Science.gov

Sample records for adsorption barrier energy

  1. Hydrogen-graphite interaction: Experimental evidences of an adsorption barrier

    NASA Astrophysics Data System (ADS)

    Aréou, E.; Cartry, G.; Layet, J.-M.; Angot, T.

    2011-01-01

    The interaction of H atoms having relatively low average kinetic energy (˜0.025 eV) with both perfectly clean and D-covered HOPG surfaces is investigated using high resolution electron energy loss spectroscopy. From this study we confirm, in a controlled fashion, the presence of the theoretically predicted adsorption barrier since no adsorption is detected for such H atoms on HOPG. Moreover, we demonstrate that the exposure of a D saturated HOPG surface to these H atoms results in the complete removal of adatoms, with no further adsorption despite the prediction of the adsorption barrier to vanish for H dimers in para configuration. Therefore, the recombinative abstraction mechanism which competes with the adsorption process is more efficient.

  2. Ehrlich-Schwöbel barriers and adsorption of Au, Cu and Ag stepped (100) surfaces

    NASA Astrophysics Data System (ADS)

    Benlattar, M.; Elkoraychy, E.; Sbiaai, K.; Mazroui, M.; Boughaleb, Y.

    2017-02-01

    We use a combination of quenched molecular dynamics and embedded atom method to calculate the activation energy barriers for the hopping and exchange mechanisms of Au, Ag or Cu on Au(100), Ag(100) or Cu(100) stepped surfaces. Our findings show that the Ehrlich-Schwöbel (ES) barriers for an adatom to undergo jump or exchange at a step edge are found to be dependent of the nature of substrate stepped surfaces. We also find that the ES barriers for the hopping processes are too high, except for Cu/Au(100). While for exchange process the Ehrlich-Schwöbel barriers are found to be very low and even negative. These ES barriers can explain the difference in the growth modes for the different systems. On the other hand, we calculated the adsorption energies at the most stable adsorption sites near step edges. In particular, we wish to clarify the relation between the adatom diffusion energy barriers and the adatom adsorption energies. These results may serve as some guiding rules for studying stepped surface morphologies, which are of importance to surface nanoengineering.

  3. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  4. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  5. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    SciTech Connect

    Nakano, C. Masato; Ma, Heng; Wei, Tao

    2015-04-13

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.

  6. Methane Adsorption on Aggregates of Fullerenes: Site-Selective Storage Capacities and Adsorption Energies

    PubMed Central

    Kaiser, Alexander; Zöttl, Samuel; Bartl, Peter; Leidlmair, Christian; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2013-01-01

    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118–281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane–methane and fullerene–methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes. PMID:23744834

  7. Methane adsorption on aggregates of fullerenes: site-selective storage capacities and adsorption energies.

    PubMed

    Kaiser, Alexander; Zöttl, Samuel; Bartl, Peter; Leidlmair, Christian; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2013-07-01

    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118-281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane-methane and fullerene-methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes.

  8. Market and Policy Barriers to Energy Storage Deployment

    SciTech Connect

    Bhatnagar, Dhruv; Currier, Aileen; Hernandez, Jacquelynne; Ma, Ookie; Kirby, Brendan

    2013-09-01

    Electric energy storage technologies can provide numerous grid services; there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, cross-cutting barriers and technology barriers.

  9. Computation of Adsorption Energies of Some Interstellar Species

    NASA Astrophysics Data System (ADS)

    Sil, Milan; Chakrabarti, Sandip Kumar; Das, Ankan; Majumdar, Liton; Gorai, Prasanta; Etim, Emmanuel; Arunan, Elangannan

    2016-07-01

    Adsorption energies of surface species are most crucial for chemical complexity of interstellar grain mantle. Aim of this work is to study the variation of the adsorption energies depending upon the nature of adsorbent. We use silicate and carbonaceous grains for the absorbents. For silicate grains, we use very simple crystalline ones, namely, Enstatite (MgSiO_3)_n, Ferrosilite (FeSiO_3)_n, Forsterite (Mg_2SiO_4)_n and Fayalite (Fe_2SiO_4)_n. We use n=1, 2, 4, 8 to study the variation of adsorption energies with the increase in cluster size. For carbonaceous grain, we use Coronene (polyaromatic hydrocarbon surface). Adsorption energy of all these species are calculated by means of quantum chemical calculation using self consistent density functional theory (DFT). MPWB1K hybrid meta-functional is employed since it has been proven useful to study the systems with weak interactions such as van der Waals interactions. Optimization are also carried out with MPWB1K/6-311g(d) and MPWB1K/6311g(d,p) and a comparison of adsorption energies are discussed for these two different basis sets. We use crystalline structure of the adsorbent. The adsorbate is placed in the different site of the grain with a suitable distance. The energy of adsorption for a species on the grain surface is defined as follows: E_a_d_s = E_s_s - (E_s_u_r_f_a_c_e + E_s_p_e_c_i_e_s), where E_a_d_s is the adsorption energy, E_s_s is the optimized energy for species placed in a suitable distance from the grain surface, E_s_u_r_f_a_c_e and E_s_p_e_c_i_e_s respectively are the optimized energies of the surface and species separately.

  10. Estimation of adsorption energy for water molecules on a multi-walled carbon nanotube thin film by measuring electric resistance

    NASA Astrophysics Data System (ADS)

    Kokabu, Takuya; Inoue, Shuhei; Matsumura, Yukihiko

    2016-11-01

    Gas sensors based on carbon nanotube (CNT) films have attracted attention owing to their low power consumption. For further development of these sensors, we need to understand the surface interaction of the films with gas molecules. In our previous research, we investigated the influence of water molecules on the electrical conductance of multi-walled CNT films and explained this phenomenon using a two-layer adsorption model. This work motivated us to measure the adsorption energy of CNT-H2O. In this study, we focused on the first-layer adsorption and investigated the sheet resistance to water vapor pressure at various temperatures using the transmission line method (TLM). The results were fitted to Langmuir adsorption model and the adsorption equilibrium constant was determined. The temperature dependence of the sheet resistance followed a model of fluctuation induced tunneling (FIT), in which the energy barrier at the CNT junction is regarded as the main factor influencing the electrical conductance of the CNT film. The sheet resistance and equilibrium constant decreased as temperature increased. This result was consistent with the adsorption phenomenon. Finally, the adsorption energy was determined to be 0.22-0.31 eV, which is larger than the previously calculated value. It was also reported that the adsorption energy of the gas molecules in the interstitial site between two carbon nanotubes was larger than that on the CNT surface. These results indicate that the CNT junction plays a key role in the detection of gas molecules.

  11. Adsorption energies and prefactor determination for CH3OH adsorption on graphite.

    PubMed

    Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H

    2015-08-28

    In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.

  12. Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons

    SciTech Connect

    Harding, A.W.; Foley, N.J.; Thomas, K.M.; Norman, P.R.; Francis, D.C.

    1998-07-07

    The adsorption of water vapor on a highly microporous coconut-shell-derived carbon and a mesoporous wood-derived carbon was studied. These carbons were chosen as they had markedly different porous structures. The adsorption and desorption characteristics of water vapor on the activated carbons were investigated over the relative pressure range p/p{degree} = 0--0.9 for temperatures in the range 285--313 K in a static water vapor system. The adsorption isotherms were analyzed using the Dubinin-Serpinski equation, and this provided an assessment of the polarity of the carbons. The kinetics of water vapor adsorption and desorption were studied with different amounts of preadsorbed water for set changes in pressure relative to the saturated vapor pressure (p/p{degree}). The adsorption kinetics for each relative pressure step were compared and used to calculate the activation energies for the vapor pressure increments. The kinetic results are discussed in relation to their relative position on the equilibrium isotherm and the adsorption mechanism of water vapor on activated carbons.

  13. Copper UPD as non-specific adsorption barrier in electrochemical displacement immunosensors.

    PubMed

    Duarte, M V; Lozano-Sanchez, P; Katakis, I

    2009-03-15

    Non-specific adsorption events are responsible to a large extent for the lack of reliability and applicability of electrochemical immunosensors. In the particular case of displacement-based immunosensors, as an approach to achieve reagentless, labelless and easy to use immunosensors, the hindering effect of then non-specific adsorption is amplified when the system presents a low affinity constant between biorecognition element and target. The application of Copper UPD as non-specific adsorption barrier in combination with the use of self-assembled monolayers (SAM) to provide efficient binding of biomolecules to the immunosensor electrode surface is shown to be a very promising mechanism to construct protein resistant surfaces with no harming effects on the electrochemical transducing mechanism. The electrochemical immunodetection of TCA (2,4,6-Trichloroanisole) has been chosen as example for a real case study. A monoclonal antibody to detect the target TCA and an appropriate sub-optimum antigen were used. In addition to a rational strategy for displacement immunosensor development, the decrease of non-specific adsorption phenomena by introducing Copper UPD is reported here. With such strategy an electrochemical displacement immunosensor with a limit of detection of 200ppb and response time of 10min is achieved.

  14. Adsorption and hydraulic conductivity of landfill-leachate perfluorinated compounds in bentonite barrier mixtures.

    PubMed

    Li, Belinda; Li, Loretta Y; Grace, John R

    2015-06-01

    Perfluorinated compounds (PFCs) are leached in landfills from a wide range of domestic and industrial products. Sodium bentonite, a common barrier material, was contacted with water and landfill leachate spiked with PFCs in batch adsorption tests to measure PFC adsorption. Leaching cell tests were also conducted in which water, landfill leachate and PFC-spiked leachate permeated through compacted sand-bentonite mixtures. It was found that the PFCs did not bind substantially to the bentonite. Hydraulic conductivities were not appreciably affected by the PFCs, showing that bentonite liners are not affected for the range of concentrations tested. The sand-bentonite mixture partially retained the PFCs, indicating limited effectiveness in containing PFC within landfills.

  15. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  16. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  17. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method

    SciTech Connect

    Stanley, B.J.; Guiochon, G. |

    1993-08-01

    The expectation-maximization (EM) method of parameter estimation is used to calculate adsorption energy distributions of molecular probes from their adsorption isotherms. EM does not require prior knowledge of the distribution function or the isotherm, requires no smoothing of the isotherm data, and converges with high stability towards the maximum-likelihood estimate. The method is therefore robust and accurate at high iteration numbers. The EM algorithm is tested with simulated energy distributions corresponding to unimodal Gaussian, bimodal Gaussian, Poisson distributions, and the distributions resulting from Misra isotherms. Theoretical isotherms are generated from these distributions using the Langmuir model, and then chromatographic band profiles are computed using the ideal model of chromatography. Noise is then introduced in the theoretical band profiles comparable to those observed experimentally. The isotherm is then calculated using the elution-by-characteristic points method. The energy distribution given by the EM method is compared to the original one. Results are contrasted to those obtained with the House and Jaycock algorithm HILDA, and shown to be superior in terms of robustness, accuracy, and information theory. The effect of undersampling of the high-pressure/low-energy region of the adsorption is reported and discussed for the EM algorithm, as well as the effect of signal-to-noise ratio on the degree of heterogeneity that may be estimated experimentally.

  18. Determination of the Surface Energy of Sand Using Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Ma, Lianxi; Holste, James; Hall, Kenneth

    2003-03-01

    The BET isotherm equation for multiplayer adsorption was applied to hexane, methyl propyl ketone, and water adsorption by sand (particle size > 75 mm) at 25¡ãC and accordingly, specific surface area of sand was obtained. Spreading pressures and surface energies of sand were calculated from adsorption isotherms. Hysteresis loops were observed in all isotherms but desorption isotherms approach to original points at low vapor pressure. A modified Toth-Freundlich equation was developed, which agrees with experimental data well over a wider p/p0 range. Plots of Dubinin-Radushkevich show that at low-pressure linear relation was obtained therefore our sand sample can be treated as microporous materials.

  19. Adsorption of energy in photocatalytic reactors

    SciTech Connect

    Somorjai, G.A.

    1985-07-01

    The dissociation of water to hydrogen and oxygen requires energy ..delta..G/sub 298/ = 228 kJ/mole. By irradiating a semiconductor with light of energy greater than this amount, one may produce electrons in the excited state and electron vacancies at the surface that can perform the photochemical reduction (2H/sup +/ + 2e/sup -/ ..-->.. 2H ..-->.. H/sub 2/) and oxidation (20H/sup -/ + 2/sup +/ ..-->.. H/sub 2/O/sub 2/ ..-->.. H/sub 2/O + (1/2)O/sub 2/). There are several semiconductors, SrTiO/sub 3/, TiO/sub 2/, CdS, and Fe/sub 2/O/sub 3/ among them, that can photodissociate water. Some possess sites for both reduction and oxidation, while others carry out the two processes at different surfaces. A reversible solid state reaction that involves changes in the transition metal and ion oxidation state must accompany the splitting of water. Platinum, rhodium, and ruthenium oxide, when deposited on the semiconductor, serve as catalysts that accelerate the water photodissociation. These additives accelerate the recombination of hydrogen and oxygen atoms, shift the semiconductor Fermi level to a more favorable position that improves the thermodynamic feasibility for the process, accelerate electron transport, and inhibit side reactions like the photoreduction of oxygen. Many of the elementary reaction steps leading to photoproduction of hydrogen and oxygen over SrTiO/sub 3/ and Fe/sub 2/O/sub 3/ have been identified and will be discussed.

  20. Market and policy barriers to energy storage deployment :

    SciTech Connect

    Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie; Kirby, Brendan

    2013-09-01

    Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

  1. Energy barriers and cell migration in confluent tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Lopez, J. H.; Schwarz, J. M.; Manning, M. Lisa

    2014-03-01

    Biological processes such as embryogensis, tumorigenesis and wound healing require cells to move within a tissue. While the migration of single cells has been extensively studied, it has remained unclear how single cell properties control migration through a confluent tissue. We develop numerical and theoretical models to calculate energy barriers to cell rearrangements, which govern cell motility. In contrast to sheared foams where energy barriers are power-law distributed, energy barriers in tissues are exponentially distributed and depend systematically on the cell's number of neighbors. Using simple extensions of `trap' and `Soft Glassy Rheology' models, we demonstrate that these energy barrier distributions give rise to glassy behavior and use the models to make testable predictions for two-time correlation functions and caging times. We incorporate these ideas into a continuum model that combines glassy rheology with active polarization to better understand collective migration in epithelial sheets.

  2. Radiant Barriers Save Energy in Buildings

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Langley Research Center needed to coat the Echo 1 satellite with a fine mist of vaporized metal, and collaborated with industry to create "radiant barrier technology." In 2010, Ryan Garrett learned about a new version of the technology resistant to oxidation and founded RadiaSource in Ogden, Utah, to provide the NASA-derived technology for applications in homes, warehouses, gymnasiums, and agricultural settings.

  3. Blood-brain barrier and energy balance.

    PubMed

    Banks, William A

    2006-08-01

    The blood-brain barrier (BBB) plays a critical role in the transduction of signals between the central nervous system and peripheral tissues. It does so through several mechanisms, including the direct transport of peptides and regulatory proteins such as insulin and leptin. Another mechanism that may be important is the secretion by brain endothelial cells of substances that affect feeding, such as proinflammatory cytokines and NO. We have recently shown that the BBB is capable of receiving an input from one side and secreting a substance into the other. Additionally, BBB secretions can be modulated by substances that affect feeding, such as adiponectin and lipopolysaccharide.

  4. Quantum Dynamics Study on the Effects of Vibration, Translational Energy and Incident Angle on H2 Adsorption on a Defective Pt(111) Surface

    NASA Astrophysics Data System (ADS)

    Natividad, Michelle T.; Arboleda, Nelson B.; Kasai, Hideaki

    2014-12-01

    Quantum dynamics calculations via the local reflection matrix method are performed to investigate the effects of the vibration and initial translational energy on the dissociative adsorption of H2 approaching a defective Pt(111) surface at different incident angles and adsorption sites. The sticking probability plot for H2 incident on the top site at 15° shows that as the translational energy is increased, the probability rapidly rises to unity which suggests that H2 is easily adsorbed on the Pt surface. The plot also shows that even though the adsorption process is non-activated, there is a probability that H2 will not be adsorbed on the Pt surface at low translational energies due to quantum mechanical effects. For the rest of the configurations, an S-shaped region is observed in the plots suggesting an activated adsorption process. The plots show that when the initial translational energy (Et) is less that the barrier, H2 sticks to the Pt surface by tunneling through the barrier and when Et is greater than the barrier, H2 sticks on the Pt surface by using its available energy to overcome the barrier. The plots also show significant vibration assisted sticking (VAS) effect for all cases. VAS effect is most prominent for H2 approaching the vacant site at incident angles 15 and 30°.

  5. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    SciTech Connect

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  6. Adsorption, Dissociation, and Dehydrogenation of Water Monomer and Water Dimer on the Smallest 3D Aluminum Particle. The O-H Dissociation Barrier Disappears for the Dimer.

    PubMed

    Moc, Jerzy

    2016-11-03

    We present a detailed mechanistic study on the interaction and reaction of water monomer and water dimer with the smallest 3D aluminum particle (Al6) by employing density functional and explicitly correlated coupled cluster CCSD(T)-F12 theories. Water adsorption, dissociation, and dehydrogenation are considered. For the monomer reaction, where core-valence correlation and an extrapolation to the complete basis set limit is allowed for, our coupled cluster calculations predict the O-H dissociation barrier of about 2 kcal/mol. For the dimer reaction, two distinct reaction paths are identified, initiated by forming separate dimer complexes wherein (H2O)2 adsorbs mainly via the oxygen atom of the donor H2O molecule. The key O-H dissociation transition states of the dimer reaction involve a concerted migration of two H atoms resulting in the dissociation of the donor molecule and formation of the OH-water complex adsorbed on the metal cluster's surface. The most remarkable feature of both dimer reaction energy profiles is the lack of the overall energy barrier for the (rate-determining) O-H dissociation. The hydrogen bond acceptor molecule is suggested to have an extra catalytic effect on the O-H dissociation barrier of the hydrogen bond donor molecule by removing this barrier. A similar effect on the dehydrogenation step is indicated.

  7. Critical energy barrier for capillary condensation in mesopores: Hysteresis and reversibility

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T.

    2016-04-01

    Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, Pcond, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at Pcond becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcritical temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, Wc* = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier Wc* controls the capillary condensation pressure Pcond and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.

  8. Critical energy barrier for capillary condensation in mesopores: Hysteresis and reversibility.

    PubMed

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2016-04-28

    Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, Pcond, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at Pcond becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcritical temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, Wc (*) = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier Wc (*) controls the capillary condensation pressure Pcond and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.

  9. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  10. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions.

  11. Implementing District Energy Systems: Municipal Approaches To Overcoming Barriers

    NASA Astrophysics Data System (ADS)

    Simpson, Kevin George

    Climate change and energy security are issues facing municipalities throughout the world. Efficient, resilient, sustainable, community-based energy systems, such as district energy systems (DES), fuelled mostly by renewables, are an important tool for addressing both climate change and energy security at the municipal level. In spite of their benefits, DES are not widely adopted in Canada (CDEA, 2011). This is due to the complex nature of the barriers which project proponents face. This thesis examines the experience of the City of Prince George in adopting and implementing the Downtown DES. Using a case study methodology, data was collected through a review of relevant municipal documents and a series of semi-structured, open-ended interviews. A thematic analysis revealed unexpected barriers related to lack of adequate public consultation and negative perceptions regarding biomass as a fuel for the DES. These `lessons learned' were then developed into recommendations for other municipalities considering DES.

  12. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  13. Energy management action plan: Developing a strategy for overcoming institutional barriers to municipal energy conservation

    SciTech Connect

    Not Available

    1992-12-31

    Energy offices working to improve efficiency of local government facilities face not only technical tasks, but institutional barriers, such as budget structures that do not reward efficiency, a low awareness of energy issues, and purchasing procedures based only on minimizing initial cost. The bureau, in working to remove such barriers in San Francisco, has identified 37 institutional barriers in areas such as operations & maintenance, purchasing, and facility design; these barriers were then reorganized into three groupings-- policy & attitudes, budget & incentives, and awareness & information-- and mapped. This map shows that the barriers mutually reinforce each other, and that a holistic approach is required for permanent change. The city`s recreation & parks department was used as a model department, and information about facility energy use was compiled into a departmental energy review. Staff interviews showed how barriers affect conservation. The bureau then generated ideas for projects to remove specific barriers and rated them according to potential impact and the resources required to implement them. Four of the six projects selected focused on maintenance staff: a cost- sharing lighting retrofit program, a boiler efficiency program, a departmental energy tracking system, and a budgetary incentive program for conservation. The other two projects are city-wide: promotion of a new term contract supplying energy-efficient light materials, and publication/distribution of ENERGY NEWS newsletter. A general methodology, the EMAP Strategy Guide, has been created to assist other energy offices in developing EMAPs.

  14. Optimal smoothing of site-energy distributions from adsorption isotherms

    SciTech Connect

    Brown, L.F.; Travis, B.J.

    1983-01-01

    The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.

  15. Overcoming of energy barrier for irreversible magnetization in nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Li, Zhu-bai; Zhang, Ying; Shen, Bao-gen; Zhang, Ming; Hu, Feng-xia; Sun, Ji-rong

    2017-01-01

    The irreversible magnetization occurs mainly in hard grains in nanocomposite magnets, and the domain wall involves a little part of defect region in irreversible magnetization due to the self-interaction. The investigation on thermal activation shows that the defect region involved in domain wall becomes narrower due to the TiNb addition in Pr2Fe14B/α-Fe magnets. The defect region augments the energy density in the negative direction of domain wall to overcome the energy barrier of perfect hard region. The soft phase, exchange-coupled with defect region at hard grain outer-layer, promotes magnetization reversal in defect region by exchange coupling. While the defect region plays a role as a ladder to overcome the energy barrier, resulting in the decrease of coecivity more or less depending upon the width and anisotropy of defect region.

  16. Energy Dissipating Devices in Falling Rock Protection Barriers

    NASA Astrophysics Data System (ADS)

    Castanon-Jano, L.; Blanco-Fernandez, E.; Castro-Fresno, D.; Ballester-Muñoz, F.

    2017-03-01

    Rockfall is a phenomenon which, when uncontrolled, may cause extensive material damage and personal injury. One of the structures used to avoid accidents caused by debris flows or rockfalls is flexible barriers. The energy dissipating devices which absorb the energy generated by rock impact and reduce the mechanical stresses in the rest of the elements of the structure are an essential part of these kinds of structures. This document proposes an overview of the performance of energy dissipating devices, as well as of the role that they fulfil in the barrier. Furthermore, a compilation and a description of the dissipating elements found in the literature are proposed. Additionally, an analysis has been performed of the aspects taken into account in the design, such as experimental (quasi-static and dynamic) tests observing the variation of the behaviour curve depending on the test speed and numerical simulations by means of several finite element software packages.

  17. Developing effective rockfall protection barriers for low energy impacts

    NASA Astrophysics Data System (ADS)

    Mentani, Alessio; Giacomini, Anna; Buzzi, Olivier; Govoni, Laura; Gottardi, Guido; Fityus, Stephen

    2016-04-01

    Recently, important progresses have been made towards the development of high capacity rockfall barriers (100 kJ - 8000 kJ). The interest of researchers and practitioners is now turning to the development of fences of minor capacity, whose use becomes essential in areas where rockfall events generally have low intensity and the use of high capacity barriers would be accompanied by excessive costs and high environmental impact. Low energy barriers can also provide a cost-effective solution even in areas where high energies events are expected. Results of full-scale tests are vital to any investigation on the behaviour of these structures. An experimental set-up has been developed at The University of Newcastle (AUS), to investigate the response of low energy rockfall barrier prototypes to low energy impacts. The Australian territory, and in particular New South Wales, is in fact characterised by rockfall events of low-to-medium intensity (50 kJ - 500 kJ) and the need of protection structures working within such energy range, is particularly felt [1]. The experiments involved the impact of a test block onto three spans, low energy barrier prototypes, made of steel structural posts, fully fixed at the base, side cables and a steel meshwork constituted by a double twist hexagonal wire net [2]. Test data enabled the development, calibration and assessment of FE models [3], on which non-linear and dynamic analyses have been performed addressing the effect of the block size. Results have shown that the response of the structure is strongly governed by the net. Data from tests conducted on the sole net and on the entire barrier showed in fact a similar trend, different to what typically observed for high capacity barriers, whose behaviour is also led by the presence of uphill cables and brakes. In particular, the numerical analyses have demonstrated a dependence of the net performance on the block size. In particular, a loss of capacity in the order of 50% occurred as the

  18. Densely-packed ZnTPPs Monolayer on the Rutile TiO2(110)-(1×1) Surface: Adsorption Behavior and Energy Level Alignment.

    PubMed

    Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert; Martínez, José Ignacio; Flores, Fernando; Ortega, José

    2016-03-03

    The adsorption of a densely packed Zinc(II) tetraphenylporphyrin monolayer on a rutile TiO2(110)-(1×1) surface has been studied using a combination of experimental and theoretical methods, aimed at analyzing the relation between adsorption behavior and barrier height formation. The adsorption configuration of ZnTPP was determined from scanning tunnel microscopy (STM) imaging, density functional theory (DFT) calculations and STM image simulation. The corresponding energy alignment was experimentally determined from X-ray and UV-photoemission spectroscopies and inverse photoemission spectroscopy. These results were found in good agreement with an appropriately corrected DFT model, pointing to the importance of local bonding and intermolecular interactions in the establishment of barrier heights.

  19. Densely-packed ZnTPPs Monolayer on the Rutile TiO2(110)-(1×1) Surface: Adsorption Behavior and Energy Level Alignment

    PubMed Central

    Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert; Martínez, José Ignacio; Flores, Fernando; Ortega, José

    2016-01-01

    The adsorption of a densely packed Zinc(II) tetraphenylporphyrin monolayer on a rutile TiO2(110)-(1×1) surface has been studied using a combination of experimental and theoretical methods, aimed at analyzing the relation between adsorption behavior and barrier height formation. The adsorption configuration of ZnTPP was determined from scanning tunnel microscopy (STM) imaging, density functional theory (DFT) calculations and STM image simulation. The corresponding energy alignment was experimentally determined from X-ray and UV-photoemission spectroscopies and inverse photoemission spectroscopy. These results were found in good agreement with an appropriately corrected DFT model, pointing to the importance of local bonding and intermolecular interactions in the establishment of barrier heights. PMID:26998188

  20. Barriers to household investment in residential energy conservation: preliminary assessment

    SciTech Connect

    Hoffman, W.L.

    1982-12-01

    A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

  1. Free energy barriers to evaporation of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  2. Adsorption energy distribution of carbon tetrachloride on carbon nanofiber arrays prepared by template synthesis

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hsin; Shr, Jin-Fang; Wu, Chu-Fu; Hsieh, Chien-Te

    2008-02-01

    The influence of pore size distribution on adsorption energy distributions (AEDs) of aligned carbon nanofiber (CNF) arrays in vapor phase was conducted in the present study. A template-assisted synthesis was employed to fabricate aligned CNF arrays with different pore size distributions (PSDs). Adsorption isotherms of CCl 4 onto the CNF arrays were investigated within an entire pressure of 0.05-0.18 atm at 30 °C. The adsorptive surface coverage was found to decrease with the average pore size, indicating the presence of heterogeneity for gas adsorption. An AED model was postulated to describe the heterogeneous surface consisting of numerous surface pitchwises that obey a localized Langmuir model. It was found that all CNF arrays exhibit a similar Gaussian-type AED, in where the peak adsorption energy shifts to a higher energy with decreasing the pore size of CNFs. This finding can be ascribed to a fact that micropores are major providers of adsorption sites, whereas in mesopores only weaker adsorption is observed, thus resulting in the shift of energy distribution. An excellent prediction to the adsorption isotherms of CCl 4 by the AED model indicates that the PSD of CNFs acts a crucial factor in affecting the adsorptive coverage.

  3. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts

    NASA Astrophysics Data System (ADS)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A.; Flores-Camacho, J. Manuel; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim

    2011-02-01

    A new ultrahigh vacuum microcalorimeter for measuring heats of adsorption and adsorption-induced surface reactions on complex single crystal-based model surfaces is described. It has been specifically designed to study the interaction of gaseous molecules with well-defined model catalysts consisting of metal nanoparticles supported on single crystal surfaces or epitaxial thin oxide films grown on single crystals. The detection principle is based on the previously described measurement of the temperature rise upon adsorption of gaseous molecules by use of a pyroelectric polymer ribbon, which is brought into mechanical/thermal contact with the back side of the thin single crystal. The instrument includes (i) a preparation chamber providing the required equipment to prepare supported model catalysts involving well-defined nanoparticles on clean single crystal surfaces and to characterize them using surface analysis techniques and in situ reflectivity measurements and (ii) the adsorption/reaction chamber containing a molecular beam, a pyroelectric heat detector, and calibration tools for determining the absolute reactant fluxes and adsorption heats. The molecular beam is produced by a differentially pumped source based on a multichannel array capable of providing variable fluxes of both high and low vapor pressure gaseous molecules in the range of 0.005-1.5 × 1015 molecules cm-2 s-1 and is modulated by means of the computer-controlled chopper with the shortest pulse length of 150 ms. The calorimetric measurements of adsorption and reaction heats can be performed in a broad temperature range from 100 to 300 K. A novel vibrational isolation method for the pyroelectric detector is introduced for the reduction of acoustic noise. The detector shows a pulse-to-pulse standard deviation ≤15 nJ when heat pulses in the range of 190-3600 nJ are applied to the sample surface with a chopped laser. Particularly for CO adsorption on Pt(111), the energy input of 15 nJ (or 120 nJ cm

  4. Volumetric interpretation of protein adsorption: Partition coefficients, interphase volumes, and free energies of adsorption to hydrophobic surfaces.

    PubMed

    Noh, Hyeran; Vogler, Erwin A

    2006-12-01

    The solution-depletion method of measuring protein adsorption is implemented using SDS gel electrophoresis as a separation and quantification tool. Experimental method is demonstrated using lysozyme (15kDa), alpha-amylase (51kDa), human serum albumin (66kDa), prothrombin (72kDa), immunoglobulin G (160kDa), and fibrinogen (341kDa) adsorption from aqueous-buffer solution to hydrophobic octyl-sepharose and silanized-glass particles. Interpretive mass-balance equations are derived from a model premised on the idea that protein reversibly partitions from bulk solution into a three-dimensional (3D) interphase volume separating the physical-adsorbent surface from bulk solution. Theory both anticipated and accommodated adsorption of all proteins to the two test surfaces, suggesting that the underlying model is descriptive of the essential physical chemistry of protein adsorption. Application of mass balance equations to experimental data quantify partition coefficients P, interphase volumes V(I), and the number of hypothetical layers M occupied by protein adsorbed within V(I). Partition coefficients quantify protein-adsorption avidity through the equilibrium ratio of interphase and bulk-solution-phase w/v (mg/mL) concentrations W(I) and W(B), respectively, such that P identical withW(I)/W(B). Proteins are found to be weak biosurfactants with 45energy-of-adsorption -6RT<(DeltaG(adsphobic)(0)=-RTlnP)<-4RT. These measurements corroborate independent estimates obtained from interfacial energetics of adsorption (tensiometry) and are in agreement with thermochemical measurements for related proteins by hydrophobic-interaction chromatography. Proteins with molecular weight MW<100kDa occupy a single layer at surface saturation whereas the larger proteins IgG and fibrinogen required two layers.

  5. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  6. Wetting transition on patterned surfaces: transition states and energy barriers.

    PubMed

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  7. Summary of Workshop: Barriers to Energy Efficient Residential Ventilation

    SciTech Connect

    Sherman, Max; Sherman, Max

    2008-01-10

    The objectives for this workshop were to bring together those with different viewpoints on the implementation of energy efficient ventilation in homes to share their perspectives. The primary benefit of the workshop is to allow the participants to get a broader understanding of the issues involved and thereby make themselves more able to achieve their own goals in this area. In order to achieve this objective each participant was asked to address four objectives from their point of view: (1) Drivers for energy efficient residential ventilation: Why is this an important issue? Who cares about it? Where is the demand: occupants, utilities, regulation, programs, etc? What does sustainability mean in this context? (2) Markets & Technologies: What products, services and systems are out there? What kinds of things are in the pipeline? What is being installed now? Are there regional or other trends? What are the technology interactions with other equipment and the envelope? (3) Barriers to Implementation: What is stopping decision makers from implementing energy-efficient residential ventilation systems? What kind of barriers are there: technological, cost, informational, structural, etc. What is the critical path? (4) Solutions: What can be done to overcome the barriers and how can/should we do it? What is the role of public vs. private institutions? Where can investments be made to save energy while improving the indoor environment? Ten participants prepared presentations for the workshop. Those presentations are included in sections at the end of this workshop report. These presentations provided the principal context for the discussions that happened during the workshop. Critical path issues were raised and potential solutions discussed during the workshop. As a secondary objective they have listed key issues and some potential consensus items which resulted from the discussions.

  8. Anti-terrorist vehicle crash impact energy absorbing barrier

    DOEpatents

    Swahlan, David J.

    1989-01-01

    An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.

  9. Anti-terrorist vehicle crash impact energy absorbing barrier

    SciTech Connect

    Swahlan, D.J.

    1989-04-18

    An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism. 6 figs.

  10. Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Schneemilch, M.; Quirke, N.

    2016-11-01

    A novel method is presented for the calculation of adhesion energies of lipid bilayers on solid surfaces from molecular dynamics simulation. We illustrate the method with a fully atomistic model comprising a gold surface and an adsorbed lipid bilayer. We use our technique to scale the lipid-surface interactions to reproduce the experimental value for adsorption of DMPC bilayers on gold surfaces. Finally we estimate the entropic contribution to the free energy change on adsorption of the bilayer.

  11. Optimization of adsorption processes for climate control and thermal energy storage

    SciTech Connect

    Narayanan, S; Yang, S; Kim, H; Wang, EN

    2014-10-01

    Adsorption based heat-pumps have received significant interest owing to their promise of higher efficiencies and energy savings when coupled with waste heat and solar energy compared to conventional heating and cooling systems. While adsorption systems have been widely studied through computational analysis and experiments, general design guidelines to enhance their overall performance have not been proposed. In this work, we identified conditions suitable for the maximum utilization of the adsorbent to enhance the performance of both intermittent as well as continuously operating adsorption systems. A detailed computational model was developed based on a general framework governing adsorption dynamics in a single adsorption layer and pellet. We then validated the computational analysis using experiments with a model system of zeolite 13X-water for different operating conditions. A dimensional analysis was subsequently carried out to optimize adsorption performance for any desired operating condition, which is determined by the choice of adsorbent-vapor pair, adsorption duration, operational pressure, intercrystalline porosity, adsorbent crystal size, and intracrystalline vapor diffusivity. The scaling analysis identifies the critical dimensionless parameters and provides a simple guideline to determine the most suitable geometry for the adsorbent particles. Based on this selection criterion, the computational model was used to demonstrate maximum utilization of the adsorbent for any given operational condition. By considering a wide range of parametric variations for performance optimization, these results offer important insights for designing adsorption beds for heating and cooling systems. (C) 2014 Elsevier Ltd. All rights reserved.

  12. Multi-neutron transfer reactions at sub-barrier energies.

    SciTech Connect

    Rehm, K. E.

    1998-01-20

    The optimum conditions for multi-neutron transfer have been studied in the system {sup 58}Ni + {sup 124}Sn at bombarding energies at and below the Coulomb barrier. The experiments were performed in inverse kinematics with a {sup 124}Sn beam bombarding a {sup 58}Ni target. The particles were identified with respect to mass and Z in the split-pole spectrograph with a hybrid focal plane detector with mass and Z-resolutions of A/{Delta}A = 150 and Z/{Delta}Z = 70. At all energies the transfer of up to 6 neutrons was observed. The yields for these transfer reactions are found to decrease by about a factor of four for each transferred neutron.

  13. Parametric modeling of energy filtering by energy barriers in thermoelectric nanocomposites

    SciTech Connect

    Zianni, Xanthippi E-mail: xzianni@gmail.com; Narducci, Dario

    2015-01-21

    We present a parametric modeling of the thermoelectric transport coefficients based on a model previously used to interpret experimental measurements on the conductivity, σ, and Seebeck coefficient, S, in highly Boron-doped polycrystalline Si, where a very significant thermoelectric power factor (TPF) enhancement was observed. We have derived analytical formalism for the transport coefficients in the presence of an energy barrier assuming thermionic emission over the barrier for (i) non-degenerate and (ii) degenerate one-band semiconductor. Simple generic parametric equations are found that are in agreement with the exact Boltzmann transport formalism in a wide range of parameters. Moreover, we explore the effect of energy barriers in 1-d composite semiconductors in the presence of two phases: (a) the bulk-like phase and (b) the barrier phase. It is pointed out that significant TPF enhancement can be achieved in the composite structure of two phases with different thermal conductivities. The TPF enhancement is estimated as a function of temperature, the Fermi energy position, the type of scattering, and the barrier height. The derived modeling provides guidance for experiments and device design.

  14. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111)

    NASA Astrophysics Data System (ADS)

    Geweke, Jan; Shirhatti, Pranav R.; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M.

    2016-08-01

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed—presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]—50 times smaller than those reported here—were influenced by erroneous assignment of spectroscopic lines used in the data analysis.

  15. Vibrational energy transfer near a dissociative adsorption transition state: State-to-state study of HCl collisions at Au(111).

    PubMed

    Geweke, Jan; Shirhatti, Pranav R; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M

    2016-08-07

    In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed-presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]-50 times smaller than those reported here-were influenced by erroneous assignment of spectroscopic lines used in the data analysis.

  16. Low energy barriers of H-atom abstraction from phenols

    NASA Astrophysics Data System (ADS)

    Tishchenko, Oksana; Kryachko, Eugene S.; Nguyen, Minh Tho

    2002-09-01

    The energy barriers governing the hydrogen atom transfer between phenols related to Vitamin E and methylperoxyl radical are determined using the B3LYP/6-31G(d,p) method. For phenol, o, o-dimethylphenol, and o, o, m-trimethylphenol, they are equal to 6.0, 4.2, and 3.5 kcal/mol, respectively. While in both reactants and products the H-bond is nearly coplanar with the aromatic ring, it becomes essentially twisted out of the ring in the transition state structures. This implies that the transition states in such reactions are likely located at the avoided crossing of the lower-lying electronic states of the H-bonded complex, correlating with the ground π and first excited σ states of the incipient phenoxyl radical.

  17. Free Energy Wells and Barriers to Ion Transport Across Membranes

    NASA Astrophysics Data System (ADS)

    Rempe, Susan

    2014-03-01

    The flow of ions across cellular membranes is essential to many biological processes. Ion transport is also important in synthetic materials used as battery electrolytes. Transport often involves specific ions and fast conduction. To achieve those properties, ion conduction pathways must solvate specific ions by just the ``right amount.'' The right amount of solvation avoids ion traps due to deep free energy wells, and avoids ion block due to high free energy barriers. Ion channel proteins in cellular membranes demonstrate this subtle balance in solvation of specific ions. Using ab initio molecular simulations, we have interrogated the link between binding site structure and ion solvation free energies in biological ion binding sites. Our results emphasize the surprisingly important role of the environment that surrounds ion-binding sites for fast transport of specific ions. We acknowledge support from Sandia's LDRD program. Sandia National Labs is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US DOE's NNSA under contract DE-AC04-94AL85000.

  18. Statistical thermodynamics of adsorption of dye DR75 onto natural materials and its modifications: double-layer model with two adsorption energies.

    PubMed

    Khalfaoui, M; Nakhli, A; Aguir, Ch; Omri, A; M'henni, M F; Ben Lamine, A

    2014-02-01

    In this article, adsorption modelling was presented to describe the sorption of textile dye, Direct Red 75 (DR75), from coloured wastewater onto the natural and modified adsorbent, Posidonia oceanica. The formulation of the double-layer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics some physico-chemical parameters related to the adsorption process were introduced in the analytical model expression. Fitting results show that the dye molecules are adsorbed in parallel position to the adsorbent surface. The magnitudes of the calculated adsorption energies show that the DR75 dye is physisorbed onto Posidonia. Both Van der Waals and hydrogen interactions are implicated in the adsorption process. Despite its simplicity, the model fits a wide range of experimental data, thereby supporting the underlying data that the grafted groups facilitate the parallel anchorage of the anionic dye molecule. Thermodynamic parameters, such as adsorption energy, entropy, Gibbs free adsorption energy and internal energy were calculated according to the double-layer model. Results suggested that the DR75 adsorption onto Posidonia was a spontaneous and exothermic process.

  19. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  20. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  1. Establishing and Understanding Adsorption-Energy Scaling Relations with Negative Slopes.

    PubMed

    Su, Hai-Yan; Sun, Keju; Wang, Wei-Qi; Zeng, Zhenhua; Calle-Vallejo, Federico; Li, Wei-Xue

    2016-12-15

    Adsorption-energy scaling relations are widely used for the design of catalytic materials. To date, only linear scaling relations are known in which the slopes are positive. Considering the adsorption energies of F, O, N, C, and B on transition metals, we show here that scaling relations with negative slopes also exist between certain adsorbates. The origin of such unconventional scaling relations is analyzed in terms of common descriptors such as d-band center, work function, number of outer electrons, electronic charge on the adsorbates, integrated crystal orbital overlap populations, and crystal orbital Hamilton populations. Conventional scaling relations are formed between adsorbates such as F, O, N, and C, which create ionic-like bonds with surfaces. Conversely, anomalous scaling relations are established between those and covalently bound adsorbates such as B. This widens the theory of adsorption-energy scaling relations and opens new avenues in physical chemistry and catalysis, for instance, in direct borohydride fuel cells.

  2. First-principles calculations of the OH- adsorption energy on perovskite oxide

    NASA Astrophysics Data System (ADS)

    Ohzuku, Hideo; Ikeno, Hidekazu; Yamada, Ikuya; Yagi, Shunsuke

    2016-08-01

    The oxygen evolution reaction (OER) that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting. ABO3 perovskite oxides have been extensively studied because of their high catalytic OER activity. In the present study, the OH- adsorption process on the perovskite surface about different B site cations was investigated by the first-principles calculations. We concluded that the adsorption energy of SrFeO3 surface is larger than that of SrTiO3.

  3. Importance of the accuracy of experimental data in the nonlinear chromatographic determination of adsorption energy distributions

    SciTech Connect

    Stanley, B.J.; Guiochon, G. Oak Ridge National Lab., TN )

    1994-11-01

    Adsorption energy distributions (AEDs) are calculated from the classical, fundamental integral equation of adsorption using adsorption isotherms and the expectation-maximization method of parameter estimation. The adsorption isotherms are calculated from nonlinear elution profiles obtained from gas chromatographic data using the characteristic points method of finite concentration chromatography. Porous layer open tubular capillary columns are used to support the adsorbent. The performance of these columns is compared to that of packed columns in terms of their ability to supply accurate isotherm data and AEDs. The effect of the finite column efficiency and the limited loading factor on the accuracy of the estimated energy distributions is presented. This accuracy decreases with decreasing efficiency, and approximately 5000 theoretical plates are needed when the loading factor, L[sub f], equals 0.56 for sampling of a unimodal Gaussian distribution. Increasing L[sub f] further increases the contribution of finite efficiency to the AED and causes a divergence at the low-energy endpoint if too high. This occurs as the retention time approaches the holdup time. Data are presented for diethyl ether adsorption on porous silica and its C-18-bonded derivative. 36 refs., 8 figs., 2 tabs.

  4. Calorimetric measurement of adsorption and adhesion energies of Cu on Pt(111)

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Hemmingson, Stephanie L.; Sellers, Jason R. V.; Campbell, Charles T.

    2017-03-01

    The adsorption energies of submonolayer amounts of one metal on the surface of another metal have been measured for decades by temperature programmed desorption. However, that method fails for metals that alloy. We report here the first measurement of the adsorption energy for any such metal-on-metal combination that forms a bulk alloy. The adsorption and interfacial energetics of vapor deposited Cu onto Pt(111) at 300 K has been studied using single crystal adsorption calorimetry (SCAC) and X-ray photoelectron spectroscopy (XPS). The Cu grows as 2D pseudomorphic islands in the first layer and its heat of adsorption decreased linearly from 358 to 339 kJ/mol. This is attributed to increasing lattice strain with island size, associated with the small lattice mismatch (8%). It adsorbs 2 kJ/mol more weakly in the 2nd layer than above 3 ML, where it reaches the bulk heat of sublimation of Cu(solid), 337 kJ/mol. The adhesion energy of multilayer Cu onto Pt(111) is 3.76 J/m2. The extra stability of the first Cu monolayer compared to bulk Cu measured here is 12 kJ/mol, compared to a difference of 83 kJ/mol for underpotential deposition of Cu on a Pt(111) electrode, with the difference attributed to stronger bonding of Cu to the solvent and double layer compared to Pt.

  5. Modeling the Catalysis of Anti-Cocaine Catalytic Antibody: Competing Reaction Pathways and Free Energy Barriers

    PubMed Central

    Pan, Yongmei; Gao, Daquan; Zhan, Chang-Guo

    2010-01-01

    The competing reaction pathways and the corresponding free energy barriers for cocaine hydrolysis catalyzed by an anti-cocaine catalytic antibody, mAb 15A10, were studied by using a novel computational strategy based on the binding free energy calculations on the antibody binding with cocaine and transition states. The calculated binding free energies were used to evaluate the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis for each reaction pathway. The free energy barriers for the antibody-catalyzed cocaine hydrolysis were predicted to be the corresponding free energy barriers for the cocaine hydrolysis in water plus the calculated free energy barrier shifts. The calculated free energy barrier shift of −6.33 kcal/mol from the dominant reaction pathway of the cocaine benzoyl ester hydrolysis in water to the dominant reaction pathway of the antibody-catalyzed cocaine hydrolysis is in good agreement with the experimentally-derived free energy barrier shift of −5.93 kcal/mol. The calculated mutation-caused shifts of the free energy barrier are also reasonably close to the available experimental activity data. The good agreement suggests that the protocol for calculating the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis may be used in future rational design of possible high-activity mutants of the antibody as anti-cocaine therapeutics. The general strategy of the free energy barrier shift calculation may also be valuable in studying a variety of chemical reactions catalyzed by other antibodies or proteins through non-covalent bonding interactions with the substrates. PMID:18341277

  6. Formulating the bonding contribution equation in heterogeneous catalysis: a quantitative description between the surface structure and adsorption energy.

