Science.gov

Sample records for adsorbing colloid flotation

  1. Colloidal titanium dioxide separation from water by foam flotation

    SciTech Connect

    Shen, Y.H.

    1998-12-01

    Colloidal titanium dioxide (TiO{sub 2}) was separated from an aqueous suspension (1,000 ppm) by foam flotation using cationic or anionic surfactants. The effects of surfactant dosage, suspension pH value, suspension ionic strength, and gas flow rate on the dispersed-air flotation of colloidal TiO{sub 2} were investigated. TiO{sub 2} separation was almost complete in optimum conditions. It was found that the coulombic interaction between charged TiO{sub 2} particle surfaces and ionic collectors plays a dominant role in this system. Both flotation rate and foamate volume are dependent upon the gas flow rate. Foam flotation may find application in the separation of submicron TiO{sub 2} particles in suspend-photocatalyst systems.

  2. Removal of molybdate and arsenate from aqueous solutions by flotation

    SciTech Connect

    Zhao, Y.; Zouboulis, A.I.; Matis, K.A.

    1996-03-01

    Ion flotation and adsorbing colloid flotation have been studied in this paper for the effective removal of molybdenum(VI) and arsenic(V) from dilute aqueous solutions. These different flotation methods were also compared. Ion flotation using a cationic surfactant (dodecylamine) as collector, as well as adsorbing colloid flotation using ferric hydroxide as coprecipitant (or sorbent) and an anionic surfactant (sodium dodecyl sulfate) as collector were examined. Laboratory-scale experiments were conducted in order to assess the effects of the following parameters of the efficiency of the process: pH value, dosages of chemical reagents, initial concentrations of arsenic and molybdenum, and the presence of foreign anions, such as Cl{sup -} and SO{sup 2}{sub 4}{sup -}. In practical applications, ion flotation or adsorbing colloid flotation may be selected according to the concentration of arsenic, molybdenum, and also the initial [Mo]/[As] molar ratios in solution.

  3. Foam flotation

    SciTech Connect

    Clarke, A.N.; Wilson, D.J.

    1983-01-01

    This book is a review of precipitate and absorbing colloid flotation and mathemataical analyses of physical models regarding foam flotation phenomena. Over 800 literature references are cited. Contents include some fluid mechanical aspects of particle flotation, theoretical aspects of particulate flotation, column design considerations, solvent sublation, the future and appendices.

  4. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    USGS Publications Warehouse

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  5. Analytical phase diagrams for colloids and non-adsorbing polymer.

    PubMed

    Fleer, Gerard J; Tuinier, Remco

    2008-11-04

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 559] for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the natural thermodynamic parameter for the polymer properties is the insertion work Pi(v), where Pi is the osmotic pressure of the (external) polymer solution and v the volume of a colloid particle. (ii) Curvature effects are included along the lines of Aarts et al. [J. Phys.: Condens. Matt. 14 (2002) 7551] but we find accurate simple power laws which simplify the mathematical procedure considerably. (iii) We find analytical forms for the first, second, and third derivatives of the grand potential, needed for the calculation of the colloid chemical potential, the pressure, gas-liquid critical points and the critical endpoint (cep), where the (stable) critical line ends and then coincides with the triple point. This cep determines the boundary condition for a stable liquid. We first apply these modifications to the so-called colloid limit, where the size ratio q(R)=R/a between the radius of gyration R of the polymer and the particle radius a is small. In this limit the binodal polymer concentrations are below overlap: the depletion thickness delta is nearly equal to R, and Pi can be approximated by the ideal (van't Hoff) law Pi=Pi(0)=phi/N, where phi is the polymer volume fraction and N the number of segments per chain. The results are close to those of the original Lekkerkerker theory. However, our analysis enables very simple analytical expressions for the polymer and colloid concentrations in the critical and triple points and along the binodals as a function of q(R). Also the position of the cep is found analytically. In order to make the model applicable to higher size ratio's q(R) (including the so-called protein limit where q(R)>1) further extensions are needed. We

  6. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.

    PubMed

    Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi

    2015-11-01

    Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.

  7. Separation of astaxanthin from cells of Phaffia rhodozyma using colloidal gas aphrons in a flotation column.

    PubMed

    Dermiki, Maria; Bourquin, Anne Lise; Jauregi, Paula

    2010-01-01

    The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.

  8. Removal of cadmium, lead, mercury, tin, antimony, and arsenic from drinking and seawaters by colloid precipitate flotation

    SciTech Connect

    Ghazy, S.E.

    1995-04-01

    The removal of Cd(II), Pb(II), Hg(II), Sn(II), Sn(IV), Sb(III), Sb(V), As(III), and As(V) from aqueous solutions by colloid precipitate flotation using sodium sulfide as the coagulent and oleic acid (HOL) as the surfactant has been investigated. The complete flotation (about 100%) of these elements was attained at pH values of 5.5-6.5, 3-6.5, {le}1, 1-4, 0.5-3, and {le}2, respectively. The effects of some other factors, such as surfactant and coagulent concentrations, sequence of adding reagents, some selected foreign ions, ionic strength, and temperature, on the floatability of these elements have been studied. It was found that both temperature and ionic strength have no appreciable effect on the flotation efficiency of the metal ions investigated. The method was successfully applied to remove completely these metal ions added to 1 L samples of drinking and seawaters at the optimum conditions for each element. Moreover, the mechanism of flotation is proposed.

  9. Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand

    NASA Astrophysics Data System (ADS)

    Yang, X.; Flynn, R.; von der Kammer, F.; Hofmann, T.

    2012-11-01

    Our recent study reported that conformation change of granule-associated Bovine Serum Albumin (BSA) may influence the role of the protein controlling colloid deposition in porous media (Flynn et al., 2012). The present study conceptualized the observed phenomena with an ellipsoid morphology model, describing BSA as an ellipsoid taking a side-on or end-on conformation on granular surface, and identified the following processes: (1) at low adsorbed concentrations, BSA exhibited a side-on conformation blocking colloid deposition; (2) at high adsorbed concentrations, BSA adapted to an end-on conformation promoted colloid deposition; and (3) colloid deposition on the BSA layer may progressively generate end-on molecules (sites) by conformation change of side-on BSA, resulting in sustained increasing deposition rates. Generally, the protein layer lowered colloid attenuation by the porous medium, suggesting the overall effect of BSA was inhibitory at the experimental time scale. A mathematical model was developed to interpret the ripening curves. Modeling analysis identified the site generation efficiency of colloid as a control on the ripening rate (declining rate in colloid concentrations), and this efficiency was higher for BSA adsorbed from a more dilute BSA solution.

  10. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    PubMed

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  11. Analytic liquid-state theory of the interactions between colloids mediated by reversibly adsorbed polymers

    NASA Astrophysics Data System (ADS)

    Chervanyov, A. I.

    2014-12-01

    We develop an analytic liquid-state theory of the effective interactions induced by reversibly adsorbing polymers, acting between colloids immersed in a polymer melt. This theory is based on the polymer reference interaction site model that has no restrictions with respect to the density of the polymer system and colloid-to-polymer size ratio. By making use of the developed theory, we calculate the potential of the polymer mediated interactions as a function of the colloid radius, strength and range of the adsorption potential, and the polymer density. In addition, we investigate the behavior of the second virial coefficient as a function of the polymer density in both the colloid and nano-particle limits. We found out that the presence of the adsorption interactions significantly changes the polymer mediated forces relative to the case of the pure entropic depletion interactions, showing most pronounced difference in the case of large polymer densities and small colloid-to-polymer size ratios. The significance of the above differences is determined by the relation between the range of the adsorption potential and polymer correlation length.

  12. Analytic liquid-state theory of the interactions between colloids mediated by reversibly adsorbed polymers.

    PubMed

    Chervanyov, A I

    2014-12-28

    We develop an analytic liquid-state theory of the effective interactions induced by reversibly adsorbing polymers, acting between colloids immersed in a polymer melt. This theory is based on the polymer reference interaction site model that has no restrictions with respect to the density of the polymer system and colloid-to-polymer size ratio. By making use of the developed theory, we calculate the potential of the polymer mediated interactions as a function of the colloid radius, strength and range of the adsorption potential, and the polymer density. In addition, we investigate the behavior of the second virial coefficient as a function of the polymer density in both the colloid and nano-particle limits. We found out that the presence of the adsorption interactions significantly changes the polymer mediated forces relative to the case of the pure entropic depletion interactions, showing most pronounced difference in the case of large polymer densities and small colloid-to-polymer size ratios. The significance of the above differences is determined by the relation between the range of the adsorption potential and polymer correlation length.

  13. Theoretical predictions of structures in dispersions containing charged colloidal particles and non-adsorbing polymers.

    PubMed

    Xie, Fei; Turesson, Martin; Woodward, Clifford E; van Gruijthuijsen, Kitty; Stradner, Anna; Forsman, Jan

    2016-04-28

    We develop a theoretical model to describe structural effects on a specific system of charged colloidal polystyrene particles, upon the addition of non-adsorbing PEG polymers. This system has previously been investigated experimentally, by scattering methods, so we are able to quantitatively compare predicted structure factors with corresponding experimental data. Our aim is to construct a model that is coarse-grained enough to be computationally manageable, yet detailed enough to capture the important physics. To this end, we utilize classical polymer density functional theory, wherein all possible polymer configurations are accounted for, subject to a mean-field Boltzmann weight. We make efforts to counteract drawbacks with this mean-field approach, resulting in structural predictions that agree very well with computationally more demanding simulations. Electrostatic interactions are handled at the fully non-linear Poisson-Boltzmann level, and we demonstrate that a linearization leads to less accurate predictions. The particle charge is an experimentally unknown parameter. We define the surface charge such that the experimental and theoretical gel point at equal polymer concentration coincide. Assuming a fixed surface charge for a certain salt concentration, we find very good agreements between measured and predicted structure factors across a wide range of polymer concentrations. We also present predictions for other structural quantities, such as radial distribution functions, and cluster size distributions. Finally, we demonstrate that our model predicts the occurrence of equilibrium clusters at high polymer concentrations, but low particle volume fractions and salt levels.

  14. Surface enhanced raman spectra of biliverdine and pyrromethenone adsorbed to silver colloids

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.

    1981-04-01

    Adsorption of certain bile pigments to silver colloids yields an enormous enhancement in Raman intensity, while fluorescence remains more or less unaffected. It is argued that this may be caused by (weak) chemisorption.

  15. Photochemistry on, and Nature of Adsorbed Species on Colloidal Clay and Model Clay Systems.

    DTIC Science & Technology

    1987-09-25

    model system for clays, and also acts as a bridge between ionic organic micelle systems and colloidal clays. In the first instance a commercial...hexadecylpyridinium chloride, tend to cluster on the silica surface rather than disperse uniformly around it as with ionic micelles. We have also...alcohol as additives to the clay. Layers of organic material are formed by these additives in montmorillonite layers, and now non- ionic organic

  16. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids

    NASA Technical Reports Server (NTRS)

    Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D.

    1999-01-01

    An immunoassay readout method based on surface-enhanced Raman scattering (SERS) is described. The method exploits the SERS-derived signal from reporter molecules that are coimmobilized with biospecific species on gold colloids. This concept is demonstrated in a dualanalyte sandwich assay, in which two different antibodies covalently bound to a solid substrate specifically capture two different antigens from an aqueous sample. The captured antigens in turn bind selectively to their corresponding detection antibodies. The detection antibodies are conjugated with gold colloids that are labeled with different Raman reporter molecules, which serve as extrinsic labels for each type of antibody. The presence of a specific antigen is established by the characteristic SERS spectrum of the reporter molecule. A near-infrared diode laser was used to excite efficiently the SERS signal while minimizing fluorescence interference. We show that, by using different labels with little spectral overlap, two different antigenic species can be detected simultaneously. The potential of this concept to function as a readout strategy for multiple analytes is briefly discussed.

  17. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-11-30

    Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.

  18. Flotation machine

    SciTech Connect

    Zlobin, M.N.; Permyakov, G.P.; Nemarov, A.A.; Metsik, V.M.; Medetsky, J.V.; Taraban, N.T.

    1993-08-10

    A flotation machine is described for beneficiating minerals comprising: a vertical cylindrical chamber for circulating a flotation pulp; a downwardly tapered bottom connected to said vertical cylindrical chamber; feed pipe means for feeding the flotation pulp carrying mineral particles of fine fraction, particles of the useful ingredient of the fine fraction being capable of floating up from the volume of said aerated pulp; discharge pipe means connected to the tapered bottom near its lowest point for discharging gangue; an annular trough for collecting froth concentrate at the top of said chamber; a group of frustoconical shells each having bases of different diameters and a tapered surface secured axially in said chamber and spaced equidistantly from one another height wise of said chamber; aerator means for aerating the flotation pulp secured to the walls of said chamber and communicating therewith to provide aerated water into said chamber; means for feeding mineral particles of coarse fraction, particles of the useful ingredient of the coarse fraction being capable of floating in the froth layer of the flotation pulp, in the form of a hydrocyclone having a cylindrical casing positioned axially over said chamber and a downwardly tapering outlet directed downwardly to feed the coarse particles to said chamber; feed pipe means for feeding the flotation pulp carrying mineral particles of coarse fraction positioned tangentially at said cylindrical casing of the hydrocyclone; and evacuation means for evacuating the liquid phase of the flotation pulp positioned tangentially at said casing of the hydrocyclone over said feed pipe means and connected to said feed pipe means for feeding the flotation pulp carrying mineral particles of the fine fraction.

  19. Adsorbed States of phosphonate derivatives of N-heterocyclic aromatic compounds, imidazole, thiazole, and pyridine on colloidal silver: comparison with a silver electrode.

    PubMed

    Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M

    2009-09-03

    Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.

  20. Column flotation '88

    SciTech Connect

    Sastry, K.V.S.

    1988-01-01

    This book contains 34 selections. Some of the titles are: Column flotation of ultrafine coal: experience at BHP-Utah Coal Limited's Riverside mine; Measurement of rate data in flotation columns; Factors influencing the structure of a 3-phase coal flotation froth; and Microbubble flotation of fine coal.

  1. Effect of microwave radiation on coal flotation

    SciTech Connect

    Ozbayoglu, G.; Depci, T.; Ataman, N.

    2009-07-01

    Most low-rank coals are high in moisture and acid functional groups, therefore showing poor floatability. Drying, which removes the water molecules trapped in the pores and adsorbed at the surface of coal, decreases the hydrophilic character and improves the floatability. Microwave heating, whose simplest application is drying, was applied at 0.9 kW power level for 60 sec exposure time in the experiments to decrease the moisture content of coal in order to enhance the hydrophobicity. The flotation tests of microwave-treated coal by using heptanol and octanol lead to a higher flotation yield and ash removal than original coal.

  2. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids.

    PubMed

    Peng, Yongjun; Grano, Stephen

    2010-07-01

    Dissolution of fine (-10 microm) and intermediate (+10-53 microm) galena particles was studied in the presence and absence of iron hydroxide colloids at pH 9 with nitrogen and oxygen purging. X-ray photoelectron spectroscopy (XPS) measurements and ethylene diamine-tetra acid (EDTA) extraction of the galena particles after dissolution indicate that galena dissolution is strongly dependent on particle size. Fine galena particles produced a much higher amount of lead hydroxide species per surface area than intermediate galena particles. Gas purging only affected galena dissolution slightly. More iron hydroxide colloids adsorbed on fine particles. Zeta potential measurements indicate that galena dissolution enhances the adsorption of iron hydroxide colloids due to the electrostatic attraction between lead hydroxide products and iron hydroxide colloids at pH 9. This explains the stronger affinity of iron hydroxide colloids to fine galena particles than intermediate galena particles. This study has an important implication in sulfide flotation where iron hydroxide colloids play a dominant role in mineral depression.

  3. Towards high throughput screening of nanoparticle flotation collectors.

    PubMed

    Abarca, Carla; Yang, Songtao; Pelton, Robert H

    2015-12-15

    To function as flotation collectors for mineral processing, polymeric nanoparticles require a delicate balance of surface properties to give mineral-specific deposition and colloidal stability in high ionic strength alkaline media, while remaining sufficiently hydrophobic to promote flotation. Combinatorial nanoparticle surface modification, in conjunction with high throughput screening, is a promising approach for nanoparticle development. However, efficient automated screening assays are required to reject ineffective particles without having to undergo time consuming flotation testing. Herein we demonstrate that determining critical coagulation concentrations of sodium carbonate in combination with measuring the advancing water contact angle of nanoparticle-saturated glass surfaces can be used to screen ineffective nanoparticles. Finally, none of our first nanoparticle library based on poly(ethylene glycol) methyl ether methacrylate (PEG-methacrylate) were effective flotation collectors because the nanoparticles were too hydrophilic.

  4. Advances in flotation technology

    SciTech Connect

    Parekh, B.K.; Miller, J.D.

    1999-07-01

    The ability to selectively separate fine and coarse particles by flotation is the heart of most mineral processing operations. Significant developments in flotation technology are reflected in this proceedings including: equipment design and development, instrumentation and control, sulfides and precious metals, nonsulfide minerals, coal cleaning, and fundamentals.

  5. Modeling of column flotation

    SciTech Connect

    Luttrell, G.H.; Adel, G.T.; Yoon, R.H.

    1987-01-01

    Many investigators believe that column flotation cells offer significant advantages over standard mechanical machines for the flotation of fine particles. However, because of their unique design and operation, conventional techniques for flotation cell scale-up and design cannot be applied to columns. In an attempt to help alleviate this problem, a population balance model based on first principles has been developed for fine particle flotation in a column. Two different terms have been considered in the model, i.e., transport and rate. Transport terms, incorporating fluid flow and buoyancy, are used to describe the movement of air bubbles, unattached particles and bubble-particle aggregates along the length of the column. Rate terms, which describe the bubble-particle attachment process, have been derived from first principle considerations. Because the model is based on first principles, it can be useful for the design, control, optimization and scale-up of column flotation cells. 9 refs., 12 figs.

  6. The Bateman Flotation Machine

    SciTech Connect

    Bezuidenhout, G.

    1995-12-31

    The newly developed Bateman Flotation Machine has proven its versatility in roughing and cleaning flotation circuits. This mechanical flotation machine has the dual performance capability of suspending solids and dispersing air at relatively low power inputs without compromising these two important fundamentals. This new development has been successfully marketed to a wide cross section of concentrator mineral processes. The mechanical design of the flotation mechanism has been optimized to reduce operational costs and to lower manufacturing costs. Production process environments were utilized for verification of the scale-up of each cell volume size rated mechanism. These thorough investigations produced performance data which could be accurately quoted. This paper is a historical account of the Batement Flotation Machine. Technical details of the development are covered with descriptions of the operational applications.

  7. Improved flotation performance of hematite fines using citric acid as a dispersant

    NASA Astrophysics Data System (ADS)

    Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan

    2016-10-01

    In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

  8. The theory of flotation

    NASA Technical Reports Server (NTRS)

    Ostwald, Wolfgang

    1988-01-01

    A brief summary of the fundamentals of the Linear theory of flotation is given. The theory by no means contradicts the previous Laminar theory or even the thermodynamics (Wark-Siedler), rather it is a refinement of the known Hardy-Langmuir-Harkin conceptions for the case when there are not two phases and phase boundaries, but rather three phases and corresponding phase boundary edges. The appearance of such three-phase boundaries (ore, water, air) is characteristic for modern flotation methods.

  9. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.

    PubMed

    Yang, Songtao; Pelton, Robert

    2011-09-20

    The ability of polystyrene nanoparticles to facilitate the froth flotation of glass beads was correlated to the hydrophobicity of the nanoparticles. Contact angle measurements were used to probe the hydrophobicity of hydrophilic glass surfaces decorated with hydrophobic nanoparticles. Both sessile water drop advancing angles, θ(a), and attached air bubble receding angle measurements, θ(r), were performed. For glass surfaces saturated with adsorbed nanoparticles, flotation recovery, a measure of flotation efficiency, increased with increasing values of each type of contact angle. As expected, the advancing water contact angle on nanoparticle-decorated, dry glass surfaces increased with surface coverage, the area fraction of glass covered with nanoparticles. However, the nanoparticles were far more effective at raising the contact angle than the Cassie-Baxter prediction, suggesting that with higher nanoparticle coverages the water did not completely wet the glass surfaces between the nanoparticles. A series of polystyrene nanoparticles was prepared to cover a range of surface energies. Water contact angle measurements, θ(np), on smooth polymer films formed from organic solutions of dissolved nanoparticles were used to rank the nanoparticles in terms of hydrophobicity. Glass spheres were saturated with adsorbed nanoparticles and were isolated by flotation. The minimum nanoparticle water contact angle to give high flotation recovery was in the range of 51° < θ(np(min)) ≤ 85°.

  10. Low energy ballasted flotation.

    PubMed

    Jarvis, P; Buckingham, P; Holden, B; Jefferson, B

    2009-08-01

    A novel process which involves the replacement or supplementation of bubbles in the dissolved air flotation process with low density beads is presented. The work comprised a series of bench-scale flotation trials treating three commonly encountered algal species (Microcystis, Melosira and Chlorella) that were removed in a flotation cell configured as either: conventional dissolved air flotation (DAF); ballasted flotation using low density 70 microm glass beads with a density of 100 kg m(-3); or a hybrid process of ballasted flotation combined with conventional DAF. Results indicated that the bead only system was capable of achieving better residual turbidity than standard DAF at bead concentrations of 500 mg L(-1). Addition of beads in combination with standard DAF reduced turbidity further to even lower residual turbidity levels. Algae removal was improved when glass beads were dosed, but removal was dependent on algal species. Microcystis was removed by 97% for bead only systems and this removal did not change significantly with the addition of air bubbles. Melosira was the next best removed algae with bead only dosed systems giving similar removals to that achieved by standard DAF using a 10% air recycle ratio (81 and 76% removal respectively). Chlorella was the least well removed algae by bead only systems (63% removal). However, removal was rapidly improved to 86% by the addition of air bubbles using only a 2% recycle ratio. Energy estimations suggested that at least a 50% energy reduction could be achieved using the process offering a potential route for future development of low energy separation processes for algae removal.

  11. Froth flotation of xenotime

    NASA Astrophysics Data System (ADS)

    Zhang, Yicheng

    Froth flotation as a fundamental method for processing complex minerals is commonly applied to the surface chemistry and beneficiation of rare-earth-bearing minerals. This is due to the fact that it is possible to process a wide range of fine particle sizes and the process can be tailored to the unique mineralogy of a given deposit. Flotation effectiveness is primarily controlled by the surface-chemical properties of the minerals and related adsorption phenomena at the liquid--solid interface. This research program was designed to investigate the principles of surface chemistry and froth flotation of xenotime and selected gangue minerals. This led to a better understanding of the factors affecting flotation performance and separation of xenotime from associated gangue minerals in an efficient way. This investigation includes MLA analysis, surface area measurement, zeta potential tests, and adsorption tests of xenotime, ilmenite, zircon, schorl, and staurolite under conditions of various reagent additions and different temperatures. Octano-hydroxamic acid, sodium oleate, sodium silicates, and ammonium lignosulfonate were used in microflotation behavior evaluation. Efforts were made to evaluate the effects of temperature, pH, concentration, addition order, and depressants in the microflotation of minerals with anionic collectors such as octano-hydroxamic acid and sodium oleate. Other factors, such as bubble surface tension and bubble particle size, are also discussed based on the literature review and lab observations.

  12. Kinetics of Colloidal Deposition and Release of Polystyrene Latex Particles in the Presence of Adsorbed beta-Lactoglobulin Studied Using a Flow Cell

    PubMed

    Joscelyne; Trägårdh

    1997-08-15

    The effect of adsorbed whey protein, beta-lactoglobulin, has been investigated on the attachment of polystyrene latex particles to an indium tin oxide (ITO) surface and the subsequent release in anionic surfactant SDS solution and distilled-deionized water at pH 6.0. Experiments were carried out using a wall-jet flow cell and particle attachment was measured in situ using the technique of evanescent wave microscopy. The deposition rate of particles increased as predicted up to a shear rate of approximately 1000 s-1, for deposition at a diffusion-limited rate. There was a reduction in the rate at higher shear rates indicating a decrease in sticking efficiency. As the shear rate increased, the ITO surface became saturated more quickly due predominantly to blocking of the surface by deposited particles. The presence of adsorbed beta-lactoglobulin on the ITO surface caused a large reduction in the subsequent deposition rate of protein-coated particles. This was due to an increase in electrostatic repulsion. Differences were found in both the extent of removal and in the release (cleaning) kinetics of particles in SDS and in distilled-deionized water for the different particle-protein-ITO surface conditions investigated. Release of particles was also independent of the shear rate. Results were interpreted by considering the roles of protein replacement and elution which occurs in SDS solutions; >90% removal of protein-coated particles from a coated ITO surface was observed in SDS when both processes play a role. This compared to 55% removal in distilled-deionized water where they were considered negligible. Copyright 1997Academic Press

  13. Picobubble enhanced fine coal flotation

    SciTech Connect

    Tao, Y.J.; Liu, J.T.; Yu, S.; Tao, D.

    2006-07-01

    Froth flotation is widely used in the coal industry to clean -28 mesh fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range beyond which the flotation efficiency drops drastically. It is now known that the low flotation recovery of particles in the finest size fractions is mainly due to a low probability of bubble-particle collision while the main reason for poor coarse particle flotation recovery is the high probability of detachment. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles in a wide range of size by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. They are characterized by a size distribution that is mostly below 1 {mu}m and adhere preferentially to the hydrophobic surfaces. The presence of picobubbles increases the probability of collision and attachment and decreases the probability of detachment, thus enhancing flotation recovery. Experimental results with the Coalberg seam coal in West Virginia, U.S.A. have shown that the use of picobubbles in a 2 in. column flotation increased fine coal recovery by 10-30%, depending on the feed rate, collector dosage, and other flotation conditions. Picobubbles also acted as a secondary collector and reduced the collector dosage by one third to one half.

  14. 33 CFR 183.322 - Flotation materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Flotation materials. 183.322...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet...

  15. 33 CFR 183.322 - Flotation materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation materials. 183.322...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet...

  16. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    NASA Astrophysics Data System (ADS)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  17. Zeta potentials in the flotation of oxide and silicate minerals.

    PubMed

    Fuerstenau, D W; Pradip

    2005-06-30

    Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.

  18. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  19. Heavy metals in the products of deinking flotation of digital offset prints.

    PubMed

    Barbaric-Mikocevic, Zeljka; Orescanin, Visnja; Bolanca, Zdenka; Lulic, Stipe; Rozic, Mirela

    2004-01-01

    This study was undertaken to investigate the suitability of applying the conventional method of chemical deinking flotation of digital offset prints and ecological implications of the disposal of digital offset prints, with special emphasis on the content of heavy metal cations. The EDXRF method was used to determine the concentrations of Pb, Zr, Sr, As, Co, Zn, Cu, Ni, Fe, Mn, Cr, V, Ti, Ca, and K cations in handsheet ashes after flotation as well as in ashes of foams separated from cellulose suspension in the flotation phase. The same method was applied to determine the concentrations of Pb, Cr, Mn, Fe, Ni, Cu, Zn, and Co in process water filtrates obtained from the cellulose suspension after flotation and in foam filtrates. Centrifuging and coagulation previously treated flotation process water, while foam filtrates were centrifuged. Concentrations of Pb, As, Sr, Zr, K, Ca, Ti, V, Cr, Mn, Fe, Cu, and Zn were determined in the sediments obtained by centrifuging process water. The trials were done with unprinted substrates without deinking chemicals, with unprinted substrates in the presence of deinking chemicals and with printed substrates in the presence of deinking chemicals. Cation analysis revealed that deinking chemicals facilitate release of cations from the substrate and their transition into process water. Concentrations of most cations in the flotation process water, in foam water as well as in the sediment of the process water of printed substrate flotation deinking were lower than those obtained by flotation of unprinted substrate suspension. Polymer particles of ElectroInk incompletely separated from cellulose fibers prevent release of cations from cellulose fibers into process water. Deinking chemicals do not affect release of cations from ElectroInk particles, so the substrate is the main source of increased concentration of cations in the water of digital offset print deinking. The major part of cations in process water is bound to the colloid

  20. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  1. Coal froth flotation: effects of reagent adsorption on the froth structure

    SciTech Connect

    Meryem Ozmak; Zeki Aktas

    2006-05-15

    The amount and quality of concentrate obtained from froth flotation of a coal are very important to determine the efficiency of the separation process. The shape and size of the bubbles in the froth directly affect the amount and purity of the concentrate overflowed during the froth flotation of the coal. The froth structure is significantly dependent on parameters such as the size of the solid particles, the surface properties of the particles, the chemical structure of surface active agents, the reagents adsorbed onto solid particles, and the reagents remaining in water. This work was performed to determine the relationship between the reagents adsorbed on the solid particles, froth structure, and froth flotation performance. The -53 {mu}m size fraction of a bituminous coal was used to perform froth flotation experiments. The froth flotation of the coal used was performed in the presence of two nonionic surfactants, Triton x-100 (poly(ethylene glycol) tert-octylphenyl ether) and MIBC (methyl isobutyl carbinol), and an anionic surfactant, SDS (sodium dodecyl sulfate). The results showed that the adsorption of a high amount of reagent on the particles decreased the ability of separation, thus a substantial amount of mineral particles overflowed along with the hydrophobic coal particles. The use of MIBC with Triton x-100 or SDS as mixture increased solid recovery, and it was concluded that MIBC selectively adsorbed on solids acting as collector as well as a frother. Reagent adsorption has a crucial effect on the froth structure, which is strongly related to flotation performance. 33 refs., 18 figs.

  2. Adsorbent phosphates

    NASA Technical Reports Server (NTRS)

    Watanabe, S.

    1983-01-01

    An adsorbent which uses as its primary ingredient phosphoric acid salts of zirconium or titanium is presented. Production methods are discussed and several examples are detailed. Measurements of separating characteristics of some gases using the salts are given.

  3. 33 CFR 183.302 - Flotation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Flotation requirements. 183.302...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.302 Flotation requirements. Each boat to which this...

  4. 33 CFR 183.302 - Flotation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation requirements. 183.302...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.302 Flotation requirements. Each boat to which this...

  5. 33 CFR 183.302 - Flotation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Flotation requirements. 183.302...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.302 Flotation requirements. Each boat to which this...

  6. 33 CFR 183.302 - Flotation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Flotation requirements. 183.302...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.302 Flotation requirements. Each boat to which this...

  7. Selective flotation of inorganic sulfides from coal

    DOEpatents

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  8. 76 FR 56294 - Inflatable Personal Flotation Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... SECURITY Coast Guard 46 CFR Part 160 RIN 1625-AB60 Inflatable Personal Flotation Devices AGENCY: Coast... flotation devices (PFDs) with current voluntary industry consensus standards, and to slightly modify... rule entitled ``Inflatable Personal Flotation Devices'' in the Federal Register (76 FR 17561)....

  9. 33 CFR 183.302 - Flotation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation requirements. 183.302...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less General § 183.302 Flotation requirements. Each boat to which this...

  10. 33 CFR 183.322 - Flotation materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation materials. 183.322 Section 183.322 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet...

  11. 33 CFR 183.322 - Flotation materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Flotation materials. 183.322 Section 183.322 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet...

  12. 33 CFR 183.322 - Flotation materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Flotation materials. 183.322 Section 183.322 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... of 2 Horsepower or Less General § 183.322 Flotation materials. (a) Flotation materials must meet...

  13. Selective flotation of inorganic sulfides from coal

    DOEpatents

    Miller, Kenneth J.; Wen, Wu-Wey

    1989-01-01

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  14. Active colloids

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior.

  15. Bubble injected hydrocyclone flotation cell

    SciTech Connect

    Stanley, D.A.; Jordon, C.E.

    1990-11-20

    This patent describes an apparatus for selective separation of a mixture of hydrophobic and hydrophilic mineral particles. It comprises: a bubble-injected hydrocyclone flotation cell and a bubble slurry. The cell comprises an enclosed body section; a mineral pulp feed port; a bubble slurry feed port; and a vortex finder.

  16. The jet flotation column control system

    SciTech Connect

    Xu Zhiqiang; Ming Shangzhi; Liu Lijian; Huangfu Jinghua; Huo Sen; Zhang Rongzeng; Yang Hongjun

    1998-12-31

    Compared with the conventional mechanical flotation column, the jet flotation column has the advantages of high selectivity of separation, low investment and production cost, low floor space requirement, low dosage of reagent, easy control; it is more suitable to process fine particles. Recently, many new types of flotation columns have been developed with new methods. Mineral Processing Dept., China University of Mining and Technology (Beijing) designed an aerated, double-jet flotation column in the lab and the industrial trial will be put into operation. One of the significant characteristics of the new type of flotation column is high selectivity of separation, fast bubble mineralization speed. As it is sensitive to various factors, a control system for flotation column has been developed to stabilize the working condition, and this set of control system has been operated in the lab experiment.

  17. Column flotation of coal with fluorosurfactants

    SciTech Connect

    Not Available

    1989-10-01

    Laboratory tests were carried out by the US Bureau of Mines, Salt Lake City Research Center to evaluate the potential of column flotation technology, coupled with novel fluorosurfactant collectors, for the selective flotation of fine coal from pyritic sulfur and mineral matter. The results on flotation feeds of both {minus}100 and {minus}400 mesh Middle Kittaning seam coal samples are presented. 4 refs., 23 figs., 9 tabs.

  18. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  19. Comparison of column flotation cells

    SciTech Connect

    Honaker, R.Q.; Mohanty, M.K.; Ho, K.

