William; Marques, Marcia; Sillanpää, Mika

    2014-01-01

    A number of inorganic anions (e.g., nitrate, fluoride, bromate, phosphate, and perchlorate) have been reported in alarming concentrations in numerous drinking water sources around the world. Their presence even in very low concentrations may cause serious environmental and health related problems. Due to the presence and significance of iron minerals in the natural aquatic environment and increasing application of iron in water treatment, the knowledge of the structure of iron and iron minerals and their interactions with aquatic pollutants, especially inorganic anions in water are of great importance. Iron minerals have been known since long as potential adsorbents for the removal of inorganic anions from aqueous phase. The chemistry of iron and iron minerals reactions in water is complex. The adsorption ability of iron and iron minerals towards inorganic anions is influenced by several factors such as, surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pHpzc, purity), pH of the solution, and ionic strength. Furthermore, the physico-chemical properties of inorganic anions (pore size, ionic radius, bulk diffusion coefficient) also significantly influence the adsorption process. The aim of this paper is to provide an overview of the properties of iron and iron minerals and their reactivity with some important inorganic anionic contaminants present in water. It also summarizes the usage of iron and iron minerals in water treatment technology. PMID:24246164

  14. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents

    PubMed Central

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-01-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m2/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3–11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  15. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  16. Novel adsorbent for DNA adsorption: Fe(3+)-attached sporopollenin particles embedded composite cryogels.

    PubMed

    Ceylan, Şeyda; Odabaşı, Mehmet

    2013-12-01

    The aim of this study is to prepare supermacroporous cryogels embedded with Fe(3+)-attached sporopollenin particles (Fe(3++)-ASPs) having large surface area for high DNA adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Fe3+(+)-ASPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N´-methylene- bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for DNA adsorption studies. Firstly, Fe3+(+) ions were attached to the sporopollenin particles (SPs), then the supermacroporous PHEMA cryogel with embedded Fe(3++)-ASPs was produced by free radical polymerization using N,N,N´, N´-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Optimum conditions of adsorption experiments were performed at pH 6.0 (0.02 M Tris buffer containing 0.2 M NaCl), with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of DNA adsorption from aqueous solution was very high (109 mg/g SPs) with initial concentration of 3 mg/mL. It was observed that DNA could be repeatedly adsorbed and desorbed with this composite cryogel without significant loss of adsorption capacity. As a result, higher amounts of DNA adsorbed these composite cryogels are expected to be good candidate for achieving higher removal of anti-DNA antibodies from systemic lupus erythematosus (SLE) patients plasma. PMID:23305206

  17. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents.

    PubMed

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-10-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m²/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3-11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  18. Sulfentrazone adsorbed on micelle-montmorillonite complexes for slow release in soil.

    PubMed

    Polubesova, Tamara; Nir, Shlomo; Rabinovitz, Onn; Borisover, Mikhail; Rubin, Baruch

    2003-05-21

    Interactions of the herbicide sulfentrazone with the cationic surfactants octadecyltrimethylammonium (ODTMA), hexadecyltrimethylammonium (HDTMA), and benzyldimethylhexadecylammonium (BDMHDA) have been studied for the design of slow-release formulations based on sulfentrazone adsorbed on a micelle-montmorillonite complex. Adsorbed amounts of sulfentrazone on ODTMA- and BDMHDA-montmorillonite complexes were 99.2-99.8% of that added, and desorption of herbicide in water during 24 h was low. After 10 washings in funnels with soil, only 2.6% of herbicide was released from ODTMA-montmorillonite formulations versus 100% release from the commercial formulation. The strong binding of sulfentrazone to micelles was confirmed by pH and spectroscopic measurements and was explained by the formation of ionic pairs between cationic surfactant and anionic herbicide. The ODTMA-clay and commercial formulations of sulfentrazone yield almost complete and 40% growth inhibition of green foxtail, respectively, at 700 g of active ingredient/ha. Hence, the slow release from micelle-clay formulations of sulfentrazone promotes its biological activity and reduces environmental contamination. PMID:12744675

  19. Application of fly ash as an adsorbent for Estradiol in animal waste.

    PubMed

    Norris, Pauline; Hagan, Stephanie; Cohron, Martin; Zhao, Houying; Pan, Wei-Ping; Li, Kawang

    2015-09-15

    The contamination of agricultural ground with estrogen compounds through application of animal wastes is a present concern. At the same time, current uses for waste fly ash having high carbon content are limited. To help mitigate these problems, we examine using waste fly ash as a useful adsorbent for Estradiol in pig waste digests. In this study, Estradiol was added to vials containing water and fly ash from several different power plants. After an extraction process, the amount of Estradiol in the water was measured. Commercial activated carbon was also used for comparison purposes. Vials containing varying concentrations of Estradiol and no trapping material were used as a control. The results from this study indicate that fly ash can be used as a trapping material for Estradiol in water, but that commercially available activated carbon can trap about an order of magnitude more Estradiol than the fly ash and that the effects of the fly ash matrix can both inhibit and promote the solvation of Estradiol into water depending possibly upon pH and cation concentration effects. In addition, preliminary extraction studies using pig waste digest indicate that fly ash can be used as adsorbent for Estradiol present in pig waste. PMID:26150373

  20. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent.

    PubMed

    Niu, Yaolan; Ying, Diwen; Li, Kan; Wang, Yalin; Jia, Jinping

    2016-10-01

    Functional PET fiber (PET-AA-CS) was prepared by oxygen-plasma pretreatment and grafting of acrylic acid (AA) and low-molecular-weight chitosan (LMCS) on the polyethylene glycol terephthalate (PET) substrate. This adsorbent was targeted for quick removal of metal ion in river pollutions with an easy recycling of the fiber after emergency processing. The fabricated PET-AA-CS was characterized by the scanning electron microscope (SEM), contact angle, fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) to look into its morphology, surface functional groups, and adsorption mechanism of copper ions from the aqueous solution. The overall adsorption process of copper ions on the PET-AA-CS was pH-dependent with an optimal pH value of 5.0, at which a maximum capacity of 68.97 mg g(-1) was obtained. The result of fitting also shows that adsorption process follows the Langmuir isotherm and pseudo-second-order model. Moreover, the material shows good stability during 5 cycles of adsorption and desorption, and also shows no significant effect of co-existing ions including Ca(2+), Mg(2+), K(+), Cl(-), and et al. In general, PET-AA-CS developed in this study shows significant benefit of eco-friend and cost-efficiency for fast removal of copper ions in potential river metal pollutions comparing with traditional adsorbents. PMID:27470942

  1. Free energy of electrical double layers: Entropy of adsorbed ions and the binding polynomial

    SciTech Connect

    Stigter, D.; Dill, K.A. )

    1989-09-07

    The authors adapt the method of binding polynomials to general problems of binding equilibria of ions to polybases, polyacids, and mixed polyelectrolytes, such as proteins and other colloids. For spherical particles with a smeared charge the interaction effects are taken into account using the Poisson-Boltzmann equation, which is shown to differ little from the Debye-Hueckel approximation under conditions met in most protein solutions. Examples are given of the salt dependence of pH titration equilibria. Binding polynomials produce an extra term in the free energy of the electrical double layer, which arises from the entropy of the adsorbed ions. The maximum term method applied to the binding polynominal yields an expression which is similar to that derived by the charging process of Chan and Mitchell. Applications to monolayers and to polyelectrolyte gels are also discussed.

  2. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions.

    PubMed

    Ibrahim, M N Mohamad; Ngah, W S Wan; Norliyana, M S; Daud, W R Wan; Rafatullah, M; Sulaiman, O; Hashim, R

    2010-10-15

    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism. PMID:20619537

  3. Atomic force microscopy of AgBr crystals and adsorbed gelatin films

    SciTech Connect

    Haugstad, G.; Gladfelter, W.L.; Keyes, M.P.; Weberg, E.B.

    1993-06-01

    Atomic force microscopy of the (111) surface of macroscopic AgBr crystals revealed steps ranging in height from two atomic layers up to 10 nm, lying predominantly along the (110) and (112) families of crystal directions. Rods of elemental Ag, formed via photoreduction, were observed along the (110) family of directions. Images of adsorbed gelatin films revealed circular pores with diameters of order 10-100 nm, extending to the AgBr surface. The length of deposition time, the pH and concentration of the gelatin solution, and the presence of steps on the AgBr surface were observed to affect the size, number, and location of pores in the gelatin films. 12 refs., 7 figs.

  4. Preparation and characterization of γ-AlOOH @CS magnetic nanoparticle as a novel adsorbent for removing fluoride from drinking water.

    PubMed

    Wan, Zhen; Chen, Wei; Liu, Cheng; Liu, Yu; Dong, Changlong

    2015-04-01

    For this study, a novel adsorbent of γ-AlOOH @CS (pseudoboehmite and chitosan shell) magnetic nanoparticles (ACMN) with magnetic separation capabilities was developed to remove fluoride from drinking water. The adsorbent was first characterized, and then its performance in removing fluoride was evaluated. Kinetic data demonstrated rapid fluoride adsorption with more than 80% fluoride adsorption within the initial 20 min and equilibrium reached in 60 min. Based on the results of kinetic and isotherm models, the fluoride adsorption process on the ACMN's surface was a monolayer adsorption on a homogeneous surface. Thermodynamic parameters presented that the adsorption process is spontaneous and endothermic in nature. The mechanism for the adsorption involved electrostatic interaction and hydrogen bonding. Moreover, the calculated adsorption capacity of the ACMN for fluoride using the Langmuir model was 67.5 mg/g (20°C, pH=7.0±0.1), higher than other fluoride removal adsorbents. This nanoadsorbent performed well over a pH range of 4-10. The study found that PO4(3-) was the co-existing anion most able to hinder the nanoparticle's fluoride adsorption, followed by NO3(-) then Cl(-). Experimental results suggest that ACMN is a promising adsorbent for treating fluoride-contaminated water. PMID:25540828

  5. Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater

    NASA Astrophysics Data System (ADS)

    Yang, Lan; Wei, Jie; Liu, Zhongyuan; Wang, Jianli; Wang, Dongtian

    2015-03-01

    Drinking waterworks sludge (DWS) is not an effective adsorbent for ammonium removal without any treatment. In this study, DWS was used as a starting material to prepare ammonium adsorbent (M-DWS) by means of an ultrasonic assisted extraction and synthesis method. Two materials (M-DWS1# and M-DWS2#) were prepared according to two different routes. The composition, structure, and surface properties of DWS and M-DWS were characterized and their ammonium adsorption abilities were examined. Characterization results showed that the lamellar structure of DWS was converted into the spherical units of M-DWS and that the cation exchange capacity and specific surface area of M-DWS were many times higher than that of DWS. Batch test results indicated that the adsorption equilibrium data of M-DWS fitted well to both the Langmuir and Frendlich isotherms. The maximum adsorption capacity of M-DWS1# and M-DWS2# evaluated from the Langmuir isotherm was 6.11 mg/g and 5.10 mg/g, respectively. It was also observed that the initial pH affected ammonium adsorption on M-DWS greatly. Under an optimum pH of 7-8, the highest ammonium removal rate of 90% for M-DWS1# and 80% for M-DWS2# were achieved at an initial concentration of 50 mg NH4+/L. The advantage of M-DWS2# lies in its higher yield and less waste discharge compared with M-DWS1#.

  6. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    PubMed

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss. PMID:27060639

  7. Surfactant modified coir pith, an agricultural solid waste as adsorbent for phosphate removal and fertilizer carrier to control phosphate release.

    PubMed

    Namasivayam, C; Kumar, M V Suresh

    2005-10-01

    The surface of coir pith, an agricultural solid waste was modified using a cationic surfactant, hexadecyltrimethylammonium bromide (HDTMA) and the modified coir pith was investigated to assess the capacity for the removal of phosphate from aqueous solution. Optimum pH for maximum phosphate adsorption was found to be 4.0. Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data. Kinetic studies showed that the adsorption obeyed second order kinetics. Thermodynamic parameters were evaluated and the overall adsorption process was spontaneous and endothermic. Effect of coexisting anions has also been studied. The feasibility of using spent adsorbent as fertilizer carrier to control phosphate release was also investigated. PMID:17051911

  8. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift

  9. [DSC and FTIR study of adsorbed lysozyme on hydrophobic surface].

    PubMed

    Lei, Zu-meng; Geng, Xin-peng; Dai, Li; Geng, Xin-du

    2008-09-01

    During a process of hen egg white lysozyme adsorption and folding on a moderately hydrophobic surface (PEG-600), the effects of salt((NH4)2SO4) concentrations, surface coverage and denaturant (guanidine hydrochloride, GuHCl) concentrations on thermal stability and the changes in the molecular conformation of adsorbed native and denatured lysozyme without aqueous solution were studied with a combination of differential scanning calorimetry (DSC) with FTIR spectroscopy. The results showed that temperature due to endothermic peaks was reduced and the disturbance increased at higher temperature with the increase in salt concentration and surface coverage of adsorbed protein. beta-Sheet and beta-Turn stucture increased while alpha-Helix structure decreased after the adsorption. The peaks corresponding to both C-C stretching frequency in 1400-1425 cm(-1) and amide I band frequency in 1650-1670 cm(-1) of adsorbed denatured lysozyme can be detected in FTIR spectra while that due to amide I band frequency of adsorbed native lysozyme almost can't be observed. Adsorption resulted in structural loss of adsorbed native lysozyme, whose performance was less stable. PMID:19093560

  10. High capacity cryogel-type adsorbents for protein purification.

    PubMed

    Singh, Naveen Kumar; Dsouza, Roy N; Grasselli, Mariano; Fernández-Lahore, Marcelo

    2014-08-15

    Cryogel bodies were modified to obtain epoxy groups by graft-copolymerization using both chemical and gamma irradiation initiation techniques. The free epoxy adsorbents were reacted further to introduce diethylaminoethanol (DEAE) functionalities. The resulting weak anion-exchange cryogel adsorbents showed dynamic binding capacities of ca. 27±3mg/mL, which was significantly higher than previously reported for this type of adsorbent material. Gamma irradiated grafting initiation showed a 4-fold higher capacity for proteins than chemical grafting initiation procedures. The phosphate capacity for these DEAE cryogels was 119mmol/L and also showed similar column efficiency as compared to commercial adsorbents. The large pores in the cryogel structure ensure convective transport of the molecules to active binding sites located on the polymer-grafted surface of cryogels. However, as cryogels have relatively large pores (10-100μm), the BET area available for surface activation is low, and consequently, the capacity of the cryogels is relatively low for biomolecules, especially when compared to commercial beaded adsorbents. Nevertheless, we have shown that gamma ray mediated surface grafting of cryogel matrices greatly enhance their functional and adsorptive properties. PMID:24980092

  11. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  12. Adsorption of lead ions on composite biopolymer adsorbent

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1996-04-01

    A fundamental study about the application of biopolymers to the recovery of lead from dilute solution was carried out. A membranous composite biopolymer adsorbent containing two kind of biopolymers, alginic acid (AA) and humic acid (HA), was prepared. HA, which has high solubility in water, was almost completely immobilized in the adsorbent by a combination of calcium alginate gel and activated carbon powder. A general model for complexation between divalent metal ions and acidic sites on biopolymers was applied to explain the adsorption mechanism of lead on the adsorbent (HA-M). The results showed that the complexation constants and the complexation capacities of lead-AA and lead-HA systems were scarcely influenced by immobilization.

  13. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  14. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  15. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  16. High-performances carbonaceous adsorbents for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Zhao, Weigang; Fierro, Vanessa; Aylon, E.; Izquierdo, M. T.; Celzard, Alain

    2013-03-01

    Activated carbons (ACs) with controlled microporosity have been prepared and their H2 storage performances have been tested in a gravimetric device. Such adsorbents are natural Chinese anthracites chemically activated with alkaline hydroxides, NaOH or KOH. Outstanding total storage capacities of hydrogen, as high as 6.6wt.% equivalent to excess capacity of 6.2 wt.%, have been obtained at 4MPa for some of these adsorbents. These values of hydrogen adsorption are among the best, if not the highest, ever published so far in the open literature. They are well above those of some commercial materials, e.g. Maxsorb-3, considered as a reference of high-performance adsorbent for hydrogen adsorption. Such exceptional storage capacities may be ascribed to a higher volume of micropores (< 2nm).

