Science.gov

Sample records for adsorption capacity calculated

  1. Gas adsorption capacity of wood pellets

    DOE PAGES

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challengingmore » due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  2. Gas adsorption capacity of wood pellets

    SciTech Connect

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; Lau, A.; Bi, X. T.

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.

  3. Predicting protein dynamic binding capacity from batch adsorption tests.

    PubMed

    Carta, Giorgio

    2012-10-01

    The dynamic binding capacity (DBC) and its dependence on residence time influence the design and productivity of adsorption columns used in protein capture applications. This paper offers a very simple approach to predict the DBC of an adsorption column based on a measurement of the equilibrium binding capacity (EBC) and of the time needed to achieve one-half of the EBC in a batch adsorption test. The approach is based on a mass transfer kinetics model that assumes pore diffusion with a rectangular isotherm; however, the same approach is also shown to work for other systems where solute transport inside the particle occurs through other transport mechanisms.

  4. Evaluating the Adsorptive Capacities of Chemsorb 1000 and Chemsorb 1425

    NASA Technical Reports Server (NTRS)

    Monje, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa N.; Melendez, Orlando

    2014-01-01

    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity.

  5. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  6. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  7. Methane Adsorption on Aggregates of Fullerenes: Site-Selective Storage Capacities and Adsorption Energies

    PubMed Central

    Kaiser, Alexander; Zöttl, Samuel; Bartl, Peter; Leidlmair, Christian; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2013-01-01

    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118–281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane–methane and fullerene–methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes. PMID:23744834

  8. Methane adsorption on aggregates of fullerenes: site-selective storage capacities and adsorption energies.

    PubMed

    Kaiser, Alexander; Zöttl, Samuel; Bartl, Peter; Leidlmair, Christian; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2013-07-01

    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118-281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane-methane and fullerene-methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes.

  9. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  10. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption.

  11. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  12. Effect of calcium on adsorption capacity of powdered activated carbon.

    PubMed

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger.

  13. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    PubMed

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications.

  14. Proteomic analysis of protein adsorption capacity of different haemodialysis membranes.

    PubMed

    Urbani, Andrea; Lupisella, Santina; Sirolli, Vittorio; Bucci, Sonia; Amoroso, Luigi; Pavone, Barbara; Pieroni, Luisa; Sacchetta, Paolo; Bonomini, Mario

    2012-04-01

    Protein-adsorptive properties are a key feature of membranes used for haemodialysis treatment. Protein adsorption is vital to the biocompatibility of a membrane material and influences membrane's performance. The object of the present study is to investigate membrane biocompatibility by correlating the adsorbed proteome repertoire with chemical feature of the membrane surfaces. Dialyzers composed of either cellulose triacetate (Sureflux 50 L, effective surface area 0.5 m(2); Nipro Corporation, Japan) or the polysulfone-based helixone (FX40, effective surface area 0.4 m(2); Fresenius Medical Care AG, Germany) materials were employed to develop an ex vivo apparatus to study protein adsorption. Adsorbed proteins were eluted by a strong chaotropic buffer condition and investigated by a proteomic approach. The profiling strategy was based on 2D-electrophoresis separation of desorbed protein coupled to MALDI-TOF/TOF analysis. The total protein adsorption was not significantly different between the two materials. An average of 179 protein spots was visualised for helixone membranes while a map of retained proteins of cellulose triacetate membranes was made up of 239 protein spots. The cellulose triacetate material showed a higher binding capacity for albumin and apolipoprotein. In fact, a number of different protein spots belonging to the gene transcript of albumin were visible in the cellulose triacetate map. In contrast, helixone bound only a small proportion of albumin, while proved to be particularly active in retaining protein associated with the coagulation cascade, such as the fibrinogen isoforms. Our data indicate that proteomic techniques are a useful approach for the investigation of proteins surface-adsorbed onto haemodialysis membranes, and may provide a molecular base for the interpretation of the efficacy and safety of anticoagulation treatment during renal replacement therapy.

  15. Chemical modification of oxalate decarboxylase to improve adsorption capacity.

    PubMed

    Lin, Rihui; He, Junbin; Wu, Jia; Cai, Xinghua; Long, Han; Chen, Shengfeng; Liu, Haiqian

    2017-02-03

    In order to enhance the adsorption capacity of oxalate decarboxylase (Oxdc) on calcium oxalate monohydrate crystals and improve the application performance of Oxdc, chemical modification of Oxdc with ethylenediaminetetraacetic dianhydride (EDTAD) was investigated in this work. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography tandem mass spectrometry (LC/MS) analysis results demonstrated that Oxdc and EDTAD have been covalently bound, and suggested that the chemical modification occurred at the free amino of the side chain and the α-amine of the N-terminus of Oxdc. Fluorescene and circular dichroic measurement showed that the structure and conformation of Oxdc were tinily altered after modification by EDTAD. The optimum pH of EDTAD-modified Oxdc was shifted to the alkaline side about 1.5 unit and it has a higher thermostability. The analysis of kinetic parameters indicated that the EDTAD-modified Oxdc showed a higher affinity towards the substrate. Through modification the adsorption capacity of Oxdc onto CaOx monohydrate crystals was increased by 42.42%.

  16. Quantum Biological Channel Modeling and Capacity Calculation

    PubMed Central

    Djordjevic, Ivan B.

    2012-01-01

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general. PMID:25371271

  17. A geometric pore adsorption model for predicting the drug loading capacity of insoluble drugs in mesoporous carbon.

    PubMed

    Gao, Yikun; Zhu, Wenquan; Liu, Jia; Di, Donghua; Chang, Di; Jiang, Tongying; Wang, Siling

    2015-05-15

    In this work, a simple and accurate geometric pore-adsorption model was established and experimentally validated for predicting the drug loading capacity in mesoporous carbon. The model was designed according to the shape of pore channels of mesoporous carbon and the arrangement of drug molecules loaded in the pores. Three different small molecule drugs (celecoxib, fenofibrate and carvedilol) were respectively loaded in mesoporous carbon with different pore sizes. In order to test the accuracy of the established model, nitrogen adsorption-desorption analysis was employed to confirm the pore structure of mesoporous carbon and to calculate the occupation volume of the adsorbed drugs. The adsorption isotherms of celecoxib were systematically investigated to describe the adsorption process. It was found that the experimental results of adsorption capacity were all in the range of the predicted values for all the tested drugs and mesoporous carbon. The occupation volumes calculated from the model also agreed well with the experimental data. These results demonstrated that the established model could accurately provide the range of drug loading capacity, which may provide a useful option for the prediction of the drug loading capacity of small molecule drugs in mesoporous materials.

  18. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation.

    PubMed

    Guo, Xun; Zhang, Xitong; Zhao, Shijun; Huang, Qing; Xue, Jianming

    2016-01-07

    Density functional theory (DFT) calculation is employed to study the adsorption properties of Pb and Cu on recently synthesized two-dimensional materials MXenes, including Ti3C2, V2C1 and Ti2C1. The influence of surface decoration with functional groups such as H, OH and F have also been investigated. Most of these studied MXenes exhibit excellent capability to adsorb Pb and Cu, especially the adsorption capacity of Pb on Ti2C1 is as high as 2560 mg g(-1). Both the binding energies and the adsorption capacities are sensitive to the functional groups attached to the MXenes' surface. Ab initio molecular dynamics (ab-init MD) simulation confirms that Ti2C1 remains stable at room temperature after adsorbing Pb atoms. Our calculations imply that these newly emerging two-dimensional MXenes are promising candidates for wastewater treatment and ion separation.

  19. Adsorption of heavy metals on to sugar cane bagasse: improvement of adsorption capacities due to anaerobic degradation of the biosorbent.

    PubMed

    Joseph, Osnick; Rouez, Maxime; Métivier-Pignon, Hélène; Bayard, Rémy; Emmanuel, Evens; Gourdon, Rémy

    2009-12-01

    In this work, anaerobic degradation of sugar cane bagasse was studied with a dual objective: the production of biogas and the improvement of the material's characteristics for its implementation in adsorption processes. The biogas production was determined by means of biomethane potential tests carried out over two months of incubation at 35 degrees C. Biogas and methane cumulative productions were assumed to follow a first-order rate of decay. Theoretical cumulative methane and biogas productions were calculated using Buswell's equation. The anaerobic digestion resulted in a 92% decrease in the leachable organic fraction and a 40% mass loss of bagasse. The average productions of biogas and methane from the whole set of experiments were 293 +/- 6 and 122 +/- 4 mL g(-1) of volatile solids, respectively. The anaerobic incubation of the raw material led to an increase in adsorption capacities towards metal ions, which were multiplied by around 2.0 for Zn2+ and 2.3 for Cd2+.

  20. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers.

    PubMed

    Gao, Da-Wen; Hu, Qi; Pan, Hongyu; Jiang, Jiping; Wang, Peng

    2015-10-01

    Pyromellitic dianhydride (PMDA) modified jute fiber (MJF) were prepared with microwave treatment to generate a biosorbent for aniline removal. The characterization of the biosorbent was investigated by SEM, BET and FT-IR analysis to discuss the adsorption mechanism. The studies of various factors influencing the adsorption behavior indicated that the optimum dosage for aniline adsorption was 3g/L, the maximum adsorption capacity was observed at pH 7.0 and the adsorption process is spontaneous and endothermic. The aniline adsorption follows the pseudo second order kinetic model and Langmuir isotherm model. Moreover, the biosorbent could be regenerated through the desorption of aniline by using 0.5M HCl solution, and the adsorption capacity after regeneration is even higher than that of virgin MJF. All these results prove MJF is a promising adsorbent for aniline removal in wastewater.