    1995-08-01

    Six commercial column flotation technologies, i.e., Canadian, Flotaire, Jameson, Microcel, Packed-Column, and Turbo-air, were tested for the treatment of Illinois Basin fine coal and the results from each column compared based on separation performance and throughout capacity. The separation performance achieved by each cell approached and, in some cases, exceeded the ultimate performance predicted by release analysis. A comparison of the test results indicates differences in the selectivity obtained by each flotation column on the basis of both ash and sulfur rejection. This finding may be due to variations in cell hydrodynamics and the ability to support a deep froth phase among the different column cells. In addition, throughput capacity of each cell was found to differ, apparently due to the differences in the bubble-particle attachment environment, bubble size, and bubble population. Variations in the operating characteristics, such as reagent additions, aeration rate and wash water rate, were also noted and summarized in this publication.

  20. A dynamics model for fine coal flotation

    SciTech Connect

    Youjun, T.; Maixi, L.

    1999-07-01

    Through a large amount of experiments, this article studied the effect of the entrapment of water flow on the fine coal flotation during the flotation, and also investigated the relation between the constant of water flotation rate and different operation variables, and resulted in its equation. The water-recycling model is determined, and finally, the dynamics model on relation between the recovery of fine particle and the water recovery in concentration is established. The equation about ash of fine clean coal in any flotation time is derived by introduction of de-ashed coefficient.

  1. Sewage treatment-flotation apparatus

    SciTech Connect

    Hines, D.A.; Jones, R.T.; Roesler, F.C.

    1981-03-03

    Solids-liquid separation, wherein a solids-liquid mixture containing dissolved oxygen-containing gas is circulated around a circulatory system comprising a downcomer and a riser, part of the mixture in the riser being introduced into a flotation chamber in which the hydrostatic pressure gradually decreases as the mixture flows upwards, with consequent release from solution of gas bubbles which carry solid particles to the top of the mixture.

  2. Colloidal polypyrrole

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  3. Hexadecapolar colloids

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  4. Hexadecapolar colloids

    PubMed Central

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  5. Hexadecapolar Colloids

    DOE PAGES

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; ...

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  6. Hexadecapolar Colloids

    SciTech Connect

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  7. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.

    PubMed

    Beaussart, Audrey; Parkinson, Luke; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2012-02-15

    The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation.

  8. Food colloids research: historical perspective and outlook.

    PubMed

    Dickinson, Eric

    2011-06-09

    Trends and past achievements in the field of food colloids are reviewed. Specific mention is made of advances in knowledge and understanding in the areas of (i) structure and rheology of protein gels, (ii) properties of adsorbed protein layers, (iii) functionality derived from protein-polysaccharide interactions, and (iv) oral processing of food colloids. Amongst ongoing experimental developments, the technique of particle tracking for monitoring local dynamics and microrheology of food colloids is highlighted. The future outlook offers exciting challenges with expected continued growth in research into digestion processes, encapsulation, controlled delivery, and nanoscience.

  9. 21 CFR 890.3175 - Flotation cushion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion....

  10. 21 CFR 890.3175 - Flotation cushion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion....

  11. 21 CFR 890.3175 - Flotation cushion.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion....

  12. 21 CFR 890.3175 - Flotation cushion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion....

  13. 21 CFR 890.3175 - Flotation cushion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flotation cushion. 890.3175 Section 890.3175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3175 Flotation cushion....

  14. Dispersed ozone flotation of Chlorella vulgaris.

    PubMed

    Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Lee, Duu-Jong

    2010-12-01

    Flotation separation of Chlorella vulgaris, a species with excellent potential for CO(2) capture and lipid production, was studied using dispersed ozone gas. Pure oxygen aeration did not yield flotation. Conversely, applying ozone effectively separation algae from broth through flotation. The ozone dose applied for sufficient algal flotation is <0.05 mg/g biomass, much lower than those used in practical drinking waterworks (0.1-0.3 mg/g suspended solids). Main products, lipid C16:0, was effectively collected in the flotage phase. The algae removal rate, surface charge, and hydrophobicity of algal cells, and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined. Certain quantities of proteins were present in the cultivated algal suspension, hence, minimal quantity of ozone was required to release intracellular proteins as surfactants to lead to effective flotation.

  15. Fluid-fluid demixing curves for colloid-polymer mixtures in a random colloidal matrix

    NASA Astrophysics Data System (ADS)

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2011-12-01

    We study fluid-fluid phase separation in a colloid-polymer mixture adsorbed in a colloidal porous matrix close to the θ point. For this purpose we consider the Asakura-Oosawa model in the presence of a quenched matrix of colloidal hard spheres. We study the dependence of the demixing curve on the parameters that characterize the quenched matrix, fixing the polymer-to-colloid size ratio to 0.8. We find that, to a large extent, demixing curves depend only on a single parameter f, which represents the volume fraction which is unavailable to the colloids. We perform Monte Carlo simulations for volume fractions f equal to 40% and 70%, finding that the binodal curves in the polymer and colloid packing-fraction plane have a small dependence on disorder. The critical point instead changes significantly: for instance, the colloid packing fraction at criticality increases with increasing f. Finally, we observe for some values of the parameters capillary condensation of the colloids: a bulk colloid-poor phase is in chemical equilibrium with a colloid-rich phase in the matrix.

  16. 46 CFR 179.240 - Foam flotation material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Foam flotation material. 179.240 Section 179.240... Requirements § 179.240 Foam flotation material. (a) Foam may only be installed as flotation material on a vessel when approved by the cognizant OCMI. (b) If foam is installed as flotation material on a...

  17. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Test of flotation materials. 183.../Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material... gasoline test. The flotation material must not reduce in buoyant force more than 5 percent after...

  18. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Test of flotation materials. 183.../Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material... gasoline test. The flotation material must not reduce in buoyant force more than 5 percent after...

  19. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Test of flotation materials. 183.../Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material... gasoline test. The flotation material must not reduce in buoyant force more than 5 percent after...

  20. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Test of flotation materials. 183.../Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material... gasoline test. The flotation material must not reduce in buoyant force more than 5 percent after...

  1. 33 CFR 183.114 - Test of flotation materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Test of flotation materials. 183.../Outdrive Boats, and Airboats § 183.114 Test of flotation materials. (a) Vapor test. The flotation material... gasoline test. The flotation material must not reduce in buoyant force more than 5 percent after...

  2. Controlled assembly of jammed colloidal shells on fluid droplets.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  3. Forces between colloid particles in natural waters.

    PubMed

    Mosley, Luke M; Hunter, Keith A; Ducker, William A

    2003-08-01

    The origin and nature of interparticle forces acting on colloid surfaces in natural waters has been examined using an atomic force microscope. Natural colloids were represented by a surface film of iron oxide precipitated onto spherical SiO2 particles, and the effects of adsorbed natural organic matter (NOM), solution pH, and ionic composition on the force-separation curves were investigated. NOM from both riverine and marine environments was strongly adsorbed to the iron oxide surface. Under conditions of low ionic strength, the interparticle forces were dominated by electrostatic repulsion arising from negative functional groups on the NOM, except at very small separations (<10 nm) where repulsive forces arising from steric interference of the NOM molecules were also present. At high ionic strength (e.g., seawater) or low pH, the electrostatic forces were largely absent, allowing steric repulsion forces to dominate. In addition, adhesive bridging between surfaces by adsorbed NOM was observed, creating a strong energy barrier to spontaneous disaggregation of colloid aggregates. Our results demonstrate that adsorbed NOM dominates the surface forces and thus stability with respect to aggregation of natural water colloids.

  4. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  5. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.

    PubMed

    Zhang, Wei; Morales, Verónica L; Cakmak, M Ekrem; Salvucci, Anthony E; Geohring, Larry D; Hay, Anthony G; Parlange, Jean-Yves; Steenhuis, Tammo S

    2010-07-01

    Colloids play an important role in facilitating transport of adsorbed contaminants in soils. Recent studies showed that under saturated conditions colloid retention was a function of its concentration. It is unknown if this is the case under unsaturated conditions. In this study, the effect of colloid concentration on colloid retention was investigated in unsaturated columns by increasing concentrations of colloid influents with varying ionic strength. Colloid retention was observed in situ by bright field microscopy and quantified by measuring colloid breakthrough curves. In our unsaturated experiments, greater input concentrations resulted in increased colloid retention at ionic strength above 0.1 mM, but not in deionized water (i.e., 0 mM ionic strength). Bright field microscope images showed that colloid retention mainly occurred at the solid-water interface and wedge-shaped air-water-solid interfaces, whereas the retention at the grain-grain contacts was minor. Some colloids at the air-water-solid interfaces were rotating and oscillating and thus trapped. Computational hydrodynamic simulation confirmed that the wedge-shaped air-water-solid interface could form a "hydrodynamic trap" by retaining colloids in its low velocity vortices. Direct visualization also revealed that colloids once retained acted as new retention sites for other suspended colloids at ionic strength greater than 0.1 mM and thereby could explain the greater retention with increased input concentrations. Derjaguin-Landau-Verwey-Overbeek (DLVO) energy calculations support this concept. Finally, the results of unsaturated experiments were in agreement with limited saturated experiments under otherwise the same conditions.

  6. Carboxymethylcellulose adsorption on molybdenite: the effect of electrolyte composition on adsorption, bubble-surface collisions, and flotation.

    PubMed

    Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A

    2014-10-14

    The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.

  7. Phosphate binding by natural iron-rich colloids in streams.

    PubMed

    Baken, Stijn; Moens, Claudia; van der Grift, Bas; Smolders, Erik

    2016-07-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (<1.2 μm) samples of these streams is present in coarse colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals.

  8. Foam flotation as a separation process

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1986-01-01

    The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.

  9. Plant practices in fine coal column flotation

    SciTech Connect

    Davis, V.L. Jr.; Bethell, P.J.; Stanley, F.L.; Luttrell, G.H.

    1995-10-01

    Five 3 m (10 ft) diameter Microcel{trademark} flotation columns were installed at Clinchfield Coal Company`s Middle Fork preparation facility in order to reduce product ash and increase recovery and plant capacity. The Middle Fork facility is utilized for the recovery of fine coal from a feed stream that consists primarily of 1.5 mm x 0 material. The columns replaced conventional flotation cells for the treatment of the minus 150 {micro}m fraction while spirals are used to upgrade the plus 150 {micro}m material in the plant feed. The addition of the column flotation circuit resulted in an increase in plant capacity in excess of 20 percent while reducing the flotation product ash content by approximately 7 percentage points. Flotation circuit combustible recovery wa increased by 17 percentage points. This paper discusses circuit design, commissioning, and sparging system design. Circuit instrumentation, level control, reagent system control, performance comparisons with conventional flotation, and general operating procedures are also discussed.

  10. Pilot-scale testing of microbubble flotation

    SciTech Connect

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1991-01-01

    Fundamental investigations into the effect of bubble size on coal flotation have established that the use of microbubbles can improve the recovery of fine coal during flotation while, at the same time, increasing the rejection of ash-forming mineral matter. When used in conjunction with the quiescent conditions provided by a column, the microbubble flotation process has been demonstrated on a laboratory scale to be capable of producing superclean coal containing less than 1 or 2% ash and very little pyritic sulfur. The main objective of this project is to demonstrate the microbubble column flotation process on a pilot-scale. A 500 lb/hr pilot plant is being constructed for the purpose of: 910 demonstrating the feasibility of the microbubble flotation process for producing superclean coal, (2) collecting scale-up data for designing commercial-scale microbubble flotation columns, and (3) collecting cost data for an economic evaluation of the process. In addition to micronized coal, the process is also being tested on coarse coal and refuse pond material. 20 figs.

  11. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  12. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  13. Lauryl phosphate adsorption in the flotation of Bastnaesite, (Ce,La)FCO3.

    PubMed

    Liu, Weiping; Wang, Xuming; Xu, Hui; Miller, J D

    2017-03-15

    Wetting characteristics and micro-flotation responses of bastnaesite were examined as a function of pH and at different levels of lauryl phosphate adsorption. Theoretical computations for the bastnaesite-lauryl phosphate system were calculated using the universal force field (UFF) and semiempirical quantum chemical methods. The interaction energy and frontier orbital results correlate remarkably well with the experimental contact angle and micro-flotation test results. The wetting characteristics of bastnaesite with adsorbed collector were examined using both contact angle measurements and molecular dynamics simulations (MDS). The adsorption isotherm at low levels of lauryl phosphate adsorption was established. Finally, the relationship between hydrophobicity and adsorption density was examined by MDS, and compared to the results with octyl hydroxamate at low collector concentrations.

  14. Flotation separation of waste plastics for recycling-A review.

    PubMed

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation.

  15. Soil colloidal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  16. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  17. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  18. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  19. Understanding the role of ion interactions in soluble salt flotation with alkylammonium and alkylsulfate collectors.

    PubMed

    Ozdemir, Orhan; Du, Hao; Karakashev, Stoyan I; Nguyen, Anh V; Celik, M S; Miller, Jan D

    2011-03-15

    There is anecdotal evidence for the significant effects of salt ions on the flotation separation of minerals using process water of high salt content. Examples include flotation of soluble salt minerals such as potash, trona and borax in brine solutions using alkylammonium and alkylsulfate collectors such as dodecylamine hydrochloride and sodium dodecylsulfate. Although some of the effects are expected, some do not seem to be encompassed by classical theories of colloid science. Several experimental and modeling techniques for determining solution viscosity, surface tension, bubble-particle attachment time, contact angle, and molecular dynamics simulation have been used to provide further information on air-solution and solid-solution interfacial phenomena, especially with respect to the interfacial water structure due to the presence of dissolved ions. In addition atomic force microscopy, and sum frequency generation vibrational spectroscopy have been used to provide further information on surface states. These studies indicate that the ion specificity effect is the most significant factor influencing flotation in brine solutions.

  20. Self-assembly of colloidal surfactants

    NASA Astrophysics Data System (ADS)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  1. Vitrification of copper flotation waste.

    PubMed

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  2. 46 CFR 25.25-13 - Personal flotation device lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that...

  3. 46 CFR 25.25-13 - Personal flotation device lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that...

  4. 46 CFR 25.25-13 - Personal flotation device lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that...

  5. 46 CFR 25.25-13 - Personal flotation device lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that...

  6. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  7. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  8. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  9. 14 CFR 121.340 - Emergency flotation means.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Emergency flotation means. 121.340 Section... Emergency flotation means. (a) Except as provided in paragraph (b) of this section, no person may operate an...(a)(1) or with an approved flotation means for each occupant. This means must be within easy reach...

  10. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  11. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  12. 33 CFR 175.15 - Personal flotation devices required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Personal flotation devices... SECURITY (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Personal Flotation Devices § 175.15 Personal flotation devices required. Except as provided in § 175.17 and 175.25: (a) No person may use a...

  13. 33 CFR 175.15 - Personal flotation devices required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Personal flotation devices... SECURITY (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Personal Flotation Devices § 175.15 Personal flotation devices required. Except as provided in § 175.17 and 175.25: (a) No person may use a...

  14. 33 CFR 183.202 - Flotation and certification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Flotation and certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and...

  15. Frothing in flotation. Volume 2: Recent advances in coal processing

    SciTech Connect

    Laskowski, J.S.; Woodburn, E.T.

    1998-11-01

    This volume summarizes the achievements on various aspects of flotation froth properties and behavior, and relationship between froth appearance and flotation performance. Flotation kinetics involves a number of mass transfer processes with some of them being critically determined by the behavior of froth. Since froth is complex, and controlled experimentation is difficult, the froth phase was, until recently, either ignored or treated entirely empirically. With wide applications of flotation columns, the behavior of the froth is now often recognized as being dominant in determining flotation performance, and the research in this area is one of the most actively pursued. Contents include: Frothers and frothing; Effect of particle and bubble size on flotation kinetics; Water content and distribution in flotation froths; Mechanisms operating in flotation froths; Characterization of flotation froth; Simultaneous determination of collection zone rate constant and froth zone recovery factor; Modelling of froth dynamics with implications for feed-back control; The interrelationship between flotation variables and froth appearance; Froth image analysis in a flotation control system; Kinetic flotation modelling using froth imaging data; and Dependence of froth behavior on galvanic interactions.

  16. 33 CFR 175.15 - Personal flotation devices required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Personal flotation devices... SECURITY (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Personal Flotation Devices § 175.15 Personal flotation devices required. Except as provided in § 175.17 and 175.25: (a) No person may use a...

  17. Froth flotation for fine-coal cleaning. Final report

    SciTech Connect

    Olson, T.J.

    1985-12-01

    Froth flotation of fine coal was investigated with the objectives of improving flotation at existing coal-cleaning plants and providing design guidance for future plants. Using hydrodynamically scaled-down laboratory and pilot flotation cells, and the Klimpel flotation model, a methodology was developed to relate laboratory-scale flotation results to full-scale flotation circuits. Froth Factor, the percent of froth over the froth lip, was determined to be the key element of this scale-up methodology. Results showed that simple, inexpensive changes in flotation parameters such as air rate and reagent dosages can significantly improve full-scale flotation product recovery and grade, and that more complex flotation circuitry can produce better recovery levels of high-grade coal than more commonly used rougher-only flotation circuits. In particular, cleaning rougher product can effectively reduce pyritic sulfur content. Results also demonstrated interaction between different size fractions of coal. Flotation rates were shown to depend on feed size consist, and it was found that separations based on differences in flotation rates are more advantageously performed on fine topsizes. Ultimate recoveries appear unaffected by size consist. 6 refs.

  18. 14 CFR 121.340 - Emergency flotation means.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Emergency flotation means. 121.340 Section... Emergency flotation means. (a) Except as provided in paragraph (b) of this section, no person may operate an...(a)(1) or with an approved flotation means for each occupant. This means must be within easy reach...

  19. 33 CFR 175.15 - Personal flotation devices required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Personal flotation devices... SECURITY (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Personal Flotation Devices § 175.15 Personal flotation devices required. Except as provided in § 175.17 and 175.25: (a) No person may use a...

  20. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  1. 14 CFR 121.340 - Emergency flotation means.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Emergency flotation means. 121.340 Section... Emergency flotation means. (a) Except as provided in paragraph (b) of this section, no person may operate an...(a)(1) or with an approved flotation means for each occupant. This means must be within easy reach...

  2. 33 CFR 183.105 - Quantity of flotation required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Quantity of flotation required... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.105 Quantity of flotation required. (a) Each boat must have...

  3. 33 CFR 183.202 - Flotation and certification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation and certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and...

  4. 14 CFR 121.340 - Emergency flotation means.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Emergency flotation means. 121.340 Section... Emergency flotation means. (a) Except as provided in paragraph (b) of this section, no person may operate an...(a)(1) or with an approved flotation means for each occupant. This means must be within easy reach...

  5. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  6. Physically absorbable reagents-collectors in elementary flotation

    SciTech Connect

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  7. 46 CFR 25.25-13 - Personal flotation device lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Personal flotation device lights. 25.25-13 Section 25.25... Preservers and Other Lifesaving Equipment § 25.25-13 Personal flotation device lights. (a) This section... device intended to be worn, and each buoyant vest must have a personal flotation device light that...

  8. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  9. 33 CFR 183.202 - Flotation and certification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation and certification... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and...

  10. 33 CFR 175.15 - Personal flotation devices required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Personal flotation devices... SECURITY (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Personal Flotation Devices § 175.15 Personal flotation devices required. Except as provided in § 175.17 and 175.25: (a) No person may use a...

  11. 14 CFR 121.340 - Emergency flotation means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency flotation means. 121.340 Section... Emergency flotation means. (a) Except as provided in paragraph (b) of this section, no person may operate an...(a)(1) or with an approved flotation means for each occupant. This means must be within easy reach...

  12. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  13. 33 CFR 183.105 - Quantity of flotation required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Quantity of flotation required... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.105 Quantity of flotation required. (a) Each boat must have...

  14. 21 CFR 880.5150 - Nonpowered flotation therapy mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonpowered flotation therapy mattress. 880.5150... Therapeutic Devices § 880.5150 Nonpowered flotation therapy mattress. (a) Identification. A nonpowered flotation therapy mattress is a mattress intended for medical purposes which contains air, fluid, or...

  15. 21 CFR 880.5150 - Nonpowered flotation therapy mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonpowered flotation therapy mattress. 880.5150... Therapeutic Devices § 880.5150 Nonpowered flotation therapy mattress. (a) Identification. A nonpowered flotation therapy mattress is a mattress intended for medical purposes which contains air, fluid, or...

  16. Plutonium and Cesium Colloid Mediated Transport

    NASA Astrophysics Data System (ADS)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  17. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  18. Dissolved mineral species precipitation during coal flotation

    SciTech Connect

    Somasundaran, P.; Liu, D.

    1995-12-31

    Beneficiation by froth flotation, which exploits the difference in surface properties of minerals, has been a promising method for coal cleaning.However, dissolved mineral species present in coal flotation systems can interact with particles and other species leading to drastic effects on flotation. Particularly, precipitation or adsorption of such species on the particles can alter their surface properties and thus influence the efficiency of coal cleaning. In this work, the bulk and surface precipitation of the dissolved mineral species present in Pittsburgh No. 8 coal was investigated under controlled experimental conditions. Changes in the surface properties of coal due to the precipitation were monitored by following zeta potential. Solution potential data were used to elucidate the mechanism of the precipitation. The effect of the precipitation of the dissolved species on the floatability of coal was found to be marked.

  19. Flotation of cadmium-loaded biomass

    SciTech Connect

    Matis, K.A.; Zouboulis, A.I. . Chemical Technology Div.)

    1994-07-01

    Biosorption of heavy metal ions such as Cd[sup 2+] by dead biomass has been recognized as a potential alternative to existing removal technologies applied to wastewater treatment. Two bacterial strains were studied in the laboratory, Streptomyces griseus and S. clavuligerus, an industrial by-product. Both washed and unwashed samples were examined. Foam flotation is proposed in this work as the separation stage following biosorption. Effective biomass separation was conducted in the presence of a frother, ethanol. The pH of the solution was a crucial parameter for flotation and also for metal binding. Other basic parameters of flotation examined were the initial cadmium concentration in the dilute aqueous solution and the quantity of biomass used. A study of [zeta]-potential measurements of the actinomycetes was carried out under the conditions used in the separation; surface tension was also measured. These provided useful information on the process.

  20. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  1. A novel multistage kinetic modeling of flotation for wastewater treatment.

    PubMed

    Ksenofontov, B S; Ivanov, M V

    2013-01-01

    This study develops a new model for description of flotation kinetics. It defines flotation as a process that consists of several stages: separated air bubbles and particles, air bubbles and particles forming an aggregate, aggregate rising to the froth layer. This description significantly differs from known models, which are much simplified. The multistage model gives a novel in-depth description and considers different aspects of flotation, i.e. aggregate formation, which is critically important for flotation to take place. Experimental approval of the new model resulted in its accuracy. The model is to be used for a description of kinetics of all flotation processes in wastewater treatment. It helps in accurate design of flotation treatment plants and may be used for further research of the flotation process.

  2. Kinetic control of the coverage of oil droplets by DNA-functionalized colloids

    PubMed Central

    Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S.; Pinto, Diogo E. P.; Araújo, Nuno A. M.; Brujic, Jasna; Eiser, Erika

    2016-01-01

    We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a “frozen” degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi–two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity. PMID:27532053

  3. Desulfurization of coal by microbial column flotation

    SciTech Connect

    Ohmura, Naoya; Saiki, Hiroshi . Dept. of Biotechnology)

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics. Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 [mu]L/L kerosene) with the reduction of pyrite sulfur content from11% (feed coal) to 3.9% (product coal). An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7.

  4. Benzene stripping in a flotation unit

    SciTech Connect

    Hillquist, D.; Litchfield, J.; Willet, S.; Whiteford, R.

    1994-12-31

    An induced gas flotation unit is used as a combination stripping/flotation vessel with fuel gas as the stripping/flotation medium. The gas bubbles simultaneously float the oils and solids, and strip out and recover the benzene and other volatile components from wastewater and from the floated oils and solids. The effluent stripping gas is then either used as fuel gas, or recycled to the process for product recovery. The induced gas flotation stripper, IGFS, is self-cleaning and normally experiences no sludge build up or fouling. The unit requires a minimum of operator attention and maintenance. It is sealed to eliminate emissions, has a high stripping efficiency, and has a significantly wider operating range than conventional strippers. The unit does not experience the biological fouling and disposal problems of air strippers, or the fouling and higher capital and operating costs of steam strippers. The IGFS unit was installed at the BF Goodrich ethylene plant in Calvert City in 1991. The unit was designed to treat a combined stream consisting of quench water, neutralized spent caustic, and a number of intermittent smaller oily water streams. The unit is operating effectively in stripping the benzene to levels below the NESHAP requirements. The average benzene removal efficiency is above 97%. Operating data indicate that the benzene removal efficiency can be further enhanced by increasing temperature, increasing stripping flow, reducing oil emulsions in the influent and eliminating dilution from recycled water. This paper presents performance and operating experience of the IGFS unit.

  5. Flotation techniques for oily water treatment.

    PubMed

    Melo, M V; Sant'anna, G L; Massarani, G

    2003-07-01

    The aim of this work is to develop alternative techniques for the treatment of waters heavily contaminated by oil. Furthermore, the treatment system should achieve high removal efficiencies even under unfavorable conditions, when oil is finely dispersed in the water phase and oil droplet sizes range from 5-30 mm and concentrations are between 100 and 300 mg l(-1). The first experiments were carried out in an induced air flotation system where a flotation column performance was evaluated in batch and continuous operation. The second system investigated in this work focused on the association of centrifugal separation in a hydrocyclone and the flotation operation. The considered system is characterized by the association of these two processes, resulting the set-up in a compact unit (centrifugal flotation system). The bubbles generation and the droplet-bubble contact are performed through a gas-liquid ejector, while the separation of the phase rich in oil (froth phase) is promoted by a hydrocyclone. In both systems, it was possible to reduce the chemical demand of oxygen by more than 85% and the oil concentration of an emulsion containing droplets with sizes between 10 and 20 mm, using Polyacrilamide as destabilizing agent.

  6. Plagioclase flotation and lunar crust formation

    NASA Technical Reports Server (NTRS)

    Walker, D.; Hays, J. F.

    1977-01-01

    Anorthitic plagioclase floats in liquids parental to the lunar highlands crust. The plagioclase enrichment that is characteristic of lunar highlands rocks can be the result of plagioclase flotation. Such rocks would form a gravitationally stable upper crust on their parental magma.

  7. Colloid and Colloid-Facilitated Contaminant Transport Experiments and Models to Support Assessments of Radionuclide Migration at Yucca Mountain and the Nevada Test Site

    SciTech Connect

    P. Reimus

    2004-06-01

    In recent years, numerous laboratory and field experiments have been conducted to assess and parameterize colloid and colloid-facilitated radionuclide transport for the Yucca Mountain Project and the Nevada Test Site (NTS) Environmental Restoration Project. Radionuclide contamination of ground water currently exists within or near underground nuclear test cavities at the NTS, and the proposed Yucca Mountain high-level nuclear waste repository represents a potential future source of radionuclide contamination of ground water at the NTS. Furthermore, recent field observations have indicated that small amounts of Plutonium, which normally adsorbs very strongly to mineral surfaces in aquifers, can transport quite rapidly and over significant distances in ground water when associated with inorganic colloids (Kersting et al., 1999). Groundwater samples from all over the Nevada Test Site have been analyzed for colloid concentrations and size distributions, and it is clear that there are significant mass loadings of colloids in the ground water at some locations. These colloids represent mobile surface area for potentially transporting strongly-adsorbed radionuclides. Field transport experiments have involved the use of fluorescent-dyed carboxylate-modified latex (CML) microspheres in the 250- to 650-nm diameter size range as surrogates for natural colloids in forced-gradient tracer tests. These experiments have indicated that effective colloid filtration coefficients appear to decrease as time and length scales increase. They suggest that a small fraction of colloids may be able to transport significant distances in groundwater systems. Laboratory experiments have been conducted to determine radionuclide sorption and desorption parameters onto inorganic colloids present in the groundwater systems and also to determine transport parameters for inorganic colloids in both fractured and porous media present at the Nevada Test Site. More recent laboratory experiments have

  8. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  9. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  10. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the second quarter, January 1, 1991--March 31, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    The objective of the present work is to have a good understanding on the fundamentals of modes of reagent/collector dispersion and adsorbing collector on the bubbles to improve the selectivity and recovery of fine coal flotation. A portion of this reporting period has been consumed in building experimental apparatus and equipment. These include an automated flotation machine, a computer-based induction time apparatus, a bubble charge measuring apparatus, continuous flotation column, etc. An automated flotation machine was constructed for Denver model D-12 with 2- and 4-liter cells. The standard test procedure was established for using the machine with improved pulp level control and constant frother removal to minimize the human error. The flotation results of Upper Freeport coal sample showed a good reproducibility for using the improved automatic flotation machine/cell. The reagentless flotation was conducted in a Hallimond tube to determine the hydrophobicity of coal particles. Upper Freeport coal samples were used for all of the tests including -30 mesh, -200 mesh and -400 mesh U.S. sieves coal samples. High floatability was obtained for Upper Freeport coal samples. The significant entrainment of fine particles were observed for coal samples with -200 mesh and -400 mesh U.S. Sieve samples. The electrokinetic properties of coal particles from Upper Freeport seam was determined as the function of pH, frother or collector concentrations. The IEP of -200 mesh coal particle was at pHaw.53. The zeta potential of the coal particles with or without addition of MIBC or kerosene were exhibited negative values for pH greater than 3 and decreased with increasing pH values. The coal particles with kerosene has the higher zeta-potential value than that of particles with MIBC or free of frother/collector. The negative zeta-potential of coal sample was also observed regardless of MIBC concentration employed.

  11. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids

    NASA Astrophysics Data System (ADS)

    Albarran, Nairoby; Missana, Tiziana; García-Gutiérrez, Miguel; Alonso, Ursula; Mingarro, Manuel

    2011-03-01

    The effects of bentonite colloids on strontium migration in fractured crystalline medium were investigated. We analyzed first the transport behaviour of bentonite colloids alone at different flow rates; then we compared the transport behaviour of strontium as solute and of strontium previously adsorbed onto stable bentonite colloids at a water velocity of approximately 7.1·10 - 6 m/s-224 m/yr. Experiments with bentonite colloids alone showed that - at the lowest water flow rate used in our experiments (7.1·10 - 6 m/s) - approximately 70% of the initially injected colloids were retained in the fracture. Nevertheless, the mobile colloidal fraction, moved through the fracture without retardation, at any flow rate. Bentonite colloids deposited over the fracture surface were identified during post-mortem analyses. The breakthrough curve of strontium as a solute, presented a retardation factor, Rf ~ 6, in agreement with its sorption onto the granite fracture surface. The breakthrough curve of strontium in the presence of bentonite colloids was much more complex, suggesting additional contributions of colloids to strontium transport. A very small fraction of strontium adsorbed on mobile colloids moved un-retarded ( Rf = 1) and this fraction was much lower than the expected, considering the quantity of strontium initially adsorbed onto colloids (90%). This behaviour suggests the hypothesis of strontium sorption reversibility from colloids. On the other hand, bentonite colloids retained within the granite fracture played a major role, contributing to a slower strontium transport in comparison with strontium as a solute. This was shown by a clear peak in the breakthrough curve corresponding to a retardation factor of approximately 20.

  12. Hydrophobic flocculation flotation for beneficiating fine coal and minerals

    SciTech Connect

    Song, S.; Valdivieso, A.L.

    1998-06-01

    It is shown that hydrophobic flocculation flotation (HFF) is an effective process to treat finely ground ores and slimes so as to concentrate coal and mineral values at a fine size range. The process is based on first dispersing the fine particles suspension, followed by flocculation of fine mineral values or coal in the form of hydrophobic surfaces either induced by specifically adsorbed surfactants or from nature at the conditioning of the slurry with the shear field of sufficient magnitude. The flocculation is intensified by the addition of a small amount of nonpolar oil. finely ground coals, ilmenite slimes, and gold finely disseminated in a slag have been treated by this process. Results are presented indicating that cleaned coal with low ash and sulfur remaining and high Btu recovery can be obtained, and the refractory ores of ilmenite slimes and fine gold-bearing slag can be reasonably concentrated, leading to better beneficiation results than other separation techniques. In addition, the main operating parameters affecting the HFF process are discussed.

  13. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  14. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    column at a flow rate of ~ 6 mL/hr. Despite that the Pu intrinsic colloids are positively charged while the alluvium grain surfaces are negatively charged under the current experimental conditions, about 30% of the Pu colloids population transported through the column and broke through earlier than trillium. Our previous experiments in the same column have shown a highly unretarded transport of the negatively charged pseudo Pu colloids (Pu sorbed onto smectite colloids) and complete retardation of the dissolved Pu. The enhanced transport of Pu colloids was explained by the effective pore volume concept. Combining the results of these two experiments, it is concluded that the intrinsic Pu colloids transported in the column by adsorbing onto the background clay colloids due to electrostatic repulsion.

  15. Dispersion characteristics in column flotation of fine coal

    SciTech Connect

    Peng, F.F.; Lili, L.

    1995-10-01

    The dispersion model of nonideal flow was applied to describe the hydrodynamic state within the flotation column. Residence time distribution (RTD) data of a laboratory flotation column were measured to determine the parameters of the model. The effects of operating variables and column geometry on the Peclet number which reflects the extent of axial dispersion were investigated and a semi-empirical expression of Pe was formulated. The dispersion model was validated for the column flotation of ultrafines coal. Under the conditions of sufficient aeration rate and frother addition, a good agreement between the measured recoveries and predicted data was obtained. The dispersion model with first-order flotation rate process of the flotation column developed in this study is useful in predicting the collection zone recovery of fine coal, and for the flotation column scale-up.

  16. [Characteristics of DNA adsorption and desorption in variable and constant charge soil colloids].