  17. A high-capacity hydrophobic adsorbent for human serum albumin.

    PubMed

    Belew, M; Peterson, E A; Porath, J

    1985-12-01

    A simple method, based on salting out hydrophobic interaction chromatography, for the efficient removal of trace amounts of serum albumin from partially purified protein preparations is described. The method is also successfully applied for the purification of albumin from Cohn fraction IV, a by-product obtained from the commercial fractionation of human serum proteins by the ethanol precipitation procedure. About 70% of the adsorbed albumin can be eluted by buffer of low ionic strength and can thus be lyophilized directly, if required. The adsorbent can be used for several cycles of adsorption and desorption without affecting its selectivity or capacity. Its adsorption properties and capacity for serum albumin are compared with those of the commercially available adsorbent Blue Sepharose CL-6B. PMID:3879424

  18. Adsorbent selection for endosulfan removal from water environment.

    PubMed

    Sudhakar, Y; Dikshit, A K

    1999-01-01

    In the present study, an attempt was made to select a low cost adsorbing material for the removal of endosulfan [C,C'-(1,4,5,6,7,7-hexachloro-8,9,10- trinorborn-5-en-2,3-ylene)(dimethylsulphite)] from water. Various low cost adsorbents like wood charcoal, kimberlite tailings, silica, macro fungi sojar caju were tried with activated charcoal as reference material. The above materials were selected from various sources encompassing organic, inorganic, clayey, and biological sources. For the selection of suitable adsorbent for endosulfan uptake, maximum adsorption capacity (Qmax) was chosen as the parameter. Kinetic profiles of removal were generated for all the materials to assess the equilibrium time. Equilibrium studies were carried out for all materials to assess the adsorption equilibrium model that they followed. The model that gave the best correlation coefficient by linear regression analysis, was adopted for the calculation of Qmax of the corresponding adsorbent material. Using linearised forms of equilibrium models like Langmuir, BET, and Freundlich, maximum adsorptive capacities were determined. Activated charcoal showed the best adsorptive capacity with Qmax of 2.145 mg/g followed by wood charcoal 1.773 mg/g, sojar caju 1.575 mg/g, kimberlite tailings 0.8821 mg/g, and silica 0.3231 mg/g. Albeit activated charcoal gave better performance, it was not considered as a candidate material because of its high cost. Wood charcoal was the next best adsorbent with Qmax 1.773 mg/g. Therefore, wood charcoal was chosen as the best material for endosulfan removal. The study of physical and chemical characteristics of wood charcoal revealed that it is a potential adsorbent and can even be improved further. PMID:10048207

  19. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  20. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  1. Extracting uranium from seawater: Promising AF series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.

  2. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGESBeta

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  3. Effect of Assembly pH on Polyelectrolyte Multilayer Surface Properties and BMP-2 Release.

    PubMed

    Salvi, Claire; Lyu, Xuejian; Peterson, Amy M

    2016-06-13

    The effect of solution pH during layer-by-layer assembly of polyelectrolyte multilayer (PEM) coatings on properties relevant to orthopedic implant success was investigated. Bone morphogenetic protein 2 (BMP-2), a potent osteoconductive growth factor, was adsorbed onto the surface of anodized titanium, and PEM coatings prepared from solutions of poly-l-histidine and poly(methacrylic acid) were built on top of the BMP-2. High levels of BMP-2 released over several months were achieved. Approximately 2 μg/cm(2) of BMP-2 were initially adsorbed on the anodized titanium and a pH-dependent release behavior was observed, with more stable coatings assembled at pH = 6-7. Three different diffusion regimes could be determined from the release profiles: an initial burst release, a sustained release regime, and a depletion regime. BMP-2 was shown to maintain bioactivity after release from a PEM and the presence of a PEM was shown to preserve BMP-2 structure. No visible change was observed in surface roughness as the assembly pH was varied, whereas the surface energy decreased for samples prepared at more basic pH. These results indicate that the initial BMP-2 layer affects PEM surface structure, but not the functional groups exposed on the surface. PMID:27186660

  4. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent.

    PubMed

    Hadi, Pejman; Gao, Ping; Barford, John P; McKay, Gordon

    2013-05-15

    Printed circuit boards (PCBs) constitute one of the major sources of toxicity in landfill areas throughout the world. Hence, PCB recycling and separation of its metallic and nonmetallic components has been considered a major ecological breakthrough. Many studies focus on the metallic fraction of the PCBs due to its economic benefits whereas the nonmetallic powder (NMP) has been left isolated. In this work, the feasibility of using NMP as an adsorbent to remove charged toxic heavy metal ions have been studied and its efficiency has been compared with two widely-used commercial adsorbents. The results indicated that the virgin NMP material has no adsorption capacity, while the application of an activation stage to modify the NMP process has a significant effect on its porosity and thus adsorption capacity. The Cu and Pb removal capacity of the activated sample (A-NMP) at a pH level of 4 was 3 mmol and 3.4 mmol per gram of the adsorbent, respectively, which was considerably higher than the commercial ones. PMID:23523907

  5. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies.

    PubMed

    Aly, Zaynab; Graulet, Adrien; Scales, Nicholas; Hanley, Tracey

    2014-03-01

    Economic adsorbents in bead form were fabricated and utilised for the adsorption of Al(3+) from aqueous solutions. Polyacrylonitrile (PAN) beads, PAN powder and the thermally treated PAN beads (250 °C/48 h/Ar and 600 °C/48 h/Ar-H2) were characterised using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, specific surface analysis (Brunauer-Emmett-Teller), thermogravimetric analysis as well as scanning electron microscopy. Effects of pH, contact time, kinetics and adsorption isotherms at different temperatures were investigated in batch mode experiments. Aluminium kinetic data best fit the Lagergren pseudo-second-order adsorption model indicating a one-step, surface-only, adsorption process with chemisorption being the rate limiting step. Equilibrium adsorption data followed a Langmuir adsorption model with fairly low monolayer adsorption capacities suitable for freshwater clean-up only. Various constants including thermodynamic constants were evaluated from the experimental results obtained at 20, 40 and 60 °C. Positive values of ΔH° indicated that the adsorption of Al(3+) onto all three adsorbents was endothermic with less energy input required for PAN powder compared to PAN beads and low-temperature thermally treated PAN. Negative ΔG° values indicated that the aluminium adsorption process was spontaneous for all adsorbents examined. PMID:24297464

  6. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-04-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities (q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy (E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  7. Surface characterization of adsorbed asphaltene on a stainless steel surface

    NASA Astrophysics Data System (ADS)

    Abdallah, W. A.; Taylor, S. D.

    2007-05-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p3/2, N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies.

  8. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    USGS Publications Warehouse

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  9. Adsorbed liposome deformation studied with quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Reviakine, Ilya; Gallego, Marta; Johannsmann, Diethelm; Tellechea, Edurne

    2012-02-01

    Deformation of surface-adsorbed liposomes is an important parameter that governs the kinetics of their transformations, but one that is very difficult to measure in the case of nm-size liposomes. We investigate the deformation of dimyristoyl phosphatidyl choline liposomes by quartz crystal microbalance (QCM) as a function of temperature and show that it follows the dependence of this lipid's bending modulus on temperature, as expected from theoretical considerations. To corroborate our approach, we model QCM response from adsorbed liposomes by explicitly considering their shape and mechanical properties.

  10. Carbon adsorbents from products of solid fuel processing

    SciTech Connect

    Pokonova, Yu.V.; Grabovskii, A.I.

    1995-01-10

    Total shale phenols (mixture of alkylresorcinols) or their solution in commercial-grade furfural can be used for forming carbon adsorbents with high mechanical strength (up to 97%), high microporosity (up to 0.41 cm{sup 3}{center_dot}cm{sup -3}), and higher sorption capacity. Samples with medium burnout exhibit higher selectivity (than those molded from conventional wood tar) in the recovery of noble metals from multicomponent metal salt solutions. In these parameters they surpass commercial adsorbents as well. Samples with low burnout exhibit high selectivity and separation ability with respect to gas mixtures.

  11. Adsorbed water and CO on Pt electrode modified with Ru

    NASA Astrophysics Data System (ADS)

    Futamata, Masayuki; Luo, Liqiang

    Highly sensitive ATR-SEIRA spectroscopy was exploited to elucidate water, CO and electrolyte anions adsorbed on the Ru modified Pt film electrode. CO on Ru domains was oxidized below ca. +0.3 V, followed by pronounced water adsorption. Since the oxidation potential of CO on Pt domain was significantly reduced compared to bare Pt, these water molecules on Ru obviously prompt CO oxidation on adjacent Pt surface as consistent with the bifunctional mechanism. Diffusion of adsorbate from Ru to Pt surfaces was indicated in dilute CH 3OH solution by spectral changes with potential.

  12. Structural characterization of adsorbed helical and beta-sheet peptides

    NASA Astrophysics Data System (ADS)

    Samuel, Newton Thangadurai

    Adsorbed peptides on surfaces have potential applications in the fields of biomaterials, tissue engineering, peptide microarrays and nanobiotechnology. The surface region, the "biomolecular interface" between a material and the biological environment, plays a crucial role in these applications. As a result, characterization of adsorbed peptide structure, especially with respect to identity, concentration, spatial distribution, conformation and orientation, is important. The present research employs NEXAFS (near-edge X-ray absorption fine structure spectroscopy) and SFG (sum frequency generation spectroscopy) to provide information about the adsorbed peptide structure. Soft X-ray NEXAFS is a synchrotron-based technique which typically utilizes polarized X-rays to interrogate surfaces under ultra-high vacuum conditions. SFG is a non-linear optical technique which utilizes a combination of a fixed visible and a tunable infrared laser beams to generate a surface-vibrational spectrum of surface species. SFG has the added advantage of being able to directly analyze the surface-structure at the solid-liquid interface. The main goals of the present research were twofold: characterize the structure of adsorbed peptides (1) ex situ using soft X-ray NEXAFS, and (2) in situ using non-linear laser spectroscopy (SFG). Achieving the former goal involved first developing a comprehensive characterization of the carbon, nitrogen and oxygen k-edge NEXAFS spectra for amino acids, and then using a series of helical and beta-sheet peptides to demonstrate the sensitivity of polarization-dependent NEXAFS to secondary structure of adsorbed peptides. Characterizing the structure of adsorbed peptides in situ using SFG involved developing a model system to probe the solid-liquid interface in situ; demonstrating the ability to probe the molecular interactions and adsorbed secondary structure; following the time-dependent ordering of the adsorbed peptides; and establishing the ability to obtain

  13. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  14. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  15. Urine pH test

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Kidney Stones Urinalysis Browse the Encyclopedia A. ...

  16. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  17. Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood.

    PubMed

    Vlasova, Irina I; Mikhalchik, Elena V; Barinov, Nikolay A; Kostevich, Valeria A; Smolina, Natalia V; Klinov, Dmitry V; Sokolov, Alexey V

    2016-08-01

    Proteins adsorbed on a surface may affect the interaction of this surface with cells. Here, we studied the binding of human serum albumin (HSA), fibrinogen (FBG) and immunoglobulin G (IgG) to PEGylated single-walled carbon nanotubes (PEG-SWCNTs) and evaluated the impact of PEG-SWCNT treated by these proteins on neutrophils in whole blood samples. Measurements of adsorption parameters revealed tight binding of proteins to PEG-SWCNTs. AFM was employed to directly observe protein binding to sidewalls of PEG-SWCNTs. Fluorescein-labeled IgG was used to ascertain the stability of PEG-SWCNT-IgG complexes in plasma. In blood samples, all plasma proteins mitigated damage of neutrophils observed just after blood exposure to PEG-SWCNTs, while only treatment of PEG-SWCNTs with IgG resulted in dose- and time-dependent enhancement of CNT-induced neutrophil activation and in potentiation of oxidative stress. Our study demonstrates the ability of adsorbed plasma proteins to influence neutrophil response caused by PEG-SWCNTs in whole blood. PMID:27015767

  18. First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Jaiswal, Neeraj K.; Sharma, Varun

    2014-09-01

    The present work exhibits density functional theory (DFT) based first-principles calculations to explore the sensing properties of bare armchair boron nitride nanoribbons (ABNNR) for PH3 gas molecules. Edges of the ribbon were considered as the sites of possible adsorption with two different configurations i.e. adsorption at one edge and adsorption at both edges of the ribbon. It is revealed that B atoms of the ribbons are more energetically favorable sites for the adsorption of PH3 molecules as compared with N atoms. The adsorption of PH3 affects the electronic properties of nanoribbons. One edge PH3 adsorbed ribbons are metallic whereas in both edges PH3 adsorption, the band gap is decreased than that of bare ribbon. The changes in electronic properties caused by PH3 adsorption are further supported by the current-voltage (I-V) characteristics of the considered configurations. The results show that ABNNR can serve as a potential candidate for PH3 sensing applications.

  19. Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance

    PubMed Central

    Baig, Shams Ali; Sheng, TianTian; Sun, Chen; Xue, XiaoQin; Tan, LiSha; Xu, XinHua

    2014-01-01

    The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g−1 and 3.07 mg g−1, respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4–10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water. PMID:24967645

  20. Lysozyme adsorption at a silica surface using simulation and experiment: effects of pH on protein layer structure.

    PubMed

    Kubiak-Ossowska, Karina; Cwieka, Monika; Kaczynska, Agnieszka; Jachimska, Barbara; Mulheran, Paul A

    2015-10-01

    Hen Egg White Lysozyme (HEWL) is a widely used exemplar to study protein adsorption on surfaces and interfaces. Here we use fully atomistic Molecular Dynamics (MD) simulations, Multi-Parametric Surface Plasmon Resonance (MP-SPR), contact angle and zeta potential measurements to study HEWL adsorption at a silica surface. The simulations provide a detailed description of the adsorption mechanism and indicate that at pH7 the main adsorption driving force is electrostatics, supplemented by weaker hydrophobic forces. Moreover, they reveal the preferred orientation of the adsorbed protein and show that its structure is only slightly altered at the interface with the surface. This provides the basis for interpreting the experimental results, which indicate the surface adsorbs a close-packed monolayer at about pH10 where the surface has a large negative zeta potential and the HEWL is positively charged. At higher pH, the adsorption amount of the protein layer is greatly reduced due to the loss of charge on the protein. At lower pH, the smaller zeta potential of the surface leads to lower HEWL adsorption. These interpretations are complemented by the contact angle measurements that show how the hydrophobicity of the surface is greatest when the surface coverage is highest. The simulations provide details of the hydrophobic residues exposed to solution by the adsorbed HEWL, completing the picture of the protein layer structure. PMID:26315945

  1. Adsorption of drinking water fluoride on a micron-sized magnetic Fe3O4@Fe-Ti composite adsorbent

    NASA Astrophysics Data System (ADS)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Wang, Haifeng

    2016-02-01

    A micron-sized magnetic adsorbent (MMA) for fluoride removal from drinking water was prepared by spray drying and subsequent calcination of a magnetic Fe3O4@Fe-Ti core-shell nanoparticle slurry. The MMA granules had high mechanical strength and stability against water scouring, can be easily separated from the water by a magnet, and had a high selectivity for fluoride versus common co-existing ions and high fluoride removal efficiency in a wide range of initial pH of 3-11. Abundant hydroxyl groups on the MMA surface acted as the active sites for fluoride adsorption, which resulted in a high affinity of the MMA for fluoride. The pH in the adsorption process affected the adsorption significantly. At neutral initial pH, the adsorption isotherm was well fitted with the Langmuir model, and the maximum adsorption capacity reached a high value of 41.8 mg/g. At a constant pH of 3, multilayer adsorption of fluoride occurred due to the abundant positive surface charges on the MMA, and the adsorption isotherm was well fitted with the Freundlich model. The MMA had a fast adsorption rate, and adsorption equilibrium was achieved within 2 min. The adsorption kinetics followed a quasi-second order model. The regeneration of the MMA was easy and fast, and can be completed within 2 min. After 10 recycles, the fluoride removal efficiency of the MMA still remained high. These properties showed that the MMA is a promising adsorbent for fluoride removal.

  2. Adsorbing colloid flotation of Zn(II) with Fe(OH) sub 3 and polyelectrolytes

    SciTech Connect

    Wang, Wankung; Huang, Shangda )

    1989-11-01

    It was found that zinc ion could be removed from aqueous solutions by adsorbing colloid flotation with Fe(OH){sub 3} and sodium lauryl sulfate (SLS) provided that the ionic strength of the solution is low (containing no greater than 0.02 M NaNO{sub 3}). An excess dose of iron resulted in poor separation. Three types of polyelectrolytes were used as the activators to compensate for the effect of increasing ionic strength of the solutions. Betz 1150 (a weakly cationic acrylamide copolymer) was found to be the most effective activator. The separation was effective from a solution containing NaNO{sub 3} as high as 0.7 M when Betz 1150 was used as the activator.

  3. Sorption studies of Cr(VI) from aqueous solution using bio-char as an adsorbent.

    PubMed

    Hyder, A H M G; Begum, Shamim A; Egiebor, Nosa O

    2014-01-01

    The characteristics of sorption of hexavalent chromium (Cr(VI)) onto bio-char derived from wood chips (spruce, pine, and fir) were evaluated as a function of pH, initial Cr(VI) concentration and bio-char dosage using synthetic wastewater in batch tests. The initial Cr(VI) concentrations were varied between 10 and 500 mg/L to investigate equilibrium, kinetics, and isotherms of the sorption process. About 100% of Cr(VI) was removed at pH 2 with initial Cr(VI) concentration of 10 mg/L using 4 g of bio-char after 5 hours of sorption reaction. The maximum sorption capacity of the bio-char was 1.717 mg/g for an initial Cr(VI) concentration of 500 mg/L after 5 hours. The sorption kinetics of total Cr onto bio-char followed the second-order kinetic model. The Langmuir isotherm model provided the best fit for total Cr sorption onto bio-char. The bio-char used is a co-product of a down draft gasifier that uses the derived syngas to produce electricity. Bio-char as a low cost adsorbent demonstrated promising results for removal of Cr(VI) from aqueous solution. The findings of this study would be useful in designing a filtration unit with bio-char in a full-scale water and wastewater treatment plant for the Cr(VI) removal from contaminated waters. PMID:24901621

  4. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution.