  1. Theoretical calculation of heat capacity by using third virial coefficient

    NASA Astrophysics Data System (ADS)

    Mamedov, Bahtiyar Akber; Somuncu, Elif

    2017-02-01

    We have presented a new formula to determine the heat capacity for real gaseous. This formula is a simple and more accurate analytical approximation for heat capacity using third virial coefficient over Lennard-Jones (12-6) potential. The calculation results of heat capacity show a good agreement with the data in the literature. The consistency of results demonstrates that the proposed formula is applicable to real gaseous.

  2. An investigation on the catalytic capacity of dolomite in transesterification and the calculation of kinetic parameters.

    PubMed

    Niu, Sheng-Li; Huo, Meng-Jia; Lu, Chun-Mei; Liu, Meng-Qi; Li, Hui

    2014-04-01

    The catalytic capacity of dolomite in transesterification was investigated and the kinetic parameters were calculated. The activated dolomites as transesterification catalyst were characterized by X-ray diffraction, nitrogen adsorption and desorption and Hammett indicator method, where the original dolomite was analyzed by thermogravimetric and X-ray fluorescence in advance. Its potential catalytic capacity was validated from aspects of the activated temperature and the reused property, where the reliability of the experimental system was also examined. Then, influences of the catalyst added amount, the mole ratio of methanol to oil, the transesterification temperature and the transesterification time on the catalytic capacity were investigated. Finally, kinetic parameters of the transesterification catalyzed by the activated dolomite were calculated.

  3. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  4. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework.

    PubMed

    Xiao, Bo; Wheatley, Paul S; Zhao, Xuebo; Fletcher, Ashleigh J; Fox, Sarah; Rossi, Adriano G; Megson, Ian L; Bordiga, S; Regli, L; Thomas, K Mark; Morris, Russell E

    2007-02-07

    Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.

  5. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  6. Efficient removal and highly selective adsorption of Hg2+ by polydopamine nanospheres with total recycle capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Xiulan; Jia, Xin; Zhang, Guoxiang; Hu, Jiamei; Sheng, Wenbo; Ma, Zhiyuan; Lu, Jianjiang; Liu, Zhiyong

    2014-09-01

    This study reported a new method for efficient removal of Hg2+ from contaminated water using highly selective adsorptive polydopamine (PDA) nanospheres, which were uniform and had a small diameter (150-200 nm). The adsorption isotherms, kinetics, thermodynamics were investigated. Also, the effects of ionic strength, co-existing ions on removing ability of PDA nanospheres for Hg2+ were studied. Adsorption of Hg2+ was very fast and efficient as adsorption equilibrium was completed within 4 h and the maximum adsorption capacities were 1861.72 mg/g, 2037.22 mg/g, and 2076.81 mg/g at 298 K, 313 K, and 328 K respectively, increasing with increasing of temperature. The PDA nanospheres exhibited highly selective adsorption of Hg2+ and had a total desorption capacity of 100% in hydrochloric acid solution, pH 1. The results showed that the structure of PDA nanospheres remained almost unchanged after recycling five times. Furthermore, X-ray photoelectron spectroscopy (XPS) was employed to determine the elements of PDA nanospheres before and after Hg2+ adsorption. Considering their efficient and highly Hg2+ selective adsorption, total recycle capacity, and high stability, PDA nanospheres will be feasible in a number of practical applications.

  7. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  8. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents.

    PubMed

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    In occupational hygiene, activated carbon produced from coconut shell is a common adsorbent material for harmful substances including organic vapors due to its outstanding adsorption capacity and cost advantage. However, moisture adsorption of the carbon generally decreases the adsorption capacity for organic vapors. In a previous report, we prepared several coconut shell activated carbons which had been preconditioned by equilibration with moisture at different relative humidities and measured the breakthrough times for 6 kinds of organic vapor, in order to clarify the effect of preliminary moisture content in activated carbon on the adsorption capacity in detail. We found that the relative percent weight increase due to moisture adsorption of the carbon specimen had a quantitative effect, reducing the breakthrough time. In this report, we carried out further measurements of the effect of moisture content on the adsorption of 13 kinds of organic vapor, and investigated the relationship between moisture adsorption and the reduction of the breakthrough time of activated carbon specimens. We also applied the data to the Wood's breakthrough time estimation model which is an extension of the Wheeler-Jonas equation.

  9. Better adsorption capacity of SnO2 nanoparticles with different graphene addition

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2016-11-01

    The adsorption capacity of SnO2 nanoparticle has been studied by graphene and nanographene platelets (NGP) additions using co-precipitation method. The crystalline phase, composition, and morphology of the samples are analyzed using X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX), Fourier Transform Infrared Spectroscopy (FT-IR), and Transmission Electron Microscope (TEM). Tetragonal structure of SnO2 is shown for the nanoparticle and its composites. The presence of graphene and NGP is also confirmed. The adsorption capacity of the nanoparticle and its composites are analyzed by observing the degradation of methylene blue (MB) as the organic dye model using UV-Vis Spectroscopy. The result shows that SnO2 composite with graphene achieves higher adsorption capacity of about 20% than the composite with NGP. The fitting of equilibrium adsorption capacity result indicates that the adsorption mechanism of SnO2 composite with graphene tends to follow the Langmuir adsorption-isotherm model.

  10. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe(3+)-grafting.

    PubMed

    Akgül, Murat

    2014-02-28

    In this paper, a batch system was applied to study the adsorption behavior of congo red (CR) on raw and modified clinoptilolites. Raw clinoptilolite (Raw-CL) was treated with Fe(NO3)3 in ethanol to obtain its iron-grafted form (Fe-CL). Adsorbents were characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), energy dispersive X-ray spectroscopy (EDX), thermogravimetric/differential thermal analysis (TG/DTA), zeta-potential measurement and N2 gas adsorption-desorption techniques. Effects of the experimental parameters (initial pH, dye concentration, temperature and adsorption time) were investigated to find optimum conditions that result in highest adsorption capacity for CR removal. The obtained results suggest that the solution pH appears to be a key factor of the CR adsorption process. The maximum dye adsorption was achieved with Fe-CL adsorbent at pH ∼6.3 and the corresponding adsorption capacity was found to be 36.7mg/g, which is higher than that of its raw counterpart (16.9mg/g). A significant decrease in CR removal was given by Fe-CL between pH 7 and 11 opposite to Raw-CL which has nearly constant qe in the same pH range. The Fe(3+)-grafting increased the zeta potential of raw clinoptilolite, leading to a higher adsorption capacity compared to that of unfunctionalized adsorbent. Also, temperature change was found to have a significant effect on the adsorption process.

  11. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    PubMed

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs.

  12. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    PubMed

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.

  13. High-Capacity and Photoregenerable Composite Material for Efficient Adsorption and Degradation of Phenanthrene in Water.

    PubMed

    Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye

    2016-10-18

    We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.

  14. Radiographic total lung capacity determination aided by a programmable calculator.

    PubMed

    Bencowitz, H A; Shigeoka, J W

    1980-11-01

    This report describes a method that was used to determine total lung capacity from routine chest radiographs, using a programmable calculator to facilitate computation. The results correlated closely with those obtained by a computerized method. The technique was rapid, inexpensive (the necessary equipment cost less than $400), and could be used in any pulmonary laboratory or office. The program is listed, and an example provided.

  15. Investigation of Morphology and Hydrogen Adsorption Capacity of Disordered Carbons

    NASA Astrophysics Data System (ADS)

    He, Lilin; Melnichenko, Yuri; Gallego, Nidia; Contescu, Cristian

    2014-03-01

    We have applied small angle neutron scattering (SANS) technique to study the morphologies and hydrogen adsorption capabilities of wood-based ultramicroporous carbon and poly(furfuryl alcohol) derived carbon. The Polydispersed Spherical model and chord length analysis of the scattering profiles were performed to obtain morphological parameters such as average pore size and pore size distribution of the dry carbons, which agreed reasonably well with the independent gas sorption measurements. The hydrogen physisorbed in these two carbons at room temperature and moderate pressures was investigated by In-situ SANS measurements. The experimental data analyzed using a modified Kalliat model for decoupling scattering contributions from pores with different sizes indicates that the molecular hydrogen condenses preferentially in narrow micropores at all measured pressures, which supports the theoretical prediction by quantum mechanical and thermodynamical models.

  16. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.

    PubMed

    Sánchez-Martín, M J; Dorado, M C; del Hoyo, C; Rodríguez-Cruz, M S

    2008-01-15

    Adsorption of three surfactants of different nature, Triton X-100 (TX100) (non-ionic), sodium dodecylsulphate (SDS) (anionic) and octadecyltrimethylammonium bromide (ODTMA) (cationic) by four layered (montmorillonite, illite, muscovite and kaolinite) and two non-layered (sepiolite and palygorskite) clay minerals was studied. The objective was to improve the understanding of surfactant behaviour in soils for the possible use of these compounds in remediation technologies of contaminated soils by toxic organic compounds. Adsorption isotherms were obtained using surfactant concentrations higher and lower than the critical micelle concentration (cmc). These isotherms showed different adsorption stages of the surfactants by the clay minerals, and were classified in different subgroups of the L-, S- or H-types. An increase in the adsorption of SDS and ODTMA by all clay minerals is observed up to the cmc of the surfactant in the equilibrium solution is reached. However, there was further TX100 adsorption when the equilibrium concentration was well above the cmc. Adsorption constants from Langmuir and Freundlich equations (TX100 and ODTMA) or Freundlich equation (SDS) were used to compare adsorption of different surfactants by clay minerals studied. These constants indicated the surfactant adsorption by clay minerals followed this order ODTMA>TX100>SDS. The adsorption of TX100 and ODTMA was higher by montmorillonite and illite, and the adsorption of SDS was found to be higher by kaolinite and sepiolite. Results obtained show the influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays, and they indicate the interest to consider the soil mineralogical composition when one surfactant have to be selected in order to establish more efficient strategies for the remediation of soils and water contaminated by toxic organic pollutants.

  17. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  18. Non-contact analysis of the adsorptive ink capacity of nano silica pigments on a printing coating base.