    PubMed

    Wang, Dai-Zhang; Wang, Shen-Yang; Jiang, Xin; Heng, Li-Sha; Tan, Jin-Fang; Liu, Shi-Liang; Cao, Yong-Xian

    2009-09-15

    The characteristics of adsorption and desorption of DNA by Red soil colloid, Latosol colloid, Chao colloid and Cinnamon colloid at different pH values were studied using a batch method. It showed that there was an increase of solution pH after adsorption of DNA by the four soil colloids in both NaCl and KCl electrolyte systems. The increasing ranges of pH values were in order of Red soil colloid > Latosol colloid > Chao colloid > Cinnamon colloid, and NaCl electrolyte system > KCl electrolyte system. The amounts of DNA adsorption on soil colloids decreased with the increase of pH value. The maximum amounts of DNA adsorption in different colloids were about 13.1-14.8 microg x mg(-1) when pH values were 2-4. The decreasing ranges of the amounts of DNA adsorption were about 5.5 microg x mg(-1) in NaCl electrolyte system and 2.1 Mg x mg(-1) in KCl electrolyte system in Red soil colloid and Latosol colloid after the rising of equilibrium solution pH from 4.2 to 8.6, whereas the remarked decreasing ranges of the adsorption amounts of DNA were about 8.3-12.2 microg x mg(-1) on Chao colloid and Cinnamon colloid in two electrolyte systems. The decreasing ranges of DNA adsorption were in order of the constant charge (Chao soil and Cinnamon) colloids > the variable charge (Red soil and Latosol) colloids. The differences of desorption on the variable and the constant charge colloids are very significant while the DNA adsorbed was desorbed with NaOAc solution and NaH2 PO4 solution. The desorption percent desorption of DNA as NaH2PO4 desorbent was 23.5%-40.2% larger on the variable charge colloids than 8.8%-21.6% on the constant charge of colloids at the three different solution pH values of 3, 5 and 7, while that as NaOAc desorbent was 72.3%-85.9% larger on the constant charge colloids than 10%-24.5% on the variable charge colloids. These results implied that the ligand exchange played a more important role in DNA adsorption on the variable charge colloids, and electrostatic

  17. The industrial practice and development of flotation column in China

    SciTech Connect

    Liu Jiongtian; Zhang Shuangquan

    1997-12-31

    This paper reviewed the developing course of the flotation column since the 1960`s in China. Based on the practical data from several coal preparation plants, two types of flotation columns (the pressure aerated column and the jetting-cyclone column) were compared by their operation, performance and the reasons why they succeeded in the coal industry in China. The paper points out that the flotation column has come into commercial use and has good application prospects in China.

  18. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  19. Natural analogue studies of the role of colloids, natural organics and microorganisms on radionuclide transport

    SciTech Connect

    McCarthy, J.F.

    1994-10-01

    Colloids may be important as a geochemical transport mechanism for radionuclides at geological repositories if they are (1) present in the groundwater, (2) stable with respect to both colloidal and chemical stabilities, (3) capable of adsorbing radionuclides, especially if the sorption is irreversible, and (4) mobile in the subsurface. The available evidence from natural analogue and other field studies relevant to these issues is reviewed, as is the potential role of mobile microorganisms ({open_quotes}biocolloids{close_quotes}) on radionuclide migration. Studies have demonstrated that colloids are ubiquitous in groundwater, although colloid concentrations in deep, geochemically stable systems may be too low to affect radionuclide transport. However, even low colloid populations cannot be dismissed as a potential concern because colloids appear to be stable, and many radionuclides that adsorb to colloids are not readily desorbed over long periods. Field studies offer somewhat equivocal evidence concerning colloid mobility and cannot prove or disprove the significance of colloid transport in the far-field environment. Additional research is needed at new sites to properly represent a repository far-field. Performance assessment would benefit from natural analogue studies to examine colloid behavior at sites encompassing a suite of probable groundwater chemistries and that mimic the types of formations selected for radioactive waste repositories.

  20. Exchangeable Colloidal AFM Probes for the Quantification of Irreversible and Long-Term Interactions

    PubMed Central

    Dörig, Pablo; Ossola, Dario; Truong, Anh Minh; Graf, Monika; Stauffer, Flurin; Vörös, János; Zambelli, Tomaso

    2013-01-01

    An original method is presented to study single-colloid interaction with a substrate in liquid environment. Colloids, either in solution or adsorbed on a surface, are fixed by suction against the aperture of a microchanneled atomic force microscopy cantilever. Their adhesion to the substrate is measured, followed by their release via a short overpressure surge. Such colloid exchange procedure allows for 1), the quick variation of differently functionalized colloids within the same experiment; 2), the investigation of long-term interactions by leaving the colloids on a surface for a defined time before detaching them; and 3), the inspection of irreversible interactions. After validation of the method by reproducing literature results obtained with traditional colloidal atomic force microscopy, the serial use of colloids with different surface functionalization was shown on a micropatterned surface. Finally, concanavalin A-coated colloids were allowed to adsorb on human embryonic kidney cells and then detached one by one. The adhesion between cells and colloids was up to 60 nN, whereas individual cells adhered with 20 nN to the glass substrate. A cellular elastic modulus of 0.8 kPa was determined using the attached colloid as indenter. PMID:23870267

  1. Enhanced pyrite rejection in coal flotation

    SciTech Connect

    Tao, D.P.; Lu, M.X.; Richardson, P.E.; Luttrell, G.H.; Adel, G.T.; Yoon, R.H.

    1994-12-31

    Difficulties in rejecting pyrite from coal by flotation primarily result from two mechanisms of particle recovery: attachment and middlings. Attachment of pyrite is the consequence of surface hydrophobicity induced by superficial oxidation; middlings that can float readily are caused by incomplete liberation of pyrite from coal. New flotation schemes have been developed to enhance pyrite rejection. They are referred to as Electrochemically-Enhanced Sulfur Rejection (EESR) and Polymer-Enhanced Sulfur Rejection (PESR) processes. In the EESR process, the formation of hydrophobic products is prevented by electrochemical techniques in which active metals are used as sacrificial anodes to cathodically protect pyrite from oxidation; in the PESR process, hydrophilic polymers is used to mask coal in middlings by specific adsorption on pyrite, and thus depress coal-pyrite middlings.

  2. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, Kazimierz; Ignasiak, Boleslaw; Pawlak, Wanda; Kulik, Conrad; Lebowitz, Howard E.

    1995-01-01

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

  3. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, Kazimierz; Ignasiak, Boleslaw; Pawlak, Wanda; Kulik, Conrad; Lebowitz, Howard E.

    1997-01-01

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

  4. The behavior of each species in coal flotation

    SciTech Connect

    Liu, W.; Lu, M.; Ren, S.; Kou, C.

    1999-07-01

    The work presented in this paper mainly focused on the study into the flotation behavior of each species at different levels of collector dosage, frother dosage, and air volumetric flow rate. Examination of the flotation response of the discrete particle size fraction reveals that the flotation behavior of each size fraction does not follow the first order model. The flotation rate constant decreases with the increase of flotation time. The recovery of minus 74 micron fraction has a good relationship with the amount of floated water. The relationship between water flotation rate, Kw, and frother dosage, collector dosage and air volumetric flow rate is also discussed. By this relationship, the amount of floated water can be predicted according to the addition rate of frother, collector and air volumetric flow rate during the flotation procedure, and further the recovery of minus 74 micron coal can also be predicted. Examination of the flotation behavior of each discrete density fraction shows that it also does not follow the first order model. A further investigation of each density fraction within the same size fraction is also conducted. It is found that the behavior of the narrower species fits the first order model well. By statistical analysis, the models, which represent the relationship between the flotation rate constant of each narrower species and the manipulated variables (frother, collector and air flow rate), have been built. On these models built above, the product quantity and quality can be predicted on-line.

  5. Advanced froth flotation techniques for fine coal cleaning

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1994-12-31

    Advanced column flotation cells offer many potential advantages for the treatment of fine coal. The most important of these is the ability to achieve high separation efficiencies using only a single stage of processing. Unfortunately, industrial flotation columns often suffer from poor recovery, low throughput and high maintenance requirements as compared to mechanically-agitated conventional cells. These problems can usually be attributed to poorly-designed air sparging systems. This article examines the problems of air sparging in greater detail and offers useful guidelines for designing bubble generators for industrial flotation columns. The application of these principles in the design of a successful advanced fine coal flotation circuit is also presented.

  6. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

    1997-02-11

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

  7. Flotation machine and process for removing impurities from coals

    DOEpatents

    Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

    1995-12-05

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other mineral particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

  8. [Assessment of schemes for sewage purification from petroleum products, by using various flotation methods].

    PubMed

    Zabuga, G A; Filippova, T M; Sivkov, A A

    2010-01-01

    Petroleum products are the most common pollutants in petroleum refinery wastewater and are freed from the latter by flotation that is one of the most frequently applied physicochemical methods. The existing petroleum refinery OAO "Angara Petroleum Company" scheme for sewage purification from petroleum products, by using pressure flotation and proposed as a competitive purification scheme by applying electrical and impeller flotations underwent a comparative ecologoeconomic analysis. The use of electrical flotation instead of pressure flotation and that of an impeller flotation-electrical flotation system instead of a mechanical purification-pressure flotation one can considerably lower the concentration of petroleum products at the wastewater outlet into the Angara river.

  9. Elk Valley coal implements smartcell flotation technology

    SciTech Connect

    Stirling, J.C.

    2008-06-15

    In anticipation of future raw coal containing higher fines content, Elk Valley Coal Corp.'s Greenhills Operations upgraded their fines circuit to include Wemco SmartCells in March 2007. Positive results were immediately achieved increasing the average flotation tailings ash by 16%. With this increase in yield the SmartCells project paid for itself in less than eight months. 2 figs., 1 tab., 1 photo.

  10. Saturated Zone Colloid Transport

    SciTech Connect

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  11. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  12. A theoretical model of flotation deinking efficiency

    SciTech Connect

    Bloom, F.; Heindel, T.J.

    1997-06-01

    The associated probabilities of each microprocess occurring in flotation deinking are employed in the development of a kinetic or population balance-type model of the overall flotation process. The overall model contains two kinetic constants: The first, k{sub 1}, governs the overall probability of a free ink particle successfully being intercepted by and adhering to an air bubble; the second, k{sub 2}, is a measure of the probability that a particle/bubble aggregate pair will become unstable and split to yield a new free ink particle. The solution to the kinetic model is presented in terms of k{sub 1} and k{sub 2}, which are themselves functions of system parameters such as bubble and particle physical properties (e.g., diameter, density) and fluid properties (e.g., viscosity, surface tension). From this solution, a definition of theoretical flotation efficiency is presented, as well as definitions of other system performance parameters, and selected predictions are displayed.

  13. Colloid facilitated transport in fractured rock : parameter estimation and comparison with experimental data

    SciTech Connect

    Viswanathan, H. S.; Wolfsberg, A. V.

    2002-01-01

    Many contaminants in groundwater strongly interact with the immobile porous matrix, which retards their movement relative to groundwater flow. Colloidal particles, which are often present in groundwater, have a relatively small size and large specific surface area which makes it possible for them to also adsorb pollutants. The sorption of tracers to colloids may enhance their mobility in groundwater, relative to the case where colloids are not present. A class of pollutants for which colloid-facilitated transport may be of particular significance are radioactive isotopes. A major reason for why geologic repositories are considered suitable for the disposal of spent nuclear fuel is the strong affinity of many radionuclides to adsorb onto the porous matrix. Therefore, radionuclides accidentally released, would be contained in the geological media by adsorption or filtration until sufficient decay takes place. However, the presence of colloids may enhance radionuclide mobility in the groundwater, and reduce the efficiency of geologic media to act as a natural barrier.

  14. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood

    PubMed Central

    Heuck, Claus-Chr.

    2011-01-01

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca++ and Mg++ inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density. PMID:21289994

  15. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood.

    PubMed

    Heuck, Claus-Chr

    2011-01-24

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca(++) and Mg(++) inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density.

  16. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  17. Diffusion of colloidal fluids in random porous media.

    PubMed

    Chávez-Rojo, M A; Juárez-Maldonado, R; Medina-Noyola, M

    2008-04-01

    The diffusive relaxation of a colloidal fluid adsorbed in a porous medium depends on many factors, including the concentration and composition of the adsorbed colloidal fluid, the average structure of the porous matrix, and the nature of the colloid-colloid and colloid-substrate interactions. A simple manner to describe these effects is to model the porous medium as a set of spherical particles fixed in space at random positions with prescribed statistical structural properties. Within this model one may describe the relaxation of concentration fluctuations of the adsorbed fluid by simply setting to zero the short-time mobility of one species (the porous matrix) in a theory of the dynamics of equilibrium colloidal mixtures, or by extending such dynamic theory to explicitly consider the porous matrix as a random external field, as recently done in the framework of mode coupling theory [V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005)]. Here we consider the first approach and employ the self-consistent generalized Langevin equation (SCGLE) theory of the dynamics of equilibrium colloidal mixtures, to describe the dynamics of the mobile component. We focus on the short- and intermediate-time regimes, which we compare with Brownian dynamics simulations involving a binary mixture with screened Coulomb interactions for two models of the average static structure of the matrix: a porous matrix constructed by quenching configurations of an equilibrium mixture in which both species were first equilibrated together, and a preexisting matrix with prescribed average structure, in which we later add the mobile species. We conclude that in both cases, if the correct static structure factors are provided as input, the SCGLE theory correctly predicts the main features of the dynamics of the permeating fluid.

  18. Removal of methylene blue from its aqueous solution by froth flotation: hydrophobic silica nanoparticle as a collector

    NASA Astrophysics Data System (ADS)

    Hu, Nan; Liu, Wei; Ding, Linlin; Wu, Zhaoliang; Yin, Hao; Huang, Di; Li, Hongzhen; Jin, Lixue; Zheng, Huijie

    2017-02-01

    Dye pollution has been a severe problem faced by worldwide environmentalists. The use of nanoparticles as adsorbents has attracted widespread interests for effectively removing dyes, while the separation of them from an aqueous solution is a difficult and important subject. For achieving the simultaneous removal of methylene blue (MB) and nanoadsorbents, this work utilized a commercial hydrophobic silica nanoparticle (SNP) (200.0 ± 10.0 nm in average particle size) as a collector and then developed a novel froth flotation technology without using any surfactants. Under the suitable conditions of anhydrous ethanol dosage of 8 mL, pH of 9.0, SNP concentration of 600 mg/L, and flotation column height of 600 mm, the removal efficiencies of MB and SNPs and the volume ratio reached 91.1 ± 4.6%, 93.9 ± 4.7%, and 10.5 ± 0.5, respectively. Subsequently, the recovered MB-adsorbed SNPs in the foamate were separated by free setting due to their high concentration and massive agglomeration. After free setting, MB could be effectively separated from the recovered MB-adsorbed SNPs by using ethanol at pH 2.0 and repeating five cycles of washing-centrifugation. Additionally, the regenerated SNPs could be reused for removing MB up to five times. Overall, this work had a significant meaning for the treatment of dye-contaminated wastewaters.

  19. Ring around the colloid

    NASA Astrophysics Data System (ADS)

    Cavallaro, Marcello, Jr.; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Kamien, Randall D.; Yang, Shu; Baumgart, Tobias; Stebe, Kathleen J.

    In this work, we show that Janus washers, genus-one colloids with hybrid anchoring conditions, form topologically required defects in nematic liquid crystals. Experiments under crossed polarizers reveal the defect structure to be a rigid disclination loop confined within the colloid, with an accompanying defect in the liquid crystal. When confined to a homeotropic cell, the resulting colloid-defect ring pair tilts relative to the far field director, in contrast to the behavior of toroidal colloids with purely homeotropic anchoring. We show that this tilting behavior can be reversibly suppressed by the introduction of a spherical colloid into the center of the toroid, creating a new kind of multi-shape colloidal assemblage.

  20. Method and apparatus for column flotation of mineral matter

    SciTech Connect

    Trigg, R.D.

    1990-10-30

    This patent describes a method for the separation of the components of a slurry of ore by froth flotation in a vertically aligned, elongated zone having an upper section, an intermediate section and a lower section. Also described is an apparatus for the separation of components of a slurry of ore by froth flotation.

  1. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... body pressure. The device is used to prevent and treat decubitus ulcers (bed sores). (b) Classification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a)...

  2. 33 CFR 142.45 - Personal flotation devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Personal flotation devices. 142.45 Section 142.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 142.45 Personal flotation devices. Personnel, when working in a location such that, in the event of...

  3. 33 CFR 142.45 - Personal flotation devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Personal flotation devices. 142.45 Section 142.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 142.45 Personal flotation devices. Personnel, when working in a location such that, in the event of...

  4. 33 CFR 142.45 - Personal flotation devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Personal flotation devices. 142.45 Section 142.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 142.45 Personal flotation devices. Personnel, when working in a location such that, in the event of...

  5. 33 CFR 142.45 - Personal flotation devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Personal flotation devices. 142.45 Section 142.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... § 142.45 Personal flotation devices. Personnel, when working in a location such that, in the event of...

  6. 33 CFR 183.202 - Flotation and certification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and certification requirements. Each boat to which this subpart applies must be manufactured, constructed, or assembled to...

  7. 33 CFR 183.202 - Flotation and certification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.202 Flotation and certification requirements. Each boat to which this subpart applies must be manufactured, constructed, or assembled to...

  8. Beneficiation of borax by reverse flotation in boron saturated brine.

    PubMed

    Cafer Cilek, Emin; Uresin, Hasan

    2005-10-15

    Flotation is one of the plausible methods for recovering borax fines discharged as fine waste to the tailings dam in the Kirka borax processing plant. A literature review dealing with the flotation behavior of boron minerals reveals that clay minerals in the boron ores coat boron minerals and thus deteriorate the quality of boron concentrates produced by direct flotation. The main objective of this study is therefore to recover borax fines from the tailings of the concentrator by reverse flotation. A three-level-factor experimental design was used to determine the main and interaction effects of variables selected on the metallurgical performance of reverse flotation. An analysis of variance for experimental results indicates that interaction effects of the variables for concentrate quality and recovery of B2O3 is nonsignificant and the most important variable for grade of concentrate and recovery is the collector dosage. It is shown that a concentrate assaying 11.25% B2O3 with 89.90% B2O3 recovery could be produced by means of single-stage (rougher) reverse flotation. Additionally, in order to produce a sufficient-quality concentrate, a multistage reverse flotation scheme involving rougher, scavenger, and two cleaners was devised. A final concentrate containing 23.47% B2O3 with 81.78% B2O3 recovery was obtained from these tests. The reverse flotation method can be thus considered as an important option for the beneficiation of borax fines.

  9. 46 CFR 170.245 - Foam flotation material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Foam flotation material. 170.245 Section 170.245... REQUIREMENTS FOR ALL INSPECTED VESSELS Special Installations § 170.245 Foam flotation material. (a... strength to withstand a hydrostatic head equivalent to that which would be imposed if the vessel...

  10. 33 CFR 183.225 - Flotation test for persons capacity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation test for persons capacity. 183.225 Section 183.225 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Boats Rated for Engines of More Than 2 Horsepower Tests § 183.225 Flotation test for persons...

  11. 33 CFR 183.325 - Flotation test for persons capacity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation test for persons capacity. 183.325 Section 183.325 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Boats Rated for Engines of 2 Horsepower or Less Tests § 183.325 Flotation test for persons...

  12. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Flotation material and air chambers. 183.222 Section 183.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  13. Column flotation: Processes, designs and practices. Process engineering for the chemical, metals and minerals industry, Volume 2

    SciTech Connect

    Rubinstein, J.B. . Flotation Equipment and Process Engineering Dept.)

    1994-01-01

    Practically all mined ores of non-ferrous and rare metals and an increasing share of industrial minerals and coal are processed through flotation. This book presents the analysis of a wide range of problems in the process theory of flotation columns, including the first published analysis of models of flotation froths. The experience of pilot tests and commercial applications of column flotation for mineral processing and in waste water treatment circuits are also considered. This is the first book to consider column flotation design and operation experience and to present data on column parameters. Topics include: design of flotation columns; aerators in flotation columns; experimental methods of column aerohydrodynamics investigation; aerohydrodynamic characteristics of flotation columns; experimental investigation of the flotation process in columns; kinetics aspects of column flotation; scaling-up methods for flotation columns; structure and mass transfer in flotation froths; column flotation practice; and column flotation control.

  14. Decreased Salinity and Actinide Mobility: Colloid-Facilitated Transport or pH Change?

    PubMed

    Haliena, Brian; Zheng, Hangping; Melson, Nathan; Kaplan, Daniel I; Barnett, Mark O

    2016-01-19

    Colloids have been implicated in influencing the transport of actinides and other adsorbed contaminants in the subsurface, significantly increasing their mobility. Such colloid-facilitated transport can be induced by changes in groundwater chemistry that occur, for example, when high ionic strength contaminant plumes are displaced by infiltrating rainwater. We studied the transport and mobility of Th(IV), as an analogue for Pu(IV) and other tetravalent actinides [An(IV)], in saturated columns packed with a natural heterogeneous subsurface sandy sediment. As expected, decreases in ionic strength both promoted the mobilization of natural colloids and enhanced the transport of previously adsorbed Th(IV). However, colloid-facilitated transport played only a minor role in enhancing the transport of Th(IV). Instead, the enhanced transport of Th(IV) was primarily due to the pH-dependent desorption of Th(IV) caused by the change in ionic strength. In contrast, the adsorption of Th(IV) had a marked impact on the surface charge of the sandy sediment, significantly affecting the mobility of the colloids. In the absence of Th(IV), changes in ionic strength were ineffective at releasing colloids while in the presence of Th(IV), decreases in ionic strength liberated significant concentrations of colloids. Therefore, under the conditions of our experiments which mimicked acidic, high ionic strength groundwater contaminant plumes, Th(IV) had a much greater effect on colloid transport than colloids had on Th(IV) transport.

  15. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  16. Pressure flotation of nitrocellulose fines: Hydrodynamics and interfacial chemistry

    SciTech Connect

    Grasso, D.; Hu, H.L.; LaFrance, P.; Kim, B.J.

    1996-11-01

    The production of nitrocellulose (NC) creates large quantities of waste NC fines in wash water streams. Current processing techniques attempt to remove these fines by cross-flow microfiltration, pressure flotation, settling, centrifugation, and lime precipitation. Pressure flotation, or dissolved air flotation (DAF), is a solid/liquid separation process first developed in the ore processing industry. DAF has since found many applications in the environmental engineering field including: drinking water clarification, sludge thickening, and the clarification of wastewater from a variety of industrial and municipal processes. The work presented herein is part of a larger effort to explore techniques to recover and reuse nitrocellulose (NC) fines resulting from propellant manufacturing processes. Previous papers investigated NC particle stability and interfacial thermodynamics and developed a flotation trajectory model. This paper builds on that work and presents a sensitivity analysis of the flotation trajectory model. The sensitivity analysis explores both operational and parameter estimation uncertainty.

  17. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  18. Pituitary Colloid Cyst

    PubMed Central

    Guduk, Mustafa; Sun, Halil Ibrahim; Sav, Murat Aydin; Berkman, Zafer

    2017-01-01

    Abstract Colloid cysts appear most commonly in the third ventricle, their occurrence in the sellar region is uncommon. The authors report a female patient with a pituitary colloid cyst. She was diagnosed incidentally with a sellar lesion by a routine paranasal computed tomography examination performed for planning of a dental implant surgery. Radiologic examinations revealed a pituitary lesion that was removed by transnasal transsphenoidal route. Her pathologic examination revealed that the lesion was a colloid cyst. Although rare, colloid cysts should be considered in the differential diagnosis of pituitary lesions PMID:27792102

  19. Analysis of colloid transport

    SciTech Connect

    Travis, B.J.; Nuttall, H.E.

    1985-12-31

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab.

  20. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  1. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E

    2002-04-01

    The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.

  2. Colloid-borne forms of tetravalent actinides: a brief review.

    PubMed

    Zänker, Harald; Hennig, Christoph

    2014-02-01

    Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.

  3. The sensitivity of direct faecal examination, direct faecal flotation, modified centrifugal faecal flotation and centrifugal sedimentation/flotation in the diagnosis of canine spirocercosis.

    PubMed

    Christie, J; Schwan, E V; Bodenstein, L L; Sommerville, J E M; van der Merwe, L L

    2011-06-01

    Several faecal examination techniques have shown variable sensitivity in demonstrating Spirocerca lupi (S. lupi) eggs. The objective of this study was to determine which faecal examination technique, including a novel modified centrifugal flotation technique, was most sensitive to diagnose spirocercosis. Ten coproscopic examinations were performed on faeces collected from 33 dogs confirmed endoscopically to have spirocercosis. The tests included a direct faecal examination, a faecal sedimentation/flotation test, 4 direct faecal flotations and 4 modified faecal centrifugal flotations. These latter 2 flotation tests utilised 4 different faecal flotation solutions: NaNO3 (SG 1.22), MgSO4 (SG 1.29), ZnSO4 (SG 1.30) and sugar (SG 1.27). The sensitivity of the tests ranged between 42% and 67%, with the NaNO3 solution showing the highest sensitivity in both the direct and modified-centrifugal flotations. The modified NaNO3 centrifugal method ranked 1st with the highest mean egg count (45.24 +/- 83), and was superior (i.e. higher egg count) and significantly different (P < 0.05) compared with the routine saturated sugar, ZnSO4 and MgSO4 flotation methods. The routine NaNO3 flotation method was also superior and significantly different (P < 0.05) compared with the routine ZnSO4 and MgSO4 flotation methods. Fifteen per cent (n = 5) of dogs had neoplastic oesophageal nodules and a further 18% (n = 6) had both neoplastic and non-neoplastic nodules. S. lupi eggs were demonstrated in 40% of dogs with neoplastic nodules only and 72.9% of the dogs with non-neoplastic nodules. The mean egg count in the non-neoplastic group (61) was statistically greater (P = 0.02) than that of the neoplastic group (1). The results show that faecal examination using a NaNO3 solution is the most sensitive in the diagnosis of spirocercosis. The modified centrifugal flotation faecal method using this solution has the highest egg count. The study also found that dogs with neoplastic nodules shed

  4. FTIR and XPS studies of surface chemistry of pyrite in flotation

    SciTech Connect

    Leppinen, J.; Laajalehto, K.; Kartio, I.; Suoninen, E.

    1995-12-31

    Efficient separation of pyrite is of great importance for the metallurgical performance of flotation processes. Presently, separation of pyrite by flotation is becoming more and more important for reduction of sulfur in coal. In this work Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) were used to study the surface chemistry of pyrite in depression, activation and xanthate adsorption under conditions of controlled potential. Modifications of pyrite surfaces after treatment with depressants (lime, sulfur dioxide, sodium cyanide) and after activation with metal ions (Cu, Pb) were studied. The principal adsorption product identified on pyrite was dixanthogen whose formation started at about +0.15 V and +0.25 V (vs, SHE) in ethyl and amyl xanthate solutions, respectively. Copper xanthate was formed on copper(II) activated pyrite. Activation mechanism of pyrite by copper(II) salts is likely to be electrochemical where copper occurs as copper(I) on the surface of pyrite. Effective depression is achieved by sulfur dioxide and sodium cyanide. Depression at high pH is due to formation of iron(III) hydroxides. Calcium ions do not affect the electrochemistry but adsorb on pyrite and reduce the surface sites for dixanthogen adsorption.

  5. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  6. Driving magnetic colloidal polymers

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua; Olvera de La Cruz, Monica

    Magnetic colloids are of growing interest for applications such as drug delivery and in vitro tissue growth. Recent experiments have synthesized 1D chains of magnetic colloids into permanent colloidal polymers. We study magnetic colloidal polymers theoretically and computationally under the influence of time-varying external fields and find a rich set of controllable, dynamic conformations. By iterating through a sequence of conformations, these polymers can perform mechanical functions. We discuss possible roles for these polymers beyond those considered for single colloids. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  7. Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2013-10-15

    This study analyzes the kinetics of sediment sorption on two chemical surfactants (Tween 20 and SDS) and a biotechnologically produced surfactant (obtained from Lactobacillus pentosus). Biosurfactants were produced by fermentation of hemicellulosic sugars from vineyard pruning waste supplied as a substrate to L. pentosus. Results obtained showed that almost no SDS was adsorbed onto the sediments, whereas Tween 20 and biosurfactants from L. pentosus were absorbed after a few minutes. Kinetic models revealed that adsorption of surfactant onto riverbed sediments is governed not only by an intra-particle diffusion model (evaluated by the Weber and Morris model), but also by surface reaction models (evaluated by first, second, third order equations and Elovich equation), showing the best fit when employing the Elovich model. The adsorption properties showed by biosurfactant from L. pentosus onto sediments present it as a potential foaming agent in froth flotation.

  8. Column flotation shows higher recovery with less ash

    SciTech Connect

    Groppo, J.

    1986-08-01

    Why column flotation. It can effectively clean fines and yield a saleable low-ash coal from what would otherwise be the waste stream. Not only does the coal recovery improve, but the waste tonnage is reduced, thereby prolonging the life of waste storage facilities. Although regular froth flotation has proven to be an effective method for recovering fine coal (-28 mesh), flotation efficiency often drops for the finest fractions, particularly when an excessive amount of fine clays are present. Because of their small mass and momentum, these fine particles wind up in the froth and get physically entrained with particles that float. Countercurrent column flotation solves this problem by providing a stream of wash water flowing against the bubble/particle aggregates. This action allows the sticky ash to be washed from the bubble as well as from the froth. Column flotation is not new to the mining industry; it has been used to separate fine graphite from clay, and such sulfide mineral separations as molybdenum and copper. The big advantage provided by countercurrent column flotation was it required only a single step to do what cleaner flotation did in several stages.

  9. SURFACTANT SPRAY: A NOVEL TECHNOLOGY TO IMPROVE FLOTATION DEINKING PERFORMANCE

    SciTech Connect

    Yulin Deng; Junyong Zhu

    2004-01-31

    Based on the fundamental understanding of ink removal and fiber loss mechanism in flotation deinking process, we developed this innovative technology using surfactant spray to improve the ink removal efficiency, reduce the water and fiber loss, reduce the chemical consumption and carry over in the flotation deinking. The innovative flotation deinking process uses a spray to deliver the frothing agent during flotation deinking to control several key process variables. The spray can control the foam stability and structure and modify the fluid dynamics to reduce the fibers entrapped in the froth layer. The froth formed at the top part of the flotation column will act as a physical filter to prevent the penetration of frothing agent into the pulp suspension to eliminate fiber contamination and unfavorable deinking surface chemistry modification due to surfactant adsorption on the fiber surface. Because of the filter effect, frothing agents will be better utilized. Under the sponsorships of the US Dept. of Energy (DOE) and the member companies of the Institute of Paper Science and Technology, we studied the chem-mechanical mechanism of surfactant spray for flotation deinking using different furnishes, chemicals, and flotation devices in the past four years. In the final year of the project, we successfully conducted mill trials at Abitibi-Consolidated, Inc., Snowflake paper recycling operation of 100% mixture of ONP/OMG. Results from laboratory, pilot-plant and mill trials indicated that surfactant spray technology can significantly reduce fiber loss in flotation deinking. It can be concluded that paper industry can profit greatly when this technology is commercialized in flotation deinking mills.

  10. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  11. Effect of Thermal Shock on Grindability of Oleic Adsorbed Flotation Placer Sillimanite

    NASA Astrophysics Data System (ADS)

    Laxmi, T.; Bhima Rao, R.

    2015-04-01

    Thermal shock is one of the most effective techniques in size reduction. The present investigation deals with the effect of thermal shock treatment on grindability and grinding characteristics of sillimanite minerals and also an attempt has been made on the overall energy saving for preparation of sillimanite flour by using ball mill. This attempt is made due to a fine dry grinding of sillimanite minerals to produce sillimanite flour, which is an energy intensive operation. It is observed from the present investigation that the particle sizes at d50 and d80 passing size in microns for thermally treated sillimanite is slightly lower than that of natural sillimanite. The study of grinding kinetics using ball mill indicate that the slope value obtained for thermally treated sillimanite is lower than the natural sillimanite, which shows that the sample responded to higher rate of grinding. The result of grindability studies reveal that the power required for thermal treatment of sillimanite is 395.36 hp and the total energy saving in the order of 8.9 % is achieved by thermal treatment of sillimanite at 900 °C for period of half an hour heating time due to development of numerous micro-cracks and fractures within the mineral grains. Hence, it is recommended to use thermally treated sillimanite for preparation of sillimanite flour (<75 µm particle size) which reduces power consumption of 8.9 %.

  12. Lock and key colloids.

    PubMed

    Sacanna, S; Irvine, W T M; Chaikin, P M; Pine, D J

    2010-03-25

    New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly.

  13. Swimming kinematic and flotation analysis of conscious and sedated dogs using 3 canine flotation devices.

    PubMed

    Corum, China Prentice; Wichtowski, Maja; Hetts, Suzanne; Estep, Dan; Bertone, Joseph J

    2014-12-01

    Canine flotation devices (CFDs) are very popular; however, their efficacy is still under debate. There is no oversight to standardize device testing, certification, or qualification for use. We set out to assess the biomechanical and behavioral effects of 3 CFDs on swim and flotation characteristics of dogs. High-speed video recordings were used to measure behavior, range of motion (ROM), maximum flexion angle, and cycles of motion per minute while swimming and roll, yaw, and fear or panic scoring while floating. Predictably, swimming with no CFD yielded the largest ROM and flexion angles. CFDINF was associated with the least ROM. During flotation, CFDAB and CFDRW caused significant rolling and fear, whereas CFDINF was the most stable. CFDAB was associated with cranial downpitch in 2 dogs. Interpretation of the kinematics for CFDAB and CFDRW suggests that decreased stability in the water leads to a greater forced ROM when the position of the dog was conducive to swimming. When positioning forced the dog into a downward pitch, ROM was decreased because of the increased effort for the dogs to keep their head above water. CFDINF was most stable overall owing to a decreased swim effort, with most dogs showing the lowest fear scores and absolute relaxation. CFDAB and CFDRW caused the dogs significant rolling, fear, and distress, with obvious fighting of sedation. We hope to disseminate these results to dog owners in the hopes of providing a valid assessment of these devices.