    PubMed

    Ma, Ying; Liu, Wu-Jun; Zhang, Nan; Li, Yu-Sheng; Jiang, Hong; Sheng, Guo-Ping

    2014-10-01

    A chemical modified biochar with abundant amino groups for heavy metal removal was prepared using polyethylenimine (PEI) as a modification reagent, and used as an adsorbent for the removal of Cr(VI) from aqueous solution. The biochars before and after modification were characterized by Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy etc. The adsorption of Cr(VI) by the modified biochar was obeyed pseudo-second-order kinetic model and Langmuir adsorption isotherm model. Its maximum adsorption capacity was 435.7 mg/g, which was much higher than that of pristine biochar (23.09 mg/g). Results also indicated that the removal of Cr(VI) by the PEI modified biochar depended on solution pH, and a low pH value was favorable for the Cr(VI) removal. The results herein revealed that the PEI modified biochar had a good potential as a suitable material for sorption and detoxification of Cr(VI) from aqueous solution. PMID:25069094

  5. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. PMID:26808249

  6. Evaluation of vermicompost as a raw natural adsorbent for adsorption of pesticide methylparathion.

    PubMed

    Mendes, Camila Bitencourt; Lima, Giovana de Fátima; Alves, Vanessa Nunes; Coelho, Nívia Maria Melo; Dragunski, Douglas Cardoso; Tarley, César Ricardo Teixeira

    2012-01-01

    The assessment of vermicompost (VC) as a low-cost and alternative adsorbent for the removal of the pesticide methylparathion (MP) from an aqueous medium has been investigated by batch and column experiments. Parameters related to MP adsorption, i.e. equilibrium time (61.5 min) and adsorption pH (6.8) were optimized by using Doehlert design. The initial and final MP concentrations after adsorption assays were determined by square-wave adsorptive cathodic stripping voltammetry using an electrode composed of a multiwalled carbon nanotube dispersed in mineral oil. Batch adsorption experimental data were fitted to the Langmuir and Freundlich isotherm adsorptions, and a very good fit to the Langmuir linear model, giving a maximum adsorption capacity (MAC) of 0.17 mg g(-1). This result was very similar to that obtained with the column experiments. In order to evaluate the MP desorption from column packed VC, 100.0 ml of nitric acid solution (pH 3.0) has been percolated through material. No leaching of MP was observed, thus confirming the strong interaction between MP and VC. The satisfactory MAC obtained and low cost makes the VC a reliable natural material for the removal of MP from aqueous effluents. PMID:22519100

  7. Extracorporeal Elimination of Piperacillin/Tazobactam during Molecular Adsorbent Recirculating System Therapy.

    PubMed

    Personett, Heather A; Larson, Scott L; Frazee, Erin N; Nyberg, Scott L; El-Zoghby, Ziad M

    2015-08-01

    Use of the Molecular Adsorbent Recirculating System (MARS) as a liver support device continues to grow worldwide. Various components of the MARS circuit remove both protein-bound and water-soluble molecules. Little is known about the extent of the enhanced clearance mechanisms used in MARS therapy on drug elimination. Of particular interest to acute care practitioners is the impact of MARS on antibiotic clearance, as suboptimal concentrations of such drugs can negatively impact patient outcomes. The properties of piperacillin/tazobactam suggest that elimination may be enhanced in the setting of MARS therapy. We describe two cases in which this was studied. Piperacillin concentrations were determined at various points within the MARS circuit, and patient serum concentrations were reported throughout the dosing interval while receiving MARS therapy. Piperacillin concentrations in both cases were in excess of the desired goal minimum inhibitory concentrations for treatment of gram-negative infections. Use of an extended-infusion strategy of piperacillin/tazobactam 3.375 or 4.5 g given every 8 hours maintained desired serum levels throughout the dosing interval. To our knowledge, this is the second published report on the use of piperacillin/tazobactam during MARS therapy. These case reports reveal successful dosing strategies for patients requiring piperacillin/tazobactam while receiving MARS therapy, as well as quantify the influence of individual MARS elements on drug extraction. PMID:26289310

  8. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOEpatents

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  9. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  10. Chitosan membrane adsorber for low concentration copper ion removal.

    PubMed

    Wang, Xiaomin; Li, Yanxiang; Li, Haigang; Yang, Chuanfang

    2016-08-01

    Thin chitosan membranes with symmetric and interconnected pore structure were prepared using silica as porogen, and their physical properties including pore structure, pore size distribution, porosity and water affinity were analyzed. The membrane showed a maximum Cu(II) adsorption capacity of 87.5mg/g in static adsorption, and the adsorption fitted pseudo-second order kinetics and Toth adsorption isotherm. The membranes were then stacked in layers as an adsorber to remove small concentration Cu(II) from water dynamically. At feed concentration of 5mg/L, the adsorber could retain Cu(II) effectively when its thickness reached over 200μm, and the performance was further improved by using more membranes layers. Within a certain limit, the adsorber showed a 'flow-independent' loading behavior, an indication of fast mass transfer inside the membrane. The adsorption process was correlated well with bed depth service time (BDST) model, Thomas model and Yoon and Nelson model, and the adsorber was also found to be regenerable and re-usable. PMID:27112875

  11. Extracting uranium from seawater: Promising AI series adsorbents

    DOE PAGESBeta

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less

  12. Extracting uranium from seawater: Promising AI series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-10

    A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.

  13. Probing atomic positions of adsorbed ammonia molecules in zeolite.

    PubMed

    Ye, Lin; Lo, Benedict T W; Qu, Jin; Wilkinson, Ian; Hughes, Tim; Murray, Claire A; Tang, Chiu C; Tsang, Shik Chi Edman

    2016-02-25

    Atomic positions and interactions between adsorbed guest molecules, such as ammonia in H-ZSM-5 microporous solids, are for the first time revealed by making use of the change in the periodical scattering parameter using in situ synchrotron powder X-ray diffraction combined with refinement within experimental errors. PMID:26833032

  14. The density and refractive index of adsorbing protein layers.

    PubMed

    Vörös, Janos

    2004-07-01

    The structure of the adsorbing layers of native and denatured proteins (fibrinogen, gamma-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO(2) and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO(2) surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488

  15. Agricultural Waste as Sources for Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plants have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where it adsorbs the mer...

  16. Agricultural By-products as Mercury Adsorbents in Gas Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased emphasis on reduction of mercury emissions from coal fired electric power plans have resulted in environmental regulations that may in the future require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream where is adsorbs the merc...

  17. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  18. Gd uptake experiments for preliminary set of functionalized adsorbents

    SciTech Connect

    Clinton Noack

    2015-03-16

    These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.

  19. DESIGNING FIXED-BED ADSORBERS TO REMOVE MIXTURES OF ORGANICS.

    EPA Science Inventory

    A liquid-phase granular activated carbon (GAC) pilot plant and a full-scale GAC adsorber were designed, built, and operated in order to evaluate their performance for treating a groundwater contaminated with several volatile and synthetic organic chemicals. Several empty bed con...

  20. Spectroscopic studies of pyrene adsorbed to titanium dioxide

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Kusumoto, Yoshihumi

    2003-08-01

    Pyrene was adsorbed to a TiO 2 surface from water-alcohol mixture solutions at 25 °C and pyrene-TiO 2 particles were recovered by filtration. We found that the surface of TiO 2 thus recovered is relatively hydrophobic and pyrene is not decomposed but keep its fluorescence characteristics on the spectral measurement under ultraviolet excitation.

  1. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  2. EVALUATING VARIOUS ADSORBENTS AND MEMBRANES FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    Field studies were conducted in Lemont, Ill., to evaluate specific adsorbents and reverse osmosis (RO) membranes for removing radium from groundwater. A radium-selective complexer and barium-sulfate-loaded alumina appeared to have the best potential for low-cost adsorption of ra...

  3. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  4. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  5. Pulling adsorbed self-avoiding walks from a surface

    NASA Astrophysics Data System (ADS)

    Guttmann, Anthony J.; Jensen, I.; Whittington, S. G.

    2014-01-01

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force, concentrating on the case of the square lattice. Using series analysis methods we investigate the behaviour of the free energy of the system when there is an attractive potential ɛ with the surface and a force f applied at the last vertex, normal to the surface, and extract the phase boundary between the ballistic and adsorbed phases. We believe this to be exact to graphical accuracy. We give precise estimates of the location of the transition from the free phase to the ballistic phase, which we find to be at yc = exp (f/kBTc) = 1, and from the free phase to the adsorbed phase, which we estimate to be at ac = exp ( - ɛ/kBTc) = 1.775 615 ± 0.000 005. In addition we prove that the phase transition from the ballistic to the adsorbed phase is first order.

  6. Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces.

    PubMed

    Rubasinghege, Gayan; Grassian, Vicki H

    2009-07-01

    Nitrogen oxides, including nitrogen dioxide and nitric acid, react with mineral dust particles in the atmosphere to yield adsorbed nitrate. Although nitrate ion is a well-known chromophore in natural waters, little is known about the surface photochemistry of nitrate adsorbed on mineral particles. In this study, nitrate adsorbed on aluminum oxide, a model system for mineral dust aerosol, is irradiated with broadband light (lambda > 300 nm) as a function of relative humidity (RH) in the presence of molecular oxygen. Upon irradiation, the nitrate ion readily undergoes photolysis to yield nitrogen-containing gas-phase products including NO(2), NO, and N(2)O, with NO being the major product. The relative ratio and product yields of these gas-phase products change with RH, with N(2)O production being highest at the higher relative humidities. Furthermore, an efficient dark reaction readily converts the major NO product into NO(2) during post-irradiation. Photochemical processes on mineral dust aerosol surfaces have the potential to impact the chemical balance of the atmosphere, yet little is known about these processes. In this study, the impact that adsorbed nitrate photochemistry may have on the renoxification of the atmosphere is discussed. PMID:19534452

  7. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst.

    PubMed

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-05-15

    Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101mgg(-1) at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80μM) at 298K and pH 4.5 in the presence of H(2)O(2) (6.0mM) and FeR (0.4gL(-1)) was evaluated to be 0.0413min(-1) under visible light and 0.122min(-1) under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H(2)O(2) into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants. PMID:22410720

  8. Polypyrrole/cobalt ferrite/multiwalled carbon nanotubes as an adsorbent for removing uranium ions from aqueous solutions.

    PubMed

    Liu, Qi; Zhu, Jiahui; Tan, Lichao; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Zhang, Hongsen; Li, Rumin; Emelchenko, G A; Wang, Jun

    2016-05-31

    A novel rod-like, dual-shell structural adsorbent of polypyrrole/cobalt ferrite/multiwalled carbon nanotubes (PPy/CoFe2O4/MWCNTs) was successfully synthesized by a hydrothermal method, which could easily separate uranium(vi) ions with an external magnetic field. The structure and morphology of PPy/CoFe2O4/MWCNTs were characterized by VSM, XRD, XPS TEM and FT-IR. The results proved that the dual-shell structure was obtained in which a shell of cobalt ferrite and polypyrrole formed around the MWCNTs core. In batch adsorption experiments, including pH, equilibrium time and temperature on uranium adsorption, were investigated. The main results show that the PPy/CoFe2O4/MWCNTs composite has a higher affinity towards the uptake of uranium(vi) from aqueous solutions. The highest adsorption capacity reached was 148.8 mg U per g at pH 7. A kinetic analysis showed that the adsorption process was best described by a pseudo-second-order kinetic model. The uranium sorption equilibrium data correlated well with the Langmuir sorption isotherm model in the thermodynamic analysis. 0.5 mol per L NaHCO3 was used as the desorbent and good adsorption properties were shown after the desorption procedures were repeated three times. Thus, PPy/CoFe2O4/MWCNTs was an excellent adsorbent for removing uranium(vi) ions. PMID:27169495

  9. Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion

    NASA Astrophysics Data System (ADS)

    Masykur, Abu; Juari Santosa, Sri; Jumina, Dwi Siswanta dan

    2016-02-01

    The aim of this research was to improve the adsorption capacity of chitosan by modification of the chitosan using various cross-linking agents and followed by grafting using succinate anhydride. Succinate anhydride was grafted into chitosan that had been cross-linked using ethylene glycol di-glycidyl ether (EGDE), diethylene glycol diglycidyl ether (DEGDE) andbisphenolAdiglycidyl ether (BADGE) on the hydroxyl group of chitosan to yield Chit- EGDE-Suc, Chit-DEGDE-Suc, and Chit-BADGE-Suc, respectively. Modified chitosans were analyzed using FTIR and TG-DTA and then applied as adsorbents for Pb(II) ion. Adsorption was carried out in batch condition with a variation of solution pH, contact time, and concentration of Pb(II) in the solution. Adsorption ofPb(II) ion reached optimum condition at pH 5 and contact time of 120 minutes. Adsorption of Pb(II) ion on all of the adsorbents fit well the pseudo-second order kinetic equation. Adsorption capacities of Pb(II) on Chit-EGDE-Suc, Chit-DEGDE-SucdanChit-BADGE-Suc were 0.333, 0.388 and 0.898 mmolg-1, respectively, which mean that the adsorption of Chit-BADGE-Suc was the highest and followed by Chit- DEGDE-Suc and Chit-EGDE-Suc.

  10. Anion exchange membrane adsorbers for flow-through polishing steps: Part I. Clearance of minute virus of mice.

    PubMed

    Weaver, Justin; Husson, Scott M; Murphy, Louise; Wickramasinghe, S Ranil

    2013-02-01

    Membrane adsorbers may be a viable alternative to the packed-bed chromatography for clearance of virus, host cell proteins, DNA, and other trace impurities. However, incorporation of membrane adsorbers into manufacturing processes has been slow due to the significant cost associated with obtaining regulatory approval for changes to a manufacturing process. This study has investigated clearance of minute virus of mice (MVM), an 18-22 nm parvovirus recognized by the FDA as a model viral impurity. Virus clearance was obtained using three commercially available anion exchange membrane adsorbers: Sartobind Q®, Mustang Q®, and ChromaSorb®. Unlike earlier studies that have focused on a single or few operating conditions, the aim here was to determine the level of virus clearance under a range of operating conditions that could be encountered in industry. The effects of varying pH, NaCl concentration, flow rate, and other competing anionic species present in the feed were determined. The removal capacity of the Sartobind Q and Mustang Q products, which contain quaternary ammonium based ligands, is sensitive to feed conductivity and pH. At conductivities above about 20 mS/cm, a significant decrease in capacity is observed. The capacity of the ChromaSorb product, which contains primary amine based ligands, is much less affected by ionic strength. However the capacity for binding MVM is significantly reduced in the presence of phosphate ions. These differences may be explained in terms of secondary hydrogen bonding interactions that could occur with primary amine based ligands. PMID:22949170

  11. Ammonium-Functionalized Hollow Polymer Particles As a pH-Responsive Adsorbent for Selective Removal of Acid Dye.

    PubMed

    Qin, Yan; Wang, Li; Zhao, Changwen; Chen, Dong; Ma, Yuhong; Yang, Wantai

    2016-07-01

    In this work, a novel type of ammonium-functionalized hollow polymer particles (HPP-NH3(+)) with a high density of ammonium groups in the shell has been specially designed and synthesized. Benefiting from both the high surface area and from the high density of positively charged ammonium groups, the as-prepared HPP-NH3(+) can serve as a selective adsorbent for the removal of negatively charged acid dye (e.g., methyl blue a-MB). The equilibrium adsorption data of a-MB on the HPP-NH3(+) were evaluated using Freundlich and Langmuir isotherm models, and Langmuir isotherm exhibited a better fit with a maximum adsorption capacity of 406 mg/g. Most importantly, because of the presence of dual functional groups (ammonium and carboxyl groups), the HPP-NH3(+) showed a significant pH-dependent equilibrium adsorption capacity, which increased dramatically from 59 mg/g to 449 mg/g as the solution pH decreased from 9 to 2. This uniqueness makes the dye-adsorbed HPP-NH3(+) can be facilely regenerated under mild condition (in weak alkaline solution, pH 10) to recover both a-MB and the HPP-NH3(+), whereas the recovery of conventional adsorbents is commonly performed under particularly severe conditions. The regenerated HPP-NH3(+) can be reused for dye removal and the dye removal efficiency remained above 98% even after five adsorption-desorption cycles. Because of its high adsorption capacity, pH-sensitivity, easy regeneration, and good reusability, the HPP-NH3(+) has great potential for the application in the field of water treatment, controlled drug release, and pH-responsive delivery. PMID:27302068

  12. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  13. Effect of adsorbent addition on floc formation and clarification.