    PubMed

    Wang, Ziyun; Hu, P

    2017-02-15

    The relation between the surface structure and adsorption energy of adsorbates is of great importance in heterogeneous catalysis. Based on density functional theory calculations, we propose an explicit equation with three chemically meaningful terms, namely the bonding contribution equation, to quantitatively account for the surface structures and the adsorption energies. Successful predictions of oxygen adsorption energies on complex alloy surfaces containing up to 4 components are demonstrated, and the generality of this equation is also tested using different surface sizes and other adsorbates. This work may not only offer a powerful tool to understand the structure-adsorption relation, but may also be used to inversely design novel catalysts.

  7. Technical Barriers, Gaps,and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, Marcus V.A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program.

  8. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals

    NASA Astrophysics Data System (ADS)

    Wellendorff, Jess; Silbaugh, Trent L.; Garcia-Pintos, Delfina; Nørskov, Jens K.; Bligaard, Thomas; Studt, Felix; Campbell, Charles T.

    2015-10-01

    We present a literature collection of experimental adsorption energies over late transition metal surfaces for systems where we believe the energy measurements are particularly accurate, and the atomic-scale adsorption geometries are particularly well established. We propose that this could become useful for benchmarking theoretical methods for calculating adsorption processes. We compare the experimental results to six commonly used electron density functionals, including some (RPBE, BEEF-vdW) which were specifically developed to treat adsorption processes. The comparison shows that there is ample room for improvements in the theoretical descriptions.

  9. Gate-controlled energy barrier at a graphene/molecular semiconductor junction

    NASA Astrophysics Data System (ADS)

    Parui, S.; Pietrobon, L.; Ciudad, D.; Velez, S.; Sun, X.; Stoliar, P.; Casanova, F.; Hueso, L. E.

    The formation of an energy barrier at a metal/molecular semiconductor junction is both a ubiquitous phenomenon as well as the subject of intense research in order to improve the performance of molecular semiconductor-based electronic and optoelectronic devices. For these devices, a junction with a large energy barrier provides rectification, leading to a diode behavior, whereas a relatively small energy barrier provides nearly-ohmic behavior, resulting in efficient carrier injection (extraction) into the molecular semiconductor. Typically, a specific metal/molecular semiconductor combination leads to a fixed energy barrier; therefore, the possibility of a gate-controlled energy barrier is very appealing for advanced applications. Here, we present a graphene/C60 junction-based vertical field-effect transistor in which we demonstrate control of the interfacial energy-barrier such that the junction switches from a highly rectifying diode at negative gate voltages to a nearly-ohmic behavior at positive gate voltages and at room temperature. We extract an energy-barrier modulation of up to 660 meV, a transconductance of up to five orders of magnitude and a gate-modulated photocurrent.

  10. On the economic analysis of problems in energy efficiency: Market barriers, market failures, and policy implications

    SciTech Connect

    Sanstad, A.H.; Koomey, J.G.; Levine, M.D.

    1993-01-01

    In his recent paper in The Energy Journal, Ronald Sutherland argues that several so-called ``market barriers`` to energy efficiency frequently cited in the literature are not market failures in the conventional sense and are thus irrelevant for energy policy. We argue that Sutherland has inadequately analyzed the idea of market barrier and misrepresented the policy implications of microeconomics. We find that economic theory, correctly interpreted, does not provide for the categorical dismissal of market barriers. We explore important methodological issues underlying the debate over market barriers, and discuss the importance of reconciling the findings of non-economic social sciences with the economic analysis of energy demand and consumer decision-making. We also scrutinize Sutherland`s attempt to apply finance theory to rationalize high implicit discount rates observed in energy-related choices, and find this use of finance theory to be inappropriate.

  11. On the economic analysis of problems in energy efficiency: Market barriers, market failures, and policy implications

    SciTech Connect

    Sanstad, A.H.; Koomey, J.G.; Levine, M.D.

    1993-01-01

    In his recent paper in The Energy Journal, Ronald Sutherland argues that several so-called market barriers'' to energy efficiency frequently cited in the literature are not market failures in the conventional sense and are thus irrelevant for energy policy. We argue that Sutherland has inadequately analyzed the idea of market barrier and misrepresented the policy implications of microeconomics. We find that economic theory, correctly interpreted, does not provide for the categorical dismissal of market barriers. We explore important methodological issues underlying the debate over market barriers, and discuss the importance of reconciling the findings of non-economic social sciences with the economic analysis of energy demand and consumer decision-making. We also scrutinize Sutherland's attempt to apply finance theory to rationalize high implicit discount rates observed in energy-related choices, and find this use of finance theory to be inappropriate.

  12. Barriers to Energy Efficiency and the Uptake of Green Revolving Funds in Canadian Universities

    ERIC Educational Resources Information Center

    Maiorano, John; Savan, Beth

    2015-01-01

    Purpose: The purpose of this paper is to investigate the barriers to the implementation of energy efficiency projects in Canadian universities, including access to capital, bounded rationality, hidden costs, imperfect information, risk and split incentives. Methods to address these barriers are investigated, including evaluating the efficacy of…

  13. A thermodynamic analysis of gas adsorption on microporous materials: evaluation of energy heterogeneity.

    PubMed

    Llorens, Joan; Pera-Titus, Marc

    2009-03-15

    This paper presents a thermodynamic isotherm derived from solution thermodynamics principles to describe gas adsorption on microporous materials. This isotherm relies on a potential relationship between the integral free energy of adsorption relative to saturation, Psi/RT, expressed by the Kiselev equation, and the variable Z = 1/-Ln(Pi), being Pi the relative pressure. A mathematical analysis reveals that the adsorption energy heterogeneity in the micropores is collected in a characteristic parameter of the isotherm, m, that can be related to the alpha parameter of the Dubinin-Astakhov isotherm in a simple way (m = alpha + 1). The isotherm also predicts a plateau in Psi/RT at extremely low pressures (Pi < 10(-7)). Neimark's thermodynamic equation accounting for gas adsorption on mesoporous solids is found to be a particular case of the isotherm presented in this study. The Langmuir isotherm only shows consistency with the thermodynamic isotherm for a reduced combination of values of the relevant parameters, not usually found in common adsorbents. The suitability of the thermodynamic isotherm is experimentally assessed by testing a collection of microporous materials, including activated carbons, carbon nanotubes, and zeolites.

  14. Making AlN(x) Tunnel Barriers Using a Low-Energy Nitrogen-Ion Beam

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama; Kleinsasser, Alan; Bumble, Bruce; LeDuc, Henry; Lee, Karen

    2005-01-01

    A technique based on accelerating positive nitrogen ions onto an aluminum layer has been demonstrated to be effective in forming thin (<2 nm thick) layers of aluminum nitride (AlN(x)) for use as tunnel barriers in Nb/Al-AlN(x)/Nb superconductor/insulator/ superconductor (SIS) Josephson junctions. AlN(x) is the present material of choice for tunnel barriers because, to a degree greater than that of any other suitable material, it offers the required combination of low leakage current at high current density and greater thermal stability. While ultra-thin AlN films with good thickness and stoichiometry control are easily formed using techniques such as reactive molecular beam epitaxy and chemical vapor deposition, growth temperatures of 900 C are necessary for the dissociative adsorption of nitrogen from either nitrogen (N2) or ammonia (NH3). These growth temperatures are prohibitively high for the formation of tunnel barriers on Nb films because interfacial reactions at temperatures as low as 200 to 300 C degrade device properties. Heretofore, deposition by reactive sputtering and nitridation of thin Al layers with DC and RF nitrogen plasmas have been successfully used to form AlN barriers in SIS junctions. However, precise control over critical current density Jc has proven to be a challenge, as is attaining adequate process reproducibility from system to system. The present ion-beam technique is an alternative to the plasma or reactive sputtering techniques as it provides a highly controlled arrival of reactive species, independent of the electrical conditions of the substrate or vacuum chamber. Independent and accurate control of parameters such as ion energy, flux, species, and direction promises more precise control of film characteristics such as stoichiometry and thickness than is the case with typical plasma processes. In particular, the background pressure during ion-beam nitride growth is 2 or 3 orders of magnitude lower, minimizing the formation of

  15. Reaction Pathway and Free Energy Barrier for Urea Elimination in Aqueous Solution

    PubMed Central

    Yao, Min; Chen, Xi; Zhan, Chang-Guo

    2015-01-01

    To accurately predict the free energy barrier for urea elimination in aqueous solution, we examined the reaction coordinates for the direct and water-assisted elimination pathways, and evaluated the corresponding free energy barriers by using the surface and volume polarization for electrostatics (SVPE) model-based first-principles electronic-structure calculations. Based on the computational results, the water-assisted elimination pathway is dominant for urea elimination in aqueous solution, and the corresponding free energy barrier is 25.3 kcal/mol. The free energy barrier of 25.3 kcal/mol predicted for the dominant reaction pathway of urea elimination in aqueous solution is in good agreement with available experimental kinetic data. PMID:25821238

  16. Barriers and opportunities: A review of selected successful energy-efficiency programs

    SciTech Connect

    Worrell, Ernst; Price, Lynn

    2001-03-20

    In industry, barriers may exist at various points in the decision making process, and in the implementation and management of measures to improve energy efficiency. Barriers may take many forms, and are determined by the business environment and include decision-making processes, energy prices, lack of information, a lack of confidence in the information, or high transaction costs for obtaining reliable information, as well as limited capital availability. Other barriers are the ''invisibility'' of energy efficiency measures and the difficulty of quantifying the impacts, and slow diffusion of innovative technology into markets while firms typically under-invest in R and D, despite the high pay-backs. Various programs try to reduce the barriers to improve the uptake of innovative technologies. A wide array of policies has been used and tested in the industrial sector in industrialized countries, with varying success rates. We review some new approaches to industrial energy efficiency improvement in industrialized countries, focusing on voluntary agreements.

  17. Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers.

    PubMed

    Yu, Ying-Ju; McGaughey, Alan J H

    2016-01-07

    Energy barriers for flipping the transverse dipole moments in poly(vinylidene fluoride) (PVDF) and related copolymers and terpolymers are predicted using the nudged elastic band method. The dipole moments flip individually along the chain, with an order and energy barrier magnitudes (0.1-1.2 eV) that depend on the chain composition and environment. Trifluoroethylene (TrFE) and chlorofluoroethylene (CFE) monomers have larger energy barriers than VDF monomers, while a chain in an amorphous environment has a similar transition pathway as that of an isolated molecule. In a crystalline environment, TrFE and CFE monomers expand the lattice and lower the energy barriers for flipping VDF monomers. This finding is consistent with experimental observations of a large electrocaloric effect in P(VDF-TrFE-CFE) terpolymers.

  18. Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers

    NASA Astrophysics Data System (ADS)

    Yu, Ying-Ju; McGaughey, Alan J. H.

    2016-01-01

    Energy barriers for flipping the transverse dipole moments in poly(vinylidene fluoride) (PVDF) and related copolymers and terpolymers are predicted using the nudged elastic band method. The dipole moments flip individually along the chain, with an order and energy barrier magnitudes (0.1-1.2 eV) that depend on the chain composition and environment. Trifluoroethylene (TrFE) and chlorofluoroethylene (CFE) monomers have larger energy barriers than VDF monomers, while a chain in an amorphous environment has a similar transition pathway as that of an isolated molecule. In a crystalline environment, TrFE and CFE monomers expand the lattice and lower the energy barriers for flipping VDF monomers. This finding is consistent with experimental observations of a large electrocaloric effect in P(VDF-TrFE-CFE) terpolymers.

  19. Building America Top Innovations 2012: Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

  20. Kinetic and geometric isotope effects originating from different adsorption potential energy surfaces: cyclohexane on Rh(111).

    PubMed

    Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2012-06-07

    Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.

  1. Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies

    SciTech Connect

    Not Available

    2010-08-01

    This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado, on July 20-22, 2010.

  2. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  3. A classical determination of vibrationally adiabatic barriers and wells of a collinear potential energy surface

    NASA Astrophysics Data System (ADS)

    Pollak, Eli

    1981-05-01

    A necessary and sufficient condition for the existence of a classical vibrationally adiabatic barrier or well in collinear systems is the existence of periodic orbit dividing surfaces. Knowledge of all pods immediately provides all adiabatic barriers and wells. Furthermore, the classical equation connecting the barriers and wells to the masses and potential energy surface of the system is shown, under mild conditions, to be identical in form to the corresponding quantal equation. The only difference is in the determination of the vibrational state which is obtained by WKB quantization classically. The classical barriers and wells can therefore be used to analyze quantal computations. Such analysis is provided for the hydrogen exchange reaction and the F+HH system. A novel result is the existence of vibrationally adiabatic barriers even where no saddle point exists on the static potential energy surface. These barriers are an outcome of competition between the increase of potential energy and decrease of vibrational force constant along the reaction coordinate. Their existence is therefore of general nature — not limited to the specific structure of a given potential energy surface. The experimental significance of these barriers is discussed. The implications on the use of forward or reverse quasiclassical computations is analyzed. A definite conclusion is that one should not average over initial vibrational action in such calculations.

  4. Phenolic resin-based porous carbons for adsorption and energy storage applications

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  5. The effect of applied voltage frequency on surface dielectric barrier discharge energy

    NASA Astrophysics Data System (ADS)

    Lazukin, A. V.; Gundareva, S. V.; Krivov, S. A.; Nikitin, A. M.; Kavyrshin, D. I.; Fedorovich, S. D.

    2016-11-01

    Results of the experimental investigation of surface dielectric barrier discharge's energy dependence on frequency of applied sinusoidal voltage varying from 0.6 to 40 kHz at atmospheric pressure are presented in the paper for disk electrodes of 20, 50 and 150 μm thick. It is shown that surface dielectric barrier discharge's energy dependence on applied voltage frequency represents an U-shaped curve with a distinct minimum. The value and position of energy minimum are related with thickness of the generating plasma electrode, the barrier material and supply voltage. Increase of plasma heat dissipation owing to selection of the dielectric barrier material changes significantly a trend of the U-shaped curve.

  6. Fusion excitation function measurement for 6Li+64Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Moin Shaikh, Md.; Roy, Subinit; Rajbanshi, S.; Pradhan, M. K.; Mukherjee, A.; Basu, P.; Pal, S.; Nanal, V.; Pillay, R. G.; Shrivastav, A.

    2015-01-01

    Total fusion excitation function has been measured for the reaction of weakly bound 6Li projectile on medium mass 64Ni target at energies near the Coulomb barrier of the system. Online characteristic γ-ray detection method has been used to identify and determine the cross sections of the residues. No suppression of total fusion cross section (σTF) is observed at above barrier energies. But enhancement of measured cross section with respect to the one-dimensional barrier penetration model (1-DBPM) calculation is observed at below barrier energies. The enhancement can not be explained by coupled channels calculation with dominant projectile and target excitations as well as one-neutron stripping reaction.

  7. Mesoscale geomorphic change on low energy barrier islands in Chesapeake Bay, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cooper, J. Andrew G.

    2013-10-01

    This paper presents an analysis of decadal (mesoscale) geomorphic change on sandy barrier islands in the fetch-limited environment of Chesapeake Bay. Low energy barrier islands exist in two settings: on the fringe of marshes and in open water and this analysis shows the various types of barrier island to be genetically related. Barrier islands that face the dominant wind and wave direction (E or W) retreat via barrier translation, preserving the barrier island volume. Those that exist in re-entrants are dominated by longshore transport processes, are strongly affected by sediment supply and are subject to disintegration. Marsh fringe barrier islands are perched on or draped over the surface of the underlying marsh. They migrate landwards via barrier translation during periodic high water events accompanied by large waves (hurricanes and northeasters). The underlying marsh surface erodes under all water levels and the rate of retreat of the barrier island and underlying marsh may take place at different rates, leading to various configurations from perched barrier islands several metres landward of the marsh edge, to barrier islands that have a sandy shoreface extending into the subtidal zone. The coastal configuration during landward retreat of marsh fringe barrier islands is subject to strong local control exerted by the underyling marsh topography. As erosion of marsh promontories occurs and marsh creeks are intersected and bypassed, the configuration is subject to rapid change. Periodic sediment influxes cause spits to develop at re-entrants in the marsh. The spits are initiated as extensions of adjacent marsh fringe barrier islands, but as the sediment volume is finite, the initial drift-aligned spits become sediment-starved and begin to develop a series of swash-aligned cells as they strive for morphodynamic equilibrium. The individual cells are stretched until breaches form in the barrier islands, creating inlets with tidal deltas. At this stage the low

  8. A novel method for calculating the energy barriers for carbon diffusion in ferrite under heterogeneous stress

    SciTech Connect

    Tchitchekova, Deyana S.; Morthomas, Julien; Perez, Michel; Ribeiro, Fabienne; Ducher, Roland

    2014-07-21

    A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.

  9. The adsorption of H2 on Fe(111) studied by thermal energy atom scattering

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Zappone, M.; Bernasek, S. L.

    1993-11-01

    The interaction of H2 with Fe(111) has been studied by thermal energy atom scattering (TEAS). The specularly scattered He intensity as a function of hydrogen coverage exhibits a concave drop in scattered He intensity up to 30% coverage, followed by a plateau and another drop in intensity at 80% coverage. A model has been developed to account for this data which assumes three adsorption sites for H on Fe(111), in analogy with the three desorption peaks seen in temperature-programmed desorption (TPD). The adsorption sites have not been definitely assigned, but are labeled ``deep-hollow,'' ``shallow-hollow,'' and ``on-top.'' Competitive adsorption into the deep-hollow and shallow-hollow sites is assumed to account for the initial concavity of the data. Adsorption into on-top sites only becomes significant at 80% coverage. Effective cross sections and reflectivities for the three sites have been obtained for θi=60° and 40°. When a H saturated surface is heated, the scattered He intensity decreases upon heating from 173 to 240 K, at which point desorption has already begun. This drop in intensity is not completely explicable by a Debye-Waller attenuation. It is proposed to be due to a shift in population of the adsorbed H to more exposed, on-top sites, in accord with a Boltzmann distribution of adsorption sites. The scattered He intensity increases upon further heating from 240 to 400 K, corresponding to the desorption of recombined H2 from the surface. Comparison of the He/H/Fe(111) system is made with the He/H/Pt(111) and He/H/Fe(110) systems.

  10. Lowering energy barriers in surface reactions through concerted reaction mechanisms.

    PubMed

    Sakong, Sung; Mosch, Christian; Lozano, Ariel; Busnengo, H Fabio; Gross, Axel

    2012-10-22

    Any technologically important chemical reaction typically involves a number of different elementary reaction steps consisting of bond-breaking and bond-making processes. Usually, one assumes that such complex chemical reactions occur in a step-wise fashion where one single bond is made or broken at a time. Using first-principles calculations based on density functional theory we show that the barriers of rate-limiting steps for technologically relevant surface reactions are significantly reduced if concerted reaction mechanisms are taken into account.

  11. Electric current effect on the energy barrier of magnetic domain wall depinning: origin of the quadratic contribution.

    PubMed

    Kim, Kab-Jin; Ryu, Jisu; Gim, Gi-Hong; Lee, Jae-Chul; Shin, Kyung-Ho; Lee, Hyun-Woo; Choe, Sug-Bong

    2011-11-18

    The energy barrier of a magnetic domain wall trapped at a defect is measured experimentally. When the domain wall is pushed by an electric current and/or a magnetic field, the depinning time from the barrier exhibits perfect exponential distribution, indicating that a single energy barrier governs the depinning. The electric current is found to generate linear and quadratic contributions to the energy barrier, which are attributed to the nonadiabatic and adiabatic spin-transfer torques, respectively. The adiabatic spin-transfer torque reduces the energy barrier and, consequently, causes depinning at lower current densities, promising a way toward low-power current-controlled magnetic applications.

  12. Ion channel gates: comparative analysis of energy barriers.

    PubMed

    Tai, Kaihsu; Haider, Shozeb; Grottesi, Alessandro; Sansom, Mark S P

    2009-04-01

    The energetic profile of an ion translated along the axis of an ion channel should reveal whether the structure corresponds to a functionally open or closed state of the channel. In this study, we explore the combined use of Poisson-Boltzmann electrostatic calculations and evaluation of van der Waals interactions between ion and pore to provide an initial appraisal of the gating state of a channel. This approach is exemplified by its application to the bacterial inward rectifier potassium channel KirBac3.1, where it reveals the closed gate to be formed by a ring of leucine (L124) side chains. We have extended this analysis to a comparative survey of gating profiles, including model hydrophobic nanopores, the nicotinic acetylcholine receptor, and a number of potassium channel structures and models. This enables us to identify three gating regimes, and to show the limitation of this computationally inexpensive method. For a (closed) gate radius of 0.4 nm < R < 0.8 nm, a hydrophobic gate may be present. For a gate radius of 0.2 nm < R < 0.4 nm, both electrostatic and van der Waals interactions will contribute to the barrier height. Below R = 0.2 nm, repulsive van der Waals interactions are likely to dominate, resulting in a sterically occluded gate. In general, the method is more useful when the channel is wider; for narrower channels, the flexibility of the protein may allow otherwise-unsurmountable energetic barriers to be overcome.

  13. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption.

    PubMed

    Qureshi, N; Hughes, S; Maddox, I S; Cotta, M A

    2005-07-01

    This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790-810 g L(-1)) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption-desorption processes has been calculated to be 1,948 kcal kg(-1) butanol as compared to 5,789 kcal kg(-1) butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg(-1) butanol, respectively.

  14. Adsorption energies of H and H2: a quantum-chemical study1

    NASA Astrophysics Data System (ADS)

    Sil, Milan; Gorai, Prasanta; Das, Ankan; Sahu, Dipen; Chakrabarti, Sandip K.

    2017-02-01

    The chemical composition of interstellar grain mantle is mostly dependent on adsorption energies of the surface species. Since hydrogen is widespread either in atomic or in molecular form, our aim in this work is to review (by quantum chemical calculations) the variation of the adsorption energies of H and H2 depending on the nature of the adsorbents. Choice of absorbents was based on relative abundances of interstellar materials. Since carbonaceous and silicate grains are very abundant, we used them as our absorbents. To save computational time, benzene (smallest structure sample of PAHs) is employed as carbonaceous material and for silicate grain, simple cluster of silicon dioxide (silica) (SiO2)3 is used. Around dense cloud regions, water is the major constituent of a grain mantle, therefore, usage of binding energies with bare grains is immaterial. To mimic the water as the adsorbents, we use a water-cluster ((H2O)6). We found that, for all types of adsorbents considered here, binding energies of H are always lower than those of H2, whereas, some of the experimental values are just the other way around. Assuming a steady state solution to the rate equation method, we also present the H2 formation efficiency window in various cases. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.

  15. Free energy and hidden barriers of the β-sheet structure of prion protein.

    PubMed

    Paz, S Alexis; Abrams, Cameron F

    2015-10-13

    On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the β-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion β-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue.

  16. Sign preference in ion-induced nucleation: contributions to the free energy barrier.

    PubMed

    Keasler, Samuel J; Kim, Hyunmi; Chen, Bin

    2012-11-07

    We have performed a series of computer simulations using the AVUS-HR approach to better understand the origin of the sign preference in ion-induced nucleation. In particular, we emphasize the importance of distinguishing between the total formation free energy of a cluster, and the nucleation free energy, which involves only those steps contributing to the free energy barrier. We have separately considered how the ion-water potential energy, the water-water potential energy, and the entropy contribute to both the cluster formation free energy, and the nucleation free energy. These simulations have shown that while the ion-water potential energies make the largest contribution to the formation free energy difference between positive and negative ions, the entropy is the contribution leading to lower nucleation free energy barriers for negative ions. The primary reason for this is the larger stable (but precritical) clusters formed around negative ions. We have further shown that the distinction between formation and nucleation free energies is of particular importance when comparing small cations with larger anions where the formation free energies can be much lower for the cationic clusters, even though the nucleation barriers are lower for the anionic clusters.

  17. Free-energy barrier for electric-field-driven polymer entry into nanoscale channels.

    PubMed

    Nikoofard, Narges; Fazli, Hossein

    2011-05-01

    Free-energy barrier for entry of a charged polymer into a nanoscale channel by a driving electric field is studied theoretically and using molecular dynamics simulations. Dependence of the barrier height on the polymer length, the driving field strength, and the channel entrance geometry is investigated. Squeezing effect of the electric field on the polymer before its entry to the channel is taken into account. It is shown that lateral confinement of the polymer prior to its entry changes the polymer length dependence of the barrier height noticeably. Our theory and simulation results are in good agreement and reasonably describe related experimental data.

  18. Influence of the intercalated cations on the surface energy of montmorillonites: consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites.

    PubMed

    Picard, E; Gauthier, H; Gérard, J-F; Espuche, E

    2007-03-15

    Organically modified montmorillonites obtained by cation exchange from the same natural layered silicate were studied. The surface properties of the pristine and a series of organically modified clays were determined by inverse gas chromatography and the water adsorption mechanisms were studied by a gravimetric technique coupled with a microcalorimeter. A significant increase of the specific surface area, a decrease of the water adsorption, and a decrease of the dispersive component of the surface energy were observed when the sodium cations of the natural montmorillonite were exchanged for a quaternary ammonium. Slighter differences in surface properties were observed, on the other hand, between the different types of organically modified montmorillonites. Indeed, similar dispersive components of the surface energy were determined on the organoclays. Nevertheless, the specific surface area increased in the range 48-80 m(2)/g with increasing d-spacing values and the presence of specific groups attached to the quaternary ammonium, such as phenyl rings or hydroxyl groups, led to some specific behaviors, i.e., a more pronounced base character and a higher water adsorption at high activity, respectively. Differences in interlayer cation chain organization, denoted as crystallinity, were also observed as a function of the nature of the chains borne by the quaternary ammonium. In a later step, polyethylene-based nanocomposites were prepared with those organically modified montmorillonites. The clay dispersion and the barrier properties of the nanocomposites were discussed as a function of the montmorillonite characteristics and of the matrix/montmorillonite interactions expected from surface energy characterization.

  19. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  20. On the role of energy barriers in determining contact angle hysteresis.

    PubMed

    Long, J; Chen, P

    2006-11-30

    The thermodynamic model of contact angles on rough, heterogeneous surfaces developed by Long et al. [J. Long, M.N. Hyder, R.Y.M. Huang and P. Chen, Adv. Colloid Interface Sci. 118 (2005) 173] was employed to study the role of energy barriers in determining contact angle hysteresis. Major energy barriers corresponding to metastable states and minor energy barriers corresponding to secondary metastable states were defined. Distributions of major and/or minor energy barriers as a function of apparent contact angle for various surfaces were obtained. The reproducibility of contact angle measurement, the effect of vibrational energy on contact angle hysteresis and the "stick-slip" phenomenon were discussed. Quantitative relations between contact angles and vibrational energy were obtained. It was found that receding contact angles are normally poorly reproducible for hydrophilic surfaces, but for extremely hydrophobic surfaces, advancing contact angles may have a poor reproducibility. When the vibrational energy available to a system increases, the measured advancing contact angle will decrease while the receding angle will increase until both reach a common value: the system equilibrium angle. This finding not only agrees well with the experimental observations in system equilibrium contact angle measurements, but also lays a theoretical foundation for such measurements. A small vibrational energy may result in a "stick-slip" phenomenon.

  1. Financing Projects That Use Clean-Energy Technologies. An Overview of Barriers and Opportunities

    SciTech Connect

    Goldman, D. P.; McKenna, J. J.; Murphy, L. M.

    2005-10-01

    This technical paper describes the importance of project financing for clean-energy technology deployment. It describes the key challenges in financing clean-energy technology projects, including technical risks, credit worthiness risk, revenue security risk, market competition, scale and related cost, as well as first-steps to overcome those barriers.

  2. Classical dynamics of dissociative adsorption for a nonactivated system: The role of zero point energy

    NASA Astrophysics Data System (ADS)

    Busnengo, H. F.; Crespos, C.; Dong, W.; Rayez, J. C.; Salin, A.

    2002-05-01

    We present dissociative adsorption probabilities of H2 on Pd(111) computed with the classical trajectory method. We perform both classical (C) and quasiclassical (QC) calculations, the latter including, by contrast with the former, the initial zero point energy (ZPE) of H2. We analyze in detail the role played by the ZPE and demonstrate the strong and weak points of both C and QC calculations. We show that ZPE is crucial in accelerating the molecules toward the surface through vibrational softening. However, at low energies, dynamic trapping is quenched in QC calculations by processes of vibration to rotation energy transfer that would be associated with closed channels in a quantum approach. In this study we use a new representation of the H2/Pd(111) potential energy surface (obtained by interpolation of ab initio data) with a significantly better accuracy in the entrance channel region which plays a decisive role in the dissociation dynamics.

  3. Field-dependent energy barriers in Co/CoO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Nieves, P.; Kechrakos, D.; Chubykalo-Fesenko, O.

    2016-02-01

    We perform atomistic modeling of Co/CoO nanoparticles with a diameter of a few nanometers and realistic values of the exchange and anisotropy parameters in order to study the field-dependent energy barriers under forward and backward reversal of the magnetization. The barriers are extracted from the constrained energy minimization using the integration of the Landau-Lifshitz-Gilbert equations and the Lagrange multiplier method. We show that the applied field and the interface exchange strength have opposite effects on the values of the energy barriers. In particular, while the backward (forward) energy barrier increases (decreases) linearly with the strength of the interface exchange coupling, it decreases (increases) almost quadratically with the applied magnetic field. Our results are in good agreement with the well-known Meiklejohn-Bean model of exchange bias, and allow us to analyze the limits of applicability of the macrospin approach to the study of energy barriers in core-shell Co/CoO nanoparticles.

  4. Removing the barrier to the calculation of activation energies

    SciTech Connect

    Mesele, Oluwaseun O.; Thompson, Ward H.

    2016-10-06

    Approaches for directly calculating the activation energy for a chemical reaction from a simulation at a single temperature are explored with applications to both classical and quantum systems. The activation energy is obtained from a time correlation function that can be evaluated from the same molecular dynamics trajectories or quantum dynamics used to evaluate the rate constant itself and thus requires essentially no extra computational work.

  5. The Clean Air Act and Renewable Energy: Opportunities, Barriers, and Options

    SciTech Connect

    Wooley, D.R.; Morss, E.M.; Fang, J.M.

    2001-03-01

    This paper examines the opportunities, obstacles, and potential options to promote renewable energy under the CAA and related programs. It deals, in sequence, with the regulation of SO2, NOx, regional haze/particulate matter, and CO2. For each pollutant, the paper discusses the opportunities, barriers, and options for boosting renewables under the CAA. It concludes by comparing the options discussed. The paper is based on a project on environmental regulation and renewable energy in electricity generation conducted by the National Renewable Energy Laboratory for the Office of Power Technologies, Office of Energy Efficiency and Renewable Energy, US Department of Energy.

  6. Calculation of free energy barriers to the fusion of small vesicles.

    PubMed

    Lee, J Y; Schick, M

    2008-03-01

    The fusion of small vesicles, either with a planar bilayer or with one another, is studied using a microscopic model in which the bilayers are composed of hexagonal- and lamellar-forming amphiphiles. The free energy of the system is obtained within the self-consistent field approximation. We find that the free energy barrier to form the initial stalk is hardly affected by the radius of the vesicle, but that the barrier to expand the hemifusion diaphragm and form a fusion pore decreases rapidly as the radius decreases. As a consequence, once the initial barrier to stalk formation is overcome, one which we estimate at 13 k(B)T for biological membranes, fusion involving small vesicles should proceed with little or no further input of energy.

  7. The energy barrier at noble metal/TiO{sub 2} junctions

    SciTech Connect

    Hossein-Babaei, F. E-mail: fhbabaei@yahoo.com; Lajvardi, Mehdi M. Alaei-Sheini, Navid

    2015-02-23

    Nobel metal/TiO{sub 2} structures are used as catalysts in chemical reactors, active components in TiO{sub 2}-based electronic devices, and connections between such devices and the outside circuitry. Here, we investigate the energy barrier at the junctions between vacuum-deposited Ag, Au, and Pt thin films and TiO{sub 2} layers by recording their electrical current vs. voltage diagrams and spectra of optical responses. Deposited Au/, Pt/, and Ag/TiO{sub 2} behave like contacts with zero junction energy barriers, but the thermal annealing of the reverse-biased devices for an hour at 523 K in air converts them to Schottky diodes with high junction energy barriers, decreasing their reverse electric currents up to 10{sup 6} times. Similar thermal processing in vacuum or pure argon proved ineffective. The highest energy barrier and the lowest reverse current among the devices examined belong to the annealed Ag/TiO{sub 2} contacts. The observed electronic features are described based on the physicochemical parameters of the constituting materials. The formation of higher junction barriers with rutile than with anatase is demonstrated.

  8. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    NASA Technical Reports Server (NTRS)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  9. Overcoming barriers to residential conservation: do energy audits help

    SciTech Connect

    Hoffman, W.L.

    1982-12-01

    A study on the effects of energy audits on the pace and choice of household investment in energy-saving improvements in the home is reported. An evaluation based on the household's assessment of the usefulness of the audit which was provided for their home was performed. The number and types of recent conservation actions among audited and unaudited samples of households are compared. The audit's effect on household knowledge about the economically attractive options for their home and on the choice of recent improvements is assessed. Possible reasons are suggested for the weak effect of audits in stimulating activity and reorienting investment choices. (LEW)

  10. Predicting hydrogen and methane adsorption in carbon nanopores for energy storage

    NASA Astrophysics Data System (ADS)

    Ihm, Yungok; Morris, James; Cooper, Valentino; Morris Lab, U. tennessee Collaboration; Advanced material Group, ORNL Collaboration

    2013-03-01

    There are increasing demands for alternate fuels for transportation, which requires safe, high energy density, lightweight storage materials. Experimental measurements and theoretical predictions show relatively low hydrogen storage capacities in various porous materials, limiting hydrogen as a viable alternative for automobiles. In this work, we use a continuum model based on van der Waals density functional (vdW-DF) calculations to elucidate the role that long-range interactions play in the hydrogen adsorption properties of model slit nanopores in carbon. The proper treatment of long-range interactions gives an optimal pore size for hydrogen storage of 8-9 Å (larger than previously predicted). Remarkably, we find a peak hydrogen density close to that of liquid H2 at ambient temperatures, in agreement with recent experimental results on pore-size dependent adsorption in nanoporous carbon. We then show that such nanopores would be better suited to storing methane, possibly providing an alternative to fill the gap between the capacity required by DOE goals and that attainable with current hydrogen storage technology. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  11. Technical Barriers, Gaps, and Opportunities Related to Home Energy Upgrade Market Delivery

    SciTech Connect

    Bianchi, M. V. A.

    2011-11-01

    This report outlines the technical barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's Building America program. The objective of this report is to outline the technical1 barriers, gaps, and opportunities that arise in executing home energy upgrade market delivery approaches, as identified through research conducted by the U.S. Department of Energy's (DOE) Building America program. This information will be used to provide guidance for new research necessary to enable the success of the approaches. Investigation for this report was conducted via publications related to home energy upgrade market delivery approaches, and a series of interviews with subject matter experts (contractors, consultants, program managers, manufacturers, trade organization representatives, and real estate agents). These experts specified technical barriers and gaps, and offered suggestions for how the technical community might address them. The potential benefits of home energy upgrades are many and varied: reduced energy use and costs; improved comfort, durability, and safety; increased property value; and job creation. Nevertheless, home energy upgrades do not comprise a large part of the overall home improvement market. Residential energy efficiency is the most complex climate intervention option to deliver because the market failures are many and transaction costs are high (Climate Change Capital 2009). The key reasons that energy efficiency investment is not being delivered are: (1) The opportunity is highly fragmented; and (2) The energy efficiency assets are nonstatus, low-visibility investments that are not properly valued. There are significant barriers to mobilizing the investment in home energy upgrades, including the 'hassle factor' (the time and effort required to identify and secure improvement works), access to financing, and the opportunity cost of

  12. Heavy-ion reactions at energies near the Coulomb barrier

    SciTech Connect

    Satchler, G.R.

    1991-01-01

    The title covers a very broad area of both experimental and theoretical studies. The common characteristic of heavy-ion collisions at these energies, compared to what is usually seen at higher energies, is the important interplay between different reaction channels or internal degrees of freedom. The couplings between the various channels can result in important multistep contributions to a given channel. These often have to be treated explicitly, for example by solving the appropriate set of coupled equations. In contrast, at higher energies the effects of these couplings frequently can be represented in a simple, average way, as is done when one introduces an imaginary part to the optical potential for elastic scattering. At first, it might be thought that the possible importance of multistep transitions would be a strong disadvantage of working at these energies. However, although the analysis of the data becomes more complicate, the study of these terms and their interferences can be a rich source of information. In particular, it can tell us, indirectly, something about transitions between two excited states. Overviews of some of these phenomena have been presented elsewhere; here I have selected two topics as representative. Even then I cannot go into much detail, so perhaps this paper is best regarded as providing some references as the stating point for a literature search

  13. Elastic scattering of {sup 9}Li on {sup 208}Pb at energies around the Coulomb barrier

    SciTech Connect

    Cubero, M.; Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Lay, J. A.; Moro, A. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alcorta, M.; Borge, M. J. G.; Tengblad, O.; Buchmann, L.; Shotter, A.; Walden, P.; Diget, D. G.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Mukha, I.

    2011-10-28

    We have studied the dynamical effects of the halo structure of {sup 11}Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated {sup 11}Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. {sup 9}Li on {sup 208}Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions.

  14. Scattering of Halo Nuclei at Energies below and around the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.; Cubero, M.; Fernández-García, J. P.; Moro, A. M.; Pesudo, V.; Acosta, L.; Alcorta, M.; Alvarez, M. A. G.; Bender, P.; Buchmann, L.; Diget, C. A.; Di Pietro, A.; Escrig, D.; Falou, H. A.; Figuera, P. P.; Fulton, B. R.; Fynbo, H. O. U.; Galaviz, D.; Garnsworthy, A.; Gómez-Camacho, J.; Hackman, G.; Kanungo, R.; Lay, J. A.; Madurga, M.; Martel, I.; Mukha, I.; Nilsson, T.; Rodríguez-Gallardo, M.; Rusek, K.; Sánchez-Benítez, A. M.; Rajabali, M.; Sarazin, F.; Shotter, A.; Tengblad, O.; Unsworth, C.; Walden, P.

    The loosely bound structure of halo nuclei is predicted to affect the collisions with heavy targets at energies around the Coulomb barrier. We report here on the results on a series of experiments done at different facilities to study the behaviour of the scattering of the archetype of the halo nuclei: 6He, 11Li, and 11Be on heavy targets at energies below and around the Coulomb barrier. The results are interpreted in the framework of Continuum-Discretized Coupled-Channel calculations (CDCC). The departure from Rutherford scattering is larger than expected. In first approximation the effect certainly scales with the loosely bound character of the projectile.

  15. Fusion enhancement at near and sub-barrier energies in 19O + 12C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; deSouza, R. T.; Lin, Zidu; Horowitz, C. J.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhöver, I.; Umar, A. S.

    2017-02-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a stringent test of a microscopic description of fusion. We report the first measurement of the fusion excitation function at near-barrier energies for the 19O + 12C system. The measured excitation function is compared with the fusion excitation function of 18O + 12C. A significant enhancement in the fusion probability of 19O ions with a 12C target as compared to 18O ions is observed. The experimental cross-sections observed at near-barrier energies are compared with a state-of-the-art microscopic model.

  16. Energy Savings Certificate Markets: Opportunities and Implementation Barriers

    SciTech Connect

    Friedman, B.; Bird, L.; Barbose, G.

    2009-07-01

    Early experiences with energy savings certificates (ESCs) have revealed their merits and the challenges associated with them. While in the United States ESC markets have yet to gain significant traction, lessons can be drawn from early experiences in the states of Connecticut and New York, as well as from established markets in Italy, France, and elsewhere. The staying power of European examples demonstrates that ESCs can help initiate more efficiency projects. This article compares ESCs with renewable energy certificates (RECs), looks at the unique opportunities and challenges they present, and reviews solutions and best practices demonstrated by early ESC markets. Three major potential ESC market types are also reviewed: compliance, voluntary, and carbon. Additionally, factors that will benefit ESC markets in the United States are examined: new state EEPS policies, public interest in tools to mitigate climate change, and the growing interest in a voluntary market for ESCs.

  17. Analyzing Barriers to Energy Conservation in Residences and Offices: The Rewire Program at the University of Toronto

    ERIC Educational Resources Information Center

    Stokes, Leah C.; Mildenberger, Matto; Savan, Beth; Kolenda, Brian

    2012-01-01

    Conducting a barriers analysis is an important first step when designing proenvironmental behavior change interventions. Yet, detailed information on common barriers to energy conservation campaigns remains unavailable. Using a pair of original surveys, we leverage the theory of planned behavior to report on the most important barriers for…

  18. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2

  19. Analysis of the barriers to renewable energy development on tribal lands

    NASA Astrophysics Data System (ADS)

    Jones, Thomas Elisha

    Native American lands have significant renewable energy resource potential that could serve to ensure energy security and a low carbon energy future for the benefit of tribes as well as the United States. Economic and energy development needs in Native American communities match the energy potential. A disproportionate amount of Native American households have no access to electricity, which is correlated with high poverty and unemployment rates. Despite the vast resources and need for energy, the potential for renewable energy development has not fully materialized. This research explores this subject through three separate articles: 1) a case study of the Navajo Nation that suggests economic viability is not the only significant factor for low adoption of renewable energy on Navajo lands; 2) an expert elicitation of tribal renewable energy experts of what they view as barriers to renewable energy development on tribal lands; and 3) a reevaluation of Native Nation Building Theory to include external forces and the role that inter-tribal collaboration plays with renewable energy development by Native nations. Major findings from this research suggests that 1) many Native nations lack the technical and legal capacity to develop renewable energy; 2) inter-tribal collaboration can provide opportunities for sharing resources and building technical, legal, and political capacity; and 3) financing and funding remains a considerable barrier to renewable energy development on tribal lands.

  20. Accurate Evaluation of the Dispersion Energy in the Simulation of Gas Adsorption into Porous Zeolites.

    PubMed

    Fraccarollo, Alberto; Canti, Lorenzo; Marchese, Leonardo; Cossi, Maurizio

    2017-03-07

    The force fields used to simulate the gas adsorption in porous materials are strongly dominated by the van der Waals (vdW) terms. Here we discuss the delicate problem to estimate these terms accurately, analyzing the effect of different models. To this end, we simulated the physisorption of CH4, CO2, and Ar into various Al-free microporous zeolites (ITQ-29, SSZ-13, and silicalite-1), comparing the theoretical results with accurate experimental isotherms. The vdW terms in the force fields were parametrized against the free gas densities and high-level quantum mechanical (QM) calculations, comparing different methods to evaluate the dispersion energies. In particular, MP2 and DFT with semiempirical corrections, with suitable basis sets, were chosen to approximate the best QM calculations; either Lennard-Jones or Morse expressions were used to include the vdW terms in the force fields. The comparison of the simulated and experimental isotherms revealed that a strong interplay exists between the definition of the dispersion energies and the functional form used in the force field; these results are fairly general and reproducible, at least for the systems considered here. On this basis, the reliability of different models can be discussed, and a recipe can be provided to obtain accurate simulated adsorption isotherms.

  1. Lack of an energy policy remains a major barrier

    SciTech Connect

    Owen, D.

    1991-03-01

    This paper reports that the war with Iraq provided a new dimension to the ongoing oil industry struggle to cope with oppressive government action and regulation. Coming as it did just before the administration was to announce guidelines for a long-awaited National Energy Strategy (NES), the war created a renewed and dramatic focus on the national energy security question. Now, numerous congressmen, senators and administration leaders are taking a fresh look at how the U.S. can extricate itself from excessive dependence on Middle East oil imports. For example, the planned free-trade agreement with Mexico could figure prominently in an alliance that would bring much more Mexican oil to the U.S. Meanwhile, the wild card is proposals to open up U.S. drilling offshore and in the Arctic National Wildlife Region (ANWR). Prior to hostilities, Middle East tensions brought on significant increases in the price of oil, and with it a large gain in oil company profits for fourth-quarter 1990. Result: talk in Congress of a new windfall profits tax.

  2. State Successes: Using Outreach and Eduction to Transcend Barriers to Wind Energy (Poster)

    SciTech Connect

    Kelly, M.; Flowers, L.

    2010-05-01

    Many states projected to contribute significantly to the United States' 20% wind energy by 2030 goal have not yet achieved a first wind farm, and many more have not yet hit the 100-MW mark. These states are struggling with basic barriers of the need for understanding of the wind resource; wind energy benefits and impacts; economic development, water, and carbon impacts; issues such as transmission, utility integration, siting, and wildlife; involvement of key constituents such as the electrical sector, the ag sector, and county commissioners; effective policy; and an educated public and an educated workforce. Other states have partially transcended these barriers and are encountering organized pushback; NIMBYism; siting problems such as zoning, permitting, and environmental issues; and interstate barriers such as transmission.

  3. Market barriers to energy efficiency: A critical reappraisal of the rationale for public policies to promote energy efficiency

    SciTech Connect

    Golove, W.H.; Eto, J.H.

    1996-03-01

    This report reviews current perspectives on market barriers to energy efficiency. Ratepayer-funded utility energy-efficiency programs are likely to change in scope, size, and nature as the deregulation process proceeds; the authors research focuses on understanding to what extent some form of future intervention may be warranted and how they might judge the success of particular interventions, especially those funded by ratepayers. They find that challenges to the existence of market barriers have, for the most part, failed to provide a testable alternative explanation for evidence suggesting that there is a substantial ``efficiency gap`` between a consumer`s actual investments in energy efficiency and those that appear to be in the consumer`s own interest. They then suggest that differences of opinion about the appropriateness of public policies stem not from disputes about whether market barriers exist, but from different perceptions of the magnitude of the barriers, and the efficacy and (possibly unintended) consequences of policies designed to overcome them. They conclude that there are compelling justifications for future energy-efficiency policies. Nevertheless, in order to succeed, they must be based on a sound understanding of the market problems they seek to correct and a realistic assessment of their likely efficacy. This understanding can only emerge from detailed investigations of the current operation of individual markets.

  4. Dependence of single-walled carbon nanotube adsorption kinetics on temperature and binding energy.

    PubMed

    Rawat, D S; Krungleviciute, V; Heroux, L; Bulut, M; Calbi, M M; Migone, A D

    2008-12-02

    We present results for the isothermal adsorption kinetics of methane, hydrogen, and tetrafluoromethane on closed-ended single-walled carbon nanotubes. In these experiments, we monitor the pressure decrease as a function of time as equilibrium is approached, after a dose of gas is added to the cell containing the nanotubes. The measurements were performed at different fractional coverages limited to the first layer. The results indicate that, for a given coverage and temperature, the equilibration time is an increasing function of E/(k(B)T), where E is the binding energy of the adsorbate and k(B)T is the thermal energy. These findings are consistent with recent theoretical predictions and computer simulations results that we use to interpret the experimental measurements.