  14. Laboratory migration experiments with radionuclides and natural colloids in a granite fracture

    NASA Astrophysics Data System (ADS)

    Vilks, Peter; Baik, Min-Hoon

    2001-02-01

    Natural colloids in groundwater could facilitate radionuclide transport, provided the colloids are mobile, are present in sufficient concentrations and can adsorb radionuclides. This paper describes the results of a laboratory migration study carried out with combinations of radionuclides and natural colloids within a fracture in a large granite block to experimentally determine the impact of colloids on radionuclide transport. The 85Sr used in this study is an example of a moderately sorbing radionuclide, while the 241Am is typical of a strongly sorbed radionuclide with very low solubility. The natural colloids used in this study were isolated from granite groundwater from Atomic Energy of Canada (AECL) Underground Research Laboratory (URL), and consisted of mostly 1-10 nm organic colloids, along with lesser amounts of 10-450 nm colloids (organics and aluminosilicates). The measured coefficients for radionuclide sorption onto these colloids were between 3×10 2 and 1×10 3 ml/g for 85Sr, and between 7×10 4 and 7×10 5 mg/l for 241Am. The 85Sr sorption on the natural colloids appeared to be reversible. Migration experiments in the granite block were carried out by establishing a flow field between two boreholes (out of a total of nine) intersecting a main horizontal fracture. These experiments showed that dissolved 85Sr behaved as a moderately sorbing tracer, while dissolved 241Am was completely adsorbed by the fracture surfaces and showed no evidence of transport. However, when natural colloids were injected together with dissolved 241Am, a small amount of 241Am transport was observed, demonstrating the ability of natural colloids to facilitate the transport of radionuclides with low solubility. Natural colloids had only a minor effect on the transport of 85Sr. In a separate experiment to test the effect of higher colloid concentrations on 85Sr migration, synthetic colloids were produced from Avonlea bentonite. The introduction of a relatively high concentration

  15. Comparative study of flotation techniques for the treatment of liquid effluents.

    PubMed

    Puget, F P; Melo, M V; Massarani, G

    2004-01-01

    This work aimed to study the performance of three different induced air flotation units (flotation column, flotation tank and centrifugal flotation in hydrocyclone) for the treatment of a synthetic dairy effluent. Under continuous operation, it was possible to achieve removal efficiencies of milky material in suspension up to 90%, both for the flotation column and the flotation tank units. Using the centrifugal flotation unit in hydrocyclone, it was possible to decrease up to 45% of all suspended material in the effluent, with a clarified flow rate approximately three times greater than those found for the previous flotation units. In the centrifugal flotation unit, better results were obtained for air flow rate-feed flow rate ratios (Q(air)/Q(L)) greater than 0.15, and for underflow-overflow ratios (Qu/Qo) lower than 1.0.

  16. Sedimentation of Colloidal Particles through a Polymer Solution

    NASA Astrophysics Data System (ADS)

    Tong, Penger; Ye, Xi; Ackerson, Bruce J.

    1997-03-01

    We report recent sedimentation measurements of colloidal particles through a polymer solution. The colloidal particles used were sterically stabilized CaCO3 suspended in decane and the polymer was hydrogenated polyisoprene. Our previous light and neutron scattering measurements have shown that the polymer chains do not adsorb onto the colloidal surfaces. Using a commercial ultracentrifuge, we measured the sedimentation rate of the colloidal particles, from which the microscopic viscosity experienced by the particles was obtained at different polymer concentration C_p. The experiment reveals that at low colloid concentration φ_c, the particles feel the single-chain viscosity when their size Rh is smaller than the correlation length ξ of the polymer solution. The particles experience the macroscopic viscosity of the polymer solution when Rh >> ξ. The transition for the particles to feel the macroscopic viscosity is well described by a switch function f_c(C_p)=exp[-(C_0/C_p)^α], which can be written as a function of R_h/ξ. It is found that f_c(C_p) is independent of the polymer molecular weight. As φc increases, the colloidal particles feel more and more depletion attraction and their settling velocity increases with increasing C_p.

  17. Surface forces of colloidal particles from micrometer to nanometer

    NASA Astrophysics Data System (ADS)

    Cho, Jeong-Min

    2003-10-01

    Surface forces of colloidal particles play critical roles in the macroscopic behavior of particulate systems such as dispersion and coagulation, adhesion and coating, and the rheological behavior of ceramic slurries. As particle size is decreased from micrometer to nanometer range, surface forces are increasingly important. Polyelectrolytes are the chemical additives commonly used to efficiently control the stabilization of the colloidal system. Their conformations on the solid surfaces as well as the interactions between the adsorbed polyelectrolytes are important issues in colloidal processing. Most experimental and theoretical approaches to the surface forces are based on particle sizes in the micrometer range. However, nanoparticles at close proximity or high solids loading are expected to show different behavior than what can be estimated from conventional theories such as continuum or mean field theories. My study examined the effect of pH, ionic strength, and molecular weight of the polyelectrolytes on the surface forces of colloidal particles by the interplay with the adsorption, turbidity, and direct surface force measurement in terms of the conformation on the solid surfaces. The colloid probe technique based on atomic force microscopy (AFM) is well established for micron size particles; and could be extended for nanosize particles by using carbon nanotubes as proximal probes. Nanotubes with their high aspect ratio avoid the contribution from cone shapes that happens with AFM tips. The difference in particle size significantly influences surface forces for sterically dispersed colloidal systems.

  18. Adsorbent and adsorbent bed for materials capture and separation processes

    DOEpatents

    Liu, Wei

    2011-01-25

    A method device and material for performing adsorption wherein a fluid mixture is passed through a channel in a structured adsorbent bed having a solid adsorbent comprised of adsorbent particles having a general diameter less than 100 um, loaded in a porous support matrix defining at least one straight flow channel. The adsorbent bed is configured to allow passage of a fluid through said channel and diffusion of a target material into said adsorbent under a pressure gradient driving force. The targeted molecular species in the fluid mixture diffuses across the porous support retaining layer, contacts the adsorbent, and adsorbs on the adsorbent, while the remaining species in the fluid mixture flows out of the channel.

  19. Effect and mechanism of siderite on reverse flotation of hematite

    NASA Astrophysics Data System (ADS)

    Yin, Wan-zhong; Li, Dong; Luo, Xi-mei; Yao, Jin; Sun, Qian-yu

    2016-04-01

    The effects of siderite on reverse flotation of hematite were investigated using micro flotation, adsorption tests, and Fourier transform infrared spectroscopy. The flotation results show that interactions between siderite and quartz are the main reasons that siderite significantly influences the floatability. The interactions are attributed to dissolved siderite species and fine siderite particles. The interaction due to the dissolved species is, however, dominant. Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculations reveal that adhesion on quartz increases when the siderite particle size decreases and that fine particles partly influence quartz floatability. Chemical solution calculations indicate that the dissolved species of siderite might convert the surface of active quartz to CaCO3 precipitates that can be depressed by starch. The theoretical calculations are in good agreement with the results of adsorption tests and FTIR spectroscopy and explain the reasons why siderite significantly influences reverse flotation of hematite.

  20. FLOTATION ROOM, LOOKING SOUTHWEST, WITH LEAD ROUGHER CELLS AT RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOTATION ROOM, LOOKING SOUTHWEST, WITH LEAD ROUGHER CELLS AT RIGHT AND LEAD CLEANER CELLS AT LEFT. NOTE SUNNYSIDE GOLD CORP. "SG" LOGO ON ROUGHER CELL LAUNDER. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  1. Separation of algal cells from water by column flotation

    SciTech Connect

    Liu, J.C.; Chen, Y.M.; Ju, Y.H.

    1999-08-01

    The dispersed air flotation (DiAF) process was utilized to separate algal cells (Chlorella sp.) from water. Two types of collector, cationic N-cetyl-N,N,N-trimethylammonium bromide (CTAB) and anionic sodium dodecylsulfate (SDS), were used. It was observed that 20% of cell removal was achieved in the presence of 40 mg/L of SDS, and ca. 86% of the cells were removed at 40 mg/L of CTAB. Upon the addition of 10 mg/L of chitosan, over 90% of the cells were removed when SDS (20 mg/L) was used as the collector. Air flow rate affected cell flotation slightly. Optimum pH values for cell flotation were from 4.0 to 5.0. Flotation efficiency decreased at high ionic strength. The electrostatic interaction between collector and cell surface plays a critical role in the separation processes.

  2. A parametric study of fine coal cleaning using column flotation

    SciTech Connect

    Parekh, B.K.; Groppo, J.G.; Bland, A.E.

    1986-01-01

    Recovery of fine coal is becoming an important and integral part of coal cleaning plants. Conventional froth flotation, which is commonly used in the coal industry, is inefficient at cleaning fine coal which contains large amounts of ultrafine ash or clays. The Kentucky Center for Energy Research Laboratory (KCERL) has been investigating an alternative method, counter-current column flotation, which is widely used in the mineral industry. Through an advanced cell design and counter-current wash of the froth, column flotation can produce a low-ash, clean coal product without sacrificing combustible recovery. An experimental program was conducted using a 2-inch internal diameter Canadian column flotation cell to examine the effect of various operating parameters on clean coal recovery and quality. The study investigated six operational parameters: feed rate, frother concentration, air flow rate, column height, pulp density and wash water rate.

  3. Flotation kinetics: Methods for estimating distribution of rate constants

    SciTech Connect

    Chander, S.; Polat, M.

    1995-12-31

    Many models have been suggested in the past to obtain a satisfactory fit to flotation data. Of these, first-order kinetics models with a distribution of flotation rate constants are most common. A serious limitation of these models is that type of the distribution must be pre-supposed. Methods to overcome this limitation are discussed and a procedure is suggested for estimating the actual distribution of flotation rate constants. It is demonstrated that the classical first-order model fits the data well when applied to coal flotation in narrow size-specific gravity intervals. When applied to material which is fractionated on the basis of size alone, the use of three parameter models, which were modified from their two parameter analogs such as rectangular, sinusoidal, and triangular, gave most reliable results.

  4. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation.

    PubMed

    Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Tsai, Pei-Wen; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Chen, Wen-Ming; Lee, Duu-Jong

    2011-01-01

    The Scenedesmus obliquus FSP-3, a species with excellent potential for CO(2) capture and lipid production, was harvested using dispersed ozone flotation. While air aeration does not, ozone produces effective solid-liquid separation through flotation. Ozone dose applied for sufficient algal flotation is similar to those used in practical drinking waterworks. The algae removal rate, surface charge, and hydrophobicity of algal cells, and fluorescence characteristics and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined during ozonation. Proteins released from tightly bound AOM are essential to modifying the hydrophobicity of bubble surfaces for easy cell attachment and to forming a top froth layer for collecting floating cells. Humic substances in the suspension scavenge dosed ozone that adversely affects ozone flotation efficiency of algal cells.

  5. The flotation column as a froth separator

    SciTech Connect

    Schultz, C.W.; Mehta, R.K.; Bates, J.B. )

    1991-12-01

    The Mineral Resources Institute, The University of Alabama, has for the past three years been engaged in a program to develop a beneficiation system for eastern (Devonian) oil shales. One objective of that program was to evaluate advanced technologies for effecting a kerogen-mineral matter separation. Column flotation was among the advanced technologies selected for evaluation. One observation made in the course of optimization testing was that introducing the feed into the froth (above the pulp- froth interface) resulted in an improved combination of concentrate grade and kerogen recovery. This observation was reported in a previous paper. Because the practice of maintaining the pulp froth interface below the feed point is contrary to conventional practice, it was decided to subject the observation to a systematic series of tests. This paper describes a recent series of tests and the results that were obtained.

  6. Zircon-rutile-ilmenite froth flotation process

    SciTech Connect

    Schmidt, R.; Denham, D.L. Jr.

    1992-04-21

    This patent describes a method for separating a mixture of minerals comprising at least zircon, ilmenite and rutile. It comprises adding an acid solution to the mixture to acidify to a pH of between about 2.0 and 6.0; adding starch to the mixture to depress the ilmenite and the rutile; adding a source of fluoride ions to the mixture to provide a negative surface charge on the zircon surface to activate the zircon; adding an amine cationic collector to the mixture to float the activated zircon; subjecting the mixture containing the added acid solution, the fluoride ions, the starch and the cationic collector, to froth flotation; and withdrawing a float product comprising the zircon and a sink product comprising the ilmenite and rutile.

  7. A comparison study of commercially-available column flotation technologies

    SciTech Connect

    Honaker, R.Q.; Mohanty, M.K.; Paul, B.C.; Ho, K.

    1994-12-31

    A direct comparison of three commercially-available column flotation technologies, i.e., Jameson Cell, Microcel, and Packed-Column, has been conducted using a {minus}100 mesh Illinois No. 5 flotation feed coal sample. The separation performance of each flotation technology was optimized and their performance levels compared on the basis of both ash rejection, sulfur rejection, and throughput capacities. A parametric study using a statistically-designed experimental program was conducted to optimize the critical operating parameter values of each column. The ultimate performance curves for each column were generated by conducting additional tests using the optimized operating parameter values. The throughput capacity of each flotation cell was determined by conducting tests over a range of feed rates at the maximum superficial gas rate while maintaining the other parameters at their optimum values. The separation performance achieved by each of the three flotation cells was found to be comparable to the idealistic flotation performance predicted by release analysis. However, the fraction of wash water reporting to tailings (bias factor) was found to be critical in achieving the near idealistic performance. The bias factor required for the Packed-Column was found to be less than that required by the other two flotation cells. The sulfur rejection achieved by the Microcel and the Packed-Column were found to be greater than that achieved by the Jameson Cell and all three produced sulfur rejections exceeding the values obtained from release analysis. The throughput capacity, on the other hand, differed among the three flotation columns. The Jameson Cell and the Microcel were found to have comparable throughput capacities while the Packed-Column was found to have a lower capacity.

  8. Cross flow cyclonic flotation column for coal and minerals beneficiation

    SciTech Connect

    Lai, R.W.; Patton, R.A.

    2000-05-02

    An apparatus and process are disclosed for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophilic tailings.

  9. Cross flow flotation column for coal and minerals beneficiation

    SciTech Connect

    Lai, Ralph W.; Patton, Robert A.

    1997-12-01

    An apparatus and process are disclosed for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophilic tailings.

  10. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOEpatents

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  11. Coal desulfurization by bacterial treatment and column flotation. Final report

    SciTech Connect

    Kawatra, S.K.

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  12. Investigation of foam flotation and phase partitioning techniques

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1985-01-01

    The present status of foam flotation as a separation process is evaluated and limitations for cells and proteins are determined. Possible applications of foam flotation to separations in microgravity are discussed. Application of the fluid mechanical aspects of foam separation techniques is made to phase partitioning in order to investigate the viscous drag forces that may effect the partitioning of cells in a two phase poly(ethylene glycol) and dextran system.

  13. Remediation of metal-contaminated urban soil using flotation technique.

    PubMed

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (<20 microm) caused a flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity.

  14. A review of zinc oxide mineral beneficiation using flotation method.

    PubMed

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy.

  15. Application of electrochemical investigation methods in high sulfur coal flotation

    SciTech Connect

    Zhu Hong; Ou Zeshen; Shi Xiuping; Shen Yanchun

    1997-12-31

    More and more attention has been paid to sulfur dioxide pollution caused by coal burning. It is important that sulfur in coal should be reduced before combustion. Flotation is an important method for the removal of pyrite from high sulfur coal. Many chemicals have been tested as a pyrite depressant. In recent years many tests have been done in the laboratory on the flotation behavior of pyrite, and the results have confirmed that the hydrophobicity of the pyrite surface is dependent on the redox potential of the pulp. The mechanism and the reaction products on the pyrite surface are discussed under various conditions. And pyrite depression in coal flotation by electrochemical control are further studied on the basis of what has been achieved. There are two methods in electrochemical control: chemical reagent and control potential by electrochemical instrument (``control potential`` for short). This paper studies pyrite depression in coal flotation by electrochemical control. The influence of sulfur removal in coal flotation has been probed by chemical reagent and control potential. Experiment shows that at low pulp potential the pyrite flotation is generally suppressed. This is new, efficient and simple method of pyrite depression without environmental pollution. The following main conclusions can be drawn from this study: (1) The control of pulp potential can regulate and lead to electrochemical reaction of the hydrophobicity or hydrophilicity on the pyrite surface; and (2) The characteristics of electrochemical methods are normal atmospheric temperature, simple technological process and strong selection.

  16. Boiling treatment of ABS and PS plastics for flotation separation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling.

  17. Selective flotation of fossil resins from Northeast China coal

    SciTech Connect

    Hua, X.; Bo, H.; Qing, X.; Lijian, L.; Rong-Zeng, Z.

    1999-07-01

    For a feed which came from Northeast China containing 11.4 per cent fossil resin, by conventional single stage flotation, the fossil resin concentrate gained had a low grade. Adjusting the pH of the feed slurry with HCl or CaO before flotation or treating the feed with H{sub 2}O{sub 2} solution before flotation did not improve the selectivity of flotation. In order to improve the selectivity of flotation for fossil resin, the authors treated the feed slurry of flotation with several surfactants. Although most of them did not work very well, one surfactant was able to increase the grade of concentrate to over 80% as the recovery rate was higher than 82%. The result of mechanism research into the performance of the best surfactant indicated that the selective adsorption of the hydrophobic side of the surfactant onto the surface of coal particle made it more hydrophilic, so that the difference between the hydrophobicity of the coal particle's surface and that of the fossil resin's surface was enlarged.

  18. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation.

  19. Modelling Of Flotation Processes By Classical Mathematical Methods - A Review

    NASA Astrophysics Data System (ADS)

    Jovanović, Ivana; Miljanović, Igor

    2015-12-01

    Flotation process modelling is not a simple task, mostly because of the process complexity, i.e. the presence of a large number of variables that (to a lesser or a greater extent) affect the final outcome of the mineral particles separation based on the differences in their surface properties. The attempts toward the development of the quantitative predictive model that would fully describe the operation of an industrial flotation plant started in the middle of past century and it lasts to this day. This paper gives a review of published research activities directed toward the development of flotation models based on the classical mathematical rules. The description and systematization of classical flotation models were performed according to the available references, with emphasize exclusively given to the flotation process modelling, regardless of the model application in a certain control system. In accordance with the contemporary considerations, models were classified as the empirical, probabilistic, kinetic and population balance types. Each model type is presented through the aspects of flotation modelling at the macro and micro process levels.

  20. Reaction of Photochemically Generated Organic Cations with Colloidal Clays.

    DTIC Science & Technology

    1983-05-01

    University of Notre Dame. IS. KEY WORDS (Continue on reverse aide if neceary end identify by block number) Chemistry of colloidal montmorillonite Absorption...Centlws m ftves n N mee.iy mi Identify by block number) Qi Organic radical cations will dimerize when adsorbed to the surface D of montmorillonite in...1 The Nature and Chemistry of Micelles .... 2 The Nature and Chemistry of Clay Minerals 5 Montmorillonite Catalyzed Color

  1. Investigation of Hydrodynamic and Depletion Interactions in Binary Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    James, Gregory K.

    Within a colloidal dispersion, the presence of negatively adsorbing material can produce a variety of effects on the dispersion properties and interactions. With increasing concentration, the negatively adsorbing material induces both depletion and structural forces on the dispersion, which can dramatically affect both colloidal stability and near-contact hydrodynamics. This project focused on expanding our understanding of the effects of such negatively adsorbing materials on both equilibrium and dynamic interactions between particles. The effects of charged, hard spheres (silica nanoparticle) on the hydrodynamic drag force a particle experiences as it approaches a flat plate were measured experimentally using colloid probe atomic force microscopy (CP-AFM). Deviation was found between the measured drag force and predictions for the drag force in a simple, Newtonian fluid. The measured drag force was always smaller than the predicted drag force as the particle approached contact with the plate. An effective viscosity, that approached the dispersing fluid viscosity at contact and the bulk viscosity at large separations, was determined for the system. This effective viscosity displayed similar characteristics to those predicted theoretically by Bhattacharya and Blawzdziewicz ( J. Chem. Phys. 2008, 128, 214704.). The effects of both anionic and cationic micelles on the depletion and structural forces in a colloidal dispersion were studied both experimentally (with CP-AFM) and theoretically. The depletion and structural forces between a microparticle and a flat plate were measured and compared with the depletion force predicted by the force-balance model of Walz and Sharma (J. Colloid Interface Sci. 1994, 168, 485-496.). Consistent with previous work, the measured depletion force for both micelles was smaller in magnitude than that predicted by the Walz and Sharma model for hard, charged spheres. It is theorized that rearrangement of the micelle surfaces charges or

  2. Organized assemblies of colloids formed at the poles of micrometer-sized droplets of liquid crystal.

    PubMed

    Wang, Xiaoguang; Miller, Daniel S; de Pablo, Juan J; Abbott, Nicholas L

    2014-11-28

    We report on the formation of organized assemblies of 1 μm-in-diameter colloids (polystyrene (PS)) at the poles of water-dispersed droplets (diameters 7-20 μm) of nematic liquid crystal (LC). For 4-cyano-4'-pentylbiphenyl droplets decorated with two to five PS colloids, we found 32 distinct arrangements of the colloids to form at the boojums of bipolar droplet configurations. Significantly, all but one of these configurations (a ring comprised of five PS colloids) could be mapped onto a local (non-close packed) hexagonal lattice. To provide insight into the origin of the hexagonal lattice, we investigated planar aqueous-LC interfaces, and found that organized assemblies of PS colloids did not form at these interfaces. Experiments involving the addition of salts revealed that a repulsive interaction of electrostatic origin prevented formation of assemblies at planar interfaces, and that regions of high splay near the poles of the LC droplets generated cohesive interactions between colloids that could overcome the repulsion. Support for this interpretation was obtained from a model that included (i) a long-range attraction between adsorbed colloids and the boojum due to the increasing rate of strain (splay) of LC near the boojum (splay attraction), (ii) an attractive inter-colloid interaction that reflects the quadrupolar symmetry of the strain in the LC around the colloids, and (iii) electrostatic repulsion between colloids. The model predicts that electrostatic repulsion between colloids can lead to a ∼1000kBT energy barrier at planar interfaces of LC films, and that the repulsive interaction can be overcome by splay attraction of the colloids to the boojums of the LC droplets. Overall, the results reported in this paper advance our understanding of the directed assembly of colloids at interfaces of LC droplets.

  3. Colloidal stability dependence on polymer adsorption through disjoining pressure isotherms.

    PubMed

    Goicochea, A Gama; Nahmad-Achar, E; Pérez, E

    2009-04-09

    The disjoining pressure of polymers confined by colloidal walls was computed using dissipative particle dynamics simulations at constant chemical potential, volume, and temperature. The polymers are able to adsorb on the surfaces according to two models. In the so-called surface-modifying polymers, all monomers composing the chains have the same affinity for the substrate, whereas for the end-grafted polymer only the monomer at one of the ends of the polymer molecule adsorbs on the colloidal surface, resembling the behavior of dispersing agents. We find that these adsorption models yield markedly different disjoining pressure isotherms, which in turn predict different stability conditions for the colloidal dispersion. Our results show that for end-grafted polymers, a larger degree of polymerization at the same monomer concentration leads to better stability than for the surface-modifying ones. But also the unbound monomers of the surface-modifying type dominate over both kinds of polymers at large surface distances. The origin of these differences when the chemical nature of monomers is the same, and molecular weight and polymer concentration are used to characterize colloidal stability, is found to be mainly entropic.

  4. Removal of Wax and Stickies from OCC by Flotation

    SciTech Connect

    M. R. Doshi; J. Dyer

    2000-01-31

    Laboratory research indicates that wax is amenable to removal by froth flotation provided it is free or detached from the fiber. The only effective means, at this time, of maximizing detachment of wax is through the use of low consistency pulping at temperatures above the melting point of wax. Wax removal from WCC through washing, flotation, or a combination of both was approximately 90% in these laboratory studies, indicating that not all of the wax is detached from fibers. These results were summarized in Annual Report 1, December 1, 1997 to November 30, 1998. Pilot trials were conducted in which the authors simulated a conventional OCC repulping process with and without flotation. Additional aggressive washing and water clarification were also examined during the study. The inclusion of flotation in the OCC stock preparation system significantly improved the removal of wax spots and extractable material from the furnish. Based on this study, the authors predict that a compact flotation system with 2 lb surfactant/ton of fiber would improve the OCC pulp quality with regard to wax spots by 60% and would not negatively affect strength properties. Flotation losses would be in the 2-5% range. Two mill trials were conducted during the last quarter of the project. One trial was carried out at Green Bay Packaging, Green Bay, WI, and a second trial was conducted at Menasha Corporation, Otsego, MI. A 250-liter Voith Sulzer Ecocell was used to evaluate the removal of wax and stickies from the OCC processing systems at these two mills. The inclusion of flotation in the OCC stock preparation system significantly improved the removal of wax spots from the furnish. The data indicate that flotation was more effective in removing wax and stickies than reverse cleaners. The mill trials have demonstrated that flotation can be substituted for or replace existing reverse cleaning systems and, in some cases, can replace dispersion systems. In this manner, the use of flotation can

  5. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  6. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  7. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    PubMed

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants.

  8. Some physicochemical aspects of water-soluble mineral flotation.

    PubMed

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation.

  9. Role of the collecting agent sorption forms in the elementary act of flotation

    SciTech Connect

    Abramov, A.A.

    2005-02-01

    A new hypothesis of flotation is substantiated based on the well-known hypotheses, theoretical analysis of the elementary act, and experimental results. The hypothesis presented allows the processes of flotation activation, depression, and intensification to be explained and optimized.

  10. A computer modelling study of the interaction of organic adsorbates with fluorapatite surfaces

    NASA Astrophysics Data System (ADS)

    Mkhonto, Donald; Ngoepe, Phuti E.; Cooper, Timothy G.; de Leeuw, Nora H.

    2006-08-01

    Computer modelling techniques were employed to investigate the adsorption of a selection of organic surfactant molecules to a range of fluorapatite surfaces, and new interatomic potential models for the apatite/adsorbate interactions are presented. The adsorbates coordinate mainly to the surfaces through interaction between their oxygen (or nitrogen) atoms to surface calcium ions, followed by hydrogen-bonded interactions to surface oxygen ions and, to a much lesser extent, surface fluorides. Bridging between two surface calcium ions is the preferred mode of adsorption, when the geometry of the adsorbates allows it, and multiple interactions between surfaces and adsorbate molecules lead to the largest adsorption energies. All adsorbates containing carbonyl and hydroxy groups interact strongly with the surfaces, releasing energies between approximately 100 and 215 kJ mol-1, but methylamine containing only the NH2 functional group adsorbs to the surfaces to a much lesser extent (25 95 kJ mol-1). Both hydroxy methanamide and hydroxy ethanal prefer to adsorb to some surfaces in an eclipsed conformation, which is a requisite for these functional groups. Sorption of the organic material by replacement of pre-adsorbed water at different surface features is calculated to be mainly exothermic for methanoic acid, hydroxy methanamide and hydroxy ethanal molecules, whereas methyl amine would not replace pre-adsorbed water at the fluorapatite surfaces. The efficacy of the surfactant molecules is calculated to be hydroxy aldehydes > alkyl hydroxamates > carboxylic acids ≫ alkyl amines. The results from this study suggest that computer simulations may provide a route to the identification or even design of particular organic surfactants for use in mineral separation by flotation.

  11. Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata.

    PubMed

    Baken, Stijn; Nawara, Sophie; Van Moorleghem, Christoff; Smolders, Erik

    2014-08-01

    Phosphorus (P) is a limiting nutrient in many aquatic systems. The bioavailability of P in natural waters strongly depends on its speciation. In this study, structural properties of iron colloids were determined and related to their effect on P sorption and P bioavailability. The freshwater green alga Raphidocelis subcapitata was exposed to media spiked with radiolabelled (33)PO4, and the uptake of (33)P was monitored for 1 h. The media contained various concentrations of synthetic iron colloids with a size between 10 kDa and 0.45 μm. The iron colloids were stabilised by natural organic matter. EXAFS spectroscopy showed that these colloids predominantly consisted of ferrihydrite with small amounts of organically complexed Fe. In colloid-free treatments, the P uptake flux by the algae obeyed Michaelis-Menten kinetics. In the presence of iron colloids at 9 or 90 μM Fe, corresponding to molar P:Fe ratios between 0.02 and 0.17, the truly dissolved P (<10 kDa) was between 4 and 60% of the total dissolved P (<0.45 μm). These colloids reduced the P uptake flux by R. subcapitata compared to colloid-free treatments at the same total dissolved P concentration. However, the P uptake flux from colloid containing solutions equalled that from colloid-free ones when expressed as truly dissolved P. This demonstrates that colloidal P did not contribute to the P uptake flux. It is concluded that, on the short term, phosphate adsorbed to ferrihydrite colloids is not available to the green alga R. subcapitata.

  12. Commercialization of the Microcel{trademark} column flotation technology

    SciTech Connect

    Luttrell, G.H.; Yoon, R.H.

    1994-12-31

    Hydrodynamic analyses suggest that the recovery of fine particles by flotation can be improved through the use of smaller air bubbles. Unfortunately, many of the commercial methods for generating small air bubbles are difficult to scale-up and maintain. To overcome these problems, a novel flotation system known as Microcel{trademark} column flotation was developed at Virginia Tech. In this process, compressed air is injected into flotation pulp that is circulated through a parallel set of static in-line mixers. This arrangement provides a means of creating high energy dissipation, which is essential for producing small bubbles, without creating serious wear and maintenance problems. This article reviews some of the fundamental principles involved m the development of the Microcel{trademark} technology and provides guidelines for designing an effective fine coal flotation system. An example of a commercial installation of the Microcel{trademark} technology is also presented along with the economic benefits of using this advanced fine coal cleaning technique.

  13. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United Stat

    1991-05-15

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. Research topics covered during this quarter include the characterization of the base coals, various flotation studies on optimization and pyrite rejection, and a detailed flotation kinetic study. The effect of hexanol, butanol, dodecane, and polyethylene glycol on flotation is described. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying weathered degrees, namely, open, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals if weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 35 figs., 17 tabs.

  14. High intensity conditioning to improve flotation of gold fine particles

    SciTech Connect

    Valderrama, L.; Perez, C.; Rubio, J.

    1995-12-31

    This work describes the effect of the degree of energy transferred to the pulp, during the conditioning stage, on gold flotation fines recovery, grade and kinetics, with three types of frother (Dowfroth 250, pine oil and MIBC) and amyl xanthate as collector. Best results show an increase in 24% recovery and 50% in concentrate grade, depending on the intensity of conditioning and type of frother (better with Dowfroth 250). For low or intermediate energies (0.5--1.5 kWh/m3 pulp), the fine particles adhere to larger ones, increasing the recovery due to a mixture of carrier (pyrite, in this case) and autogeneous carrier flotation and at higher shear (2--3 kWh/m3 pulp), gold fine particles aggregate themselves. These phenomena are demonstrated by measurements of flotation rate, true flotation (flotation by actual particle-bubble adhesion), and by the amount of entrained particles. Alternatives for this type of pulp conditioning and mechanisms involved are discussed.

  15. Nanosize electropositive fibrous adsorbent

    DOEpatents

    Tepper, Frederick; Kaledin, Leonid

    2005-01-04

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2 /g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.

  16. 46 CFR 180.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Personal flotation devices carried in addition to life... Jackets § 180.72 Personal flotation devices carried in addition to life jackets. (a) Equipment carried... flotation devices (PFD) approved in accordance with § 160.077 of this chapter, or other standard...

  17. 46 CFR 28.110 - Life preservers or other personal flotation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Life preservers or other personal flotation devices. 28... other personal flotation devices. (a) Except as provided by § 28.305 of this chapter, each vessel must be equipped with at least one immersion suit, exposure suit, or wearable personal flotation device...

  18. 46 CFR 180.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Personal flotation devices carried in addition to life... Jackets § 180.72 Personal flotation devices carried in addition to life jackets. (a) Equipment carried... flotation devices (PFD) approved in accordance with § 160.077 of this chapter, or other standard...

  19. 33 CFR 183.335 - Level flotation test without weights for persons capacity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Level flotation test without..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of 2 Horsepower or Less Tests § 183.335 Level flotation...

  20. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Personal flotation devices and ring life buoys. 169.741... SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.741 Personal flotation devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  1. 33 CFR 175.25 - Enforcement of State requirements for children to wear personal flotation devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Enforcement of State requirements for children to wear personal flotation devices. 175.25 Section 175.25 Navigation and Navigable Waters... Flotation Devices § 175.25 Enforcement of State requirements for children to wear personal flotation...

  2. 33 CFR 175.25 - Enforcement of State requirements for children to wear personal flotation devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Enforcement of State requirements for children to wear personal flotation devices. 175.25 Section 175.25 Navigation and Navigable Waters... Flotation Devices § 175.25 Enforcement of State requirements for children to wear personal flotation...

  3. 46 CFR 28.110 - Life preservers or other personal flotation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Life preservers or other personal flotation devices. 28... other personal flotation devices. (a) Except as provided by § 28.305 of this chapter, each vessel must be equipped with at least one immersion suit, exposure suit, or wearable personal flotation device...

  4. 46 CFR 117.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Personal flotation devices carried in addition to life... PASSENGERS LIFESAVING EQUIPMENT AND ARRANGEMENTS Ring Life Buoys and Life Jackets § 117.72 Personal flotation... persons working near or over the water. (d) Commercial hybrid personal flotation devices (PFD) approved...