    PubMed

    Younker, Jessica M; Walsh, Margaret E

    2016-07-01

    Adding adsorbent into the coagulation process is an emerging treatment solution for targeting hard-to-remove dissolved organic compounds from both drinking water and industrial wastewater. The impact of adding powdered activated carbon (PAC) or organoclay (OC) adsorbents with ferric chloride (FeCl3) coagulant was investigated in terms of potential changes to the coagulated flocs formed with respect to size, structure, and breakage and regrowth properties. The ability of dissolved air flotation (DAF) and sedimentation (SED) clarification processes to remove hybrid adsorbent-coagulant flocs was also evaluated through clarified water quality analysis of samples collected in bench-scale jar test experiments. The jar tests were conducted using both a synthetic fresh water and oily wastewater test water spiked with dissolved aromatic compounds phenol and naphthalene. Results of the study demonstrated that addition of adsorbent reduced the median coagulated floc size by up to 50% but did not affect floc strength or regrowth potential after application of high shear. Experimental results in fresh water demonstrated that sedimentation was more effective than DAF for clarification of both FeCl3-PAC and FeCl3-OC floc aggregates. However, experimental tests performed on the synthetic oily wastewater showed that coagulant-adsorbent floc aggregates were effectively removed with both DAF and sedimentation treatment, with lower residual turbidity achieved in clarified water samples than with coagulation treatment alone. Addition of OC or PAC into the coagulation process resulted in removals of over half, or nearly all of the dissolved aromatics, respectively. PMID:27064206

  14. The Methods Behind PH WINS

    PubMed Central

    Leider, Jonathon P.; Bharthapudi, Kiran; Pineau, Vicki; Liu, Lin; Harper, Elizabeth

    2015-01-01

    The Public Health Workforce Interests and Needs Survey (PH WINS) has yielded the first-ever nationally representative sample of state health agency central office employees. The survey represents a step forward in rigorous, systematic data collection to inform the public health workforce development agenda in the United States. PH WINS is a Web-based survey and was developed with guidance from a panel of public health workforce experts including practitioners and researchers. It draws heavily from existing and validated items and focuses on 4 main areas: workforce perceptions about training needs, workplace environment and job satisfaction, perceptions about national trends, and demographics. This article outlines the conceptualization, development, and implementation of PH WINS, as well as considerations and limitations. It also describes the creation of 2 new data sets that will be available in public use for public health officials and researchers—a nationally representative data set for permanently employed state health agency central office employees comprising over 10 000 responses, and a pilot data set with approximately 12 000 local and regional health department staff responses. PMID:26422490

  15. The Methods Behind PH WINS.

    PubMed

    Leider, Jonathon P; Bharthapudi, Kiran; Pineau, Vicki; Liu, Lin; Harper, Elizabeth

    2015-01-01

    The Public Health Workforce Interests and Needs Survey (PH WINS) has yielded the first-ever nationally representative sample of state health agency central office employees. The survey represents a step forward in rigorous, systematic data collection to inform the public health workforce development agenda in the United States. PH WINS is a Web-based survey and was developed with guidance from a panel of public health workforce experts including practitioners and researchers. It draws heavily from existing and validated items and focuses on 4 main areas: workforce perceptions about training needs, workplace environment and job satisfaction, perceptions about national trends, and demographics. This article outlines the conceptualization, development, and implementation of PH WINS, as well as considerations and limitations. It also describes the creation of 2 new data sets that will be available in public use for public health officials and researchers--a nationally representative data set for permanently employed state health agency central office employees comprising over 10,000 responses, and a pilot data set with approximately 12,000 local and regional health department staff responses. PMID:26422490

  16. Dose audit failures and dose augmentation

    NASA Astrophysics Data System (ADS)

    Herring, C.

    1999-01-01

    Standards EN 552 and ISO 11137, covering radiation sterilization, are technically equivalent in their requirements for the selection of the sterilization dose. Dose Setting Methods 1 and 2 described in Annex B of ISO 11137 can be used to meet these requirements for the selection of the sterilization dose. Both dose setting methods require a dose audit every 3 months to determine the continued validity of the sterilization dose. This paper addresses the subject of dose audit failures and investigations into their cause. It also presents a method to augment the sterilization dose when the number of audit positives exceeds the limits imposed by ISO 11137.

  17. Theory of the effect of the change in the pH of water upon contact with the surface of finely dispersed solids (flint)

    SciTech Connect

    Olodovskii, P.P.

    1995-10-01

    Based on estimates of the parameters of the structure of water in a water-flint powder system and the structure of water adsorbed on the surface of the flint, an explanation is given for the effect of the increase in the pH of water in contact with the flint.

  18. Synthesis of nickel sulfide nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of Methylene blue and Safranin-O.

    PubMed

    Ghaedi, M; Pakniat, M; Mahmoudi, Z; Hajati, S; Sahraei, R; Daneshfar, A

    2014-04-01

    Nickel sulfide nanoparticle-loaded activated carbon (NiS-NP-AC) were synthesized as a novel adsorbent for simultaneous and rapid adsorption of Methylene blue (MB) and Safranin-O (SO), as most together compounds in wastewater. NiS-NP-AC was characterized using different techniques such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Brunauer-Emmett-Teller (BET). The surface area of the adsorbent was found to be very high (1018m(2)/g according BET). By using central composite design (CCD), the effects of variables such as pH, adsorbent dosage, MB concentration, SO concentration and contact time on binary dyes removal were examined and optimized values were found to be 8.1, 0.022g, 17.8mg/L, and 5mg/L and 5.46min, respectively. The very short time required for the dyes removal makes this novel adsorbent as a promising tool for wastewater treatment applications. Different models were applied to analyze experimental isotherm data. Modified-extended Langmuir model showed good fit to equilibrium data with maximum adsorption capacity at 0.022g of adsorbent. An empirical extension of competitive modified-extended Langmuir model was proposed to predict the simultaneous adsorption behavior of MB and SO. Kinetic models were applied to fit the experimental data at various adsorbent dosages and initial dyes concentrations. It was seen that pseudo-second-order equation is suitable to fit the experimental data. Individual removalof each dye was also studied. PMID:24412794

  19. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    NASA Astrophysics Data System (ADS)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  20. TCDD Adsorbed on Silica as a Model for TCDD Contaminated Soils: Evidence for Suppression of Humoral Immunity in Mice

    PubMed Central

    Kaplan, Barbara L. F.; Crawford, Robert B.; Kovalova, Natalia; Arencibia, Amaya; Kim, Seong Su; Pinnavaia, Thomas J.; Boyd, Stephen A.; Teppen, Brian J.; Kaminski, Norbert E.

    2011-01-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical aryl hydrocarbon receptor (AhR) ligand, exhibits immune suppression in vivo and in vitro. Suppression of primary humoral immune responses in particular has been well characterized as one of the most sensitive functional immune endpoints in animals treated with TCDD. Previous studies have used purified TCDD to elucidate the mechanisms by which TCDD and dioxin-like compounds (DLC) impair IgM production by B cells, but did not represent the route by which animals and humans are likely to be exposed environmentally. In the studies reported here, mice were treated with TCDD adsorbed onto a well-defined synthetic silica phase of known purity and physical properties, followed by sensitization with sheep erythrocytes to initiate a humoral immune. We found that surfactant-templated mesoporous forms of amorphous silica provided an ideal combination of purity, dispersibility and textural properties for immobilizing TCDD. TCDD-adsorbed silica distributed to the spleen and liver after oral administration as assessed by induction of cyp1a1 gene expression. Most notably, TCDD delivered in the adsorbed state on amorphous silica and as a solute in corn oil (CO) produced similar suppression of the anti-sheep red blood cell immunoglobulin M antibody forming cell response (sRBC IgM AFC) response at equivalent doses of TCDD. These results suggest that TCDD immobilized on silicate particles found in soils distributes to the spleen and suppresses humoral immunity. PMID:21272611

  1. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  2. Effect of pH on the heavy metal-clay mineral interaction

    SciTech Connect

    Altyn, O.; Oezbelge, H.O.; Dogu, T.; Oezbelge, T.A.

    1997-12-31

    Adsorption and ion exchange of Pb and Cd on the surface of kaolinite and montmorillonite were studied with a strong emphasis on the pH values of solutions containing heavy metal ions. The pH range studied was 2.5 - 9. For kaolinite at a clay/solution ratio of 1/10 (w/w), Pb removal changes from 20 to 30% for an initial Pb concentration of 1640 ppm, and Cd removal changes from 10 to 20% for an initial Cd concentration of 1809 ppm. Due to its high exchange capacity, montmorillonite can remove more heavy metal than kaolinite. Removal rates for montmorillonite can reach up to 90% for both Pb and Cd. In the pH range of 3-6, there is a plateau for the removal rates. At pH values higher than 6, removal seems to increase artificially due to the precipitation of heavy metals. Under similar conditions for both clays, the rate of removal of Pb is always higher than that of Cd. As the pH value decreases for montmorillonite, there is a strong tendency for decreased surface area and swelling, as indicated by BET surface area measurements, adsorbed layer thickness and pore size distribution data. In the range of pH values studied, X-ray diffraction analysis showed the appearance of a characteristic (001) peak for montmorillonite, indicating that the crystalline structure of the clay was intact during the experiments.

  3. The effect of pH on the survival of leptospires in water*

    PubMed Central

    Smith, C. E. Gordon; Turner, L. H.

    1961-01-01

    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time. It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken. PMID:20604084

  4. Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As(III) and As(V) species from environmental water samples.

    PubMed

    Rashidi Nodeh, Hamid; Wan Ibrahim, Wan Aini; Ali, Imran; Sanagi, Mohd Marsin

    2016-05-01

    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V). PMID:26850098

  5. Radioresistance secondary to low pH in human glial cells and Chinese hamster ovary cells

    SciTech Connect

    Rottinger, E.M.; Mendonca, M.

    1982-08-01

    The influence of the extracellular pH on the radiosensitivity of human glial cells and Chinese hamster ovary cells was examined. The period of low pH varied from 0 to 96 hours in glial cells and from 0 to 48 hours in Chinese hamster cells. Maintenance of low pH after a dose of 10 Gy for at least 24 hours for glial cells and at least 6 hours for Chinese hamster cells improved survival by more than one order of magnitude at pH 6.4. Cellular inactivation by irradiation may be impaired by an extracellular pH at or below pH 6.7.

  6. Novel adsorbent applicability for decontamination of printing wastewater

    NASA Astrophysics Data System (ADS)

    Kiurski, Jelena; Oros, Ivana; Ranogajec, Jonjaua; Kecic, Vesna

    2013-04-01

    Adsorption capacity of clayey minerals can be enhanced by replacing the natural exchangeable cations with organic cations, which makes the clay surface more hydrophobic. Different solids such as activated carbon, clay minerals, zeolites, metal oxides and organic polymers have been tested as effective adsorbents. On a global scale, clays have a large applicability for decontamination, purification of urban and industrial residual waters, protection of waste disposal areas, and purification of industrial gases and so on. Clay derivative materials with high adsorption capacities are very attractive from an economical point of view. Due to the economic constraints, a development of cost effective and clean processes is desired. Adsorption processes has proved to be the most effective, especially for effluents with moderate and low heavy metal concentrations, as like as in printing wastewaters. Among several removal technologies, the adsorption of Zn(II) ion onto NZ, B, pure C and C with PEG 600 addition could be of great importance for the printing wastewaters purification. However, the newly designed adsorbent of the defined pore size distribution and phase structure considered as the most suitable material for Zn(II) ion removal. The values of distribution coefficient (Kd) increased with decreasing of the adsorbent amount. The Kd values depend also on the type of used adsorbent, the following increased order is obtained: NZ < B = pure C < C with PEG 600 addition. The adsorption equilibrium data of Zn(II) ion on NZ, B, pure C and C with PEG 600 were analyzed in terms of the Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. The characteristic parameters for each isotherms and related correlation coefficients were determined. The values of correlation coefficient (R2) indicated the following order of the isotherm models: Freundlich > Langmuir > DKR. The study also showed that the fired clay modified with PEG 600 addition has great potential

  7. Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption

    SciTech Connect

    Feng, X.; Pan, C.Y.; McMinis, C.W.; Ivory, J.; Ghosh, D.

    1998-07-01

    Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption (PSA) was studied experimentally. The high efficiency of hollow-fiber-based adsorbers for gas separation was illustrated by hydrogen separation using fine-powder-activated carbon and molecular sieve as adsorbents. The adsorption equilibrium and dynamics of the hollow-fiber adsorbers were determined. The pressure drop of the gas flowing through the adsorbers was also examined. The adsorbers were tested for hydrogen separation from nitrogen, carbon dioxide, and a multicomponent gas mixture simulating ammonia synthesis purge gas. The PSA systems using the hollow-fiber adsorbers were very effective for hydrogen purification. The high separation efficiency is derived from the fast mass-transfer rate and low pressure drop, two key features of hollow-fiber-based adsorbers.

  8. Removal of acutely hazardous pharmaceuticals from water using multi-template imprinted polymer adsorbent.

    PubMed

    Venkatesh, Avinash; Chopra, Nikita; Krupadam, Reddithota J

    2014-05-01

    Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon. PMID:24499987

  9. Detecting the mass and position of an adsorbate on a drum resonator

    PubMed Central

    Zhang, Y.; Zhao, Y. P.

    2014-01-01

    The resonant frequency shifts of a circular membrane caused by an adsorbate are the sensing mechanism for a drum resonator. The adsorbate mass and position are the two major (unknown) parameters determining the resonant frequency shifts. There are infinite combinations of mass and position which can cause the same shift of one resonant frequency. Finding the mass and position of an adsorbate from the experimentally measured resonant frequencies forms an inverse problem. This study presents a straightforward method to determine the adsorbate mass and position by using the changes of two resonant frequencies. Because detecting the position of an adsorbate can be extremely difficult, especially when the adsorbate is as small as an atom or a molecule, this new inverse problem-solving method should be of some help to the mass resonator sensor application of detecting a single adsorbate. How to apply this method to the case of multiple adsorbates is also discussed. PMID:25294971

  10. Nanostructured Membranes from Triblock Polymer Precursors as High Capacity Copper Adsorbents.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2015-10-13

    Membrane adsorbers are a proposed alternative to packed beds for chromatographic separations. To date, membrane adsorbers have suffered from low binding capacities and/or complex processing methodologies. In this work, a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-PDMA) triblock polymer is cast into an asymmetric membrane that possesses a high density of nanopores (d ∼ 38 nm) at the upper surface of the membrane. Exposing the membrane to a 6 M aqueous hydrochloric acid solution converts the PDMA brushes that line the pore walls to poly(acrylic acid) (PAA) brushes, which are capable of binding metal ions (e.g., copper ions). Using mass transport tests and static binding experiments, the saturation capacity of the PI-PS-PAA membrane was determined to be 4.1 ± 0.3 mmol Cu(2+) g(-1). This experimental value is consistent with the theoretical binding capacity of the membranes, which is based on the initial PDMA content of the triblock polymer precursor and assumes a 1:1 stoichiometry for the binding interaction. The uniformly sized nanoscale pores provide a short diffusion length to the binding sites, resulting in a sharp breakthrough curve. Furthermore, the membrane is selective for copper ions over nickel ions, which permeate through the membrane over 10 times more rapidly than copper during the loading stage. This selectivity is present despite the fact that the sizes of these two ions are nearly identical and speaks to the chemical selectivity of the triblock polymer-based membrane. Furthermore, addition of a pH 1 solution releases the bound copper rapidly, allowing the membrane to be regenerated and reused with a negligible loss in binding capacity. Because of the high binding capacities, facile processing method implemented, and ability to tailor further the polymer brushes lining the pore walls using straightforward coupling reactions, these membrane adsorbers based on block polymer precursors have potential as a separation media that can

  11. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes.

    PubMed

    Sharma, Rajendra Kumar; Kumar, Anoop; Joseph, P E

    2008-05-01

    In the present study six adsorbents viz. wood charcoal, fly ash, coconut charcoal, saw dust, coconut fiber and baggasse charcoal were studied for their capacity to remove atrazine from water. The removal efficiency of different adsorbents varied from 76.5% to 97.7% at 0.05 ppm concentration and 78.5% to 95.5% at 0.1 ppm concentration of atrazine solution, which was less than removal efficiency of activated charcoal reported as 98% for atrazine (Adams and Watson, J Environ Eng ASCE 39:327-330, 1996). Wood charcoal was a cheap (Rs 15 kg(-1)) and easily available material in house holds. Since wood charcoal was granular in nature, it could be used for the removal of atrazine from water to the extent of 95.5%-97.7%. Fly ash is a waste product of thermal plant containing 40%-50% silica, 20%-35% alumina, 12%-30% carbon and unburnt minerals having a high pH of 9-10. It is very cheap and abundant material and has comparatively good adsorption capacity. It was found that fly ash effectively removed about 84.1%-88.5% atrazine from water at 0.05 and 0.1 ppm levels. Coconut shell is also waste product. Therefore, both are inexpensive. The removal efficiency of atrazine from water was 92.4%-95.2% by coconut shell charcoal and 85.9%-86.3% by coconut fiber. Sawdust is generally used as domestic fuel and found everywhere. It is also very cheap (Re. 1 kg(-1)). Baggasse charcoal is a waste product of sugar mill and abundant material. Its cost is due to transport expense, which depends upon distance from the sugar mill. The removal efficiency of sawdust and baggasse charcoal was found 78.5-80.5 and 76.5-84.6, respectively. The efficacy of chemically treated adsorbents for the removal of atrazine from water is in the order: wood charcoal > coconut shell charcoal > fly ash > coconut fiber charcoal > baggasse charcoal > sawdust. PMID:18357400

  12. The Influence of pH on the Kinetics, Reversibility and Mechanism of Pb(II) Sorption at the Calcite-Water Interface

    SciTech Connect

    Rouff,A.; Elzinga, E.; Reeder, R.; Fisher, N.