    PubMed

    Jiang, Bo; Huang, Yu Dong

    2014-01-01

    Near infrared spectra combined with partial least squares were proposed as a means of non-contact analysis of the adsorptive ink capacity of recording coating materials in ink jet printing. First, the recording coating materials were prepared based on nano silica pigments. 80 samples of the recording coating materials were selected to develop the calibration of adsorptive ink capacity against ink adsorption (g/m2). The model developed predicted samples in the validation set with r2  = 0.80 and SEP = 1.108, analytical results showed that near infrared spectra had significant potential for the adsorption of ink capacity on the recording coating. The influence of factors such as recording coating thickness, mass ratio silica: binder-polyvinyl alcohol and the solution concentration on the adsorptive ink capacity were studied. With the help of the near infrared spectra, the adsorptive ink capacity of a recording coating material can be rapidly controlled.

  19. Adsorption energies of mercury-containing species on CaO and temperature effects on equilibrium constants predicted by density functional theory calculations.

    PubMed

    Kim, Bo Gyeong; Li, Xinxin; Blowers, Paul

    2009-03-03

    The adsorption of Hg, HgCl, and HgCl2 on the CaO surface was investigated theoretically so the fundamental interactions between Hg species and this potential sorbent can be explored. Surface models of a 4 x 4 x 2 cluster, a 5 x 5 x 2 cluster, and a periodic structure using density functional theory calculations with LDA/PWC and GGA/BLYP functionals, as employed in the present work, offer a useful description for the thermodynamic properties of adsorption on metal oxides. The effect of temperature on the equilibrium constant for the adsorption of mercury-containing species on the CaO (0 0 1) surface was investigated with GGA/BLYP calculations in the temperature range of 250-600 K. Results show that, at low coverage of elemental mercury, adsorption on the surface is physisorption while the two forms of oxidized mercury adsorption undergo stronger adsorption. The adsorption energies decrease with increasing coverage for elemental mercury on the surfaces. The chlorine atom enhances the adsorption capacity and adsorbs mercury to the CaO surface more strongly. The adsorption energy is changed as the oxidation state varies, and the equilibrium constant decreases as the temperature increases, in good agreement with data for exothermic adsorption systems.

  20. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide-biochar nano-composites derived from pulp and paper sludge

    NASA Astrophysics Data System (ADS)

    Chaukura, Nhamo; Murimba, Edna C.; Gwenzi, Willis

    2016-02-01

    A Fe2O3-biochar nano-composite (Fe2O3-BC) was prepared from FeCl3-impregnated pulp and paper sludge (PPS) by pyrolysis at 750 °C. The characteristics and methyl orange (MO) adsorption capacity of Fe2O3-BC were compared to that of unactivated biochar (BC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the composite material was nano-sized. Fourier transform infrared (FTIR) spectroscopy revealed the presence of hydroxyl and aromatic groups on BC and on Fe2O3-BC, but Brunauer-Emmett-Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) porosity were lower for Fe2O3-BC than BC. Despite the lower BET surface area and porosity of Fe2O3-BC, its MO adsorption capacity was 52.79 % higher than that of BC. The equilibrium adsorption data were best represented by the Freundlich model with a maximum adsorption capacity of 20.53 mg g-1 at pH 8 and 30 min contact time. MO adsorption obeyed pseudo-second-order kinetics for both BC and Fe2O3-BC with R 2 values of 0.996 and 0.999, respectively. Higher MO adsorption capacity for Fe2O3-BC was attributed to the hybrid nature of the nano-composites; adsorption occurred on both biochar matrix and Fe2O3 nanocrystals. Gibbs free energy calculations confirmed the adsorption is energetically favourable and spontaneous with a high preference for adsorption on both adsorbents. The nano-composite can be used for the efficient removal of MO (>97 %) from contaminated wastewater.

  1. [Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane].

    PubMed

    Zhang, Meng-Zhu; Li, Lin; Liu, Jun-Xin; Sun, Yong-Jun; Li, Guo-Bin

    2013-01-01

    Coconut shell based activated carbon was modified by alkali with different concentrations. The surface structures of tested carbons were observed and analyzed by SEM and BET methods. Boehm's titration and SEM/EDS methods were applied to assay the functional groups and elements on the carbon surface. The adsorption of methane on tested carbons was investigated and adsorption behavior was described by the adsorption isotherms. Results showed that surface area and pore volume of modified carbon increased and surface oxygen groups decreased as the concentration of the alkali used increased, with no obvious change in pore size. When concentration of alkali was higher than 3.3 mol x L(-1), the specific surface area and pore volume of modified carbon was larger than that of original carbon. Methane adsorption capacity of alkali modified carbon increased 24%. Enlargement of surface area and pore volume, reduction of surface oxygen groups will benefit to enhance the methane adsorption ability on activated carbon. Adsorption behavior of methane followed the Langmuir isotherm and the adsorption coefficient was 163.7 m3 x mg(-1).

  2. Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests.

    PubMed

    Balsamo, Marco; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Erto, Alessandro; Rodríguez-Reinoso, Francisco; Lancia, Amedeo

    2014-05-27

    In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures.

  3. Fugitive gas adsorption capacity of biomass and animal-manure derived biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research characterized and investigated ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and pore volumes of the a...

  4. Ammonia adsorption capacity of biomass and animal-manure derived biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to characterize and investigate ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and...

  5. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  6. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  7. Effect of carboxyethylation degree on the adsorption capacity of Cu(II) by N-(2-carboxyethyl)chitosan from squid pens.

    PubMed

    Huang, Jun; Xie, Haihua; Ye, Hui; Xie, Tian; Lin, Yuecheng; Gong, Jinyan; Jiang, Chengjun; Wu, Yuanfeng; Liu, Shiwang; Cui, Yanli; Mao, Jianwei; Mei, Lehe

    2016-03-15

    Chitosan was prepared by N-deacetylation of squid pens β-chitin, and N-carboxyethylated chitosan (N-CECS) with different degrees of substitution (DS) were synthesized. DS values of N-CECS derivatives calculated by (1)H nuclear magnetic resonance (NMR) spectroscopy were 0.60, 1.02 and 1.46, respectively. The adsorption capacity of Cu(II) by N-CECS correlated well with the DS and pH ranging from 3.2 to 5.8. The maximum Cu(II) adsorption capacity (qm) of all three N-CECS at pH 5.4 was 207.5mg g(-1), which was 1.4-fold higher than that of chitosan. The adsorption equilibrium process was better described by the Langmuir than Freundlich isotherm model. Adsorption of Cu(II) ion onto N-CECS followed a pseudo-second order mechanism with chemisorption as the rate-limiting step. In a ternary adsorption system, the adsorption capacity of Cu(II) by N-CECS also presented high values, and qm for Cu(II), Cd(II), and Pb(II) were 150.2, 28.8, and 187.9mg g(-1), respectively.

  8. Nanosheet-structured boron nitride spheres with a versatile adsorption capacity for water cleaning.

    PubMed

    Liu, Fei; Yu, Jie; Ji, Xixi; Qian, Muqi

    2015-01-28

    Here, we report the synthesis of nanosheet-structured boron nitride spheres (NSBNSs) by a catalyzing thermal evaporation method from solid B powders. The NSBNSs consist of radially oriented ultrathin nanosheets with the sheet edges oriented on the surface. Formation of this unique structure occurs only at a certain reaction temperature. The diameter from 4 μm to 700 nm and the nanosheet thickness from 9.1 to 3.1 nm of the NSBNSs can be well-controlled by appropriately changing the mass ratio of boron powders and catalyst. The NSBNSs possess versatile adsorption capacity, exhibiting excellent adsorption performance for oil, dyes, and heavy metal ions from water. The oil uptake reaches 7.8 times its own weight. The adsorption capacities for malachite green and methylene blue are 324 and 233 mg/g, while those for Cu(2+), Pb(2+), and Cd(2+) are 678.7, 536.7, and 107.0 mg/g, respectively. The adsorption capacities of the NSBNSs for Cu(2+) and Pb(2+) are higher or much higher than those of the adsorbents reported previously. These results demonstrate the great potential of NSBNSs for water treatment and cleaning.

  9. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  10. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  11. Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb(II) from aqueous solutions.

    PubMed

    Salazar-Rabago, J J; Leyva-Ramos, R

    2016-03-15

    The natural sawdust (NS) from white pine (Pinus durangensis) was chemically modified by a hydrothermal procedure using citric, malonic and tartaric acids. The adsorption capacity of modified sawdust (MS) towards Pb(II) was considerably enhanced due to the introduction of carboxylic groups on the surface of MS during the modification, and the adsorption capacity was almost linearly dependent on the concentration of carboxylic sites. The NS surface was acidic, and the MS surface became more acidic after the modification. At T = 25 °C and pH = 5, the maximum adsorption capacity of the optimal MS towards Pb(II) was 304 mg/g, which is exceptionally high compared to NS and other MS reported previously. The adsorption capacity of MS was considerably reduced from 304 to 154 mg/g by decreasing the solution pH from 5 to 3 due to electrostatic interactions. The adsorption of Pb(II) on MS was reversible at pH = 2, but not at pH = 5. The contribution percentage of ion exchange to the overall adsorption capacity ranged from 70 to 99% and 10-66% at the initial pH of 3 and 5, respectively. Hence, the adsorption of Pb(II) on MS was mainly due to ion exchange at pH = 3 and to both ion exchange and electrostatic attraction at pH = 5.

  12. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    SciTech Connect

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh; Poyraz, Altug S.; Wu, Wei; Kriz, David A.; Du, Shoucheng; Biswas, Sourav; Thompson Pettes, Michael; Suib, Steven L.

    2016-10-18

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlled by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.

  13. Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity

    DOE PAGES

    Zhong, Wei; Jiang, Ting; Jafari, Tahereh; ...