  5. Engineering development of advanced physical fine coal cleaning technolgies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    The Task 6 effort involves three main elements including column cell development, flotation circuit testing and flotation cell modeling. The work outlined is to research column designs and operation parameters in developing an optimized column flotation cell (OCFC) to meet the overall program objectives. Any design parameters that were not evaluated as part of the optimized column development work will be reviewed and tested so as to incorporate all possible scenarios in presenting DOE with the best available flotation process for use in the 2 to 3 ton per hour POC. Following development of the OCFC, various flotation circuit configurations will be evaluated determine the best'' circuit design for the 2 to 3 ton per hour POC. Single and multiple stage flotation, grab and run, rougher/scavenger/cleaner, etc., test circuits will be tested as part of this effort. Upon completion of this test work, the best'' possible flotation cell will have been tested in a number of possible flotation circuit designs to possibly provide the best'' flotation approach in meeting the design criteria. In conjunction with the flotation test effort, model development work will be conducted to provide a tool in evaluating the various flotation circuit configurations and in predicting flotation performance. The model will be useful in selecting operating conditions in the POC and in evaluating the performance of the POC.

  6. 33 CFR 175.25 - Enforcement of State requirements for children to wear personal flotation devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Enforcement of State requirements for children to wear personal flotation devices. 175.25 Section 175.25 Navigation and Navigable Waters... Flotation Devices § 175.25 Enforcement of State requirements for children to wear personal flotation...

  7. 46 CFR 180.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Personal flotation devices carried in addition to life... Jackets § 180.72 Personal flotation devices carried in addition to life jackets. (a) Equipment carried... flotation devices (PFD) approved in accordance with § 160.077 of this chapter, or other standard...

  8. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Personal flotation devices and ring life buoys. 169.741... SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.741 Personal flotation devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  9. 33 CFR 175.25 - Enforcement of State requirements for children to wear personal flotation devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Enforcement of State requirements for children to wear personal flotation devices. 175.25 Section 175.25 Navigation and Navigable Waters... Flotation Devices § 175.25 Enforcement of State requirements for children to wear personal flotation...

  10. Where we are in flotation chemistry after 70 years of research

    SciTech Connect

    Fuerstenau, D.W.

    1995-12-31

    The success of industrial flotation separations has been the design of specific chemical schemes for regulating the bulk and the surface chemistry of the system. Highlights of fundamental research on the nature of flotation reagents and their mode of action in flotation, which has been carried on for about the past 65 years, is briefly reviewed.

  11. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Personal flotation devices and ring life buoys. 169.741... SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.741 Personal flotation devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  12. 46 CFR 180.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Personal flotation devices carried in addition to life... Jackets § 180.72 Personal flotation devices carried in addition to life jackets. (a) Equipment carried... flotation devices (PFD) approved in accordance with § 160.077 of this chapter, or other standard...

  13. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., shall be of materials commercially manufactured for marine use. Flotation materials shall be fabricated... materials shall be resistant to puncture, penetration, damage by animals, and fire. Any flotation within 40... manufactured flotation device or material specifically designed for marine applications (for example,...

  14. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., shall be of materials commercially manufactured for marine use. Flotation materials shall be fabricated... materials shall be resistant to puncture, penetration, damage by animals, and fire. Any flotation within 40... manufactured flotation device or material specifically designed for marine applications (for example,...

  15. 33 CFR 149.331 - What are the requirements for hybrid personal flotation devices?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hybrid personal flotation devices? 149.331 Section 149.331 Navigation and Navigable Waters COAST GUARD... hybrid personal flotation devices? (a) The operator must ensure that the use and stowage of all commercial hybrid personal flotation devices (PFDs) used as work vests comply with the procedures...

  16. 33 CFR 149.331 - What are the requirements for hybrid personal flotation devices?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hybrid personal flotation devices? 149.331 Section 149.331 Navigation and Navigable Waters COAST GUARD... hybrid personal flotation devices? (a) The operator must ensure that the use and stowage of all commercial hybrid personal flotation devices (PFDs) used as work vests comply with the procedures...

  17. 33 CFR 149.331 - What are the requirements for hybrid personal flotation devices?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hybrid personal flotation devices? 149.331 Section 149.331 Navigation and Navigable Waters COAST GUARD... hybrid personal flotation devices? (a) The operator must ensure that the use and stowage of all commercial hybrid personal flotation devices (PFDs) used as work vests comply with the procedures...

  18. 33 CFR 149.331 - What are the requirements for hybrid personal flotation devices?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hybrid personal flotation devices? 149.331 Section 149.331 Navigation and Navigable Waters COAST GUARD... hybrid personal flotation devices? (a) The operator must ensure that the use and stowage of all commercial hybrid personal flotation devices (PFDs) used as work vests comply with the procedures...

  19. 46 CFR 180.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Personal flotation devices carried in addition to life... Jackets § 180.72 Personal flotation devices carried in addition to life jackets. (a) Equipment carried... flotation devices (PFD) approved in accordance with § 160.077 of this chapter, or other standard...

  20. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Personal flotation devices and ring life buoys. 169.741... SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.741 Personal flotation devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  1. 33 CFR 175.25 - Enforcement of State requirements for children to wear personal flotation devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Enforcement of State requirements for children to wear personal flotation devices. 175.25 Section 175.25 Navigation and Navigable Waters... Flotation Devices § 175.25 Enforcement of State requirements for children to wear personal flotation...

  2. 33 CFR 149.331 - What are the requirements for hybrid personal flotation devices?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hybrid personal flotation devices? 149.331 Section 149.331 Navigation and Navigable Waters COAST GUARD... hybrid personal flotation devices? (a) The operator must ensure that the use and stowage of all commercial hybrid personal flotation devices (PFDs) used as work vests comply with the procedures...

  3. 46 CFR 117.72 - Personal flotation devices carried in addition to life jackets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Personal flotation devices carried in addition to life... PASSENGERS LIFESAVING EQUIPMENT AND ARRANGEMENTS Ring Life Buoys and Life Jackets § 117.72 Personal flotation... persons working near or over the water. (d) Commercial hybrid personal flotation devices (PFD) approved...

  4. Showing particles their place: deterministic colloid immobilization by gold nanomeshes

    NASA Astrophysics Data System (ADS)

    Stelling, Christian; Mark, Andreas; Papastavrou, Georg; Retsch, Markus

    2016-07-01

    The defined immobilization of colloidal particles on a non-close packed lattice on solid substrates is a challenging task in the field of directed colloidal self-assembly. In this contribution the controlled self-assembly of polystyrene beads into chemically modified nanomeshes with a high particle surface coverage is demonstrated. For this, solely electrostatic interaction forces were exploited by the use of topographically shallow gold nanomeshes. Employing orthogonal functionalization, an electrostatic contrast between the glass surface and the gold nanomesh was introduced on a sub-micron scale. This surface charge contrast promotes a highly site-selective trapping of the negatively charged polystyrene particles from the liquid phase. AFM force spectroscopy with a polystyrene colloidal probe was used to rationalize this electrostatic focusing effect. It provides quantitative access to the occurring interaction forces between the particle and substrate surface and clarifies the role of the pH during the immobilization process. Furthermore, the structure of the non-close packed colloidal monolayers can be finely tuned by varying the ionic strength and geometric parameters between colloidal particles and nanomesh. Therefore one is able to specifically and selectively adsorb one or several particles into one individual nanohole.The defined immobilization of colloidal particles on a non-close packed lattice on solid substrates is a challenging task in the field of directed colloidal self-assembly. In this contribution the controlled self-assembly of polystyrene beads into chemically modified nanomeshes with a high particle surface coverage is demonstrated. For this, solely electrostatic interaction forces were exploited by the use of topographically shallow gold nanomeshes. Employing orthogonal functionalization, an electrostatic contrast between the glass surface and the gold nanomesh was introduced on a sub-micron scale. This surface charge contrast promotes a

  5. Selective flotation of PVC using gelatin and lignin alkali.

    PubMed

    Yenial, Unzile; Kangal, Olgaç; Güney, Ali

    2013-06-01

    Recycling has become one of the most important issues as a result of increasing waste mass in present day. This is especially important for polymer wastes as they are hard to degenerate in nature. Today, most of the practical methods used for the recycling of waste mass, such as hand sorting, gravity separation, etc., cannot be performed successfully owing to close densities of polymers. Froth flotation can be used successfully and economically for this purpose. The main objective of this study was to investigate the effect of plasticizer reagents and the success of froth flotation at plastic recycling. In this study, lignin alkali and gelatin were used as plasticizer reagents. The effect of these reagents was searched with the parameters of pH, concentration, conditioning and flotation time. In the case of post-consumed polyethylene terephthalate and polyvinyl chloride (PVC), 98.9% purity of PVC was obtained at optimum conditions.

  6. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.

    PubMed

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S; Raoof, Amir

    2014-08-01

    A mathematical model is developed to simulate the transport and deposition of virus-sized colloids in a cylindrical pore throat considering various processes such as advection, diffusion, colloid-collector surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-collector interaction forces dominate the transport in the potential region where colloid deposition occurs. The governing equations are non-dimensionalized and solved numerically. A sensitivity analysis indicates that the virus-sized colloid transport and deposition is significantly affected by various pore-scale parameters such as the surface potentials on colloid and collector, ionic strength of the solution, flow velocity, pore size and colloid size. The adsorbed concentration and hence, the favorability of the surface for adsorption increases with: (i) decreasing magnitude and ratio of surface potentials on colloid and collector, (ii) increasing ionic strength and (iii) increasing pore radius. The adsorbed concentration increases with increasing Pe, reaching a maximum value at Pe=0.1 and then decreases thereafter. Also, the colloid size significantly affects particle deposition with the adsorbed concentration increasing with increasing particle radius, reaching a maximum value at a particle radius of 100nm and then decreasing with increasing radius. System hydrodynamics is found to have a greater effect on larger particles than on smaller ones. The secondary minimum contribution to particle deposition has been found to increase as the favorability of the surface for adsorption decreases. The sensitivity of the model to a given parameter will be high if

  7. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  8. Nucleation in food colloids

    NASA Astrophysics Data System (ADS)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  9. Column flotation results at Powell Mountain Coal Company

    SciTech Connect

    Peters, W.J. Parekh, B.K. )

    1992-01-01

    In 1989 a column flotation process was developed at the CAER, which enabled the economical recovery of coal fines from high-ash fine refuse. The laboratory design was expanded to commercial scale and installed at the Mayflower Coal Preparation Plant of Powell Mountain Coal Company in December, 1989. It has been in continuous operation there since that time. This article is a summary of the past two years' experiences with this applied technology, applicable dewatering tests and flotation tests results from the plant.

  10. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-12-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250{mu}m) and ultrafine (-5{mu}m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column`s liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  11. Enhanced column flotation of fine and ultrafine coal

    SciTech Connect

    Slomka, B.J.; Buttermore, W.H.; Birlingmair, D.H.; Dawson, M.R.; Pollard, J.L.; Enustun, B.V.

    1992-01-01

    A 2-inch diameter, twenty-foot tall, glass laboratory flotation column was modified to incorporate digital control of critical operating parameters. Different column control strategies were explored including location of the froth interface, and manipulation of volumetric flow ratios. Column flotation tests were performed with both fine (-250[mu]m) and ultrafine (-5[mu]m) Pittsburgh seam coal. Both moisture- and ash-free (MAF) recovery, and ash rejection were improved when the partition of the column's liquid content into froth and tailings was directly controlled. MAF recovery and ash rejection were also enhanced by brief exposure of the coarser feed to pulsed sonic energy.

  12. In-plant testing of microbubble column flotation

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1990-01-01

    During the past year, a joint project between the US Department of Energy (DOE), the Virginia Center for Coal and Minerals Processing (VCCMP) and the Shell Mining Corporation (SMC) was initiated to implement the testing of a full-scale microbubble flotation column. The work is being carried out at the Marrowbone Preparation Plant, located near Naugatuck in southwestern West Virginia. The primary objective of this effort was to determine the feasibility of using microbubble column flotation for the recovery of coal fines from a classifying cyclone overflow stream that is presently being discarded as refuse.

  13. Selective flotation of fossil resin from western coal

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1992-03-30

    Economic analysis of this fossil resin project mainly focused on the flotation plant which is intended to be designed with data obtained from the current proof-of-concept flotation test program. It is believed that the analysis of this step is fairly accurate. The other two economic aspects of fossil in resin recovery/utilization are refining and marketing. Cost data used for refining were from an estimated base and are believed to have a large variance. Marketing data used were obtained from two independent marketing studies which were made available on confidentiality basis. Nevertheless, the data used are believed to be fairly accurate with respect to the market potential.

  14. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  15. COLLOIDS. Colloidal matter: Packing, geometry, and entropy.

    PubMed

    Manoharan, Vinothan N

    2015-08-28

    Colloidal particles with well-controlled shapes and interactions are an ideal experimental system for exploring how matter organizes itself. Like atoms and molecules, these particles form bulk phases such as liquids and crystals. But they are more than just crude analogs of atoms; they are a form of matter in their own right, with complex and interesting collective behavior not seen at the atomic scale. Their behavior is affected by geometrical or topological constraints, such as curved surfaces or the shapes of the particles. Because the interactions between the particles are often short-ranged, we can understand the effects of these constraints using geometrical concepts such as packing. The geometrical viewpoint gives us a window into how entropy affects not only the structure of matter, but also the dynamics of how it forms.

  16. EVALUATION OF A METHOD USING COLLOIDAL GAS APHRONS TO REMEDIATE METALS-CONTAMINATED MINE DRAINAGE WATERS

    SciTech Connect

    R. Williams Grimes

    2002-06-01

    Experiments were conducted in which three selected metals-contaminated mine drainage water samples were treated by chemical precipitation followed by flotation using colloidal gas aphrons (CGAs) to concentrate the precipitates. Drainage water samples used in the experiments were collected from an abandoned turn-of-the-century copper mine in south-central Wyoming, an inactive gold mine in Colorado's historic Clear Creek mining district, and a relatively modern gold mine near Rapid City, South Dakota. The copper mine drainage sample was nearly neutral (pH 6.5) while the two gold mine samples were quite acidic (pH {approx}2.5). Metals concentrations ranged from a few mg/L for the copper mine drainage to several thousand mg/L for the sample from South Dakota. CGAs are emulsions of micrometer-sized soap bubbles generated in a surfactant solution. In flotation processes the CGA microbubbles provide a huge interfacial surface area and cause minimal turbulence as they rise through the liquid. CGA flotation can provide an inexpensive alternative to dissolved air flotation (DAF). The CGA bubbles are similar in size to the bubbles typical of DAF. However, CGAs are generated at ambient pressure, eliminating the need for compressors and thus reducing energy, capital, and maintenance costs associated with DAF systems. The experiments involved precipitation of dissolved metals as either hydroxides or sulfides followed by flotation. The CGAs were prepared using a number of different surfactants. Chemical precipitation followed by CGA flotation reduced contaminant metals concentrations by more than 90% for the copper mine drainage and the Colorado gold mine drainage. Contaminant metals were concentrated into a filterable sludge, representing less than 10% of the original volume. CGA flotation of the highly contaminated drainage sample from South Dakota was ineffective. All of the various surfactants used in this study generated a large sludge volume and none provided a significant

  17. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOEpatents

    Klunder, Edgar B.

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  18. Oil removal from produced water by conjugation of flotation and photo-Fenton processes.

    PubMed

    da Silva, Syllos Santos; Chiavone-Filho, Osvaldo; de Barros Neto, Eduardo Lins; Foletto, Edson Luiz

    2015-01-01

    The present work investigates the conjugation of flotation and photo-Fenton techniques on oil removal performance from oilfield produced water. The experiments were conducted in a column flotation and annular lamp reactor for induced air flotation and photodegradation steps, respectively. A nonionic surfactant was used as a flotation agent. The flotation experimental data were analyzed in terms of a first-order kinetic rate model. Two experimental designs were employed to evaluate the oil removal efficiency: fractional experimental design and central composite rotational design (CCRD). Overall oil removal of 99% was reached in the optimum experimental condition after 10 min of flotation followed by 45 min of photo-Fenton. The results of the conjugation of induced air flotation and photo-Fenton processes allowed meeting the wastewater limits established by the legislations for disposal.

  19. Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993

    SciTech Connect

    Peng, F.F.

    1996-05-01

    There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

  20. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    SciTech Connect

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  1. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  2. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  3. New aspects in the theory and practice of column flotation

    SciTech Connect

    Rubinstein, J.; Badenicov, V.

    1995-12-31

    The high efficiency of column flotation allows a reduction in process time, a decrease in the number of cleaner stages and in the volume of the circulating load in the flotation circuit, and, as a result of this, an increase in consistency and reliability of operations. Unique multisectional column flotation apparatuses were developed. To attain that aim particular hydrodynamics and aeration regime is established in each section of the column, operational variables being adjusted according to the floatability of the material. Therefore in multisectional column machines, the material-apparatus feedback can be established, and process variables optimized depending on the characteristics of the floated materials. Successful operation was reported of the new generation of columns with cell volumes of 10 to 80 m{sup 3} and the height of 4--6 m in copper, molybdenum, antimony, tungsten and nickel ores and coal slurry processing at different plants. Operational experience of these cells showed their considerable design and operational advantages and verified the proposed options and relationships. The new apparatus is provided with a pneumohydraulic aerator allowing to control bubble size distribution, the service life of the aerator is not less than two years. A multilevel flotation model was developed and used to work out a technique of column design and process parameters calculation. A method of the apparatus design parameters calculation based on laboratory test results (scaling up) was worked out.

  4. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  5. 21 CFR 880.5150 - Nonpowered flotation therapy mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonpowered flotation therapy mattress. 880.5150 Section 880.5150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... materials that have the functionally equivalent effect of supporting a patient and avoiding excess...

  6. 21 CFR 880.5150 - Nonpowered flotation therapy mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonpowered flotation therapy mattress. 880.5150 Section 880.5150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... materials that have the functionally equivalent effect of supporting a patient and avoiding excess...

  7. Flotation of fine coal with different volatility in China

    SciTech Connect

    Guo, M.X.; Hui, W.D.; An, Z.; Ren, Z.M.; Wang, Q.F.; Dai, Z.; Xiao, Z.Q.; Cui, Y.B.; Zhang, X.J.

    1997-12-31

    This paper contains three parts. The first part interprets the surface hydrophobicity and theoretical floatability of different rank coals from the organic molecular component point of view. The theoretical floatability between bituminous and anthracite is solved by the molecular theory. The second part describes a study of the interactive energy between hydrocarbon oil and coal particle using DLVO theory showing that the controlling factor in determining the repulsive energy barrier preventing oil from wetting and spreading on the coal surface is the same sign charge and Zeta potential. Some surfactants to promote the interaction of hydrocarbon oil and coal surface were investigated. The batch tests show a new flotation promoter having a higher efficiency and performance. A discussion is centered on the relationship between the floatabilities of coals with different volatile matter and the character of the new reagent. A molecular theory for the explanation of the interaction mechanism of the flotation reagent on coal surface was summarized. A survey of four coal preparation plants (Xiqu, Malan, Taiyuan and Tianzhuang) in Shanxi and Henan provinces was introduced. The flotation performance of coal with different volatility using commercial flotation cells in the above mentioned plants was tested.

  8. 21 CFR 890.5170 - Powered flotation therapy bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered flotation therapy bed. 890.5170 Section 890.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices §...

  9. 21 CFR 890.5170 - Powered flotation therapy bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered flotation therapy bed. 890.5170 Section 890.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices §...

  10. 21 CFR 890.5170 - Powered flotation therapy bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered flotation therapy bed. 890.5170 Section 890.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices §...

  11. 33 CFR 183.325 - Flotation test for persons capacity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Boats Rated for Engines of 2 Horsepower or Less Tests § 183.325 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  12. 33 CFR 183.225 - Flotation test for persons capacity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Boats Rated for Engines of More Than 2 Horsepower Tests § 183.225 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  13. 21 CFR 890.5170 - Powered flotation therapy bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered flotation therapy bed. 890.5170 Section 890.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices §...

  14. 21 CFR 890.5170 - Powered flotation therapy bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered flotation therapy bed. 890.5170 Section 890.5170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices §...

  15. Selective flotation of fossil resin from western coal

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1992-03-20

    The test program has demonstrated that: (1) technically, the new flotation technologies discovered at the University of Utah and then improved upon by Advanced Processing Technologies, Inc. provide a highly efficient means to selectively recover fossil resin from coal. The proof-of-concept continuous flotation circuit resulted in fossil resin recovery with the same separation efficiency as was obtained from laboratory bench-scale testing (more than 80% recovery at about 80% concentrate grade); and (2) economically, the selective flotation process has been shown to be sufficiently profitable to justify the development of a fossil resin industry based on this new flotation process. The proof-of-concept testing has resulted in significant interest from several coal mining companies and has sparked the desire of local and state government to establish a fossil resin industry in the Wasatch Plateau coal field. In this view, the results from the current proof-of-concept testing program have been successful. This special report provides theoretical and analytical data on some surface chemistry work pertinent to fossil resin characterization, and other efforts carried out during the past months.

  16. Micro-agglomerate flotation for deep cleaning of coal

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-04-01

    We are investigating the use of a hybrid process, Micro-agglomerate flotation, which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated.Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  17. Micro-agglomerate flotation for deep cleaning of coal

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-01-01

    We are investigating the use of a hybrid process - Micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  18. Engineering development of advanced froth flotation. Volume 2, Final report

    SciTech Connect

    Ferris, D.D.; Bencho, J.R.; Torak, E.R.

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  19. Surface chemistry control for selective fossil resin flotation

    DOEpatents

    Miller, J.D.; Yi, Y.; Yu, Q.

    1994-06-07

    A froth flotation method is disclosed for separating fine particles of fossil resin by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method. 12 figs.

  20. Surface chemistry control for selective fossil resin flotation

    DOEpatents

    Miller, Jan D.; Yi, Ye; Yu, Qiang

    1994-01-01

    A froth flotation method is disclosed for separating fine particles of fossil resin from by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method.

  1. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880.5550 Section 880.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital...

  2. 33 CFR 142.45 - Personal flotation devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Personal flotation devices. 142.45 Section 142.45 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES WORKPLACE SAFETY AND HEALTH Personal Protective...

  3. Frogmen on Apollo command module boilerplate flotation collar during recovery

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Apollo command module boilerplate floats in the Atlantic Ocean during a practice recovery exercise. Frogmen in a liferaft and on the flotation collar secure the command module boilerplate for hoisting onto a nearby recovery ship. The exercise was conducted in preparation for the forthcoming Apollo-Saturn 201 (AS-201) mission.

  4. Navy frogmen attach flotation collar to Apollo 7 command module

    NASA Technical Reports Server (NTRS)

    1968-01-01

    U.S. Navy frogmen attach a flotation collar to the Apollo 7 command module during recovery operations in the Atlantic. The Apollo 7 spacecraft splashed down at 7:11 a.m., October 22, 1968, approximately 200 nautical miles south-southwest of Bermuda.

  5. 33 CFR 183.225 - Flotation test for persons capacity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Boats Rated for Engines of More Than 2 Horsepower Tests § 183.225 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  6. 33 CFR 183.325 - Flotation test for persons capacity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Boats Rated for Engines of 2 Horsepower or Less Tests § 183.325 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  7. 33 CFR 183.225 - Flotation test for persons capacity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boats Rated for Engines of More Than 2 Horsepower Tests § 183.225 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  8. 33 CFR 183.325 - Flotation test for persons capacity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boats Rated for Engines of 2 Horsepower or Less Tests § 183.325 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  9. 33 CFR 183.325 - Flotation test for persons capacity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Boats Rated for Engines of 2 Horsepower or Less Tests § 183.325 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  10. 33 CFR 183.225 - Flotation test for persons capacity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Boats Rated for Engines of More Than 2 Horsepower Tests § 183.225 Flotation test for persons capacity... water as follows: (a) The angle of heel does not exceed 10 degrees from the horizontal. (b) Any point on either the forward or aft reference area is above the surface of the water. (c) The reference depth...

  11. Fractal nematic colloids

    PubMed Central

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  12. Fractal nematic colloids

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  13. Fractal nematic colloids.

    PubMed

    Hashemi, S M; Jagodič, U; Mozaffari, M R; Ejtehadi, M R; Muševič, I; Ravnik, M

    2017-01-24

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  14. Removal of arsenopyrite from complex sulfide minerals by froth flotation

    NASA Astrophysics Data System (ADS)

    Choi, Jin-young; Kim, Yang-soo; Kim, Dong-gyu; Han, Oh-hyung; Park, Chul-hyun

    2016-04-01

    Arsenic (As) is one of hazardous materials and a penalty element in metal concentrates and so metal concentrates containing arsenic of over 0.5% has been currently restricted in import and export trade. It also corrodes a smelting furnace as well as shortens its life cycle. In korea, Janggun mine that produces galena (PbS) /sphalerite (ZnS) concentrate containing arsenic of 1.78% charges a penalty of US 2/ton to LS-Nikko smelter. Hence in this work, flotation tests for removal of arsenopyrite (FeAsS) from sulfide mineral concentrates were carried out using lab scale flotation cell, which maintain grade and recovery of PbS and ZnS in comparison to flotation plant. Particularly, this study was focused on investigating the combination of several chemical reagents (depressant, collector, activator and etc.) that affect flotation performance. In the straight differential flotation for PbS, a PbS grade of 75.80% and a recovery of 90.12% could be obtained with FeAsS removal of 84.1% (0.2% As) under the conditions of 20% feed solids concentration, pH 8.5, 50g/t frother (AF65), 40g/t collector (AP242) and 800g/t As depressant (NaHSO3) and 600g/t Zn depressant (ZnSO4). In the ZnS flotation, the maximum separation achievable for ZnS using froth flotation has been shown to be a grade of 72.57% and a recovery of 95.43%. At this time, FeAsS removal of 87.8% (0.16% As) could be successfully accomplished under pH 11, and 800g/t Zn activator (CuSO4), 75g/t frother (AF65), 60g/t collector (AP211) and 600g/t As depressant (NaHSO3). Acknowledgments This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  15. Colloidal Covalent Organic Frameworks

    PubMed Central

    2017-01-01

    Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material’s morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications. PMID:28149954

  16. Adsorbed Water Illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil.

    In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer

    USGS Publications Warehouse

    Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.

    1999-01-01

    Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by

  18. Colloidal crystals and water: Perspectives on liquid-solid nanoscale phenomena in wet particulate media.

    PubMed

    Gallego-Gómez, Francisco; Morales-Flórez, Víctor; Morales, Miguel; Blanco, Alvaro; López, Cefe

    2016-08-01

    Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media.

  19. Coarse-grained depletion potentials for anisotropic colloids: Application to lock-and-key systems

    NASA Astrophysics Data System (ADS)

    Law, Clement; Ashton, Douglas J.; Wilding, Nigel B.; Jack, Robert L.

    2016-08-01

    When colloids are mixed with a depletant such as a non-adsorbing polymer, one observes attractive effective interactions between the colloidal particles. If these particles are anisotropic, analysis of these effective interactions is challenging in general. We present a method for inference of approximate (coarse-grained) effective interaction potentials between such anisotropic particles. Using the example of indented (lock-and-key) colloids, we show how numerical solutions can be used to integrate out the (hard sphere) depletant, leading to a depletion potential that accurately characterises the effective interactions. The accuracy of the method is based on matching of contributions to the second virial coefficient of the colloids. The simplest version of our method yields a piecewise-constant effective potential; we also show how this scheme can be generalised to other functional forms, where appropriate.

  20. Flocking ferromagnetic colloids

    PubMed Central

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-01-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633

  1. An Advanced Control System For Fine Coal Flotation

    SciTech Connect

    G. H. Luttrell; G. T. Adel

    1998-08-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the ninth quarter of this project, Task 3 (Model Building and Computer Simulation) and Task 4 (Sensor Testing) were nearly completed, and Task 6 (Equipment Procurement and Installation) was initiated. Previously, data collected from the plant sampling campaign (Task 2) were used to construct a population balance model to describe the steady-state and dynamic behavior of the flotation circuit. The details of this model were presented in the Eighth Quarterly Technical Progress Report. During the past quarter, a flotation circuit simulator was designed and used to evaluate control strategies. As a result of this work, a model-based control strategy has been conceived which will allow manipulated variables to be adjusted in response to disturbances to achieve a target incremental ash value in the last cell of the bank. This will, in effect, maximize yield at an acceptable product quality. During this same period, a video-based ash analyzer was installed on the flotation tailings stream at the Moss No. 3 preparation plant. A preliminary calibration curve was established, and data are continuing to be collected in order to improve the calibration of the analyzer.

  2. Increasing entropy for colloidal stabilization

    PubMed Central

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications. PMID:27872473

  3. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  4. Increasing entropy for colloidal stabilization

    NASA Astrophysics Data System (ADS)

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-11-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications.

  5. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    AFRL-OSR-VA-TR-2014-0184 Colloidal Metamaterials at Optical Frequencies Jennifer Dionne LELAND STANFORD JUNIOR UNIV CA Final Report 07/18/2014...Prescribed by ANSI Std. Z39.18 Colloidal Metamaterials at Optical Frequencies Annual Report, June 30, 2014 A. Investigators PI: Jennifer Dionne...team has combined theoretical and experimental methods to produce a colloidally -synthesized metamaterial fluid, or “metafluid,” exhibiting strong

  6. Impact of dissolved organic matter on colloid transport in the vadose zone: deterministic approximation of transport deposition coefficients from polymeric coating characteristics.

    PubMed

    Morales, Verónica L; Zhang, Wei; Gao, Bin; Lion, Leonard W; Bisogni, James J; McDonough, Brendan A; Steenhuis, Tammo S

    2011-02-01

    Although numerous studies have been conducted to discern colloid transport and stability processes, the mechanistic understanding of how dissolved organic matter (DOM) affects colloid fate in unsaturated soils (i.e., the vadose zone) remains unclear. This study aims to bridge the gap between the physicochemical responses of colloid complexes and porous media interfaces to solution chemistry, and the effect these changes have on colloid transport and fate. Measurements of adsorbed layer thickness, density, and charge of DOM-colloid complexes and transport experiments with tandem internal process visualization were conducted for key constituents of DOM, humic (HA) and fulvic acids (FA), at acidic, neutral and basic pH and two CaCl(2) concentrations. Polymeric characteristics reveal that, of the two tested DOM constituents, only HA electrosterically stabilizes colloids. This stabilization is highly dependent on solution pH which controls DOM polymer adsorption affinity, and on the presence of Ca(+2) which promotes charge neutralization and inter-particle bridging. Transport experiments indicate that HA improved colloid transport significantly, while FA only marginally affected transport despite having a large effect on particle charge. A transport model with deposition and pore-exclusion parameters fit experimental breakthrough curves well. Trends in deposition coefficients are correlated to the changes in colloid surface potential for bare colloids, but must include adsorbed layer thickness and density for sterically stabilized colloids. Additionally, internal process observations with bright field microscopy reveal that, under optimal conditions for retention, experiments with FA or no DOM promoted colloid retention at solid-water interfaces, while experiments with HA enhanced colloid retention at air-water interfaces, presumably due to partitioning of HA at the air-water interface and/or increased hydrophobic characteristics of HA-colloid complexes.

  7. Wetting-induced clustering and phoretic motions of colloidal particles

    NASA Astrophysics Data System (ADS)

    Narayanan, Theyencheri; Semeraro, Enrico; Dattani, Rajiv

    In recent years, self-propelled colloidal systems have received considerable attention as models for active matter. Most commonly used synthetic self-propelled systems involve Janus particles with asymmetric chemical composition in a catalytic medium. An analogous behavior can be obtained when particles are suspended in a phase separating binary liquid mixture due to preferential adsorption of one of the liquid species on the colloidal particles. Above an aggregation temperature (TA), particles become attractive and aggregate to form compact colloidal clusters. In the two phase region of the binary mixture, particles partition into the phase rich in adsorbed component. We have used silica colloids suspended in a binary mixture of 3-methyl pyridine and heavy water to probe this adsorption-induced phoretic motion of particles. Using ultra small-angle X-ray scattering and photon correlation spectroscopy, we investigated the static and dynamic behavior of this system. In the one phase region below TA, particles display a repulsive structure factor with diffusive dynamics. In the two-phase region of the host liquid, the static structure is similar but the dynamics is strongly enhanced with the onset of phase separation reminiscent of self-propelled motion.

  8. MTBE adsorption on alternative adsorbents and packed bed adsorber performance.

    PubMed

    Rossner, Alfred; Knappe, Detlef R U

    2008-04-01

    Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.

  9. Formation and collapse of gels of sterically stabilized colloidal particles

    NASA Astrophysics Data System (ADS)

    Weeks, James R.; van Duijneveldt, Jeroen S.; Vincent, Brian

    2000-11-01

    Colloidal silica spheres (diameter 88 nm) with a thick steric stabilization layer of polystyrene (PS; Mw = 26 600 g mol-1) were prepared. In cyclohexane, a marginal solvent for PS, particle aggregation and gelation were observed on lowering the temperature. Near the gelation temperature and at particle concentrations of a few per cent by weight, the gels were sufficiently weak to slowly compact under gravity. On quenching to slightly lower temperatures, the gels still settled, but the top of the sediment did not become flat, as is usually the case. This seems to be related to an unusual mechanism for gel compaction, which starts by forming a more dense structure at the top of the sample. It is proposed that this is related to the entangled polymer chains on neighbouring particles resisting substantial rearrangement of the local structure. The transient gelation phenomenon, observed previously for mixtures of colloid and non-adsorbing polymer, has so far not been observed for our system.

  10. Flotation rate and residence time distribution in continuous coal froth flotation circuits and an evaluation of reagents and circuit variations for pyritic sulfur removal

    SciTech Connect

    Arnold, B.J.