    2005-01-01

    Pb(II) sorption experiments with calcite powders were conducted in suspensions equilibrated at atmospheric PCO{sub 2(g)} and ambient temperature at pH 7.3, 8.2 and 9.4. Pb fractional sorption was low at pH 7.3 and 9.4 relative to pH 8.2, and correlated well with PbCO{sub 3}{sup 0}(aq) speciation. Desorption experiments conducted for initial sorption times ranging from 0.5 h to 12 d reveal an almost completely reversible process at pH 8.2, attributed to the dominance of an adsorption mechanism, with slight and pronounced irreversibility at pH 7.3 and 9.4 respectively. Similarities in X-ray absorption near edge spectra (XANES) for 24 h and 12 d pH 7.3 and 9.4 sorption samples indicate no effect of initial sorption time. Results from linear combination (LC) fits of XANES spectra for samples sorbed at pH 9.4 confirm {approx}75% adsorbed and {approx}25% coprecipitated components. The coprecipitated fraction was attributed to the non-exchangeable metal observed in desorption experiments. At pH 7.3, {approx}95% adsorbed and {approx}5% coprecipitated components were obtained. A comparison of results from desorption experiments and LC-XANES alludes to an irreversibly bound adsorbed component for the pH 9.4 12 d sorption sample. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis of pH 7.3 and 9.4 12 d sorption samples confirms the presence of both adsorbed and coprecipitated metal. At pH 7.3 a first-shell Pb-O bond length of 2.38 Angstroms is intermediate between that of adsorbed (2.34 Angstroms) and coprecipitated (2.51 Angstroms) Pb. At pH 9.4, two first-shell Pb-O distances at 2.35 Angstroms and 2.51 Angstroms were obtained, indicative of the occurrence of both adsorption and coprecipitation and a larger coprecipitated fraction relative to that at pH 7.3, consistent with LC-XANES results. We propose that the disparity in the fraction of coprecipitated metal with pH may be linked to the ability of sorbed Pb to inhibit near-surface dynamic exchange of Ca

  13. Evaluation of eggshell membrane-based bio-adsorbent for solid-phase extraction of linear alkylbenzene sulfonates coupled with high-performance liquid chromatography.

    PubMed

    Wang, Weidong; Chen, Bo; Huang, Yuming; Cao, Jia

    2010-09-01

    The potential of eggshell membrane (ESM) as a novel solid-phase extraction bio-adsorbent was investigated in the present study. The ESM with a unique structure of intricate lattice network showed a predominant ability to capture linear alkylbenzene sulfonates (LAS) as a model of organic pollutants by the hydrophobic interactions between ESM and LAS molecular at pH very close to the isoelectric point of ESM, which was similar to the most widely used trapping mechanism for SPE. Under the optimal conditions, the breakthrough capacities of the ESM packed cartridge for C10-C13 LAS homologues were found to be 30, 53, 50, and 43microgg(-1), respectively. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the proposed system could respond down to 0.027ngmL(-1) of LAS with a linear calibration range from 0.2 to 100ngmL(-1), showing a good LAS enrichment ability of eggshell membrane biomaterial with high sensitivity, and could be successfully used for the detection of residual LAS in environmental water samples. The reproducibility among columns was satisfactory (RSD among columns is less than 10%). A comparison study with ESM, C8 and C18 as adsorbents for LAS demonstrated that ESM-based bio-adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents. PMID:20674925

  14. Effect of fly ash addition on the removal of hydrogen sulfide from biogas and air on sewage sludge-based composite adsorbents.

    PubMed

    Seredych, Mykola; Strydom, Christien; Bandosz, Teresa J

    2008-01-01

    Desulfurization adsorbents were prepared from the mixtures of various compositions of New York City sewage sludge and fly ashes from SASOL, South Africa, by pyrolysis at 950 degrees C. The resulting materials were used as adsorbents of hydrogen sulfide from simulated dry digester gas mixture or moist air. The adsorbents before and after H(2)S removal were characterized using adsorption of nitrogen, elemental analysis, pH measurements, XRF, XRD, and thermal analysis. It was found that the addition of fly ash decreases the desulfurization capacity in comparison with the sewage sludge-based materials. The extent of this decrease depends on the type of ash, its content and the composition of challenging gas. Although the presence of CO(2) deactivates some adsorption sites to various degrees depending on the sample composition, the addition of ashes has a more detrimental effect when the adsorbents are used to remove hydrogen sulfide from air. This is likely the result of hydrophobicity of ashes since the H(2)S removal capacity was found to be strongly dependent on the reactivity towards water/water adsorption. On the other hand, the addition of ashes strongly decreases the porosity of materials where sulfur, as a product of hydrogen sulfide oxidation, can be stored. PMID:17935967

  15. Takovite-aluminosilicate@MnFe2O4 nanocomposite, a novel magnetic adsorbent for efficient preconcentration of lead ions in food samples.

    PubMed

    Kardar, Zahra Shakeri; Beyki, Mostafa Hossein; Shemirani, Farzaneh

    2016-10-15

    Here in we report preparation of MnFe2O4 and magnetic takovite-aluminosilicate adsorbent via precipitation methodology. The synthesized nanocomposite was applied in preconcentration of Pb(2+) ions from various matrices. The structural, surface, and magnetic characteristics of the adsorbent were investigated by XRD, EDX, FE-SEM, and VSM techniques. Several parameters affecting preconcentration efficiency, including sample pH, contact time, adsorbent amount, and sample volume were studied and optimized. Under optimized conditions, the calibration graph was linear in the range of 2.0-100μgL(-1), the relative standard deviation was 3.00% (n=5), the limit of detection was 0.67μgL(-1), and the enrichment factor was 70.0. The maximum adsorption capacity of the adsorbent was calculated to be 69.9mgg(-1). The suggested method was successfully applied in determination of trace amount of Pb(2+) ions in water and food samples. PMID:27173558

  16. The influence of pH on manganese removal by magnetic microparticles in solution.

    PubMed

    Funes, A; de Vicente, J; Cruz-Pizarro, L; de Vicente, I

    2014-04-15

    An extensive experimental work is reported that aims to assess the efficiency in manganese (Mn) removal from aqueous solution by carbonyl iron microparticles using magnetic separation techniques. A set of batch experiments are performed to explore the effect of pH, adsorbent concentration, surface coating and contact time for achieving the highest Mn removal efficiency. Mn removal efficiency is extremely high (>98%) for pH values larger than 9 as a result of the chemisorption of Mn oxides onto magnetic microparticles. In contrast, Mn removal efficiency for pH < 9 was significantly reduced as Mn remains as a soluble cation. In this manuscript we demonstrate that the efficiency clearly increases when increasing the adsorbent concentration and when using MnOx(s) coated magnetic particles instead of bare particles. Desorption rates from Mn-loaded magnetic particles at different pHs were always lower than 15%. Furthermore, Mn removal efficiency remained at a very high value (>95%) when reused particles were employed in the adsorption process. PMID:24509345

  17. Eggshell membrane-based biotemplating of mixed hemimicelle/admicelle as a solid-phase extraction adsorbent for carcinogenic polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Weidong; Chen, Bo; Huang, Yuming

    2014-08-13

    A new solid-phase extraction (SPE) format was demonstrated, based on eggshell membrane (ESM) templating of the mixed hemimicelle/admicelle of linear alkylbenzenesulfonates (LAS) as an adsorbent for the enrichment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. The LAS mixed hemimicelle/admicelle formation and SPE of the target PAHs were conducted simultaneously by adding the organic target and LAS through a column filled with 500 mg of ESM. The effect of various factors, including LAS concentration, solution pH, ionic strength, and humic acid concentration on the recoveries of PAHs were investigated and optimized. The results showed that LAS concentration and solution pH had obvious effect on extraction of PAHs, and the recoveries of PAHs compounds decreased in the presence of salt and humic acid. Under the optimized analytical conditions, the present method could respond down to 0.1-8.6 ng/L PAHs with a linear calibration ranging from 0.02 to 10 μg/L, showing a good PAHs enrichment ability with high sensitivity. The developed method was used satisfactorily for the detection of PAHs in environmental water samples. The mixed hemimicelle/admicelle adsorbent exhibited high extraction efficiency to PAHs and good selectivity with respect to natural organic matter and was advantageous over commercial C₁₈ adsorbent, for example, high extraction yield, high breakthrough volume, and easy regeneration. PMID:25025712

  18. Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake.

    PubMed

    Kyzas, George Z; Siafaka, Panoraia I; Lambropoulou, Dimitra A; Lazaridis, Nikolaos K; Bikiaris, Dimitrios N

    2014-01-14

    Two novel chitosan (CS) adsorbents were prepared in powder form, after modification with the grafting of itaconic acid (CS-g-IA) and cross-linking with either glutaraldehyde (CS-g-IA(G)) or epichlorohydrin (CS-g-IA(E)). Their adsorption properties were evaluated in batch experiments for Cd(II) or Pb(II) uptake. Characterization techniques were applied to the prepared adsorbents as swelling experiments, TGA, SEM, XRD, and FTIR. Adsorption mechanisms were suggested for different pH conditions. Various adsorption parameters were determined as the effect of pH, contact time, and temperature. The maximum adsorption capacities for Cd(II) uptake were 405 and 331 mg/g for CS-g-IA(G) and CS-g-IA(E), respectively, revealing the capacity enhancement after grafting (124 and 92 mg/g were the respective values before grafting, respectively). A similar grafting effect was observed for Pb(II) uptake, proving its adsorption effectiveness on the CS backbone. The reuse of adsorbents was tested with 20 adsorption-desorption cycles. PMID:24011255

  19. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    SciTech Connect

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.

  20. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    DOE PAGESBeta

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites thatmore » is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.« less

  1. Reflectivity studies on adsorbed block copolymers under shear

    SciTech Connect

    Smith, G.S.; Wages, S.; Baker, S.M.; Toprakcioglu, C.; Hadziioannou, G.

    1994-12-01

    The authors report neutron reflectivity data on (poly)styrene-(poly)ethylene oxide (PS-PEO) diblock copolymers adsorbed onto quartz from the selective solvent cyclohexane (a non-solvent for PEO and a poor solvent for PS). The PEO ``anchor block`` adsorbs strongly to form a thin layer on the quartz substrate, while the deuterated PS chains dangle into the solvent. They find that under static conditions the density profile of the PS block in a poor solvent can be well described by a Schultz function which is indicative of a polymer ``mushroom.`` Furthermore, they have studied the same system under shear at shear rates from 0--400s{sup {minus}1}. They find that there is a dramatic increase in the thickness of the PS layer under shear in cyclohexane and that the relaxation time from the shear-on profile back to the static profile is on the order of several days.

  2. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127

  3. Adsorbate-induced curvature and stiffening of graphene.

    PubMed

    Svatek, Simon A; Scott, Oliver R; Rivett, Jasmine P H; Wright, Katherine; Baldoni, Matteo; Bichoutskaia, Elena; Taniguchi, Takashi; Watanabe, Kenji; Marsden, Alexander J; Wilson, Neil R; Beton, Peter H

    2015-01-14

    The adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride. Our results show that molecular adsorption can be influenced by substrate curvature, provide an example of two-dimensional molecular self-assembly on a soft, responsive interface, and demonstrate that the mechanical properties of graphene may be modified by molecular adsorption, which is of relevance to nanomechanical systems, electronics, and membrane technology. PMID:25469625

  4. Hydrogen adsorption of ruthenium: Isosteres of solubility of adsorbed hydrogen

    SciTech Connect

    Zaginaichenko, S.Y.; Matysina, Z.A.; Schur, D.V.; Pishuk, V.K.

    1998-12-31

    The theoretical investigation of solubility isosteres of adsorbed hydrogen has been performed for free face (0001) of crystals with hexagonal close-packed lattice A3 of Mg type. The face free energy has been calculated and its dependence on temperature, pressure, hydrogen concentration and character of hydrogen atoms distribution over surface interstitial sites of different type has been defined. The equations of thermodynamic equilibrium and solubility of adsorbed hydrogen have been defined. The plots of isosteres in the region of phase transition from isotropic to anisotropic state have been constructed and it has been established that in anisotropic state the order in distribution of hydrogen atoms over interstitial sites of different type must become apparent. Comparison of the theoretical isosteres with experimental for ruthenium has been carried out, the isotropic-anisotropic state transition can stipulate a stepwise and break-like change in isosteres.

  5. Monte Carlo lattice models for adsorbed polymer conformation

    NASA Technical Reports Server (NTRS)

    Good, B. S.

    1985-01-01

    The adhesion between a polymer film and a metal surface is of great technological interest. However, the prediction of adhesion and wear properties of polymer coated metals is quite difficult because a fundamental understanding of the polymer surface interaction does not yet exist. A computer model for the conformation of a polymer molecule adsorbed on a surface is discussed. The chain conformation is assumed to be described by a partially directed random walk on a three dimensional simple cubic lattice. An attractive surface potential is incorporated into the model through the use of a random walk step probability distribution that is anisotropic in the direction normal to the attractive surface. The effects of variations in potential characteristics are qualitatively included by varying both the degree of anisotropy of the step distribution and the range of the anisotropy. Polymer conformation is characterized by the average end to end distance, average radius of gyration, and average number of chain segments adsorbed on the surface.

  6. Heavy metals and adsorbents effects on activated sludge microorganisms.

    PubMed

    Ong, S A; Lim, P E; Seng, C E

    2004-01-01

    The sorption of Cu(II) and Cd(II) from synthetic solution by powdered activated carbon (PAC), biomass, rice husk (RH) and activated rice husk (ARH) were investigate under batch conditions. After activated by concentrated nitric acid for 15 hours at 60-65 degrees C, the adsorption capacity for RH was increased. The adsorbents arranged in the increasing order of adsorption capacities to the Langmuir Q degree parameter were biomass > PAC > ARH > RH. The addition of adsorbents in base mix solution had increased the specific oxygen uptake rate (SOUR) activated sludge microorganisms with and without the presence of metals. The increased of SOUR were due to the ability of PAC and RH in reducing the inhibitory effect of metals on microorganisms and provide a reaction site between activated sludge microorganisms and substrates. PMID:15141467

  7. Topological features of engineered arrays of adsorbates in honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Gonzalez-Arraga, Luis A.; Lado, J. L.; Guinea, Francisco

    2016-09-01

    Hydrogen adatoms are one of the most the promising proposals for the functionalization of graphene. The adatoms induce narrow resonances near the Dirac energy, which lead to the formation of magnetic moments. Furthermore, they also create local lattice distortions which enhance the spin-orbit coupling. The combination of magnetism and spin-orbit coupling allows for a rich variety of phases, some of which have non-trivial topological features. We analyze the interplay between magnetism and spin-orbit coupling in ordered arrays of adsorbates on honeycomb lattice monolayers, and classify the different phases that may arise. We extend our model to consider arrays of adsorbates in graphene-like crystals with stronger intrinsic spin-orbit couplings. We also consider a regime away from half-filling in which the Fermi level is at the bottom of the conduction band, we find a Berry curvature distribution corresponding to a Valley-Hall effect.

  8. Candidate Source of Flux Noise in SQUIDs: Adsorbed Oxygen Molecules.

    PubMed

    Wang, Hui; Shi, Chuntai; Hu, Jun; Han, Sungho; Yu, Clare C; Wu, R Q

    2015-08-14

    A major obstacle to using superconducting quantum interference devices (SQUIDs) as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be O_{2} molecules adsorbed on the surface. Using density functional theory calculations, we find that an O_{2} molecule adsorbed on an α-alumina surface has a magnetic moment of ~1.8 μ_{B}. The spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic XY spins on a square lattice find 1/f magnetization noise, consistent with flux noise in Al SQUIDs. PMID:26317742

  9. Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems

    PubMed Central

    Yang, Y. T.; Callegari, C.; Feng, X. L.; Roukes, M. L.

    2013-01-01

    Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption–desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems. PMID:21388120

  10. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  11. pyIAST: Ideal adsorbed solution theory (IAST) Python package

    NASA Astrophysics Data System (ADS)

    Simon, Cory M.; Smit, Berend; Haranczyk, Maciej

    2016-03-01

    Ideal adsorbed solution theory (IAST) is a widely-used thermodynamic framework to readily predict mixed-gas adsorption isotherms from a set of pure-component adsorption isotherms. We present an open-source, user-friendly Python package, pyIAST, to perform IAST calculations for an arbitrary number of components. pyIAST supports several common analytical models to characterize the pure-component isotherms from experimental or simulated data. Alternatively, pyIAST can use numerical quadrature to compute the spreading pressure for IAST calculations by interpolating the pure-component isotherm data. pyIAST can also perform reverse IAST calculations, where one seeks the required gas phase composition to yield a desired adsorbed phase composition.