    2016-10-18

    In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4–8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450–600 °C; 1–4 h) on the textural properties of MA were studied. Additionally, the targeted pore sizes of MA were obtained in the range of 3.1–5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlledmore » by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. Finally, after three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications.« less

  14. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    NASA Astrophysics Data System (ADS)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-02-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g‑1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water.

  15. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    PubMed Central

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-01-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g−1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water. PMID:26843015

  16. Activated carbons prepared from wood particleboard wastes: characterisation and phenol adsorption capacities.

    PubMed

    Girods, P; Dufour, A; Fierro, V; Rogaume, Y; Rogaume, C; Zoulalian, A; Celzard, A

    2009-07-15

    The problems of valorisation of particleboard wastes on one hand, and contamination of aqueous effluents by phenolic compounds on the other hand, are simultaneously considered in this work. Preparation of activated carbons from a two steps thermo-chemical process, formerly designed for generating combustible gases, is suggested. The resultant carbonaceous residue is activated with steam at 800 degrees C. Depending on the preparation conditions, surface areas within the range 800-1300 m(2)/g are obtained, close to that of a commercial activated carbon (CAC) specially designed for water treatment and used as a reference material. The present work shows that particleboard waste-derived activated carbons (WAC) are efficient adsorbents for the removal of phenol from aqueous solutions, with maximum measured capacities close to 500 mg/g. However, most of times, the adsorption capacities are slightly lower than that of the commercial material in the same conditions, i.e., at equilibrium phenol concentrations below 300 ppm. Given the extremely low cost of activated carbons prepared from particleboard waste, it should not be a problem to use it in somewhat higher amounts than what is required with a more expensive commercial material. Phenol adsorption isotherms at 298 K were correctly fitted by various equations modelling type I and type II isotherms for CAC and WAC, respectively. Phenol adsorption isotherms of type II were justified by a 3-stages adsorption mechanism.

  17. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L‑1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g‑1 for As(V) and 143.6 mg g‑1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy.

  18. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    PubMed Central

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  19. High adsorption capacity of V-doped TiO2 for decolorization of methylene blue

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Binh; Hwang, Moon-Jin; Ryu, Kwang-Sun

    2012-07-01

    In this study, pure TiO2 (V-TiO2-0) and V-doped TiO2 (V-TiO2-x, x = 1-10 mol%) were synthesized using a new sol-gel method. The adsorption capacity of the V-TiO2-x samples was evaluated by measuring the removal of methylene blue (MB) from aqueous solution via decolorization. Since the adsorption capacity was affected by the specific surface area, the interaction between adsorbate (MB) and adsorbent (V-TiO2-x), and the structure of the adsorbent, the physicochemical properties of the samples were investigated. Among the V-doped TiO2-x samples, the V-TiO2-10 sample showed the highest adsorption capacity, which was 11.36 times greater than that of pure TiO2, removing 85.2% of the MB after 2 h. Moreover, changing the molar ratio of the reactants in the V-TiO2-10 sample improved the performance of the material so that 91.6% of the MB was removed after 2 h.

  20. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.

    PubMed

    Qin, Wu; Li, Xin; Bian, Wen-Wen; Fan, Xiu-Juan; Qi, Jing-Yao

    2010-02-01

    There is increasing attention in the unique biological and medical properties of graphene, and it is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. Despite the importance of biomolecules-graphene interactions, a detailed understanding of the adsorption mechanism and features of biomolecules onto the surfaces of graphene is lacking. To address this, we have performed density functional theory (DFT) and molecular dynamics (MD) methods exploring the adsorption geometries, adsorption energies, electronic band structures, adsorption isotherms, and adsorption dynamics of l-leucine (model biomolecule)/graphene composite system. DFT calculations confirmed the energetic stability of adsorption model and revealed that electronic structure of graphene can be controlled by the adsorption direction of l-leucine. MD simulations further investigate the potential energy and van der Waals energy for the interaction processes of l-leucine/graphene system at different temperatures and pressures. We find that the van der Waals interaction between the l-leucine and the graphene play a dominant role in the adsorption process under a certain range of temperature and pressure, and the l-leucine molecule could be adsorbed onto graphene spontaneously in aqueous solution.

  1. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites.

    PubMed

    Song, Wen; Gao, Baoyu; Zhang, Tengge; Xu, Xing; Huang, Xin; Yu, Huan; Yue, Qinyan

    2015-08-01

    Easily separable amine-functionalized magnetic corn stalk composites (AF-MCS) were employed for effective adsorption and reduction of toxic hexavalent chromium [Cr(VI)] to nontoxic Cr(III). The saturated magnetization of AF-MCS reached 6.2emu/g, and as a result, it could be separated from aqueous solution by a magnetic process for its superparamagnetism. The studies of various factors influencing the sorption behavior indicated that the optimum AF-MCS dosage for Cr(VI) adsorption was 1g/L, and the maximum adsorption capacity was observed at pH 3.0. The chromium adsorption perfectly fitted the Langmuir isotherm model and pseudo second order kinetic model. Furthermore, characterization of AF-MCS was investigated by means of XRD, SEM, TEM, FT-IR, BET, VSM and XPS analysis to discuss the uptake mechanism. Basically, these results demonstrated that AF-MCS prepared in this work has shown its merit in effective removal of Cr(VI) and rapid separation from effluents simultaneously.

  2. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    NASA Astrophysics Data System (ADS)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing

    2017-03-01

    Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  3. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity.

    PubMed

    Hokkanen, Sanna; Bhatnagar, Amit; Sillanpää, Mika

    2016-03-15

    In recent decades, increased domestic, agricultural and industrial activities worldwide have led to the release of various pollutants, such as toxic heavy metals, inorganic anions, organics, micropollutants and nutrients into the aquatic environment. The removal of these wide varieties of pollutants for better quality of water for various activities is an emerging issue and a robust and eco-friendly treatment technology is needed for the purpose. It is well known that cellulosic materials can be obtained from various natural sources and can be employed as cheap adsorbents. Their adsorption capacities for heavy metal ions and other aquatic pollutants can be significantly affected upon chemical treatment. In general, chemically modified cellulose exhibits higher adsorption capacities for various aquatic pollutants than their unmodified forms. Numerous chemicals have been used for cellulose modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. This paper reviews the current state of research on the use of cellulose, a naturally occurring material, its modified forms and their efficacy as adsorbents for the removal of various pollutants from waste streams. In this review, an extensive list of various cellulose-based adsorbents from literature has been compiled and their adsorption capacities under various conditions for the removal of various pollutants, as available in the literature, are presented along with highlighting and discussing the key advancement on the preparation of cellulose-based adsorbents. It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of these adsorbents on a commercial scale, leading to the improvement of pollution control.

  4. Lithium adsorption on graphite from density functional theory calculations.

    PubMed

    Valencia, Felipe; Romero, Aldo H; Ancilotto, Francesco; Silvestrelli, Pier Luigi

    2006-08-03

    The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.

  5. Density functional calculation of transition metal adatom adsorption on graphene.

    PubMed

    Mao, Yuliang; Yuan, Jianmei; Zhong, Jianxin

    2008-03-19

    The functionalization of graphene (a single graphite layer) by the addition of transition metal atoms of Mn, Fe and Co to its surface has been investigated computationally using density functional theory. In the calculation, the graphene surface supercell was constructed from a single layer of graphite (0001) surface separated by vertical vacuum layers 2 nm thick. We found that the center of the hexagonal ring formed by carbon from graphene is the most stable site for Mn, Fe, Co to stay after optimization. The calculated spin-polarized band structures of the graphene encapsulating the Mn adatom indicate that the conduction bands are modified and move down due to the coupling between the Mn atom and graphene. For Fe adsorbed on the graphene surface, it is semi-half-metallic, and the spin polarization P is found to be 100%. The system of Co adatom on graphene exhibits metallic electronic structure due to the density of states (DOS) peak at the band center with both majority and minority spins. Local density of states analyses indicate a larger promotion of 4s electrons into the 3d state in Fe and Co, resulting in lower local moments compared to an Mn adatom on the graphite surface.

  6. Trimodal nanoporous silica as a support for amine-based CO2 adsorbents: Improvement in adsorption capacity and kinetics

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Bhattacharjee, Samiran

    2017-02-01

    A trimodal nanoporous silica (TS) having unique trimodal pore structure viz., internal mesopores, textural mesopores and interconnected macropores, has been functionalized with amine using two different methods covalent grafting and wet impregnation. Both were studied as nanocomposite sorbents for CO2 capture. The effects of the amine loading, immobilization processes and the type of support were investigated. Commercially available silica gel (SG) with a purely mesoporous structure was studied as the support for the amine in order to compare differences in pore structure and amine loading with differences in CO2 adsorption capacity and kinetics. Amine-grafted TS exhibited much faster CO2 adsorption kinetics at 35 °C than amine-grafted SG. At the same amine loading, amine-impregnated TS showed higher CO2 adsorption capacity and faster CO2 adsorption kinetics than amine-impregnated SG. The CO2 adsorption capacity of amine-impregnated TS increased as the amine loading increased until 70%, with the highest value of 172 mg/g, while the amine-impregnated SG reached the highest CO2 adsorption capacity of only 78 mg/g at 40% amine loading. More importantly, amine-impregnated as-prepared TS exhibited even higher CO2 capture capacity than amine-impregnated TS when the amine loading was below 60%. Results suggest that amine-modified trimodal nanoporous silica sorbents meet the challenges of current CO2 capture technology.

  7. 30 CFR 254.44 - Calculating response equipment effective daily recovery capacities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recovery capacities. 254.44 Section 254.44 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... Calculating response equipment effective daily recovery capacities. (a) You are required by § 254.26(d)(1) to calculate the effective daily recovery capacity of the response equipment identified in your response...

  8. Understanding the Adsorption Mechanism of Xe and Kr in a Metal-Organic Framework from X-ray Structural Analysis and First- Principles Calculations

    SciTech Connect

    Ghose, Sanjit K.; Li, Yan; Yakovenko, Andrey; Dooryhee, Eric; Ehm, Lars; Ecker, Lynne E.; Dippel, Ann-Christin; Halder, Gregory J.; Strachan, Denis M.; Thallapally, Praveen K.