    1989-01-01

    This thesis gives the results of research conducted on several aspects of coal froth flotation. The effect of operating variables on the residence time distribution in coal froth flotation cells is discussed, and a model of the residence time distribution is presented for use with flotation rate models in scaling up from laboratory to plant scale. Flotation rate models are also investigated in detail for continuous coal froth flotation circuits. Changes in operating variables were found to affect the mean residence time in cells, but they did not have much effect on the mixing behavior. The use of a time lag was found to be an important part of rate models for continuous froth flotation cells. An important aspect of the use of such rate and residence time equations is their application to the flotation of gangue constituents, which often enter the froth by water carry-over in addition to natural flotation or flotation as slime coatings. As such, water carry-over is also investigated in this thesis for the laboratory and the plant and for both ash-forming minerals and pyrite. Maintaining a constant froth factor, the percentage of froth above the weir, in both laboratory and plant tests is believed to be a critical factor in predicting plant results using a kinetic factor ratio documented in the literature. Removing the pyrite and ash-forming minerals from coal that may be recovered by the water carry-over or other mechanisms is an important goal in coal froth flotation. This thesis also contains the results of tests with pyrite depressants and circuit variations for removal of pyritic sulfur.

  11. Synthesis of monodispersed bimetallic palladium-copper nanoscale colloids

    SciTech Connect

    Bradley, J.S.; Hill, E.W.; Klein, C. ); Chaudret, B.; Duteil, A. )

    1993-03-01

    Bimetallic clusters have been the subject of many studies of the surface chemistry and catalytic properties of metal crystallites on solid supports. Mixtures of palladium acetate and copper acetate were refluxed in 2-ethoxyethanol in the presence of poly(vinylpyrrolidone) to give 40-[angstrom] alloy nanoclusters. TEM and EDAX analysis showed that the particles were homogeneously bimetallic and crystalline, with a composition determined by the ratio of the metal acetates used. Carbon monoxide adsorbed on the colloidal particles binds reversibly to both metals. 9 refs., 3 figs.

  12. The influence of reagent dosage on the floatability of pyrite during coal flotation

    SciTech Connect

    Bonner, C.M.; Aplan, F.F.

    1993-01-01

    In general, as the quantity of frother and/or coal collector is increased, so too, does the flotation of the undesired pyrite. The problem is particularly serious with oil reagents. For some coals, however, a collector, such as fuel oil, is required to achieve a high coal recovery. This requires a compromise between the competing desires of a high coal recovery and a high pyrite rejection. This study gives the quantitative effect of reagent dosage on coal and pyrite floatability and details several means of minimizing pyrite floatability during coal flotation. The effect of fuel oil on coal flotation is especially interesting in that the flotation process changes from froth flotation to emulsion or agglomerative flotation as the amount of oil is increased. This phenomenon provides an additional method of rejecting pyritic sulfur.

  13. An overview of oil-water separation using gas flotation systems.

    PubMed

    Saththasivam, Jayaprakash; Loganathan, Kavithaa; Sarp, Sarper

    2016-02-01

    Oil concentration levels in municipal waste water effluent streams are stringently regulated in most parts of the world. Apart from municipal waste, stricter oil/grease discharge limits are also enforced in oil and gas sectors as large volumes of produced water is being discharged to open ocean. One of the feasible, practical and established methods to remove oil substances from waste water sources is by gas flotation. In this overview, gas flotation technologies, namely dissolved and induced flotation systems, are discussed. Physico-chemical interaction between oil-water-gas during flotation is also summarized. In addition to a brief review on design advancements in flotation systems, enhancement of flotation efficiency by using pre-treatment methods, particularly coagulation-flocculation, is also presented.

  14. Flotation separation of coal concentrates. 1976-1981 (citations from the Energy Data Base). Report for Jan 76-Dec 81

    SciTech Connect

    Not Available

    1981-12-01

    Reports are cited which discuss flotation separation of mineral particles using the different surface chemical properties to cause the selected particles to float. Coal-washery flotation circuits are emphasized. Sorting and separating using compressed air jets into the mineral concentration, flotation reagent effects on coal concentrate quality, and economy of flotation separation of coal concentrates are included in this bibliography. Froth flotation, foam separation, and foam flotation processes are included with respect to oil and water mixtures, ore concentrates, and minerals, as well as coal concentrates. (Contains 213 citations fully indexed and including a title list.)

  15. [Impact of SDBS/Na+ on red soil colloidal stability].

    PubMed

    Tang, Ying; Li, Hang; Zhu, Hua-Ling; Tian, Rui; Gao, Xiao-Dan

    2014-04-01

    The interactions between soil colloidal-sized particles and organic contaminants or inorganic ions profoundly affect numerous soil physical, chemical and biological processes. The coupling effect of sodium dodecylbenzene sulfonate (SDBS) and Na+ on the aggregation process of red soil colloid was studied using the dynamic light scattering method, and the mechanism of interactions between soil colloidal-sized particles and SDBS/Na+ was analyzed according to the pH and Zeta potential of suspension during the aggregation process. Results show that, (1) under a given concentration of Na+, the soil colloidal suspension becomes more stable with increasing SDBS concentrations. For example, under 120 mmol x L(-1) Na+, as the concentrations of SDBS increase from 0 mmol x L(-1) to 10 mmol x L(-1), the effective diameters of aggregates decrease from 702 nm to 193 nm, and the total average aggregation rates of aggregates decrease from 28.6 nm x min(-1) to 3.36 nm x min(-1). (2) Under a given concentration of SDBS, as the concentrations of Na+ increase, the Zeta potential of suspension sharply decreases, while the effective diameters and the total average aggregation rates of aggregates gradually increase. (3) The absolute values of Zeta potential for suspensions without adding NaNO3 solution increase from 47.6 mV to 62.2 mV as the SDBS concentrations increase, and the pH of the suspensions increase from 6.17 to 6.76, although these pH values are lower than that of initial soil colloidal suspension (6.89). Therefore, the adsorption of SDBS onto soil colloidal-sized particles, which is attributed to the hydrophobic effect and electrostatic effect, results in the increment of surface charge number, as well as the decrease in effective concentration of Na+ around colloidal-sized particles' surface (resulting from the steric hindrance of long hydrophobic chain of adsorbed SDBS and adsorption of Na+ by SDBS micelle). As a result, soil colloidal suspension becomes more stable and

  16. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    The Task 6 effort involves three main elements including column cell development, flotation circuit testing and flotation cell modeling. The work outlined is to research column designs and operation parameters in developing an optimized column flotation cell (OCFC) to meet the overall program objectives. The test results obtained through this effort will be evaluated against the results obtained from the round-robin test program in Task 5. Any design parameters or operating conditions that are unique with the round-robin test winner that were not evaluated as part of the optimized column developments work will be reviewed and tested so as to incorporate all possible scenarios in presenting DOE with the best available flotation process for use in the 2 to 3 ton per hour POC. Following development of the OCFC, various flotation circuit configurations will be evaluated determine the best'' circuit design for the 2 to 3 ton per hour POC. Single and multiple stage flotation, grab and run,rougher/scavenger/cleaner, etc., test circuits will be tested as part of this effort. Upon completion of this test work, the best'' possible flotation cell will have been tested in a number of possible flotation circuit designs to possibly provide the best'' flotation approach in meeting the design criteria. In conjunction with the flotation test effort, model development work will be conducted to provide a tool in evaluating the various flotation circuit configurations and in predicting flotation performance. The model will be useful in selecting operating conditions in the POC and in evaluating the performance of the POC.

  17. On the Methodology of Nematode Extraction from Field Samples: Density Flotation Techniques

    PubMed Central

    Viglierchio, David R.; Yamashita, Tom T.

    1983-01-01

    Density flotation has been frequently used for the extraction of nematodes from field samples. Density flotation curves for four nematode species and five solutes have been prepared. The curves confirm that flotation was governed by several factors: solute density, solute osmotic activity, and physiological properties of the nematode species. Nematode viability and function can be adversely affected by improper selection of solute for density extraction of nematodes; nevertheless, some nematode species can be enriched from mixtures by density and solute selection. PMID:19295831

  18. Flotation classification of ultrafine particles -- A novel classification approach

    SciTech Connect

    Qiu Guanzhou; Luo Lin; Hu Yuehua; Xu Jin; Wang Dianzuo

    1995-12-31

    This paper introduces a novel classification approach named the flotation classification approach which works by controlling interactions between particles. It differs considerably from the conventional classification processes operating on mechanical forces. In the present test, the micro-bubble flotation technology is grafted onto hydro-classification. Selective aggregation and dispersion of ultrafine particles are achieved through governing the interactions in the classification process. A series of laboratory classification tests for {minus}44 gm kaolin have been conducted on a classification column. As a result, about 92% recovery for minus 2 {micro}m size fraction Kaolin in the final product is obtained. In addition, two criteria for the classification are set up. Finally, a principle of classifying and controlling the interactions between particles is discussed in terms of surface thermodynamics and hydrodynamics.

  19. Column flotation research at United Coal looks to pay off

    SciTech Connect

    Merritt, P.

    1988-07-01

    Column flotation technology, designed to recover coal fines, has been the focus of research in private, university, and government laboratories for several years. While the potential of this technology continues to be scrutinized by scientists, the first commercial-size units have also been quietly placed on-line in two eastern preparation plants. The recently installed cells at both plants have gone through debugging procedures and are now achieving substantial recoveries of fine coal formerly lost to waste. For Tanoma that added production is 10.4 tph of fine coal; for United Coal, fine coal recovery exceeds 15 tph, an amount expected to rise to perhaps as much as 25 tph. The author describes how column flotation works and the systems at Tanoma Mining and United Coal.

  20. Strategy for adaptive process control for a column flotation unit

    SciTech Connect

    Karr, C.L.; Ferguson, C.R.

    1994-12-31

    Researchers at the U.S. Bureau of Mines (USBM) have developed adaptive process control systems in which genetic algorithms (GAs) are used to augment fuzzy logic controllers (FLCs). Together, GAs and FLCs possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. In this paper, the details of an ongoing research effort to develop and implement an adaptive process control system for a column flotation unit are discussed. Column flotation units are used extensively in the mineral processing industry to recover valuable minerals from their ores.

  1. In-plant testing of microbubble column flotation

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1990-01-01

    During the past year, a joint project between the US Department of Energy (DOE), the Virginia Center for Coal and Minerals Processing (VCCMP) and the Shell Mining Corporation (SMC) was initiated to implement the testing of a full-scale microbubble flotation column. The work is being carried out at the Marrowbone Preparation Plant, located near Naugatuck in southwestern West Virginia. The primary objective of this effort was to determine the feasibility of using microbubble column flotation for the recovery of coal fines from a classifying cyclone overflow stream that is presently being discarded as refuse. During the past quarter, results obtained using a 30-inch diameter test unit were reviewed, flowsheet layouts and preliminary scale-up projections were generated and design, engineering, fabrication and installation of the full-scale test unit was completed. Preliminary results were also obtained with the full-scale test unit and are presented in this report. 5 figs., 7 tabs.

  2. In-plant testing of microbubble column flotation

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1991-07-31

    Microbubble column flotation (MCF) was developed at the Virginia Center for Coal and Minerals Processing (VCCMP) for the selective recovery of fine particles. Bench-scale test work conducted at VCCMP, largely under the sponsorship of the U.S. Department of Energy (DOE), showed that the technology worked well for both coal and mineral applications. For the technology to be commercially successful, however, a full-scale demonstration of the MCF technology was deemed necessary. This report summarizes the results of work performed under the DOE project entitled In-plant Testing of Microbubble Column Flotation.'' The objectives of this research and development effort were to duplicate the bench-scale performance of the MCF process in a full-scale unit, to verify the scale-up procedure developed in an earlier project, and to demonstrate the applicability of the MCF technology to the coal industry.

  3. In-plant testing of microbubble column flotation. Final report

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Mankosa, M.J.

    1991-07-31

    Microbubble column flotation (MCF) was developed at the Virginia Center for Coal and Minerals Processing (VCCMP) for the selective recovery of fine particles. Bench-scale test work conducted at VCCMP, largely under the sponsorship of the U.S. Department of Energy (DOE), showed that the technology worked well for both coal and mineral applications. For the technology to be commercially successful, however, a full-scale demonstration of the MCF technology was deemed necessary. This report summarizes the results of work performed under the DOE project entitled ``In-plant Testing of Microbubble Column Flotation.`` The objectives of this research and development effort were to duplicate the bench-scale performance of the MCF process in a full-scale unit, to verify the scale-up procedure developed in an earlier project, and to demonstrate the applicability of the MCF technology to the coal industry.

  4. Microalgae harvesting by flotation using natural saponin and chitosan.

    PubMed

    Kurniawati, H Agnes; Ismadji, Suryadi; Liu, J C

    2014-08-01

    This study aims to investigate the harvesting of microalgae by dispersed air flotation (DiAF) using natural biosurfactant saponin as the collector and chitosan as the flocculant. Two types of microalgae, Chlorella vulgaris and Scenedesmus obliquus, were used in this study. It was observed that saponin was a good frother, but not an effective collector when used alone for flotation separation of algae. However, with the pre-flocculation of 5 mg/L of chitosan, separation efficiency of >93% microalgae cells was found at 20 mg/L of saponin. Removal efficiency of >54.4% and >73.0% was found for polysaccharide and protein, respectively at 20 mg/L of saponin and chitosan each. Experimental results show that DiAF using saponin and chitosan is effective for separation of microalgae, and algogenic organic matter (AOM). It can potentially be applied in the integrated microalgae-based biorefinery.

  5. The hydrophobic character of nonsulfide mineral surfaces as influenced by double-bond reactions of adsorbed unsaturated collector species. Progress report

    SciTech Connect

    Miller, J.D.

    1992-06-01

    The primary goal of this research is to improve the flotation efficiency of nonsulfide mineral systems by establishing the fundamental features of collector adsorption reactions and developing appropriate chemical control strategies. In situ real-time FR-IR/IRS measurements, nonequilibrium electrophoresis, vacuum flotation, contact-angle goniometry, and laser Raman spectroscopy have been used to accomplish this goal. These experimental techniques have led to the determination of important information concerning collector adsorption phenomena in each nonsulfide mineral system. For example, the demonstration of polymerization of adsorbed unsaturated surfactant species has added a new dimension to semi-soluble salt flotation chemistry and may have more general utility. Furthermore, refinement of the in situ FT-IR/IRS analysis has been accomplished particularly for the examination of surfactant aggregation phenomena at nonsulfide mineral surfaces. Finally, the significance of the lattice ion hydration theory has been demonstrated by nonequilibrium electrophoretic mobility measurements, and the new results will provide a better basis for the understanding of soluble-salt flotation phenomena.

  6. Final report on agglomerate column flotation for cleaning and desulfurization of Ohio coal fines

    SciTech Connect

    Attia, Y.A.; El Zeky, M.; Yu, Mulong . Dept. of Materials Science and Engineering)

    1990-08-30

    The objective of this research program was investigate the feasibility of cleaning and desulfurization of Ohio coal by an agglomerate column flotation process, which integrates selective flocculation with conventional column flotation. It was concluded earlier on in the program that the conventional design of flotation column was not particularly efficient for pyrite rejection. A novel design for flotation column system was conceived and a prototype unit was manufactured and tested in the laboratory. Several design and operational parameters for the column and the agglomerate flotation process were briefly investigated to define proper design and working conditions for a satisfactory performance. The novel design was compared with conventional design of flotation column through laboratory tests and through published results. The role of selective flocculation of coal including selective depression of pyrite has been identified and tested with both novel and conventional design of flotation columns. The results of these brief investigations, which are summarized in this report, suggest that: (1) excellent performance ca n be obtained with agglomerate column flotation using the new design. For example, a raw coal containing 3.16% total sulfur, 2.11% pyritic sulfur, and 17% ash can be cleaned to 1.91 % ash, 0.42% pyritic sulfur, 1.32% total sulfur, while maintaining a projected Btu/coal recovery of 86% (mmmf basis). This is equivalent to 89% ash removal and 81% pyritic sulfur (58% total sulfur) rejection. (2) The novel design of flotation column is superior to conventional design particularly for pyrite rejection.

  7. An investigation of pyrite depression in coal flotation by electrochemical pyrite surface control

    SciTech Connect

    Zhu Hong; Ou Zeshen; Shi Xiuping; Shen Yanchun

    1995-12-31

    This paper introduces a new potential method of pyrite depression in the flotation of high sulfur coal based on the electrochemical pyrite surface control. Experimental date show that the natural hydrophobicity of pyrite depends on the oxidation-reduction potential of the pulp. The mechanism and products of electrochemical reaction on the pyrite surface are also discussed under various conditions. The pyrite flotation is generally suppressed under low pulp potentials. Therefore, the sulfur removal in the flotation of high sulfur coal could be improved by the pulp redox potential control, while the coal flotation is materially not affected.

  8. Using alternative chemicals in the flotation of heavy metals from lead mill tailings

    SciTech Connect

    Benn, F.W.

    1995-04-01

    The U.S. Bureau of Mines (USBM) investigated alternative chemicals for the flotation of heavy metal values from southeast Missouri lead mill tailings. The objectives of the study were to lower the Pb remaining in the reprocessed tailings to <500 ppm, concentrate the metal values, and lower the overall toxicity of the flotation reagent scheme. Due to the high toxicity of classic flotation chemicals, collectorless flotation, as well as nontoxic or less-toxic chemicals, was studied for use in the flotation process. The investigation centered on the National tailings pile in Flat River, MO. Advantages to using alternative chemicals for the flotation process are presented. Novel reagent schemes are discussed for the treatment of the tailings. Various nontoxic or less-toxic oils were tested, and a substitute for sodium sulfide was investigated. Using a food additive oil, soda ash, and a frother as the reagent scheme, froth flotation recovered 89% of the Pb values. Further scavenging lowered the Pb remaining in the reprocessed tailings to <500 ppm. A less-toxic substitute for sodium cyanide was also studied for use in the cleaner flotation stages. Preliminary results indicate that the food additive oil, canola oil, to be as effective as classic sulfide flotation reagents.

  9. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    PubMed

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production.

  10. Personal Flotation Devices Research. Volume 2. Research Report.

    DTIC Science & Technology

    1978-01-01

    statistical techniques , inc l uding factor analysis, canonical correlation analysis , and multiple linear regression were used to develop indices of PFD...of inflatable PFDs subjected to this test plan showed that an Accelerated Testing Technique - is feasible for testing inflatable PFDs , that latent...tool, with related techniques and procedures that organize and summarize accident data so that the role of personal flotation devices in saving lives

  11. SYNTHESIS AND EVALUATION OF NEW AND IMPROVED GYRO FLOTATION FLUIDS.

    DTIC Science & Technology

    on a proprietary fluid. The synthesis of heavy metal alkanethiolates was investigated and two compounds were isolated and characterized. Both are...viscous, high boiling liquids. Methods of preparing fluoroalkanethiols were explored as a means of providing starting materials for the synthesis of heavy metal fluoroalkanethiolates. (Author)...The purpose of this research program is to produce liquids which have densities between 2.5 and 3.0 g./cc. for use as gyro flotation fluids. Heavy

  12. Characterisation of flotation froth colour and structure by machine vision

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia; Volpe, Fabio; Zuco, Riccardo

    2001-11-01

    It is well known and well recognised that flotation is a process that is complex to monitor and study if a classical approach based on the evaluation of the signals resulting from sensors is adopted. Sensors are usually strategically positioned in the bank cells and detect global process variables such as pH, reagent addition, froth level, on-stream chemical analysis, particle size distribution, etc. In the last ten years several studies have been carried out with the main goal to utilise imaging techniques to detect froth bubbles characteristics and to evaluate the flotation process performance. In this paper an approach of this type is described. More specifically, image processing techniques to automatically measure the colour and the structure of the froth bubbles are presented and the results are discussed. All the investigations are carried out on digital sample images collected in an industrial flotation plant operating in steady-state conditions. The colour analysis is performed on the whole surface of the froth images considering different colour reference systems (RGB, HSV, HSI); the morphological measurements are obtained after the application of selected enhancement and segmentation techniques, necessary to consider the bubbles as separate domains. The multiple correlation analysis performed between froth mineral concentrations (Cu, MgO, Zn and Pb content) and the extracted colour and structure parameters are good in most situations.

  13. Estimated water requirements for the conventional flotation of copper ores

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.

  14. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  15. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    G.H. Luttrell; G.T. Adel

    1999-01-11

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eleventh quarter of this project, Task 7 (Operation and Testing) was nearly completed through the efforts of J.A. Herbst and Associates, Virginia Tech, and Pittston Coal Company. As a result of this work, a model-based control system has now been installed which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. The system has gone through a shake-down period, training has been carried out for plant operators, and the bulk of the control logic testing has been completed with the results of these tests awaiting analysis under Task 8 (System Evaluation). The flotation model has been shown to predict incremental ash quite successfully, implying that this approach may provide the basis for a useful ''soft sensor'' for on-line incremental ash analysis.

  16. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    1998-10-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the tenth quarter of this project, Task 6 (Equipment Procurement and Installation) was completed through the efforts of J.A. Herbst and Associates, Virginia Tech, Pittston Coal Company, and FGR Automation. As a result of this work, a model-based control system is now in place which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. Testing of this control system is expected to be carried out during the next quarter, and the results of this testing will be reported in the Eleventh Quarterly report. In addition, calibration of the video-based ash analyzer was continued and an extensive set of calibration data were obtained showing that the plant is running remarkably well under manual control. This may be a result of increased attention being paid to froth flotation as a result of this project.

  17. Beneficiation of flotation tailing from Polish copper sulfide ores

    SciTech Connect

    Luszczkiewicz, A.; Sztaba, K.S.

    1995-12-31

    Flotation tailing of Polish copper sulfide ores represents more than 90% of the mass of run-of-mine ore. The tailing contains mainly quartz, dolomite, clay minerals, traces of sulfides, and some accessory minerals. Almost all minerals of the tailing are well liberated and, therefore, any further beneficiation process applied to the tailing is expected to be inexpensive. In this work, results of investigations on utilization of flotation tailing using classification and gravity concentration are presented. It is shown that due to classification of flotation tailing in hydrocyclones, the coarse fraction becomes suitable material for gravity separation providing backfill material for underground mines as well as heavy minerals, a source of valuable rare elements. It was also found that heavy minerals separated by gravity methods contain a significant amount of rare elements such as zirconium, titanium, silver, rare earth metals, and uranium. The light fraction of the gravity separation contains well deslimed quartz particles and meets strict requirements for hydraulic filling material used for structural support in underground mines. Evaluation of the cost of the proposed technology indicated that investment to implement the method would provide a return within 2--4 years.

  18. Effect of reverse flotation on magnetic separation concentrates

    NASA Astrophysics Data System (ADS)

    Bada, S. O.; Afolabi, A. S.; Makhula, M. J.

    2012-08-01

    Reverse flotation studies on magnetite samples have revealed that the use of starch as a depressant of Fe-oxides has a hydrophilic effect on the surface of Fe-bearing silicates and significantly decreases Fe in the silica-rich stream when used in combination with an amine (Lilaflot D817M). In this study, the effect of reverse flotation on the optimization of products obtained from magnetic separation was investigated. Two different magnetic samples, zones 1 and 2, were milled to <75 μm and then subjected to low intensity magnetic separation (LIMS). The LIMS test conducted on the <75 μm shown an upgrade of 46.40wt% Fe, 28.40wt% SiO2 and 2.61wt% MnO for zone 1 and 47.60wt% Fe, 29.17wt% SiO2 and 0.50wt% MnO for zone 2. Further milling of the ore to <25 μm resulted in a higher magnetic-rich product after magnetic separation. Reverse flotation tests were conducted on the agitated magnetic concentrate feed, and the result shows a significant upgrade of Fe compared to that obtained from the non-agitated feed. Iron concentrations greater than 69%, and SiO2 concentrations less than 2% with overall magnetite recoveries greater than 67% and 71% were obtained for zones 1 and 2, respectively.

  19. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Diao, J.; De, A.; Sotillo, F.; Harris, G. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (United

    1991-07-30

    The primary objective in the scope of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from three major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Investigation of mechanisms for the control of coal and pyrite surfaces prior to fine coal flotation is the main aspect of the project objectives. The results of this research are to be made available to ICF Kaiser Engineers who are currently working on the Engineering Development of Advanced Flotation under a separate contract with DOE under the Acid Rain Control Initiative program. A second major objective is to investigate factors involved in the progressive weathering and oxidation of coal that had been exposed to varying degrees of weathering, namely, open to the atmosphere, covered and in an argon-inerted'' atmosphere, over a period of twelve months. After regular intervals of weathering, samples of the three base coals (Illinois No. 6, Pittsburgh No. 8 and Upper Freeport PA) were collected and shipped to both the University of Pittsburgh and the University of California at Berkeley for characterization studies of the weathered material. 29 figs., 29 tabs.

  20. Confocal imaging of confined quiescent and flowing colloid-polymer mixtures.

    PubMed

    Pandey, Rahul; Spannuth, Melissa; Conrad, Jacinta C

    2014-05-20

    The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly(1-3), drug delivery(4), improved hydrocarbon recovery(5-7), and flowable electrodes for energy storage(8). Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained(9). Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems(10). Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions(11-16,37). In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol

  1. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  2. Physics of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Huang, Jiping

    Colloidal suspensions are complex fluids that consist of mesoscopic particles suspended in a solvent, e.g. water, oil, etc. In this thesis, the objective is to investigate the four aspects of colloidal suspensions: electrorotation, dielectrophoresis, dielectric dispersion spectrum, and nonlinear alternating current (AC) response. The traditional theories failed to fit the recent experimental data, and hence, for the purpose of a better fitting, we aim to develop new theories. In addition, our theories also predicted some new phenomena which are expected to be verified in experiments. Electrorotation has been increasingly employed as a sensitive tool for non-invasive studies of a broad variety of microparticles, ranging from living cells to spores and seeds, as well as synthetic materials. In order to analyze the abundant experimental data, we extend here the existing theory by taking into account crucial elements, such as inhomogeneities, multipolar interactions, nonspherical shapes as well as many-body (local-field) effects. Good agreement is shown between our theoretical results and the experimental data. Dielectrophoresis is typically used for micromanipulation and separation of biological cellular size particles, and it has recently been successfully applied to submicron size particles as well. Specific applications include diverse problems in medicine, colloidal science and nanotechnology. To analyze the recent experimental observations, we present a theory which includes the effects of both charging and multipolar interactions. Our theoretical results are favorably compared with the recent experimental observations. Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. However, the existing theory does not fit the experimental data. Hence, we here put

  3. Light-structured colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie; Palacci lab Team; Sacanna lab Team

    2016-11-01

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of active colloidal motion on a collective scale through the synchronization of the individual motions of SPP. This work is supported by NSF CAREER DMR 1554724.

  4. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    SciTech Connect

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L–1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10–10 M241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (kf) of 0.01–0.02 h–1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h–1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill

  5. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    PubMed

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because

  6. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    DOE PAGES

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; ...

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L–1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10–10 M241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (kf) of 0.01–0.02 h–1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h–1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long

  7. Uremic toxins and oral adsorbents.

    PubMed

    Goto, Shunsuke; Yoshiya, Kunihiko; Kita, Tomoyuki; Fujii, Hideki; Fukagawa, Masafumi

    2011-04-01

    Uremic toxins are associated with various disorders in patients with end-stage renal disease and it is difficult to remove some of these toxins by dialysis. Since some uremic toxins are generated by bacterial metabolites in the colon, oral adsorbents that interfere with the absorption of uremic toxins or their precursors are believed to prevent their accumulation in the body. AST-120 adsorbs various uremic retention solutes in the gastrointestinal system and has potential for providing clinical benefit. Sevelamer hydrochloride binds some harmful compounds in addition to phosphate and seems to have pleiotropic effects that include lowering serum LDL cholesterol levels and reduction of inflammation. The effect of sevelamer hydrochloride on indoxyl sulfate and p-cresol has been shown in an in vitro study; however, in vivo studies in mice or humans did not demonstrate this effect on protein-binding uremic toxins. Oral adsorbents are thus one of the important modalities in the treatment of uremic syndrome.

  8. Selective flotation of fossil resin from Western coal. Final report, July 1, 1990--May 25, 1992

    SciTech Connect

    Jensen, G.F.; Miller, J.D.

    1992-05-25

    The proof-of-concept test program was designed to clarify a number of concerns that have been raised by coal companies who own the valuable resin resource. First, from laboratory bench-scale flotation experiments, a froth product from cleaner flotation containing more than 80% hexane-extractable resin at higher than 80% recovery can be produced. Pilot-plant testing was initiated to demonstrate the selective flotation of fossil resin and to establish a better confidence level in the new technology. Second, pilot-plant testing was designed to evaluate the effect and impact of random variation in slurry solids concentration and feed grade on this new selective fossil resin flotation technology. The flotation performance obtained under these industrial conditions is more realistic for process evaluation. Third, more accurate operating cost data was to be obtained for economic analysis. Fourth, sufficient quantities of the fossil resin concentrate were to be produced from the test program for evaluation by potential industrial users. Fifth, and finally, optimum levels for the operating variables were to be established. Such information was required for eventual scale-up and design of a fossil resin flotation plant. The pilot-plant proof-of-concept testing of selective resinate flotation has demonstrated that: (1) technically, the new flotation technologies discovered at the University of Utah and then improved upon by Advanced Processing Technologies, Inc. provide a highly efficient means to selectively recover fossil resin from coal. The proof-of-concept continuous flotation circuit (about 0.1 tph) resulted in fossil resin recovery with the same separation efficiency as was obtained from laboratory bench-scale testing (more than 80% recovery at about 80% concentrate grade); and (2) economically, the selective flotation process has been shown to be sufficiently profitable to justify the development of a fossil resin industry based on this new flotation process.

  9. Clathrate colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.

    2017-03-01

    DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.

  10. Microfluidic control using colloidal devices.

    PubMed

    Terray, Alex; Oakey, John; Marr, David W M

    2002-06-07

    By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.

  11. Microfluidic Control Using Colloidal Devices

    NASA Astrophysics Data System (ADS)

    Terray, Alex; Oakey, John; Marr, David W. M.

    2002-06-01

    By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.

  12. Conformational changes of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Allen, Scott

    2005-03-01

    The adsorption of bovine serum albumin (BSA) and pepsin to gold surfaces has been studied using surface plasmon resonance (SPR). Proteins are adsorbed from solution onto a gold surface and changes in the conformation of the adsorbed proteins are induced by changing the buffer solution. We selected pH and ionic strength values for the buffer solutions that are known from our circular dichroism measurements to cause conformational changes of the proteins in bulk solution. We find that for both BSA and pepsin the changes in conformation are impeded by the interaction of the protein with the gold surface.

  13. Compact secondary treatment train combining a lab-scale moving bed biofilm reactor and enhanced flotation processes.

    PubMed

    Brosseau, Catherine; Émile, Bettina; Labelle, Marc-André; Laflamme, Édith; Dold, Peter L; Comeau, Yves

    2016-12-01

    High-rate wastewater processes are receiving a renewed interest to obtain energy positive/efficient water resource recovery facilities. An innovative treatment train combining a high-rate moving bed biofilm reactor (HR-MBBR) with an enhanced flotation process was studied. The two objectives of this work were 1) to maximize the conversion of soluble organics to particulate matter in an HR-MBBR and 2) to maximize the particulate matter recovery from the HR-MBBR effluent by green chemicals to enhance biogas production by anaerobic digestion. To achieve these objectives, lab-scale MBBRs fed with synthetic soluble wastewater were operated at organic loading rates (OLRs) between 4 and 34 kg COD m(-3) reactor d(-1) corresponding to hydraulic retention times (HRTs) between 6 and 54 min. Colloidal and soluble chemical oxygen demand (COD) removal efficiency in the HR-MBBR increased with HRT to reach a plateau of 85% at an HRT longer than 27 min. Carrier clogging observed at an OLR higher than 16 kg COD m(-3) d(-1) (HRT < 13 min) resulted in about 23% loss in colloidal and soluble COD removal efficiency. Thus, the recommended parameters were between 22 and 37 min and between 6 and 10 kg COD m(-3) d(-1) for the HRT and the OLR, respectively, to maximize the conversion of soluble organics to particulate matter. Total suspended solids (TSS) recovery of 58-85% and 90-97% were achieved by enhanced flotation using green and unbiodegradable chemicals, respectively, corresponding to a TSS effluent concentration below 14 and 7 mg TSS/L. Among the synthetic polymers tested, a high molecular weight and low charge density cationic polyacrylamide was found to give the best results with less than 2 mg TSS/L in the clarified effluent (97% TSS recovery). Green chemicals, although performing slightly less for solids separation than unbiodegradable chemicals, achieved a mean TSS concentration of 10 ± 3 mg/L in the clarified effluent.

  14. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  15. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  16. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  17. Sorption Behavior of Strontium-85 Onto Colloids of Silica and Smectite

    SciTech Connect

    Lu, N.; Triay, I.R.; Mason, C.F.V.; Longmire, P.A.

    1998-11-10

    Strontium-90 is one of the sizable radioactive contaminants found in DP Canyon at Los Alamos, New Mexico. Radioactive surveys found the {sup 90}Sr is present in surface and groundwater in DP Canyon and Los Alamos Canyon. Colloids may influence the transport of this radionuclide in surface water and groundwater environments in both canyons. In this study, we investigated the sorption/desorption behavior of Sr on colloids of smectite and silica. Laboratory batch sorption experiments were conducted using {sup 85}Sr as a surrogate to {sup 90}Sr. Groundwater, collected from DP Canyon and from Well J-13 at Yucca Mountain, Nevada, and deionized water were used in this study. Our results show that 92% to 100% of {sup 85}Sr was rapidly adsorbed onto smectite colloids in all three waters. The concentrations of Ca{sup 2+} significantly influence the adsorption of {sup 85}Sr onto silica colloids. Desorption of {sup 85}Sr from smectite colloids is much slower than the sorption process. Desorption of {sup 85}Sr from silica colloids was rapid in DP groundwater and slow using J-13 groundwater and deionized water.