  5. Facile Control of Interfacial Energy-Barrier Scattering in Antimony Telluride Electrodeposits

    NASA Astrophysics Data System (ADS)

    Kim, Jiwon; Jung, Hyunsung; Lim, Jae-Hong; Myung, Nosang V.

    2017-04-01

    The augmented thermoelectric performance of nanocrystalline antimony telluride (Sb2Te3) films is investigated by introducing interfacial energy-barrier scattering (i.e., barrier heights), which occurs at both the grain boundaries and the interfaces with embedded second phases. It is postulated that the barriers created at both the interfaces and boundaries filter the low-energy carriers, thus favoring a high Seebeck coefficient. A facile, but high-precision composition-controlled electrodeposition technique is employed to synthesize single-phase nanocrystalline Sb2Te3 and nanocomposite Te/Sb2Te3. Both the initial composition of the Sb-Te solid solution and the post-annealing profiles are varied to control the grain size, as well as the formation of second-phase Te. The electrical and thermoelectric properties are measured and correlated with the physical properties, where an enhanced Seebeck coefficient at a fixed carrier concentration is interpreted as indicating that the energy-dependent carrier filtering effect is in force. On a promising note, modification of the Sb2Te3 film physical properties and formation of the second phase affect the interfacial energy-barrier scattering and yields an enhanced power factor. Thus, Sb2Te3 film is a promising p-type thermoelectric material for a room-temperature-operational micro-thermoelectric power generator.

  6. Investigation of the hole resonant energies in GaAs-AlGaAs double-barrier

    NASA Astrophysics Data System (ADS)

    Sekkal, N.; Zitouni, K.; Kadri, A.

    1994-12-01

    A rigorous calculation of the resonant energies corresponding to valence sub-band hold transmission maxima is presented for GaAs/AlGaAs double-barrier heterostructures, employing the k.p method, the envelope-function approximation, and transfer matrix techniques. Incident waves associated with both the two light-hole and two heavy-hole bands are treated explicitly.

  7. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A. B.; Lemaître, A.; Jamet, J.-P.

    2016-07-01

    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

  8. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films.

    PubMed

    Jeudy, V; Mougin, A; Bustingorry, S; Savero Torres, W; Gorchon, J; Kolton, A B; Lemaître, A; Jamet, J-P

    2016-07-29

    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

  9. Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship.

    PubMed

    Lu, Zhijiang; MacFarlane, John K; Gschwend, Philip M

    2016-01-05

    Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs' mobilities and bioavailabilities. However, we do not have data for diverse HOCs' sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (KsootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: logKsootC = (3.74 ± 0.11)V + ((-0.35 ± 0.02)log ai)E + (-0.62 ± 0.10)A + (-3.35 ± 0.11)B + (-1.45 ± 0.09); (N = 102, R(2) = 0.96, SE = 0.18), where V, E, A, and B are the sorbate's McGowan's characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and ai is the sorbate's aqueous activity reflecting the system's approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot-water and sediment-water or soil-water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.

  10. Probing the fusion of 7Li with 64Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Mukherjee, A.; Pradhan, M. K.; Basu, P.; Nanal, V.; Pal, S.; Shrivastava, A.; Saha, S.; Pillay, R. G.

    2016-04-01

    Background: The stable isotopes of Li, 6Li6 and 7Li, have two-body cluster structures of α +d and α +t with α -separation energies or breakup thresholds at 1.47 and 2.47 MeV, respectively. The weak binding of these projectiles introduces several new reaction channels not usually observed in the case of strongly bound projectiles. The impact of these breakup or breakup-like reaction channels on fusion, the dominant reaction process at near-barrier energies, with different target masses is of current interest. Purpose: Our purpose is to explore the fusion, at above and below the Coulmb barrier, of 7Li with 64Ni target in order to understand the effect of breakup or breakup-like processes with medium-mass target in comparison with 6Li, which has a lower breakup threshold. Measurement: The total fusion (TF) excitation of the weakly bound projectile 7Li with the medium-mass target 64Ni has been measured at the near-barrier energies (0.8 to 2 VB). The measurement was performed using the online characteristic γ -ray detection method. The complete fusion (CF) excitation function for the system was obtained using the x n -evaporation channels with the help of statistical model predictions. Results: At the above barrier energies CF cross sections exhibit an average suppression of about 6.5% compared to the one-dimensional barrier penetration model (1DBPM) predictions, while the model describes the measured TF cross section well. But below the barrier, both TF and CF show enhancements compared to 1DBPM predictions. Unlike 6Li, enhancement of CF for 7Li could not be explained by inelastic coupling alone. Conclusion: Whereas the σTF cross sections are almost the same for both the systems in the above barrier region, the suppression of σCF at above the barrier is less for the 7Li+64Ni system than for the 6+64Ni system. Also direct cluster transfer has been identified as the probable source for producing large enhancement in TF cross sections.

  11. Transition model for ricin-aptamer interactions with multiple pathways and energy barriers

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Bingqian

    2014-02-01

    We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.

  12. Effects of intrinsic degrees of freedom in enhancement of sub-barrier fusion excitation function data and energy-dependent one-dimensional barrier penetration model

    NASA Astrophysics Data System (ADS)

    Gautam, M. S.

    2016-03-01

    We have analyzed the role of barrier modification effects (barrier height, barrier position, barrier curvature) introduced due to the energy-dependent Woods-Saxon potential model (EDWSP model) and the coupled channel model on the sub-barrier fusion dynamics of {}_{16}^{32,36} {{S}} + {}_{40}^{90,96} {{Zr}} reactions. The influence of inelastic surface excitations of colliding pairs and multi-neutron transfer channels is found to be a dominant mode of couplings. The coupling of relative motion of colliding nuclei to these dominant intrinsic degrees of freedom leads to a substantially large fusion enhancement at below-barrier energies over the expectations of one-dimensional barrier penetration model. The coupled channel calculations based upon static Woods-Saxon potential must include the internal nuclear structure degrees of freedom of colliding nuclei for complete description of experimental data. On the other hand, theoretical calculations based upon the EDWSP model along with Wong formula provide a complete description of sub-barrier fusion enhancement of various heavy-ion fusion reactions. In EDWSP model calculations, significantly larger values of diffuseness parameter ranging from a = 0.98 fm to a = 0.85 fm are required to address the observed sub-barrier fusion enhancement of {}_{16}^{32,36} {{S}} + {}_{40}^{90,96} {{Zr}} reactions. Furthermore, within the context of EDWSP model, it is possible to achieve an agreement with the experimental fusion cross-sectional data within 10 %. For four heavy-ion fusion reactions, only at 4 fusion data points out of 90 fusion data points deviates exceeding 5 %, while 86 fusion data points lie within 5 % and hence the EDWSP model is able to account the above-barrier portion of the fusion cross-sectional data within 5 % with a probability greater than 90 %.

  13. Direct measurement of energy barriers on rough and heterogeneous solid surfaces

    SciTech Connect

    Lloyd, T.B.; LaGow, J.; Connelly, G.M.

    1996-12-31

    This paper will deal with the phenomenon of energy barriers to the spread of liquids on solids. These barriers often manifest themselves as a {open_quotes}pinning{close_quotes} of a sessile drop as liquid is added to it. That is, the volume of the drop increases, but the diameter does not. Thus the advancing contact angle ({theta}{sub a}) increases to a maximum. At the point where the hydrostatic pressure in the drop overcomes the {open_quotes}pinning{close_quotes} force the diameter suddenly increases and the drop relaxes to a metastable configuration which has a lower {theta}{sub a}. Energy barriers should be considered in many applications such as the spreading of liquid adhesives where thorough wetting is the goal. The interfacial forces involved are both long-range Lifshitz-van der Waals (LW) forces and short-range acid-base (AB) forces. The authors will describe how they measure the energy barriers on real surfaces directly and resolve them into their LW and AB components.

  14. Investigation of Li6+Ni64 fusion at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Shaikh, Md. Moin; Roy, Subinit; Rajbanshi, S.; Pradhan, M. K.; Mukherjee, A.; Basu, P.; Pal, S.; Nanal, V.; Pillay, R. G.; Shrivastava, A.

    2014-08-01

    The total fusion (TF) excitation function for a Li6 projectile with a Ni64 target has been measured using the online characteristic γ ray detection method at energies around the Coulomb barrier. The complete fusion (CF) excitation function for the system is subsequently estimated from the dominating neutron evaporation channels with the help of statistical model predictions. The CF cross sections exhibit a suppression of about 13% compared to the one-dimensional barrier penetration model (1DBPM) at above-barrier energies, but no suppression is observed for TF cross sections. The observation does corroborate the estimated suppression for Li6 on Co59 target, but does not corroborate the recently proposed universal suppression factor for the Li6 projectile. The result supports the conjecture of reduced suppression of CF cross sections with decreasing target mass. At energies below the barrier, both the TF and the CF cross sections are enhanced. The observed enhancement of the CF process can be explained by channel coupling (CC), but the enhancement in TF cross sections is significantly higher than the CC predictions.

  15. Overcoming Codes and Standards Barriers to Innovations in Building Energy Efficiency

    SciTech Connect

    Cole, Pamala C.; Gilbride, Theresa L.

    2015-02-15

    In this journal article, the authors discuss approaches to overcoming building code barriers to energy-efficiency innovations in home construction. Building codes have been a highly motivational force for increasing the energy efficiency of new homes in the United States in recent years. But as quickly as the codes seem to be changing, new products are coming to the market at an even more rapid pace, sometimes offering approaches and construction techniques unthought of when the current code was first proposed, which might have been several years before its adoption by various jurisdictions. Due to this delay, the codes themselves can become barriers to innovations that might otherwise be helping to further increase the efficiency, comfort, health or durability of new homes. . The U.S. Department of Energy’s Building America, a program dedicated to improving the energy efficiency of America’s housing stock through research and education, is working with the U.S. housing industry through its research teams to help builders identify and remove code barriers to innovation in the home construction industry. The article addresses several approaches that builders use to achieve approval for innovative building techniques when code barriers appear to exist.

  16. Free energy barriers for homogeneous crystal nucleation in a eutectic system of binary hard spheres.

    PubMed

    Ganagalla, Srinivasa Rao; Punnathanam, Sudeep N

    2013-05-07

    In this study, the free energy barriers for homogeneous crystal nucleation in a system that exhibits a eutectic point are computed using Monte Carlo simulations. The system studied is a binary hard sphere mixture with a diameter ratio of 0.85 between the smaller and larger hard spheres. The simulations of crystal nucleation are performed for the entire range of fluid compositions. The free energy barrier is found to be the highest near the eutectic point and is nearly five times that for the pure fluid, which slows down the nucleation rate by a factor of 10(-31). These free energy barriers are some of highest ever computed using simulations. For most of the conditions studied, the composition of the critical nucleus corresponds to either one of the two thermodynamically stable solid phases. However, near the eutectic point, the nucleation barrier is lowest for the formation of the metastable random hexagonal closed packed (rhcp) solid phase with composition lying in the two-phase region of the phase diagram. The fluid to solid phase transition is hypothesized to proceed via formation of a metastable rhcp phase followed by a phase separation into respective stable fcc solid phases.

  17. Free energy barrier for dissociation of the guanosine monophosphate anion in water

    NASA Astrophysics Data System (ADS)

    Cornetta, Lucas M.; Coutinho, Kaline; Canuto, Sylvio; Varella, Márcio T. do N.

    2016-08-01

    We report free energy barriers for the ground-state dissociation of the guanosine nucleotide anion in solution, employing implicit and explicit solvation models. The latter was based on the Free Energy Perturbation technique and Monte Carlo simulations. For the lowest-energy structure, both solvation models indicate a solvent-induced transition from a dipole-bound state in the gas phase to a π∗ valence state in solution. The free barrier estimates obtained from explicit and implicit solvation are in fair agreement with each other, although significantly overestimated in comparison to a previously reported explicit solvation model based on ab initio molecular dynamics simulations. Accounting for corrections related to the different DFT functionals used in the present and previous studies significantly improves the agreement. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  18. The Analytical Parametrization of Fusion Barrier by Using the Skyrme Energy-Density Function Model

    NASA Astrophysics Data System (ADS)

    Zanganeh, V.; Mirzaei, M.; N., Wang

    2015-08-01

    Using the skyrme energy density formalism, a pocket formula is introduced for barrier heights and positions of 95 fusion reactions (48 ≤ ZP ZT ≤ 1520) with respect to the charge and mass numbers of the interacting nuclei. It is shown that the parameterized values of RB and VB are able to reproduce the corresponding experimental data with good accuracy. Moreover, the absolute errors of our formulas are less than those obtained using the analytical parametrization forms of the fusion barrier based on the proximity versions. The ability of the parameterized forms of the barrier heights and its positions to reproduce the experimental data of the fusion cross section have been analyzed using the Wong model.

  19. Opportunities and barriers for a crop-based energy sector in Ontario

    NASA Astrophysics Data System (ADS)

    Klupfel, Ellen Joanne

    This study investigates the existing opportunities and barriers for expanding the crop-based energy sector in Ontario. The investigation takes place at a time when growing concerns about sustainability---environmental, social, and economic---are encouraging the exploration of alternatives to energy systems based on fossil fuels, and concerns around the future viability of rural communities are making agriculturally-based and rural-based energy production systems attractive to many. To explore opportunities and barriers for the crop-based energy sector, this thesis addresses the question: What is the political-economic context within which the crop-based energy sector operates in Ontario? Taking an institutional approach, the study involved 26 interviews with individuals whose organizations influence Ontario's crop-based energy sector (that includes the biofuels ethanol and biodiesel), developed a model outlining relationships between the crop-based energy sector and other sectors of the economy, as well as the state, and implemented a survey of Ontario Members of Provincial Parliament's perspectives on biofuels. This research examines the balance of power of knowledge, production, security, finance, and technology for Ontario's crop-based energy sector. The overall balance of power currently rests with the petroleum sector. Through force field analysis, the study also identifies the key opportunities and barriers for the growth and development of the biofuels sector. These opportunities include climate change and rural development agendas, and the barriers include the petroleum sector, cost of production, and some sectors of the state. A few overarching conclusions emerge from this research: (1) Change in Ontario's crop-based energy sector is driven foremost by political and economic forces; (2) Climate change is the most significant driving force for the development and expansion of Ontario's crop-based energy sector; (3) Production cost and resistance from the

  20. Energy gap modulation in V2O5 nanowires by gas adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Kim, Ansoon; Oh, Soon-Young; Bae, Sung-Soo; Yun, Yong Ju; Yu, Han Young

    2008-12-01

    The current-voltage characteristics at various pressures (2-10 atm) and the scanning tunneling microscopy of vanadium pentoxide nanowires (VONs) with the inert gases (He, Ne, and Ar) and diatomic molecules (H2,N2, O2) have been investigated. The gas dependent conductance (G) is consistent with the inverse energy gap obtained from the scanning tunneling spectroscopy study for the gas-adsorbed single VON. The three possible interactions for gas adsorption of the VON have been discussed. Among them, we have found that the induced dipole-dipole interaction between adsorbed gases plays an important role in conductance variation in the gas adsorbed VON using the conductance per molecule (G /N).

  1. Large adsorption energies for CO on Scn (n = 2-8, 13) nanoclusters

    NASA Astrophysics Data System (ADS)

    Meng, Jiang

    2016-12-01

    In order to seek a transition metal cluster with high ability to adsorb CO molecule, the author performs a density function theory calculation on COScn (n = 2-8, 13) clusters. The results demonstrate that COScn (n = 2-8, 13) clusters have the large adsorption energies of which the values are over 3.6 eV, and the elongations of C-O bond length exceed 20% in most calculated sizes. Adsorbing CO contributes to the improvement of the chemical activity, but reduces the magnetic moment of corresponding Scn cluster. Project supported by the Natural Science Foundation of Tibet Autonomous Region, China (Grant No. 2016-ZR-15-23), the Fund from the Key Laboratory of Optical Information Processing and Visualization Technology, Tibet Autonomous Region, China, the Young Talent Cultivation Plan of Xizang (Tibet) Minzu University, China (Grant No. 14myQP05), and the Important Cultivate Plan of Xizang Minzu University (Grant No. 12myZP02).

  2. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion

    PubMed Central

    Ryham, Rolf J.; Klotz, Thomas S.; Yao, Lihan; Cohen, Fredric S.

    2016-01-01

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. PMID:26958888

  3. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    PubMed

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-08

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm.

  4. Elastic scattering of 17O ions from 58Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; Guglielmetti, A.; La Commara, M.; Manea, C.; Nicoletto, M.; Parascandolo, C.; Parascandolo, L.; Pierroutsakou, D.; Sandoli, M.; Signorini, C.; Soramel, F.; Toniolo, N.; Grebosz, J.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Stroe, L.; Miyatake, H.; Watanabe, Y.; Jeong, S.; Kim, Y. H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Zerva, K.

    2014-03-01

    Elastic scattering has been studied for the collisions induced by 17O on 58Ni target at energies around and above the Coulomb barrier. The elastic scattering angular distributions were measured for several energies and were analyzed within the framework of the optical model to obtain total reaction cross sections. The reaction cross-sections of the tightly bound 17O were compared with those of weakly bound 17F on the same targets in order to investigate the effects of the low binding energy in the reaction dynamics.

  5. Numerical Modelling of a Low-Energy Rockfall Barrier: New Insight into the Bullet Effect

    NASA Astrophysics Data System (ADS)

    Mentani, A.; Giacomini, A.; Buzzi, O.; Govoni, L.; Gottardi, G.; Fityus, S.

    2016-04-01

    This paper investigates the dynamic response of low energy, semi-rigid rockfall barriers. The study is based on a FE model that reproduces the geometry, components and connections of the existing systems that were previously tested at The University of Newcastle. The mechanical behaviour of the relevant barrier components was calibrated from simple mechanical tests and the response of the assembled system, i.e. 2 m high, 15 m long rockfall barrier, was validated against of full-scale tests results. Following a satisfactory validation of the model, further dynamic non-linear analyses were conducted to investigate the dependence of the full system performance to the size of impacting blocks. Interestingly, the total failure energy was found to evolve non-monotonically with block size because of dynamic effects that seem to prevail for impact speeds in the range of 15-20 m/s. The study also highlights the complex effects of adding intermediate longitudinal cables to the system. An improvement of the barrier performance is observed for the large blocks but the bullet effect is exacerbated for small blocks.

  6. Transition path time distribution and the transition path free energy barrier.

    PubMed

    Pollak, Eli

    2016-10-19

    The recent experimental measurement of the transition path time distributions of proteins presents several challenges to theory. Firstly, why do the fits of the experimental data to a theoretical expression lead to barrier heights which are much lower than the free energies of activation of the observed transitions? Secondly, there is the theoretical question of determining the transition path time distribution, without invoking the Smoluchowski limit. In this paper, we derive an exact expression for a transition path time distribution which is valid for arbitrary memory friction using the normal mode transformation which underlies Kramers' rate theory. We then recall that for low barriers, there is a noticeable difference between the transition path time distribution obtained with absorbing boundary conditions and free boundary conditions. For the former, the transition times are shorter, since recrossings of the boundaries are disallowed. As a result, if one uses the distribution based on absorbing boundary conditions to fit the experimental data, one will find that the transition path barrier will be larger than the values found based on a theory with free boundary conditions. We then introduce the paradigm of a transition path barrier height, and show that one should always expect it to be much smaller than the activation energy.

  7. Random free energy barrier hopping model for ac conduction in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Murti, Ram; Tripathi, S. K.; Goyal, Navdeep; Prakash, Satya

    2016-03-01

    The random free energy barrier hopping model is proposed to explain the ac conductivity (σac) of chalcogenide glasses. The Coulomb correlation is consistently accounted for in the polarizability and defect distribution functions and the relaxation time is augmented to include the overlapping of hopping particle wave functions. It is observed that ac and dc conduction in chalcogenides are due to same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature dependence of hopping barriers. The exponential parameter s is calculated and it is found that s is subjected to sample preparation and measurement conditions and its value can be less than or greater than one. The calculated results for a - Se, As2S3, As2Se3 and As2Te3 are found in close agreement with the experimental data. The bipolaron and single polaron hopping contributions dominates at lower and higher temperatures respectively and in addition to high energy optical phonons, low energy optical and high energy acoustic phonons also contribute to the hopping process. The variations of hopping distance with temperature is also studied. The estimated defect number density and static barrier heights are compared with other existing calculations.

  8. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    SciTech Connect

    Jia, Juanjuan; Kara, Abdelkader E-mail: vladimir.esaulov@u-psud.fr; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A. E-mail: vladimir.esaulov@u-psud.fr

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  9. Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics

    PubMed Central

    Wang, Feng; Stuart, Steven J.; Latour, Robert A.

    2009-01-01

    The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions. PMID:19768127

  10. Nucleon exchange mechanism in heavy-ion collisions at near-barrier energies

    SciTech Connect

    Yilmaz, B.; Ayik, S.; Lacroix, D.

    2011-06-15

    Nucleon drift and diffusion mechanisms in central collisions of asymmetric heavy ions at near-barrier energies are investigated in the framework of a stochastic mean-field approach. Expressions for diffusion and drift coefficients for nucleon transfer deduced from the stochastic mean-field approach in the semiclassical approximation have similar forms familiar from the phenomenological nucleon exchange model. The variance of fragment mass distribution agrees with the empirical formula {sigma}{sub AA}{sup 2}(t)=N{sub exc}(t). The comparison with the time-dependent Hartree-Fock calculations shows that below barrier energies, the drift coefficient in the semiclassical approximation underestimates the mean number of nucleon transfer obtained in the quantal framework. Motion of the window in the dinuclear system has a significant effect on the nucleon transfer in asymmetric collisions.

  11. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    SciTech Connect

    Jiang, C.L.; Rehm, K.E.; Gehring, J.

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  12. Formation of hyperdeformed states in capture reactions at sub-barrier energies

    SciTech Connect

    Zubov, A. S.; Antonenko, N. V.; Sargsyan, V. V.; Adamian, G. G.; Scheid, W.

    2010-09-15

    The high-spin hyperdeformed nuclear states treated as dinuclear or quasimolecular configurations are suggested to be directly populated in heavy ion collisions at sub-barrier energies. Tunneling through the Coulomb barrier is considered using the quantum diffusion approach based on the formalism of reduced density matrix. The reactions {sup 48}Ca+{sup 86}Kr,{sup 124}Sn,{sup 136}Xe,{sup 138}Ba,{sup 140}Ce, {sup 58}Ni+{sup 58}Ni, and {sup 40,48}Ca+{sup 40,48}Ca, are suggested for populating high-spin hyperdeformed states. The partial production and identification cross sections for the hyperdeformed states are calculated as the functions of bombarding energy.

  13. Barriers to Incorporating Climate Change Science into High School and Community College Energy Course Offerings

    NASA Astrophysics Data System (ADS)

    Howell, C.

    2013-05-01

    In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions

  14. The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics.

    PubMed

    Grafmüller, Andrea; Shillcock, Julian; Lipowsky, Reinhard

    2009-04-08

    The fusion of lipid bilayers is studied with dissipative particle dynamics simulations. First, to achieve control over membrane properties, the effects of individual simulation parameters are studied and optimized. Then, a large number of fusion events for a vesicle and a planar bilayer are simulated using the optimized parameter set. In the observed fusion pathway, configurations of individual lipids play an important role. Fusion starts with individual lipids assuming a splayed tail configuration with one tail inserted in each membrane. To determine the corresponding energy barrier, we measure the average work for interbilayer flips of a lipid tail, i.e., the average work to displace one lipid tail from one bilayer to the other. This energy barrier is found to depend strongly on a certain dissipative particle dynamics parameter, and, thus, can be adjusted in the simulations. Overall, three subprocesses have been identified in the fusion pathway. Their energy barriers are estimated to lie in the range 8-15 k(B)T. The fusion probability is found to possess a maximum at intermediate tension values. As one decreases the tension, the fusion probability seems to vanish before the tensionless membrane state is attained. This would imply that the tension has to exceed a certain threshold value to induce fusion.

  15. Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2016-07-01

    This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

  16. Barriers on the propagation of renewable energy sources and sustainable solid waste management practices in Greece.

    PubMed

    Boemi, Sn; Papadopoulos, Am; Karagiannidis, A; Kontogianni, S

    2010-11-01

    Renewable energy sources (RES), excluding large hydroelectric plants, currently produce 4.21% of total electricity production in Greece. Even when considering the additional production from large hydroelectric plants, which accounts for some 7.8%, the distance to be covered towards the objective of 20% electricity produced from RES by 2010 and respectively towards 20% of total energy production by 2020 is discouraging. The potential, however, does exist; unfortunately so do serious barriers. On the other hand, solid waste management (SWM) is an issue that generates continuously increasing interest due to the extra amounts of solid waste generated; the lack of existing disposal facilities with adequate infrastructure and integrated management plans, also often accompanied by legislative and institutional gaps. However, socio-economic and public awareness problems are still met in the planning and implementation of RES and SWM projects, together with the lack of a complete national cadastre and a spatial development master plan, specifying areas eligible for RES and SWM development. Specific barriers occur for individual RES and the on-going inclusion of waste-derived renewable energy in the examined palette further increases the complexity of the entire issue. The consolidated study of this broad set of barriers was a main task of the present study which was carried out within the frame of a Hellenic-Canadian research project; the main results will be discussed herein.

  17. Energy dependent sticking coefficients of trimethylamine on Si(001)-Influence of the datively bonded intermediate state on the adsorption dynamics

    NASA Astrophysics Data System (ADS)

    Lipponer, M. A.; Reutzel, M.; Dürr, M.; Höfer, U.

    2016-11-01

    The adsorption dynamics of the datively bonded trimethylamine (TMA) on Si(001) was investigated by means of molecular beam techniques. The initial sticking probability s0 of TMA on Si(001) was measured as a function of kinetic energy at two different surface temperatures (230 and 550 K). At given surface temperature, s0 was found to decrease with increasing kinetic energy (0.1 to 0.6 eV) indicating a non-activated reaction channel. At increased surface temperature, s0 is reduced due to the onset of desorption into the gas phase. The energy dependence of s0 is compared to the results for the adsorption of tetrahydrofuran (THF) on Si(001), which reacts via a datively bonded intermediate into a covalently bound final state. As s0 follows the same energy dependence both for TMA and THF, the datively bonded intermediate state is concluded to dominate the reaction dynamics in the latter case as well.

  18. Potential of mean force calculation of the free energy of adsorption of Type I winter flounder antifreeze protein on ice

    NASA Astrophysics Data System (ADS)

    Battle, Keith; Alan Salter, E.; Wesley Edmunds, R.; Wierzbicki, Andrzej

    2010-04-01

    Antifreeze proteins (AFPs) are a unique class of proteins that inhibit ice growth without changing the melting point of ice. In this work, we study the detailed molecular mechanism of interactions between the hydrophobic side of the winter flounder (WF) AFP and two mutants, AAAA and SSSS, in which threonine residues are substituted by serines and alanines, respectively. Umbrella sampling molecular dynamics simulations of the separation of the proteins from the (2 0 1) surface in an explicit water box is carried out to calculate the potential of mean force free energies of adsorption using AMBER10i. We estimate wild-type WF's free energy of adsorption to ice to be about -12.0 kcal/mol. Gas-phase pseudopotential plane-wave calculations of methane adsorption onto select surfaces of ice are also carried out under periodic boundary conditions to address the possible enthalpic role of WF's methyl groups in binding. The contributions of hydrophobic residues to the free energy of adsorption are discussed.

  19. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers.

    PubMed

    Park, B G; Banerjee, T; Lodder, J C; Jansen, R

    2007-11-23

    The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.

  20. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  1. Adsorption energies of mercury-containing species on CaO and temperature effects on equilibrium constants predicted by density functional theory calculations.

    PubMed

    Kim, Bo Gyeong; Li, Xinxin; Blowers, Paul

    2009-03-03

    The adsorption of Hg, HgCl, and HgCl2 on the CaO surface was investigated theoretically so the fundamental interactions between Hg species and this potential sorbent can be explored. Surface models of a 4 x 4 x 2 cluster, a 5 x 5 x 2 cluster, and a periodic structure using density functional theory calculations with LDA/PWC and GGA/BLYP functionals, as employed in the present work, offer a useful description for the thermodynamic properties of adsorption on metal oxides. The effect of temperature on the equilibrium constant for the adsorption of mercury-containing species on the CaO (0 0 1) surface was investigated with GGA/BLYP calculations in the temperature range of 250-600 K. Results show that, at low coverage of elemental mercury, adsorption on the surface is physisorption while the two forms of oxidized mercury adsorption undergo stronger adsorption. The adsorption energies decrease with increasing coverage for elemental mercury on the surfaces. The chlorine atom enhances the adsorption capacity and adsorbs mercury to the CaO surface more strongly. The adsorption energy is changed as the oxidation state varies, and the equilibrium constant decreases as the temperature increases, in good agreement with data for exothermic adsorption systems.

  2. The S(2p) Core Level Binding Energies for Alternative Adsorption Sites and the Example of Thiol Self Assembly

    NASA Astrophysics Data System (ADS)

    Jia, Juanjuan; Esaulov, Vladimir; Kara, Abdelkader

    2015-03-01

    Results of an investigation of the characteristics of thiol SAMs obtained by vacuum evaporative adsorption, useful for reactive substrates, are presented along with core level binding energy (BE) calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) are obtained by evaporation on Au. They display an unconventional BE structure at about 161 eV, which is close to a known BE of an S atom on Au. S(2p) core level BE calculations for molecules chemisorbed on hollow, bridge and atop sites are reported and suggest that the 161 eV peak is indeed due to an alternative adsorption site, which can be associated to an atop configuration. This must therefore not be confused with atomic sulfur and dissociation processes with S-C bond scission. Work partially supported by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243.

  3. Final report. Renewable energy and energy efficiency in Mexico: Barriers and opportunities

    SciTech Connect

    Ashford, Mike

    2000-09-28

    The report describes the prospects for energy efficiency and greenhouse gas emissions reductions in Mexico, along with renewable energy potential. A methodology for developing emissions baselines is shown, in order to prepare project emissions reductions calculations. An application to the USIJI program was also prepared through this project, for a portfolio of energy efficiency projects.

  4. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane

    NASA Astrophysics Data System (ADS)

    Vivcharuk, Victor; Tomberli, Bruno; Tolokh, Igor S.; Gray, C. G.

    2008-03-01

    Molecular dynamics (MD) simulations are used to study the interaction of a zwitterionic palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with POPC is used as a model system for studying the details of membrane-peptide interactions, with the peptide selected because of its antimicrobial nature. Seventy-two 3 ns MD simulations, with six orientations of LFCinB at 12 different distances from a POPC membrane, are carried out to determine the potential of mean force (PMF) or free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the PMF for this relatively large system a new variant of constrained MD and thermodynamic integration is developed. A simplified method for relating the PMF to the LFCinB-membrane binding free energy is described and used to predict a free energy of adsorption (or binding) of -1.05±0.39kcal/mol , and corresponding maximum binding force of about 20 pN, for LFCinB-POPC. The contributions of the ions-LFCinB and the water-LFCinB interactions to the PMF are discussed. The method developed will be a useful starting point for future work simulating peptides interacting with charged membranes and interactions involved in the penetration of membranes, features necessary to understand in order to rationally design peptides as potential alternatives to traditional antibiotics.

  5. Symmetric splitting for the system 32S+238U at energies near and below the barrier

    NASA Astrophysics Data System (ADS)

    Freifelder, R.; Braun-Munzinger, P.; Deyoung, P.; Schicker, R.; Sen, S.; Stachel, J.

    1987-06-01

    The total capture cross section for the system 32S+238U has been measured at energies from 0.93 to 1.08 times the s-wave interaction barrier by detecting coincident fission fragments following full momentum transfer reactions. The subbarrier cross section cannot be reproduced by a one-dimensional barrier penetration model. Using a quantum mechanical coupled channels model, good agreement is obtained. The measured angular distributions of fission fragments were compared to the predictions of saddle and scission point transition state theory. Saddle point transition state model calculations fail to reproduce the data, while scission point transition state calculations are in agreement with their qualitative trend. Evidence for nonequilibrium processes is presented.

  6. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage

    PubMed Central

    Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai

    2015-01-01

    Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734

  7. Fusion of Si28+Si28,30: Different trends at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Montagnoli, G.; Stefanini, A. M.; Esbensen, H.; Jiang, C. L.; Corradi, L.; Courtin, S.; Fioretto, E.; Grebosz, J.; Haas, F.; Jia, H. M.; Mazzocco, M.; Michelagnoli, C.; Mijatović, T.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Szilner, S.; Torresi, D.

    2014-10-01

    Background: The fusion excitation function of the system Si28+Si28 at energies near and below the Coulomb barrier is known only down to ≃15 mb. This precludes any information on both coupling effects on sub-barrier cross sections and the possible appearance of hindrance. For Si28+Si30 even if the fusion cross section is measured down to ≃50 μb, the evidence of hindrance is marginal. Both systems have positive fusion Q values. While Si28 has a deformed oblate shape, Si30 is spherical. Purpose: We investigate 1. the possible influence of the different structure of the two Si isotopes on the fusion excitation functions in the deep sub-barrier region and 2. whether hindrance exists in the Si+Si systems and whether it is strong enough to generate an S-factor maximum, thus allowing a comparison with lighter heavy-ion systems of astrophysical interest. Methods: Si28 beams from the XTU Tandem accelerator of the INFN Laboratori Nazionali di Legnaro were used. The setup was based on an electrostatic beam separator, and fusion evaporation residues (ER) were detected at very forward angles. Angular distributions of ER were measured. Results: Fusion cross sections of Si28+Si28 have been obtained down to ≃600 nb. The slope of the excitation function has a clear irregularity below the barrier, but no indication of a S-factor maximum is found. For Si28+Si30 the previous data have been confirmed and two smaller cross sections have been measured down to ≃4 μb. The trend of the S-factor reinforces the previous weak evidence of hindrance. Conclusions: The sub-barrier cross sections for Si28+Si28 are overestimated by coupled-channels calculations based on a standard Woods-Saxon potential, except for the lowest energies. Calculations using the M3Y+repulsion potential are adjusted to fit the Si28+Si28 and the existing Si30+Si30 data. An additional weak imaginary potential (probably simulating the effect of the oblate Si28 deformation) is required to fit the low-energy trend of

  8. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shuhei; Klein, Michael L.; Shinoda, Wataru

    2015-12-01

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  9. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    SciTech Connect

    Kawamoto, Shuhei; Shinoda, Wataru; Klein, Michael L.

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  10. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.

    PubMed

    Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  11. Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Shrivastava, A.; Mahata, K.; Pandit, S. K.; Nanal, V.; Ichikawa, T.; Hagino, K.; Navin, A.; Palshetkar, C. S.; Parkar, V. V.; Ramachandran, K.; Rout, P. C.; Kumar, Abhinav; Chatterjee, A.; Kailas, S.

    2016-04-01

    Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C +198Pt system but not in 7Li +198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C, 16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.

  12. Canonical free-energy barrier of particle and polymer cluster formation

    NASA Astrophysics Data System (ADS)

    Zierenberg, Johannes; Schierz, Philipp; Janke, Wolfhard

    2017-02-01

    A common approach to study nucleation rates is the estimation of free-energy barriers. This usually requires knowledge about the shape of the forming droplet, a task that becomes notoriously difficult in macromolecular setups starting with a proper definition of the cluster boundary. Here we demonstrate a shape-free determination of the free energy for temperature-driven cluster formation in particle as well as polymer systems. Combined with rigorous results on equilibrium droplet formation, this allows for a well-defined finite-size scaling analysis of the effective interfacial free energy at a fixed density. We first verify the theoretical predictions for the formation of a liquid droplet in a supersaturated particle gas by generalized-ensemble Monte Carlo simulations of a Lennard-Jones system. Going one step further, we then generalize this approach to cluster formation in a dilute polymer solution. Our results suggest an analogy with particle condensation, when the macromolecules are interpreted as extended particles.

  13. A Local Order Parameter-Based Method for Simulation of Free Energy Barriers in Crystal Nucleation.

    PubMed

    Eslami, Hossein; Khanjari, Neda; Müller-Plathe, Florian

    2017-03-14

    While global order parameters have been widely used as reaction coordinates in nucleation and crystallization studies, their use in nucleation studies is claimed to have a serious drawback. In this work, a local order parameter is introduced as a local reaction coordinate to drive the simulation from the liquid phase to the solid phase and vice versa. This local order parameter holds information regarding the order in the first- and second-shell neighbors of a particle and has different well-defined values for local crystallites and disordered neighborhoods but is insensitive to the type of the crystal structure. The order parameter is employed in metadynamics simulations to calculate the solid-liquid phase equilibria and free energy barrier to nucleation. Our results for repulsive soft spheres and the Lennard-Jones potential, LJ(12-6), reveal better-resolved solid and liquid basins compared with the case in which a global order parameter is used. It is also shown that the configuration space is sampled more efficiently in the present method, allowing a more accurate calculation of the free energy barrier and the solid-liquid interfacial free energy. Another feature of the present local order parameter-based method is that it is possible to apply the bias potential to regions of interest in the order parameter space, for example, on the largest nucleus in the case of nucleation studies. In the present scheme for metadynamics simulation of the nucleation in supercooled LJ(12-6) particles, unlike the cases in which global order parameters are employed, there is no need to have an estimate of the size of the critical nucleus and to refine the results with the results of umbrella sampling simulations. The barrier heights and the nucleation pathway obtained from this method agree very well with the results of former umbrella sampling simulations.

  14. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  15. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    SciTech Connect

    Ansalone, Patrizio; Chinappi, Mauro; Rondoni, Lamberto; Cecconi, Fabio

    2015-10-21

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson’s equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  16. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    NASA Astrophysics Data System (ADS)

    Ansalone, Patrizio; Chinappi, Mauro; Rondoni, Lamberto; Cecconi, Fabio

    2015-10-01

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson's equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  17. Experimental study on temperature characteristics and energy conversion in packed bed reactor with dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Li, Sen; Tang, Zuchen; Gu, Fan

    2010-10-01

    The temperature characteristics and energy conversion in packed bed reactor combined with a dielectric barrier discharge (DBD) plasma was investigated experimentally. The pellet temperatures of two types packed bed reactor, cylindrical reactor and parallel-plate reactor, was measured in conditions of various inlet voltage of DBD plasma. The relationship between pellet temperature of the packed bed and applied voltage of DBD plasma was discovered. The experimental result indicates a tendency that the pellet temperature of packed bed increases as the applied voltage of inlet plasma increases. When the voltage of inlet plasma is high enough, the pellet temperature increment decreases. Simultaneously,the packed bed temperature is sensitive to the inlet plasma energy and there is a potential application to heat exchanger. Moreover the proportion of energy consumption of plasma inputting into packed bed reactor was analyzed and calculated. The mechanisms that electrical energy of inlet plasma is transformed into heat energy in the two phases, gaseous and pellets of the packed bed reactor are different. The energy consumption in pellet phase is dielectric polarization loss and depends on packed bed geometry and DBD plasma etc. The energy consumption in gaseous phase is plasma sheath procedure. The important factors effecting on gas discharge are gaseous component and voltage, frequency of power.

  18. 7Be- and 8B-reaction dynamics at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Keeley, N.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lay, J. A.; Lin, C. J.; Marquinez-Duran, G.; Martel, I.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Stefanini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Teranishi, T.; Toniolo, N.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2016-05-01

    We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV) the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV) nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.

  19. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    NASA Astrophysics Data System (ADS)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options

  20. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier.

    PubMed

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-07

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.

  1. Synthesis and characterization of low surface energy fluoropolymers as potential barrier coatings in oral care.

    PubMed

    Churchley, David P; Barbu, Eugen; Ewen, Richard J; Shen, Zhihao; Kim, Yongchul; McHugh, Mark A; Zhang, Zhong Yi; Nevell, Thomas G; Rees, Gareth D; Tsibouklis, John

    2008-03-15

    A series of low surface energy fluorinated homopolymers and copolymers has been synthesized and characterized using thermal, optical, spectroscopic, and chromatographic techniques. Their utility as barrier technologies in oral care has been considered, and aqueous nanosuspensions of the materials have been deposited as films on model dental hard surfaces in the presence and absence of a salivary pellicle. Calcium hydroxyapatite has been used as a model for enamel, as has PMMA due to its widespread use in denture fabrication. Surface energy determinations, combined with XPS studies, have provided insights into the molecular-level organization at the surface of the film structures. Studies of solubility in supercritical carbon dioxide have identified the polymers that are suitable for processing in this medium.

  2. The {sup 6}He Optical Potential at energies around the Coulomb barrier

    SciTech Connect

    Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Moro, A. M.

    2010-04-26

    We present an Optical Model (OM) study of {sup 6}He on {sup 208}Pb elastic scattering data, measured at laboratory energies around the Coulomb barrier (E{sub lab} = 14, 16, 18, 22, and 27 MeV)[1]. For the projectile-target bare interaction, we use the microscopic Sao Paulo Potential (SPP). This bare interaction is supplemented with a Coulomb Dipole Polarization (CDP) potential, as well as a diffuse complex Woods-Saxon potential. Four-body Continuum-Discretized-Coupled-Channels (CDCC) calculations have been performed in order to support the optical model analysis. We have also studied the alpha channel, which is the dominant reaction process. In the analysis of this channel, we compare the angular and energy distributions of the alpha particles measured at 22 MeV, with Distorted Wave Born Approximation (DWBA) calculations.

  3. Total reaction cross sections for 8Li + 90Zr at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Pakou, A.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; Keeley, N.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Sgouros, O.; Signorini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Torresi, D.; Trzcinska, A.; Watanabe, Y. X.; Yamaguchi, H.

    2015-05-01

    Total reaction cross sections for the radioactive nucleus 8Li on 90Zr are reported at the near-barrier energies of 18.5 and 21.5MeV, derived from quasi-elastic scattering measurements. An analysis of the quasi-elastic scattering results is performed within an optical model framework using the BDM3Y1 interaction and total reaction cross sections are deduced. These quantities, appropriately reduced, are compared with previous data obtained in elastic scattering measurements with well and weakly bound projectiles on various targets and a formula for predicting total reaction cross sections with an uncertainty of % is obtained. Further on, the ratios of direct to total reaction cross sections are estimated for 6,8Li on various targets and are compared with CDCC or CRC calculations. The energy dependence of the optical potential is also discussed.

  4. Molecular dynamics simulation of the structure and interfacial free energy barriers of mixtures of ionic liquids and divalent salts near a graphene wall.

    PubMed

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Méndez-Morales, Trinidad; Cabeza, Oscar; Ivaništšev, Vladislav B; Fedorov, Maxim V; Gallego, Luis J; Varela, Luis M

    2016-12-21

    A molecular dynamics study of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) with magnesium tetrafluoroborate (Mg[BF4]2) confined between two parallel graphene walls is reported. The structure of the system is analyzed by means of ionic density profiles, lateral structure of the first layer close to the graphene surface and angular orientations of imidazolium cations. Free energy profiles for divalent magnesium cations are calculated using two different methods in order to evaluate the height of the potential barriers near the walls, and the results are compared with those of mixtures of the same ionic liquid and a lithium salt (Li[BF4]). Preferential adsorption of magnesium cations is analyzed using a simple model and compared to that of lithium cations, and vibrational densities of states are calculated for the cations close to the walls analyzing the influence of the graphene surface charge. Our results indicate that magnesium cations next to the graphene wall have a roughly similar environment to that in the bulk. Moreover, they face higher potential barriers and are less adsorbed on the charged graphene walls than lithium cations. In other words, magnesium cations have a more stable solvation shell than lithium ones.

  5. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  6. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    SciTech Connect

    McConnell, Ben W; Hadley, Stanton W; Xu, Yan

    2011-08-01

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, and cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and

  7. Role of energy dependent interaction potential in sub-barrier fusion of S2814i +Z9040r system

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh; Sharma, Manoj K.

    2015-08-01

    We have analyzed the importance of the inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of S2814i +Z9040r system by using the energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei seem to impart significant contribution. The coupling between relative motion of reactants and these relevant channels in turn produce anomalously large sub-barrier fusion enhancement over the expectations of one dimensional barrier penetration model. Furthermore, the effects of coupling to inelastic surface excitations are imitated due to energy dependence in the Woods-Saxon potential. In EDWSP model calculations, a wide range of diffuseness parameter much larger than the elastic scattering predictions is needed to account the observed fusion enhancement in the close vicinity of Coulomb barrier.

  8. Permeation of low-Z atoms through carbon sheets: Density functional theory study on energy barriers and deformation effects

    SciTech Connect

    Huber, Stefan E. E-mail: Michael.probst@uibk.ac.at; Mauracher, Andreas; Probst, Michael E-mail: Michael.probst@uibk.ac.at

    2013-12-15

    Energetic and geometric aspects of the permeation of the atoms hydrogen to neon neutral atoms through graphene sheets are investigated by investigating the associated energy barriers and sheet deformations. Density functional theory calculations on cluster models, where graphene is modeled by planar polycyclic aromatic hydrocarbons (PAHs), provide the energies and geometries. Particularities of our systems, such as convergence of both energy barriers and deformation curves with increasing size of the PAHs, are discussed. Three different interaction regimes, adiabatic, planar and vertical, are investigated by enforcing different geometrical constraints. The adiabatic energy barriers range from 5 eV for hydrogen to 20 eV for neon. We find that the permeation of oxygen and carbon into graphene is facilitated by temporary chemical bonding while for other, in principle reactive atoms, it is not. We discuss implications of our results for modeling chemical sputtering of graphite.

  9. Investigation of contribution of incomplete fusion in the total fusion process induced by 9Be on 181Ta target at near barrier energies

    NASA Astrophysics Data System (ADS)

    Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv

    2016-02-01

    We have studied the relative contribution of incomplete fusion (ICF) and complete fusion (CF) in total fusion (TF) induced by 9Be on 181Ta target at energies in the vicinity of Coulomb barrier using classical dynamical model and Wong's formula in conjugation with energy dependent Woods-Saxon formula. It is found that at above barrier energies ICF contributes almost 30% in TF while at energies below the barrier qualitatively its contribution is much more than thirty percent.

  10. Calculation of energy-barrier lowering by incoherent switching in spin-transfer torque magnetoresistive random-access memory

    SciTech Connect

    Munira, Kamaram; Visscher, P. B.