    2015-04-16

    Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host–guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications.

  9. Quantitative analysis of the binding strength and adsorption capacity of zinc oxide nanoparticles onto unmodified and modified cotton fiber

    NASA Astrophysics Data System (ADS)

    Printz, Stephen Robert

    Risk of bacterial infection is always a concern in hospitals, so it is important to find ways to minimize this risk. One method for reducing the risk of infection is by using textiles with antimicrobial properties. Zinc oxide nanoparticles have antimicrobial properties, and can be adsorbed onto cotton fibers to pass these properties to the cloth. However, the binding of the zinc oxide nanoparticles to cotton is weak, so the particles desorb from the cloth after repeated washings. The goal of this project was to quantify the binding strength of zinc oxide nanoparticles onto different types of cotton fiber. The cotton was modified by grafting cyclodextrin onto it with citric acid as a crosslinking agent. Adsorption was tested with desized, unbleached cotton print cloth; desized, bleached cotton print cloth; and desized, bleached, mercerized cotton print cloth. As expected, adsorption to unmodified cloth was poor. Unbleached cloth had the highest adsorption capacity (Q 0 = 22 +/- 4 mg ZnO/g cloth), and bleached cloth had the lowest adsorption capacity (Q0 = 17 +/- 4 mg ZnO=g cloth). Mercerized cloth had the lowest strength (b = 0.010 +/- 0.003 ppm-1), and bleached cloth had the highest binding strength (b = 0.04 +/- 0.01 ppm-1). Modification with alpha-cyclodextrin increased adsorption capacity over unmodified cloth by 61, 80, and 70% for mercerized/bleached cloth, bleached cloth, and unbleached cloth, respectively, and increased b by 1601, 126, and 90% respectively. Modification with beta-cyclodextrin increased adsorption capacities by 80, 94, and 112%, respectively, and increased b by 2027, 427, and 46%. As a result, beta-CD modified unbleached cloth had the highest adsorption capacity and one of the lowest binding strengths. However, beta-cyclodextrin modified mercerized cloth has both a high adsorption capacity and a high binding strength, and would likely be the best candidate for use in antimicrobial textiles.

  10. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Potential Electric Output Capacity The potential electrical output capacity is calculated from the maximum... boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the...

  11. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Potential Electric Output Capacity The potential electrical output capacity is calculated from the maximum... boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the...

  12. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction.

  13. CO2 adsorption and separation from natural gason phosphorene surface: Combining DFT and GCMC calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yayun; Liu, Chao; Hao, Feng; Xiao, Hang; Zhang, Shiwei; Chen, Xi

    2017-03-01

    We have examined the performance of phosphorene-based material, phosphorene slit pores (PSP), in CO2 adsorption and separation from natural gas by using Density Function Theory (DFT) calculation and Grand Canonical Monte Carlo (GCMC) simulations. First, the adsorption of CH4 and CO2molecules on phosphorene sheet were conducted by DFT study. Then, adsorption performances of natural gas components as well as their binary CO2/CH4 gas mixture were investigated at 300 K with the pressure up to 3.0 MPa. The effects of slit pore width, H, and mole ratio of CO2/CH4in the gas phase on the separation of CO2 from mixtures of CO2/CH4 were also investigated. Our DFT calculation results show that the CO2 moleculehas higher adsorption energy than that of CH4, which implies that it can be easily adsorbed to the phosphorene surface than CH4. Detailed GCMC simulations reveal that the phosphorene slit pore has a high performance in separating CO2fromnature gas and achieves the highest gas selectivity at H = 1.0 nm at pressures lower than 0.1 MPa. Moreover, the selectivity of CO2 overCO2/CH4gas mixture increases with increasing the mole ratio of CO2/CH4due to the enhanced adsorbate-adsorbent interactions for the favorable component. Therefore, it is suggested that the phosphorene is a promising candidate for natural gas purification and possessing practical potential applications in gas adsorption.

  14. Surface study of gallium- and aluminum- doped graphenes upon adsorption of cytosine: DFT calculations

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, Ali; Zareyee, Daryoush; Peyravi, Majid; Jahanshahi, Mohsen

    2016-12-01

    The adsorption of cytosine molecule on Al- and Ga- doped graphenes is studied using first-principles density functional theory (DFT) calculations. The energetically most stable geometries of cytosine on both Al- and Ga- doped graphenes are determined and the adsorption energies are calculated. The net charge of transfer as well as local charge of doped atoms upon adsorption of cytosine are studied by natural bond orbitals (NBO) analysis. Orbital hybridizing of complexes was searched by frontier molecular orbital theory (FMO), and density of states (DOS). Depending on the side of cytosine, there are four possible sites for its adsorption on doped graphene; denoted as P1, P2, P3, and P4, respectively. The order of binding energy in the case of Al-doped graphene is found as P1 ˃ P4 ˃ P3 ˃ P2. Interestingly, the order in the case of Ga-doped graphene changes to: P4 ∼ P1˃ P3˃ P2. Both surfaces show superior adsorbent property, resulting chemisorption of cytosine, especially at P1 and P4 position configurations. The NBO charge analysis reveals that the charge transfers from Al- and Ga- doped graphene sheets to cytosine. The electronic properties of both surfaces undertake important changes after cytosine adsorption, which indicates notable change in its electrical conductivity.

  15. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues.

    PubMed

    Orlandi, Géssica; Cavasotto, Jéssica; Machado, Francisco R S; Colpani, Gustavo L; Magro, Jacir Dal; Dalcanton, Francieli; Mello, Josiane M M; Fiori, Márcio A

    2017-02-01

    One of the major problems in effluent treatment plants of the cellulose and paper industry is the large amount of residual sludge generated. Therefore, this industry is trying to develop new methods to treat such residues and to use them as new products, such as adsorbents. In this regard, the objective of this work was to develop an adsorbent using the raw activated sludge generated by the cellulose and paper industry. The activated cellulose sludge, after being dried, was chemically activated with 42.5% (v/v) phosphoric acid at 85 °C for 1 h and was charred at 500 °C, 600 °C and 700 °C for 2 h. The efficiency of the obtained adsorbent materials was evaluated using kinetic tests with methylene blue solutions. Using the adsorption kinetics, it was verified that the three adsorbents showed the capacity to adsorb dye, and the adsorbent obtained at a temperature of 600 °C showed the highest adsorption capacity of 107.1 mg g(-1). The kinetic model that best fit the experimental data was pseudo-second order. The Langmuir-Freudlich isotherm adequately described the experimental data. As a result, the cellulose sludge generated by the cellulose and paper industries could be used as an adsorbent.

  16. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    PubMed

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal.

  17. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    PubMed

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water.

  18. Influence of Environmental Factors on the Adsorption Capacity and Thermal Conductivity of Silica Nano-Porous Materials.

    PubMed

    Zhang, Hu; Gu, Wei; Li, Ming-Jia; Fang, Wen-Zhen; Li, Zeng-Yao; Tao, Wen-Quan

    2015-04-01

    In this work, the influence of temperature and humidity environment on the water vapor adsorption capacity and effective thermal conductivity of silica nano-porous material is conducted within a relative humidity range from 15% to 90% at 25 °C, 40 °C and 55 °C, respectively. The experiment results show that both the temperature and relative humidity have significant influence on the adsorption capacity and effective thermal conductivity of silica nano-porous materials. The adsorption capacity and effective thermal conductivity increase with humidity because of the increases of water vapor concentration. The effective thermal conductivity increases linearly with adsorption saturation capacity at constant temperature. Because adsorption process is exothermic reaction, the increasing temperature is not conducive to the adsorption. But the effective thermal conductivity increases with the increment of temperature at the same water uptake because of the increment of water thermal conductivity with temperature Geometric models and unit cell structure are adopted to predict the effective thermal conductivity and comparisons with the experimental result are made, and for the case of moist silica nano-porous materials with high porosity no quantitative agreement is found. It is believed that the adsorbed water will fill in the nano-pores and gap and form lots of short cuts, leading to a significant reduction of the thermal resistance.

  19. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.

    PubMed

    To, Brian C S; Lenhoff, Abraham M

    2011-01-21

    The adsorption isotherms of four model proteins (lysozyme, α-lactalbumin, ovalbumin, and BSA) on eight commercial phenyl hydrophobic interaction chromatography media were measured. The isotherms were softer than those usually seen in ion-exchange chromatography of proteins, and the static capacities of the media were lower, ranging from 30 to 110 mg/mL, depending on the ammonium sulfate concentration and the protein and adsorbent types. The protein-accessible surface area appears to be the main factor determining the binding capacity, and little correlation was seen with the protein affinities of the adsorbents. Breakthrough experiments showed that the dynamic capacities of the adsorbents at 10% breakthrough were 20-80% of the static capacities, depending on adsorbent type. Protein diffusivities in the adsorbents were estimated from batch uptake experiments using the pore diffusion and homogeneous diffusion models. Protein transport was affected by the adsorbent pore structures. Apparent diffusivities were higher at lower salt concentrations and column loadings, suggesting that adsorbed proteins may retard intraparticle protein transport. The diffusivities estimated from the batch uptake experiments were used to predict column breakthrough behavior. Analytical solutions developed for ion-exchange systems were able to provide accurate predictions for lysozyme breakthrough but not for ovalbumin. Impurities in the ovalbumin solutions used for the breakthrough experiments may have affected the ovalbumin uptake and led to the discrepancies between the predictions and the experimental results.

  20. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China).