  18. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and...

  19. Study on the application of FCMC-1500 cyclonic microbubble flotation column for coal preparation

    SciTech Connect

    Xie Guangyuan; Ou Zeshen; Ge Mi; Wang Yongtian; Liu Jiongtian

    1997-12-31

    In this paper the cyclonic microbubble flotation column is introduced. Its structure and the principle of operation along with some results in a commercial plant are also presented. The test results have demonstrated the cyclonic microbubble flotation column to be highly selective and extremely efficient in ash rejection from fine coals, oil consumption, and energy conservation. It has a great future for commercialization.

  20. 46 CFR 25.25-15 - Retroreflective material for personal flotation devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Retroreflective material for personal flotation devices. 25.25-15 Section 25.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS... flotation devices. (a) Each life preserver, each marine buoyant device intended to be worn, and each...

  1. 46 CFR 25.25-15 - Retroreflective material for personal flotation devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Retroreflective material for personal flotation devices. 25.25-15 Section 25.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS... flotation devices. (a) Each life preserver, each marine buoyant device intended to be worn, and each...

  2. 46 CFR 25.25-15 - Retroreflective material for personal flotation devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Retroreflective material for personal flotation devices. 25.25-15 Section 25.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS... flotation devices. (a) Each life preserver, each marine buoyant device intended to be worn, and each...

  3. 46 CFR 25.25-15 - Retroreflective material for personal flotation devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Retroreflective material for personal flotation devices. 25.25-15 Section 25.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS... flotation devices. (a) Each life preserver, each marine buoyant device intended to be worn, and each...

  4. 33 CFR 183.235 - Level flotation test without weights for persons capacity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Level flotation test without..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower Tests § 183.235 Level...

  5. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  6. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water...

  7. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water...

  8. 46 CFR 25.25-15 - Retroreflective material for personal flotation devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Retroreflective material for personal flotation devices. 25.25-15 Section 25.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS... flotation devices. (a) Each life preserver, each marine buoyant device intended to be worn, and each...

  9. Colloidal nanomaterial-based immunoassay.

    PubMed

    Teste, Bruno; Descroix, Stephanie

    2012-06-01

    Nanomaterials have been widely developed for their use in nanomedicine, especially for immunoassay-based diagnosis. In this review we focus on the use of nanomaterials as a nanoplatform for colloidal immunoassays. While conventional heterogeneous immunoassays suffer from mass transfer limitations and consequently long assay time, colloidal immunosupports allow target capture in the entire volume, thus speeding up reaction kinetics and shortening assay time. Owing to their wide range of chemical and physical properties, nanomaterials are an interesting candidate for immunoassay development. The most popular colloidal nanomaterials for colloidal immunoassays will be discussed, as well as their influence on immune reactions. Recent advances in nanomaterial applications for different formats of immunoassays will be reported, such as nanomaterial-based indirect immunoassays, optical-based agglutination immunoassays, resonance energy transfer-based immunoassays and magnetic relaxation-based immunoassays. Finally, the future of using nanomaterials for homogeneous immunoassays dedicated to clinical diagnosis will be discussed.

  10. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  11. Effective harvesting of low surface-hydrophobicity microalgae by froth flotation.

    PubMed

    Garg, Sourabh; Wang, Liguang; Schenk, Peer M

    2014-05-01

    Microalgae harvesting by air flotation is a promising technology for large-scale production of biofuel, feed and nutraceuticals from algae. With an adherence-to-hydrocarbon method and two different types of flotation cells (mechanically agitated cell and Jameson cell), microalgal surface hydrophobicity and bubble size were identified to be critical for effective froth flotation of microalgae. Freshwater alga Chlorella sp. BR2 showed naturally a high hydrophobicity and an ideal response to flotation. However, many marine microalgae possess a low surface hydrophobicity and are thus difficult to harvest. This paper shows that a step-wise optimization approach can substantially improve the flotation of a low surface hydrophobicity marine microalga, Tetraselmis sp. M8, to near full recovery with an enrichment ratio of 11.4.

  12. Aggregation of Heterogeneously Charged Colloids.

    PubMed

    Dempster, Joshua M; Olvera de la Cruz, Monica

    2016-06-28

    Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size.

  13. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants.

    PubMed

    Nakamura, Yuki; Okachi, Manami; Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2015-12-15

    We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters.

  14. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement.

    PubMed

    De Roo, Jonathan; Van Driessche, Isabel; Martins, José C; Hens, Zeger

    2016-05-01

    Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons, the latter proving essential in electron transfer reactions. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs-including their surface composition-unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

  15. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement

    NASA Astrophysics Data System (ADS)

    de Roo, Jonathan; van Driessche, Isabel; Martins, José C.; Hens, Zeger

    2016-05-01

    Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons, the latter proving essential in electron transfer reactions. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs--including their surface composition--unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

  16. Friction Boosted by Equilibrium Misalignment of Incommensurate Two-Dimensional Colloid Monolayers

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    2015-03-01

    Colloidal two-dimensional monolayers sliding in an optical lattice are of recent importance as a frictional system. In the general case when the monolayer and optical lattices are incommensurate, we predict two important novelties, one in the static equilibrium structure, the other in the frictional behavior under sliding. Structurally, realistic simulations show that the colloid layer should possess in full equilibrium a small misalignment rotation angle relative to the optical lattice, an effect so far unnoticed but visible in some published experimental moiré patterns. Under sliding, this misalignment has the effect of boosting the colloid monolayer friction by a considerable factor over the hypothetical aligned case discussed so far. A frictional increase of similar origin must generally affect other incommensurate adsorbed monolayers and contacts, to be sought out case by case.

  17. Measuring the equation of state for a 2D colloidal membrane: A microfluidic approach to buffer exchange

    NASA Astrophysics Data System (ADS)

    Balchunas, Andrew; Cabanas, Rafael; Fraden, Seth; Dogic, Zvonimir

    Previous work has shown that monodisperse rod-like colloidal particles, such as a filamentous bacteriophage, self assemble into a 2D monolayer smectic in the presence of a non-adsorbing depleting polymer. These structures have the same functional form of bending rigidity and lateral compressibility as conventional lipid bi-layers, so we name the monolayer smectic a colloidal membrane. We have developed a microfluidic device such that the osmotic pressure acting on a colloidal membrane may be controlled via a full in situ buffer exchange. Rod density within individual colloidal membranes was measured as a function of osmotic pressure and a first order phase transition, from 2D fluid to 2D solid, was observed. kon and koff rates of rod to membrane binding were measured by lowering the osmotic pressure until membrane evaporation occurred.

  18. Dolomite flotation of high magnesium phosphate ores using fatty acid soap collectors

    NASA Astrophysics Data System (ADS)

    Gu, Zhengxing

    The separation of dolomite from apatite has been recognized as one of the most difficult subjects in mineral processing due to the similarities in their physiochemical properties. In this study, selective surfactants were used with a fatty acid soap collector to improve the flotation performance of separating dolomite from high magnesium phosphate ores. Three surfactants, diethyl phthalate (DP), Tween-80 (TW) and derivative of sulfonate salt (DSS1) were used. Hallimond cell flotation was conducted using pure dolomite sample to determine the effects of various factors including dosages, particle size, Ca2+ ions and slimes on the dolomite flotation recovery. The results showed that the surfactants can significantly improve dolomite flotation performance by increasing collecting ability and tolerating the effect of calcium ions and slime contents. The stirrer-tank cell batch flotation tests were carried out using two natural high magnesium phosphate ore samples containing 3.3% and 1.5% MgO. The test results showed that the surfactant DP could improve dolomite flotation at low dosages, and DSS1 could enhance the separation of dolomite from phosphate by improving both collecting ability and flotation selectivity. When 10% of DSS1 was used with the fatty acid soap as collector, at least 10% more dolomite can be removed with less P2O5 loss. The effectiveness of the surfactant DSS1 in enhancing dolomite flotation was further demonstrated in modified packed column flotation with natural dolomitic phosphate ore sample. The addition of the surfactant DSS1 into fatty acid soap collector could improve its frothability and froth stability, and reduce the bubble size. It has been found that the dolomite flotation performance has a close relationship with the frothability and froth stability of the collector.

  19. An evaluation of fine coal flotation at the Chaili Coal Washery

    SciTech Connect

    Zhang, R.Z.; Jiang, S.X.; Yu, Z.D.; Phillips, D.I.; Gebhardt, J.E.

    1995-12-31

    The potential application of flotation for the treatment and processing of a fine-particle coal stream was investigated for the Chaili Coal Washery of the Zaozhuang Coal Mine Administration, Shandong Province, China. A goal of the test work was to evaluate the application of the Microcel{trademark} flotation column and compare its performance to conventional flotation. Small-scale flotation tests were performed in the laboratory and on-site with fine coal slurry samples from the plant thickener underflow, i.e., the washing plant`s undersized reject material. Flotation tests were conducted on-site with a 7.6-cm diameter Microcel{trademark} column and with small-scale conventional cells. Column flotation tests were performed to determine a recovery-grade relationship for the fine coal feed, which contained about 24% ash, and to obtain sufficient data to enable scale-up to a large-diameter unit. A primary objective was to establish the maximum throughput capacity of a Microcel flotation column while operating to produce a clean coal product with ash content of 7.5--7.8%. Results of the test work indicate that this product quality could be achieved at feed rates of 15--19 tph to a 3-m diameter Microcel flotation column. Lower ash products, i.e. 5--7% ash, were obtained but at lower column throughput capacities. Comparative flotation tests, conducted with conventional flotation cells, indicated that a product ash of only 8% or greater was achieved in a single-stage test.

  20. In-plant testing of microbubble column flotation

    SciTech Connect

    Luttrell, G.H.; Mankosa, M.J.; Adel, G.T.; Yoon, R.H.

    1990-01-01

    This report describes progress in two areas: advanced instrumentation and column installation. The project is working with both 30-inch and 8-foot columns for coal flotation. The paper describes installation of the instrument package, the control loops, and the data acquisition system. Under the second area of study, a test plan was developed for a parametric study of the 8-foot column operating conditions (feed flow rate, gas flow rate, wash water flow rate, and froth addition) that were determined to influence separation efficiency on the 30-inch column. Results to date are discussed. 7 refs., 4 tabs. (CK)

  1. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  2. The kinetics of fossil resin extraction from a flotation concentrate

    SciTech Connect

    Li, L.; Yu, Q.; Miller, J.D.

    1995-11-01

    The kinetics of fossil resin extraction from a flotation concentrate by heptane were investigated as a function of process variables using monosize particles. Experimental results provide for a better understanding of the refining process and the basis for subsequent design and construction of a continuous resin refining circuit. Based on the effect of process variables (particle size, stirring speed, and temperature) the resin extraction rate appears to be controlled by surface solvation phenomena. The initial extraction rate was found to be inversely proportional to the initial particle size and a kinetic model is being developed to describe the experimental results.

  3. Improving the performance of conventional and column froth flotation cells

    SciTech Connect

    Arnold, B.J.

    1995-11-01

    Many existing mining operations hover on the brink of producing competitively priced fuel with marginally acceptable sulfur levels. To remain competitive, these operations need to improve the yield of their coal processing facilities, lower the sulfur content of their clean coal, or lower the ash content of their clean coal. Fine coal cleaning processes offer the best opportunity for coal producers to increase their yield of high quality product. Over 200 coal processing plants in the U.S. already employ some type of conventional or column flotation device to clean fines. an increase in efficiency in these existing circuits could be the margin required to make these coal producers competitive.

  4. Equity flotation cost adjustments in utilities' cost of service

    SciTech Connect

    Bierman, H. Jr.; Hass, J.E.

    1984-03-01

    Recovery of the unavoidable costs of issuing new shares of stock is generally agreed to be appropriate in determining utility revenue requirements. This article suggests that the methods by which that is usually accomplished are of questionable accuracy. The conventional practice of adjusting the allowed rate of return on common equity is examined, and an improved adjustment formulation is presented. Acknowledging that application of the formula remains subject to considerable error, however, the authors propose yet another solution. Capitalization of flotation costs as intangible assets is suggested as a way of more accurately factoring such expenses into tariff determinations. 6 references.

  5. Measuring the Contact Angle of Individual Colloidal Particles.

    PubMed

    Preuss; Butt

    1998-12-15

    The aim of this study was to measure the contact angles of individual colloidal spheres ( solidus in circle 4.4 µm) and compare it to contact angles obtained on similarly prepared planar surfaces. For this purpose the particles were attached to atomic force microscope cantilevers. Then the force between the particle in aqueous medium and an air bubble was measured versus the distance. From the resulting force curves we obtained contact angles and detachment forces of single particles. Contact angles of gold coated silica particles were adjusted between 20 degrees and 100 degrees by self-assembling monolayers from different mixtures of undecanethiols and omega-hydroxy undecanethiols from solution. In parallel, contact angles on flat gold surfaces prepared in the same way were determined by the sessile drop method. A systematic difference between contact angles measured with particles and on planar surfaces was observed. Results are discussed in terms of line tension of the three-phase contact line. In addition, detachment forces were measured. Detachment forces were slightly higher than predicted from flotation theory. This might be caused by a pinning of the three phase contact line. Copyright 1998 Academic Press.

  6. Improving the removal of anions by coagulation and dissolved air flotation in wastewater reclamation.

    PubMed

    Chuang, S H; Chang, W C; Chang, T C; You, S J

    2006-05-01

    This study investigated the feasibility of improving the removal of anions from a secondary effluent by coagulation/flocculation (Coag/Floc) and dissolved air flotation (DAF) using a pilot-scale wastewater reclamation plant in a high-tech industrial park. The pilot plant was equipped with units of Coag/Floc, DAF, activated carbon beds (AC), microfiltration modules (MF) and a reverse-osmosis membrane (RO). It was operated in-situ continuously for around one year to evaluate the performance of anion removal in two processes - the AC-RO process and the DAF-AC-RO process. Long-term experimental results indicated that combining Coag/Floc, DAF and AC units increased the potential of pretreatment to remove anions. The removal efficiencies in Coag/Floc-DAF units were in the order phosphate > fluoride > chloride > sulfate > silicate. The charged complex of PACl flocs revealed a higher affinity for adsorption onto phosphate and fluoride than on chloride, sulfate and silicate. Comparison of the performance of Coag/Floc-DAF-AC units in the DAF-AC-RO process with that of a single AC unit in the AC-RO process demonstrated that adding Coag/Floc-DAF units increased the removal efficiencies of phosphate, fluoride and silicate by approximately 70.0%, 42.7% and 70.1%, respectively. Most of the phosphate and fluoride were removed in Coag/Floc-DAF units, while most of the silicate escaped from the Coag/Floc-DAF units, and was adsorbed and/or trapped in the AC unit. The quality of reclaimed water in the DAF-AC-RO process complied with the requirements of high-tech industries in cleaning processes. Combined units of Coag/Floc-DAF-AC were therefore recommended for use in pretreatment in wastewater reclamation in high-tech industrial parks.

  7. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design.

    PubMed

    Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A

    2013-03-07

    In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).

  8. Evaluation on simultaneous removal of particles and off-flavors using population balance for application of powdered activated carbon in dissolved air flotation process.

    PubMed

    Kwak, D H; Yoo, S J; Lee, E J; Lee, J W

    2010-01-01

    Most of the water treatment plants applying the DAF process are faced with off-flavors control problems. For simultaneous control of particles of impurities and dissolved organics that cause pungent taste and odor in water, an effective method would be the simple application of powdered activated carbon (PAC) in the DAF process. A series of experiments were carried out to explore the feasibility for simultaneous removal of kaolin particles and organic compounds that produce off-flavors (2-MIB and geosmin). In addition, the flotation efficiency of kaolin and PAC particles adsorbing organics in the DAF process was evaluated by employing the population balance theory. The removal efficiency of 2-MIB and geosmin under the treatment condition with kaolin particles for simultaneous treatment was lower than that of the individual treatment. The decrease in the removal efficiency was probably caused by 2-MIB and geosmin remaining in the PAC particle in the treated water of DAF after bubble flotation. Simulation results obtained by the population balance model indicate, that the initial collision-attachment efficiency of PAC particles was lower than that of kaolin particles.

  9. Technique for harvesting unicellular algae using colloidal gas aphrons. [Chlorella vulgaris

    SciTech Connect

    Honeycutt, S.S.; Wallis, D.A.; Sebba, F.

    1983-01-01

    A novel technique using colloidal gas aphron (CGA) dispersions has been investigated for harvesting Chlorella vulgaris, a unicellular green algae, from dilute suspension. CGA are very small gas bubbles, on the order of 25 ..mu..m in diameter, that are each encapsulated in an aqueous shell of surfactant solution. The process is based on the technology of CGA flotation, which involves the formation of algae-bubble complexes and their subsequent flotation to the surface. At neutral pH, the efficiency of algae removal was maximized when a cationic surfactant (lauryl pyridinium chloride) was used for CGA generation. At pH 10, both the cationic and anionic (sodium dodecyl benzene sulfonate) CGA dispersions yielded comparable removals. Addition of small quantities of alum (to 10/sup -4/M) improved removals using the cationic CGA, and at pH 10 this combination yielded the maximum removals that were achieved: 52.1% removal after a single application of CGA dispersion (1 to 1, dispersion to sample volume ratio), and 89.2% removal after an additional application. 12 references, 1 figure, 2 tables.

  10. Colloids in the vicinity of landfills

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Fruhstorfer, P.; Klein, T.; Niessner, R.

    2003-04-01

    Waste disposals without adequate landfill liner system are a source of contaminants and colloids. In order to assess the effects of the presence of colloids on the transport of heavy metal ions, the colloids at three landfill sites were characterized with regard to their chemical and mineralogical composition, their size distribution, and the concentration of heavy metal ions associated to the colloids. It can be shown that the pattern of the colloids inside and outside of the landfill is different in all examined parameters, e.g. inside of the disposal we find organic colloids and salt particles, whereas the groundwater downstream of the disposal contains mainly iron-colloids and carbonatic particles. Therefore a direct transfer of colloids from the landfill to the aquifer seems unlikely. Changes of the hydrochemical (mainly redox) and hydrodynamic conditions contribute to this behaviour. The association of heavy metal ions to colloids shows an interesting pattern: High concentrations are present in solution and associated to smaller (< 10 nm) and larger (> 1 μm) colloids, whereas the colloids in between show only small concentrations. This finding has some impact on the assessment of colloidal transport processes, since it suggests, that the more mobile colloids do not carry high concentrations of heavy metal ions.

  11. Enhanced desulfurizing flotation of coal using sonoelectrochemical method.

    PubMed

    Zhang, Hong-Xi; Hou, Xiao-Yang; Xu, Shi-Xun; Li, Zhi-Long; Yu, Hai-Feng; Shen, Xue-Hua

    2013-09-01

    Enhanced desulfurizing flotation of low sulfur coal was investigated using sonoelectrochemical method. The supporting electrolyte used in this process was sodium chloride and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature, sonoelectrolytic time and coal sample granulometry. The optimal experimental conditions achieved for anhydrous ethanol concentration, sodium chloride concentration, sonoelectrolytic voltage, sonoelectrolytic temperature and sonoelectrolytic time are 1.7 mol L(-1), 5.1×10(-3) mol L(-1), 10 V, 70 °C, 50 min achieved for a -0.18 mm coal sample. Optimal conditions cause a sulfur reduction of up to 69.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, ash as well as moisture are partially removed. The combination of high sulfur reduction, high yield, as well as high ash reduction was obtained in the newly developed method of enhanced flotation by sonoelectrochemistry. Ultrasound irradiation promotes electron transfer efficiency and increases clean coal yield.

  12. Initial testing of a dynamic column for fine coal flotation

    SciTech Connect

    Lai, R.W.; Patton, R.A.; He, D.X.; Joyce, T.; Chiang, S.H.

    1995-12-31

    This paper describes the design and initial performance of a dynamic column for fine coal column flotation. A dynamic column is a modified conventional column with the insertion of a series of draft tubes that provide individual mixing stages. The mixing is beneficial in generating small and uniform bubbles over a wide range of frother dosages. It is also beneficial in the control of flotation where the fluctuation of froth volume should be minimized. In the modified design, a vortex-inducing plate is attached to the top of each draft tube to create an artificial vortex. In theory the vortex action is desirable for collecting the light clean coal froth within the inner mixing zone, and for passing it upward to the next draft tube stage. The mineral laden slurry, particularly the pyrite, is accelerated outside the vortex zone by centrifugal force to reach the wall where it is carried downward to the bottom of the column. The draft tubes are arranged in a series to accomplish multistage cleaning. The experimental results showed that this dynamic column has the potential advantage of higher throughput and better product recovery as well as improved product quality.

  13. Column flotation to produce ultra-clean coal

    SciTech Connect

    Parekh, B.K.; Groppo, J.G.; Smit, F.; Jha, M.C.; Feeley, T.

    1994-12-31

    Recovery of ultra-fine (minus 200 mesh) coal can be achieved using surface chemical based techniques such as froth flotation and oil agglomeration. Column flotation technique has shown potential to produce ultra-fine clean coal with low ash at high HHV recovery. The objective of this ongoing US DOE sponsored study is to evaluate various column configuration six different types of coal to produce premium quality coal containing less than 0.6 lb/mm Btu sulfur and less than 1 lb/mm Btu ash. The other goal of the study is to produce this ultra-clean coal at a cost of about $2.50/mm Btu. Amax Research and Development Center, prime contractor on this project, and other team members selected six different coals which are low in organic sulfur and have shown potential of cleaning to low ash level. The Center for Applied Energy Research (CAER) has evaluated two different types of bubble generating systems on six different coals to produce low ash clean coal at high ({approximately}90 percent) HHV recovery.

  14. Inclusion flotation-driven channel segregation in solidifying steels

    PubMed Central

    Li, Dianzhong; Chen, Xing-Qiu; Fu, Paixian; Ma, Xiaoping; Liu, Hongwei; Chen, Yun; Cao, Yanfei; Luan, Yikun; Li, Yiyi

    2014-01-01

    Channel segregation, which is featured by the strip-like shape with compositional variation in cast materials due to density contrast-induced flow during solidification, frequently causes the severe destruction of homogeneity and some fatal damage. An investigation of its mechanism sheds light on the understanding and control of the channel segregation formation in solidifying metals, such as steels. Until now, it still remains controversial what composes the density contrasts and, to what extent, how it affects channel segregation. Here we discover a new force of inclusion flotation that drives the occurrence of channel segregation. It originates from oxide-based inclusions (Al2O3/MnS) and their sufficient volume fraction-driven flotation becomes stronger than the traditionally recognized inter-dendritic thermosolutal buoyancy, inducing the destabilization of the mushy zone and dominating the formation of channels. This study uncovers the mystery of oxygen in steels, extends the classical macro-segregation theory and highlights a significant technological breakthrough to control macrosegregation. PMID:25422943

  15. A Novel Mineral Flotation Process Using Thiobacillus ferrooxidans

    PubMed Central

    Nagaoka, Toru; Ohmura, Naoya; Saiki, Hiroshi

    1999-01-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals. PMID:10427053

  16. Egg flotation estimates nest age for Pacific and Red-throated Loons

    USGS Publications Warehouse

    Rizzolo, Daniel; Schmutz, Joel A.

    2007-01-01

    We used Pacific Loon (Gavia pacifica) and Red-throated Loon (G. stellata) nests with known ages to gauge the efficacy of egg flotation for determining nest age in coastal Alaska. Egg flotation accurately estimated nest age for both species; the mean ± 1SD difference between known age and age determined with egg flotation was - 0.05 ± 2.00 d and -0.02 ± 1.63 d for Pacific and Red-throated Loons, respectively. Day of nest initiation did not influence the relationship between known nest age and nest age estimated with egg flotation, indicating incubation period was not shortened in nests initiated later in the season. Additionally, we found no difference in the ability of egg flotation to estimate nest age between two widely dispersed study sites for Pacific Loons, and only a small difference between two of three widely dispersed study sites for Red-throated Loons. Thus, our described relationships between egg flotation categories and nest age should be broadly applicable for these holarctic species. We conclude that for Pacific and Red-throated Loons, egg flotation is a useful technique for determining nest age in the field to better monitor nest fate, and to quantify nest age effects on nest daily survival rate.

  17. Removal of cadmium (II) from simulated wastewater by ion flotation technique.

    PubMed

    Salmani, Mohammad Hossein; Davoodi, Mojtaba; Ehrampoush, Mohammad Hassan; Ghaneian, Mohammad Taghi; Fallahzadah, Mohammad Hossein

    2013-01-01

    A separation technique which has recently received a sharp increase in research activities is "ion flotation". This technique has four important advantages for treating wastewaters: low energy consumption, small space requirements, small volume of sludge and acting selectively. The present study aims to optimize parameters of ion flotation for cadmium removal in simulated wastewater at laboratory scale. It was obtained on the reaction between Cd(2+) and sodium dodecylesulfate (SDS) collector followed by flotation with ethanol as frother. Test solution was prepared by combining the required amount of cadmium ion, SDS and necessary frother or sodium sulfate solution. All experiments were carried out in a flotation column at laboratory temperature (27°C), adjusted pH = 4 and 120 minutes. The different parameters (namely: flow rate, cadmium, SDS and frother concentrations and ionic strength) influencing the flotation process were examined. The best removal efficiency obtained at a collector-metal ratio of 3:1 in 60 min with flow rate of 150 mL/min was 84%. The maximum cadmium removal was 92.1% where ethanol was introduced at a concentration 0.4% to flotation column with above conditions. The obtained results were promising, as both cadmium and collector were effectively removed from wastewater. Hence, the application of ion flotation for metal ions removal from effluents seems to be efficient.

  18. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    PubMed

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  19. Application of dissolved air flotation on separation of waste plastics ABS and PS.

    PubMed

    Wang, Hui; Chen, Xiao-Lei; Bai, Yang; Guo, Chao; Zhang, Li

    2012-07-01

    The aim of this research was to separate waste plastics acrylonitrile butadiene styrene (ABS) and polystyrene (PS) by dissolved air flotation in a self-designed dissolved air flotation apparatus. The effects of wetting agents, frother, conditioning time and flotation time on flotation behavior of waste plastics ABS (w-ABS) and PS (w-PS) were investigated and the optimized separation conditions were obtained. The results showed that when using 25 mgL(-1) tannic acid, 5 mgL(-1) terpineol, 15 min conditioning time and 15 min flotation time, mixtures of w-ABS and w-PS were separated successfully by dissolved air flotation in two stages, the results revealed that the purity and recovery rate of w-PS in the floated products were 90.12% and 97.45%, respectively, and the purity and recovery rate of w-ABS in the depressed products were 97.24% and 89.38%, respectively. Based on the studies of wetting mechanism of plastic flotation, it is found that the electrostatic force and hydrophobic attraction cannot be the main factor of the interaction between wetting agent molecules and plastic particles, which can be completed through water molecules as a mesophase, and a hydrogen bonding adsorption model with hydration shell as a mesophase was proposed.

  20. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.; Parekh, B.K. . Center for Applied Energy Research)

    1991-01-01

    The overall objective of this program is to evaluate the application of an advanced physical separation technique, namely Ken-Flote'' column flotation to recover clean coal with minimum sulfur and ash content at greater than 90 percent combustible recovery from two Illinois coal preparation plant fine waste streams. The project will optimize various operating parameters with particular emphasis on fine bubble generating devices and reagent packages to enhance the rejection of liberated ash and pyritic sulfur. During this contract period, column flotation testing was completed on the flotation feed slurry obtained from the Kerr-McGee Galatia Preparation Plant. The column flotation tests were conducted using three different bubble generating devices: Static, gas saver and foam jet spargers. Each of these devices was tested with three different frothers and various column operating variables to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. In general, the column flotation provided a clean coal containing about 4--6 percent ash at combustible recovery ranging from 88 to 92 percent while pyrite rejection was 70 to 75 percent. Flotation tests were also conducted on a slurry sample obtained from The Ziegler {number sign}26 Preparation Plant in Sesse, Illinois. Base-line flotation testing was completed using batch flotation to identify optimum reagent addition. Column flotation of the Ziegler slurry provided a clean coal containing 4--6 percent ash with a combustible recovery of 90--95 percent and pyrite rejection of 60--67 percent. Efforts are in progress in installing a 6-inc. I.D. pilot column at the Ziegler {number sign}26. 9 figs.

  1. Kinetic model for conventional flotation of coal. Report of investigations/1995

    SciTech Connect

    Susko, F.J.; Stanley, D.A.

    1995-12-31

    The U.S. Bureau of Mines has developed a computer model to describe a flotation process. Coal data from conventional flotation has been converted to a simple two-parameter kinetic model developed by Reuter and van Deventer. Each set of coal data was represented by two constants, alpha and beta, and an average flotation rate. The success of the model was demonstrated when the calculated and experimental recoveries showed good correlation. The two-parameter model allows complex data to be defined much more efficiently than traditional knowledge-based models.

  2. Hydrophobic Agglomeration of Mineral Fines in Aqueous Suspensions and its Application in Flotation: a Review

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Song, Shaoxian

    2014-05-01

    Hydrophobic agglomeration is originated from the hydrophobic attraction between particles, which is essentially different from electrolyte coagulation and polymer flocculation. It is applied to mineral processing in floc-flotation process to improve the recovery of mineral fines. In this paper, the applications of this phenomenon in mineral fines were summarized, including the origin of hydrophobic agglomeration, the main factors affect hydrophobic agglomeration (particle hydrophobicity, shear rate and duration, nonpolar oil and tank geometry), as well as hydrophobic agglomeration based separation processes (carrier flotation and floc-flotation).

  3. Effects of attractive colloids on the phase separation behaviors of binary polymer blends

    NASA Astrophysics Data System (ADS)

    Zhang, Xinghua; Chen, Yunlin; Qu, Lijian; Yan, Dadong

    2013-08-01

    The attractive colloids are added as fillers to control the phase behaviors of binary polymer blends. Because the colloids attract both components in the blends, aggregates are formed by the colloids coated with both kinds of polymer brushes. The aggregation results in two contradictory effects on the phase separation. First, the formation of aggregate decreases the translational entropy, which promotes the phase separation. On the other hand, the phase separation causes the extra free energy penalty due to the stretch of the chains attaching on the colloids, which prevents the phase separation. Furthermore, as the concentration or adsorbability of the colloids increases the local fluctuations within the aggregates become important. This results in a transition from the macro-phase separation to the micro-phase separation and the existence of the Lifshitz point. All of these effects lead to diverse phase behaviors in the polymer nanocomposites system. In present work, these behaviors are studied theoretically by the random phase approximation in a model system.

  4. Colloids and Nucleation

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  5. Characterization of fullerene colloidal suspension in a cell culture medium for in vitro toxicity assessment.

    PubMed

    Kato, Haruhisa; Shinohara, Naohide; Nakamura, Ayako; Horie, Masanori; Fujita, Katsuhide; Takahashi, Kayori; Iwahashi, Hitoshi; Endoh, Shigehisa; Kinugasa, Shinichi

    2010-07-01

    To elucidate important parameters for in vitro toxicity assessment of C(60) and C(70) fullerene colloidal particles, experiments were carried out in culture medium using pulsed field gradient nuclear magnetic resonance (PFG-NMR), asymmetrical flow field-flow fractionation (AFFFF), and dynamic light scattering (DLS) methods. First, the amounts of total and bulk bovine serum albumin (BSA) molecules in C(60) and C(70) fullerene colloidal suspensions were determined using the PFG-NMR and AFFFF methods. Because the amount of bulk BSA molecules in the cell culture medium is a significant factor in inducing cell growth and because BSA can strongly adsorb onto the fullerene particles, this value is an important parameter for toxicological assessment. It was found that most of the BSA molecules are freely diffusing for both fullerene colloidal suspensions, at least in the range of fullerene concentration from 0.0025-0.15 mg mL(-1). Second, structural analysis of the fullerene colloidal nanoparticles was successfully performed using AFFFF-multi angle light scattering (MALS) and DLS methods. Based on the observed light scattering profiles obtained from a narrow size distribution of colloidal particles collected after AFFFF separation, it was estimated that the fullerene colloidal nanoparticles of both C(60) and C(70) did not adopt a hard spherical structure in the culture medium. The results from combined analysis using the AFFFF-MALS and DLS methods also supported this conclusion and indicated that the fullerene colloidal particles adopted a more flexible structure in culture medium. Since carbon nanomaterials with different geometric structures exhibit quite different cytotoxicity and bioactivity, these results are important for in vitro toxicity assessment.

  6. A novel process for separation of polycarbonate, polyvinyl chloride and polymethyl methacrylate waste plastics by froth flotation.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Huang, Luo-Luo

    2017-04-08

    A novel process was proposed for separation of ternary waste plastics by froth flotation. Pretreatment of plastics with potassium permanganate (KMnO4) solution was conducted to aid flotation separation of polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA) plastics. The effect of pretreatment parameters including KMnO4 concentration, treatment time, temperature and stirring rate on flotation recovery were investigated by single factor experiments. Surface treatment with KMnO4 changes selectively the flotation behavior of PC, PVC and PMMA, enabling separation of the plastics by froth flotation. Mechanism of surface treatment was studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). Effect of frother concentration and flotation time on flotation behavior of plastic mixtures was further studied for flotation separation. The optimized conditions for separation of PC are KMnO4 concentration 2mmolL(-1), treatment time 10min, temperature 60°C, stirring rate 300rpm, flotation time 1min and frother concentration 17.5mgL(-1). Under optimum conditions, PVC and PMMA mixtures are also separated efficiently by froth flotation associated with KMnO4 treatment. The purity of PC, PVC and PMMA is up to 100%, 98.41% and 98.68%, while the recovery reaches 96.82%, 98.71% and 98.38%, respectively. Economic analysis manifests remarkable profits of the developed process. Reusing KMnO4 solution is feasible, enabling the process greener.