    2015-05-07

    To make a useful spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device, it is necessary to be able to calculate switching rates, which determine the error rates of the device. In a single-macrospin model, one can use a Fokker-Planck equation to obtain a low-current thermally activated rate ∝exp(−E{sub eff}/k{sub B}T). Here, the effective energy barrier E{sub eff} scales with the single-macrospin energy barrier KV, where K is the effective anisotropy energy density and V the volume. A long-standing paradox in this field is that the actual energy barrier appears to be much smaller than this. It has been suggested that incoherent motions may lower the barrier, but this has proved difficult to quantify. In the present paper, we show that the coherent precession has a magnetostatic instability, which allows quantitative estimation of the energy barrier and may resolve the paradox.

  11. Fusion evaporation and fusion-fission with aligned /sup 23/Na ions at energies near and below the fusion barrier

    SciTech Connect

    Butsch, R.; Jaensch, H.; Kraemer, D.; Moebius, K.; Ott, W.; Steffens, E.; Tungate, G.; Weller, a.A.; Becker, K.; Blatt, K.; and others

    1987-10-01

    Using aligned /sup 23/Na beams, fusion cross sections sigma/sup fus/ and second-rank tensor analyzing powers for fusion T/sub 20//sup fus/ have been measured at energies near and below the fusion barrier for /sup 23/Na+ /sup 48/Ti and for /sup 23/Na+ /sup 206/Pb. At sub-barrier energies, large, nearly maximal, values of T/sub 20//sup fus/ occur, especially for fusion with the heavy target /sup 206/Pb. This reflects the strong influence of the spectroscopic deformation of the projectile on the fusion process at energies below the barrier. However, within a quantum-mechanical coupled-channels calculation this degree of freedom is not enough to describe both the fusion cross section and the second-rank tensor analyzing power for fusion in the energy regime below the fusion barrier. It is shown that the coupling of the fusion channel to inelastic excitations of the projectile and the target can describe the magnitude and energy dependence of T/sub 20//sup fus/ for both heavy ion systems, but fails to reproduce the ''sub-barrier enhancement'' of the fusion cross section for both systems.

  12. Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Qin, Weiyang

    2017-02-01

    When a bistable energy harvester (BEH) is driven by weak random excitation, its harvesting efficiency will decrease due to the seldom occurrence of interwell motion. To overcome this defect, we developed an improved bistable energy harvester (IBEH) from BEH by adding a small magnet at the middle of two fixed magnets. It is proved that the attractive force originated from the additional magnet can pull down the potential barrier and shallow the potential well, but still keep the middle position of beam unstable. This can make jumping between potential wells easier. Thus IBEH can realize snap-through even at fairly weak excitation. The magnetic potential energy is given and the electromechanical equations are derived. Then the harvesting performance of IBEH under random excitation is studied. Validation experiments are designed and carried out. Comparisons prove that IBEH is preferable to BEH in harvesting random energy and can give out a high output voltage even at weak excitation. The size of additional magnet can be optimized to reach the best performance of IBEH.

  13. Effect of 2450-MHz microwave energy on the blood-brain barrier to hydrophilic molecules

    SciTech Connect

    Williams, W.M.

    1983-01-01

    Microwave energy at 2450 MHz 120 Hz AM was found ineffective in increasing the permeability of the blood-brain barrier to the hydrophilic tracers HRP and (/sup 14/C) sucrose. Furthermore, a diminished permeability to HRP and sodium fluorescein was apparent after 180 minutes of exposure to microwaves at an incident power density of 20 mW/cm/sup 2/. Colonic temperature, as well as temperature within the cerebral cortex, hypothalamus, cerebellum and medulla, were elevated by less than 1/sup 0/C over those of sham-exposed rats. A significant decrease in the permeability to HRP and (/sup 14/C) sucrose occurred after exposure to an incident power density of 65 mW/cm/sup 2/ for 30 minutes. The reduction in permeability to HRP correlated with a suppressed incorporation of the tracer by pinocytosis in cerebral microvessels. Suppression of blood-brain barrier permeability to hydrophilic tracers was most pronounced at brain temperatures exceeding approx. 40/sup 0/C and is demonstrated to be temperature dependent.

  14. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds

    PubMed Central

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-01-01

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[CoII(3-Mepy)2.7(H2O)0.3WV(CN)8]·0.6H2O (1) and (Ph4As)[CoII(3-Mepy)3WV(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K. PMID:27071451

  15. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.

    PubMed

    Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas

    2011-04-21

    An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.

  16. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions.

  17. Adsorption-driven translocation of polymer chain into nanopores

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Neimark, Alexander V.

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation.

  18. Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion.

    PubMed

    Rost, Benjamin R; Nicholson, Patrick; Ahnert-Hilger, Gudrun; Rummel, Andreas; Rosenmund, Christian; Breustedt, Joerg; Schmitz, Dietmar

    2011-09-15

    Neurotransmitter release from presynaptic terminals is under the tight control of various metabotropic receptors. We report here that in addition to the regulation of Ca(2+) channel activity, metabotropic GABA(B) receptors (GABA(B)Rs) at murine hippocampal glutamatergic synapses utilize an inhibitory pathway that directly targets the synaptic vesicle release machinery. Acute application of the GABA(B)R agonist baclofen rapidly and reversibly inhibits vesicle fusion, which occurs independently of the SNAP-25 C-terminus. Using applications of hypertonic sucrose solutions, we find that the size of the readily releasable pool remains unchanged by GABA(B)R activation, but the sensitivity of primed vesicles to hypertonic stimuli appears lowered as the response amplitudes at intermediate sucrose concentrations are smaller and release kinetics are slowed. These data show that presynaptic GABA(B)Rs can inhibit neurotransmitter release directly by increasing the energy barrier for vesicle fusion.

  19. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  20. The free-energy barrier to hydride transfer across a dipalladium complex.

    PubMed

    Vanston, C R; Kearley, G J; Edwards, A J; Darwish, T A; de Souza, N R; Ramirez-Cuesta, A J; Gardiner, M G

    2015-01-01

    We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd-Pd-H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)2CH2}2Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol(-1) with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model for the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique.

  1. The free-energy barrier to hydride transfer across a dipalladium complex

    SciTech Connect

    Ramirez-Cuesta, Anibal J

    2015-01-01

    We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd-Pd-H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)(2)CH2}(2)Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol(-1) with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model for the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique.

  2. The free-energy barrier to hydride transfer across a dipalladium complex

    DOE PAGES

    Ramirez-Cuesta, Anibal J

    2015-01-01

    We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd-Pd-H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)(2)CH2}(2)Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol(-1) with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model formore » the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique.« less

  3. Why Density-Gradient Corrections Improve Atomization Energies and Barrier Heights

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ernzerhof, Matthias; Zupan, Ales; Burke, Kieron

    While the Hartree-Fock (HF) approximation typically underestimates the strength of the chemical bond, the local spin density (LSD) approximation overestimates it. Thus LSD overbinds atoms in molecules, and underestimates the heights of energy barriers when the transition state is more highly bonded than the initial state. Generalized gradient approximations (GGA's), which incorporate density-gradient corrections to LSD, improve the agreement between calculated and measured energetics. This has been previously understood as a consequence of the fact that gradient corrections favor density inhomogeneity, which increases when a bond is stretched or broken. We show that gradient corrections also favor high density, which increases when a bond is compressed or formed, but that the inhomogeneity effect usually prevails. To quantify the discussion, we present a thermodynamic-like inequality which is satisfied when gradient corrections favor a process.

  4. Temperature-dependent hydration at micellar surface: activation energy barrier crossing model revisited.

    PubMed

    Mitra, Rajib Kumar; Sinha, Sudarson Sekhar; Pal, Samir Kumar

    2007-07-05

    In recent years, the validity of the activation energy barrier crossing model at the micellar surface brings notable controversy (Sen, P.; Mukherjee, S.; Halder, A.; Bhattacharyya, K. Chem. Phys. Lett. 2004, 385, 357-361. Kumbhakar, M.; Goel, T.; Mukherjee, T.; Pal, H. J. Phys. Chem. B 2004, 108, 19246-19254.) in the literature. In order to check the validity of the model by time-resolved solvation of a probe fluorophore, a wider range of temperature must be considered. At the same time, spatial heterogeneity (solubilization) of the probe and structural perturbation of the host micelle should carefully be avoided, which was not strictly maintained in the earlier studies. We report here the solvation dynamics of 4-(dicyanomethylene)-2-methyl-6(p-dimethylamino-styryl) 4H-pyran (DCM) in the SDS micelle at 298, 323, and 348 K. The probe DCM is completely insoluble in bulk water in this wide range of temperature. The size of the micelle at different temperatures using the dynamic light scattering (DLS) technique is found to have insignificant change. The hydration number of the micelle, determined by sound velocity measurements, decreases with increasing temperature. Time-resolved fluorescence anisotropy reveals the retention of the probe in the micellar interface within the temperature range. The average solvation time decreases with increasing temperature. The result of the solvation study has been analyzed in the light of energetics of bound to free water conversion at a constant size and decreasing hydration number at the micellar surface. The solvation process at the micellar surface has been found to be the activation energy barrier crossing type, in which interfacially bound type water molecules get converted into free type molecules. We have calculated Ea to be 3.5 kcal mol-1, which is in good agreement with that obtained by molecular dynamics simulation studies.

  5. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.

    PubMed

    Ding, H; Chen, C; Zhang, X

    2016-01-01

    The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.

  6. Quantum dynamics study of energy requirement on reactivity for the HBr + OH reaction with a negative-energy barrier.

    PubMed

    Wang, Yuping; Li, Yida; Wang, Dunyou

    2017-01-10

    A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results.

  7. Quantum dynamics study of energy requirement on reactivity for the HBr + OH reaction with a negative-energy barrier

    PubMed Central

    Wang, Yuping; Li, Yida; Wang, Dunyou

    2017-01-01

    A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results. PMID:28071762

  8. Quantum dynamics study of energy requirement on reactivity for the HBr + OH reaction with a negative-energy barrier

    NASA Astrophysics Data System (ADS)

    Wang, Yuping; Li, Yida; Wang, Dunyou

    2017-01-01

    A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results.

  9. Elastic scattering of 17O+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-05-01

    Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.

  10. Canonical free-energy barrier of particle and polymer cluster formation

    PubMed Central

    Zierenberg, Johannes; Schierz, Philipp; Janke, Wolfhard

    2017-01-01

    A common approach to study nucleation rates is the estimation of free-energy barriers. This usually requires knowledge about the shape of the forming droplet, a task that becomes notoriously difficult in macromolecular setups starting with a proper definition of the cluster boundary. Here we demonstrate a shape-free determination of the free energy for temperature-driven cluster formation in particle as well as polymer systems. Combined with rigorous results on equilibrium droplet formation, this allows for a well-defined finite-size scaling analysis of the effective interfacial free energy at a fixed density. We first verify the theoretical predictions for the formation of a liquid droplet in a supersaturated particle gas by generalized-ensemble Monte Carlo simulations of a Lennard-Jones system. Going one step further, we then generalize this approach to cluster formation in a dilute polymer solution. Our results suggest an analogy with particle condensation, when the macromolecules are interpreted as extended particles. PMID:28240262

  11. Insights into the adsorption and energy transfer of Ag clusters on the AgCl(100) surface.

    PubMed

    Ma, Xiangchao; Dai, Ying; Guo, Meng; Zhu, Yingtao; Huang, Baibiao

    2013-06-14

    It is fundamental to uncover the real adsorption properties of Ag clusters on an AgCl surface and the energy transfer mechanisms at the interface to understand the highly active photocatalytic performance and the stability of the plasmonic photocatalyst Ag@AgCl. Based on density functional theory calculations we provide valuable insights into the binding nature of Ag clusters on AgCl surface, where the binding between Ag atoms in the cluster and on the surface plays a decisive role in determining the most stable adsorption configurations. Our results demonstrate that there is energy transfer from the plasmonic metals to substrate. The hot holes excited by the decay of surface plasmon resonance on the metals can diffuse into the Cl ions in the outermost two layers of the surface producing highly oxidative Cl atoms. The dipole-dipole interaction between the plasmonic metal clusters and substrate Cl ions can also generate electron-hole pairs in the surface layers. It is deduced that the positively charged nature of adsorbed clusters acting as electron trapping centers and reduction sites plays a crucial role in keeping the stability of the Ag@AgCl system during the photocatalytic process. Finally, the validity of the cluster adsorption model for energy transfer is verified with respect to the nucleation and aggregation process of Ag atoms on the AgCl surface and a detailed description of the formation and evolution of Ag nanoparticles on an AgCl surface is provided. The present study may be helpful for understanding and designing this novel plasmonic photocatalyst and can be useful for investigating other relevant photocatalysts as well.

  12. Energy of adhesion of human T cells to adsorption layers of monoclonal antibodies measured by a film trapping technique.

    PubMed Central

    Ivanov, I B; Hadjiiski, A; Denkov, N D; Gurkov, T D; Kralchevsky, P A; Koyasu, S

    1998-01-01

    A novel method for studying the interaction of biological cells with interfaces (e.g., adsorption monolayers of antibodies) is developed. The method is called the film trapping technique because the cell is trapped within an aqueous film of equilibrium thickness smaller than the cell diameter. A liquid film of uneven thickness is formed around the trapped cell. When observed in reflected monochromatic light, this film exhibits an interference pattern of concentric bright and dark fringes. From the radii of the fringes one can restore the shape of interfaces and the cell. Furthermore, one can calculate the adhesive energy between the cell membrane and the aqueous film surface (which is covered by a layer of adsorbed proteins and/or specific ligands), as well as the disjoining pressure, representing the force of interaction per unit area of the latter film. The method is applied to two human T cell lines: Jurkat and its T cell receptor negative (TCR-) derivative. The interaction of these cells with monolayers of three different monoclonal antibodies adsorbed at a water-air interface is studied. The results show that the adhesive energy is considerable (above 0.5 mJ/m2) when the adsorption monolayer contains antibodies acting as specific ligands for the receptors expressed on the cell surface. In contrast, the adhesive energy is close to zero in the absence of such a specific ligand-receptor interaction. In principle, the method can be applied to the study of the interaction of a variety of biological cells (B cells, natural killer cells, red blood cells, etc.) with adsorption monolayers of various biologically active molecules. In particular, film trapping provides a tool for the gentle micromanipulation of cells and for monitoring of processes (say the activation of a T lymphocyte) occurring at the single-cell level. PMID:9649417

  13. Influence of rotational energy barriers to the conformational search of protein loops in molecular dynamics and ranking the conformations.

    PubMed

    Tappura, K

    2001-08-15

    An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.

  14. The effect of ligand substitution and water co-adsorption on the adsorption dynamics and energy level matching of amino-phenyl acid dyes on TiO2.

    PubMed

    Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi

    2012-02-07

    We perform a comparative theoretical analysis of adsorption of dyes NK1 (2E,4E-2-cyano-5-(4-dimethylaminophenyl)penta-2,4-dienoic acid) and NK7 (2E,4E-2-cyano-5-(4-diphenylaminophenyl)penta-2,4-dienoic acid) on clean and water-covered anatase (101) surfaces of TiO(2). Ligand substitution away from the anchoring group changes the energy level matching between the dye's LUMO and the oxide's conduction band. Monodentate binding and bidentate binding configurations of the dyes to TiO(2) are found to have similar adsorption energies even though the injection from the bidentate mode is found to dominate. Water has a strong effect on adsorption, inducing deprotonation and affecting strongly and differently between the dyes the energy level matching, leading to a shut-off of the injection from NK7 of bidentate adsorption configuration. Ab initio molecular dynamics simulations show a strong effect of nuclear motion on energy levels, specifically, increasing the driving force for injection in the monodentate regime.

  15. Understanding {sup 6}He induced reactions at energies around the Coulomb barrier

    SciTech Connect

    Moro, A. M.; Arias, J. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Borge, M. J. G.; Escrig, D.; Tengblad, O.; Gomez-Camacho, J.; Rodriguez-Gallardo, M.

    2009-06-03

    Recent developments aimed to understand the observed features arising in the scattering of the Borromean nucleus {sup 6}He on heavy targets are discussed and compared with recent data for {sup 6}He+{sup 208}Pb measured at the RIB facility at Louvain-la-Neuve at energies around the Coulomb barrier. The analysis of the elastic scattering data in terms of the optical model, reveals the presence of a long range absorption mechanism, that manifests in the form of a large value of the imaginary diffuseness parameter. The elastic data have been also compared with three--body CDCC calculations, based on a di-neutron model of {sup 6}He, and four--body CDCC calculations, based on a more realistic three-body model of this nucleus. Finally, the angular and energy distribution of {alpha} particles emitted at backward angles are discussed and compared with different theoretical approaches. We find that these {alpha} particles are produced mainly by a two-neutron transfer mechanism to very excited states in the residual nucleus.

  16. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers

    NASA Astrophysics Data System (ADS)

    Sinko, Robert; Vandamme, Matthieu; Bažant, Zdeněk P.; Keten, Sinan

    2016-07-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect.

  17. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers.

    PubMed

    Sinko, Robert; Vandamme, Matthieu; Bažant, Zdeněk P; Keten, Sinan

    2016-07-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect.

  18. Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dechnik, Belinda; Webster, Jody M.; Nothdurft, Luke; Webb, Gregory E.; Zhao, Jian-xin; Duce, Stephanie; Braga, Juan C.; Harris, Daniel L.; Vila-Concejo, Ana; Puotinen, Marji

    2016-01-01

    The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka-42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka-15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

  19. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography.

    PubMed

    Kondor, Anett; Dallos, András

    2014-10-03

    Adsorption isotherm data of some alkyl aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) measured in the temperature range of 423-523K on a partially dealuminated faujasite type DAY F20 zeolite by inverse gas chromatography are presented in this work. The temperature dependent form of Tóth's equation has been fitted to the multiple temperature adsorption isotherms of benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene with standard deviations of 4.6, 5.0, 5.9, 4.3, 5.1 and 6.3mmolkg(-1) and coefficients of determinations (r(2)) of 0.977, 0.971, 0.974, 0.975, 0.991 and 0.991, respectively. The gas-solid equilibria and modeling were interpreted on the basis of the interfacial properties of the zeolite, by dispersive, specific and total surface energy heterogeneity profiles and distributions of the adsorbent measured by surface energy analysis.

  20. Imaging the radical channel in acetaldehyde photodissociation: Competing mechanisms at energies close to the triplet exit barrier

    SciTech Connect

    Amaral, G. A.; Arregui, A.; Rodriguez, J. D.; Banares, L.; Rubio-Lago, L.

    2010-08-14

    The photodissociation of acetaldehyde in the radical channel has been studied at wavelengths between 315 and 325 nm using the velocity-map imaging technique. Upon one-photon absorption at 315 nm, the molecule is excited to the first singlet excited state S{sub 1}, which, in turn, undergoes intersystem crossing to the first excited triplet state T{sub 1}. On the triplet surface, the molecule dissociates into CH{sub 3} and HCO radicals with large kinetic energy release (KER), in accordance with the well characterized exit barrier on T{sub 1}. However, at longer wavelengths (>320 nm), which correspond to excitation energies just below the triplet barrier, a sudden change in KER is observed. At these photolysis wavelengths, there is not enough energy to surpass the exit barrier on the triplet state, which leaves the possibility of unimolecular dissociation on S{sub 0} after internal conversion from S{sub 1}. We have characterized the fragments' KER at these wavelengths, as well as determined the energy partitioning for the radical fragments. A new accurate estimate of the barrier height on T{sub 1} is presented.

  1. Pentametallic lanthanide-alkoxide square-based pyramids: high energy barrier for thermal relaxation in a holmium single molecule magnet.

    PubMed

    Blagg, Robin J; Tuna, Floriana; McInnes, Eric J L; Winpenny, Richard E P

    2011-10-14

    Pentametallic Ln complexes of formula [Ln(5)O(O(i)Pr)(13)] have been made, where Ln(III) = Sm, Gd, Tb, Ho and Er; slow magnetisation relaxation to 33 K is observed for the Ho complex with an energy barrier of ca. 400 K.

  2. One-neutron stripping from 9Be to 181Ta, 169Tm, 187Re and at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Fang, Y. D.; Gomes, P. R. S.; Lubian, J.; Ferreira, J. L.; Mendes Junior, D. R.; Zhou, X. H.; Liu, M. L.; Zhang, N. T.; Zhang, Y. H.; Li, G. S.; Wang, J. G.; Guo, S.; Qiang, Y. H.; Gao, B. S.; Zheng, Y.; Lei, X. G.; Wang, Z. G.

    2016-03-01

    We report the measurement of one-neutron stripping of 9Be to the 181Ta, 187Re and nuclei, in the range from subbarrier to above-barrier energies. The activation technique was used, with the detection of off-line γ rays. The results show that the transfer cross sections for the three systems investigated are very similar and are much larger than the corresponding fusion cross sections at subbarrier energies, whereas fusion predominates at energies above the barrier. Data are in good agreement with our coupled reaction channel calculations. We also investigate the ratio, as a function of energy, between experimental transfer and fusion cross sections. The role of transfer couplings on the fusion excitation functions is also discussed.

  3. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    SciTech Connect

    Ardani, Kristen; O'Shaughnessy, Eric; Fu, Ran; McClurg, Chris; Huneycutt, Joshua; Margolis, Robert

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quarter of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.

  4. Between-species variation in the kinetic stability of TIM proteins linked to solvation-barrier free energies.

    PubMed

    Costas, Miguel; Rodríguez-Larrea, David; De Maria, Leonardo; Borchert, Torben V; Gómez-Puyou, Armando; Sanchez-Ruiz, Jose M

    2009-01-23

    Theoretical, computational, and experimental studies have suggested the existence of solvation barriers in protein unfolding and denaturation processes. These barriers are related to the finite size of water molecules and can be envisioned as arising from the asynchrony between water penetration and breakup of internal interactions. Solvation barriers have been proposed to play roles in protein cooperativity and kinetic stability; therefore, they may be expected to be subject to natural selection. We study the thermal denaturation, in the presence and in the absence of chemical denaturants, of triosephosphate isomerases (TIMs) from three different species: Trypanosoma cruzi, Trypanosoma brucei, and Leishmania mexicana. In all cases, denaturation was irreversible and kinetically controlled. Surprisingly, however, we found large differences between the kinetic denaturation parameters, with T. cruzi TIM showing a much larger activation energy value (and, consequently, much lower room-temperature, extrapolated denaturation rates). This disparity cannot be accounted for by variations in the degree of exposure to solvent in transition states (as measured by kinetic urea m values) and is, therefore, to be attributed mainly to differences in solvation-barrier contributions. This was supported by structure-energetics analyses of the transition states and by application of a novel procedure to estimate from experimental data the solvation-barrier impact at the entropy and free-energy levels. These analyses were actually performed with an extended protein set (including six small proteins plus seven variants of lipase from Thermomyces lanuginosus and spanning a wide range of activation parameters), allowing us to delineate the general trends of the solvation-barrier contributions. Overall, this work supports that proteins sharing the same structure and function but belonging to different organisms may show widely different solvation barriers, possibly as a result of different

  5. Hyperosmolar opening of the blood-brain barrier in the energy-depleted rat brain. Part 1. Permeability studies

    SciTech Connect

    Greenwood, J.; Luthert, P.J.; Pratt, O.E.; Lantos, P.L.

    1988-02-01

    A simple saline perfusion system was used to investigate the effects of hyperosmolar solutions of arabinose and mannitol upon the permeability of the blood-brain barrier. The small, polar molecule (/sup 14/C)mannitol and the larger, visual marker Evans blue were used as indicators of barrier integrity in the perfused energy-depleted brain. One-minute perfusion of hyperosmolar solutions consistently opened the barrier suggesting that the mechanism of osmotic barrier opening is independent of energy-producing metabolism. The accumulation of radiolabel in the brain was expressed as the ratio of tissue to perfusate radioactivity (Rt/Rp) and, for cerebrum, this increased from a control value of 0.0022 +/- 0.0007 (mean +/- SEM; n = 4) to a value of 0.0124 +/- 0.0008 (n = 4) following 0.9 M arabinose and to 0.0495 +/- 0.0072 (n = 4) following 1.8 M arabinose. There was a significant reduction of water content of hyperosmolar perfused brains. These findings support the hypothesis that osmotic barrier opening is the result of the passive shrinkage of endothelial cells and the surrounding tissue.

  6. Anharmonicity and confinement in zeolites: Structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5

    DOE PAGES

    Alexopoulos, Konstantinos; Lee, Mal -Soon; Liu, Yue; ...

    2016-03-21

    Here, to account for thermal and entropic effects caused by the dynamics of the motion of the reaction intermediates, ethanol adsorption on the Brønsted acid site of the H-ZSM-5 catalyst has been studied at different temperatures and ethanol loadings using ab initio molecular dynamics (AIMD) simulations, infrared (IR) spectroscopy and calorimetric measurements. At low temperatures (T ≤ 400 K) and ethanol loading, a single ethanol molecule adsorbed in H-ZSM-5 forms a Zundel-like structure where the proton is equally shared between the oxygen of the zeolite and the oxygen of the alcohol. At higher ethanol loading, a second ethanol molecule helpsmore » to stabilize the protonated ethanol at all temperatures by acting as a solvating agent. The vibrational density of states (VDOS), as calculated from the AIMD simulations, are in excellent agreement with measured IR spectra for C2H5OH, C2H5OD and C2D5OH isotopomers and support the existence of both monomers and dimers. A quasi-harmonic approximation (QHA), applied to the VDOS obtained from the AIMD simulations, provides estimates of adsorption free energy within ~10 kJ/mol of the experimentally determined quantities, whereas the traditional approach, employing harmonic frequencies from a single ground state minimum, strongly overestimates the adsorption free energy by at least ~30 kJ/mol. This discrepancy is traced back to the inability of the harmonic approximation to represent the contributions to the vibrational motions of the ethanol molecule upon confinement in the zeolite. KA, MFR, GBM were supported by the Long Term Structural Methusalem Funding by the Flemish Government – grant number BOF09/01M00409. MSL, VAG, RR and JAL were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley

  7. Anharmonicity and confinement in zeolites: Structure, spectroscopy, and adsorption free energy of ethanol in H-ZSM-5

    SciTech Connect

    Alexopoulos, Konstantinos; Lee, Mal -Soon; Liu, Yue; Zhi, Yuchun; Liu, Yuanshuai; Reyniers, Marie -Francoise; Marin, Guy B.; Glezakou, Vassiliki -Alexandra; Rousseau, Roger; Lercher, Johannes A.

    2016-03-21

    Here, to account for thermal and entropic effects caused by the dynamics of the motion of the reaction intermediates, ethanol adsorption on the Brønsted acid site of the H-ZSM-5 catalyst has been studied at different temperatures and ethanol loadings using ab initio molecular dynamics (AIMD) simulations, infrared (IR) spectroscopy and calorimetric measurements. At low temperatures (T ≤ 400 K) and ethanol loading, a single ethanol molecule adsorbed in H-ZSM-5 forms a Zundel-like structure where the proton is equally shared between the oxygen of the zeolite and the oxygen of the alcohol. At higher ethanol loading, a second ethanol molecule helps to stabilize the protonated ethanol at all temperatures by acting as a solvating agent. The vibrational density of states (VDOS), as calculated from the AIMD simulations, are in excellent agreement with measured IR spectra for C2H5OH, C2H5OD and C2D5OH isotopomers and support the existence of both monomers and dimers. A quasi-harmonic approximation (QHA), applied to the VDOS obtained from the AIMD simulations, provides estimates of adsorption free energy within ~10 kJ/mol of the experimentally determined quantities, whereas the traditional approach, employing harmonic frequencies from a single ground state minimum, strongly overestimates the adsorption free energy by at least ~30 kJ/mol. This discrepancy is traced back to the inability of the harmonic approximation to represent the contributions to the vibrational motions of the ethanol molecule upon confinement in the zeolite. KA, MFR, GBM were supported by the Long Term Structural Methusalem Funding by the Flemish Government – grant number BOF09/01M00409. MSL, VAG, RR and JAL were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle

  8. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    SciTech Connect

    Hun, Diana E.

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  9. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires.

    PubMed

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Torbjörnsson, Magne; Chábera, Pavel; Shao, Shuyan; Zhang, Fengling; Pullerits, Tõnu

    2013-07-25

    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of ~4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.

  10. Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski's equality

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisen; Wu, Tao; Wang, Qi; Pan, Haihua; Tang, Ruikang

    2014-01-01

    The interactions between proteins/peptides and materials are crucial to research and development in many biomedical engineering fields. The energetics of such interactions are key in the evaluation of new proteins/peptides and materials. Much research has recently focused on the quality of free energy profiles by Jarzynski's equality, a widely used equation in biosystems. In the present work, considerable discrepancies were observed between the results obtained by Jarzynski's equality and those derived by umbrella sampling in biomaterial-water model systems. Detailed analyses confirm that such discrepancies turn up only when the target molecule moves in the high-density water layer on a material surface. Then a hybrid scheme was adopted based on this observation. The agreement between the results of the hybrid scheme and umbrella sampling confirms the former observation, which indicates an approach to a fast and accurate estimation of adsorption free energy for large biomaterial interfacial systems.

  11. Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier

    NASA Astrophysics Data System (ADS)

    Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.

    2016-08-01

    Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this

  12. Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion.

    PubMed

    Upadhyay, Apoorva; Singh, Saurabh Kumar; Das, Chinmoy; Mondol, Ranajit; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2014-08-18

    Field induced single-molecule-magnet behaviour is observed for both a heterodinuclear [ZnDy(L(-))2](3+) complex (1) and a mononuclear [Dy(HL)2](3+) complex (2), with effective energy barriers of 83 cm(-1) and 16 cm(-1), respectively. Insights into the relaxation mechanism(s) and barrier heights are provided via ab initio and DFT calculations. Our findings reveal an interesting observation that the U(eff) of SMMs can be enhanced by incorporating diamagnetic metal ions.

  13. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities.

    PubMed

    Iwamatsu, Masao

    2016-09-20

    The free-energy barrier of filling a spherical cavity having an inner wall of various wettabilities is studied. The morphology and free energy of a lens-shaped droplet are determined from the minimum of the free energy. The effect of line tension on the free energy is also studied. Then, the equilibrium contact angle of the droplet is determined from the generalized Young's equation. By increasing the droplet volume within the spherical cavity, the droplet morphology changes from spherical with an equilibrium contact angle of 180° to a lens with a convex meniscus, where the morphological complete drying transition occurs. By further increasing the droplet volume, the meniscus changes from convex to concave. Then, the lens-shaped droplet with concave meniscus spreads over the whole inner wall, resulting in an equilibrium contact angle of 0° to leave a spherical bubble, where the morphological complete wetting transition occurs. Finally, the whole cavity is filled with liquid. The free energy shows a barrier from complete drying to complete wetting as a function of droplet volume, which corresponds to the energy barrier between the Cassie and Wenzel states of the superhydrophobic surface with spherical cavities. The free-energy maximum occurs when the meniscus of the droplet becomes flat, and it is given by an analytic formula. The effect of line tension is expressed by the scaled line tension, and this effect is largest at the free-energy maximum. The positive line tension increases the free-energy maximum, which thus increases the stability of the Cassie superhydrophobic state, whereas the negative line tension destabilizes the superhydrophobic state.

  14. Adsorption free energy of variable-charge nanoparticles to a charged surface in relation to the change of the average chemical state of the particles.

    PubMed

    Weng, Liping; Van Riemsdijk, Willem H; Hiemstra, Tjisse

    2006-01-03

    Variable-charge nanoparticles such as proteins and humics can adsorb strongly to charged macroscopic surfaces such as silica and iron oxide minerals. To model the adsorption of variable-charge particles to charged surfaces, one has to be able to calculate the adsorption free energy involved. It has been shown that the change in the free energy of variable-charge particles is related to the change in their average chemical state upon adsorption, which is commonly described using surface complexation models. In this work, expressions for the free-energy change in variable-charge particles due to changes in chemical binding are derived for three ion-binding models (i.e., the Langmuir, Langmuir-Freundlich, and NICA models) and for changes due to nonspecific binding for the Donnan model. The expressions for the adsorption free energy of the variable-charge particles to a charged surface are derived on the basis of the equality of the (electro)chemical potential of the particles in the bulk solution and adsorption phase. The expressions derived are general in the sense that they account for the competition between charge-determining ions that bind chemically to the particles, and they also apply in case of the formation of chemical bonds between particle ligands and surface sites. The derived expressions can be applied in the future to model the adsorption of variable-charge nanoparticles to charged surfaces. The results obtained for the NICA-Donnan model make it possible to apply this advanced surface complexation model to describe the adsorption of humics to minerals.

  15. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  16. Influence of porous media structure in colloid retention in the absence of an energy barrier

    NASA Astrophysics Data System (ADS)

    Pazmino, E. F.; Johnson, W. P.; Ma, H.

    2010-12-01

    Many colloid transport experiments have been conducted in a porous media with narrow size distribution, which allows a single collector size to be used in filtration theory to predict deposition rates. In this work, deposition of colloids (ranging from 0.21 μm to 9.1 μm) in packed columns is examined in the absence of an energy barrier with three different glass bead porous media: uniform mono-dispersed, mono-modal poly-dispersed and bimodal poly-dispersed. The corresponding porosities to these media are 0.378, 0.339 and 0.282. The effect of gravitational settling on deposition is studied by injecting the particles co-current and counter-current with gravity, especially for larger size colloids. Also, direct observations are conducted in a flow cell for selected colloid sizes for a better understanding of the mechanisms of attachment. Experimental results are compared with theoretical predictions to determine characteristic collector sizes that represent poly-dispersed porous media in filtration theory.

  17. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape

    PubMed Central

    Yu, Hao; Dee, Derek R.; Liu, Xia; Brigley, Angela M.; Sosova, Iveta; Woodside, Michael T.

    2015-01-01

    The timescale for the microscopic dynamics of proteins during conformational transitions is set by the intrachain diffusion coefficient, D. Despite the central role of protein misfolding and aggregation in many diseases, it has proven challenging to measure D for these processes because of their heterogeneity. We used single-molecule force spectroscopy to overcome these challenges and determine D for misfolding of the prion protein PrP. Observing directly the misfolding of individual dimers into minimal aggregates, we reconstructed the energy landscape governing nonnative structure formation. Remarkably, rather than displaying multiple pathways, as typically expected for aggregation, PrP dimers were funneled into a thermodynamically stable misfolded state along a single pathway containing several intermediates, one of which blocked native folding. Using Kramers’ rate theory, D was found to be 1,000-fold slower for misfolding than for native folding, reflecting local roughening of the misfolding landscape, likely due to increased internal friction. The slow diffusion also led to much longer transit times for barrier crossing, allowing transition paths to be observed directly for the first time to our knowledge. These results open a new window onto the microscopic mechanisms governing protein misfolding. PMID:26109573

  18. Role of tunnelling in complete and incomplete fusion induced by 9Be on 169Tm and 187Re targets at around barrier energies

    NASA Astrophysics Data System (ADS)

    Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv

    2017-04-01

    We have analyzed the complete and incomplete fusion excitation function for 9Be +169Tm, 187Re reactions at around barrier energies using the code PLATYPUS based on classical dynamical model. The quantum mechanical tunnelling correction is incorporated at near and sub barrier energies which significantly improves the matching between the data and prediction.

  19. Spectral Modeling of Residual Stress and Stored Elastic Strain Energy in Thermal Barrier Coatings

    SciTech Connect

    Donegan, Sean; Rolett, Anthony

    2013-12-31

    Solutions to the thermoelastic problem are important for characterizing the response under temperature change of refractory systems. This work extends a spectral fast Fourier transform (FFT) technique to analyze the thermoelastic behavior of thermal barrier coatings (TBCs), with the intent of probing the local origins of failure in TBCs. The thermoelastic FFT (teFFT) approach allows for the characterization of local thermal residual stress and strain fields, which constitute the origins of failure in TBC systems. A technique based on statistical extreme value theory known as peaks-over-threshold (POT) is developed to quantify the extreme values ("hot spots") of stored elastic strain energy (i.e., elastic energy density, or EED). The resolution dependence of the teFFT method is assessed through a sensitivity study of the extreme values in EED. The sensitivity study is performed both for the local (point-by-point) eld distributions as well as the grain scale eld distributions. A convergence behavior to a particular distribution shape is demonstrated for the local elds. The grain scale fields are shown to exhibit a possible convergence to a maximum level of EED. To apply the teFFT method to TBC systems, 3D synthetic microstructures are created to approximate actual TBC microstructures. The morphology of the grains in each constituent layer as well as the texture is controlled. A variety of TBC materials, including industry standard materials and potential future materials, are analyzed using the teFFT. The resulting hot spots are quantified using the POT approach. A correlation between hot spots in EED and interface rumpling between constituent layers is demonstrated, particularly for the interface between the bond coat (BC) and the thermally grown oxide (TGO) layer.

  20. Quasi-elastic scattering and transfer angular distribution for B,1110+232Th systems at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Dubey, Shradha; Biswas, D. C.; Mukherjee, S.; Patel, D.; Gupta, Y. K.; Prajapati, G. K.; Joshi, B. N.; Danu, L. S.; Mukhopadhyay, S.; John, B. V.; Suryanarayana, S. V.; Vind, R. P.

    2016-12-01

    Quasi-elastic scattering and transfer angular distributions for B,1110+232Th reactions have been measured simultaneously in a wide range of bombarding energies around the Coulomb barrier. The quasi-elastic angular distribution data are analyzed using the optical model code ecis with phenomenological Woods-Saxon potentials. The obtained potential parameters suggest the presence of usual threshold anomaly, confirming tightly bound characteristics for both the projectiles. The reaction cross sections are obtained from the fitting of quasi-elastic angular distribution data. The reduced cross sections at sub-barrier energies compared with Li,76+232Th systems show a systematic dependence on projectile breakup energy. The angular distribution of the transfer products show similar behavior for both the systems.

  1. Numerical determination of the interfacial energy and nucleation barrier of curved solid-liquid interfaces in binary systems

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; Choudhary, Muhammad Ajmal

    2016-07-01

    The phase-field crystal (PFC) technique is a widely used approach for modeling crystal growth phenomena with atomistic resolution on mesoscopic time scales. We use a two-dimensional PFC model for a binary system based on the work of Elder et al. [Phys. Rev. B 75, 064107 (2007), 10.1103/PhysRevB.75.064107] to study the effect of the curved, diffuse solid-liquid interface on the interfacial energy as well as the nucleation barrier. The calculation of the interfacial energy and the nucleation barrier certainly depends on the proper definition of the solid-liquid dividing surface and the corresponding nucleus size. We define the position of the sharp interface at which the interfacial energy is to be evaluated by using the concept of equimolar dividing surface (re) and the minimization of the interfacial energy (rs). The comparison of the results based on both radii shows that the difference re-rs is always positive and has a limit for large cluster sizes which is comparable to the Tolman length. Furthermore, we found the real nucleation barrier for small cluster sizes, which is defined as a function of the radius rs, and compared it with the classical nucleation theory. The simulation results also show that the extracted interfacial energy as function of both radii is independent of system size, and this dependence can be reasonably described by the nonclassical Tolman formula with a positive Tolman length.

  2. Improving photoelectrochemical performance on quantum dots co-sensitized TiO2 nanotube arrays using ZnO energy barrier by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zeng, Min; Zeng, Xi; Peng, Xiange; Zhu, Zhuo; Liao, Jianjun; Liu, Kai; Wang, Guizhen; Lin, Shiwei

    2016-12-01

    PbS and CdS quantum dots (QDs) have been deposited onto TiO2 nanotube arrays (TNTAs) in turn via a sonication-assisted successive ionic layer adsorption and reaction method. This method could uniformly decorate TNTAs with QDs, avoiding QDs aggregation at the mouth of TiO2 nanotube. The loading amounts of QDs on TNTAs could be controlled by adjusting the TNTAs length. Under one sun illumination, the QDs co-sensitized TNTAs (TNTAs/QDs) with the length of about 2.4 μm displayed the highest photocurrent of 4.32 mA cm-2, which is 27 times higher than that of the bare TNTAs. Introduction of a thin ZnO energy barrier by atomic layer deposition (ALD) between the TNTAs and QDs can further improve the photocurrent of TNTAs/QDs. And the TNTAs/QDs with 10 ALD cycles of ZnO interlayer exhibits the highest photocurrent of 5.24 mA cm-2 and best photoconversion efficiency of 4.9%, a more than 20% enhancement over the bare TNTAs/QDs. Such enhanced photoelectrochemical performance may be ascribed to the increased amounts of QDs on the TNTAs due to the introduction of ZnO interlayer. The benefits of ALD layers play a crucial role in development and optimization of high-performance photoelectrodes in the near future.

  3. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  4. Adsorption of carbon dioxide on Al12X clusters studied by density functional theory: effect of charge and doping.

    PubMed

    Zhao, Jian-Ying; Zhang, Yu; Zhao, Feng-Qi; Ju, Xue-Hai

    2013-11-27

    The adsorption of a CO2 molecule on neutral and charged X-centered icosahedron Al12X(±z) clusters (X = Al, Be, Zn, Ni, Cu, B, P; z = 0, 1) was investigated by the density functional PW91 and PWC methods. Optimized configurations corresponding to physisorption and chemisorption of CO2 were identified. The adsorption energies, activation barriers, and binding energies involving both the physisorption (Al12X(±z)·CO2-I) and chemisorption (Al12X(±z)·CO2-II) for CO2 were determined. The chemisorption of a CO2 molecule on the Al12X clusters (X is a metallic doping element) requires relatively low activation barriers. The lowest barrier was found to be with the Al12Be cluster. For the Al12X(-) clusters, the barriers are all higher than those of the neutral analogues. For the Al12X(+) clusters, two corresponding configurations are linked by a low-energy barrier, and CO2 molecule chemisorption on the Al12Be(+) cluster has the lowest barrier. The adsorption energies are larger than the energy barriers, which facilitates the chemisorption. The results show that carbon dioxide adsorbed on the Al12X(±z) clusters can be tuned by controllable X doping and the total number of valence electrons and suggest the potential application of Al12X(±z) nanostructures for carbon dioxide capture and activation.

  5. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  6. Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective.

    PubMed Central

    Partenskii, M B; Dorman, V; Jordan, P C

    1994-01-01

    The continuum three-dielectric model for an aqueous ion channel pore-forming peptide-membrane system is extended to account for the finite length of the channel. We focus on the electrostatic influence that a channel-forming peptide may exert on energy barriers to ion permeation. The nonlinear dielectric behavior of channel water caused by dielectric saturation in the presence of an ion is explicitly modeled by assigning channel water a mean dielectric constant much less than that of bulk water. An exact solution of the continuum problem is formulated by approximating the dielectric behavior of bulk water, assigning it a dielectric constant of infinity. The validity of this approximation is verified by comparison with a Poisson-Boltzmann description of the electrolyte. The formal equivalence of high ionic strength and high electrolyte dielectric constant is demonstrated. We estimate limits on the reduction of the electrostatic free energy caused by ionic interaction with the channel-forming peptide. We find that even assigning this region an epsilon of 100, its influence is insufficient to lower permeation free energy barriers to values consistent with observed channel conductances. We provide estimates of the effective dielectric constant of this highly polarizable region, by comparing energy barriers computed using the continuum approach with those found from a semi-microscopic analysis of a simplified model of a gramicidin-like charge distribution. Possible ways of improving both models are discussed. PMID:7529581

  7. SCC-DFTB Energy Barriers for Single and Double Proton Transfer Processes in the Model Molecular Systems Malonaldehyde and Porphycene

    SciTech Connect

    Walewski, L.; Krachtus, D; Fischer, S.; Smith, Jeremy C; Bala, P.; Lesyng, B.

    2005-09-01

    Self-consistent charge-density functional tight-binding SCC-DFTB is a computationally efficient method applicable to large (bio)molecular systems in which (bio)chemical reactions may occur. Among these reactions are proton transfer processes. This method, along with more advanced ab initio techniques, is applied in this study to compute intramolecular barriers for single and double proton transfer processes in the model systems, malonaldehyde and porphycene, respectively. SCC-DFTB is compared with experimental data and higher-level ab initio calculations. For malonaldehyde, the SCC-DFTB barrier height is 3.1 kcal/mol in vacuo and 4.2 kcal/mol in water solution. In the case of porphycene, the minimum energy pathways for double intramolecular proton transfer were determined using the conjugate peak refinement (CPR) method. Six isomers of porphycene were ordered according to energy. The only energetically allowed pathway was found to connect two symmetrical trans states via an unstable cis-A isomer. The SCC-DFTB barrier heights are 11.1 kcal/mol for the trans-cis-A process, and 7.4 kcal/mol for the reverse cis-A-trans one with the energy difference of 3.7 kcal/mol between the trans- and cis-A states. The method provides satisfactory energy results when compared with reference ab initio and experimental data.

  8. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry.

    PubMed

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S

    2017-03-06

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce(3+) ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to

  9. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier

    PubMed Central

    Rechkemmer, Yvonne; Breitgoff, Frauke D.; van der Meer, Margarethe; Atanasov, Mihail; Hakl, Michael; Orlita, Milan; Neugebauer, Petr; Sarkar, Biprajit; van Slageren, Joris

    2016-01-01

    Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials. PMID:26883902

  10. Market and behavioral barriers to energy efficiency: A preliminary evaluation of the case for tariff financing in California

    SciTech Connect

    Fujita, K. Sydny

    2011-06-23

    Consumers regularly forgo purchases of high efficiency appliances that appear to be cost effective at a reasonable rate of return. While some argue that this is a true revelation of preferences for appliance features, this 'efficiency gap' can be largely explained by a combination of market and behavioral failures that reduce consumers ability to evaluate the relative value of appliances and skew preferences toward initial cost savings, undervaluing future reductions in operating costs. These failures and barriers include externalities of energy use, imperfect competition between manufacturers, asymmetric information, bounded rationality, split incentives, and transaction costs (Golove 1996). Recognizing the social benefit of energy conservation, several major methods are used by policymakers to ensure that efficient appliances are purchased: minimum efficiency standards, Energy Star labeling, and rebates and tax credits. There is no single market for energy services; there are hundreds of uses, thousands of intermediaries, and millions of users, and likewise, no single appropriate government intervention (Golove 1996). Complementary approaches must be implemented, considering policy and institutional limitations. In this paper, I first lay out the rationale for government intervention by addressing the market and behavioral failures and barriers that arise in the context of residential energy efficiency. I then consider the ways in which some of these failures and barriers are addressed through major federal programs and state and utility level programs that leverage them, as well as identifying barriers that are not addressed by currently implemented programs. Heterogeneity of consumers, lack of financing options, and split incentives of landlords and tenants contribute significantly to the under-adoption of efficient appliances. To quantify the size of the market most affected by these barriers, I estimate the number of appliances, and in particular the number

  11. Specific Barriers and Drivers in Different Stages of Decision-Making about Energy Efficiency Upgrades in Private Homes.