    PubMed

    Zhang, Wei-Kang; Wang, Bing; Niu, Xiang

    2015-08-14

    Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm(-2), almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm(-2)). The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas' frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  1. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China)

    PubMed Central

    Zhang, Wei-Kang; Wang, Bing; Niu, Xiang

    2015-01-01

    Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2). The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily. PMID:26287227

  2. First-principles calculations of the OH- adsorption energy on perovskite oxide

    NASA Astrophysics Data System (ADS)

    Ohzuku, Hideo; Ikeno, Hidekazu; Yamada, Ikuya; Yagi, Shunsuke

    2016-08-01

    The oxygen evolution reaction (OER) that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting. ABO3 perovskite oxides have been extensively studied because of their high catalytic OER activity. In the present study, the OH- adsorption process on the perovskite surface about different B site cations was investigated by the first-principles calculations. We concluded that the adsorption energy of SrFeO3 surface is larger than that of SrTiO3.

  3. Reservoir capacity estimates in shale plays based on experimental adsorption data

    NASA Astrophysics Data System (ADS)

    Ngo, Tan

    from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative

  4. Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters.

    PubMed

    Sakamoto, Shigeki; Kawase, Yoshinori

    2016-12-01

    Cesium removal from radioactive wastewaters was examined using water-insoluble poly-γ-glutamic acid (γ-PGA) and water-soluble sodium salt form poly-γ-L-glutamic acid (γ-PGANa) as biosorbents. The maximum adsorption capacities at equilibrium of γ-PGA and γ-PGANa for Cs were 345 mg-Cs(g-γ-PGA)(-1) at pH 6.0 and 290 mg-Cs(g-γ-PGANa)(-1) at pH 9.0, respectively. At lower pH < pKa, the carboxyl groups of γ-PGA primarily remained in the protonated form and adsorption of Cs only slightly occurred. At higher pH > pKa, the adsorption of Cs was significantly facilitated due to ionization of carboxyl groups to carboxylate ion. Adsorption of Cs at pH > 9.0 was inhibited due to the hydrolysis of Cs. The Langmuir model could successfully describe the isotherm data. For γ-PGA and γ-PGANa, the maximum adsorption capacities at equilibrium in the Langmuir model were 446 and 333 mg-Cs(g-adsorbent)(-1), respectively. The high adsorption capacities confirmed a potential utilization of γ-PGA and γ-PGANa for Cs removal. The adsorption of Cs by both γ-PGA and γ-PGANa attained the equilibrium within 0.5 min. The very quick equilibration is a benefit from the viewpoint of practical application. The spectra of FT-IR and XPS before and after adsorption confirmed the adsorption of Cs onto γ-PGA and γ-PGANa via electrostatic interaction with carboxylate anions.

  5. First-principles calculations of H, O and OH adsorption on metallic layered supported thin films

    NASA Astrophysics Data System (ADS)

    Pereira, Aline O.; Miranda, Caetano R.

    2013-05-01

    In this work, the adsorption of hydrogen, oxygen and hydroxyl on metallic thin films is studied through first-principles calculations. We explore how the structural and electronic properties of palladium, platinum and gold thin films change with respect to the type of substrate. As a major result we find that Pd/Au(111) and Pt/Au(111) thin films present enhanced adsorption properties for H, O and OH. This improvement is a result of the induced tensile strain on the film due to the misfit between the lattice parameters of the film and the substrate. For these systems, the tensile strain results in a shift of the d-band center position towards to the Fermi level, with implications for the enhancement of adsorption properties. Our results suggest that the location of the unadsorbed d-band center for Pd/Au(111), Pt/Au(111) and Au thin films is a good parameter to predict the reactivity between these surfaces and H, O and OH. However, when considering different numbers of atomic monolayers, changes in adsorption energy are observed and there is no correlation for Pd/Au(111) and Au/Pt(111) films. For Pd/Pt(111) and Pt/Pd(111) films the difference between lattice parameters is relatively small, and no correlation is found, since no considerable strain is induced. In addition, our results support that a compressive strain will always lead to weaker adsorption. We also observe that the work function is strongly affected by adsorption. In particular, H adsorption results in an expansion of the interlayer distance between the topmost layers of the film. Furthermore, after atomic insertion, the interlayer distance of Pd/Pt(111) films is similar to the interlayer distance for bulk PdH0.6, which indicates that these thin films can act as precursor states for hydride formation.

  6. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  7. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  8. Preparation of a porous clay heterostructure and study of its adsorption capacity of phenol and chlorinated phenols from aqueous solutions.

    PubMed

    Arellano-Cárdenas, Sofía; Gallardo-Velázquez, Tzayhrí; Osorio-Revilla, Guillermo; López-Cortez, Ma del Socorro

    2008-01-01

    A porous clay heterostructure (PCH) from a Mexican clay was prepared and characterized, and its aqueous phenol and dichlorophenols (DCPs) adsorption capacities were studied using a batch equilibrium technique. The PCH displayed a surface area of 305.5 m2/g, 37.2 A average porous diameter, and a basal space of 23.2 A. The adsorption capacity shown by the PCH for both phenol and DCPs from water (14.5 mg/g for phenol; 48.7 mg/g for 3,4-DCP; and 45.5 mg/g for 2,5-DCP) suggests that the PCH has both hydrophobic and hydrophilic characteristics, as a result of the presence of silanol and siloxane groups formed during the pillaring and calcination of the PCH. The values of maximal adsorption capacity for dichlorophenols were higher than those reported for aluminum pillared clays and some inorgano-organo clays and comparable with some ionic exchange resins.

  9. The effects of urease immobilization on the transport characteristics and protein adsorption capacity of cellulose acetate based hemodialysis membranes.

    PubMed

    Mahlicli, Filiz Yasar; Altinkaya, Sacide Alsoy

    2009-10-01

    In this study, cellulose acetate (CA) based hemodialysis membranes were prepared by a dry phase inversion method and the influences of urease immobilization on the clearing performance and protein adsorption capacity of the membranes were investigated. Permeation experiments have shown that modification of CA membranes with urease immobilization not only enhanced the transport rate of urea but also increased the permeation coefficients of uric acid and creatinine by changing the structure of the membrane. Furthermore, the protein adsorption capacity of the CA membranes decreased. On the other hand, the mechanical strength of the modified CA membrane did not change significantly compared with that of the unmodified one. A mathematical model was derived to determine the rate of mass transfer of urea through modified CA membranes. Model predictions along with the experimental data suggest that urease immobilization can be used as an alternative method in preparing CA based hemodialysis membranes with improved transport characteristics and biocompatibility through reduced protein adsorption capacities.

  10. 30 CFR 254.44 - Calculating response equipment effective daily recovery capacities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recovery capacities. 254.44 Section 254.44 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... recovery capacities. (a) You are required by § 254.26(d)(1) to calculate the effective daily recovery capacity of the response equipment identified in your response plan that you would use to contain...

  11. 30 CFR 254.44 - Calculating response equipment effective daily recovery capacities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recovery capacities. 254.44 Section 254.44 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... equipment effective daily recovery capacities. (a) You are required by § 254.26(d)(1) to calculate the effective daily recovery capacity of the response equipment identified in your response plan that you...

  12. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  13. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  14. Synthesis of multi-walled carbon nanotubes/β-FeOOH nanocomposites with high adsorption capacity

    NASA Astrophysics Data System (ADS)

    Song, Hao-Jie; Liu, Lei; Jia, Xiao-Hua; Min, Chunying

    2012-12-01

    A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and β-ferric oxyhydroxide (β-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous β-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring β-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of β-FeOOH nanoparticles. The values of remanent magnetization ( M r) and coercivity ( H c) of the as-synthesized CNTs/β-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/β-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.

  15. Verification of selected relationships for fractally porous solids by using adsorption isotherms calculated from density functional theory

    NASA Astrophysics Data System (ADS)

    Jaroniec, Mietek; Kruk, Michal; Olivier, James

    1995-11-01

    Methods of calculating the fractal dimension (D) on the basis of single adsorption isotherms were critically tested by using argon composite adsorption isotherms for fractally porous solids. These isotherms were obtained from adsorption data for homogeneous slit-like pores calculated by employing the density functional theory (DFT). The composite adsorption isotherms were used to test the validity of the method based on the Frenkel-Halsey-Hill equation and so called "thermodynamic method" proposed by Neimark. The applicability of these methods was confirmed. However, our studies reveal new aspects of practical usage of both approaches, which need to be taken into consideration in analysis of experimental data.

  16. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires.

    PubMed

    Lin, Hsun-Yu; Yuan, Chung-Shin; Wu, Chun-Hsin; Hung, Chung-Hsuang

    2006-11-01

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury-containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl2) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150 degrees C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer-Emmett-Teller (BET) surface area could adsorb more HgCl2 at room temperature. The equilibrium adsorptive capacity of HgCl2 for WPAC measured in this study was 1.49 x 10(-1) mg HgCl2/g PAC at 25 degrees C with an initial HgCI2 concentration of 25 microg/m3. With the increase of adsorption temperature < or = 150 degrees C, the equilibrium adsorptive capacity of HgCl2 for WPAC was decreased to 1.34 x 10(-1) mg HgCl2/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl2 because of the reactions between sulfur and Hg2+ at 150 degrees C. It was demonstrated that the mechanisms for adsorbing HgCl2 onto WPAC were physical adsorption and chemisorption at 25 and 150 degrees C, respectively. Experimental results also indicated that the apparent overall driving force model appeared to have the good correlation with correlation coefficients (r) > 0.998 for HgCl2 adsorption at 25 and 150 degrees C. Moreover, the equilibrium adsorptive capacity of HgCl2 for virgin WPAC was similar to that for CPAC at 25 degrees C, whereas it was slightly higher for sulfurized WPAC than for

  17. Copper Accumulation, Availability and Adsorption Capacity in Sandy Soils of Vineyards with Different Cultivation Duration

    NASA Astrophysics Data System (ADS)

    Mallmann, F. J. K.; Miotto, A.; Bender, M. A.; Gubiani, E.; Rheinheimer, D. D. S.; Kaminski, J.; Ceretta, C. A.; Šimůnek, J.