  7. Colloid characterization and quantification in groundwater samples

    SciTech Connect

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  8. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  9. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  10. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  11. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  12. Achieved slime flotation in centrifugal force field by float-hydrocyclone

    SciTech Connect

    Guode Xuzhanxian; Gaozhenshen Songzhiwei

    1997-12-31

    Based on the theory of intensifying flotation in a centrifugal force field, float-hydrocyclone (FH) is developed, which is a new type of equipment for slime flotation and consists of an air bubble generator and the cylindrical section of a hydrocyclone. The combination of pulp and air bubbles is fed into the FH tangentially at a high speed to effect the separation of slime in the centrifugal force field. It offers many advantages over mechanically agitated flotation cells. Commercial test results show that slime, especially fine slime, can be perfectly floated in the FH with rapid flotation and fine froth size. The quality and quantity of concentrate and tailings can be adjusted conveniently within a certain range according to different requirements.

  13. Rule-based characterization of industrial flotation processes with inductive techniques and genetic algorithms

    SciTech Connect

    Gouws, F.S.; Aldrich, C.

    1996-11-01

    By making use of machine learning techniques, the features of flotation froths and other plant variables can be used as a basis for the development of knowledge-based systems for plant monitoring and control. probabilistic induction and genetic algorithms were used to classify different froth structures from industrial copper and platinum flotation plants, as well as recoveries from a phosphate flotation plant. Both algorithms were equally capable of classifying the different froths at least as well as a human expert. The genetic algorithm performed significantly better than the inductive algorithm but required more tuning before optimum results could be obtained. The classification rules produced by both algorithms can easily be incorporated into a supervisory expert system shell or decision support system for plant operators and could consequently make a significant impact on the way flotation plants are currently being controlled.

  14. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    PubMed Central

    Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C. PMID:22629194

  15. In-plant testing of microbubble column flotation

    SciTech Connect

    Luttrell, G.H.; Mankosa, M.J.; Adel, G.T.; Yoon, R.H.

    1991-01-01

    Testing of micro-bubble column flotation continued. Work during this time frame was concentrated on completion of the automated control and data acquisition system and the factorial test plan for evaluating the performance of the 8-foot column (Tasks 2.5 and 3.3). Preliminary results obtained from the factorial test program indicate that higher frother addition and aeration rates result in a higher separation efficiency. Furthermore, an increase in collector dosage results in higher column yields under most conditions. The Allen-Bradley PLC has been installed and program development completed for control of the 8-foot column. A completely automated start-up and shut-down sequence has been developed. This sequence can be initiated by the operator from a plant floor industrial interface. Instrumentation of the 30-inch column has also been completed. Testing of this instrumentation is currently underway. 11 figs., 5 tabs.

  16. Hybrid first-principles/neural networks model for column flotation

    SciTech Connect

    Gupta, S.; Liu, P.H.; Svoronos, S.A.; Sharma, R.; Abdel-Khalek, N.A.; Cheng, Y.; El-Shall, H.

    1999-03-01

    A new model for phosphate column flotation is presented which for the first time relates the effects of operating variables such as frother concentration on column performance. This is a hybrid model that combines a first-principles model with artificial neural networks. The first-principles model is obtained from material balances on both phosphate particles and gangue (undesired material containing mostly silica). First-order rates of net attachment are assumed for both. Artificial neural networks relate the attachment rate constants to the operating variables. Experiments were conducted in a 6-in.-dia. (152-mm-dia.) laboratory column to provide data for neural network training and model validation. The model successfully predicts the effects of frother concentration, particle size, air flow rate and bubble diameter on grade and recovery.

  17. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect

    Miller, R.L.; Atwood, R.L.; Ye, Yi

    1991-12-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  18. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect

    Miller, R.L. ); Atwood, R.L.; Ye, Yi )

    1991-01-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  19. An Investigation of Variables in a Fecal Flotation Technique

    PubMed Central

    O'Grady, M. R.; Slocombe, J. O. D.

    1980-01-01

    Several variables in a standard vial fecal gravitational flotation technique were investigated. These were the specific gravity of the sodium nitrate flotation solution, duration of flotation and mesh sizes of strainers. The number of eggs which floated and adhered to a coverslip were counted and estimates of the number of eggs remaining in the strained fecal suspension and in the feces trapped on the strainer were made. Eggs from hookworms, Trichuris vulpis and Toxocara canis in feces from dogs, Nematodirus spp. from sheep and Parascaris equorum from horses floated equally well in solutions with specific gravities (SpGr) ranging from 1.22-1.38. Taenia spp. from dogs had a slightly narrower range (SpGr 1.27-1.38) for best recovery. Eggs from Haemonchus contortus from sheep appeared to float best between SpGr 1.22- 1.32. Strongyles from one horse floated best with SpGr 1.27-1.32 and from another with SpGr 1.11-1.38. Coccidial oocysts from sheep floated best in a narrow range of SpGr from 1.22-1.27. However, as the SpGr of the solution was increased the recognition of eggs under the coverslip was increasingly difficult and especially so at SpGr 1.38 with sheep feces. This was due to the increasing amount of debris and the more rapid formation of crystals with evaporation with solutions of higher SpGr. It appeared, therefore, that solutions with SpGr of 1.22-1.35 would be best for routine laboratory use. At specific gravity 1.27, there appeared to be no difference in the number of eggs recovered for a four, eight and 12 min flotation period. Only 3-7% of the eggs in 4 g of feces were counted under the coverslip. This poor efficacy resulted first because approximately 50% of the eggs were trapped in the feces and retained on the strainer. Secondly, only one half of the strained fecal suspension, containing approximately 25% of the eggs, was placed in the vial for examination. Thirdly, of those eggs in the vial only 16-29% were counted under the coverslip. When the

  20. Molecular Loops in the Galactic Center: Evidence for Magnetic Flotation

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Fujishita, Motosuji; Kudo, Natsuko; Torii, Kazufumi; Nozawa, Satoshi; Takahashi, Kunio; Matsumoto, Ryoji; Machida, Mami; Kawamura, Akiko; Yonekura, Yoshinori; Mizuno, Norikazu; Onishi, Toshikazu; Mizuno, Akira

    2006-10-01

    The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the 12CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.

  1. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  2. Enhanced colloidal stability of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Borum, La Rhonda Terese

    Hydroxyapatite, Ca10(PO4)6(OH) 2 is the most thermodynamically stable calcium phosphate in physiological environments. Hence, it is the main inorganic mineral found in bone and teeth. Its colloidal stability, however, is poor because hydroxyapatite (HAp) particles exhibit sediment formation upon standing at short time periods, where agglomerates form and lead to non-homogeneous suspensions. Surface modification is a promising method to tailor the colloidal stability of hydroxyapatite for biomaterial applications. Three techniques to modify the HAp surface and enhance the colloidal stability of HAp were investigated. Modified particles were characterized by methods sensitive to surface chemistry changes, such as sedimentation studies, diffuse reflectance Fourier transform infrared spectroscopy (DRIFT), Brunauer-Emmett-Teller (BET) surface area, and electrophoresis. Sedimentation studies demonstrated how effective each technique was in improving the colloidal stability of hydroxyapatite particles. Electrophoresis provided information on electrostatic interactions within each system. The first technique entailed an esterification reaction of the HAp surface with dodecyl alcohol at elevated temperatures. DRIFT results showed that dodecyl groups from the alcohol replaced acidic hydroxyl and phosphate sites on the HAp surface, giving rise to enhanced colloidal stability through steric interactions in ethanol suspensions. TGA curves gave insight to the degree of esterification for the esterified particles. Higher reaction temperatures give rise to a higher degree of esterification resulting in better colloidal stability. The second technique applied a silica coating on the HAp surface by the hydrolysis of tetraethyl orthosilicate in ethanol. Silica was coated onto the HAp surface at 5--75 wt% loading amounts. A combination of acid dissolution and x-ray diffraction (XRD), along with BET showed that the silica coating is complete at 50 wt% silica loading. The silica coating

  3. Effective Forces Between Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel

    1999-01-01

    Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two

  4. Pioneering studies on the flotation of corundum from a Montana gneiss

    SciTech Connect

    Smith, C.W.; Llewellyn, T.O.

    1987-01-01

    Bureau of Mines conducted laboratory-scale beneficiation tests on a sample of corundum gneiss from Montana to devise a method for beneficiating corundum for use as a substitute for refractory-grade bauxite. A flotation process utilizing petroleum sulfonate as the collector in an acid circuit was devised. Results showed that two flotation schemes each produced a concentrate exceeding the national stockpile specifications for calcined bauxite.

  5. Colloid particle size-dependent dispersivity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Katzourakis, V. E.

    2014-12-01

    Laboratory and field studies have demonstrated that dispersion coefficients evaluated by fitting advection-dispersion transport models to nonreactive tracer breakthrough curves do not adequately describe colloid transport under the same flow field conditions. Here an extensive laboratory study was undertaken to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size and interstitial velocity. A total of 49 colloid transport experiments were performed in columns packed with glass beads under chemically unfavorable colloid attachment conditions. Nine different colloid diameters, and various flow velocities were examined. The breakthrough curves were successfully simulated with a mathematical model describing colloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity is positively correlated with colloid particle size, and increases with increasing velocity.

  6. Nonequilibrium interfaces in colloidal fluids

    NASA Astrophysics Data System (ADS)

    Bier, Markus; Arnold, Daniel

    2013-12-01

    The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid) phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in between, they can be expected to be suitable for analogous experimental studies, too. The major finding is that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium or a nonequilibrium system is considered. The degree of nonquilibrium between the bulk phases is found to not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which nonequilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of systems.

  7. Nanoscale Morphology of Water in Silica Colloidal Crystals.

    PubMed

    Blanco, A; Gallego-Gómez, F; López, C

    2013-04-04

    We show a simple method to visualize the morphology of water adsorbed within the pore network of colloidal crystals made of submicrometer silica spheres. Water is replicated into silica by modified silicon tetrachloride hydrolysation under standard ambient conditions, making it visible to standard electronic microscopy and thus allowing one to discern the original water distribution. Different distribution patterns are identified depending on the water content, surface condition, and spheres arrangement. The dimension and shape of wetting layers (covering the submicrometer spheres) and capillary bridges (joining them) are measurable at the nanoscale. We finally use these findings to demonstrate proof-of-principle of fabrication of isolated and freestanding silica nanorings by using hydrophobic polymeric templates and selective etching.

  8. Implementation of Microcel{trademark} column flotation for processing fine coal

    SciTech Connect

    Davis, V.L. Jr.

    1993-12-31

    Laboratory and pilot-scale test programs have been conducted in order to evaluate the performance of column and conventional flotation circuits for the processing of fine coal. The tests were conducted on-site at several operating coal preparation facilities by utilization of Pilot-scale conventional and column flotation cells. The feed to the test equipment in each case was classifying cyclone overflow material that was high in ash content (40%--50%) with solids content values in the 5%--10% range. The test results indicated that column flotation Provided superior metallurgical performance (approaching that attained by release analysis techniques) as compared to single pass and rougher/cleaner conventional flotation. The results of this study eventually led to the installation of 5--10 foot diameter column flotation cells at the Middle Fork pond reclaim facility. It was determined that the installation of the flotation columns at the Middle Fork facility led to a reduction in concentrate ash of approximately 7 percentage points and an increase in combustible recovery in excess of 15 percentage points.

  9. Sorbent flotation in trace metal analysis: Preconcentration of uranium traces on hydrophobized hyphan-cellulose

    SciTech Connect

    Braun, T.; Galsan, V.; Toelgyessy, J.

    1994-01-01

    The use of flotation in analytical chemistry has established itself as a reliable technique for the separation and preconcentration of trace elements. In most of the applications in situ generated inorganic and organic precipitates were used as trace element gatherers and floated to the surface of large volumes of solution with the aid of a rising stream of gas bubbles and well selected collector surfactants. This procedure of {open_quotes}precipitate flotation{close_quotes} has been well studied and applied to many problems of preconcentration chemistry. As far as the present authors are aware of solid preformed sorbents have not yet been separated from large volumes of solution by flotation after batch type sorption of trace elements on them. That is why the authors considered it worthwhile to explore the analytical potentialities of the separation of commercial and non-commercial solid sorbents by flotation. The new procedure the authors like to call {open_quotes}sorbent flotation{close_quotes} refers to the separation of preformed solid sorbents from large volumes of solution and can be viewed as an extension to the already known flotation of in situ formed inorganic and organic precipitates.

  10. The use of ion flotation for detoxification of metal-contaminated waters and process effluents

    SciTech Connect

    Doyle, F.M.; Duyvesteyn, S.; Sreenivasarao, K.

    1995-12-31

    Toxic metals entering surface or ground water from sources such as metal finishing shop spills and abandoned mines can pose a significant threat to public health and the environment. Ion flotation and similar foam separation techniques show great promise for treating dilute, metal-contaminated solutions, and could also be used to treat effluents from many minerals and metallurgical processing operations prior to discharge. In ion flotation, an appropriate collector is added to the solution to form hydrophobic complexes with the metal ions. These metal-bearing species are then removed by flotation, usually with trace addition of a frother to stabilize the foam. In an effort to better understand the underlying scientific and engineering principles that determine the performance of ion flotation, the removal of Cu(II), Pb(II), Cd(II), Cr(III) and Cr(VI) has been studied using laboratory scale flotation columns in batch mode. The effects of the superficial air velocity, solution and froth height, nature of the collector, collector:metal-ion ratio, ionic strength and several frothers at low concentrations on the flotation kinetics are reported. Finally, results are presented on methods that might allow regeneration of collector and recovery of by-product metal from the foam product.

  11. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    SciTech Connect

    Wang, Chong-Qing; Wang, Hui Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  12. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.

    1991-01-01

    The advanced flotation techniques, namely column flotation, have shown potential in obtaining a low ash, low pyritic sulfur fine size clean coal. The overall objective of this program is to evaluate applicability of an advanced flotation technique, 'Ken-Flote' column to recover clean coal with minimum mineral matter content at greater than 90 percent combustible recovery from two Illinois preparation plant waste streams. Column flotations tests were conducted on the flotation feed obtained from the Kerr-McGee Galatia and Ziegler No. 26 plants using three different bubble-generating devices: sparger, gas saver and foam jet. Each of these devices was tested with three different frothers and various column-operating variable to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. For the Galatia slurry, the column provided a clean coal containing 5 percent ash, 0.48 percent pyritic sulfur at combustible recovery averaging 90 percent. In other words, about 90 percent ash and about 75 percent pyritic sulfur rejection were attained for the Galatia slurry. Pilot plant studies on this slurry basically obtained results similar to the laboratory studies. For the Ziegler No. 26, slurry column flotation provided a clean coal containing about 5 percent ash, 0.44 percent pyritic sulfur at more than 90 percent combustible recovery. The ash and pyrite sulfur rejection was about 85 percent and 65 percent, respectively.

  13. Separation of plastics: The importance of kinetics knowledge in the evaluation of froth flotation.

    PubMed

    Censori, Matteo; La Marca, Floriana; Carvalho, M Teresa

    2016-08-01

    Froth flotation is a promising technique to separate polymers of similar density. The present paper shows the need for performing kinetic tests to evaluate and optimize the process. In the experimental study, batch flotation tests were performed on samples of ABS and PS. The floated product was collected at increasing flotation time. Two variables were selected for modification: the concentration of the depressor (tannic acid) and airflow rate. The former is associated with the chemistry of the process and the latter with the transport of particles. It was shown that, like mineral flotation, plastics flotation can be adequately assumed as a first order rate process. The results of the kinetic tests showed that the kinetic parameters change with the operating conditions. When the depressing action is weak and the airflow rate is low, the kinetic is fast. Otherwise, the kinetic is slow and a variable percentage of the plastics never floats. Concomitantly, the time at which the maximum difference in the recovery of the plastics in the floated product is attained changes with the operating conditions. The prediction of flotation results, process evaluation and comparisons should be done considering the process kinetics.

  14. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    PubMed

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry.

  15. Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Lin, Qing-quan; Zhang, Ling-ling; Huang, Luo-luo; Zhao, Jun-yao

    2016-05-01

    A promising method, ammonia modification, was developed for flotation separation of polycarbonate (PC) and polystyrene (PS) waste plastics. Ammonia modification has little effect on flotation behavior of PS, while it changes significantly that of PC. The PC recovery in the floated product drops from 100% to 3.17% when modification time is 13min and then rises to 100% after longer modification. The mechanism of ammonia modification was studied by contact angle, and Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements. Contact angle of PC indicates the decline of PC recovery in the floated product is ascribed to an increase in surface wettability. FT-IR and XPS spectra suggest that ammonia modification causes chemical reactions occurred on PC surface. Flotation behavior of ammonia-modified PC and PS was investigated with respect to flotation time, frother concentration and particle sizes. Flotation separation of PC and PS waste plastics was conducted based on the flotation behavior of single plastic. PC and PS mixtures with different particle sizes are separated efficiently, implying that the technology possesses superior applicability to particle sizes of plastics. The purity of PS and PC is up to 99.53% and 98.21%, respectively, and the recovery of PS and PC is larger than 92.06%. A reliable, cheap and effective process is proposed for separation of PC and PS waste plastics.

  16. Effect of three typical sulfide mineral flotation collectors on soil microbial activity.

    PubMed

    Guo, Zunwei; Yao, Jun; Wang, Fei; Yuan, Zhimin; Bararunyeretse, P; Zhao, Yue

    2016-04-01

    The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p < 0.05), butyl dithiophosphate, and sodium diethyldithiocarbamate (p < 0.01) on soil microbial activity. The growth rate constants k decreased along with the increase of flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.

  17. Aluminum colloid formation and its effect on co-precipitation of zinc during acid rock drainage remediation with clinoptilolite in a slurry bubble column

    NASA Astrophysics Data System (ADS)

    Xu, W.; Li, L. Y.; Grace, J. R.

    2012-04-01

    Zinc and other metal ions were adsorbed in a laboratory slurry bubble column (SBC) by natural clinoptilolite sorbent particles. During the remediation process, significant white precipitates were sometimes observed. Both zinc and aluminum were detected in the colloidal mixtures. It is shown that Al leached from clinoptilolite during the agitation, contributing to the precipitate. As a result of the Al leaching and increase of pH during the remediation process, the formation of an Al colloid and zinc adsorption onto it could significantly improve ARD remediation, given the high adsorption capacity of the colloid. Sorption of cations increased with increasing colloid formation. Various conditions were tested to investigate their impact on (a) dealumination of clinoptilolite; (b) Al hydrolysis/colloid formation; and (c) adsorption onto the colloidal mixture. The test results indicate that dealumination contributes to the excess aluminum in the aqueous phase and to precipitates. The excess dealumination varies with pH and agitation time. Al hydrolysis occurs with increasing pH due to the neutralization effect of clinoptilolite. A significant proportion of zinc adsorbed onto the collectible aluminum precipitates.

  18. Influence of gold nanoparticle size on the orientation and activity of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Kaur, Kanwarjeet; Forrest, James

    2010-03-01

    We used UV-visible extinction spectroscopy to study the orientation and activity of rabbit immunoglobulin G and Protein A from Staphylococcus aureus adsorbed onto gold nanoparticles of various sizes (10-60nm). There is a shift in the localised surface plasmon resonance peak due to the interaction of proteins with the nanoparticles. The proteins adopt different orientations on smaller spheres as compared to larger spheres. IgG adopts end-on orientation on bigger spheres with the Fc domain directed towards the spheres. It displays no activity towards Protein A. This study shows that the curvature of nanoparticles strongly influences the orientation of adsorbed proteins. This could be useful in the designing of colloidal drug carriers.

  19. A novel fiber-based adsorbent technology

    SciTech Connect

    Reynolds, T.A.

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  20. Interfacial & colloidal aspects of lipid digestion.

    PubMed

    Wilde, P J; Chu, B S

    2011-06-09

    Amongst the main issues challenging the food manufacturing sector, health and nutrition are becoming increasingly important. Global concerns such as obesity, the ageing population and food security will have to be addressed. Food security is not just about assuring food supply, but is also about optimising nutritional delivery from the food that is available [1]. Therefore one challenge is to optimise the health benefits from the lipids and lipid soluble nutrients. Colloid scientists have an affinity for lipids because they are water insoluble, however this presents a challenge to the digestive system, which has to convert them to structures that are less insoluble so they are available for uptake. Despite this, the human digestive system is remarkably effective at digesting and absorbing most lipids. This is primarily driven through maximising energy intake, as lipids possess the highest calorific value, which was a survival trait to survive times of famine, but is now an underlying cause of obesity in developed countries with high food availability. The critical region here is the lipid-water interface, where the key reactions take place to solubilise lipids and lipid soluble nutrients. Digestive lipases have to adsorb to the oil water interface in order to hydrolyse triacylglycerols into fatty acids and mono glycerides, which accumulate at the interface [2], and inhibit lipase activity. Pancreatic lipase, which is responsible for the majority of lipid hydrolysis, also requires the action of bile salts and colipase to function effectively. Bile salts both aid the adsorption of co-lipase and lipase, and help solubilise the lipolysis products which have accumulated at the interface, into mixed micelles composing bile salts and a range of other lipids, to facilitate transport to the gut mucosal surface prior to uptake and absorption. The process can be affected by the lipid type, as shorter chain, fatty acids are more easily absorbed, whereas the uptake of longer

  1. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    PubMed Central

    Shinohara, Sho; Chiyomaru, You; Sassa, Fumihiro; Liu, Chuanjun; Hayashi, Kenshi

    2016-01-01

    Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size) using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA), composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP) layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules. PMID:27886070

  2. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    NASA Astrophysics Data System (ADS)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2016-04-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  3. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  4. PREFACE: Colloidal and molecular electro-optics Colloidal and molecular electro-optics

    NASA Astrophysics Data System (ADS)

    Palberg, Thomas; Löwen, Hartmut

    2010-12-01

    temperature on the sequence-dependent curvature of DNA restriction fragments Nancy C Stellwagen and Yongjun Lu A fluorescence correlation spectroscopy study of macromolecular tracer diffusion in polymer solutions Ute Zettl, Matthias Ballauff and Ludger Harnau Polymer concentration dependence of kilohertz electric polarizability of alumina colloid particles with adsorbed carboxymethyl cellulose Alexandar M Zhivkov and Rosen P Hristov

  5. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, October 1--December 30, 1995

    SciTech Connect

    Chandler, S.; Hogg, R.

    1996-04-01

    Goals are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process (combination of oil-agglomeration and froth flotation) and to establish the essential criteria for reagent selection and system design and operation. The research program was organized into the following tasks: interfacial studies, emulsification, agglomerate growth and structure, and agglomerate flotation. Work on the first two tasks has been completed.

  6. Flotation Analysis for Boat Docks on U.S. Army Corps of Engineers Projects. Recreation Management Support Program

    DTIC Science & Technology

    2009-06-01

    blocks of EPS are commonly collected, particularly after a storm season. In Georgia , a Lake Hartwell Association newsletter referred to these as...flotation products being used at boat docks on U.S. Army Corps of Engineers lakes , best practices and policies for dock flotation of various water...TR-09-5 1 1 Introduction This report documents a survey of flotation products being used at boat docks on U.S. Army Corps of Engineers lakes , best

  7. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  8. Effet de l'agrégation sur le transport de la kaolinite recouverte d'acide humique à travers un sable de quartz d'origine naturelleAggregation effect on the transport of humic-coated kaolinite colloids through a natural quartz sand

    NASA Astrophysics Data System (ADS)

    Ait Akbour, Rachid; Douch, Jamaâ; Hamdani, Mohamed; Schmitz, Philippe

    2002-10-01

    To evaluate the risk of contaminant transport by mobile colloids, it is necessary to understand how colloids and associated pollutants behave during their migration through uncontaminated soil or groundwater. In this study, we investigated the influence of aggregation induced by Ca 2+ and trace metals (Pb 2+, Cu 2+) concentrations on the transport of humic-coated kaolinite colloids through a natural quartz sand at pH=4. Adsorbed divalent cations reduce the colloids surface charge and thereby induce aggregation and deposition in porous media. To cite this article: R. Ait Akbour et al., C. R. Geoscience 334 (2002) 981-985.

  9. Colloid Straining within Saturated Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Porubcan, A.; Walczak, J.; Xu, S.

    2008-12-01

    A thorough understanding of colloid movement in the subsurface system is critical to the assessment of groundwater pollution by pathogenic bacteria and colloid-bound contaminants. It is increasingly recognized that straining, a process that occurs when the pore space is too small to allow for a particle's passage, represents an important process in colloid immobilization within groundwater systems. Previously published studies have focused on the kinetics of colloid straining within sand packs composed of uniform mineral grains. Natural aquifers, however, are usually characterized by physically heterogeneous sediments. In this study, we conducted column transport experiments with carboxylated latex particles and quartz sand to investigate the impact of sediment texture (i.e., the size distribution of mineral grains) on colloid straining kinetics. The quartz sands used in the experiment were thoroughly cleaned and the strong repulsive interactions between colloid particles and quartz sands resulted in minimal physicochemical deposition so the straining kinetics can be quantified unambiguously. Sand packs of different textures were prepared by mixing sands of various sizes (mesh sizes of 20-25, 35-40 and 60-70). Our results suggested that the ratio of colloid size and the median sand grain size was insufficient to predict colloid straining within heterogeneous sediments. Soil texture, which was related to the size distribution of the sand grains, must be considered. A relationship between colloid straining kinetics and the heterogeneity of porous media that can be useful for the prediction of colloid transport within heterogeneous sediments was presented.

  10. Stable colloids in molten inorganic salts

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  11. Analytic studies of colloid transport in fractured porous media

    SciTech Connect

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1989-11-01

    We analyze the interactive migration of radioactive colloids and solute in fractured rock. Two possible interactions between radionuclides as colloids and as solute are considered: solute sorption on nonradioactive colloids to form pseudocolloids, and dissolution of radioactive colloids. Previous studies have discussed the formation and transport of colloids in porous media, including removal of colloids by filtration and sedimentation. Colloids can migrate faster than solute because of weaker sorption on stationary solids and because of hydrochromatography of colloid particles in flow channels. However, the migration of colloids and pseudocolloids can be retarded by the interaction of colloids with solute, and the migration of solute in local equilibrium with colloids can be more rapid than if colloids were not present. Here we present a new quantative analysis to predict the interactive migration of colloids and solute in porous and fractured media. 4 figs.

  12. Chancellor Water Colloids: Characterization and Radionuclide Association

    SciTech Connect

    Abdel-Fattah, Amr I.

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  13. Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties.

    PubMed

    Sander, Sylvia; Mosley, Luke M; Hunter, Keith A

    2004-09-15

    The nature of interparticle forces acting on colloid particle surfaces with adsorbed surface films of the internationally used humic acid standard material, Suwannee River Humic Acid (SHA), has been investigated using an atomic force microscope (AFM). Two particle surfaces were used, alumina and a hydrous iron oxide film coated onto silica particles. Adsorbed SHA dominated the interactive forces for both surface types when present. At low ionic strength and pH > 4, the force curves were dominated by electrostatic repulsion of the electrical double layers, with the extent of repulsion decreasing as electrolyte (NaCl) concentration increased, scaling with the Debye length (kappa(-1)) of the electrolyte according to classical theory. At pH approximately 4, electrostatic forces were largely absent, indicating almost complete protonation of carboxylic acid (-COOH) functional groups on the adsorbed SHA. Under these conditions and also at high electrolyte concentration ([NaCl] > 0.1 M), the absence of electrostatic forces allowed observation of repulsion forces arising from steric interaction of adsorbed SHA as the oxide surfaces approached closely to each other (separation < 10 nm). This steric barrier shrank as electrolyte concentration increased, implying tighter coiling of the adsorbed SHA molecules. In addition, adhesive bridging between surfaces was observed only in the presence of SHA films, implying a strong energy barrier to spontaneous detachment of the surfaces from each other once joined. This adhesion was especially strong in the presence of Ca2+ which appears to bridge SHA layers on each surface. Overall, our results show that SHA is a good model for the NOM adsorbed on colloids.

  14. Nonambulatory cows: Duration of recumbency and quality of nursing care affect outcome of flotation therapy.

    PubMed

    Stojkov, J; Weary, D M; von Keyserlingk, M A G

    2016-03-01

    Cows that are unable or unwilling to stand and remain recumbent for ≥ 12 h are defined as nonambulatory. Care and management of nonambulatory cattle is considered a major animal welfare concern facing the livestock industry, particularly the dairy sector. Flotation therapy has gained interest as a means to promote recovery in nonambulatory cows and is based on the concept that by floating the cow in warm water, secondary pressure damage to muscles and nerves will be reduced. The objective of this study was to assess the physiological responses to stress related to the flotation therapy and to evaluate the effect of recumbency duration and nursing care on the outcome of the flotation therapy. The outcomes of 34 nonambulatory Holstein dairy cows were analyzed after they were subjected to flotation therapy. The duration of recumbency and quality of nursing care provided before initiation of the flotation treatment were assessed based on producer responses to survey questions, and from on-site observations by the researchers. A veterinarian examined all cows before flotation therapy began. The treatment was divided into 5 phases: baseline (before filling), manipulation (placing the cow into the tank), filling (the tank was filled with water), flotation (the cow was confined in the filled tank), and draining (water was removed from the tank). Stress responses to the procedure, excluding the manipulation portion, were assessed using heart rate variability. The high-frequency component (HF normalized units) decreased during the filling and draining phases (2.8 ± 0.2 and 3.1 ± 0.4, respectively) compared with the baseline and floating phase (5.1 ± 0.6 and 4.9 ± 0.3, [corrected] respectively). These results indicate that the stress related to the flotation therapy is greatest during the filling and draining phases of the treatment, when cows likely have to exert increased effort to transition to a standing position. The flotation therapy was less likely to be

  15. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  16. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, Shane R.; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D'Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods

  17. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids

    NASA Astrophysics Data System (ADS)

    Wang, D.-S.; Kerker, M.

    1981-08-01

    Equations are derived and calculations are presented for the electrodynamic mechanism of enhanced Raman scattering by molecules at the surface of prolate and oblate spheroids in the small-particle limit. The molecules may be arbitrarily distributed; the particles may be arbitrarily oriented. Calculations are presented for a monolayer distributed over randomly oriented spheroids. The effects of particle shape are considered for Ag, Au, and Cu hydrosols. The peak enhancement moves to longer wavelengths, and in the case of Au and Cu the magnitude of the enhancement increases strikingly as the eccentricity increases. The relation between the dependence of the Raman enhancement upon excitation wavelength and the extinction spectra is discussed, including the precariousness of extrapolating such relations beyond the small-particle limit.

  18. Applicability of DLVO Approach to Predict Trends in Iron Oxide Colloid Mobility Under Various Physical And Chemical Soil Conditions

    NASA Astrophysics Data System (ADS)

    Florian Carstens, Jannis; Bachmann, Jörg; Neuweiler, Insa

    2014-05-01

    In soil and groundwater, highly mobile iron oxide colloids can act as "shuttles" for transport of adsorbed contaminants such as heavy metals and radionuclides. Artificial iron oxide colloids are injected into polluted porous media to accelerate bacterial degradation of pollutants in the context of bioremediation purposes. The mobility of iron oxide colloids is strongly affected by the hydraulic, physical and chemical conditions of the pore space, the solid particle surface properties, the fluid phase, and the colloids themselves. Most pioneering studies focused on iron oxide colloid transport and retention in simplified model systems. The aim of this study is to investigate iron oxide colloid mobility under more complex, soil-typical conditions that have as yet only been applied for model microspheres, i.e. functionalized latex colloids. Among these conditions is the pivotal impact of organic matter, either dissolved or adsorbed onto solid particles, modifying wettability properties. Of particular importance was to determine if effective chemical surface parameters derived from contact angle and zeta potential measurements can be used as a tool to predict general tendencies for iron oxide colloid mobility in porous media. In column breakthrough experiments, goethite colloids (particle size: 200-900 nm) were percolated through quartz sand (grain size: 100-300 µm) at pH 5. The impact of a multitude of conditions on colloid mobility was determined: dissolved organic matter (DOM) concentration, ionic strength, flow velocity, flow interruption, partial saturation, and drying with subsequent re-wetting. The solid matrix consisted of either clean sand, organic matter-coated sand, goethite-coated sand, or sand hydrophobized with dichlorodimethylsilane. Additionally, contact angles and zeta potentials of the materials applied in the column experiments were measured. By means of these surface parameters, traditional DLVO interaction energies based on zeta potential as well

  19. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    SciTech Connect

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard; none,; Gill, Gary; Li-Jung, Kuo; Wood, Jordana; Sadananda, Das

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  20. Designing Colloidal Molecules with Microfluidics

    PubMed Central

    Shen, Bingqing; Ricouvier, Joshua; Malloggi, Florent

    2016-01-01

    The creation of new colloidal materials involves the design of functional building blocks. Here, a microfluidic method for designing building blocks one by one, at high throughput, with a broad range of shapes is introduced. The method exploits a coupling between hydrodynamic interactions and depletion forces that controls the configurational dynamics of droplet clusters traveling in microfluidic channels. Droplet clusters can be solidified in situ with UV. By varying the flow parameters, clusters are prescribed a given size, geometry, chemical and/or magnetic heterogeneities enabling local bonding. Compact structures (chains, triangles, diamonds, tetrahedrons,...) and noncompact structures, such as crosses and T, difficult to obtain with current techniques are produced. Size dispersions are small (2%) and throughputs are high (30 000 h−1). The work opens a new pathway, based on microfluidics, for designing colloidal building blocks with a potential to enable the creation of new materials. PMID:27840804