    PubMed

    Klöckner, Christian A; Nayum, Alim

    2016-01-01

    Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) "not being in a decision mode," (2) "deciding what to do," (3) "deciding how to do it," and (4) "planning implementation." Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and-again-a feeling that the right point in time has

  12. Specific Barriers and Drivers in Different Stages of Decision-Making about Energy Efficiency Upgrades in Private Homes

    PubMed Central

    Klöckner, Christian A.; Nayum, Alim

    2016-01-01

    Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) “not being in a decision mode,” (2) “deciding what to do,” (3) “deciding how to do it,” and (4) “planning implementation.” Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and—again—a feeling that the right

  13. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate.

    PubMed

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian; Sørensen, Jakob Balslev; Verhage, Matthijs; Cornelisse, Lennart Niels

    2015-04-14

    The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.

  14. The role of vdW interactions in coverage dependent adsorption energies of atomic adsorbates on Pt(111) and Pd(111)

    NASA Astrophysics Data System (ADS)

    Thirumalai, Hari; Kitchin, John R.

    2016-08-01

    Adsorption, a fundamental process in heterogeneous catalysis is known to be dependent on the adsorbate-adsorbate and surface-adsorbate bonds. van der Waals (vdW) interactions are one of the types of interactions that have not been examined thoroughly as a function of adsorbate coverage. In this work we quantify the vdW interactions for atomic adsorbates on late transition metal surfaces, and determine how these long range forces affect the coverage dependent adsorption energies. We calculate the adsorption energies of carbon, nitrogen, oxygen, sulfur, fluorine, bromine and chlorine species on Pt(111) and Pd(111) at coverages ranging from 1/4 to 1 ML using the BEEF-vdW functional. We observe that adsorption energies remain coverage dependent, and this coverage dependence is shown to be statistically significant. vdW interactions are found to be coverage dependent, but more significantly, they are found to be dependent on molecular properties such as adsorbate size, and consequently, correlate with the adsorbate effective nuclear charge. We observe that these interactions account for a reduction in the binding energy of the system, due to the destabilizing attractive interactions between the adsorbates which weaken its bond with the surface.

  15. Changes in the size of the apparent surface area and adsorption energy of the rye roots by low pH and the presence of aluminium ions induced

    NASA Astrophysics Data System (ADS)

    Szatanik-Kloc, Alicja

    2016-07-01

    The plant reactions on Al-stress include i.a. change of the surface area of the roots, which in the physicochemistry of plants characterizes the transport of water and ions through the root. The object of this study is the specific surface area of the roots of plants which are tolerant to aluminium, such as rye. Plants of rye were grown in a nutrient solution for 14 days at pH 4.5 in the presence of Al3+ ions of concentration 10, 20, and 40 mg dm-3. The control plants were grown continuously at pH 7 or pH 4.5 without Al3+. The apparent surface area and adsorption energy of the plants roots were determined from water vapour adsorption - desorption data. The apparent surface area of roots growing in the aluminium was (with respect to control) statistically significantly lower. There were no statistically significant differences in the apparent surface area of the roots which grew in pH 7, pH 4.5 without Al3+. The average water vapour adsorption energy of the root surface, under stress conditions decreased. In the roots grown in the presence of Al+3, there was a slight decrease in high energy adsorption centres and an increase in the amount of low-energy centres.

  16. Adsorption of chlorine on Ag(111): No subsurface Cl at low coverage

    NASA Astrophysics Data System (ADS)

    Gava, Paola; Kokalj, Anton; de Gironcoli, Stefano; Baroni, Stefano

    2008-10-01

    The adsorption of molecular and atomic chlorine on perfect Ag(111) surface has been studied and characterized by means of extensive density-functional-theory calculations. For the molecular adsorption, we find that the dissociation of Cl2 proceeds with an almost vanishing barrier. As for the adsorption of atomic Cl, on-surface, subsurface, and substitutional adsorptions are considered as a function of the coverage. At coverage lower than 1/2 ML, the on-surface adsorption displays the most exothermic chemisorption energies, whereas the mixed on-surface+subsurface and on-surface+substitutional adsorption modes become competitive with pure on-surface adsorption at about 1/2 ML of coverage and at higher coverages even preferred. The analysis of the adsorption free energy as a function of chlorine chemical potential reveals that the on-surface (3×3)R30° adsorption phase is thermodynamically the most stable over a very broad range of Cl chemical potential. The mixed adsorption modes become thermodynamically more stable at high coverage for values of the Cl chemical potential that are substantially larger than those needed to form silver chloride. This finding seems to indicate that the formation of mixed adsorption phases, if they would ever occur, cannot be due to thermodynamic equilibrium but can only result from kinetic effects. We also find that the presence of open surface steps does not stabilize the subsurface Cl adsorption at low coverage. However due to the stronger Cl-surface interaction near steps, the mixed on-surface+subsurface adsorption on Ag(210) at high coverage becomes thermodynamically the most stable phase at Cl chemical potential close to that needed for the formation of bulk AgCl.

  17. EFFECTS OF NUCLEAR INDUCED BREAKUP ON THE FUSION OF 6Li+12C AND 6He+12C SYSTEMS AROUND BARRIER ENERGIES

    NASA Astrophysics Data System (ADS)

    Duhan, Sukhvinder S.; Singh, Manjeet; Kharab, Rajesh

    2012-06-01

    We have studied the effects of nuclear induced breakup channel coupling on the fusion cross-section for 6Li+12C and 6He+12C systems in the near barrier energy regime using the dynamic polarization potential (DPP) approach. It has been found that there is enhancement in the fusion cross-section with respect to standard one-dimensional barrier penetration model in the below barrier energy regime while at energies above the barrier there is suppression of fusion cross-section with respect to simple barrier penetration model is observed. The agreement between data and predictions for 6Li+12C system improves significantly as a result of the inclusion of nuclear induced DPP.

  18. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain.

    PubMed

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han

    2014-05-30

    A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application.

  19. Applying Risk Science and Stakeholder Engagement to Overcome Environmental Barriers to Marine and Hydrokinetic Energy Projects

    SciTech Connect

    Copping, Andrea E.; Anderson, Richard M.; Van Cleve, Frances B.

    2010-09-20

    The production of electricity from the moving waters of the ocean has the potential to be a viable addition to the portfolio of renewable energy sources worldwide. The marine and hydrokinetic (MHK) industry faces many hurdles, including technology development, challenges of offshore deployments, and financing; however, the barrier most commonly identified by industry, regulators, and stakeholders is the uncertainty surrounding potential environmental effects of devices placed in the water and the permitting processes associated with real or potential impacts. Regulatory processes are not well positioned to judge the severity of harm due to turbines or wave generators. Risks from MHK devices to endangered or protected animals in coastal waters and rivers, as well as the habitats that support them, are poorly understood. This uncertainty raises concerns about catastrophic interactions between spinning turbine blades or slack mooring lines and marine mammals, birds and fish. In order to accelerate the deployment of tidal and wave devices, there is a need to sort through the extensive list of potential interactions that may cause harm to marine organisms and ecosystems, to set priorities for regulatory triggers, and to direct future research. Identifying the risk of MHK technology components on specific marine organisms and ecosystem components can separate perceived from real risk-relevant interactions. Scientists from Pacific Northwest National Laboratory (PNNL) are developing an Environmental Risk Evaluation System (ERES) to assess environmental effects associated with MHK technologies and projects through a systematic analytical process, with specific input from key stakeholder groups. The array of stakeholders interested in the development of MHK is broad, segmenting into those whose involvement is essential for the success of the MHK project, those that are influential, and those that are interested. PNNL and their partners have engaged these groups, gaining

  20. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOEpatents

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  1. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy.

    PubMed

    Khang, Dongwoo; Kim, Sung Yeol; Liu-Snyder, Peishan; Palmore, G Tayhas R; Durbin, Stephen M; Webster, Thomas J

    2007-11-01

    The contribution of nanoscale surface roughness on the adsorption of one key cell adhesive protein, fibronectin, on carbon nanotube/poly(carbonate) urethane composites of different surface energies was evaluated. Systematic control of various surface energies by creating different nanosurface roughness features was performed by mixing two promising biomaterials: multi-wall carbon nanotubes and poly(carbonate) urethane. High ratios of carbon nanotubes coated with poly(carbonate) urethane provided for greater hydrophilic surfaces because of higher nanosurface roughness although pure carbon nanotube surfaces were extremely hydrophobic. Fabrication methods followed in this study generated various homogenous nanosurface roughness values (ranging from 2 to 20nm root mean square (RMS) AFM roughness). With the aid of such nanosurface roughness values in composites, a model was developed that linearly correlated nanosurface roughness and associated nanosurface energy to fibronectin adsorption. Specifically, independent contributions of surface chemistry (70%) and surface nano-roughness (30%) were found to mediate fibronectin adsorption. The results of the present study showed why carbon nanotube/poly(carbonate) urethane composites enhance cellular functions and tissue growth by delineating the importance of their physical nano-roughness on promoting the adsorption of a protein well known to be critical for mediating the adhesion of anchorage-dependent cells.

  2. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  3. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  4. Pyrite surface environment drives molecular adsorption: cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction.

    PubMed

    Sanchez-Arenillas, M; Mateo-Marti, E

    2016-10-05

    We have demonstrated that the annealing process for cleaning pyrite surfaces is a critical parameter in promoting ordering on the surface and driving surface reactivity. Furthermore, we describe a spectroscopic surface characterization of the presence or absence of the surface ordering, as indicated by the Low Energy Electron Diffraction (LEED) pattern, as a function of the surface annealing process. Complementary X-ray photoemission spectroscopy (XPS) results provide evidence that longer annealing processes of over 3 hours repair the sulfur vacancies in the pyrite, making FeS species partially disappear in favor of FeS2 species. These features play an important role in molecular adsorption. We show that in the case of the cystine amino acid on the (100) pyrite surface, the substrate structure is responsible for the chemical adsorption form. The presence of an ordered structure on the surface, as indicated by the LEED pattern, favors the cystine NH3(+) chemical form, whereas the absence of the surface ordering promotes cystine NH2 adsorption due to the sulfur-deficient surface. The cystine molecule could then act by changing its chemical functionalities to compensate for the iron surface coordination. The chemical molecular adsorption form can be selected by the surface annealing conditions, implying that environmental conditions could drive molecular adsorption on mineral surfaces. These findings are relevant in several surface processes, and they could play a possible role in prebiotic chemistry surface reactions and iron-sulfur scenarios.

  5. Hindrance of complete fusion in the {sup 8}Li+{sup 208}Pb system at above-barrier energies

    SciTech Connect

    Aguilera, E. F.; Martinez-Quiroz, E.; Rosales, P.; Kolata, J. J.; DeYoung, P. A.; Peaslee, G. F.; Mears, P.; Guess, C.; Becchetti, F. D.; Lupton, J. H.; Chen, Yu

    2009-10-15

    The {sup 211,212}At yields resulting from the interaction of the radioactive projectile {sup 8}Li with a {sup 208}Pb target have been measured at energies between 3 and 8.5 MeV above the Coulomb barrier. They are signatures for fusion of the whole charge but not necessarily the whole mass of the projectile, so they are included in a corresponding operational definition of complete fusion. Within this definition, a fusion suppression factor of 0.70{+-}0.02 (stat.) {+-}0.04 (syst.) is deduced from a comparison to a one-dimensional barrier-penetration-model calculation using parameters extrapolated from values for {sup 6,7}Li+{sup 209}Bi and {sup 9}Be+{sup 208}Pb taken from the literature. Possible incomplete fusion processes are discussed and the results are fitted with a phenomenological model assuming breakup prior to fusion followed by capture of a {sup 7}Li fragment.

  6. Thermodynamics of downhill folding: multi-probe analysis of PDD, a protein that folds over a marginal free energy barrier.

    PubMed

    Naganathan, Athi N; Muñoz, Victor

    2014-07-31

    Downhill folding proteins fold in microseconds by crossing a very low or no free energy barrier (<3 RT), and exhibit a complex unfolding behavior in equilibrium. Such unfolding complexity is due to the weak thermodynamic coupling that exists between the various structural segments of these proteins, and it is manifested in unfolding curves that differ depending on the structural probe employed to monitor the process. Probe-dependent unfolding has important practical implications because it permits one to investigate the folding energy landscape in detail using multiprobe thermodynamic experiments. This type of thermodynamic behavior has been investigated in depth on the protein BBL, an example of extreme (one-state) downhill folding in which there is no free energy barrier at any condition, including the denaturation midpoint. However, an open question is, to what extent is such thermodynamic behavior observed on less extreme downhill folders? Here we perform a multiprobe spectroscopic characterization of the microsecond folder PDD, a structural and functional homologue of BBL that folds within the downhill regime, but is not an example of one-state downhill folding; rather at the denaturation midpoint PDD folds by crossing an incipient free energy barrier. Model-free analysis of the unfolding curves from four different spectroscopic probes together with differential scanning calorimetry reveals a dispersion of ∼9 K in the apparent melting temperature and also marked differences in unfolding broadness (from ∼50 to ∼130 kJ mol(-1) when analyzed with a two-state model), confirming that such properties are also observed on less extreme downhill folders. We subsequently perform a global quantitative analysis of the unfolding data of PDD using the same ME statistical mechanical model that was used before for the BBL domain. The analysis shows that this simple model captures all of the features observed on the unfolding of PDD (i.e., the intensity and temperature

  7. Fine-tuning terminal solvent ligands to rationally enhance the energy barrier in dinuclear dysprosium single-molecule magnets.

    PubMed

    Zhang, Kun; Yuan, Chen; Guo, Fu-Sheng; Zhang, Yi-Quan; Wang, Yao-Yu

    2016-12-20

    In search of simple approaches to rationally enhance the energy barriers in polynuclear dysprosium single-molecule magnets, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(L)2(DBM)2(DMF)2] (1) and [Dy2(L)2(DBM)2(DMA)2]·2DMA (2) (HDBM = dibenzoylmethane, H2L = 2-hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide), is introduced and the structure-dependent magnetic properties are investigated. The two complexes display only slight variations in the coordination geometries of the Dy(iii) ion but display remarkably different magnetic behaviors. By replacing the DMF (dimethylformamide) ligand in complex 1 with DMA (dimethylacetamide) in 2 while retaining the same coordination atoms, we were able to create a 3-fold enhancement in the energy barrier, from 24 K for complex 1 to 77 K for complex 2. Complete-active-space self-consistent field (CASSCF) calculations revealed that the charge distribution surrounding the Dy(iii) centers in 1 and 2 is the key factor in determining the relaxation properties of the SMMs. The introduction of an electron-donating CH3 group in DMA to replace the hydrogen in DMF resulted in a larger average charge along the magnetic axes of complex 2 compared to complex 1, which resulted in a stronger easy-axis ligand field, thus increasing the energy difference between the ground and the first excited states of complex 2. This work presents a simple method to rationally enhance the energy barrier in polynuclear lanthanide SMMs through fine-tuning of the electrostatic potential of the atoms along the magnetic axis.

  8. Binding Energy and Dissociation Barrier: Experimental Determination of the Key Parameters of the Potential Energy Curve of Diethyl Ether on Si(001).

    PubMed

    Reutzel, Marcel; Lipponer, Marcus; Dürr, Michael; Höfer, Ulrich

    2015-10-01

    The key parameters of the potential energy curve of organic molecules on semiconductor surfaces, binding energy of the intermediate state and dissociation barrier, were experimentally investigated for the model system of diethyl ether (Et2O) on Si(001). Et2O adsorbs via a datively bonded intermediate from which it converts via ether cleavage into a covalently attached final state. This thermally activated conversion into the final state was followed in real-time by means of optical second-harmonic generation (SHG) at different temperatures and the associated energy barrier ϵa = 0.38 ± 0.05 eV and pre-exponential factor νa = 10(4±1) s(-1) were determined. From molecular beam experiments on the initial sticking probability, the difference between the desorption energy ϵd and ϵa was extracted and thus the binding energy of the intermediate state was determined (0.62 ± 0.08 eV). The results are discussed in terms of general chemical trends as well as with respect to a wider applicability on adsorbate reactions on semiconductor surfaces.

  9. Survey of the Relationship Between Activity Energy Expenditure Metabolic Equivalents and Barrier Factors of Physical Activity in the Elderly in Kashan

    PubMed Central

    Sadrollahi, Ali; Khalili, Zahra; Pour Nazari, Robab; Mohammadi, Majid; Ahmadi Khatir, Maryam; Mossadegh, Najima

    2016-01-01

    Background Physical activity in the elderly is influenced by aspects of aging that cause personal, mental, environmental, and social changes. Increases in factors that are barriers to activity cause physical energy expenditure to decrease. Objectives The aim of the present study was to survey the relationship between energy expenditure in metabolic equivalent units (MET) and factors that are barriers to physical activity in elderly people in Kashan, Iran Methods This is a descriptive analysis done in 2014. The study population was 400 people above 60 years old in medical facilities in Kashan. Multistage sampling was used in 10 clinics in 5 areas of Kashan. The sample size was varied according to gender and elderly population. Contributors were given questionnaires concerning energy expenditure levels in physical activity and factors that are barriers to being active. Results The average age among the study population was 67.6 ± 6.8 years median, and the interquartile range (IQR) of barriers to physical activity among Kashan’s elderly was (8.75) ± 33. Average energy expenditure was 326.21 ± 364.84 based on metabolic equivalent units (MET). In fact, 340 persons (85%) were practically without any active energy expenditure. The most common barrier was the lack of an appropriate place for doing physical activity; 298 (74%) of the participants cited this barrier. The results show the Spearman rank-order correlation is significant (P = 0.038, r = 0.104) between barriers to physical activity and activity energy expenditure in Kashan’s elderly. Conclusions Decreasing barriers to physical activity among the elderly causes physical activities to increase; therefore, energy expenditure is increased. Decreasing social and environmental problems for the elderly is effective in increasing physical activity and energy expenditure. PMID:28191341

  10. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    PubMed

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  11. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling

    NASA Astrophysics Data System (ADS)

    Yang, Y. Isaac; Zhang, Jun; Che, Xing; Yang, Lijiang; Gao, Yi Qin

    2016-03-01

    In order to efficiently overcome high free energy barriers embedded in a complex energy landscape and calculate overall thermodynamics properties using molecular dynamics simulations, we developed and implemented a sampling strategy by combining the metadynamics with (selective) integrated tempering sampling (ITS/SITS) method. The dominant local minima on the potential energy surface (PES) are partially exalted by accumulating history-dependent potentials as in metadynamics, and the sampling over the entire PES is further enhanced by ITS/SITS. With this hybrid method, the simulated system can be rapidly driven across the dominant barrier along selected collective coordinates. Then, ITS/SITS ensures a fast convergence of the sampling over the entire PES and an efficient calculation of the overall thermodynamic properties of the simulation system. To test the accuracy and efficiency of this method, we first benchmarked this method in the calculation of ϕ - ψ distribution of alanine dipeptide in explicit solvent. We further applied it to examine the design of template molecules for aromatic meta-C—H activation in solutions and investigate solution conformations of the nonapeptide Bradykinin involving slow cis-trans isomerizations of three proline residues.

  12. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    SciTech Connect

    Mussard, Bastien; Reinhardt, Peter; Toulouse, Julien; Ángyán, János G.

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  13. Metals on graphene: correlation between adatom adsorption behavior and growth morphology

    SciTech Connect

    Liu, Xiaojie; Wang, Cai-Zhuang; Hupalo, Myron; Lu, Wencai; Tringides, Michael C.; Yao, Yongxin; Ho, Kai-Ming

    2012-05-19

    We present a systematic study of metal adatom adsorption on graphene by ab initio calculations. The calculations cover alkali metals, sp-simple metals, 3d and group 10 transition metals, noble metals, as well as rare earth metals. The correlation between the adatom adsorption properties and the growth morphology of the metals on graphene is also investigated. We show that the growth morphology is related to the ratio of the metal adsorption energy to its bulk cohesive energy (E(a)/E(c)) and the diffusion barrier (ΔE) of the metal adatom on graphene. Charge transfer, electric dipole and magnetic moments, and graphene lattice distortion induced by metal adsorption would also affect the growth morphologies of the metal islands. We also show that most of the metal nanostructures on graphene would be thermally stable against coarsening.

  14. OVERVIEW OF THE U.S. DEPARTMENT OF ENERGY AND NUCLEAR REGULATORY COMMISSION PERFORMANCE ASSESSMENT APPROACHES: CEMENTITIOUS BARRIERS PARTNERSHIP

    SciTech Connect

    Langton, C.; Burns, H.

    2009-05-29

    Engineered barriers including cementitious barriers are used at sites disposing or contaminated with low-level radioactive waste to enhance performance of the natural environment with respect to controlling the potential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form/speciation, waste matrix properties, shallow water table, and humid climate that provides water for leaching the waste). This document comprises the first in a series of reports being prepared for the Cementitious Barriers Partnership. The document is divided into two parts which provide a summary of: (1) existing experience in the assessment of performance of cementitious materials used for radioactive waste management and disposal and (2) sensitivity and uncertainty analysis approaches that have been applied for assessments. Each chapter is organized into five parts: Introduction, Regulatory Considerations, Specific Examples, Summary of Modeling Approaches and Conclusions and Needs. The objective of the report is to provide perspective on the state of the practice for conducting assessments for facilities involving cementitious barriers and to identify opportunities for improvements to the existing approaches. Examples are provided in two contexts: (1) performance assessments conducted for waste disposal facilities and (2) performance assessment-like analyses (e.g., risk assessments) conducted under other regulatory regimes. The introductory sections of each section provide a perspective on the purpose of performance assessments and different roles of cementitious materials for radioactive waste management. Significant experience with assessments of cementitious materials associated with radioactive waste disposal concepts exists in the US Department of Energy Complex and the commercial nuclear sector. Recently, the desire to close legacy facilities has created

  15. SOLPLAN report: An assessment of barriers and incentives to conservation and alternative-energy use in the residential sector in Wisconsin

    NASA Astrophysics Data System (ADS)

    Fulenwider, C. K.; Weiss, L. S.; Pfefferkorn, C.; Wiener, D. E.; Feldmam, S. L.

    1981-03-01

    The Alternative Energy Policy Project of the Wisconsin Center for Public Policy focused upon two principle objectives: gathering and analyzing data on energy conservation and alternative energy commercialization; and building consensus around alternative energy policy to develop guidelines for alternative energy policy for the state. Particular attention was paid to public involvement in the policy process and to assessing barriers and incentives from as many key sectors of the energy field as possible. Data were gathered from the general public, alternative energy users, the heating industry generally, the alternative-energy industry specifically, and key decision makers.

  16. Adsorption of Iodine and Potassium on Bi2Sr2CaCu2O8+δ Investigated by Low Energy Alkali Ion Scattering

    SciTech Connect

    Gu, G.D.; Gann, R.D.; Cao, J.X.; Wu, R.Q.; Wen, J.; Xu, Z.; Gu, G.D.; Yarmoff, J.A.

    2010-01-01

    The adsorption of K and I on the surface of the high-T{sub c} cuprate BSCCO-2212 is investigated with low-energy (0.8 to 2 keV) Na{sup +} ion scattering and density functional theory (DFT). Samples were cleaved in ultrahigh vacuum and charge-resolved spectra of the scattered ions were collected with time-of-flight. The spectra contain a single peak representing Na scattered from Bi, as the clean surfaces are terminated by BiO. The neutralization of scattered Na depends on the local potential above the target site, and the angular dependence indicates that the clean surface has an inhomogeneous potential. Neutralization is dependent on the coverage of I, but independent of K adsorption. DFT suggests high-symmetry sites for the adsorption of both I and K, and that the potential above the Bi sites is altered by I by an amount consistent with the experimental findings, while the potential is not affected by K adsorption. DFT also enables an experimental determination of the 'freezing distance,' which is the effective point beyond which charge exchange does not occur, to be 1.6 {+-} 0.1 {angstrom} from the outermost Bi layer.

  17. On the role of dynamical barriers in barrierless reactions at low energies: S(1D) + H2.

    PubMed

    Lara, Manuel; Jambrina, P G; Varandas, A J C; Launay, J-M; Aoiz, F J

    2011-10-07

    Reaction probabilities as a function of total angular momentum (opacity functions) and the resulting reaction cross sections for the collision of open shell S((1)D) atoms with para-hydrogen have been calculated in the kinetic energy range 0.09-10 meV (1-120 K). The quantum mechanical hyperspherical reactive scattering method and quasi-classical trajectory and statistical quasi-classical trajectory approaches were used. Two different ab initio potential energy surfaces (PESs) have been considered. The widely used reproducing kernel Hilbert space (RKHS) PES by Ho et al. [T.-S. Ho, T. Hollebeek, H. Rabitz, S. D. Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, J. Chem. Phys 116, 4124 (2002)] and the recently published accurate double many-body expansion (DMBE)/complete basis set (CBS) PES by Song and Varandas [Y. Z. Song and A. J. C. Varandas, J. Chem. Phys. 130, 134317 (2009)]. The calculations at low collision energies reveal very different dynamical behaviors on the two PESs. The reactivity on the RKHS PES is found to be considerably larger than that on the DMBE/CBS PES as a result of larger reaction probabilities at low total (here also orbital) angular momentum values and to opacity functions which extend to significantly larger total angular momentum values. The observed differences have their origin in two major distinct topographic features. Although both PESs are essentially barrierless for equilibrium H-H distances, when the H-H bond is compressed the DMBE/CBS PES gives rise to a dynamical barrier which limits the reactivity of the system. This barrier is completely absent in the RHKS PES. In addition, the latter PES exhibits a van der Walls well in the entrance channel which reduces the height of the centrifugal barrier and is able to support resonances. As a result, a significant larger cross section is found on this PES, with marked oscillations attributable to shape resonances and/or to the opening of partial wave contributions. The comparison of the

  18. A family of enantiopure Fe(III)4 single molecule magnets: fine tuning of energy barrier by remote substituent.

    PubMed

    Zhu, Yuan-Yuan; Cui, Chang; Qian, Kang; Yin, Ji; Wang, Bing-Wu; Wang, Zhe-Ming; Gao, Song

    2014-08-21

    A new family of enantiopure star-shaped Fe(III)4 single-molecule magnets (SMMs) with the general formula [Fe4(L(K))6] (H2L = (R or S)-2-((2-hydroxy-1-phenylethylimino methyl)phenol); K = H (), Cl (), Br (), I (), and t-Bu ()), were structurally and magnetically characterized. Complex was reported in our previous paper (Chem. Commun., 2011, 47, 8049-8051). Detailed magnetic measurements and a systematic magneto-structural correlation study revealed that the SMM properties of this series of compounds can be finely tuned by the remote substituent of the ligands. Although the change in the coordination environment of the central Fe(3+) ions is very small, the properties of SMM behavior are changed considerably. All five complexes display frequency dependence of the ac susceptibility. However, the χ peaks of complexes and cannot be observed down to 0.5 K. The fitted anisotropy energy barriers (Ueff) of complexes , , and were 5.9, 7.1, and 11.0 K, respectively. Moreover, the hysteresis loops of these three complexes can be also observed around 0.5 K. Magneto-structural correlation analyses revealed that the coordination symmetry of the central Fe(3+) ion and the intermolecular interaction are two key factors affecting the SMM properties. Deviation to a trigonal prism coordination environment and the existence of intermolecular interactions between neighboring clusters may both reduce the anisotropy energy barriers.

  19. Through-thickness determination of phase composition and residual stresses in thermall barrier coatings using high- energy x-rays.

    SciTech Connect

    Weyant, , C. M.; Almer, J. D.; Faber, K. T.; Stony Brook Univ.

    2009-01-01

    High-energy X-rays were used to determine the local phase composition and residual stresses through the thickness of as-sprayed and heat-treated plasma-sprayed thermal barrier coatings consisting of a NiCoCrAlY bond coat and an yttria-stabilized zirconia (YSZ) topcoat produced with through-thickness segmentation cracks. The as-sprayed residual stresses reflected the combined influence of quenching stresses from the plasma spray process, thermal expansion mismatch between the topcoat, bond coat and substrate, and stress relief from the segmentation cracks. Heat treatments led to the formation of a thermally grown oxide (TGO) which was in compression in the plane, as well as relief of quenching stresses and development of a stress gradient in the YSZ topcoat. The high-energy X-ray technique used in this study revealed the effects that TGO and segmentation cracks have on the in-plane stress state of the entire coating.

  20. Republic of Korea Reduction of Financing Barriers for Energy Savings Performance Contracts

    SciTech Connect

    Howard, D. L.

    2005-11-01

    This paper discusses the findings developed for strengthening the role of performance contracting in improving energy efficiency in the Republic of Korea. The U.S. Environmental Protection Agency (EPA) sponsored development of this paper by the National Renewable Energy Laboratory (NREL), as a part of the Korean-U.S. Climate Technology Partnerships (CTP) program. The results and recommendations outlined in this paper together with other efforts are designed to assist other countries striving to improve their efficient use of energy.

  1. Molecular transport through surfactant-covered oil-water interfaces: role of physical properties of solutes and surfactants in creating energy barriers for transport.

    PubMed

    Ahn, Yong Nam; Gupta, Ashish; Chauhan, Anuj; Kopelevich, Dmitry I

    2011-03-15

    Mechanisms of molecular transport across oil-water interfaces covered by nonionic surfactants are investigated using coarse-grained molecular dynamics simulations. Resistance of the surfactant monolayer to the solute transport is shown to be controlled by dense regions in the monolayer. The dense regions are formed on both sides of the dividing surface and the barrier to the solute transport is created by those of them experiencing unfavorable interactions with the solute. Resistance to the transport of a hydrophobic (hydrophilic) solute increases with the excess density of the head (tail) group region of the monolayer, which in turn increases with the length of the surfactant head (tail) group. Barriers for solute transport through surfactant monolayers are also influenced by the solute size. However, the extent of this influence is determined by the monolayer thickness and the solute structure and composition. For example, it is shown that resistance offered by thin monolayers to transport of linear oligomers is relatively insensitive to the solute length. The barrier sensitivity to the length of these solutes increases with the monolayer thickness. In addition to the static barriers, the solute transport is shown to be affected by dynamic barriers due to a nonadiabatic coupling of the monolayer surface with the solute position and configuration. This coupling leads to deviations of the system dynamics from the minimum energy path. The deviations are most significant in the neighborhood of the static energy barrier, which effectively leads to an increase of the barrier for the solute transport.

  2. Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection

    DTIC Science & Technology

    2012-11-08

    change of O2 spin, at the barrier [Fig. 3]; i.e., the corresponding diabatic surfaces cross. Far from the Al surface, the triplet state is...previous theoretical models, in particular nonadiabatic [17] or diabatic [16] approaches, which also find an energy barrier consistent with experiment...crossings of different diabatic O2 spin configuration sur- faces are accommodated by small spin fluctuations within the metal surface. For parallel

  3. On the hydrogen adsorption and dissociation on Cu surfaces and nanorows

    NASA Astrophysics Data System (ADS)

    Álvarez-Falcón, Leny; Viñes, Francesc; Notario-Estévez, Almudena; Illas, Francesc

    2016-04-01

    Here we present a thorough density functional theory study, including and excluding dispersive forces interaction description, on the adsorption and dissociation of H2 molecule on the low-index Miller Cu (111), (100), and (110) surfaces and two different surface Cu nanorows, all displaying a different number of surface nearest neighbors, nn. The computational setup has been optimized granting an accuracy below 0.04 eV. Surface and nanorow energies-for which a new methodology to extract them is presented- are found to follow the nn number. However, the adsorption strength is found not to. Thus, the adsorption energies seem to be governed by a particular orbital ↔ band interaction rather than by the simple nn surface saturation. The van der Waals (vdW) forces are found to play a key role in the adsorption of H2, and merely an energetic adjustment on chemisorbed H adatoms. Neither clear trends are observed for H2 and H adsorption energies, and H2 dissociation energy with respect nn, and nor Brønsted-Evans-Polanyi, making H2 adsorption and dissociation a trend outlier compared to other cases. H2 is found to adsorb and dissociate on Cu(100) surface. On the Cu(111) surface, the rather small H2 adsorption energy would prevent H2 dissociation, regardless if it is thermodynamically driven. On Cu(110) surface, the H2 dissociation process would be endothermic and achievable if adsorption energy is released on surpassing the dissociation energy barrier. On low-coordinated sites on Cu nanorows, vdW plays a key role in the H2 dissociation process, which otherwise is found to be endothermic. Indeed, dispersive forces turn the process markedly exothermic. Nanoparticle Cu systems must display Cu(100) surfaces or facets in order to dissociate H2, vital in many hydrogenation processes.

  4. Energy dependence of the optical potentials for the 9Be +208Pb and 9Be +209Bi systems at near-Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.

    2015-04-01

    We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.

  5. Entrance Channel Mass Asymmetry Effects in Sub-Barrier Fusion Dynamics by Using Energy Dependent Woods-Saxon Potential

    NASA Astrophysics Data System (ADS)

    Manjeet Singh, Gautam

    2015-12-01

    The present article highlights the inconsistency of static Woods-Saxon potential and the applicability of energy dependent Woods-Saxon potential to explore the fusion dynamics of {}4822Ti+58,60,6428Ni, {}4622Ti+{}6428Ni,{}5022Ti+{}6028Ni, and {}199F+9341Nb reactions leading to formation of different Sn-isotopes via different entrance channels. Theoretical calculations based upon one-dimensional Wong formula obtained by using static Woods-Saxon potential unable to provide proper explanation for sub-barrier fusion enhancement of these projectile-target combinations. However, the predictions of one-dimensional Wong formula based upon energy dependent Woods-Saxon potential model (EDWSP model) accurately describe the observed fusion dynamics of these systems wherein the significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm is required to address the experimental data in whole range of energy. Therefore, the energy dependence in nucleus-nucleus potential simulates the influence of the nuclear structure degrees of freedom of the colliding pairs. Supported by Dr. D.S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  6. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  7. Effective coordination as a predictor of adsorption energies: A model study of NO on Rh(100) and Rh/MgO(100) surfaces

    SciTech Connect

    Pushpa, Raghani; Gironcoli, Stefano de; Narasimhan, Shobhana

    2009-04-15

    We have studied the adsorption of NO, and the coadsorption of N and O, on four physical and hypothetical systems: unstrained and strained Rh(100) surfaces and monolayers of Rh atoms on strained and unstrained MgO(100) surfaces. We find that as we go from Rh(100) to Rh/Mg0(100), via the other two hypothetical systems, the effective coordination progressively decreases, the d band narrows and its center shifts closer to the Fermi level, and the strength of adsorption and coadsorption increases. Both the strain and the presence of the oxide substrate contribute significantly to this. However, charge transfer is found to play a negligible role due to a canceling out between donation and back-donation processes. Our results suggest that lowering the effective coordination of Rh catalysts by strain, roughening, or the use of inert substrates might lower activation energies for the dissociation of NO.

  8. Negligible suppression of the complete fusion of Li,76 on light targets, at energies above the barrier

    NASA Astrophysics Data System (ADS)

    Guo, M. F.; Zhang, G. L.; Gomes, P. R. S.; Lubian, J.; Ferioli, E.

    2016-10-01

    Motivated by a recent work performed at Australian National University by S. Kalkal et al. [Phys. Rev. C 93, 044605 (2016), 10.1103/PhysRevC.93.044605] on breakup and its time scale, where it was shown that the prompt (or near-target) breakup of Li,76 is almost negligible and consequently the near-barrier complete fusion cross section induced by these weakly bound Li isotopes on light targets should not be suppressed by the breakup, as it is for heavier targets, we estimated the contributions of complete and incomplete fusion in the measured total fusions for several light systems available in the literature. The chosen systems were those for which the fusion cross sections had been measured using the γ -ray spectroscopy method and all evaporation channel cross sections were reported. For the estimation, we used, apart from the data, the predictions of the evaporation code cascade. The results show that, indeed, the complete fusion suppression is negligible for such systems at energies slightly above the barrier, in agreement with the above-mentioned recent measurements of breakup time scales.

  9. O(2) adsorption and dissociation on neutral, positively and negatively charged Au(n) (n = 5-79) clusters.

    PubMed

    Roldán, Alberto; Ricart, Josep Manel; Illas, Francesc; Pacchioni, Gianfranco

    2010-09-28

    The adsorption and dissociation of an O(2) molecule on gas-phase gold clusters of size varying from 5 to 79 atoms have been investigated by means of first principles density functional theory calculations. The adsorption energies and dissociation barriers have been determined for neutral, positively and negatively charged gold clusters in order to analyze in a systematic way the role of the charge on the cluster reactivity. While there is beneficial effect on O(2) activation of an extra electron on the small gold clusters (Au(5) and Au(13)), the effect is absent for positively charged clusters. The effect of the charge vanishes rapidly by increasing the cluster size and is not visible for clusters containing about 40 atoms or more. Au(38) appears to be the most reactive among the clusters considered and strong oscillations in adsorption energies and dissociation barriers are found even for clusters containing several tens of atoms like Au(38), Au(55), and Au(79).

  10. Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry.

    PubMed

    Savoy, Elizabeth S; Escobedo, Fernando A

    2012-11-20

    When in contact with a rough solid surface, fluids with low surface tension, such as oils and alkanes, have their lowest free energy in the fully wetted state. For applications where nonwetting by these phillic fluids is desired, some barrier must be introduced to maintain the nonwetted composite state. One way to create this free-energy barrier is to fabricate roughness with reentrant geometry, but the question remains as to whether the free-energy barrier is sufficiently high to prevent wetting. Our goal is to quantify the free-energy landscape for the wetting transition of an oily fluid on a surface of nails and identify significant surface features and conditions that maximize the wetting free-energy barrier (ΔGfwd*). This is a departure from most work on wetting, which focuses on the equilibrium composite and wetted states. We use boxed molecular dynamics (BXD) (Glowacki, D. R.; Paci, E.; Shalashilin, D. V. J. Phys. Chem. B2009, 113, 16603-16611) with a modified control scheme to evaluate both the thermodynamics and kinetics of the transition over a range of surface affinities (chemistry). We find that the reentrant geometry of the nails does create a free-energy barrier to transition for phillic chemistry whereas a corresponding system on straight posts wets spontaneously and, that doubling the nail height more than doubles ΔGfwd*. For neutral to phillic chemistry, the dewetting free-energy barrier is at least an order of magnitude higher than that for wetting, indicating an essentially irreversible wetting transition. Transition rates from BXD simulations and the associated trends agree well with those in our previous study that used forward flux sampling to compute transition rates for similar systems.

  11. Localized Opto-Mechanical Control of Protein Adsorption onto Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    O'Dell, Dakota; Serey, Xavier; Kang, Pilgyu; Erickson, David

    2014-10-01

    Chemical reactions can be described by an energy diagram along a reaction coordinate in which an activation barrier limits the rate at which reactants can be transformed into products. This reaction impedance can be overcome by reducing the magnitude of the barrier through the use of catalysis, increasing the thermal energy of the system, or through macroscopic mechanical processes. Here, we demonstrate direct molecular-scale control of a reaction through the precise application of opto-mechanical work. The method uses optical gradient forces generated in the evanescent field surrounding hybrid photonic-plasmonic structures to drive an otherwise unlikely adsorption reaction between proteins and carbon nanotubes. The adsorption of immunoglobulins on carbon nanotubes is used as a model reaction and investigated with an extended DLVO theory. The technique is also used to force a Förster resonance energy transfer between fluorophores on mismatched immunoglobulin proteins and is expected to lead to novel forms of chemical synthesis.

  12. Localized Opto-Mechanical Control of Protein Adsorption onto Carbon Nanotubes

    PubMed Central

    O'Dell, Dakota; Serey, Xavier; Kang, Pilgyu; Erickson, David

    2014-01-01

    Chemical reactions can be described by an energy diagram along a reaction coordinate in which an activation barrier limits the rate at which reactants can be transformed into products. This reaction impedance can be overcome by reducing the magnitude of the barrier through the use of catalysis, increasing the thermal energy of the system, or through macroscopic mechanical processes. Here, we demonstrate direct molecular-scale control of a reaction through the precise application of opto-mechanical work. The method uses optical gradient forces generated in the evanescent field surrounding hybrid photonic-plasmonic structures to drive an otherwise unlikely adsorption reaction between proteins and carbon nanotubes. The adsorption of immunoglobulins on carbon nanotubes is used as a model reaction and investigated with an extended DLVO theory. The technique is also used to force a Förster resonance energy transfer between fluorophores on mismatched immunoglobulin proteins and is expected to lead to novel forms of chemical synthesis. PMID:25330911

  13. Adsorption dynamics for the system hydrogen/palladium and its relation to the surface electronic structure

    NASA Astrophysics Data System (ADS)

    Resch, Ch.; Berger, H. F.; Rendulic, K. D.; Bertel, E.

    1994-09-01

    We have determined differential sticking coefficients for a monoenergetic nozzle beam of hydrogen on Pd(111) and Pd(110). In particular the energy dependence and the angular variation of the initial sticking coefficient were measured. The results indicate that adsorption of hydrogen on palladium occurs in parallel processes through a direct path with an activation barrier of perhaps 50 meV or less and a precursor path. There is relatively little difference in the adsorption properties of the (111) and the (110) plane. The appearance of a molecular precursor on the (111) plane can be related to the electronic structure of palladium, in particular to the absence of occupied Shockley surface states, as compared to Ni (111) and Pt (111). Pre-adsorbed potassium on a (110) plane acts as an inhibitor to adsorption. Different inhibiting mechanisms are observed for the direct adsorption path and the precursor path. At high potassium coverage the precursor path is completely suppressed.

  14. An Ising iron(ii) chain exhibits a large finite-size energy barrier and "hard" magnetic behaviour.

    PubMed

    Deng, Yi-Fei; Han, Tian; Xue, Wei; Hayashi, Naoaki; Kageyama, Hiroshi; Zheng, Yan-Zhen

    2017-01-31

    One-dimensional spin chains featuring strong axial anisotropic magnetism are promising candidates for isolatable and miniatured information storage materials, the so-called single-chain magnets (SCMs). Here we show a mixed azido/carboxylato bridged metamagnetic iron(ii) chain [Fe(N3)2(4-mpc)]n (4-mpc = N-methylpyridinium-4-carboxylate) with a large energy barrier of 150 K, a large remnant magnetization (1.55Nβ) and coercivity (1.7 T at 2 K) for homo-spin SCMs. Heat capacity and Mössbauer spectroscopy studies corroborate the intrinsic nature of SCM behavior regardless of weak interchain magnetic interactions, which lead to the coexistence of metamagnetism but not long-range magnetic ordering. Moreover, detailed magnetic investigations indicate that the system is not only within the "Ising limit" but also in the "finite-size" regime.

  15. Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier

    SciTech Connect

    Kuzyakin, R. A. Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2013-06-15

    Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.

  16. Transesterification thio effects of phosphate diesters: free energy barriers and kinetic and equilibrium isotope effects from density-functional theory.

    PubMed

    Liu, Yun; Gregersen, Brent A; Hengge, Alvan; York, Darrin M

    2006-08-22

    Primary and secondary kinetic and equilibrium isotope effects are calculated with density-functional methods for the in-line dianionic methanolysis of the native (unsubstituted) and thio-substituted cyclic phosphates. These reactions represent reverse reaction models for RNA transesterification under alkaline conditions. The effect of solvent is treated with explicit (single and double) water molecules and self-consistently with an implicit (continuum) solvation model. Singly substituted reactions at the nonbridging O(P1) position and bridging O(2)('), O(3)('), and O(5)(') positions and a doubly substituted reaction at the O(P1) and O(P2) positions were considered. Aqueous free energy barriers are calculated, and the structures and bond orders of the rate-controlling transition states are characterized. The results are consistent with available experimental data and provide useful information for the interpretation of measured isotope and thio effects used to probe mechanism in phosphoryl transfer reactions catalyzed by enzymes and ribozymes.

  17. Nucleon-nucleon correlations in heavy ion transfer reactions: Recent investigations at energies far below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Corradi, Lorenzo

    2015-10-01

    Excitation functions of one- and two-neutron transfer channels have been measured for the 96Zr+40Ca and 116Sn+60Ni systems at bombarding energies ranging from the Coulomb barrier to ˜25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.

  18. Elastic scattering for the system {sup 6}Li+p at near barrier energies with MAGNEX

    SciTech Connect

    Soukeras, V.; Pakou, A.; Sgouros, O.; Cappuzzello, F.; Bondi, M.; Nicolosi, D.; Acosta, L.; Marquinez-Duran, G.; Martel, I.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M.; Alamanos, N.; De Napoli, M.; Foti, A.; and others

    2015-02-24

    Elastic scattering measurements have been performed for the {sup 6}Li+p system in inverse kinematics at the energies of 16, 20, 25 and 29 MeV. The heavy ejectile was detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS) in Catania, in the angular range between ∼2{sup 0} and 12{sup 0} in the laboratory system, giving us the possibility to span almost a full angular range in the center of mass system. Results will be presented and discussed for one of the energies.

  19. Elastic scattering and transfer reactions for the system 7Be + 58Ni at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Parkar, V. V.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Stroe, L.

    2015-09-01

    We investigated the reaction induced by the Radioactive Ion Beam 7Be on the closed proton shell nucleus 58Ni at 22.0 MeV bombarding energy. The 7Be beam was produced by means of the in-flight technique with the facility EXOTIC at INFN-LNL (Italy). Charged reaction products were mass and charge identified in a rather wide angular range and their energy distributions were analyzed to infer some information on the production mechanism. The relevance of direct processes, especially 3He- and 4He-stripping, as well as compound nucleus reactions is critically reviewed.

  20. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  1. The C12(O16,γSi28) radiative capture reaction at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Goasduff, A.; Courtin, S.; Haas, F.; Lebhertz, D.; Jenkins, D. G.; Fallis, J.; Ruiz, C.; Hutcheon, D. A.; Amandruz, P.-A.; Davis, C.; Hager, U.; Ottewell, D.; Ruprecht, G.

    2014-01-01

    The heavy-ion radiative capture C12(O16,γSi28) was measured at the sub-Coulomb barrier bombarding energy Elab=15.7 MeV, which corresponds to the lowest important resonance observed in the C12+ O16 fusion excitation function. Thanks to combination of the bismuth germanate (BGO) γ-ray array and the 0∘ DRAGON electromagnetic spectrometer at TRIUMF, the γ-decay spectrum from the entrance channel down to the ground state of 28Si was measured. Comparisons of the experimental spectrum to γ spectrum extracted from Monte Carlo simulations of the complete setup suggest a Jπ=2+ spin-parity assignment to the entrance channel and yield the radiative capture cross section σRC=0.22±0.04μb. Combining this present spin assignment with previous data on radiative capture, a J (J+1) systematics was constructed, and it indicated a moment of inertia commensurate with the C12+O16 grazing angular momentum. Strong dipole transitions are observed from the entrance channel to T =1 states around 11.5 MeV and are found to result from enhanced M1IV transitions to states exhausting a large part of the M1 sum rule built on the ground state of 28Si. This specific decay was also reported at bombarding energies close to the Coulomb barrier in our previous study of the C12(C12,γ24Mg) heavy-ion radiative capture reaction. Similarities between both systems are investigated.