    2015-12-01

    Bordeaux mixture is a copper-based (Cu) fungicide and bactericide applied in vineyards to control plant diseases. Since it is applied several times per year, it accumulates in large quantities on plants and in soil. This study evaluates the Cu accumulation in, and desorption kinetics and adsorption capability of a sandy Ultisol in a natural field and in 3 vineyards for 5 (V1), 11 (V2), and 31 (V3) years in South of Brazil. Soil samples were collected in 8 depths (0-60 cm) of all four soil profiles, which all displayed similar soil properties. The following soil properties were measured: pH, organic matter (OM), soil bulk density, Cu total concentration, and Cu desorption and adsorption curves. A two first-order reactions model and the Langmuir isotherm were fitted to the desorption and adsorption curves, respectively. An increase in the total mass of Cu in the vineyards followed a linear regression curve, with an average annual increase of 7.15 kg ha-1. Cu accumulated down to a depth of 5, 20, and 30 cm in V1, V2 and V3, respectively, with the highest Cu content reaching 138.4 mg kg-1 in the 0-5 cm soil layer of V3. Cu desorption parameters showed a high correlation with its total concentration. Approximately 57 and 19% of total Cu were immediately and slowly available, respectively, indicating a high potential for plant absorption and/or downward movement. Cu concentrations extracted by EDTA from soil layers not affected by anthropogenic Cu inputs were very low. The maximum Cu adsorption capacity of the 0-5 and 5-10 cm soil layers increased with the vineyard age, reaching concentrations higher than 900 mg kg-1. This increase was highly related to OM and pH, which both increased with cultivation duration. Despite of low clay content of these soils, there is low risk of groundwater Cu contamination for actual conditions. However, high Cu concentrations in the surface layer of the long-term vineyards could cause toxicity problems for this and for companion crops.

  18. Effect of the both texture and electrical properties of activated carbon on the CO{sub 2} adsorption capacity

    SciTech Connect

    Djeridi, W.; Ouederni, A.; Mansour, N.Ben; Llewellyn, P.L.; Alyamani, A.; El Mir, L.

    2016-01-15

    Highlights: • A series of activated carbon pellet without binder was prepared by chemical activation. • Carbon dioxide storage isotherm at 30 °C and up to 25 bars was measured for the microporous carbon. • Adsorption enthalpies have been correlated with the carbon dioxide uptake. • Pyrolysis temperature effect on the electrical conductivity of the samples. • Impact of the both texture and electrical properties on CO{sub 2} adsorption capacity have been deducted - Abstract: A series of activated carbon pellets (ACP) based on olive stones were studied for CO{sub 2} storage application. The surface area, pore volume, and pore diameter were evaluated from the analysis of N{sub 2} adsorption isotherm data. The characterization of carbon materials was performed by scanning electron microscopy (SEM), the powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM). The adsorption enthalpies were obtained by microcalorimetry. The effect of pyrolysis temperature on textural, electrical conductivity and gas adsorption capacities of the ACP were investigated by adsorbing CO{sub 2} at 303 K in the pressure range of 0–2.3 MPa. In fact the electrical conductivity is strongly affected by the microporosity of the samples and the size of the micropore. It increases when the pore size decreases which affect the CO{sub 2} adsorption. Also with increases temperature the free electrons concentration on the surface increases which affect the interaction of the adsorbed gas molecules.

  19. Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste.

    PubMed

    Wang, Zhihong; Wang, Chengzhang; Yuan, Jiaojiao; Zhang, Changwei

    2017-01-01

    In this study, the adsorption properties of nine resins including polyamide resin (30-60), polyamide resin (60-100) AB-8, S-8, D-101, NKA-9, NKA-II, XDA-1 and XDA-4 for enrichment phenolics of the olive waste were investigated. XDA-1 and NKA-II were chosen for further study due to their outstanding adsorption and desorption capacity. XDA-1 and NKA-II had similar adsorption and desorption behaviors for phenolics of olive waste. The adsorption mechanism could be better explained by pseudo second-order kinetics model and Freundlich isotherm model, and the adsorption processes were spontaneously and exothermic. The experiment of gradient elution were carried out through treated XDA-1 resins column, the result indicated the total phenolics were mainly obtained from the 40% and 60% ethanol fraction. The order of antioxidant capacity by DPPH  , ABTS(+) radical and FRAP assay was similar with the content of phenolics from fraction elution. The compositions of phenolics from different elution fractions were determined by reversed phase-HPLC-DAD method. Gallic acid, hydroxytyrosol, tyrosol and ferulic acid were the major constituent in the fraction elute, and the content of hydroxytyrosol reached to the 41.69mg/g. The above results revealed the synergistic effects of the different phenolics contribute to the antioxidant capacity.

  20. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.

    PubMed

    Musso, T B; Parolo, M E; Pettinari, G; Francisca, F M

    2014-12-15

    Sorption of Cu(II) and Zn(II) on three natural clays meeting the international requirements for use as liners was evaluated by means of batch tests. The purpose of this research was to determine the retention capacities of the clays for metal cations commonly present in urban solid waste leachates. The pH and ionic strength conditions were set at values frequently found in real leachates. The changes observed in the XRD patterns and FTIR spectra upon adsorption can be considered an evidence of clay-metal electrostatic interaction. The Langmuir model was found to best describe the sorption processes, offering maximum sorption capacities from 8.16 to 56.89 mg/g for Cu(II) and from 49.59 to 103.83 mg/g for Zn(II). All samples remove more Zn(II) than Cu(II), which may be related to the different geometry of the hydrated Cu(II) cation. The total amount of metal sorption was strongly influenced by the total specific surface area, the presence of carbonates and the smectite content of the clays. In addition to their known quality as physical barriers, the adsorbed amounts obtained indicate the suitability of the tested clays to contribute to the retardation of Cu(II) and Zn(II) transport through clay liners.

  1. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption.

    PubMed

    Zheng, Baishu; Yun, Ruirui; Bai, Junfeng; Lu, Zhiyong; Du, Liting; Li, Yizhi

    2013-03-18

    An expanded 4,4-paddlewheel-connected porous MOF-505-type metal-organic framework (MOF), [Cu2(PDEB)(H2O)2]·xS (NJU-Bai12; NJU-Bai represents the Nanjing University Bai group and S represents noncoordinated solvent molecules) has been designed from a nanosized rectangular diisophthalate linker containing alkyne groups 5,5'-(1,4-phenylenedi-2,1-ethynediyl)bis(1,3-benzenecarboxylic acid). This MOF material possesses permanent microporosity with the highest Brunauer-Emmett-Teller surface area of 3038 m(2)·g(-1) and the largest unsaturated total hydrogen storage capacity of 62.7 mg·g(-1) at 77 K and 20 bar among reported MOF-505 analogues. Additionally, NJU-Bai12 also exhibits excellent carbon dioxide (CO2) uptake capacity (23.83 and 19.85 mmol·g(-1) at 20 bar for 273 and 298 K, respectively) and selective gas adsorption properties with CO2/CH4 selectivity of 5.0 and CO2/N2 selectivity of 24.6 at room temperature.

  2. Synthesis, characterisation and adsorption properties of a porous copper(II) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide.

    PubMed

    Eckold, Pierre; Gee, William J; Hill, Matthew R; Batten, Stuart R

    2012-11-21

    The synthesis and characterisation of microporous coordination polymers containing copper(II) or cobalt(II) and 2-(pyridin-4-yl)malonaldehyde (Hpma) is described and the gas adsorption properties evaluated. Single-crystal X-ray structure determinations identified the structures as [M(pma)(2)]·2X (M = Cu, 1; Co, 2; X = MeOH, MeCN), which contain 3D networks with rutile topology and continuous 1D rectangular channels with diameters ranging from 3 to 4 Å. The materials exhibit low BET surface areas of 143 m(2) g(-1), but possess large capacities for carbon dioxide capture of 14.1 wt%. The small pore channels are shown to account for this, delivering a particularly strong binding enthalpy to adsorbed CO(2) of 38 kJ mol(-1), and a very large adsorption capacity relative to the low surface area.

  3. EFFECT OF MOLECULAR OXYGEN ON ADSORPTIVE CAPACITY AND EXTRACTION EFFICIENCY OF GRANULATED ACTIVATED CARBON FOR THREE ORTHO-SUBSTITUTED PHENOLS

    EPA Science Inventory

    Adsorptive capacity of activated carbon for several organic compounds was found to be strongly influenced by the presence of molecular oxygen. This influence is manifested by the polymerization of adsorbate on the surface of activated carbon. As a result, GAC exhibits much high...

  4. Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures.

    PubMed

    Zhao, Yonggang; Wu, Haohan; Emge, Thomas J; Gong, Qihan; Nijem, Nour; Chabal, Yves J; Kong, Lingzhu; Langreth, David C; Liu, Hui; Zeng, Heping; Li, Jing

    2011-04-26

    Hydroxyl- and amino- functionalized [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O leads to two new structures, [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O (BDC=terephthalic acid, TED=triethylenediamine, BDC-OH=2-hydroxylterephthalic acid, BDC-NH(2)=2-aminoterephthalic acid). Single-crystal X-ray diffraction and powder X-ray diffraction studies confirmed that the structures of both functionalized compounds are very similar to that of their parent structure. Compound [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O can be considered a 3D porous structure with three interlacing 1D channels, whereas both [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O contain only 1D open channels as a result of functionalization of the BDC ligand by the OH and NH(2) groups. A notable decrease in surface area and pore size is thus observed in both compounds. Consequently, [Zn(BDC)(TED)(0.5)]·2DMF·0.2H(2)O takes up the highest amount of H(2) at low temperatures. Interestingly, however, both [Zn(BDC-OH)(TED)(0.5)]·1.5DMF·0.3H(2)O and [Zn(BDC-NH(2))(TED)(0.5)]·xDMF·yH(2)O show significant enhancement in CO(2) uptake at room temperature, suggesting that the strong interactions between CO(2) and the functionalized ligands, indicating that surface chemistry, rather than porosity, plays a more important role in CO(2) adsorption. A comparison of single-component CO(2), CH(4), CO, N(2), and O(2) adsorption isotherms demonstrates that the adsorption selectivity of CO(2) over other small gases is considerably enhanced through functionalization of the frameworks. Infrared absorption spectroscopic measurements and theoretical calculations are also carried out to assess the effect of functional groups on CO(2) and H(2) adsorption potentials.