  12. Forces and pressures in adsorbing partially directed walks

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Prellberg, T.

    2016-05-01

    Polymers in confined spaces lose conformational entropy. This induces a net repulsive entropic force on the walls of the confining space. A model for this phenomenon is a lattice walk between confining walls, and in this paper a model of an adsorbing partially directed walk is used. The walk is placed in a half square lattice {{{L}}}+2 with boundary \\partial {{{L}}}+2, and confined between two vertical parallel walls, which are vertical lines in the lattice, a distance w apart. The free energy of the walk is determined, as a function of w, for walks with endpoints in the confining walls and adsorbing in \\partial {{{L}}}+2. This gives the entropic force on the confining walls as a function of w. It is shown that there are zero force points in this model and the locations of these points are determined, in some cases exactly, and in other cases asymptotically.

  13. Theory of optical excitation of adsorbed rare gas atoms

    NASA Astrophysics Data System (ADS)

    Tsukada, Masaru; Brenig, Wilhelm

    1985-03-01

    Optical absorption spectra of rare-gas atoms adsorbed on metal surfaces exhibit a bimodal behavior, which, according to Cunningham, Greenlaw and Flynn, can be correlated with the difference I' - φ (where I' is the ionization energy of the excited (gas phase) state of the rare gas atom and φ the work function of the metal) controlling the energetics of charge transfer from the excited atom to the metal. In this paper we propose a model which allows to treat this charge transfer and some accompanying many-body effects in detail. Strong Coulomb attraction between the core hole and the excited electron on the adatom is taken into account as well as the interaction with surface plasmons. An improved charge transfer criterion is obtained which, besides the important parameter I∗ - φ, involves additional parameters such as the adsorbate-metal coupling strength and the plasmon frequency.

  14. Adsorbed self-avoiding walks subject to a force

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2013-11-01

    We consider a self-avoiding walk model of polymer adsorption where the adsorbed polymer can be desorbed by the application of a force. In this paper the force is applied normal to the surface at the last vertex of the walk. We prove that the appropriate limiting free energy exists where there is an applied force and a surface potential term, and prove that this free energy is convex in appropriate variables. We then derive an expression for the limiting free energy in terms of the free energy without a force and the free energy with no surface interaction. Finally we show that there is a phase boundary between the adsorbed phase and the desorbed phase in the presence of a force, prove some qualitative properties of this boundary and derive bounds on the location of the boundary.

  15. The pH of antiseptic cleansers

    PubMed Central

    Kulthanan, Kanokvalai; Varothai, Supenya; Nuchkull, Piyavadee

    2014-01-01

    Background Daily bathing with antiseptic cleansers are proposed by some physicians as an adjunctive management of atopic dermatitis (AD). As atopic skin is sensitive, selection of cleansing products becomes a topic of concern. Objective Our purpose is to evaluate the pH of various antiseptic body cleansers to give an overview for recommendation to patients with AD. Methods Commonly bar and liquid cleansers consisted of antiseptic agents were measured for pH using pH meter and pH-indicator strips. For comparison, mild cleansers and general body cleansers were also measured. Results All cleansing bars had pH 9.8-11.3 except syndet bar that had neutral pH. For liquid cleansers, three cleansing agents had pH close to pH of normal skin, one of antiseptic cleansers, one of mild cleansers and another one of general cleansers. The rest of antiseptic cleansers had pH 8.9-9.6 while mild cleansers had pH 6.9-7.5. Syndet liquid had pH 7 and general liquid cleansers had pH 9.6. Conclusion The pH of cleanser depends on composition of that cleanser. Adding antiseptic agents are not the only factor determining variation of pH. Moreover, benefit of antiseptic properties should be considered especially in cases of infected skin lesions in the selection of proper cleansers for patients with AD. PMID:24527408

  16. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  17. Development of the Molecular Adsorber Coating for Spacecraft and Instrument Interiors

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin

    2011-01-01

    On-orbit Molecular Contamination occurs when materials outgas and deposit onto very sensitive interior surfaces of the spacecraft and instruments. The current solution, Molecular Adsorber Pucks, has disadvantages, which are reviewed. A new innovative solution, Molecular Adsorber Coating (MAC), is currently being formulated, optimized, and tested. It is a sprayable alternative composed of Zeolite-based coating with adsorbing properties.

  18. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents ...

  19. Nuclear spin heat capacity of 3He adsorbed on graphite

    NASA Astrophysics Data System (ADS)

    Greywall, Dennis S.

    1989-10-01

    The heat capacity of 3He adsorbed on graphite has been measured for films between one and five atomic layers and for temperatures between 2 and 200 mK. These results are compared with recent magnetization data which also show several anomalies in this coverage regime. Prior to third layer promotion the second layer is found to solidify into a registered structure with unusual propertis. This contradicts the model proposed to explain the NMR measurements.

  20. Removing 3,5-Dichlorophenol from Wastewater by Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Galbičková, Blanka; Ševčíková, Janka; Soldán, Maroš

    2014-12-01

    The main objective of this paper is to evaluate an efficiency of 3,5 - dichlorophenol removal from wastewater by using alternative adsorbents. Chlorophenols are organic compounds consisting of a benzene ring, OH groups and also atoms of chlorine. Chlorophenols may have a huge isomere variety that means there are differences in their chemical and physical properties. Due to their toxicity it is necessary to remove them from waste water and in this paper an alternative way of such process is described.

  1. MOFs as adsorbents for low temperature heating and cooling applications.

    PubMed

    Henninger, Stefan K; Habib, Hesham A; Janiak, Christoph

    2009-03-01

    The 3D metal-organic framework (MOF) (3)(infinity){[Ni(3)(mu(3)-btc)(2)(mu(4)-btre)(2)(mu-H(2)O)(2)]. approximately 22H(2)O} is found to be a reversibly dehydratable-hydratable water-stable MOF material with a large loading spread of 210 g/kg as a candidate for solid adsorbents in heat transformation cycles for refrigeration, heat pumping, and heat storage. PMID:19206233

  2. Inhomogeneous distribution of organic molecules adsorbed in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Chávez-Cerda, S.; Sánchez-Villicaña, V.; Sánchez-Mondragón, J. J.; King, T. A.

    1999-09-01

    The effects of the porous matrix upon the radiative characteristics of quinine sulphate doped sol-gel glasses are investigated. The broadenings of the absorption and fluorescence spectra are explained by the attachment of the molecules on distorted sites or in a non-planar fashion, creating an inhomogeneous distribution of adsorbed molecules. For this reason, each emitting center relaxes with its own characteristics. This inhomogeneous distribution is also supported by the non-exponential and the wavelength dependence of the fluorescence decay.

  3. Silver diffusion over silicon surfaces with adsorbed tin atoms

    SciTech Connect

    Dolbak, A. E. Olshanetskii, B. Z.

    2015-02-15

    Silver diffusion over the (111), (100), and (110) surfaces of silicon with preliminarily adsorbed tin atoms is studied by Auger electron spectroscopy and low-energy electron diffraction. Diffusion is observed only on the surface of Si(111)-2√3 × 2√3-Sn. The diffusion mechanism is established. It is found that the diffusion coefficient depends on the concentration of diffusing atoms. The diffusion coefficient decreases with increasing silver concentration, while the activation energy and the preexponential factor increase.

  4. Carbonaceous adsorbents in cryosorption pump applications; Future trends

    NASA Astrophysics Data System (ADS)

    Tripathi, S. Vijai; Kasthurirengan, S.; Udgata, S. S.; Gangradey, R.; Krishnamoorthy, V.; Surendra, Bhati

    2013-06-01

    Use of granular activated carbon in commercial cryosorption pumps is now, more or less well established. The development of advanced polymeric precursor based activated carbon adsorbents in various forms has opened a flood gate of possibilities vis-a-vis improvements in performance of cryosorption pumps, both in rate of adsorption and their ultimate capacity. This paper gives a summary of indigenous efforts towards this direction.

  5. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  6. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  7. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    SciTech Connect

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  8. Carbonate adsorption onto goethite as a function of pH and ionic strength. [Yucca Mountain Project:a1

    SciTech Connect

    Rundberg, R.S. ); Albinsson, Y. . Dept. of Nuclear Chemistry)

    1991-01-01

    The adsorption of carbonate onto geothite was studied as a function of both pH and ionic strength (NaClO{sub 4} electrolyte) using {sup 14}C tracer. The pH ranged from 2.5 to 11.6. The ionic strength was controlled by varying the NaClO{sub 4} concentration and ranged from 0.01 to 0.1 molar. The results indicate that carbonate is adsorbed on goethite as primarily an inner-sphere complex at pH values above the point of zero charge. This is inferred from the lack of dependence on ionic strength in the adsorption of carbonate. Below the point of zero charge carbonate is adsorbed by an additional outer-sphere mechanism. An adsorption isotherm was measured at pH 7.0 with an electrolyte concentration of 0.01M. Deconvolution of the isotherm proved that at least two sorption mechanisms exist. These mechanisms lead to large distribution coefficients at low pH. Thereby making the complete removal and exclusion of carbonate from an aqueous goethite system difficult, for the purpose of characterizing a clean'' goethite surface.

  9. Controlled surface adsorption of fd filamentous phage by tuning of the pH and the functionalization of the surface

    NASA Astrophysics Data System (ADS)

    Jeon, Dae-Young; Hwang, Kyung Hoon; Park, So-Jeong; Kim, Yun-Jeong; Joo, Min-Kyu; Ahn, Seung-Eon; Kim, Gyu-Tae; Nam, Chang-Hoon

    2011-03-01

    The surface adsorption of fd filamentous phage (fd phage) dispersed in different solution pHs was investigated with functionalized SiO2/Si substrates. The fd phages at high pH (˜9.0) were well-adsorbed on the SiO2/Si surface that was functionalized by 3-aminopropyltriethoxysilane, whereas those at low pH (˜3.0) were well-adsorbed on the cleaned SiO2/Si surface. The high affinity of the carboxylic acid groups (COO-) at high pH (˜9.0) was attributed to the fact that they give a higher adsorption to the positively charged amine groups (NH3+) on the surface of the substrate, similar to the effect of H3O+ at low pH (˜3.0) in a solution on the surface of the hydroxyl groups on the substrate (OH-). Interestingly, the aligned structures of the fd phage at intermediate pH (˜7.0), caused by the locally positively charged coat protein of the fd phage and the shear forces along the washing and blowing direction, were identified. The effective spring constant of the fd phage bundles was estimated to be 0.672 N/m using a force-distance curve. Our results offer prerequisite information for the bottom-up assembly in SiO2/Si substrates using the fd phage in bionanoelectronics.

  10. Continuous-time core-level photon-stimulated desorption spectroscopy for monitoring soft x-ray-induced reactions of molecules adsorbed on a single-crystal surface

    SciTech Connect

    Chou, L.-C.; Wen, C.-R.

    2006-05-15

    Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was proposed for monitoring the soft x-ray-induced reactions of molecules adsorbed on a single-crystal surface. Monochromatic synchrotron radiation was used as a soft x-ray light source in the photon-induced reactions of CF{sub 3}Cl adsorbed on a Si(111)-7x7 surface at 30 K and also as a probe for studying the produced fluorination states of the bonding surface Si atom in the positive-ion PSD spectroscopy. The F{sup +} PSD spectrum was obtained by monitoring the F{sup +} signal as a function of incident photon energy near the Si(2p) edge (98-110 eV). Sequential F{sup +} PSD spectra were measured as a function of photon exposure at four adsorbate coverages (the first dose=0.3x10{sup 15} molecules/cm{sup 2}, the second dose=0.8x10{sup 15} molecules/cm{sup 2}, the third dose=2.2x10{sup 15} molecules/cm{sup 2}, and the fourth dose=3.2x10{sup 15} molecules/cm{sup 2}). For the first and second CF{sub 3}Cl-dosed surfaces, the sequential F{sup +} PSD spectra show the variation of their shapes with photon exposure and indicate the formation of surface SiF species. The sequential F{sup +} PSD spectra for the third and fourth CF{sub 3}Cl-dosed surfaces also show the variation of their shapes with photon exposure and depict the production of surface SiF and SiF{sub 3} species.

  11. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments. PMID:26422294

  12. Theory of raman scattering from molecules adsorbed at semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1983-09-01

    A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.

  13. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  14. Photoinduced surface dynamics of CO adsorbed on a platinum electrode.

    PubMed

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei

    2006-08-10

    The surface dynamics of adsorbed CO molecules formed by dissociative adsorption of HCHO at a polycrystalline Pt electrode/electrolyte solution interface was studied by picosecond time-resolved sum-frequency generation (TR-SFG) spectroscopy. A SFG peak at 2050-2060 cm(-1) was observed at the Pt electrode in HClO(4) solution containing HCHO at 0-300 mV (vs Ag/AgCl), indicating the formation of adsorbed CO at an atop site of the Pt surface as a result of dissociative adsorption of HCHO. The peak position varied with potential by approximately 33 cm(-1)/V, as previously found in an infrared reflection absorption spectroscopy (IRAS) study. Irradiation of an intense picosecond visible pulse (25 ps, 532 nm) caused an instant intensity decrease and broadening of the CO peak accompanied by the emergence of a new broad peak at approximately 1980 cm(-1) within the time resolution of the system. These results suggest a decrease and increase in the populations of CO adsorbed on atop and bridge sites, respectively, upon visible pump pulse irradiation. PMID:16884215

  15. Energetics of adsorbed CH3 on Pt(111) by calorimetry.

    PubMed

    Karp, Eric M; Silbaugh, Trent L; Campbell, Charles T

    2013-04-01

    The enthalpy and sticking probability for the dissociative adsorption of methyl iodide were measured on Pt(111) at 320 K and at low coverages (up to 0.04 ML, where 1 ML is equal to one adsorbate molecule for every surface Pt atom) using single crystal adsorption calorimetry (SCAC). At this temperature and in this coverage range, methyl iodide produces adsorbed methyl (CH(3,ad)) plus an iodine adatom (I(ad)). Combining the heat of this reaction with reported energetics for Iad gives the standard heat of formation of adsorbed methyl, ΔH(f)(0)(CH3,ad), to be −53 kJ/mol and a Pt(111)–CH3 bond energy of 197 kJ/mol. (The error bar of ±20 kJ/mol for both values is limited by the reported heat of formation of I(ad).) This is the first direct measurement of these values for any alkyl fragment on any surface. PMID:23461481

  16. SPR-MS: from identifying adsorbed molecules to image tissues

    NASA Astrophysics Data System (ADS)

    Masson, Jean-François; Breault-Turcot, Julien; Forest, Simon; Chaurand, Pierre

    2015-03-01

    Surface plasmon resonance (SPR) sensors have become valuable analytical sensors for biomolecule detection. While SPR is heralded with high sensitivity, label-free and real-time detection, nonspecific adsorption and detection of ultralow concentrations remain issues. Nonspecific adsorption can be minimized using adequate surface chemistry. For example, we have employed peptide monolayers to reduce nonspecific adsorption of crude serum or cell lysate. It is important to uncover the nature of molecules nonspecifically adsorbing to surfaces in these biofluids, to further improve understanding of the nonspecific adsorption processes. Mass spectrometry (MS) provides a complementary tool to SPR to identify biomolecule adsorbed to surface. Trypsic digestion of the proteins adsorbed to surfaces led to identification of characteristic peptides from the proteins involved in nonspecific adsorption. Nonspecific adsorption in crude cell lysate results mainly from lipids, as confirmed with SPR and MS but proteins were observed on some surfaces. In another application of SPR and MS, imaging SPR can be used in combination to imaging MS to image tissue sections. Thin sections of mouse liver were inserted in the fluidic chamber of a SPRi instrument and proteins were transferred to the SPRi chip. The SPR chip was then imaged using MALDI imaging MS to identify the biomolecules that were transferred to the SPRi chip.

  17. Heterogeneous Ozonolysis of Surface Adsorbed Lignin Pyrolysis Products

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.

    2012-12-01

    Biomass combustion releases semi-volatile organic compounds into the troposphere, including many phenols and methoxyphenols as the result of lignin pyrolysis. Given their relatively low vapor pressures, these compounds readily adsorb on inorganic and organic aerosol substrates where they may alter aerosol properties and undergo heterogeneous chemistry. We use infrared spectroscopy (DRIFTS and ATR-FTIR) to monitor the adsorption and subsequent heterogeneous ozonolysis of model lignin pyrolysis products, including catechol, eugenol, and 4-propylguaiacol. Ozonolysis reaction kinetics were compared on various inorganic substrates - such as Al2O3 and NaCl, which serve as mineral and sea salt aerosol substrates, respectively - and as a function of ozone concentration and relative humidity. Following in situ FTIR analysis, the adsorbed organics were extracted and analyzed using gas chromatography-mass spectroscopy to identify reaction products and quantify product branching ratios. Ozonolysis of catechol and 4-propylguaiacol readily resulted in ring cleavage forming dicarboxylic acids (e.g., muconic acid). Eugenol ozonolysis proceeded rapidly at the alkene side chain producing homovanillic acid and homovanillin in an approximate 2:1 branching ratio at 0% RH; ring cleavage was also observed. For all lignin pyrolysis products, heterogeneous ozonolysis was faster on NaCl versus Al2O3. Implications for the atmospheric chemistry of semi-volatile methoxylphenols adsorbed on aerosol substrates will be discussed.