  2. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect

    Pereira, D.; Linares, R.; and others

    2012-10-20

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  3. Constraining the Symmetry Energy:. a Journey in the Isospin Physics from Coulomb Barrier to Deconfinement

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Colonna, M.; Greco, V.; Ferini, G.; Rizzo, C.; Rizzo, J.; Baran, V.; Gaitanos, T.; Prassa, V.; Wolter, H. H.; Zielinska-Pfabe, M.

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e.to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso - EOS are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a "direct" study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected "neutron trapping" effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.

  4. One-dimensional free-energy profiles of complex systems: progress variables that preserve the barriers.

    PubMed

    Krivov, Sergei V; Karplus, Martin

    2006-06-29

    We show that the balanced minimum-cut procedure introduced in PNAS 2004, 101, 14766 can be reinterpreted as a method for solving the constrained optimization problem of finding the minimum cut among the cuts with a particular value of an additive function of the nodes on either side of the cut. Such an additive function (e.g., the partition function of the reactant region) can be used as a progress coordinate to determine a one-dimensional profile (FEP) of the free-energy surface of the protein-folding reaction as well as other complex reactions. The algorithm is based on the network (obtained from an equilibrium molecular dynamics simulation) that represents the calculated reaction behavior. The resulting FEP gives the exact values of the free energy as a function of the progress coordinate; i.e., at each value of the progress coordinate, the profile is obtained from the surface with the minimal partition function among the surfaces that divide the full free-energy surface between two chosen end points. In many cases, the balanced minimum-cut procedure gives results for only a limited set of points. An approximate method based on p(fold) is shown to provide the profile for a more complete set of values of the progress coordinate. Applications of the approach to model problems and to realistic systems (beta-hairpin of protein G, LJ38 cluster) are presented.

  5. Adsorption of N/S heterocycles in the flexible metal-organic framework MIL-53(Fe(III)) studied by in situ energy dispersive X-ray diffraction.

    PubMed

    Van de Voorde, Ben; Munn, Alexis S; Guillou, Nathalie; Millange, Franck; De Vos, Dirk E; Walton, Richard I

    2013-06-14

    The adsorption of N/S-containing heterocyclic organic molecules in the flexible iron(III) terephthalate MIL-53, Fe(III)(OH)(0.6)F(0.4)(O2C-C6H4-CO2)·(H2O), from the liquid phase was studied with in situ energy dispersive X-ray diffraction (EDXRD), in order to follow the adsorption-induced expansion of the structure. For comparison with the diffraction data, liquid phase adsorption isotherms were recorded for uptake of benzothiophene, benzothiazole and indole in isopropanol and in heptane. The solvent not only influences pore opening but is also a competing guest. The in situ EDXRD experiments allow the kinetics of guest uptake and the competition with solvent to be monitored directly. Indole uptake is limited; this adsorbate is barely capable of opening the closed, either hydrated or dehydrated, MIL-53(Fe) structure, or of penetrating the isopropanol-containing material in the concentration range under study. When isopropanol is used as a solvent, the guest molecules benzothiophene and benzothiazole must be present at a certain threshold concentration before substantial adsorption into the metal-organic framework takes place, eventually resulting in full opening of the structure. The fully expanded structures of benzothiophene or benzothiazole loaded MIL-53(Fe) materials have Imcm symmetry and a unit cell volume of ca. 1600 Å(3), and upon uptake of the guest molecules by the closed form (unit cell volume ~1000 Å(3)) no intermediate crystalline phases are seen. Successful uptake by MIL-53(Fe) requires that the adsorbate is primarily a good hydrogen bond acceptor; additionally, based on UV-visible spectroscopy, a charge-transfer interaction between the S atoms of benzothiophene and the aromatic rings in the MOF pore wall is proposed.

  6. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    NASA Astrophysics Data System (ADS)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  7. Experimental evidence for a fusion enhancement in 19O+12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.; Umar, A. S.; Oberacker, V. E.

    2016-03-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 x 104p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Evaporation residues were detected with high efficiency by measuring them in the angular range 4.4° <=θlab <= 11.7°. The fusion cross-section has been measured down to 170 mb level. As compared to 18O+12C the fusion cross-section for 19O+12C is enhanced by approximately a factor of 3 times at the lowest energy measured. The measured excitation function will be compared with theoretical calculations. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  8. Metastability and hysteretic vortex pinning near the order-disorder transition in NbSe2: Interplay between plastic and elastic energy barriers

    NASA Astrophysics Data System (ADS)

    Marziali Bermúdez, M.; Louden, E. R.; Eskildsen, M. R.; Dewhurst, C. D.; Bekeris, V.; Pasquini, G.

    2017-03-01

    We studied thermal and dynamic history effects in the vortex lattice (VL) near the order-disorder transition in clean NbSe2 single crystals. Comparing the evolution of the effective vortex pinning and the bulk VL structure, we observed metastable superheated and supercooled VL configurations that coexist with a hysteretic effective pinning response due to thermal cycling of the system. A novel scenario, governed by the interplay between (lower) elastic and (higher) plastic energy barriers, is proposed as an explanation for our observations: Plastic barriers, which prevent the annihilation or creation of topological defects, require dynamic assistance to be overcome and to achieve a stable VL at each temperature. Conversely, thermal hysteresis in the pining response is ascribed to low energy barriers, which inhibit rearrangement within a single VL correlation volume and are easily overcome as the relative strength of competing interactions changes with temperature.

  9. A robust numerical method for self-polarization energy of spherical quantum dots with finite confinement barriers.

    PubMed

    Deng, Shaozhong

    2010-04-01

    By utilizing a novel three-layer dielectric model for the interface between a spherical quantum dot and the surrounding matrix, a robust numerical method for calculating the self-polarization energy of a spherical quantum dot with a finite confinement barrier is presented in this paper. The proposed numerical method can not only overcome the inherent mathematical divergence in the self-polarization energy which arises for the simplest and most widely used step-like model of the dielectric interface, but also completely eliminate the potential numerical divergence which may occur in the Bolcatto-Proetto's formula [J. Phys.: Condens. Matter 13, 319-334 (2001)], an approximation method commonly employed for more realistic three-layer dielectric models such as the linear and the cosine-like models frequently mentioned in the literature. Numerical experiments have demonstrated the convergence of the proposed numerical method as the number of the steps used to discretize the translation layer in a three-layer model goes to infinity, an important property that the Bolcatto-Proetto's formula appears not necessarily to possess.

  10. Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.

    2017-01-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  11. Relative Gibbs energies in solution through continuum models: effect of the loss of translational degrees of freedom in bimolecular reactions on Gibbs energy barriers.

    PubMed

    Ardura, Diego; López, Ramón; Sordo, Tomás L

    2005-12-15

    We present here a cell model for evaluating Gibbs energy barriers corresponding to bimolecular reactions (or processes of larger molecularity) in which a loss of translational degrees of freedom takes place along the reaction coordinate. With this model, we have studied the Walden inversion processes: Xa- + H3CXb --> XaCH3 + Xb- (X = F, Cl, Br, and I). In these processes, our model yields an increase of about 2.3-3.4 kcal/mol in Gibbs energy in solution corresponding to the loss of the translational degrees of freedom when passing from separate reactants to the TS in good agreement with experimental data. The corresponding value in the gas phase is about 6.7-7.1 kcal/mol. When the difference between these two figures is used to correct the results obtained by the standard UAHF implementation of the continuum model, the theoretical results are brought significantly closer to the experimental ones. This seems to indicate that for these reactions the parametrization used does not adequately introduce the increase in Gibbs energy corresponding to the constriction of the translational motion of the species along the reaction coordinate when passing from the gas phase to solution. Therefore, we believe that continuum models could perform much better if we released the parametrization process from the task of taking into account the constriction in translation motion in solution, which could be more adequately evaluated using the cell model proposed here, thus allowing it to focus on better reproducing all the remaining solvation effects.

  12. Edge energy transport barrier and turbulence in the I-mode regime on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Hubbard, A. E.; Whyte, D. G.; Churchill, R. M.; Cziegler, I.; Dominguez, A.; Golfinopoulos, T.; Hughes, J. W.; Rice, J. E.; Bespamyatnov, I.; Greenwald, M. J.; Howard, N.; Lipschultz, B.; Marmar, E. S.; Reinke, M. L.; Rowan, W. L.; Terry, J. L.

    2011-05-01

    We report extended studies of the I-mode regime [Whyte et al., Nucl. Fusion 50, 105005 (2010)] obtained in the Alcator C-Mod tokamak [Marmar et al., Fusion Sci. Technol. 51(3), 3261 (2007)]. This regime, usually accessed with unfavorable ion B × ∇B drift, features an edge thermal transport barrier without a strong particle transport barrier. Steady I-modes have now been obtained with favorable B × ∇B drift, by using specific plasma shapes, as well as with unfavorable drift over a wider range of shapes and plasma parameters. With favorable drift, power thresholds are close to the standard scaling for L-H transitions, while with unfavorable drift they are ˜ 1.5-3 times higher, increasing with Ip. Global energy confinement in both drift configurations is comparable to H-mode scalings, while density profiles and impurity confinement are close to those in L-mode. Transport analysis of the edge region shows a decrease in edge χeff, by typically a factor of 3, between L- and I-mode. The decrease correlates with a drop in mid-frequency fluctuations (f ˜ 50-150 kHz) observed on both density and magnetics diagnostics. Edge fluctuations at higher frequencies often increase above L-mode levels, peaking at f ˜ 250 kHz. This weakly coherent mode is clearest and has narrowest width (Δf/f ˜ 0.45) at low q95 and high Tped, up to 1 keV. The Er well in I-mode is intermediate between L- and H-mode and is dominated by the diamagnetic contribution in the impurity radial force balance, without the Vpol shear typical of H-modes.

  13. Time evolution analysis of a 2D solid gas equilibrium: a model system for molecular adsorption and diffusion

    NASA Astrophysics Data System (ADS)

    Berner, S.; Brunner, M.; Ramoino, L.; Suzuki, H.; Güntherodt, H.-J.; Jung, T. A.

    2001-11-01

    The adsorption of sub-phthalocyanine molecules on Ag(1 1 1) has been studied by means of scanning tunneling microscopy (STM). The molecules are observed in different two-dimensional (2D) phases of adsorption which coexist in thermodynamic equilibrium. In the condensed phase the molecules form well-ordered islands with a honeycomb pattern. In the gas phase single molecules can be discriminated in single scan lines by characteristic tip excursions which occur randomly. The energy barrier for surface diffusion as well as the condensation energy to form 2D islands is estimated and discussed.

  14. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier.

    PubMed

    Ahn, Chiyui; Fong, Scott W; Kim, Yongsung; Lee, Seunghyun; Sood, Aditya; Neumann, Christopher M; Asheghi, Mehdi; Goodson, Kenneth E; Pop, Eric; Wong, H-S Philip

    2015-10-14

    Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 10(5) cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.

  15. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-08-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from

  16. Corneal critical barrier against the penetration of dexamethasone and lomefloxacin hydrochloride: evaluation by the activation energy for drug partition and diffusion in cornea.

    PubMed

    Yasueda, Shin-ichi; Higashiyama, Masayo; Yamaguchi, Masazumi; Isowaki, Akiharu; Ohtori, Akira

    2007-08-01

    The cornea is a solid barrier against drug permeation. We searched the critical barrier of corneal drug permeation using a hydrophobic drug, dexamethasone (DM), and a hydrophilic drug, lomefloxacin hydrochloride (LFLX). The activation energies for permeability of DM and LFLX across the intact cornea were 88.0 and 42.1 kJ/mol, respectively. Their activation energies for permeability across the cornea without epithelium decreased to 33.1 and 16.6 kJ/mol, respectively. The results show that epithelium is the critical barrier on the cornea against the permeation of a hydrophobic drug of DM as well as a hydrophilic drug of LFLX. The activation energy of partition for DM (66.8 kJ/mol) was approximately 3-fold larger than that of diffusion (21.2 kJ/mol). The results indicate that the partition for the hydrophobic drug of DM to the corneal epithelium is the primary barrier. Thermodynamic evaluation of activation energy for the drug permeation parameters is a good approach to investigate the mechanism of drug permeability.

  17. Visualizing the Analogy between Competitive Adsorption and Colloid Stability to Restore Lung Surfactant Function

    PubMed Central

    Shieh, Ian C.; Waring, Alan J.; Zasadzinski, Joseph A.

    2012-01-01

    We investigated a model of acute respiratory distress syndrome in which the serum protein albumin adsorbs to an air-liquid interface and prevents the thermodynamically preferable adsorption of the clinical lung surfactant Survanta by inducing steric and electrostatic energy barriers analogous to those that prevent colloidal aggregation. Chitosan and polyethylene glycol (PEG), two polymers that traditionally have been used to aggregate colloids, both allow Survanta to quantitatively displace albumin from the interface, but through two distinct mechanisms. Direct visualization with confocal microscopy shows that the polycation chitosan coadsorbs to interfacial layers of both Survanta and albumin, and also colocalizes with the anionic domains of Survanta at the air-liquid interface, consistent with it eliminating the electrostatic repulsion by neutralizing the surface charges on albumin and Survanta. In contrast, the PEG distribution does not change during the displacement of albumin by Survanta, consistent with PEG inducing a depletion attraction sufficient to overcome the repulsive energy barrier toward adsorption. PMID:22385848

  18. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers.

    PubMed

    Hsiu-Mei, Chiang; Ting-Chien, Chen; San-De, Pan; Chiang, Hung-Lung

    2009-01-30

    Sludge adsorbent (SA) and commercial activated carbon fibers (ACFC and ACFT) were applied to Orange II and Chrysophenine (CH) adsorption (BET surface area: ACFC>ACFT>SA). ACFT was primarily in the micropore range, while SA was approximately 500 A (macropore) and 80 A (mesopore). The ACFC pore volume was high in both the mesopore and micropore regions. Measurement of the oxygen surface functional groups of the adsorbents using Boehm's titration method showed a similar distribution on the carbon fibers (mainly in the carbonyl group), while SA was mainly in the carboxyl, lactone and phenolic groups. The SA, ACFC and ACFT adsorption capacities of Orange II (30-80 mg/l) ranged from 83 to 270, 209-438, and 25-185 mg/g at temperatures ranging from 10 to 60 degrees C, respectively. CH concentration ranged from 30 to 80 mg/l, corresponding to SA and ACFC adsorption capacities of 39-191 and 48-374 mg/g over the defined temperature range, from 10 to 60 degrees C. CH adsorption on ACFT was low. The adsorption capacity of Orange II on ACFT was lower than on SA at 10 degrees C, but at higher temperatures the Orange II molecules were transported into the ACFT, producing an adsorption capacity similar to that of SA. Mass transfer increased with temperature, overcoming the adsorption energy barrier. Overall, SA and ACFC were more effective than ACFT.

  19. Measurement of the fusion excitation function for 19O + 12C at near barrier energies

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Steinbach, T. K.; Vadas, J.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Tripathi, V.; Kuvin, S. A.; Wiedenhover, I.

    2015-10-01

    Fusion of neutron-rich light nuclei in the outer crust of an accreting neutron star has been proposed as responsible for triggering X-ray super-bursts. The underlying hypothesis in this proposition is that the fusion of neutron-rich nuclei is enhanced as compared to stable nuclei. To investigate this hypothesis, an experiment has been performed to measure the fusion excitation function for 18O and 19O nuclei incident on a 12C target. A beam of 19O was produced by the 18O(d,p) reaction at Florida State University and separated using the RESOLUT mass spectrometer. The resulting 19O beam bombarded a 100 μg/cm2 12C target at an intensity of 2-4 × 103 p/s. Evaporation residues resulting from the de-excitation of the fusion product were distinguished by measuring their energy and time-of-flight. Using silicon detectors, micro-channel plate detectors, and an ionization chamber, evaporation residues were detected in the angular range θlab <= 23° with high efficiency. Initial experimental results including measurement of the fusion cross-section to approximately the 100 mb level will be presented. The measured excitation function will be compared to theoretical predictions. Supported by the US DOE under Grand No. DEFG02-88ER-40404.

  20. Density function theory study of the adsorption and dissociation of carbon monoxide on tungsten nanoparticles.

    PubMed

    Weng, Meng-Hsiung; Ju, Shin-Pon; Chen, Hsin-Tsung; Chen, Hui-Lung; Lu, Jian-Ming; Lin, Ken-Huang; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen

    2013-02-01

    The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk.

  1. Differential adsorption of CHON isomers at interstellar grain surfaces

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Ellinger, Y.; Ceccarelli, C.

    2015-06-01

    Context. The CHON generic chemical formula covers different isomers such as isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC); the first three have been identified in a large variety of environments in the interstellar medium (ISM). Several phenomena could be at the origin of the observed abundances, such as different pathways of formation and destruction involving gas phase reactions with different possible activation barriers and/or surface processes depending on the local temperature and the nature of the support. Aims: The scope of this article is to shed some light on the interaction of the CHON isomers with interstellar grains as a function of the nature of the surface and to determine the corresponding adsorption energies in order to find whether this phenomenon could play a role in the abundances observed in the ISM. Methods: The question was addressed by means of numerical simulations using first principle periodic density functional theory (DFT) to represent the grain support as a solid of infinite dimension. Results: Regardless of the nature of the model surface (water ice, graphene, silica), two different classes of isomers were identified: weakly bound (HNCO and HCNO) and strongly bound (HOCN and HONC), with the adsorption energies of the latter group being about twice those of the former. The range of the adsorption energies is (from highest to lowest) HOCN > HONC > HNCO > HCNO. They are totally disconnected from the relative stabilities, which range from HNCO > HOCN > HCNO > HONC. Conclusions: The possibility of hydrogen bonding is the discriminating factor in the trapping of CHON species on grain surfaces. Whatever the environment, differential adsorption is effective and its contribution to the molecular abundances should not be ignored. The theoretical adsorption energies provided here could be profitably used for a more realistic modeling of molecule-surfaces interactions.

  2. Computational Molecular Simulation of the Oxidative Adsorption of Ferrous Iron at the Hematite (001)-Water Interface

    SciTech Connect

    Kerisit, Sebastien N.; Zarzycki, Piotr P.; Rosso, Kevin M.

    2015-04-30

    The interaction of Fe(II) with ferric oxide/oxyhydroxide phases is central to the biogeochemical redox chemistry of iron. Molecular simulation techniques were employed to determine the mechanisms and quantify the rates of Fe(II) oxidative adsorption at the hematite (001)-water interface. Molecular dynamics potential of mean force calculations of Fe(II) adsorbing on the hematite surface revealed the presence of three free energy minima corresponding to Fe(II) adsorbed in an outersphere complex, a monodentate innersphere complex, and a tridentate innersphere complex. The free energy barrier for adsorption from the outersphere position to the monodentate innersphere site was calculated to be similar to the activation enthalpy for water exchange around aqueous Fe(II). Adsorption at both innersphere sites was predicted to be unfavorable unless accompanied by release of protons. Molecular dynamics umbrella sampling simulations and ab initio cluster calculations were performed to determine the rates of electron transfer from Fe(II) adsorbed as an innersphere and outersphere complex. The electron transfer rates were calculated to range from 10^-4 to 10^2 s-1, depending on the adsorption site and the potential parameter set, and were generally slower than those obtained in the bulk hematite lattice. The most reliable estimate of the rate of electron transfer from Fe(II) adsorbed as an outersphere complex to lattice Fe(III) was commensurate with the rate of adsorption as an innersphere complex suggesting that adsorption does not necessarily need to precede oxidation.

  3. Colloid Retention in Porous Media in the Presence of Energy Barriers: Hemispheres-in-Cell Model with Heterogeneity

    NASA Astrophysics Data System (ADS)

    Ma, H.; Pazmino, E. F.; Johnson, W. P.

    2010-12-01

    Experimental evidences indicate that surface heterogeneities (charge and/or roughness) play an important role in colloidal retention in porous media under conditions when colloid-surface repulsion exists, at least for colloids of relatively small sizes (e.g. about 2 microns or less). Hence, we have incorporated surface charge heterogeneity into our recently delevoped hemispheres-in-cell model, with an aim to have a better understanding of colloid retention mechanisms in the presence of repulsive energy barriers via numerically simulating the transport and deposition behavior of different size colloids under the coupled effect of heterogeneity, pore structure (e.g. grain to grain contacts), fluid hydrodynamics, etcetera. Here we describe the strategies employed to account for heterogenously charged collector surfaces in the hemispheres-in-cell model so as to correctly compute the colloid-surface internation forces, and then present preliminary results obtained from this model on colloidal retention under various coverage of heterogenous attractive domains over the collector surfaces.

  4. A multilayer ΔE-E R telescope for breakup reactions at energies around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Ma, Nan-Ru; Lin, Cheng-Jian; Wang, Jian-Song; Yang, Lei; Wang, Dong-Xi; Zheng, Lei; Xu, Shi-Wei; Sun, Li-Jie; Jia, Hui-Ming; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Yang, Yan-Yun; Xu, Xin-Xing; Zhang, Gao-Long; Yang, Feng; He, Jian-Jun; Zhang, Huan-Qiao; Liu, Zu-Hua

    2016-11-01

    The breakup reactions of weakly-bound nuclei at energies around the Coulomb barrier and the corresponding coupling effect on the other reaction channels are hot topics nowadays. To overcome the difficulty in identifying both heavier and lighter fragments simultaneously, a new kind of ionization-chamber based detector telescope has been designed and manufactured. It consists of a PCB ionization chamber and three different thickness silicon detectors installed inside the chamber, which form a multilayer ΔE-E R telescope. The working conditions were surveyed by using an α source. An in-beam test experiment shows that the detector has good particle identification for heavy particles like 17F and 16O as well as light particles like protons and alpha particles. The measured quasi-elastic scattering angular distribution and the related discussions for 17F+208Pb are presented. Supported by National Key Basic Research Development Program of China (2013CB834404) and National Natural Science Foundation of China (11375268, 11475263, U1432127, U1432246).

  5. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  6. Measuring the fusion cross-section of 39,47K + 28Si at near barrier energies

    NASA Astrophysics Data System (ADS)

    Vadas, Justin; Singh, Varinderjit; Wiggins, Blake; Huston, Jacob; Hudan, Sylvie; Desouza, Romualdo; Chbihi, Abdou; Ackermann, Dieter; Brown, Kyle

    2017-01-01

    The outer crust of an accreting neutron star provides an interesting environment for nuclear reactions to occur. In particular, the enhancement of fusion between neutron-rich nuclei relative to their β-stable counterparts has been suggested as a trigger for an X-ray superburst. Recently, nuclei in the mass range of A=20-40 have been proposed as the most likely candidates for this process. To investigate this question, comparing the fusion excitation functions for both neutron-rich and β-stable nuclei at energies near the fusion barrier is necessary. The development of a 47K radioactive beam at NSCL's ReA3 facility makes such a comparison possible for the first time. An approved experiment to measure the fusion excitation functions for 39,47K + 28Si will be described. This experiment utilizes a technique optimized for measuring the total fusion cross-section of reactions involving low-intensity (103 - 106 ions/s) radioactive beams. In addition, protons and α particles emitted by the compound nucleus as it de-excites are measured. Preliminary results will be presented. Supported by DOE Grant No. DE-FG02-88ER-40404 and NSF Grant No. 1342962.

  7. Adsorption removal of pollutants by active cokes produced from sludge in the energy recycle process of wastes.

    PubMed

    Kojima, Naozumi; Mitomo, Aki; Itaya, Yoshinori; Mori, Shigekatsu; Yoshida, Shuichi

    2002-01-01

    This study proposes a recycling system of sludge into active cokes and the fundamental examinations for the application were carried out. In the system, active cokes were produced by carbonizing pellets of sludge in a steam stream. Pyrolysis gas yielded by carbonization can be available to a fuel for a steam generation boiler. The exhaust heat from the boiler is used sequentially for drying of sludge. The active cokes are applied to the adsorbent for dioxin removal in exhaust gas from incinerators of wastes, or for purification of gas obtained in a gasification process of wastes, particularly removal of H2S. The used adsorbent is not recycled, but incinerated in the furnace without a desorption process to decompose adsorbed dioxin or to oxidize H2S for a sequential desulfurization process of SO2. Dry pellets of sludge were carbonized in a quartz tube reactor under various atmospheres. The micro pore structure and the adsorption performance of the cokes produced without activation process were examined. The micro pore structure was influenced by the temperature, the sort of flow gas (N2, CO2 and steam) and carbonization time, and the active cokes produced under the condition of the temperature 823 K for 60 min in the steam atmosphere had a largest specific surface area in the diameter less than 5 nm. The amount of benzene adsorption as an alternative substance of dioxin into the active cokes had a similar quality to a commercial active char produced from coal if it was evaluated by adsorption per a unit specific surface area. This fundamental knowledge must be reflected to an optimum design for development of a simple continuous process to produce the active cokes by a fluidized bed type of the carbonization furnace.

  8. Atomic and molecular adsorption on Au(111)

    SciTech Connect

    Santiago-Rodríguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, María C.; Mavrikakis, Manos

    2014-09-01

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH3 < NO < CO < CH3 < HCO < NH2 < COOH < OH < HCOO < CNH2 < H < N < NH < NOH < COH < Cl,< HCO3 < CH2 < CN b HNO < O < F < S < C < CH. Although the atomic species preferred to bind at the three-fold fcc site, no tendency was observed in site preference for the molecular species and fragments. The intramolecular and adsorbate-surface vibrational frequencies were calculated for all the adsorbates on their most energetically stable adsorption site. Most of the theoretical binding energies and frequencies agreed with experimental values reported in the literature. In general, the values obtained with the PW91 functional are more accurate than RPBE in reproducing these experimental binding energies. The energies of the adsorbed species were used to calculate the thermochemical potential energy surfaces for decomposition of CO, NO, N2, NH3 and CH4, oxidation of CO, and hydrogenation of CO, CO2 and NO, giving insight into the thermochemistry of these reactions on gold nanoparticles. These potential energy surfaces demonstrated that: the decomposition of species is not energetically favorable on Au(111); the desorption of NH3, NO and CO are more favorable than their decomposition; the oxidation of CO and hydrogenation of CO and NO on Au(111) to form HCO and HNO, respectively, are also thermodynamically favorable.

  9. Enhanced adsorption energy of Au1 and O2 on the stoichiometric TiO2(110) surface by coadsorption with other molecules

    NASA Astrophysics Data System (ADS)

    Chrétien, Steeve; Metiu, Horia

    2008-01-01

    During heterogeneous catalysis the surface is simultaneously covered by several adsorbed molecules. The manner in which the presence of one kind of molecule affects the adsorption of a molecule of another kind has been of interest for a long time. In most cases the presence of one adsorbate does not change substantially the binding energy of another adsorbate. The calculations presented here show that the stoichiometric rutile TiO2(110) surface, on which one of the compounds -OH, Au3, Au5, Au7, Na, K, or Cs or two different gold strips was preadsorbed, behaves differently: the binding energy of Au1 or O2 to such a surface is much stronger than the binding to the clean stoichiometric TiO2(110) surface. Moreover, the binding energy of Au1 or O2 and the amount of charge they take from the surface when they adsorb are the same, regardless of which of the above species is preadsorbed. The preadsorbed species donate electrons to the conduction band of the oxide, and these electrons are used by Au1 or O2 to make stronger bonds with the surface. This suggests that adding an electron to the conduction band of the clean stoichiometric TiO2(110) slab used in the calculation will affect similarly the adsorption energy of Au1 or O2. Our calculations show that it does. We have also studied how the preadsorption of Au4 or Au6 affects the binding of Au1 or O2 to the surface. These two gold clusters do not donate electrons to the surface when they bind to it and therefore should not influence substantially the binding energy of Au1 or O2 to the surface. However, adsorbing O2 or Au1 on the surface forces the clusters to change their structure into that of isomers that donate charge to the oxide. This charge is used by Au1 or O2 to bind to the surface and the energy of this bond exceeds the isomerization energy. As a result the surface with the isomerized cluster is the lowest energy state of the system. We believe that these results can be generalized as follows. The molecules that

  10. Potential-barrier model at metal surfaces: Application to analyses of low-energy electron-diffraction fine-structure experiments

    NASA Astrophysics Data System (ADS)

    Mola, E. E.; Paola, C. A.; Vicente, J. L.

    1991-12-01

    We propose a model for the potential barrier for electrons crossing a metal surface, in which (1) we reproduce the effective potential of Lang and Kohn, in fact, better than any approximation in the existing literature and (2) we approach the classical image potential for large separation from the surface. Our potential does not diverge as the electron approaches the surface and goes over smoothly to the electron-electron interaction potential in the bulk. It reproduces the first peak in the effective potential of Lang and Kohn, which is a Friedel oscillation. We achieve better agreement with the Lang-Kohn potential than Jennings, Jones, and Weinert in their barrier model. This makes our model useful in the analysis of low-energy electron-diffraction fine-structure experiments. Our simple barrier model allows analytical solutions of the Schrödinger equation in the density-functional formalism.

  11. Crystal Structures, Surface Stability, and Water Adsorption Energies of La-Bastnäsite via Density Functional Theory and Experimental Studies

    SciTech Connect

    Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.; Stack, Andrew G.; Navrotsky, Alexandra; Riman, Richard; Anderko, Andre; Bryantsev, Vyacheslav S.

    2016-07-11

    Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to the structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m2 in vacuum and 0.45 J/m2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m2, in good agreement with a value of 1.11 J/m2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of

  12. Crystal Structures, Surface Stability, and Water Adsorption Energies of La-Bastnäsite via Density Functional Theory and Experimental Studies

    DOE PAGES

    Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.; ...

    2016-07-11

    Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themore » structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m2 in vacuum and 0.45 J/m2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m2, in good agreement with a value of 1.11 J/m2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing

  13. Atomic and Molecular Adsorption on Re(0001)

    SciTech Connect

    Hahn, Konstanze; Mavrikakis, Manos

    2014-02-01

    Using periodic, self-consistent density functional theory calculations, the adsorption of several atomic (H, S, N, O and C) and molecular (CO2, N2, NH3, HCN, CO and NO) species and molecular fragments (NH2, NH, CN, CNH2, HNO, NOH, CH3, CH2, CH and OH) on the (0001) facet of rhenium at a coverage of 0.25 ML has been studied. Preferred binding sites with their corresponding binding energy and deformation energy of the surface, as well as an estimated diffusion barrier of each species have been determined. Atomic species and molecular fragments tend to bind to threefold sites, whereas molecular species tend to bind to top sites. The binding strength, with respect to the corresponding gas phase species and in increasing order for all species studied, is: CO2 < N2 < NH3 < CO < CH3 < HCN < NO < H < NH2 < OH < CH2 < CNH2 < CN < HNO < NH < NOH < S < N < O < CH < C. The vibrational frequencies of all species in their most energetically favorable adsorbed configuration have been calculated. Finally, the thermochemistry of adsorption and decomposition of NO, NO + H, NH3, N2, CO2, CO and CH4 on Re(0001) has been analyzed.

  14. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study.

    PubMed

    Evers, Florian; Shokuie, Kaveh; Paulus, Michael; Sternemann, Christian; Czeslik, Claus; Tolan, Metin

    2008-09-16

    The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution.

  15. Neutron transfer versus inelastic surface vibrations in the enhancement of sub-barrier fusion excitation function data and the energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Singh Gautam, Manjeet

    2015-02-01

    This work deeply analyzed the relative importance of the neutron transfer channels and inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of various heavy ion systems using an energy dependent Woods-Saxon potential (EDWSP) model in conjunction with a one-dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei and the nucleon transfer channels are found to be dominant internal degrees of freedom. The coupling between the relative motion of reactants and these relevant channels produces anomalously large sub-barrier fusion enhancement over the expectations of the one-dimensional barrier penetration model. In some cases, the influence of neutron transfer dominates over the couplings to low lying surface vibrational states of collision partners. Furthermore, the effects of coupling to inelastic surface excitations and the impact of neutron transfer channels with positive ground state Q-values are imitated due to energy dependence in the Woods-Saxon potential. In the EDWSP model calculations, a wide range for the diffuseness parameter, which is much larger than the value extracted from the elastic scattering data, is needed to account for the observed fusion enhancement in the close vicinity of the Coulomb barrier.

  16. Auger electron spectroscopy, electron loss spectroscopy and low energy electron diffraction of oxygen and carbon monoxide adsorption of Pd films

    SciTech Connect

    Vook, R.W.; De Cooman, B.C.; Vankar, V.D.

    1983-01-01

    The adsorption of oxygen and carbon monoxide at room temperature on polycrystalline and (111) monocrystalline thin films of Pd vapor deposited on mice was investigated by AES, ELS, and LEED. The results show that adsorbate coverage depends strongly on surface microstructure, composition, and topography. Polycrystalline or Cl contaminated surfaces adsorb large amounts of the gases, while flat, monocrystalline surfaces will adsorb almost none. These results are quite different from those observed earlier using sputter etched and annealed bulk single cyrstals where adsorbate superlattices formed after rather low gaseous exposures. In the present work no superlattices were observed after exposures ranging up to several thousand langmuirs. The contradictory results obtained in the two cases are attributed to probable differences in surface microtopography and microstructure.

  17. Atomistic simulations of calcium uranyl(VI) carbonate adsorption on calcite and stepped-calcite surfaces.

    PubMed

    Doudou, Slimane; Vaughan, David J; Livens, Francis R; Burton, Neil A

    2012-07-17

    Adsorption of actinyl ions onto mineral surfaces is one of the main mechanisms that control the migration of these ions in environmental systems. Here, we present computational classical molecular dynamics (MD) simulations to investigate the behavior of U(VI) in contact with different calcite surfaces. The calcium-uranyl-carbonate [Ca(2)UO(2)(CO(3))(3)] species is shown to display both inner- and outer-sphere adsorption to the flat {101̅4} and the stepped {314̅8} and {31̅2̅16} planes of calcite. Free energy calculations, using the umbrella sampling method, are employed to simulate adsorption paths of the same uranyl species on the different calcite surfaces under aqueous condition. Outer-sphere adsorption is found to dominate over inner-sphere adsorption because of the high free energy barrier of removing a uranyl-carbonate interaction and replacing it with a new uranyl-surface interaction. An important binding mode is proposed involving a single vicinal water monolayer between the surface and the sorbed complex. From the free energy profiles of the different calcite surfaces, the uranyl complex was also found to adsorb preferentially on the acute-stepped {314̅8} face of calcite, in agreement with experiment.

  18. Potential energy barriers for interlayer mass transport in homoepitaxial growth on fcc(111) surfaces: Pt and Ag

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; DePristo, Andrew E.

    1994-11-01

    The efficiency of interlayer mass transport determines the growth mode and film quality in molecular beam epitaxy. In this paper we report potential energy barriers (PEB) to interlayer diffusion for Pt and Ag homoepitaxial growth on fcc (111) surfaces, as calculated using the corrected effective medium theory. Various island structures were considered. The island sizes ranged from 3- to about 60-atom islands and to various steps ("infinite" large islands). We found that jumping directly over the island edge has a much higher PEB than does the so-called displacement-exchange mechanism. Exchange at edges with kink sites also had a higher or comparable PEB to those at the straight (perfect) edges, contrary to previous speculations [M. Henzler, T. Schmidt and E.Z. Luo, in: The Structure of Surfaces IV (World Scientific, Signapore, 1994)]. The PEB depended strongly on the local atomic arrangement but was insensitive to the global island size and shape as long as the island edges were at least five atoms long. For the displacement-exchange process, the PEB did not decrease monotonically with decreasing island size over the entire island size range. For very small islands of less than ten atoms the PEB increased abruptly by an order of magnitude. This qualitative behavior was exhibited by both Pt and Ag systems but the two differed quantitatively for island sizes above ten atoms. We discuss the relevance of these results to the experimental observations, i.e., the reentrant growth in Pt [R. Kunkel, B. Poelsema, L.K. Verheij and G. Comsa, Phys. Rev. Lett. 65 (1990) 733], layer-by-layer growth in Ag induced by surfactant [H.A. van der Vegt, H.M. van Pinxteren, M. Lohmerier and E. Vlieg, Phys. Rev. Lett. 68 (1992) 3335] or by high-density of islands [G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema and G. Comsa, Phys. Rev. Lett. 71 (1993) 895 ], as well as the different growth behaviors found in the two systems.

  19. The Effects of a High-Energy Diet on Hippocampal Function and Blood-Brain Barrier Integrity in the Rat

    PubMed Central

    Kanoski, Scott E.; Zhang, Yanshu; Zheng, Wei; Davidson, Terry L.

    2016-01-01

    Cognitive impairment and Alzheimer’s Disease are linked with intake of a Western Diet, characterized by high levels of saturated fats and simple carbohydrates. In rats, these dietary components have been shown to disrupt hippocampal-dependent learning and memory processes, particularly those involving spatial memory. Using a rat model, the present research assessed the degree to which consumption of a high-energy (HE) diet, similar to those found in modern Western cultures, produces a selective impairment in hippocampal function as opposed to a more global cognitive disruption. Learning and memory performance was examined following 90-days consumption of an HE-diet in three nonspatial discrimination learning problems that differed with respect to their dependence on the integrity of the hippocampus. The results showed that consumption of the HE-diet impaired performance in a hippocampal-dependent feature negative discrimination problem relative to chow-fed controls, whereas performance was spared on two discrimination problems that do not rely on the hippocampus. To explore the mechanism whereby consuming HE-diets impairs cognitive function, we investigated the effect of HE-diets on the integrity of the blood-brain barrier (BBB). We found that HE-diet consumption produced a decrease in mRNA expression of tight junction proteins, particularly Claudin-5 and -12, in the choroid plexus and the BBB. Consequently, an increased blood-to-brain permeability of sodium fluorescein was observed in the hippocampus, but not in the striatum and prefrontal cortex following HE-diet access. There results indicate that hippocampal function may be particularly vulnerable to disruption by HE-diets, and this disruption may be related to impaired BBB integrity. PMID:20413889

  20. Adsorption of star polymers

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Joanny, J. F.

    1991-06-01

    The adsorption of star polymers on a flat solid surface is analyzed by means of scalling arguments based on the Daoud-Cotton blob model. For the adsorption of a single star, consisting of f arms comprising each N monomers, we distinguish three regimes determined by the adsorption energy of a monomer at the surface, δ kT. 1) Strong adsorption characterized by the full adsorption of all arms occurs for δ > (f/N)^{3/5}. 2) A “Sombrero” like structure comprising f_ads fully adsorbed arms and f{-}f_ads free arms is obtained for (f/N)^{3/5}> δ > f^{9/20}/N^{3/5}. 3) Weakly adsorbed stars retain, essentially, the structure of a free star. This regime occurs for δ < f^{9/20}/N^{3/5}. The weakly adsorbed structure may also exist as a metastable state if δ > f^{9/5}/N^{3/5}. Nous étudions l'adsorption de polymères en étoile sur une surface solide en utilisant une approche de lois d'échelles basée sur le modèle de blobs de Daoud et Cotton. Pour une étoile formée de f bras contenant chacun N monomères, nous distinguons trois régimes suivant la valeur de l'énergie d'adsorption d'un monomère sur la surface δ kT. 1) L'adsorption forte caractérisée par une adsorption complète de tous les bras se produit lorsque δ > (f/N)^{3/5}. 2) Une structure en “sombrero” avec f_ads bras adsorbés et f{-}f_ads bras libres est obtenue si f^{9/20}/N^{3/5}δ < (f/N)^{3/5}. 3) Les étoiles faiblement adsorbées gardent une structure très similaire à celle des étoiles libres en solution. Ce régime existe si δ < f^{9/20}/N^{3/5}. La structure correspondant aux étoiles faiblement adsorbées peut aussi exister comme un état métastable si δ > f^{9/5}/N^{3/5}.

  1. Adsorption site of c(2×2) O on Ni(0001): An off-normal-direction energy-dependent photoelectron-diffraction study

    NASA Astrophysics Data System (ADS)

    Mei, W. N.; Tong, S. Y.

    1986-01-01

    We have used the technique of energy-dependent photoelectron diffraction (EDPD) to study the pseudo-bridge-site model proposed by Demuth et al. for the adsorption of c(2×2) O on Ni(001). Calculated EDPD curves at the normal exit direction for the pseudo-bridge site, averaged over four domains, were compared with those for the fourfold hollow site. We found no significant differences in the EDPD curves for the two different structural models. However, the calculated EDPD curves at off-normal directions, such as those along the [011] direction, or along the O-Ni bond directions, were qualitatively different for the two sites. We therefore conclude that off-normal-direction EDPD curves, when compared with measured data, can effectively determine the lateral coordinates of the oxygen overlayer on Ni(001).

  2. Increasing the effective energy barrier promoted by the change of a counteranion in a Zn-Dy-Zn SMM: slow relaxation via the second excited state.

    PubMed

    Oyarzabal, I; Ruiz, J; Ruiz, E; Aravena, D; Seco, J M; Colacio, E

    2015-08-11

    The trinuclear complex [ZnCl(μ-L)Dy(μ-L)ClZn]PF6 exhibits a single-molecule magnetic behaviour under zero field with a relatively large effective energy barrier of 186 cm(-1). Ab initio calculations reveal that the relaxation of the magnetization is symmetry-driven (the Dy(III) ion possesses a C2 symmetry) and occurs via the second excited state.

  3. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model.

    PubMed

    Plotnikov, Nikolay V

    2014-08-12

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.

  4. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  5. α and 3He production in the 7Be+28Si reaction at near-barrier energies: Direct versus compound-nucleus mechanisms

    NASA Astrophysics Data System (ADS)

    Sgouros, O.; Pakou, A.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Betsou, Ch.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; Keeley, N.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Nicolis, N. G.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Signorini, C.; Soramel, F.; Soukeras, V.; Stefanini, C.; Stiliaris, E.; Strano, E.; Strojek, I.; Torresi, D.

    2016-10-01

    The production of α and 3He particles, the cluster constituents of 7Be, in the 7Be+28Si reaction was studied at three near-barrier energies, namely 13, 20, and 22 MeV. Angular distribution measurements were performed at each energy, and the data were analyzed in both statistical model and Distorted-Wave Born Approximation (DWBA) frameworks in order to disentangle the degree of competition between direct and compound channels. The energy evolution of the ratio of direct to total reaction cross section was mapped in comparison with similar data for 6Li and 7Li projectiles on a 28Si target. The results indicate larger transfer contributions for collisions involving the mirror nuclei 7Be and 7Li than in the 6Li case. Fusion cross sections were deduced, taking into account the α -particle cross sections due to compound-nucleus formation and particle multiplicities deduced from our statistical model framework. It was found that fusion is compatible with systematics and single-barrier penetration cross sections to within an uncertainty band of 10% to 20%. Indications of fusion hindrance for 7Li and 7Be compared to 6Li, starting from the barrier and below it, are given. This hindrance is attributed to the existence of large transfer channels. Furthermore, the experimental results, analyzed in the DWBA framework, suggest 3He and 4He transfer as the dominant direct reaction mechanism.

  6. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    NASA Astrophysics Data System (ADS)

    Bentley, Brook I.

    Surface effects limit the performance of hypersonic vehicles, micro-electro-mechanical devices, and directed energy systems. This research develops methods to predict adsorption, scattering, and thermal desorption of molecules on a surface. These methods apply to physisorptive (adsorption and scattering) and chemisorptive (thermal desorption) gas-surface systems. Engineering and design applications will benefit from these methods, hence they are developed under the Direct Simulation Monte Carlo construct. The novel adsorption and scattering contribution, the Modified Kisliuk with Scattering method, predicts angular and energy distributions, and adsorption probabilities. These results agree more closely with experiment than the state-of-the-art Cercignani-Lampis-Lord scattering kernel. Super-elastic scattering is predicted. Gas-adlayer interactions are included for the first time. Accommodation coefficents can be determined by fitting simulations to experimental data. The new thermal desorption model accurately calculates angular, translational, rotational, and vibrational distributions, and the rotational alignment parameter. The model is validated by comparing with experiments. Multiple transition states are considered in a set of non-dimensionalized equations of motion, linked with temporally-accurate event timing. Initial conditions are chosen from a new truncated Maxwell-Boltzmann distribution. Run times are improved by eliminating the Gaussian Weighting of desorbing products. The absorption energy barrier is shown to significantly contribute only to the translational energy of desorbing molecules by contributing energy to each adatom in a similar manner.

  7. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  8. Galactose adsorption on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Alatalo, Matti; Puisto, Mikko

    2014-03-01

    In order to understand the valorisation of biomass, it is essential to study the behavior of sugar molecules on catalytic surfaces. We have studied the adsorption of galactose molecules on the Ru(0001) surface using first principles calculations. We present results for the fully relaxed configurations of the molecule at different adsorption sites. We also compare the effect of the inclusion of the van der Waals interactions on both the energetics of the free galactose molecule and the adsorption energy of galactose on Ru(0001). We compare our results, obtained using periodically repeated supercells, to those obtained with cluster calculations.

  9. Barriers and opportunities for improving energy efficiency in the social housing sector: Case study of E4C's Division of Housing and Mental Health

    NASA Astrophysics Data System (ADS)

    Marchand-Smith, Patrick

    Energy efficiency improvements in the social housing sector have the potential to produce a range of environmental and social benefits. These improvements can be produced through retrofits that deliver energy savings or new construction built to a high standard of energetic efficiency. However, implementation of these approaches is hindered by economic and organizational constraints affecting the agencies that provide society with social housing and the governments that support the provision of these services. This thesis builds on the work of other researchers studying these constraints by supplying an in-depth case study from Alberta and a discussion based on its findings. The case study focuses on E4C, a social service agency with several housing projects. Overall, findings matched important themes identified in the academic literature. The in-depth nature of the case study added additional insight to many of these themes. Most barriers are economic in nature and related to a lack of sufficient funding or the up-front costs of energy-saving retrofits. The recommendations presented are based on consideration of the multiple barriers and opportunities faced. Most of these require a considerable investment of time on the part of agencies and would be followed up by capital investments to implement energy-saving changes. Therefore it is important to note that the most significant barrier is commitment, which is one of E4C's central values. This thesis showed that commitment cannot exceed capacity to act. Greater commitment on the part of governments, agencies or society at large could have significant impacts in improving the energy efficiency of buildings in the Albertan, and Canadian, social housing sector.