  18. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  19. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  20. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less.

    PubMed

    Schiffer, Jarad M; McNeil, Michael M; Quinn, Conrad P

    2016-09-01

    Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application. PMID:26942655

  1. In Situ X-ray Absorption Fine Structure Studies on the Effect of pH on Pt Electronic Density during Aqueous Phase Reforming of Glycerol

    SciTech Connect

    Karim, Ayman M.; Howard, Christopher J.; Roberts, Benjamin Q.; Kovarik, Libor; Zhang, Liang; King, David L.; Wang, Yong

    2012-10-30

    In situ x-ray absorption spectroscopy (XAS) results on correlating the Pt local coordination and electronic structure with the Pt/C catalyst activity and selectivity during aqueous reforming of glycerol at different pH are reported. The results show that both low and high pH favor C-O cleavage over that of C-C. However, the selectivity towards C-O bond cleavage was higher under the acidic conditions. XANES measurements under reaction conditions showed that low pH increased the Pt electron density while the effect of basic conditions was minimal. ΔXANES was used to estimate the coverage of adsorbates under reaction conditions and the results suggest a change in the adsorbates coverage by the acidic conditions, resulting in higher electron density on Pt

  2. Periodic CO2 Dosing Strategy for Dunaliella salina Batch Culture

    PubMed Central

    Ying, Kezhen; Gilmour, D. James; Zimmerman, William B.

    2015-01-01

    A periodic CO2 dosing strategy for D. salina 19/30 batch culture is proposed. A model of periodic CO2 dosing including dosing time calculation, dosing interval estimation and final chlorophyll yield prediction was established. In experiments, 5% CO2/95% N2 gas was periodically dosed into D. salina culture. Two different gas dosing flow rates were tested. The corresponding dosing time for each flow rate was estimated via the model (10 min·d−1 for 0.7 L·min−1 and 36 min·d−1 for 0.3 L·min−1). Daily pH measurements showed that the pH of these cultures dosed periodically was always kept between 7.5 and 9.5, which highlights that periodic gas supply can maintain a suitable range of pH for microalgal growth without expensive buffers. Notably the culture dosed for set daily intervals was seen to have similar growth to the culture supplied constantly, but with much higher CO2 capture efficiency (11%–18%) compared to continuous dosing (0.25%). It shows great potential for using periodic gas supply to reduce cost, wasted gas and energy use. PMID:25997005

  3. Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers.

    PubMed

    Gundersen, Pål; Steinnes, Eiliv

    2003-01-01

    Dissolved ( < approximately 4 nm, dialysis in situ), colloidal ( < 0.45 microm filtered, minus dissolved) and particulate (total, minus < 0.45 microm filtered) concentrations of Cu, Zn, Cd, (Al) in eight (three) mining polluted rivers were determined by atomic absorption spectrometry (flame and graphite furnace). The metal size distribution in the rivers was compared to pH, Ca concentration, alkalinity, conductivity, and total organic carbon (TOC). Data plots based on the present and other studies also yielded information about the interrelations between TOC, pH and metal adsorption in rivers and lakes. Less than 10% of Cu, Zn, and Cd were sorbed on particles or colloids in two rivers with average pH at 3.1 and 5.1, whereas 46%, 21%, and 21% of Cu, Zn, and Cd, respectively, occurred in sorbed form in six pH neutral rivers. In three pH neutral rivers, on average 55% of Al was in colloidal form, whereas the dissolved and particulate fractions were 21% and 23%, respectively. Our data combined with data from similar studies support conclusions from other research suggesting that the percent fraction of metals adsorbed on particles rises steeply from almost zero to nearly 100% within a narrow and element specific pH range. Changes in TOC concentration seem capable of shifting the pH to % metal absorption curves in the order of one pH unit. PMID:12502060

  4. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity

    NASA Astrophysics Data System (ADS)

    Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.; Weck, P. F.; Sadeghpour, H. R.; Shaffer, J. P.

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  5. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  6. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces. PMID:27081976

  7. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  9. Application of quantum descriptors for predicting adsorption performance of starch and cyclodextrin adsorbents.

    PubMed

    Okoli, Chukwunonso Peter; Guo, Qing Jun; Adewuyi, Gregory Olufemi

    2014-01-30

    Adsorption trend of aromatic compounds on epichlorohydrin (EPI), 1,6-hexamethylene diisocyanate (HDI), and 4,4-methylene diphenyl diisocyanate (MDI) cross-linked starch and cyclodextrin adsorbents were comparatively studied by density functional theorem (DFT) based interaction descriptors and batch adsorption studies. The DFT quantum chemical descriptors predicted adsorption trend of MDI adsorbents>HDI adsorbents>EPI adsorbents. The values of the fractional number of electrons transferred (ΔN) for all the studied adsorbent-adsorbate pair were negative, indicating that the adsorbents were electron donors in the studied adsorption interaction. The batch adsorption performance for the studied cross-linked adsorbents was in agreement with the DFT predictions. Energy gap, chemical hardness, and softness showed good linear correlation (R(2)=0.8,073 ± 0.2259) to the batch adsorption performance for most of the studied adsorbent-adsorbate pairs. The present study demonstrated that DFT quantum chemical parameters are suitable adsorption descriptors for predicting adsorption performance of cross-linked adsorbents. PMID:24299747

  10. Preliminary assessment of the performance of oyster shells and chitin materials as adsorbents in the removal of saxitoxin in aqueous solutions

    PubMed Central

    2012-01-01

    Background This study evaluated the adsorption capacity of the natural materials chitin and oyster shell powder (OSP) in the removal of saxitoxin (STX) from water. Simplified reactors of adsorption were prepared containing 200 mg of adsorbents and known concentrations of STX in solutions with pH 5.0 or 7.0, and these solutions were incubated at 25°C with an orbital shaker at 200 RPM. The adsorption isotherms were evaluated within 48 hours, with the results indicating a decrease in STX concentrations in different solutions (2–16 μg/L). The kinetics of adsorption was evaluated at different contact times (0–4320 min) with a decrease in STX concentrations (initial concentration of 10 μg/L). The sampling fractions were filtered through a membrane (0.20 μm) and analyzed with high performance liquid chromatography to quantify the STX concentration remaining in solution. Results Chitin and OSP were found to be efficient adsorbents with a high capacity to remove STX from aqueous solutions within the concentration limits evaluated (> 50% over 18 h). The rate of STX removal for both adsorbents decreased with contact time, which was likely due to the saturation of the adsorbing sites and suggested that the adsorption occurred through ion exchange mechanisms. Our results also indicated that the adsorption equilibrium was influenced by pH and was not favored under acidic conditions. Conclusions The results of this study demonstrate the possibility of using these two materials in the treatment of drinking water contaminated with STX. The characteristics of chitin and OSP were consistent with the classical adsorption models of linear and Freundlich isotherms. Kinetic and thermodynamic evaluations revealed that the adsorption process was spontaneous (ΔGads < 0) and favorable and followed pseudo-second-order kinetics. PMID:22892158

  11. Ionic liquid coated carbon nanospheres as a new adsorbent for fast solid phase extraction of trace copper and lead from sea water, wastewater, street dust and spice samples.

    PubMed

    Tokalıoğlu, Şerife; Yavuz, Emre; Şahan, Halil; Çolak, Süleyman Gökhan; Ocakoğlu, Kasım; Kaçer, Mehmet; Patat, Şaban

    2016-10-01

    In this study a new adsorbent, ionic liquid (1,8-naphthalene monoimide bearing imidazolium salt) coated carbon nanospheres, was synthesized for the first time and it was used for the solid phase extraction of copper and lead from various samples prior to determination by flame atomic absorption spectrometry. The ionic liquid, carbon nanospheres and ionic liquid coated carbon nanospheres were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, (1)H NMR and (13)C NMR, Brunauer, Emmett and Teller surface area and zeta potential measurements. Various parameters for method optimization such as pH, adsorption and elution contact times, eluent volume, type and concentration, centrifuge time, sample volume, adsorption capacity and possible interfering ion effects were tested. The optimum pH was 6. The preconcentration factor, detection limits, adsorption capacity and precision (as RSD%) of the method were found to be 300-fold, 0.30µgL(-1), 60mgg(-1) and 1.1% for copper and 300-fold, 1.76µgL(-1); 50.3mgg(-1) and 2.2%, for lead, respectively. The effect of contact time results showed that copper and lead were adsorbed and desorbed from the adsorbent without vortexing. The equilibrium between analyte and adsorbent is reached very quickly. The method was rather selective for matrix ions in high concentrations. The accuracy of the developed method was confirmed by analyzing certified reference materials (LGC6016 Estuarine Water, Reference Material 8704 Buffalo River Sediment, and BCR-482 Lichen) and by spiking sea water, wastewater, street dust and spice samples. PMID:27474302

  12. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation.

    PubMed

    Lee, H H; Yang, J W

    2000-10-01

    To simultaneously avoid a decrease of electro-osmotic flow by hydrogen ions and to increase heavy metal precipitation due to hydroxide ions, simulated electrokinetic remediation was conducted in saturated kaolinite specimens loaded with lead(II) using an electrolyte circulation method to control electrolyte pH. At an electrolyte circulation rate of 1.1 ml/min, it was possible to increase the anolyte pH from 2 to 4 and decrease the catholyte pH from 12 to 8. Using electrolyte circulation, it was observed that the rate of decrease of clay pH due to the change of electrolyte pH was reduced. As a result, the operable period was extended and the removal efficiency for lead(II) was also increased. It was observed that most of the effluent lead(II) from the cathode compartment was electroplated onto the cathode and that residual effluent lead(II) did not precipitate onto, or adsorb to, the clay at the anode compartment during circulation. Therefore, there was no need to treat the electrolyte because there was virtually no effluent from the cathode compartment in the circulation system. It was also found that the electrolyte volume required to sustain the electrolytic reaction was sufficient for the whole electrokinetic remediation process. PMID:10946130

  13. Determination of baseline human nasal pH and the effect of intranasally administered buffers.

    PubMed

    Washington, N; Steele, R J; Jackson, S J; Bush, D; Mason, J; Gill, D A; Pitt, K; Rawlins, D A

    2000-04-01

    The nose is becoming a common route of drug administration, however, little is known about the pH of the human nasal cavity. Local pH may have a direct effect on the rate and extent of absorption of ionizable compounds and hence this study was performed to investigate normal pH values and whether pH could be manipulated by various buffers. Twelve healthy volunteers participated in a study to measure pH in the anterior and posterior sites of the nasal cavity. Miniature pH electrodes were placed 3 cm apart in the nasal cavity and a baseline was recorded for 30 min once the pH had stabilized. One hundred microlitres of isotonic solution was sprayed into the nostril and the pH was measured for 4 h post-dose. The following five formulations were tested: formulation A--sodium chloride (0.9%) at pH 7.2; formulation B--sodium chloride (0.9%) at pH 5.8; formulation C--Sorensens phosphate buffer (0.06 M) at pH 5. 8; formulation D--Sorensens phosphate buffer (0.13 M) at pH 5.8 and formulation E--formulation as (c) but adjusted to pH 5.0. Each formulation also contained saccharin sodium (0.5%) as a taste marker for nasal clearance. The time at which each subject detected the taste of saccharin was noted. The 30-minute baseline recording prior to administration of the nasal spray formulation demonstrates that there was both considerable intersubject and intrasubject variation in nasal pH. The average pH in the anterior of the nose was 6.40 (+0. 11, -0.15 S.D.) when calculated from H(+) values. The pH in the posterior of the nasal cavity was 6.27 (+0.13, -0.18 S.D.). The overall range in pH was 5.17-8.13 for anterior pH and 5.20-8.00 for posterior pH. Formulation A caused the pH in the anterior part of the nasal cavity to reach a maximum of 7.06 in 11.25 min from the baseline of pH 6.14 (P<0.05). The mean baseline pH was 6.5 for the posterior part of the nose which did not change over the recording period. Formulation B caused the anterior pH to increase from pH 6. 60 to 7

  14. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2015-11-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  15. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent

    NASA Astrophysics Data System (ADS)

    Raji, F.; Pakizeh, M.

    2013-10-01

    A novel ZnCl2-MCM-41 adsorbent was prepared by method of solvent dispersion in toluene and characterized using XRD, N2 adsorption-desorption, FTIR and TGA techniques. The synthesized ZnCl2-MCM-41 sorbent possessed high specific surface area (602.3 m2 g-1), narrow pore size distribution (2.37 nm) and total pore volume (0.46 cm3 g-1). The hybrid sorbent was applied for the removal of Hg(II) from aqueous solution under different experimental conditions by varying contact time, initial concentration of Hg(II), pH, presence of interfering ions and solution temperature. It was found that amount of Hg(II) sorption increased with enhancement of Hg(II) initial concentration, contact time and pH but decreased as the temperature increased. Optimum conditions obtained were 20 °C, pH 10 and contact time of 30 min. Effects of foreign anions and cations on Hg(II) removal were studied and it was found that chloride ion affected strongly on adsorption. For experimental data the Langmuir isotherm showed a better fit and maximum adsorption capacity was obtained 204.1 mg g-1 for an initial concentration range 2-50 mg L-1. From the D-R isotherm, the mean free energy was calculated as 9.128 kJ mol-1 indicating that the sorption of Hg(II) was taken place by chemical reaction.

  16. An attenuated total reflectance IR study of silicic acid adsorbed onto a ferric oxyhydroxide surface

    NASA Astrophysics Data System (ADS)

    Swedlund, Peter J.; Miskelly, Gordon M.; McQuillan, A. James

    2009-07-01

    Silicic acid (H 4SiO 4) can have significant effects on the properties of iron oxide surfaces in both natural and engineered aquatic systems. Understanding the reactions of H 4SiO 4 on these surfaces is therefore necessary to describe the aquatic chemistry of iron oxides and the elements that associate with them. This investigation uses attenuated total reflectance infrared spectroscopy (ATR-IR) to study silicic acid in aqueous solution and the products formed when silicic acid adsorbs onto the surface of a ferrihydrite film in 0.01 M NaCl at pH 4. A spectrum of 1.66 mM H 4SiO 4 at pH 4 (0.01 M NaCl) has an asymmetric Si-O stretch at 939 cm -1 and a weak Si-O-H deformation at 1090 cm -1. ATR-IR spectra were measured over time (for up to 7 days) for a ferrihydrite film (≈1 mg) approaching equilibrium with H 4SiO 4 at concentrations between 0.044 and 0.91 mM. Adsorbed H 4SiO 4 had a broad spectral feature between 750 and 1200 cm -1 but the shape of the spectra changed as the amount of H 4SiO 4 adsorbed on the ferrihydrite increased. When the solid phase Si/Fe mole ratio was less than ≈0.01 the ATR-IR spectra had a maximum intensity at 943 cm -1 and the spectral shape suggests that a monomeric silicate species was formed via a bidentate linkage. As the solid phase Si/Fe mole ratio increased to higher values a discrete oligomeric silicate species was formed which had maximum intensity in the ATR-IR spectra at 1001 cm -1. The spectrum of this species suggests that it is larger than a dimer and it was tentatively identified as a cyclic tetramer. A small amount of a polymeric silica phase with a broad spectral feature centered at ≈1110 cm -1 was also observed at high surface coverage. The surface composition was estimated from the relative contribution of each species to the area of the ATR-IR spectra using multivariate curve resolution with alternating least squares. For a ferrihydrite film approaching equilibrium with 0.044, 0.14, 0.40 and 0.91 mM H 4SiO 4 the

  17. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum.

    PubMed

    Rodríguez-López, Joaquín; Bard, Allen J

    2010-04-14

    The surface interrogation mode of scanning electrochemical microscopy (SECM) is extended to the in situ quantification of adsorbed hydrogen, H(ads), at polycrystalline platinum. The methodology consists of the production, at an interrogator electrode, of an oxidized species that is able to react with H(ads) on the Pt surface and report the amounts of this adsorbate through the SECM feedback response. The technique is validated by comparison to the electrochemical underpotential deposition (UPD) of hydrogen on Pt. We include an evaluation of electrochemical mediators for their use as oxidizing reporters for adsorbed species at platinum; a notable finding is the ability of tetramethyl-p-phenylenediamine (TMPD) to oxidize (interrogate) H(ads) on Pt at low pH (0.5 M H(2)SO(4) or 1 M HClO(4)) and with minimal background effects. As a case study, the decomposition of formic acid (HCOOH) in acidic media at open circuit on Pt was investigated. Our results suggest that formic acid decomposes at the surface of unbiased Pt through a dehydrogenation route to yield H(ads) at the Pt surface. The amount of H(ads) depended on the open circuit potential (OCP) of the Pt electrode at the time of interrogation; at a fixed concentration of HCOOH, a more negative OCP yielded larger amounts of H(ads) until reaching a coulomb limiting coverage close to 1 UPD monolayer of H(ads). The introduction of oxygen into the cell shifted the OCP to more positive potentials and reduced the quantified H(ads); furthermore, the system was shown to be chemically reversible, as several interrogations could be run consecutively and reproducibly regardless of the path taken to reach a given OCP. PMID:20225806

  18. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  19. Mechanism of anion retention from EXAFS and density functional calculations: arsenic (V) adsorbed on gibbsite

    NASA Astrophysics Data System (ADS)

    Ladeira, A. C. Q.; Ciminelli, V. S. T.; Duarte, H. A.; Alves, M. C. M.; Ramos, A. Y.