  10. Single-crystal adsorption calorimetry and density functional theory of CO chemisorption on fcc Co{110}.

    PubMed

    Liao, Kristine; Fiorin, Vittorio; Gunn, David S D; Jenkins, Stephen J; King, David A

    2013-03-21

    Using single-crystal adsorption calorimetry (SCAC) and density functional theory (DFT), the interaction of carbon monoxide on fcc Co{110} is reported for the first time. The results indicate that adsorption is consistent with molecular chemisorption at all coverages. The initial heat of adsorption of 140 kJ mol(-1) is found in the range of heat values calorimetrically measured on other ferromagnetic metal surfaces, such as nickel and iron. DFT adsorption energies are in good agreement with the experimental results, and comparison between SCAC and DFT for CO on other ferromagnetic surfaces is made. The calculated dissociation barrier of 2.03 eV implies that dissociation at 300 K is unlikely even at the lowest coverage. At high coverages during the adsorption-desorption steady state regime, a pre-exponential factor for CO desorption of 1.2 × 10(17) s(-1) is found, implying a localised molecular adsorbed state prior to desorption in contrast to what we found with Ni surfaces. This result highlights the importance of the choice of the pre-exponential factor in evaluating the activation energy for desorption.

  11. Identifying perceived barriers and benefits to reducing energy consumption in an affordable housing complex using the Community-Based Social Marketing model

    NASA Astrophysics Data System (ADS)

    Reaves, Daniel

    Energy production and consumption has a negative impact on both environmental and human health. Energy consumption can be directly impacted by human behavior, especially in the residential sector. As a result, this sector has been studied significantly; however, energy reducing behavior change research focusing on the affordable housing sector has not been studied thoroughly to date. This study seeks to implement the first two phases of the Community Based Social Marketing (CBSM) framework in an affordable housing setting. The goals were to identify the optimal behaviors for energy reduction based on phase one survey results and to identify the perceived benefits and barriers associated with those behaviors. Additionally, this study identified nuances in the CBSM process that researchers should take into consideration when implementing CBSM in an affordable housing environment.

  12. Ab initio calculations of stationary points on the benzene-Ar and p-difluorobenzene-Ar potential energy surfaces: barriers to bound orbiting states.

    PubMed

    Moulds, Rebecca J; Buntine, Mark A; Lawrance, Warren D

    2004-09-08

    The potential energy surfaces of the van der Waals complexes benzene-Ar and p-difluorobenzene-Ar have been investigated at the second-order Møller-Plesset (MP2) level of theory with the aug-cc-pVDZ basis set. Calculations were performed with unconstrained geometry optimization for all stationary points. This study has been performed to elucidate the nature of a conflict between experimental results from dispersed fluorescence and velocity map imaging (VMI). The inconsistency is that spectra for levels of p-difluorobenzene-Ar and -Kr below the dissociation thresholds determined by VMI show bands where free p-difluorobenzene emits, suggesting that dissociation is occurring. We proposed that the bands observed in the dispersed fluorescence spectra are due to emission from states in which the rare gas atom orbits the aromatic chromophore; these states are populated by intramolecular vibrational redistribution from the initially excited level [S. M. Bellm, R. J. Moulds, and W. D. Lawrance, J. Chem. Phys. 115, 10709 (2001)]. To test this proposition, stationary points have been located on both the benzene-Ar and p-difluorobenzene-Ar potential energy surfaces (PESs) to determine the barriers to this orbiting motion. Comparison with previous single point CCSD(T) calculations of the benzene-Ar PES has been used to determine the amount by which the barriers are overestimated at the MP2 level. As there is little difference in the comparable regions of the benzene-Ar and p-difluorobenzene-Ar PESs, the overestimation is expected to be similar for p-difluorobenzene-Ar. Allowing for this overestimation gives the barrier to movement of the Ar atom around the pDFB ring via the valley between the H atoms as < or = 204 cm(-1) in S0 (including zero point energy). From the estimated change upon electronic excitation, the corresponding barrier in S1 is estimated to be < or = 225 cm(-1). This barrier is less than the 240 cm(-1) energy of 30(2), the vibrational level for which the

  13. First principles study of nanoscale mechanism of oxygen adsorption on lanthanum zirconate surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Wu, Linmin; Zhang, Yi; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing

    2016-09-01

    Lanthanum zirconate (La2Zr2O7) is a rare-earth pyrochlore material, which has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high temperature phase stability. At elevated temperatures, degradation of La2Zr2O7 may occur due to adsorption of oxygen (O2) on La2Zr2O7 surfaces. This paper investigates nanoscale mechanism of O2 adsorption on La2Zr2O7 coating surfaces using the density functional theory (DFT) calculations. La2Zr2O7 surface energies on (001), (011) and (111) planes are calculated. The surface free energy of (011) plane is lower than those of (001) and (111) planes. On (001), (011) and (111) planes of La2Zr2O7, the lowest adsorption energy occurs at 4-fold site, bridge site, and 3-fold-FCC site, respectively. Among all calculated cases, the lowest adsorption energy site is 3-fold-FCC on (111) plane, which is confirmed by the Bader charge transfer analyses. Charge density difference analyses show that the 3-fold-FCC site on (111) surface has the largest charge density, suggesting the strongest interaction between O2 and La2Zr2O7 surface.

  14. Measuring the Fusion Cross-Section of 18,19 O + 12 C with Low-Intensity Beams at Energies Near and Below the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy; Vadas, Justin; Schmidt, Jon; Singh, Varinderjit; Hudan, Sylvie; Desouza, Romualdo; Baby, Lagy; Kuvin, Sean; Wiedenhover, Ingo; Umar, Sait; Oberacker, Volker

    2015-04-01

    Fusion of neutron-rich light nuclei has been proposed as a heat source that triggers an X-ray superburst in the crust of an accreting neutron star. To investigate this hypothesis the total fusion cross-section for beams of low-intensity, neutron-rich nuclei (<105 ions/s) on light targets has been measured at energies near and below the Coulomb barrier. Evaporation residues, resulting from the fusion of oxygen and 12 C nuclei, were identified by their energy and Time-of-flight. Using this technique, the fusion excitation function was measured in the sub-barrier domain down to the 2 mb level. Comparison of the measured fusion excitation function with the predictions of a density constrained TDHF model reveals that the experimental data exhibit a smaller decrease in cross-section with decreasing energy than is theoretically predicted. This difference can be interpreted as a larger tunneling probability for the experimental data as compared to the theoretical predictions. To determine if this difference increases in magnitude with decreasing incident energy improvements have been implemented to enable measurement of the fusion cross-section to an even lower level. Supported by the US DOE under Grand No. DEFG02-88ER-40404.

  15. Fabrication of double barrier structures in single layer c-Si-QDs/a-SiOx films for realization of energy selective contacts for hot carrier solar cells

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2017-01-01

    Thin films of c-Si-QDs embedded in an a-SiOx dielectric matrix forming arrays of double barrier structures have been fabricated by reactive rf-magnetron sputtering at ˜400 °C, without post-deposition annealing. The formation of larger size c-Si-QDs of reduced number density in homogeneous distribution within a less oxygenated a-SiOx matrix at higher plasma pressure introduces systematic widening of the average periodic distance between the adjacent `c-Si-QDs in a-SiOx', as obtained by X-ray reflectivity and transmission electron microscopy studies. A wave-like pattern in the J-E characteristics identifies the formation of periodic double-barrier structures along the path of the movement of charge carriers across the QDs and that those are originated by the a-SiOx dielectric matrix around the c-Si-QDs. A finite distribution of the size of c-Si-QDs introduces a broadening of the current density peak and simultaneously originates the negative differential resistance-like characteristics, which have suitable applications in the energy selective contacts that act as energy filters for hot carrier solar cells. A simple yet effective process technology has been demonstrated. Further initiative on tuning the energy selectivity by reducing the size and narrowing the size-distribution of Si-QDs can emerge superior energy selective contacts for hot carrier solar cells, paving ground for accomplishing all-Si solar cells.

  16. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements?

    PubMed

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-09-13

    The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses.

  17. Protein diffusion and long-term adsorption states at charged solid surfaces.

    PubMed

    Kubiak-Ossowska, Karina; Mulheran, Paul A

    2012-11-06

    The diffusion pathways of lysozyme adsorbed to a model charged ionic surface are studied using fully atomistic steered molecular dynamics simulation. The simulations start from existing protein adsorption trajectories, where it has been found that one particular residue, Arg128 at the N,C-terminal face, plays a crucial role in anchoring the lysozyme to the surface [Langmuir 2010 , 26 , 15954 - 15965]. We first investigate the desorption pathway for the protein by pulling the Arg128 side chain away from the surface in the normal direction, and its subsequent readsorption, before studying diffusion pathways by pulling the Arg128 side chain parallel to the surface. We find that the orientation of this side chain plays a decisive role in the diffusion process. Initially, it is oriented normal to the surface, aligning in the electrostatic field of the surface during the adsorption process, but after resorption it lies parallel to the surface, being unable to return to its original orientation due to geometric constraints arising from structured water layers at the surface. Diffusion from this alternative adsorption state has a lower energy barrier of ∼0.9 eV, associated with breaking hydrogen bonds along the pathway, in reasonable agreement with the barrier inferred from previous experimental observation of lysozyme surface clustering. These results show the importance of studying protein diffusion alongside adsorption to gain full insight into the formation of protein clusters and films, essential steps in the future development of functionalized surfaces.

  18. First-principles study of oxygen adsorption and diffusion on the UN(001) surface

    NASA Astrophysics Data System (ADS)

    Nie, J. L.; Ao, L.; Zu, X. T.; Huang, H.; Liu, K. Z.

    2015-12-01

    First-principles calculations have been performed to study the interaction of oxygen with UN(001) surface. The molecule oxygen was found to dissociate spontaneously on all considered adsorption sites on the surface. Atomic oxygen (O) preferred to adsorb on a hollow site or the top of uranium ions, which were energetically degenerate. Adsorption on top of nitrogen (N) ion was found to be unstable which may be attributed to the repulsion of negatively charged O with the N anions. In comparison with those on α-U(001)surface at the same coverage, the adsorption of O on UN(001) surface was found to be less stable, being about 0.7 eV higher in adsorption energy. The diffusion barrier for O on the surface was found to be ∼0.5 eV, similar to those of α-U(001)surface. The penetration of O into the substrate was difficult with a high barrier of 2.86 eV. Analysis on the density of states (DOS) has shown that the adsorbed oxygen has strong chemical interaction with surface ions, characterized by the hybridization of O 2p states with N 2p and U 6d, U 5f states.

  19. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations.

    PubMed

    Wang, Xinye; Huang, Yaji; Pan, Zhigang; Wang, Yongxing; Liu, Changqi

    2015-09-15

    Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl2 molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl2. Considering the energy barriers, it is easy for PbO and PbCl2 to adsorb on Al surfaces but difficult to escape. The high energy barriers of de-HCl process cause the difficulties of PbCl2 to form PbO·Al2O3·2SiO2 with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  20. First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes

    SciTech Connect

    Sánchez-Ochoa, F. Cocoletzi, Gregorio H.; Canto, Gabriel I.; Takeuchi, Noboru

    2014-06-07

    We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m < 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital–lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.

  1. Strain effect on the adsorption, diffusion, and molecular dissociation of hydrogen on Mg (0001) surface

    SciTech Connect

    Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Hupalo, Myron; Wang, Yangang; McDougall, Dan; Tringides, Michael; Ho, Kaiming

    2013-12-14

    The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H{sub 2} molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H{sub 2} molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials.

  2. Effect of surface modification of poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Yu, L. D.; Boonyawan, D.; Chaiwong, C.

    2014-08-01

    The final goal of the study was to promote understanding of mechanisms involved in cell attachment on biomedical polymer poly(lactic acid) (PLA). As the cell attachment on the material surface was preceded by blood protein adsorption which would critically affect subsequent cell adhesion, for the clinic application purpose, human serum albumin (HSA) was used in the investigation on its adsorption on PLA, which was however treated by low-pressure ammonia (NH3) plasma. The NH3-plasma-treated PLA was found to adsorb less HSA than the untreated PLA. The PLA was characterized using various techniques such as atomic force microscopy, contact angle and surface energy analysis and x-ray photoelectron spectroscopy. All of the characterization results indicated that due to NH3-plasma-induced polar groups the PLA enhanced its hydrophilicity which in turn inhibited the HSA adsorption. The decreased HSA adsorption would consequently increase the cell attachment because of the cell adhesion barrier reduced.

  3. An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption

    SciTech Connect

    Janke, Svenja M.; Auerbach, Daniel J.; Kandratsenka, Alexander; Wodtke, Alec M.

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  4. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    PubMed

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  5. Elastic Barrier Dynamical Freezing in Free Energy Calculations: A Way To Speed Up Nonequilibrium Molecular Dynamics Simulations by Orders of Magnitude.

    PubMed

    Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo

    2016-03-08

    An important issue concerning computer simulations addressed to free energy estimates via nonequilibrium work theorems, such as the Jarzynski equality [Phys. Rev. Lett. 1997, 78, 2690], is the computational effort required to achieve results with acceptable accuracy. In this respect, the dynamical freezing approach [Phys. Rev. E 2009, 80, 041124] has been shown to improve the efficiency of this kind of simulations, by blocking the dynamics of particles located outside an established mobility region. In this report, we show that dynamical freezing produces a systematic spurious decrease of the particle density inside the mobility region. As a consequence, the requirements to apply nonequilibrium work theorems are only approximately met. Starting from these considerations, we have developed a simulation scheme, called "elastic barrier dynamical freezing", according to which a stiff potential-energy barrier is enforced at the boundaries of the mobility region, preventing the particles from leaving this region of space during the nonequilibrium trajectories. The method, tested on the calculation of the distance-dependent free energy of a dimer immersed into a Lennard-Jones fluid, provides an accuracy comparable to the conventional steered molecular dynamics, with a computational speedup exceeding a few orders of magnitude.

  6. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells.

    PubMed

    Ryno, Sean M; Fu, Yao-Tsung; Risko, Chad; Brédas, Jean-Luc

    2016-06-22

    We probe the energetic landscape at a model pentacene/fullerene (C60) interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e., the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges results in a barrier to charge separation at the pentacene/C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  7. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC.

  8. A comparative study of atomic oxygen adsorption at Pd surfaces from Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Bukas, Vanessa J.; Reuter, Karsten

    2017-04-01

    Based on density functional theory, we present a detailed investigation into the on-surface adsorption of atomic oxygen at all three low-index Pd facets in the low-coverage regime. Relying on one consistent computational framework allows for a systematic comparison with respect to surface symmetry, while discerning trends in the adsorption geometries, energies, work functions, and electron densities. We overall find a persisting degree of O-Pd hybridization that is accompanied by minimal charge transfer from the substrate to the adsorbate, thereby resulting in comparable binding energies and diffusion barriers at the three surfaces. Small differences in reactivity are nevertheless reflected in subtle variations of the underlying electronic structure which do not, however, follow the expected order according to atom packing density.

  9. Intrinsic flexibility of the zeolitic imidazolate framework ZIF-7 unveiled by CO₂ adsorption and Hg intrusion.

    PubMed

    Pera-Titus, Marc

    2014-06-06

    ZIF-7, built as an assembly of Zn(II) centers and benzimidazolate ligands, shows prominent S-shaped isotherms upon CO2 adsorption that can be attributed to sorbate-induced gate-opening phenomena involving a narrow-to-large pore phase transition. This peculiar sorption pattern can be captured via the formulation of thermodynamic isotherms, providing a direct enthalpic and entropic view of the gate-opening process. Relying on such an approach, an energy barrier with preferential enthalpic nature for CO2 adsorption/desorption in the gate-opening region could be unveiled. Moreover, the elastic energy involved during the gate-opening process was revisited to 1.4-2.8 kJ mol(-1) of solid in the temperature range 273-323 K, matching the value measured by isostatic compression of a ZIF-7_lp sample filled with DMF and showing a dominant entropic contribution.

  10. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  11. Molecular dynamics simulation of lysozyme adsorption/desorption on hydrophobic surfaces.

    PubMed

    Wei, Tao; Carignano, Marcelo A; Szleifer, Igal

    2012-08-30

    In this work, we present a series of fully atomistic molecular dynamics (MD) simulations to study lysozyme's orientation-dependent adsorption on polyethylene (PE) surface in explicit water. The simulations show that depending on the orientation of the initial approach to the surface the protein may adsorb or bounce from the surface. The protein may completely leave the surface or reorient and approach the surface resulting in adsorption. The success of the trajectory to adsorb on the surface is the result of different competing interactions, including protein-surface interactions and the hydration of the protein and the hydrophobic PE surface. The difference in the hydration of various protein sites affects the protein's orientation-dependent behavior. Side-on orientation is most likely to result in adsorption as the protein-surface exhibits the strongest attraction. However, adsorption can also happen when lysozyme's longest axis is tilted on the surface if the protein-surface interaction is large enough to overcome the energy barrier that results from dehydrating both the protein and the surface. Our study demonstrates the significant role of dehydration process on hydrophobic surface during protein adsorption.

  12. Bonneville Power Administration and the Industrial Technologies Program Leverage Support to Overcome Energy Efficiency Barriers in the Northwest

    SciTech Connect

    2010-06-18

    Through its Energy Smart Industrial program, BPA is informing and assisting utilities and industries to have a better understanding of the benefits that come from participating in energy-savings programs. Read about how BPA is encouraging energy efficiency projects through its utilities.

  13. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed.

  14. Water adsorption and dissociation on Ni(110): how is it different from its close packed counterparts?

    PubMed

    Seenivasan, H; Tiwari, Ashwani K

    2014-05-07

    Water adsorption and dissociation on Ni(110) surface is studied in detail and compared with its close packed counterparts using density functional theory calculations. Water adsorption occurs on the top site as found on Ni(100) and Ni(111) but the adsorption is stronger on Ni(110). H and OH preferably adsorb on the short bridge sites (brgshort) opposed to hollow sites on (100) and (111) surfaces. Energy barriers for water molecule dissociation on Ni(110) as obtained from the transition state (TS) calculations were low compared to other Ni low indexed surfaces. TS geometries at different positions of the lattice coordinate, Q, were obtained to study the effect of surface temperature on dissociation of H2O molecules. These calculations revealed that second layer atoms were also involved in the TS. Dissociation probabilities are obtained using a semi-classical approximation by sampling Q for a Boltzmann distribution at different temperatures. Results showed that the increasing surface temperature significantly increases the dissociation probabilities at lower energies and saturates near the barrier for dissociation. Although the contribution from both top and second layers is similar at low surface temperatures, motion of top layer atoms contribute more towards dissociation probability at higher surface temperatures. Dissociation probabilities obtained are more than one order of magnitude higher than that on Ni(100) and Ni(111) surfaces suggesting Ni(110) to be more reactive among the low indexed Ni surfaces.

  15. Water adsorption and dissociation on Ni(110): How is it different from its close packed counterparts?

    SciTech Connect

    Seenivasan, H.; Tiwari, Ashwani K.

    2014-05-07

    Water adsorption and dissociation on Ni(110) surface is studied in detail and compared with its close packed counterparts using density functional theory calculations. Water adsorption occurs on the top site as found on Ni(100) and Ni(111) but the adsorption is stronger on Ni(110). H and OH preferably adsorb on the short bridge sites (brgshort) opposed to hollow sites on (100) and (111) surfaces. Energy barriers for water molecule dissociation on Ni(110) as obtained from the transition state (TS) calculations were low compared to other Ni low indexed surfaces. TS geometries at different positions of the lattice coordinate, Q, were obtained to study the effect of surface temperature on dissociation of H{sub 2}O molecules. These calculations revealed that second layer atoms were also involved in the TS. Dissociation probabilities are obtained using a semi-classical approximation by sampling Q for a Boltzmann distribution at different temperatures. Results showed that the increasing surface temperature significantly increases the dissociation probabilities at lower energies and saturates near the barrier for dissociation. Although the contribution from both top and second layers is similar at low surface temperatures, motion of top layer atoms contribute more towards dissociation probability at higher surface temperatures. Dissociation probabilities obtained are more than one order of magnitude higher than that on Ni(100) and Ni(111) surfaces suggesting Ni(110) to be more reactive among the low indexed Ni surfaces.

  16. Combined experimental and quantum chemical study on the adsorption mechanism of phosphorous anions on the hydrotalcite surfaces

    NASA Astrophysics Data System (ADS)

    Mishima, Kenji; Zhang, Shuang; Minagawa, Sho; Kano, Naoki

    2016-08-01

    In the present work, the hydrotalcite-like compound [Mg6Al2(OH)16]CO3ṡ nH2O (shorted as MgAl-CO3) is synthesized and the adsorption of phosphorous anions, their adsorption performance on the surface of hydrotalcites, and its mechanism are analyzed. To theoretically clarify the adsorption mechanism and adsorption structures, we perform quantum chemistry calculations of reactants, locally stable states, transition states, and products among phosphorous anion, water, and hydrotalcite in a variety of pH ranges. The experimental result shows that the efficiency of phosphate removal does not depend on pH of the solution, with which the numerical results are consistent. In particular, we identify the factors of influencing the adsorption ratio in different pH ranges from the quantum chemistry calculations: the stability of locally stable states, and the energies and locations of potential barriers along the reaction pathway relative to those of the locally stable states. The results suggest that hydrotalcites synthesized in this work are suitable as sorbent materials for the adsorption and removal of phosphorous anions from aqueous solutions.

  17. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  18. C sbnd N rotational barrier, MP4 and CCSD(T) energies of formohydrazide and formohydroxamic acid and vibrational spectral analysis of the hydrazide

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.

    2009-02-01

    The C sbnd N internal rotations in formohydrazide OHC sbnd NH sbnd NH 2 and formohydroxamic acid OHC sbnd NH sbnd OH were investigated at the B3LYP/6-311+G** and MP2/6-311+G** levels of theory. The C sbnd N rotational barrier in the molecules was calculated to be about 28-30 kcal/mol. The energies of the molecules were calculated at the B3LYP, MP2, MP4(SDTQ) and CCSD(T) levels of theory with both 6-311G** and 6-311+G** basis sets. From the calculations at all the levels formohydroxamic acid was predicted to exist predominantly in a non-planar near- cis conformation at ambient temperature. From all the calculations formohydrazide was predicted to have a planar cis-syn (C dbnd O and N sbnd N bonds eclipse each other and NH 2 moiety is syn to C sbnd N bond) conformation as the lowest energy structure. The NH 2 inversion barrier in formohydrazide was predicted to be about 5-7 kcal/mol. The vibrational frequencies of the cis-syn formohydrazide were computed at the B3LYP/6-311+G** level and normal coordinate calculations were carried out. Complete vibrational assignments were made on the basis of normal coordinate analyses and experimental infrared and Raman data of the molecule.

  19. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part 1: The Protective Scale

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    Coarse-grained Fe-based oxide dispersion-strengthened (ODS) steels are a class of advanced materials for combined cycle gas turbine systems to deal with operating temperatures and pressures of around 1100°C and 15-30 bar in aggressive environments, which would increase biomass energy conversion efficiencies up to 45% and above. This two-part paper reports the possibility of the development of simultaneous corrosion barrier and optimized microstructure in a FeCrAl heat-resistant alloy for energy applications. The first part reports the mechanism of generating a dense, self-healing α-alumina layer by thermal oxidation, during a heat treatment that leads to a coarse-grained microstructure with a potential value for high-temperature creep resistance in a FeCrAl ODS ferritic alloy, which will be described in more detail in the second part.

  20. On colloid retention in saturated porous media in the presence of energy barriers: The failure of α, and opportunities to predict η

    NASA Astrophysics Data System (ADS)

    Johnson, William P.; Tong, Meiping; Li, Xiqing

    2007-12-01

    This contribution reviews recent findings that illuminate the processes governing colloid retention in porous media under environmentally relevant conditions. In the environment, colloids act as conveyors of contaminants, or even as contaminants themselves; however, despite decades of research, we are unable to accurately predict the retention of colloids in granular aquifer media under environmental conditions, where repulsion exists between colloids and surfaces. This failure cannot be blamed solely on the complexities of the subsurface, since colloid filtration theory (CFT) works well in the absence of colloid-collector repulsion despite its idealization of porous media as consisting of spherical grains completely surrounded by fluid envelopes. Rather, the failure of CFT stems from failure to incorporate the correct mechanisms of retention when repulsion exists. Recent observations implicate wedging in grain-to-grain contacts and retention in secondary energy minima as dominant mechanisms of colloid retention in the presence of an energy barrier. Mechanistic simulations in unit cells containing grain-to-grain contacts corroborate these mechanisms of colloid retention. The resulting concept for colloid retention in the presence of an energy barrier involves translation of colloids across the collector surfaces until they become wedged within grain-to-grain contacts, or are retained via secondary energy minima (without attachment) in zones where the balance of fluid drag, diffusion, gravitational, and colloid-collector interaction forces allow retention. The above findings highlight the pore domain geometry as a dominant governor of colloid retention in so far as the geometry gives rise to grain-to-grain contacts and zones of relatively low fluid drag.

  1. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect

    Han, Yong; Evans, James W.

    2015-10-28

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)

  2. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE PAGES

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less

  3. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).

  4. How Surface Heterogeneity Affects Protein Adsorption: Annealing of OTS Patterns and Albumin Adsorption Kinetics*

    PubMed Central

    Hodgkinson, Gerald N.; Hlady, Vladimir

    2009-01-01

    Fluorescence microscopy and intensity histogram analysis techniques were used to monitor spatially-resolved albumin adsorption kinetics to model heterogeneous surfaces on sub-μm scales. Several distinct protein subpopulations were resolved, each represented by a normal distribution of adsorption densities on the adsorbent surface. Histogram analyses provided dynamic information of mean adsorption density, spread in adsorption density, and surface area coverage for each distinct protein subpopulation. A simple adsorption model is proposed in which individual protein binding events are predicted by the summation of multiple protein's surface sub-site interactions with different binding energy sub-sites on adsorbent surfaces. This model is predictive of the albumin adsorption on the patterns produced by one step μ-contact printing (μCP) of octadecyltrichlorosilane (OTS) on glass but fails to describe adsorption once the same patterns are altered by a thermal annealing step. PMID:19746205

  5. Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Ozkan, A.; Bogaerts, A.; Reniers, F.

    2017-03-01

    Here, we present routes to increase CO2 conversion into CO using an atmospheric pressure dielectric-barrier discharge. The change in conversion as a function of simple plasma parameters, such as power, flow rate, but also frequency, on-and-off power pulse, thickness and the chemical nature of the dielectric, wall and gas temperature, are described. By means of an in-depth electrical characterization of the discharge (effective plasma voltage, dielectric voltage, plasma current, number and lifetime of the microdischarges), combined with infrared analysis of the walls of the reactor, optical emission spectroscopy for the gas temperature, and mass spectrometry for the CO2 conversion, we propose a global interpretation of the effect of all the experimental parameters on the conversion and efficiency of the reaction.

  6. Physiology and immunology of mucosal barriers in catfish (Ictalurus spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mucosal barriers of catfish (Ictalurus spp.) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient adsorption, osmoregulation, waste excretion, and environmental sensing. Catf...

  7. Binary association complexes of LiH, BeH/sub 2/, and BH/sub 3/. Relative isomer stabilities and barrier heights for their interconversion: energy barriers in the dimerization reactions

    SciTech Connect

    DeFrees, D.J.; Raghavachari, K.; Schlegel, H.B.; Pople, J.A.; Schleyer, P.v.R.

    1987-03-26

    Ab initio molecular orbital theory has been used to study the six compounds Li/sub 2/H/sub 2/, LiBeH/sub 3/, LiBH/sub 4/, Be/sub 2/H/sub 4/, BeBH/sub 5/, and B/sub 2/H/sub 6/. Geometry optimizations and vibrational analysis at the HF/6-31G* level indicate Li--(H)/sub 2/--Li (D/sub 2h/), Li--(H)/sub 2/--BeH (C/sub 2v/), Li--(H)/sub 3/--BH (C/sub 3v/), HBe--(H)/sub 2/--BeH (D/sub 2h/), HBe--(H)/sub 3/--BH (C/sub 3v/), and H/sub 2/B--(H)/sub 2/--BH/sub 2/ (D/sub 2h/) to the most stable forms. Inclusion of electron correlation corrections at the MP4/6-31G** level does not alter these conclusions. Other isomers were also examined in detail, and it was found that the potential energy surfaces for the species are generally flat. Activation energies for isomer interconversion and hydrogen scrambling reactions are generally less than 10 kcal mol/sup -1/. Examination of the HF/3-21 G potential surfaces indicates that there is no activation energy for the dimerization of LiH or BeH/sub 2/. The same is true for the dimerization of BH/sub 3/ at the correlated MP26-31G* level, although a small barrier is found on the HF/6-31G* surface. Enthalpies of complexation at 298 K from separate LiH, BeH/sub 2/, and BH/sub 3/ fragments, ..delta..H/sup 0//sub 298/, computed by using the HF/6-31G* harmonic frequencies and the MP4/6-31G** electronic energies are as follows: Li/sub 2/H/sub 2/, -45.9; LiBeH/sub 3/, -43.6; LiBH/sub 4/, -60.1; Be/sub 2/H/sub 4/, -30.5; BeBH/sub 5/, -45.7; B/sub 2/H/sub 6/, -36.0 kcal mol/sup -1/.

  8. Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory

    NASA Astrophysics Data System (ADS)

    Kolsbjerg, Esben L.; Groves, Michael N.; Hammer, Bjørk

    2016-04-01

    The adsorption, diffusion, and dissociation of pyridine, C5H5N, on Pt(111) are investigated with van der Waals-corrected density functional theory. An elaborate search for local minima in the adsorption potential energy landscape reveals that the intact pyridine adsorbs with the aromatic ring parallel to the surface. Piecewise interconnections of the local minima in the energy landscape reveal that the most favourable diffusion path for pyridine has a barrier of 0.53 eV. In the preferred path, the pyridine remains parallel to the surface while performing small single rotational steps with a carbon-carbon double bond hinged above a single Pt atom. The origin of the diffusion pathway is discussed in terms of the C2-Pt π-bond being stronger than the corresponding CN-Pt π-bond. The energy barrier and reaction enthalpy for dehydrogenation of adsorbed pyridine into an adsorbed, upright bound α-pyridyl species are calculated to 0.71 eV and 0.18 eV, respectively (both zero-point energy corrected). The calculations are used to rationalize previous experimental observations from the literature for pyridine on Pt(111).

  9. Adsorption of oxygen on W/100/ - Adsorption kinetics and structure

    NASA Technical Reports Server (NTRS)

    Bauer, E.; Poppa, H.; Viswanath, Y.

    1976-01-01

    The adsorption of oxygen on W(100) single-crystal surfaces is studied by Auger electron spectroscopy (AES), flash desorption, low-energy electron diffraction (LEED), and retarding-field work-function measurements. The AES results reveal stepwise changes in the sticking coefficients in the coverage range 0 to 1 and activated adsorption at higher coverages. Upon room-temperature adsorption, a series of complex LEED patterns is observed. In layers adsorbed at 1050 K and cooled to room temperature, the p(2 x 1) structure is the first ordered structure observed. This structure shows a reversible order-disorder transition between 700 and 1000 K and is characterized by a work function which is lower than that of the clean surface. Heating room-temperature adsorbates changes their structure irreversibly. At temperatures below 750 K, some new structures are observed.

  10. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  11. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  12. PLATYPUS: A code for reaction dynamics of weakly-bound nuclei at near-barrier energies within a classical dynamical model

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis

    2011-04-01

    A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The

  13. Revealing highly unbalanced energy barriers in the extension and contraction of the muscle-like motion of a [c2]daisy chain.

    PubMed

    Zhao, Yan-Ling; Zhang, Rui-Qin; Minot, Christian; Hermann, Klaus; Van Hove, Michel A

    2015-07-28

    Nanoscale muscle-like materials have aroused great interest as they may provide controllable mechanical operations by artificial actuations. Molecular designs to achieve the desired motion at the macroscopic scale in experiments require atomic level understanding. By systematic quantum chemical and molecular dynamics calculations we reveal that the length change is not only due to the linear telescoping from the dibenzo[24]crown-8 recognition at two docking stations but also the folding/unfolding of two bulky stoppers. The extension and contraction processes of a [c2]daisy chain under acidic vs. basic conditions are exothermic but need to cross very different energy barriers, being at least double the height under acidic compared to basic conditions, hindering balanced cyclic motions at moderate excitation. Our result suggests that to realize the desired muscle-like motion one should adopt sufficiently high external excitation, using for example reasonably high temperature and further optimizing the solution used.

  14. Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated Dy(III) Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Brosmer, Jonathan L; Ungur, Liviu; Diaconescu, Paula L; Murugesu, Muralee

    2017-02-01

    Dy(III) single-ion magnets (SIMs) with strong axial donors and weak equatorial ligands are attractive model systems with which to harness the maximum magnetic anisotropy of Dy(III) ions. Utilizing a rigid ferrocene diamide ligand (NN(TBS)), a Dy(III) SIM, (NN(TBS))DyI(THF)2, 1-Dy (NN(TBS) = fc(NHSitBuMe2)2, fc = 1,1'-ferrocenediyl), composed of a near linear arrangement of donor atoms, exhibits a large energy barrier to spin reversal (770.8 K) and magnetic blocking (14 K). The effects of the transverse ligands on the magnetic and electronic structure of 1-Dy were investigated through ab initio methods, eliciting significant magnetic axiality, even in the fourth Kramers doublet, thus demonstrating the potential of rigid diamide ligands in the design of new SIMs with defined magnetic axiality.

  15. Direct and compound-nucleus reaction mechanisms in the 7Be+58Ni system at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Pierroutsakou, D.; Keeley, N.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Pakou, A.; Parkar, V. V.; Romoli, M.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2015-08-01

    The energy and angular distributions of 3He and 4He ions produced in the 7Be +58Ni reaction at a bombarding energy of 22 MeV have been measured for the first time. The yield of the heavier helium isotope was four to five times more abundant than that of its lighter counterpart, ruling out the possibility that in this energy range the 7Be reaction dynamics is dominated by the exclusive breakup process 7Be→3He +4He (Sα=1.586 MeV). Extensive kinematic and theoretical calculations suggest that the 3He ions mostly originate from the 4He-stripping process and the 4He production is mainly triggered by the fusion-evaporation channel. The role played by the breakup, 3He-stripping, 1 n -stripping, and 1 n -pickup processes is also discussed.

  16. Electrokinetic investigation of surfactant adsorption.

    PubMed

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  17. Field study of moisture damage in walls insulated without a vapor barrier. Final report for the Oregon Department of Energy

    SciTech Connect

    Tsongas, G.A.

    1980-05-01

    Considerable uncertainty has existed over whether or not wall insulation installed without a vapor barrier causes an increased risk of moisture damage (wood decay) within walls. This report describes the results of one of the first major studies in the country aimed at finding out if such a moisture problem really exists. The exterior walls of a total of 96 homes in Portland, Oregon were opened, of which 70 had retrofitted insulation and 26 were uninsulated and were a control group. The types of insulation included urea-formaldehyde foam (44), mineral wool (16), and cellulose (10). In each opened wall cavity the moisture content of wood was measured and insulation and wood samples were taken for laboratory analysis of moisture content and for the determination of the presence of absence of decay fungi. Foam shrinkage was also measured. To evaluate the possible influence of the relative air tightness of the homes, fan depressurization tests were run using a door blower unit. The field and laboratory test results indicating the lack of a moisture damage problem in existing homes with wood siding in climates similar to that of western Oregon are described along with results of a statistical analysis of the data. Related problems of interest to homeowners and insulation installers are noted. The standard operating procedures used throughout the study are discussed, including the home selection process, quantitative and qualitative techniques used to identify wall locations with the highest moisture content, wall opening and data/sample collection methodology, laboratory analysis of samples, data processing and analysis, and applicability of the results. Recommendations for furutre tests are made. Finally, the potential and desirability for future retrofitting of wall insulation is explored.

  18. Observations of Surface Energy Fluxes and Boundary-Layer Structure Over Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.; Soderholm, Joshua S.

    2013-02-01

    Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.

  19. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    DOE R&D Accomplishments Database

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  20. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  1. Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2.

    PubMed

    Samad, Abdus; Shafique, Aamir; Shin, Young-Han

    2017-04-28

    A comparative study of the monovalent (Li, Na, and K) and multivalent (Be, Mg, Ca, and Al) metal ion adsorption and diffusion on an electronically semi-metallic two-dimensional nanosheet of 1T structured TiS2 is presented here to contribute to the search for abundant, cheap, and nontoxic ingredients for efficient rechargeable metal ion batteries. The total formation energy of the metal ion adsorption and the Bader charge analysis show that the divalent Mg and Ca ions can have a charge storage density double that of the monovalent Li, Na, and K ions, while the Be and Al ions form metallic clusters even at a low adsorption density because of their high bulk energies. The adsorption of Mg ions shows the lowest averaged open circuit voltage (0.13 V). The activation energy barriers for the diffusion of metal ions on the surface of the monolayer successively decrease from Li to K and Be to Ca. Mg and Ca, being divalent, are capable of storing a higher power density than Li while K and Na have a higher rate capability than the Li ions. Therefore, rechargeable Li ion batteries can be totally or partially replaceable by Mg ion batteries, where high power density and high cell voltage are required, while the abundant, cheap, and fast Na ions can be used for green grid applications.

  2. Adsorption and migration of single metal atoms on the calcite (10.4) surface.

    PubMed

    Pinto, H; Haapasilta, V; Lokhandwala, M; Öberg, S; Foster, Adam S

    2017-04-05

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3d (Ti, Cr, Fe, Ni, Cu), 4d (Zr, Nb, Mo, Pd, Ag) and 5d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca-Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface.

  3. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  4. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    NASA Astrophysics Data System (ADS)

    Pinto, H.; Haapasilta, V.; Lokhandwala, M.; Öberg, S.; Foster, Adam S.

    2017-04-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3d (Ti, Cr, Fe, Ni, Cu), 4d (Zr, Nb, Mo, Pd, Ag) and 5d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface.

  5. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  6. Adsorption behavior of beryllium(II) on copper-oxide nanoparticles dispersed in water: A model for (7)Be colloid formation in the cooling water for electromagnets at high-energy accelerator facilities.

    PubMed

    Bessho, Kotaro; Kanaya, Naoki; Shimada, Saki; Katsuta, Shoichi; Monjushiro, Hideaki

    2014-01-01

    The adsorption behavior of Be(II) on CuO nanoparticles dispersed in water was studied as a model for colloid formation of radioactive (7)Be nuclides in the cooling water used for electromagnets at high-energy proton accelerator facilities. An aqueous Be(II) solution and commercially available CuO nanoparticles were mixed, and the adsorption of Be(II) on CuO was quantitatively examined. From a detailed analysis of the adsorption data measured as a function of the pH, it was confirmed that Be(II) is adsorbed on the CuO nanoparticles by complex formation with the hydroxyl groups on the CuO surface (>S-OH) according to the following equation: n > S-OH + Be(2+) ⇔ (>S-O)n Be((2-n)+) + nH(+) (n = 2, 3) S : solid surface. The surface-complexation constants corresponding to the above equilibrium, β(s,2) and β(s,3), were determined for four types of CuO nanoparticles. The β(s,2) value was almost independent of the type of nanoparticle, whereas the β(s,3) values varied with the particle size. These complexation constants successfully explain (7)Be colloid formation in the cooling water used for electromagnets at the 12-GeV proton accelerator facility.

  7. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Zhai, Yong; Li, Chunxi; Li, Fumin

    2014-11-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte.

  8. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  9. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    PubMed Central

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-01-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159

  10. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  11. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber.

    PubMed

    Chen, Chong; Zhai, Yong; Li, Chunxi; Li, Fumin

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte.

  12. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  13. Protein-inhibitor flexible docking by a multicanonical sampling: native complex structure with the lowest free energy and a free-energy barrier distinguishing the native complex from the others.

    PubMed

    Kamiya, Narutoshi; Yonezawa, Yasushige; Nakamura, Haruki; Higo, Junichi

    2008-01-01

    Flexible docking between a protein (lysozyme) and an inhibitor (tri-N-acetyl-D-glucosamine, tri-NAG) was carried out by an enhanced conformational sampling method, multicanonical molecular dynamics simulation. We used a flexible all-atom model to express lysozyme, tri-NAG, and water molecules surrounding the two bio-molecules. The advantages of this sampling method are as follows: the conformation of system is widely sampled without trapping at energy minima, a thermally equilibrated conformational ensemble at an arbitrary temperature can be reconstructed from the simulation trajectory, and the thermodynamic weight can be assigned to each sampled conformation. During the simulation, exchanges between the binding and free (i.e., unbinding) states of the protein and the inhibitor were repeatedly observed. The conformational ensemble reconstructed at 300 K involved various conformational clusters. The main outcome of the current study is that the most populated conformational cluster (i.e., the cluster of the lowest free energy) was assigned to the native complex structure (i.e., the X-ray complex structure). The simulation also produced non-native complex structures, where the protein and the inhibitor bound with different modes from that of the native complex structure, as well as the unbinding structures. A free-energy barrier (i.e., activation free energy) was clearly detected between the native complex structures and the other structures. The thermal fluctuations of tri-NAG in the lowest free-energy complex correlated well with the X-ray B-factors of tri-NAG in the X-ray complex structure. The existence of the free-energy barrier ensures that the lowest free-energy structure can be discriminated naturally from the other structures. In other words, the multicanonical molecular dynamics simulation can predict the native complex structure without any empirical objective function. The current study also manifested that the flexible all-atom model and the physico

  14. Investigation of complete and incomplete fusion dynamics of {sup 20}Ne induced reactions at energies above the Coulomb barrier

    SciTech Connect

    Singh, D.; Ali, R.; Kumar, Harish; Ansari, M. Afzal; Rashid, M. H.; Guin, R.

    2014-08-14

    Experiment has been performed to explore the complete and incomplete fusion dynamics in heavy ion collisions using stacked foil activation technique. The measurement of excitation functions of the evaporation residues produced in the {sup 20}Ne+{sup 165}Ho system at projectile energies ranges ≈ 4-8 MeV/nucleon have been done. Measured cumulative and direct cross-sections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. The analysis indicates the presence of contributions from incomplete fusion processes in some α-emission channels following the break-up of the projectile {sup 20}Ne in the nuclear field of the target nucleus {sup 165}Ho.

  15. Oxygen adsorption at noble metal/TiO2 junctions

    NASA Astrophysics Data System (ADS)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.

    2016-03-01

    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  16. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

  17. Quasi-Elastic Reactions of SILICON-28 and Chlorine -37 with LEAD-208 at Energies in the Range of 1 TO 3 Times the Coulomb Barrier

    NASA Astrophysics Data System (ADS)

    Dixit, Sunil

    Measurements have been made for the quasi-elastic scattering of ^{28}Si on ^{208}Pb at 280 and 420 MeV, and of ^{37}Cl on ^{208}Pb at 190, 330 and 433 MeV incident projectile energies. The elastic and inelastic scattering data, along with existing data at 152, 162, 166, 210, and 225 MeV, for the ^ {28}Si + ^{208} Pb system, and existing data at 250 MeV for the ^{37}Cl + ^ {208}Pb system have been analyzed using a collective model CCBA formalism. The data are well reproduced within this model at the higher energies. However, the ^{208}Pb(3_1 ^-) state predictions require an additional rotational quadrupole reorientation term at the lower energies which exhibit a striking energy dependence in the extracted effective quadrupole moment, the nuclear deformations, and the ratio (M_{rm N} /M_{rm P}) of the neutron to proton multipole matrix elements. These results suggest the possibility of threshold anomalies in the reorientation channel, highlighting the inadequacy of the collective model in describing the inelastic excitation process for heavy-ion reactions near the Coulomb barrier, at least for this state. The transfer data show large quasi-elastic yields for the one-neutron pickup channel, contributing between 50%-87% and 55%-71% of the total neutron transfer cross section as a function of decreasing projectile energy for the ^{28}Si,^ {37}Cl + ^{208} Pb reactions, respectively. The one nucleon transfer data has been analyzed using the finite range DWBA with optical-model parameters deduced from CCBA analysis and spectroscopic factors obtained from the literature. These transfer processes display a strong dependence on the ground state reaction Q-value, projectile mass, and charge. At the higher energies there is a strong deep-inelastic component (Q <= -30 MeV). This corresponds to angular distributions that are predominantly exponential for charged particle transfer greater than two. Finally, the recently observed "slope anomaly" between the one- and two

  18. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences

    PubMed Central

    Sevy, Alexander M.; Jacobs, Tim M.; Crowe, James E.; Meiler, Jens

    2015-01-01

    Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes. PMID:26147100

  19. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.

    PubMed

    Sevy, Alexander M; Jacobs, Tim M; Crowe, James E; Meiler, Jens

    2015-07-01

    Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a 'single state' design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design "promiscuous", polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes.

  20. Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains.

    PubMed

    Ackbarow, Theodor; Chen, Xuefeng; Keten, Sinan; Buehler, Markus J

    2007-10-16

    The fundamental fracture mechanisms of biological protein materials remain largely unknown, in part, because of a lack of understanding of how individual protein building blocks respond to mechanical load. For instance, it remains controversial whether the free energy landscape of the unfolding behavior of proteins consists of multiple, discrete transition states or the location of the transition state changes continuously with the pulling velocity. This lack in understanding has thus far prevented us from developing predictive strength models of protein materials. Here, we report direct atomistic simulation that over four orders of magnitude in time scales of the unfolding behavior of alpha-helical (AH) and beta-sheet (BS) domains, the key building blocks of hair, hoof, and wool as well as spider silk, amyloids, and titin. We find that two discrete transition states corresponding to two fracture mechanisms exist. Whereas the unfolding mechanism at fast pulling rates is sequential rupture of individual hydrogen bonds (HBs), unfolding at slow pulling rates proceeds by simultaneous rupture of several HBs. We derive the hierarchical Bell model, a theory that explicitly considers the hierarchical architecture of proteins, providing a rigorous structure-property relationship. We exemplify our model in a study of AHs, and show that 3-4 parallel HBs per turn are favorable in light of the protein's mechanical and thermodynamical stability, in agreement with experimental findings that AHs feature 3.6 HBs per turn. Our results provide evidence that the molecular structure of AHs maximizes its robustness at minimal use of building materials.

  1. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  2. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  3. Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.

    2004-06-08

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  4. Ubiquitous human ‘master’ origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers

    NASA Astrophysics Data System (ADS)

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-01

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The ‘master’ origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs

  5. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.