    2001-04-01

    X-ray absorption fine structure spectroscopy and density functional calculations were used to determine the structural model of arsenic surface complex on gibbsite mineral. The structural environment of arsenic at the solid surface may determine its potential for remobilization and stability. Data were collected for arsenate adsorbed on gibbsite surface at pH 5.5. The X-ray absorption fine structure spectroscopy results showed that As(V) forms an inner sphere bidentate binuclear complex on the surface of Al oxyhydroxyl octaedra. Quantitative results showed an average interatomic As(V)-Al distance of 3.19 ± 0.05 Å and a coordination number of 1.3 ± 1.0 atoms. Four different adsorption sites in which arsenate can interact with gibbsite have been studied using density functional calculations, i.e., bidentate binuclear complex, bidentate mononuclear complex, monodentate mononuclear complex, and monodentate binuclear complex. The density functional calculations confirm that the most stable structure predicted for As(V)-gibbsite system is the bidentate-binuclear complex.

  20. A novel adsorbent for protein chromatography: supermacroporous monolithic cryogel embedded with Cu2+-attached sporopollenin particles.

    PubMed

    Erzengin, Mahmut; Ünlü, Nuri; Odabaşı, Mehmet

    2011-01-21

    The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity. PMID:21176840

  1. Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Ahmad, Norhidayah; Bello, Olugbenga Solomon

    2015-12-01

    Mesoporous-activated carbon from durian seed (DSAC) was prepared; it was used as adsorbent for the removal of methyl red (MR) dye from aqueous solution. Textural and adsorptive characteristics of activated carbon prepared from raw durian seed (DS), char durian seed (char DS) and activated durian seed (DSAC) were studied using scanning electron microscopy, Fourier transform infra red spectroscopy, proximate analysis and adsorption of nitrogen techniques, respectively. Acidic condition favors the adsorption of MR dye molecule by electrostatic attraction. The maximum dye removal was 92.52 % at pH 6. Experimental data were analyzed by eight model equations: Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Radke-Prausnitz, Sips, Vieth-Sladek and Brouers-Sotolongo isotherms and it was found that the Freundlich isotherm model fitted the adsorption data most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and Avrami kinetic model equations. The results clearly showed that the adsorption of MR dye onto DSAC followed pseudo-second-order kinetic model. Both intraparticle and film diffusion were involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of MR dye onto DSAC was an endothermic and spontaneous process at the temperatures under investigation.

  2. Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye.

    PubMed

    Nesic, Aleksandra R; Velickovic, Sava J; Antonovic, Dusan G

    2012-03-30

    The synthesis, characterization and environmental application of chitosan/montmorillonite membrane for adsorption Bezactiv Orange V-3R were investigated. Chitosan/montmorillonite membranes were synthesized in different ratios, containing 10-50% of montmorillonite (MMT) in membrane. These membranes were characterized by using Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and scanning electron microscopy (SEM). The adsorption kinetics were investigated using three different concentrations of Bezactiv Orange dye (30, 50 and 80 mg/L). The adsorption capacity increases with increasing amount of MMT in membranes. These membranes show the highest adsorption capacity when the initial dye concentration was 80 mg/L. The results show that the optimum condition for adsorption of Bezactiv Orange is pH 6. A comparison of kinetic models was evaluated for the pseudo-first and pseudo-second order and intra-particle diffusion. The experimental data were fitted to the pseudo-second order kinetic model, and also followed by intra-particle diffusion. Intra-particle diffusion is not the only rate-controlling step. The Langmuir and Freundlich adsorption isotherms were applied to experimental equilibrium data at different concentration of dye solution. The results indicated the competency of chitosan/MMT membranes adsorbent for Bezactiv Orange adsorption. PMID:22305598

  3. Heterocoagulated clay-derived adsorbents for phosphate decontamination from aqueous solution.

    PubMed

    Gan, Fangqun; Luo, Yufeng; Hang, Xiaoshuai; Zhao, Hongting

    2016-01-15

    A series of nanocomposite adsorbents were prepared by heterocoagulation of negatively charged delaminated montmorillonite (Mt) and positively charged synthetic layered double hydroxide (LDH) colloids with different LDH loading amounts. The mineralogy and physicochemical properties of the resulting nanocomposites were characterized. Their potential applications for phosphate (P) removal from aqueous solution, as a function of P concentration (2.5-200 mg/L), contact time (1 min-48 h) and pH (3-10), were evaluated by using batch adsorption modes. It was found that the adsorption data could be well described by both Freundlich and Langmuir isotherm models. The maximum adsorption capacity of three different LDH heterocoagulated montmorillonites (LDH-Mts) for P removal was found to increase with LDH loadings, reaching 12.6, 16.2 and 23.3 mg/g respectively; Adsorption kinetic data revealed that 90% of adsorption onto LDH-Mts was completed within 1 h (h) and the adsorption process could be well described by the pseudo-second-order model. These results demonstrated that heterocoagulation of Mt and LDH could preserve the adsorption capacity of LDH for P and enhance the stability of both clay minerals, and LDH-Mts could be effectively used as a potential promising filtration medium for P removal. PMID:26468604

  4. The pH effect on black spots in surface finish: Electroless nickel immersion gold

    NASA Astrophysics Data System (ADS)

    Won, Yong Sun; Park, Sung Soo; Lee, Jinuk; Kim, Jong-Yun; Lee, Seong-Jae

    2010-10-01

    In order to understand the black spot generation after electroless nickel immersion gold (ENIG) plating, we investigated the pH effect with a combined approach of experiments and computer aided engineering (CAE). As the pH is increased in IG plating solution, the deprotonation of citric acid as chelating agent is enhanced to stabilize the solution by producing Ni-citrate complex ion. For the substitution reaction between nickel and gold, excess citrate ions (deprotonated citric acids) are adsorbed along nodal boundaries of Ni-P layer to decrease the surface reactivity. Since the low reactivity decreases the overall growth rate, the resulting homogeneous Au layer growth avoids the unfavorable galvanic cell corrosion to control black spot. Based on molecular orbital method and kinetic Monte Carlo calculation, our computational approach well explained the capability of citric acid as chelating agent and the Au growth rate along the nodal boundaries of Ni-P layer depending on the surface reactivity.

  5. Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces

    NASA Astrophysics Data System (ADS)

    Yoon, Tae Hyun; Johnson, Stephen B.; Musgrave, Charles B.; Brown, Gordon E.

    2004-11-01

    The types and structures of adsorption complexes formed by oxalate at boehmite (γ-AlOOH)/water and corundum (α-Al 2O 3)/water interfaces were determined using in situ attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and quantum chemical simulation methods. At pH 5.1, at least four different oxalate species were found at or near the boehmite/water interface for oxalate surface coverages (Γ ox) ranging from 0.25 to 16.44 μmol/m 2. At relatively low coverages (Γ ox < 2.47), strongly adsorbed inner-sphere oxalate species (IR peaks at 1286, 1418, 1700, and 1720 cm -1) replace weakly adsorbed carbonate species, and a small proportion of oxalate anions are adsorbed in an outer-sphere mode (IR peaks at 1314 and 1591 cm -1). IR peaks indicative of inner-sphere adsorbed oxalate are also observed for oxalate at the corundum/water interface at Γ ox = 1.4 μmol/m 2. With increasing oxalate concentration (Γ ox > 2.47 μmol/m 2), the boehmite surface binding sites for inner-sphere adsorbed oxalate become saturated, and excess oxalate ions are present dominantly as aqueous species (IR peaks at 1309 and 1571 cm -1). In addition to these adsorption processes, oxalate-promoted dissolution of boehmite following inner-sphere oxalate adsorption becomes increasingly pronounced with increasing Γ ox and results in an aqueous Al(III)-oxalate species, as indicated by shifted IR peaks (1286 → 1297 cm -1 and 1418 → 1408 cm -1). At pH 2.5, no outer-sphere adsorbed oxalate or aqueous oxalate species were observed. The similarity of adsorbed oxalate spectral features at pH 2.5 and 5.1 implies that the adsorption mechanism of aqueous HOx - species involves loss of protons from this species during the ligand-exchange reaction. As a consequence, adsorbed inner-sphere oxalate and aqueous Al(III)-oxalate complexes formed at pH 2.5 have coordination geometries very similar to those formed at pH 5.1. The coordination geometry of inner-sphere adsorbed oxalate

  6. A simple model for electronic properties of surface adsorbed molecules

    NASA Astrophysics Data System (ADS)

    Dhakal, Rajesh; Schwalm, William

    We adapt a minimal approximation to one electron quantum theory of molecules referred as Fast Accurate Kinetic Energy method. This in principle handles large complex molecular structures with less computational effort to compute electronic properties of adsorbed molecules. Kinetic energy integrals are calculated accurately but multi-electron potential energy integrals are approximated. The neighboring atom interactions are included also. For layers of isopthalic acids formed on pyrolytic graphite the configuration changes as a function of length of hydrocarbon tails. We study properties of this system as a function of tail length.

  7. 3,5-Dichlorophenol Removal From Wastewater Using Alternative Adsorbents

    NASA Astrophysics Data System (ADS)

    Kobetičová, Hana; Lipovský, Marek; Wachter, Igor; Soldán, Maroš

    2015-06-01

    The main objective of this paper is to evaluate the efficiency of 3,5-dichlorophenol removal from wastewater by using alternative low cost adsorbents. Waste from the production and processing of metals (black nickel mud, red mud) and a biosorbent (Lemna minor) were used for this research. Initial concentration of the contaminant was 4 mmol L-1, the contact time of sorbent and waste water was 0 - 48 hrs and the temperature during experiment was 25 ± 0.2 °C. The results show that the highest removal efficiency of 3,5 - dichlorophenol (58.18 %) was reached by the red mud in 48 hours.

  8. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  9. Decomposition of trichloroethene on ozone-adsorbed high silica zeolites.

    PubMed

    Fujita, Hirotaka; Izumi, Jun; Sagehashi, Masaki; Fujii, Takao; Sakoda, Akiyoshi

    2004-01-01

    We developed a novel ozonation process for water treatment using high silica zeolites as an adsorptive concentrator of water-dissolved ozone and organic pollutants, resulting in a significant increase in reaction rate. In experiments involving trichloroethene (TCE) decomposition using a tubular flow reactor, TCE decomposition was much greater in the presence of ZSM-5 (SiO(2)/Al(2)O(3) ratio=3000) than in its absence, possibly due to the high concentrations of ozone and TCE inside the adsorbent. The TCE conversion obtained in our experiments was found to reach its theoretically maximum limit. PMID:14630114

  10. Cesium adsorption on composite ferrocyanide-aluminosilicate adsorbents

    SciTech Connect

    Panasyugin, A.S.; Rat`ko, A.I.; Trofimenko, N.E.

    1995-11-01

    The formation of composite ferrocyanide adsorbents prepared on the basis of clinoptilolite is studied by potentiometric titration, X-ray diffraction analysis, and IR spectroscopy, and the nature of ion-exchanging complex is established. Exchange capacity, selectivity, and hydrolytic stability of the sorbents are characterized. Distribution coefficients with modified samples can be as large as 10000 for {sup 137}Cs; however, with increase of the background salt concentration above 0.17 g l{sup -1}, competing ions have noticeable effect on the adsorption properties of the aluminosilicates.

  11. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  12. Sustainable catalyst supports for carbon dioxide gas adsorbent

    NASA Astrophysics Data System (ADS)

    Mazlee, M. N.

    2016-07-01

    The adsorption of carbon dioxide (CO2) become the prime attention nowadays due to the fact that increasing CO2 emissions has been identified as a contributor to global climate change. Major sources of CO2 emissions are thermoelectric power plants and industrial plants which account for approximately 45% of global CO2 emissions. Therefore, it is an urgent need to develop an efficient CO2 reduction technology such as carbon capture and storage (CCS) that can reduce CO2 emissions particularly from the energy sector. A lot of sustainable catalyst supports have been developed particularly for CO2 gas adsorbent applications.

  13. Behavior of adsorbed Poly-A onto sodium montmorillonite

    NASA Astrophysics Data System (ADS)

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia

    2015-07-01

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  14. Titanate-based adsorbents for radioactive ions entrapment from water.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Zheng, Zhanfeng; Sarina, Sarina; Zhu, Huaiyong

    2013-03-21

    This feature article reviews some titanate-based adsorbents for the removal of radioactive wastes (cations and anions) from water. At the beginning, we discuss the development of the conventional ion-exchangeable titanate powders for the entrapment of radioactive cations, such as crystalline silicotitanate (CST), monosodium titanate (MST), peroxotitanate (PT). Then, we specially emphasize the recent progress in the uptake of radioactive ions by one-dimensional (1D) sodium titanate nanofibers and nanotubes, which includes the synthesis and phase transformation of the 1D nanomaterials, adsorption ability (capacity, selectivity, kinetics, etc.) of radioactive cations and anions, and the structural evolution during the adsorption process. PMID:23412572

  15. Do Methanethiol Adsorbates on the Au(111) Surface Dissociate?

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Hagelberg, Frank

    2006-07-01

    The interaction of methanethiol molecules CH3SH with the Au(111) surface is investigated, and it is found for the first time that the S-H bond remains intact when the methanethiol molecules are adsorbed on the regular Au(111) surface. However, it breaks if defects are present in the Au(111) surface. At low coverage, the fcc region is favored for S atom adsorption, but at saturated coverage the adsorption energies at various sites are almost isoenergetic. The presented calculations show that a methanethiol layer on the regular Au(111) surface does not dimerize.

  16. Molecular switches from benzene derivatives adsorbed on metal surfaces

    PubMed Central

    Liu, Wei; Filimonov, Sergey N.; Carrasco, Javier; Tkatchenko, Alexandre

    2013-01-01

    Transient precursor states are often experimentally observed for molecules adsorbing on surfaces. However, such precursor states are typically rather short-lived, quickly yielding to more stable adsorption configurations. Here we employ first-principles calculations to systematically explore the interaction mechanism for benzene derivatives on metal surfaces, enabling us to selectively tune the stability and the barrier between two metastable adsorption states. In particular, in the case of the tetrachloropyrazine molecule, two equally stable adsorption states are identified with a moderate and conceivably reversible barrier between them. We address the feasibility of experimentally detecting the predicted bistable behaviour and discuss its potential usefulness in a molecular switch. PMID:24157660

  17. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate

    USGS Publications Warehouse

    Zobrist, J.; Dowdle, P.R.; Davis, J.A.; Oremland, R.S.

    2000-01-01

    Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite, a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was influenced by the method in which arsenate became associated with the mineral phases and may have been strongly coupled with arsenate desorption rates. The extent of release of arsenite into solution was governed by adsorption of arsenite onto the ferrihydrite or alumina phases. The results of these experiments have interpretive significance to the mobilization of arsenic in large alluvial aquifers, such as those of the Ganges in India and Bangladesh, and in the hyporheic zones of contaminated streams.Sulfurospirillum barnesii is capable of anaerobic growth using ferric iron or arsenate as electron acceptors. Cell suspensions of S. barnesii were able to reduce arsenate to arsenite when the former oxyanion was dissolved in solution, or when it was adsorbed onto the surface of ferrihydrite a common soil mineral, by a variety of mechanisms (e.g., coprecipitation, presorption). Reduction of Fe(III) in ferrihydrite to soluble Fe(II) also occurred, but dissolution of ferrihydrite was not required in order for adsorbed arsenate reduction to be achieved. This was illustrated by bacterial reduction of arsenate coprecipitated with aluminum hydroxide, a mineral that does not undergo reductive dissolution. The rate of arsenate reduction was

  18. Behavior of adsorbed Poly-A onto sodium montmorillonite

    SciTech Connect

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  19. Detection of adsorbed water and hydroxyl on the moon

    USGS Publications Warehouse

    Clark, R.N.

    2009-01-01

    Data from the Visual and Infrared Mapping Spectrometer (VIAAS) on Cassini during its flyby of the AAoon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the AAoon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  20. Contaminant removal from enclosed atmospheres by regenerable adsorbents

    NASA Technical Reports Server (NTRS)

    Goldsmith, R. L.; Mcnulty, K. J.; Freedland, G. M.; Turk, A.; Nwankwo, J.

    1974-01-01

    A system for removing contaminants from spacecraft atmospheres was studied, which utilizes catalyst-impregnated activated carbon followed by in-situ regeneration by low-temperature catalytic oxidation of the adsorbed contaminants. Platinum was deposited on activated carbon by liquid phase impregnation with chloroplatinic acid, followed by drying and high-temperature reduction. Results were obtained for the seven selected spacecraft contaminants by means of three experimental test systems. The results indicate that the contaminants could be removed by oxidation with very little loss in adsorptive capacity. The advantages of a catalyst-impregnated carbon for oxidative regeneration are found to be significant enough to warrent its use.