    PubMed

    Drillon, Guénola; Audit, Benjamin; Argoul, Françoise; Arneodo, Alain

    2015-02-18

    As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in

  6. Language barriers

    PubMed Central

    Ngwakongnwi, Emmanuel; Hemmelgarn, Brenda R.; Musto, Richard; King-Shier, Kathryn M.; Quan, Hude

    2012-01-01

    Abstract Objective To assess use of regular medical doctors (RMDs), as well as awareness and use of telephone health lines or telehealth services, by official language minorities (OLMs) in Canada. Design Analysis of data from the 2006 postcensal survey on the vitality of OLMs. Setting Canada. Participants In total, 7691 English speakers in Quebec and 12 376 French speakers outside Quebec, grouped into those who experienced language barriers and those with no language barriers. Main outcome measures Health services utilization (HSU) by the presence of language barriers; HSU measures included having an RMD, use of an RMD’s services, and awareness of and use of telephone health lines or telehealth services. Multivariable models examined the associations between HSU and language barriers. Results After adjusting for age and sex, English speakers residing in Quebec with limited proficiency in French were less likely to have RMDs (adjusted odds ratio [AOR] 0.66, 95% CI 0.50 to 0.87) and to use the services of their RMDs (AOR 0.65, 95% CI 0.50 to 0.86), but were more likely to be aware of the existence of (AOR 1.50, 95% CI 1.16 to 1.93) and to use (AOR 1.43, 95% CI 0.97 to 2.11) telephone health lines or telehealth services. This pattern of having and using RMDs and telehealth services was not observed for French speakers residing outside of Quebec. Conclusion Overall we found variation in HSU among the language barrier populations, with lower use observed in Quebec. Age older than 45 years, male sex, being married or in common-law relationships, and higher income were associated with having RMDs for OLMs. PMID:23242902

  7. Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds

    NASA Astrophysics Data System (ADS)

    Purewal, Justin

    dynamics simulations. As predicted, the rate of diffusion in KC24 is over an order of magnitude slower than in other carbon adsorbents (e.g. carbon nanotubes, nanohorns and carbon blacks). It is similar in magnitude to the rate of H2 diffusion in zeolites with molecular-sized cavities. This suggests that H2 diffusion in adsorbents is influenced very strongly by the pore geometry. The H2 diffusion process in KC24 contains at least two distinct jump frequencies. Bound states of adsorbed H2 in KC24 were investigated by inelastic neutron scattering measurements and density functional theory calculations. Spectral peaks in the neutron energy loss range of 5 meV to 45 meV were observed for the first time. These peaks were interpreted as single- and multi-excitation transitions of the H2 phonon and rotational modes. The rotational barrier for H2 molecules is many times larger in KC24 than in other carbon adsorbents, apparently due to the confinement of the molecules between closely-spaced graphitic layers. Evidence was found for the existence of at least three H2 sorption sites in KC24, each with a distinctive rotational barrier.

  8. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    SciTech Connect

    Erikat, I. A.; Hamad, B. A.

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  9. Overcoming Rapid Inactivation of Lung Surfactant: Analogies Between Competitive Adsorption and Colloid Stability

    PubMed Central

    Zasadzinski, Joseph A.; Stenger, Patrick C.; Shieh, Ian; Dhar, Prajnaparamita

    2009-01-01

    Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. or polyelectrolytes such as chitosan, added to LS, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical

  10. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  11. Atom and Amine Adsorption on Flat and Stepped Gold Surfaces & Structure, Stability and Spin Ordering in Manganese Sulfide Clusters

    NASA Astrophysics Data System (ADS)

    Lewoczko, April D.

    In part I, we investigate gold catalysis in the chemistry of organonitrogen compounds. We examine the adsorption of oxygen, nitrogen and sulfur atoms on the gold (111), (100) and (211) surfaces using density functional theory (DFT). Sulfur atoms bind most strongly, followed by oxygen and nitrogen atoms with stronger adsorption for greater coordination to the surface. We see a trend of stronger adsorption to undercoordinated gold, but find it is non-universal with the adsorption strength trend: (111) > (211) > (100). We consider the diffusion of oxygen, nitrogen and sulfur adatoms and find facile long-range diffusion of oxygen atoms on the (100) surface. Lastly, we compare the adsorption of methylamine on gold to that of a selection of alkylamines, methanol and methanethiol. In each case, the ontop site is preferred with stronger adsorption at low coordinated gold. At oxygen atom coverages of 0.125 -- 0.25 ML on Au (111), we find cooperative adsorption of methylamine and oxygen atoms. Energetic costs for adsorbate tilt from the surface normal and rotation about the gold-nitrogen bond are calculated. While methylamine rotation is barrierless on the (111) and (211) surfaces, it has a low energetic barrier for the 0.125 ML and 0.25 ML O atom pre-covered Au (111) surfaces. In part II, we interpret the experimental mass spectrum of small gas phase manganese sulfide clusters using DFT and elucidate the role of ionicity and spin ordering in sizes with special stability, i.e. magic clusters. We first consider nine low lying minima (MnS)6 structures and reveal antiferromagnetic (AFM) spin ordering with a ˜0.1 eV/pair AFM energy benefit and a ˜0.1 A shrinkage of average Mn-Mn distances over clusters with ferromagnetic (FM) spin ordering. We calculate energetic barriers for interconversion between the two lowest lying (MnS)6 isomers and predict an elevated cluster melting temperature due to increased configurational entropy in a pre-melted state. Second, we demonstrate the

  12. Preparation and characterization of nanocrystalline ZrO2-7%Y2O3 powders for thermal barrier coatings by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Schlaefer, Thomas; Warda, Thomas

    2011-06-01

    High-energy ball milling is an effective method to produce nanocrystalline oxides. In this study, a conventional ZrO2-7%Y2O3 spray powder was ball-milled to produce nanocrystalline powders with high levels of crystalline disorders for deposition of thermal barrier coatings. The powder was milled both with 100Cr6 steel balls and with ZrO2-3%Y2O3 ceramic balls as grinding media. The milling time was varied in order to investigate the effect of the milling time on the crystallite size. The powders were investigated in terms of their crystallite sizes and morphologies by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that under given milling conditions the powder was already nanostructured after 40 min milling. The crystallite size decreased significantly with increasing milling time within first 120 min. After that, a further increase of milling time did not lead to a significant reduction of the crystallite size. Ball-milling led to lattice microstrains. Milling with the steel balls resulted in finer nano-sized crystal grains, but caused the contamination of the powder. The nano-sized crystal grains coarsened during the heat-treatment at 1250°C.

  13. Sub-barrier fusion calculations for the neutron star crust using the microscopic Brueckner G -matrix and Skyrme energy density functionals

    NASA Astrophysics Data System (ADS)

    Rashdan, M.

    2015-05-01

    Sub-barrier fusion cross sections for reactions involving stable and very neutron-rich nuclei, which may be important in determining the composition and heating of the crust of accreting neutron stars, are calculated using internuclear potentials derived from the microscopic Brueckner G -matrix and Skyrme SKM* and SLy4 energy density functionals. Microscopic Skyrme-Hartree-Fock proton and neutron density distributions are used. No parameters have been fit to fusion data. Calculations are performed for the isotopic reactions 16O+16O,16O+24O,16O+28O,24O+24O,12C+16O,12C+24O , and 12C+12C , which are of great astrophysical importance for the understanding of the time scale and the nucleosynthesis during late stellar evolution. The coupling to the low lying excited states is considered through the ccfull code. I compare my results with the time-dependent-Hartree-Fock calculations and with the São Paulo model as well as the experimental data. I found a remarkable agreement with the fusion cross sections for stable nuclei.

  14. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells.

    PubMed

    Banik, Avishek; Ansari, Mohammad Shaad; Sahu, Tushar Kanta; Qureshi, Mohammad

    2016-10-12

    The present study discusses the design and development of a dye sensitized solar cell (DSSC) using a hybrid composite of ZnO nanoparticles (ZnO NP) and silica nanospheres (SiO2 NS). A ≈22% enhancement in the overall power conversion efficiency (PCE, η) was observed for the device fabricated with a binary hybrid composite of 1 wt% SiO2 NS and ZnO NP compared to the pristine ZnO NP device. A systematic investigation revealed the dual function of the silica nanospheres in enhancing the device efficacy compared to the bare ZnO NP based device. Sub-micron sized SiO2 NS can boost the light harvesting efficiency of the photoanode by optical confinement, resulting in increased propagation length of the incident light by multiple internal reflections, which was confirmed by UV-Vis diffused reflectance spectroscopy. Electrochemical impedance spectroscopic (EIS) analysis showed a reduced recombination of photo-generated electrons to the I(-)/I3(-) redox shuttle in the case of the composite photoanode. The higher recombination resistance (Rct) in the case of a 1 wt% composite indicates that the SiO2 NS serves as a partial energy barrier layer to retard the interfacial recombination (back transfer) of photo-generated electrons at the working electrode/electrolyte interface, increasing the device efficiency.

  15. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    NASA Astrophysics Data System (ADS)

    Escobedo, Fernando A.

    2016-12-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  16. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization.

    PubMed

    Batrakova, E V; Li, S; Vinogradov, S V; Alakhov, V Y; Miller, D W; Kabanov, A V

    2001-11-01

    Pluronic block copolymer, P85, inhibits the P-glycoprotein (Pgp) drug efflux system and increases the permeability of a broad spectrum of drugs in the blood-brain barrier (BBB). This study examines the mechanisms by which P85 inhibits Pgp using bovine brain microvessel endothelial cells (BBMEC) as an in vitro model of the BBB. The hypothesis was that simultaneous alterations in intracellular ATP levels and membrane fluidization in BBMEC monolayers by P85 results in inhibition of the drug efflux system. The methods included the use of 1) standard Pgp substrate rhodamine 123 to assay the Pgp efflux system in BBMEC, 2) luciferin/luciferase assay for ATP intracellular levels, and 3) 1,6-diphenyl-1,3,5-hexatriene for membrane microviscosity. Using 3H-labeled P85 and fluorescein-labeled P85 for confocal microscopy, this study suggests that P85 accumulates in the cells and intracellular organelles such as the mitochondria where it can interfere with metabolic processes. Following exposure of BBMEC to P85, the ATP levels were depleted, and microviscosity of the cell membranes was decreased. Furthermore, P85 treatment decreased Pgp ATPase activity in membranes expressing human Pgp. A combination of experiments examining the kinetics, concentration dependence, and directionality of P85 effects on Pgp-mediated efflux in BBMEC monolayers suggests that both energy depletion (decreasing ATP pool available for Pgp) and membrane fluidization (inhibiting Pgp ATPase activity) are critical factors contributing to the activity of the block copolymer in the BBB.

  17. Adsorption, intercalation and diffusion of Na on defective bilayer graphene: a computational study

    NASA Astrophysics Data System (ADS)

    Yang, Shaobin; Li, Sinan; Tang, Shuwei; Shen, Ding; Dong, Wei; Sun, Wen

    2017-04-01

    The interaction between inserted/adsorbed Na and the structures of pristine and defective bilayer graphene (BLG) with Stone-Wales (SW), mono-vacancy (MV) and divacancy (DV) defects have been investigated by the first-principles calculations. The computational results show that the intercalation of Na in the interlayer of BLG with DV defects is more energetically favorable than Na adsorption on the surface. The lower formation energies of Na adsorption/intercalation on/in the BLG with DV defect reflect a stronger attraction between Na and DV defects compared with MV and SW defects. A significant charge transfer occurs from Na to near graphene layer(s) of BLG. The adsorption and intercalation of Na not only induce more significant structural distortion into the upper layer graphene with SW defect but also spin polarization for MV and DV defects. The results of migration energy barriers show that Na prefers to diffuse toward the DV site, and the diffusion outward the DV site is more difficult in comparison with the SW and MV defects. As a consequence, more Na atoms would be trapped in the region of the DV defect, leading to larger capacity than SW and MV defects.

  18. Tuning the adsorption behaviors and conversions of CHx species on metal embedded graphene surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Yanan; Shen, Zigang; Chen, Weiguang; Pan, Lijun; Wang, Xiaolong; Dai, Xianqi

    2016-12-01

    The stable geometries and adsorption behaviors of CHx (x = 0, 1, 2, 3, 4) species on the single-atoms metal embedded graphene (M-graphene) are investigated by first-principles calculations. It is found that the adsorbed CHx species have the different stability on the M-graphene surfaces, and the adsorption energies of CHx species on the Al-graphene are smaller than those on the Au-graphene. Besides, the adsorption of CHx species can regulate the electronic structure and magnetic properties of M-graphene systems. Moreover, the diffusion pathways of CHx (x = 0-3) species and the conversion reactions between CHx (x = 1-4) species on the M-graphene are analyzed systematically. In the conversion reactions, the adsorbed C and CH species can be more easily converted into the CHx+2 species through the hydrogenation reactions, the broken M-H bond and the formation of new Csbnd H bond need overcome the large energy barriers. These results give a clue for designing graphene-based anode materials with high activity and inhibiting carbon deposition.

  19. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE PAGES

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; ...

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH4+)4(HSO4-)4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH4+)4(SO4-)4] cluster, is able to adsorb an oxygenated organic molecule.more » Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  20. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    SciTech Connect

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; Johnston, Murray V.

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH4+)4(HSO4-)4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH4+)4(SO4-)4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.

  1. Correlated states and transparency of a barrier for low-energy particles at monotonic deformation of a potential well with dissipation and a stochastic force

    NASA Astrophysics Data System (ADS)

    Vysotskii, V. I.; Vysotskyy, M. V.

    2014-04-01

    The features of the formation of correlated coherent states of a particle in a parabolic potential well at its monotonic deformation (expansion or compression) in finite limits have been considered in the presence of dissipation and a stochastic force. It has been shown that, in both deformation regimes, a correlated coherent state is rapidly formed with a large correlation coefficient | r| → 1, which corresponds at a low energy of the particle to a very significant (by a factor of 1050-10100 or larger) increase in the transparency of the potential barrier at its interaction with atoms (nuclei) forming the "walls" of the potential well or other atoms located in the same well. The efficiency of the formation of correlated coherent states, as well as | r|, increases with an increase in the deformation interval and with a decrease in the deformation time. The presence of the stochastic force acting on the particle can significantly reduce the maximum | r| value and result in the fast relaxation of correlated coherent states with | r| → 0. The effect of dissipation in real systems is weaker than the action of the stochastic force. It has been shown that the formation of correlated coherent states at the fast expansion of the well can underlie the mechanism of nuclear reactions at a low energy, e.g., in microcracks developing in the bulk of metal hydrides loaded with hydrogen or deuterium, as well as in a low-pressure plasma in a variable magnetic field in which the motion of ions is similar to a harmonic oscillator with a variable frequency.

  2. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.

    PubMed

    Hoja, Johannes; Maurer, Reinhard J; Sax, Alexander F

    2014-07-31

    Reliable simulation of molecular adsorption onto cellulose surfaces is essential for the design of new cellulose nanocomposite materials. However, the applicability of classical force field methods to such systems remains relatively unexplored. In this study, we present the adsorption of glucose, cellobiose, and cellotetraose on model surfaces of crystalline cellulose Iα and Iβ. The adsorption of the two large carbohydrates was simulated with the GLYCAM06 force field. To validate this approach, quantum theoretical calculations for the adsorption of glucose were performed: Equilibrium geometries were studied with density functional theory (DFT) and dispersion-corrected DFT, whereas the adsorption energies were calculated with two standard density functional approximations and five dispersion-containing DFT approaches. We find that GLYCAM06 gives a good account of geometries and, in most cases, accurate adsorption energies when compared to dispersion-corrected DFT energies. Adsorption onto the (100) surface of cellulose Iα is, in general, stronger than onto the (100) surface of cellulose Iβ. Contrary to intuition, the adsorption energy is not directly correlated with the number of hydrogen bonds; rather, it is dominated by dispersion interactions. Especially for bigger adsorbates, a neglect of these interactions leads to a dramatic underestimation of adsorption energies.

  3. Adsorption, dissociation, penetration, and diffusion of N2 on and in bcc Fe: first-principles calculations.

    PubMed

    Yeo, Sang Chul; Han, Sang Soo; Lee, Hyuck Mo

    2013-04-14

    We report first-principles calculations of adsorption, dissociation, penetration, and diffusion for the complete nitridation mechanism of nitrogen molecules on a pure Fe surface (bcc, ferrite phase). The mechanism of the definite reaction path was calculated by dividing the process into four steps. We investigated various reaction paths for each step including the energy barrier based on the climb image nudged elastic band (CI-NEB) method, and the complete reaction pathway was computed as the minimum energy path (MEP). The adsorption characteristics of nitrogen (N) and molecular nitrogen (N2) indicate that nitrogen atoms and molecules are energetically favorable at the hollow sites on pure Fe(100) and (110). The dissociation of the nitrogen molecule (N2) was theoretically supported by electronic structure calculations. The penetration of nitrogen from the surface to the sub-surface has a large energy barrier compared with the other steps. The activation energy calculated for nitrogen diffusion in pure bcc Fe was in good agreement with the experimental results. Finally, we confirmed the rate-determining step for the full nitridation reaction pathway. This study provides fundamental insight into the nitridation mechanism for nitrogen molecules in pure bcc Fe.

  4. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  5. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  6. Monte Carlo simulations of Protein Adsorption

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Kumar, Sanat K.; Belfort, Georges

    2008-03-01

    Amyloidogenic diseases, such as, Alzheimer's are caused by adsorption and aggregation of partially unfolded proteins. Adsorption of proteins is a concern in design of biomedical devices, such as dialysis membranes. Protein adsorption is often accompanied by conformational rearrangements in protein molecules. Such conformational rearrangements are thought to affect many properties of adsorbed protein molecules such as their adhesion strength to the surface, biological activity, and aggregation tendency. It has been experimentally shown that many naturally occurring proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. However, to better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations of adsorption of a four helix bundle, modeled as a lattice protein, and studied the adsorption behavior and equilibrium protein conformations at different temperatures and degrees of surface hydrophobicity. To study the free energy and entropic effects on adsorption, Canonical ensemble MC simulations have been combined with Weighted Histogram Analysis Method(WHAM). Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity and compared to analogous bulk transitions.

  7. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation.

    PubMed

    Han, Zhong-Kang; Gao, Yi

    2016-02-01

    Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO2 (111) surface and dissociative adsorption on STMA/CeO2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction.

  8. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve.

    PubMed

    Rutherford, S W; Coons, J E

    2005-04-15

    Measurements of adsorption equilibria and transport kinetics for argon, oxygen and nitrogen at 20, 50, and 80 degrees C on commercially derived Takeda carbon molecular sieve (CMS) employed for air separation have been undertaken in an effort to elucidate fundamental mechanisms of transport. Results indicate that micropore diffusion which is modeled by a Fickian diffusion process, governs the transport of oxygen molecules and the pore mouth barrier controls argon and nitrogen transport which is characterized by a linear driving force (LDF) model. For the three temperatures studied, the pressure dependence of the diffusivity and the LDF rate constant appear to be well characterized by a formulation based on the chemical potential as the driving force for transport. Isosteric heat of adsorption at zero loading and activation energy measurements are compared with predictions made from a previously proposed molecular model for characterizing CMS.

  9. Quantum chemical ab initio prediction of proton exchange barriers between CH{sub 4} and different H-zeolites

    SciTech Connect

    Tuma, Christian; Sauer, Joachim

    2015-09-14

    A hybrid MP2:DFT (second-order Møller–Plesset perturbation theory–density functional theory) method that combines MP2 calculations for cluster models with DFT calculations for the full periodic structure is used to localize minima and transition structures for proton jumps at different Brønsted sites in different frameworks (chabazite, faujasite, ferrierite, and ZSM-5) and at different crystallographic positions of a given framework. The MP2 limit for the periodic structures is obtained by extrapolating the results of a series of cluster models of increasing size. A coupled-cluster (CCSD(T)) correction to MP2 energies is calculated for cluster models consisting of three tetrahedra. For the adsorption energies, this difference is small, between 0.1 and 0.9 kJ/mol, but for the intrinsic proton exchange barriers, this difference makes a significant (10.85 ± 0.25 kJ/mol) and almost constant contribution across different systems. The total values of the adsorption energies vary between 22 and 34 kJ/mol, whereas the total proton exchange energy barriers fall in the narrow range of 152–156 kJ/mol. After adding nuclear motion contributions (harmonic approximation, 298 K), intrinsic enthalpy barriers between 134 and 141 kJ/mol and apparent energy barriers between 105 and 118 kJ/mol are predicted for the different sites examined for the different frameworks. These predictions are consistent with experimental results available for faujasite, ferrierite, and ZSM-5.

  10. Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells

    PubMed Central

    Zhang, Jin; Yu, Chunhui; Wang, Lili; Li, Yizhi; Ren, Yuhang; Shum, Kai

    2014-01-01

    This report is to address the question if black γ-polymorph of cesium tin tri-iodide (B-γ-CsSnI3) can be used as a solid-state hole-transport material in the conventional DSSCs with the N719 dye to replace the liquid electrolyte as reported by I. Chung et al. on Nature 485, 486, (2012). Here we demonstrate rigorously that B-γ-CsSnI3 is not energetically possible to collect photogenerated holes because of the large energy barrier at the interface of N719/B-γ-CsSnI3. Therefore, it cannot serve as a hole-transporter for the conventional DSSCs although it is a good hole-conducting material. A solution-based method was employed to synthesize the B-γ-CsSnI3 polycrystalline thin-films used for this work. These thin-films were then characterized by X-ray diffraction, Hall measurements, optical reflection, and photoluminescence (PL). Particularly, spatially resolved PL intensity images were taken after B-γ-CsSnI3 was incorporated in the DSSC structure to insure the material integrity. The means of ultraviolet photoemission spectroscopy (UPS) was used to reveal why B-γ-CsSnI3 could not act as the substitute of liquid electrolyte in the conventional DSSCs. For the completeness, other two related compounds, one is the yellow polymorph of CsSnI3 and other is Cs2SnI6 with tetravalent tin instead of double-valent tin in CsSnI3 were also investigated by UPS. PMID:25378076

  11. Large Energy Barrier and Magnetization Hysteresis at 5 K for a Symmetric {Dy2} Complex with Spherical Tricapped Trigonal Prismatic Dy(III) Ions.

    PubMed

    Mazarakioti, Eleni C; Regier, Jeffery; Cunha-Silva, Luís; Wernsdorfer, Wolfgang; Pilkington, Melanie; Tang, Jinkui; Stamatatos, Theocharis C

    2017-03-20

    The introduction of the Schiff base ligand N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2) in 4f-metal chemistry has afforded a new dinuclear complex, [Dy2(NO3)4(sacbH)2(H2O)2(MeCN)2] (1), with the metal ions adopting a rare spherical tricapped trigonal prismatic coordination geometry. The deprotonated phenoxido O atoms of the organic chelate occupy the axial triangular faces of the prism and were found to be very close to the main anisotropy axes of the two Dy(III) ions. As a result, the {Dy(III)2} compound exhibits frequency- and temperature-dependent out-of-phase ac signals below ∼25 K in the absence of a static dc field, yielding an energy barrier of 109.3(1) K for the reversal of magnetization. Fast and efficient quantum tunneling of magnetization, attributed to the strong tails of signals below ∼15 K, was suppressed through the application of a small dc field, yielding entirely visible χM″ signals below 27 K. Single-crystal magnetic hysteresis studies confirmed the single-molecule magnet (SMM) behavior of 1; the hysteresis loops appear at temperatures below ∼5 K, which is one of the highest blocking temperatures in the field of 4f-SMMs to date. This joint magneto-structural and ab initio study demonstrates the ability of more common coordination numbers (i.e., 9), but with rare coordination geometries (i.e., spherical tricapped trigonal prismatic), to promote axiality that enhances the molecular anisotropy and subsequently the magnetization dynamics of the system.

  12. Energy barrier at the N719-dye/CsSnI₃ interface for photogenerated holes in dye-sensitized solar cells.

    PubMed

    Zhang, Jin; Yu, Chunhui; Wang, Lili; Li, Yizhi; Ren, Yuhang; Shum, Kai

    2014-11-07

    This report is to address the question if black γ-polymorph of cesium tin tri-iodide (B-γ-CsSnI3) can be used as a solid-state hole-transport material in the conventional DSSCs with the N719 dye to replace the liquid electrolyte as reported by I. Chung et al. on Nature 485, 486, (2012). Here we demonstrate rigorously that B-γ-CsSnI3 is not energetically possible to collect photogenerated holes because of the large energy barrier at the interface of N719/B-γ-CsSnI3. Therefore, it cannot serve as a hole-transporter for the conventional DSSCs although it is a good hole-conducting material. A solution-based method was employed to synthesize the B-γ-CsSnI3 polycrystalline thin-films used for this work. These thin-films were then characterized by X-ray diffraction, Hall measurements, optical reflection, and photoluminescence (PL). Particularly, spatially resolved PL intensity images were taken after B-γ-CsSnI3 was incorporated in the DSSC structure to insure the material integrity. The means of ultraviolet photoemission spectroscopy (UPS) was used to reveal why B-γ-CsSnI3 could not act as the substitute of liquid electrolyte in the conventional DSSCs. For the completeness, other two related compounds, one is the yellow polymorph of CsSnI3 and other is Cs2SnI6 with tetravalent tin instead of double-valent tin in CsSnI3 were also investigated by UPS.

  13. Barrier Formation

    PubMed Central

    Lyaruu, D.M.; Medina, J.F.; Sarvide, S.; Bervoets, T.J.M.; Everts, V.; DenBesten, P.; Smith, C.E.; Bronckers, A.L.J.J.

    2014-01-01

    Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl− for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b−/− mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b−/− mice and was strongly correlated with Cl−. Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl− levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins. PMID:24170372

  14. Toward Accurate Adsorption Energetics on Clay Surfaces

    PubMed Central

    2016-01-01

    Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem. PMID:27917256

  15. Sound barriers from materials of inhomogeneous impedance.

    PubMed

    Wang, Xu; Mao, Dongxing; Yu, Wuzhou; Jiang, Zaixiu

    2015-06-01

    Sound barriers are extensively used in environmental noise protection. However, when barriers are placed in parallel on opposite sides of a sound source, their performance deteriorates markedly. This paper describes a barrier made from materials of inhomogeneous impedance which lacks this drawback. The nonuniform impedance affects the way sound undergoes multiple reflections, and in the process traps acoustic energy. A proposed realization of the barrier comprises a closely spaced array of progressively tuned hollow narrow tubes which create a phase gradient. The acoustics of the barrier is theoretically examined and its superiority over conventional barriers is calculated using finite element modeling. Structural parameters of the barrier can be changed to achieve the required sound insertion loss, and the barrier has the potential to be widely used in environmental noise control.

  16. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1997-01-01

    The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.

  17. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  18. Gold(I)-catalyzed Claisen rearrangement of allenyl vinyl ethers: missing transition states revealed through evolution of aromaticity, Au(I) as an oxophilic Lewis acid, and lower energy barriers from a high energy complex.

    PubMed

    Vidhani, Dinesh V; Cran, John W; Krafft, Marie E; Manoharan, Mariappan; Alabugin, Igor V

    2013-03-01

    Curtin-Hammett analysis of four alternative mechanisms of the gold(I)-catalyzed [3,3] sigmatropic rearrangement of allenyl vinyl ethers by density functional theory calculations reveals that the lowest energy pathway (cation-accelerated oxonia Claisen rearrangement) originates from the second most stable of the four Au(I)-substrate complexes in which gold(I) coordinates to the lone pair of oxygen. This pathway proceeds via a dissociative transition state where the C-O bond cleavage precedes C1-C6 bond formation. The alternative Au(I) coordination at the vinyl π-system produces a more stable but less reactive complex. The two least stable modes of coordination at the allenyl π-system display reactivity that is intermediate between that of the Au(I)-oxygen and the Au(I)-vinyl ether complexes. The unusual electronic features of the four potential energy surfaces (PESs) associated with the four possible mechanisms were probed with intrinsic reaction coordinate calculations in conjunction with nucleus independent chemical shift (NICS(0)) evaluation of aromaticity of the transient structures. The development of aromatic character along the "6-endo" reaction path is modulated via Au-complexation to the extent where both the cyclic intermediate and the associated fragmentation transition state do not correspond to stationary points at the reaction potential energy surface. This analysis explains why the calculated PES for cyclization promoted by coordination of gold(I) to allenyl moiety lacks a discernible intermediate despite proceeding via a highly asynchronous transition state with characteristics of a stepwise "cyclization-mediated" process. Although reaction barriers can be strongly modified by aryl substituents of varying electronic demand, direct comparison of experimental and computational substituent effects is complicated by formation of Au-complexes with the Lewis-basic sites of the substrates.

  19. Circularly polarized antennas for active holographic imaging through barriers

    SciTech Connect

    McMakin, Douglas L; Severtsen, Ronald H; Lechelt, Wayne M; Prince, James M

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  20. Adsorption dynamics of molecular nitrogen at an Fe(111) surface.

    PubMed

    Nosir, M A; Martin-Gondre, L; Bocan, G A; Díez Muiño, R

    2017-03-08

    We present an extensive theoretical study of N2 adsorption mechanisms on an Fe(111) surface. We combine the static analysis of a six-dimensional potential energy surface (6D-PES), based on ab initio density functional theory (DFT) calculations for the system, with quasi-classical trajectory (QCT) calculations to simulate the adsorption dynamics. There are four molecular adsorption states, usually called γ, δ, α, and ε, arising from our DFT calculations. We find that N2 adsorption in the γ-state is non-activated, while the threshold energy is associated with the entrance channel for the other three adsorption states. Our QCT calculations confirm that there are activated and nonactivated paths for the adsorption of N2 on the Fe(111) surface, which is in agreement with previous experimental investigations. Molecular dynamics at a surface temperature Ts = 300 K and impact energies Ei in the 0-5 eV range show the relative occupancy of the γ, δ, α, and ε states. The δ-state, however, is only marginally populated despite its adsorption energy being very similar to that of the γ-state. Our QCT calculations trace the dependence of molecular trapping on the surface temperature Ts and initial impact energy Ei and quantify the rates of the different competitive channels that eventually lead to molecular adsorption.

  1. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  2. Static versus energy-dependent nucleus-nucleus potential for description of sub-barrier fusion dynamics of {}_{8}^{16}O+{}^{112,116,120}\\!\\!\\!\\!\\!\\!{}_{50}Sn reactions

    NASA Astrophysics Data System (ADS)

    Manjeet Singh, Gautam

    2015-11-01

    The static and energy-dependent nucleus-nucleus potentials are simultaneously used along with the Wong formula for exploration of fusion dynamics of {}816O+{}112,116,120{}50Sn reactions. The role of internal structure degrees of freedom of colliding pairs, such as inelastic surface vibrations, are examined within the context of coupled channel calculations performed using the code CCFULL. Theoretical calculations based on the static Woods-Saxon potential along with the one-dimensional Wong formula fail to address the fusion data of {}816O+{}112,116,120{}50Sn reactions. Such discrepancies can be removed if one uses couplings to internal structure degrees of freedom of colliding nuclei. However, the energy-dependent Woods-Saxon potential model (EDWSP model) accurately describes the sub-barrier fusion enhancement of {}816O+{}112,116,120{}50Sn reactions. Therefore, in sub-barrier fusion dynamics, energy dependence in the nucleus-nucleus potential governs barrier modification effects in a closely similar way to that of the coupled channel approach. Supported by Dr. D. S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  3. Insertion and pore formation driven by adsorption of proteins onto lipid bilayer membrane-water interfaces.

    PubMed Central

    Zuckermann, M J; Heimburg, T

    2001-01-01

    We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane-water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional "surface gas" at the lipid bilayer membrane-water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin (alpha 5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium. PMID:11606262

  4. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties.

    PubMed

    Uzunova, Ellie L; Mikosch, Hans

    2016-04-28

    The adsorption of nitric oxide as dinitrosyls and the deNOx proton-mediated reaction mechanism are assessed using electronic structure methods and transition state theory. Dinitrosyls bind to copper cations either via a N-atom or via an O-atom, with N-binding being more stable. In their ground states, dinitrosyls reach a planar configuration with the metal cation. The two nitric oxide molecules are kept together in O-bonded dinitrosyls by the N-N bond and the adsorption complex obtains a cyclic planar structure, while N-bonded dinitrosyls have out-of-plane conformations with low energy barriers. An asymmetric structure ZCu(ON)(NO) with one N-bonded nitrosyl and the other O-bonded is of the lowest stability. The cyclic hyponitrite ZCu(ON)2 adsorption complex undergoes O-N bond breaking upon protonation of one oxygen atom and this lowers the energy barrier of the first reaction step of nitric oxide dissociation to yield N2O and a hydroxylated copper site ZCu(OH) by 45 kJ mol(-1) for Cu-SAPO-34 and by 46 kJ mol(-1) for Cu-SSZ-13. The more stable N-bonded dinitrosyl ZCu(NO)2 provides less favorable reaction which passes through the asymmetric ZCu(ON)(NO) intermediate structure. Brønsted acid sites facilitate the reversal of one nitrosyl group. The role of proton transfer from a Brønsted acid site to dinitrosyls is not limited to the initial step of facilitating the N-O bond cleavage, but it also contributes to the stabilization of intermediate oxygen species formed at the copper site as hydroxide ZCu(OH) and hydroperoxide, ZCuOOH. Without protonation, the unstable ZCuO intermediate causes structural deformation with strongly lengthened T-O bonds in the framework. The rate determining step is N2O decomposition to N2 and O2, whether starting with a ZCu(NO)2 or a ZCu(ON)2 adsorption complex, and Cu-SSZ-13 has a clear advantage with an energy barrier of 195 kJ mol(-1)vs. 265 kJ mol(-1) for Cu-SAPO-34. In the final step the Brønsted acid site is restored by proton

  5. On the adsorption and formation of Pt dimers on the CeO2(111) surface.

    PubMed

    Bruix, Albert; Nazari, Fariba; Neyman, Konstantin M; Illas, Francesc

    2011-12-28

    The direct adsorption of Pt(2) dimers on CeO(2)(111) and their formation from isolated adsorbed Pt atoms have been studied using periodic slab model calculations based on density functional theory and including the so-called on-site Hubbard parameter (GGA + U). In the most stable configuration Pt(2) is found to be almost parallel to the surface; the electronic ground state is closed shell and there is no evidence of charge transfer towards or from the surface. The formation of Pt(2) from two single adsorbed Pt atoms involves a rather small energy barrier of ~0.10 eV only. On the contrary, dissociation of adsorbed Pt(2) requires to overcome a considerable barrier of ~1.43 eV. This indicates that once Pt(2) is formed it will remain on the surface, thus likely triggering the growth of larger supported Pt particles.

  6. Adsorption of imidazole on Au(111) surface: Dispersion corrected density functional study

    NASA Astrophysics Data System (ADS)

    Izzaouihda, Safia; Mahjoubi, Khaled; Abou El Makarim, Hassna; Komiha, Najia; Benoit, David M.

    2016-10-01

    We use density functional theory in the generalized gradient approximation to study the adsorption of imidazole on the Au(111) surface and account for dispersion effect using Grimme's empirical dispersion correction technique. Our results show that the adsorption energy of imidazole depends on the slab size and on the adsorption site. In agreement with other studies, we find the largest adsorption energy for imidazole on a top site of Au(111). However, we also note that the adsorption energy at other sites is substantial.

  7. Mechanistic studies of mercury adsorption and oxidation by oxygen over spinel-type MnFe2O4.

    PubMed

    Yang, Yingju; Liu, Jing; Zhang, Bingkai; Liu, Feng

    2017-01-05

    MnFe2O4 has been regarded as a very promising sorbent for mercury emission control in coal-fired power plants because of its high adsorption capacity, magnetic, recyclable and regenerable properties. First-principle calculations based on density functional theory (DFT) were used to elucidate the mercury adsorption and oxidation mechanisms on MnFe2O4 surface. DFT calculations show that Mn-terminated MnFe2O4 (1 0 0) surface is much more stable than Fe-terminated surface. Hg(0) is physically adsorbed on Fe-terminated MnFe2O4 (1 0 0) surface. Hg(0) adsorption on Mn-terminated MnFe2O4 (1 0 0) surface is a chemisorption process. The partial density of states (PDOS) analysis indicates that Hg atom interacts strongly with surface Mn atoms through the orbital hybridization. HgO is adsorbed on the MnFe2O4 surface in a chemical adsorption manner. The small HOMO-LUMO energy gap implies that HgO molecular shows high chemical reactivity for HgO adsorption on MnFe2O4 surface. The energy barriers of Hg(0) oxidation by oxygen on Fe- and Mn-terminated MnFe2O4 surfaces are 206.37 and 76.07kJ/mol, respectively. Mn-terminated surface is much more favorable for Hg(0) oxidation than Fe-terminated surface. In the whole Hg(0) oxidation process, the reaction between adsorbed mercury and surface oxygen is the rate-determining step.

  8. Gas adsorption capacity of wood pellets

    DOE PAGES

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challengingmore » due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  9. Gas adsorption capacity of wood pellets

    SciTech Connect

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; Lau, A.; Bi, X. T.

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.

  10. Carbon dioxide adsorption in graphene sheets

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish Kumar; Ramaprabhu, Sundara

    2011-09-01

    Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes) have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 °C).

  11. Adsorption of Ar on individual carbon nanotubes, graphene, and graphite

    NASA Astrophysics Data System (ADS)

    Dzyubenko, Boris; Kahn, Joshua; Vilches, Oscar; Cobden, David

    2015-03-01

    We compare and contrast results of adsorption measurements of Ar on single-walled carbon nanotubes, graphene, and graphite. Adsorption isotherms on individual suspended nanotubes were obtained using both the mechanical resonance frequency shift (sensitive to mass adsorption) and the electrical conductance. Isotherms on graphene mounted on hexagonal boron nitride were obtained using only the conductance. New volumetric adsorption isotherms on bulk exfoliated graphite were also obtained, paying special attention to the very low coverage region (less than 2% of a monolayer). This allowed us to compare the degree of heterogeneity on the three substrate types, the binding energies, and the van der Waals 2D parameters. Research supported by NSF DMR 1206208.

  12. Adsorption of ammonium on biochar prepared from giant reed.

    PubMed

    Hou, Jie; Huang, Lei; Yang, Zhimin; Zhao, Yaqi; Deng, Chaoren; Chen, Yucheng; Li, Xin

    2016-10-01

    Giant reed was used as precursor for making biochar in order for the adsorption of NH4 (+)-N from aqueous solution. And the adsorption of the product to NH4 (+)-N was examined. The surface features of biochar were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD). XRD patterns showed several peaks and correspond to the high amount of crystalline material. The crystals contain KCl, K2O, CaO, MgO, and SiO and possess high surface area which enhances adsorption. The influence of different parameters such as initial concentration, adsorption time, pH, and ionic strength has been carried out. The adsorption could reach equilibrium through 24 h reaction and had the best adsorption amount at the solution pH values from 7 to 9. The cation has great influence on the adsorption of NH4 (+)-N, whereas the anion exerted a weaker effect. The adsorption followed pseudo-first-order and pseudo-second-order models. And the intraparticle diffusion and desorption studies further elucidated that the mechanism of adsorption on the product was ion exchange. The product equilibrium data was well described by the Langmuir and Freundlich model. The maximum adsorption capacities were 1.490 mg/g. Biochar derived from giant reed at 500 °C was suggested as a promising adsorbent for the removal of NH4 (+)-N from slightly polluted wastewater.

  13. Adsorption mechanism of chloroacetanilide herbicides to modified montmorillonite.

    PubMed

    El-Nahhal, Yasser

    2003-09-01

    This study was undertaken to characterize the adsorption mechanism of alachlor and metolachlor on montmorillonite modified with cationic surfactants. Adsorbed amounts of cationic surfactant on montmorillonite surfaces were determined by CNHSO analyzer. Equilibrium concentrations of alachlor and metolachlor were determined by GC and adsorption results were fit to a linear regression equation. The slope of the isotherms (Kd) was normalized to the fraction of organic carbon on montmorillonite complexes to produce corresponding Koc. Adsorption of surfactants fit very well to Langmuir equation. Increased basal spacing indicates that surfactant molecules could penetrate through the interlayer spacing and arrange themselves in different ways. Equilibrium data of alachlor and metolachlor suggest that adsorption may occur via physical or chemical bonds. Koc values of alachlor or metolachlor decreased as the fraction of the organic carbon increased in montmorillonite complexes indicating independent adsorption process. Changes of the molar free energy of the adsorption reactions were in the range of physical adsorption, indicating that adsorption reactions are spontaneous and the molecules either adsorb on the surface or penetrate into the inter-layers of montmorillonite-surfactant complex. Careful investigation of the adsorption data suggests that interaction may occur via the active groups such as carbonyl group (-C=O), anilidic (C-N) group and/or phenyl rings. This information may provide better understanding on adsorption mechanism and be useful in designing ecologically acceptable herbicide formulations.

  14. INFORMATION BARRIERS - A HISTORICAL PERSPECTIVE

    SciTech Connect

    D. CLOSE; D. MACARTHUR; N. NICHOLAS

    2001-05-01

    The concept ''transparency'' was introduced into the safeguards lexicon in the early 1990s, and the term ''information barrier'' was introduced into the safeguards lexicon in the late 1990s. Although the terms might have been new, the concepts were not. Both concepts have been used by the International Atomic Energy Agency (IAEA) and its inspectors since the early 1980s, but the terms ''transparency'' and ''information barrier'' were not used for those concepts then. The definitions of these concepts have evolved in recent years, and these concepts have been applied to a broader category of special nuclear material measurement problems. The origin and features of the information barrier concept will be traced from an early implementation by the IAEA to the current state-of-the-art information barrier technology used in nonproliferation, arms control, and dismantlement.

  15. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    NASA Astrophysics Data System (ADS)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  16. O2 adsorption on AunRh n = 1-5 neutral and charged clusters

    NASA Astrophysics Data System (ADS)

    Buendía, Fernando; Beltrán, Marcela R.

    2016-04-01

    Theoretical evidence is presented for the molecular and dissociative adsorption of O2 on free AunRh neutral, anionic and cationic clusters with 1 to 5 gold atoms, indicating that the stabilization of the activated di-oxygen species is a key factor for the unusual catalytic activities of Au-based catalysts. The structure, stability, for both molecular and dissociative O2 adsorption on AunRh n = 1-5 clusters has been investigated using density-functional theory. To find the transition states, the minimum energy paths have been explored for a few clusters. In general, lower values for the activation energy have been found when compared with the barriers that occur on pure Aun based clusters. The higher binding energies in the AuRh mix favor oxygen dissociation among any other possible reaction paths. The anionic clusters being the most reactive of all. The molecular bonding mechanism to these complexes involves charge transfer to the oxygen molecule with a concomitant activation of the O-O bond to a superoxo-like state. The characteristic planar structures of both pure gold and AuRh clusters prevail for most of the cases here studied. The odd-even characteristic catalytic activation of pure gold clusters is not observed once even a single rhodium atom has been added to the cluster.

  17. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    NASA Astrophysics Data System (ADS)

    Cimino, R.; Rasmussen, C. J.; Neimark, A. V.

    2013-11-01

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of "infinite" chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  18. Computational Investigation of Conformational Changes in Proteins upon Adsorption

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Anand, Gaurav; Belfort, Georges; Kumar, Sanat K.

    2009-03-01

    Amyloidogenic diseases, such as, Alzheimer's, are caused by adsorption and aggregation of partially unfolded proteins. Protein adsorption is often accompanied by conformational rearrangements, which are thought to affect many properties such as their adhesion strength to the surface, biological activity, and aggregation tendency. Experiments have shown that many proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. To better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations and Single Chain Mean Field calculations of adsorption of different proteins, modeled as lattice chains, to study the adsorption behavior and equilibrium protein conformations at different temperatures, protein concentration and surface hydrophobicity. Free energy and entropic effects on adsorption have been studied by determining density of states using Weighted Histogram Analysis Method. Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity.

  19. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    SciTech Connect

    Cimino, R.; Neimark, A. V.; Rasmussen, C. J.

    2013-11-28

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of “infinite” chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  20. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.

    PubMed

    Michaelides, Angelos; Liu, Z-P; Zhang, C J; Alavi, Ali; King, David A; Hu, P

    2003-04-02

    The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Brønsted-Evans-Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.

  1. Synthetic Eelgrass Oil Barrier

    NASA Astrophysics Data System (ADS)

    Curtis, T. G.

    2013-05-01

    surface of filaments because the physical, van der Waals, forces, the basis for their adhesion to the surface, are weak and act over only a short distance. SE can be deployed in a fashion similar to a demersal fishing "longline". Oil can be "caught" by replacing baited hooks and snoods with closely spaced filaments of EMA. Adsorption of floating oil requires the filaments be long enough to reach the surface, and float, as eelgrass at low tide, on the surface for some distance. Laying multiple, parallel, lines of SE offshore, makes it possible to recover each, one at a time, and replace it without breeching the barrier to oil that they form. As EMA is tough and elastic, with a large surface area to volume ratio, by virtue of being formed as an open-cell foam, considerable oil is adsorbed and can be recovered by squeezing the oil out of the filaments. Lines of SE can be redeployed and do not have to be discarded.

  2. Photon-Assisted Transmission through a Double-Barrier Structure

    SciTech Connect

    LYO,SUNGKWUN K.

    2000-06-27

    The authors study multi-photon-assisted transmission of electrons through single-step, single-barrier and double-barrier potential-energy structures as a function of the photon energy and the temperature. Sharp resonances in the spectra of the tunneling current through double-barrier structures are relevant to infra-red detectors.

  3. Adsorption of H2, Cl2, and HCl molecules on α-Cr2O3(0001) surfaces: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Nigussa, K. N.; Nielsen, K. L.; Borck, Ø.; Støvneng, J. A.

    2016-11-01

    Density functional theory calculations show that H2, Cl2, and HCl molecules chemisorb dissociatively on the Cr2O3(0001) surface, which can be terminated by Cr atoms, Chromyl groups (Cr=O), or O atoms. It is investigated that these molecules energetically prefer to adsorb dissociatively than in molecular form. Several dissociative adsorption sites have been considered for all the molecules on all the differently terminated surfaces and the corresponding adsorption energies are calculated. Dissociation energy barriers are estimated with the nudged elastic band method. Notable results from the dissociative adsorptions of Cl2 and H2 are the formation of a CrCl2 complex on the Cr terminated surface, and H2O complex on the O and the Cr=O terminated surfaces, and a H2O layer on the Cr=O terminated surface. Dissociative adsorption of HCl is less favored on the Cr=O and O terminated surfaces than on the Cr terminated surface.