  5. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution.

    PubMed

    Wu, Feng-Chin; Tseng, Ru-Ling

    2008-04-15

    In this study, the surface coverage ratio (Sc/Sp) and monolayer cover adsorption amount per unit surface area (qmon/Sp) were employed to investigate the adsorption isotherm equilibrium of the adsorption of dyes (AB74, BB1 and MB) on NaOH-activated carbons (FWNa2, FWNa3 and FWNa4); the adsorption rate of the Elovich equation (1/b) and the ratio of 1min adsorption amount of adsorbate to the monolayer cover amount of adsorbate (q1/qmon) were employed to investigate adsorption kinetics. The qmon/Sp of NaOH-activated carbons was better than that of KOH-activated carbons prepared from the same raw material (fir wood). The Sc/Sp values of the adsorption of all adsorbates on adsorbent FWNa3 in this study were found to be higher than those in related literature. Parameters 1/b and q1 of the adsorption of dyes on activated carbons in this study were higher than those on KOH-activated carbons; the q1/qmon value of FWNa3 was the highest. The pore structure and the TPD measurement of the surface oxide groups were employed to explain the superior adsorption performance of FWNa3. A high surface activated carbon (FWNa3) with excellent adsorption performance on dyes with relation to adsorption isotherm equilibrium and kinetics was obtained in this study. Several adsorption data processing methods were employed to describe the adsorption performance.

  6. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity

    PubMed Central

    Huang, Zhujian; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  7. 75 FR 26057 - Mandatory Reliability Standards for the Calculation of Available Transfer Capability, Capacity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Commission 18 CFR Part 40 Mandatory Reliability Standards for the Calculation of Available Transfer Capability, Capacity Benefit Margins, Transmission Reliability Margins, Total Transfer Capability, and Existing Transmission Commitments and Mandatory Reliability Standards for the Bulk-Power System Issued...

  8. Adsorption capacity of poly(ether imide) microparticles to uremic toxins.

    PubMed

    Tetali, Sarada D; Jankowski, Vera; Luetzow, Karola; Kratz, Karl; Lendlein, Andreas; Jankowski, Joachim

    2016-01-01

    Uremia is a phenomenon caused by retention of uremic toxins in the plasma due to functional impairment of kidneys in the elimination of urinary waste products. Uremia is presently treated by dialysis techniques like hemofiltration, dialysis or hemodiafiltration. However, these techniques in use are more favorable towards removing hydrophilic than hydrophobic uremic toxins. Hydrophobic uremic toxins, such as hydroxy hipuric acid (OH-HPA), phenylacetic acid (PAA), indoxyl sulfate (IDS) and p-cresylsulfate (pCRS), contribute substantially to the progression of chronic kidney disease (CKD) and cardiovascular disease. Therefore, objective of the present study is to test adsorption capacity of highly porous microparticles prepared from poly(ether imide) (PEI) as an alternative technique for the removal of uremic toxins. Two types of nanoporous, spherically shaped microparticles were prepared from PEI by a spraying/coagulation process.PEI particles were packed into a preparative HPLC column to which a mixture of the four types of uremic toxins was injected and eluted with ethanol. Eluted toxins were quantified by analytical HPLC. PEI particles were able to adsorb all four toxins, with the highest affinity for PAA and pCR. IDS and OH-HPA showed a partially non-reversible binding. In summary, PEI particles are interesting candidates to be explored for future application in CKD.

  9. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations.

    PubMed

    Wang, Xinye; Huang, Yaji; Pan, Zhigang; Wang, Yongxing; Liu, Changqi

    2015-09-15

    Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl2 molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl2. Considering the energy barriers, it is easy for PbO and PbCl2 to adsorb on Al surfaces but difficult to escape. The high energy barriers of de-HCl process cause the difficulties of PbCl2 to form PbO·Al2O3·2SiO2 with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  10. First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes

    SciTech Connect

    Sánchez-Ochoa, F. Cocoletzi, Gregorio H.; Canto, Gabriel I.; Takeuchi, Noboru

    2014-06-07

    We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m < 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital–lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.

  11. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Liu, Jiaoqin; Wei, Zhongbo; Wang, Liansheng; Yang, Shaogui; Huang, Qingguo; Wang, Zunyao

    2016-01-01

    Experiments were conducted to investigate the effect of four different carbon nanotubes single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) and hydroxylated and carboxylated multi-walled carbon nanotubes (OH-MWCNTs and COOH-MWCNTs) on Cd toxicity to the aquatic organism Daphnia magna. The acute toxicity results indicated that all CNTs could enhance the toxicity of Cd to D. magna. Furthermore, the filtrate toxicity and adsorption tests showed that the toxicity-increasing effect of SWCNTs and MWCNTs in the overall system was mainly caused by catalysts impurities from the pristine CNTs, whereas the greater adsorption of Cd onto OH-MWCNTs (30.52 mg/g) and COOH-MWCNTs (24.93 mg/g) was the key factor contributing to the enhanced toxicity. This result raised a concern that the metal catalyst impurities, adsorption capacities, and accumulation of waterborne CNTs were responsible for the toxicity of Cd to aquatic organism.

  12. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  13. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  14. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  15. Dye-adsorption capacity of high surface-area hydrogen titanate nanosheets processed via modified hydrothermal method.

    PubMed

    Padinhattayil, Hareesh; Augustine, Rimesh; Shukla, Satyajit

    2013-04-01

    High surface-area (380 m2 x g(-1)) hydrogen titanate nanosheets (HTNS) processed via the modified hydrothermal method have been utilized for the removal of methylene blue (MB) dye from an aqueous solution via the surface-adsorption process involving the electrostatic attraction mechanism. The HTNS have been characterized using the transmission electron microscope (TEM), selected-area electron diffraction (SAED), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) specific surface-area measurement techniques. The amount of MB dye adsorbed on the surface of HTNS at equilibrium (q(e)) has been examined as a function of contact time, initial dye-concentration, and initial solution-pH. Within the investigated range of initial solution-pH (2.5-11), the MB dye adsorption on the surface of HTNS has been observed to follow the pseudo-second-order kinetics with the dye-adsorption capacity of 119 mg x g(-1) at the initial solution-pH of - 10. The adsorption equilibrium follows the Langmuir isotherm within the initial solution-pH range of 2.5-10. However, in a highly basic solution (initial solution-pH -11), the adsorption equilibrium has been observed to follow the Langmuir, Freundlich, and Dubinin-Kaganer-Radushkevich (DKR) models in the different ranges of initial MB dye concentration. The mere dependence on the DKR model has not been observed within the investigated range of initial solution-pH. The differences in the dye-adsorption characteristics and capacity of HTNS, compared with those of hydrogen titanate nanotubes, have been attributed to the difference in their specific surface-area. Irrespective of the morphology, the maximum coverage of MB dye on the surface of hydrogen titanate has been noted to be the same (52%).

  16. D0 Solenoid Upgrade Project: Solenoid Insulatiing Vacuum Vessels; Relief Path Capacity Calculation

    SciTech Connect

    Rucinski, R.; Bell, D.; /Fermilab

    1993-05-26

    This engineering note documents the calculations done to determine the relief capacity of the solenoid vacuum pumping line. The calculations were done by David Bell, a co-op student from the University of Wisconsin. The calculations are attached. The conclusion is that the vacuum pumping line has a venting capacity of 129 g/s warm helium or 298 g/s warm nitrogen. Both of these capacities are much larger than the expected operating mass flow rates of the liquid helium (5 to 15 g/s) or liquid nitrogen (2 or 3 g/s) circuits. The calculations assume the solenoid vacuum vessel is at 3 psig and the relief plate is set at 1.5 psig. Additional calculations were done to prove that the venting capacity of the vacuum pumping line exceeded flowrates due to a failure mode. These calculations are attached. Since the system is not finalized, (pipe sizes not determined, components sized...) the calculations were done by first picking reasonable line sizes based on known allowed pressure drops in the system and then doing a maximum delivery rate calculation if a line was completely severed in the vacuum space of the solenoid/control dewar. The numbers from these calculations say that failure mode flow rates are 80 g/s liquid helium or 80 g/s liquid nitrogen. Both these values are less than the capacity of the relief line. In the five months since the (12/92 Dave Bell) calculations were done, some changes occured to the relief path. The most notable is that the radiation shield is now considered to be 6.625-inch O.D. instead of 6.00-inch used in the venting calculation. This change would tend to lower the capacity numbers. Another change was that for about half the venting path the chimney vacuum shell size was increased to 10-inch pipe. This change tends to increase the capacity numbers which were done assuming 8-inch pipe. These changes taken together probably offset each other or make the capacity numbers better. In either case, since the margin of safety is large, the

  17. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    PubMed

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate.

  18. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  19. Summary of Adsorption Capacity and Adsorption Kinetics of Uranium and Other Elements on Amidoxime-based Adsorbents from Time Series Marine Testing at the Pacific Northwest National Laboratory

    SciTech Connect

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Wood, Jordana R.; Schlafer, Nicholas J.; Janke, Christopher J.; Das, Sadananda; Mayes, Richard; Saito, Tomonori; Brown, Suree S.; Tsouris, Constantinos; Tsouris, Costas; Wai, Chien M.; Pan, Horng-Bin

    2016-09-29

    The Pacific Northwest National Laboratory (PNNL) has been conducting marine testing of uranium adsorbent materials for the Fuel Resources Program, Department of Energy, Office of Nuclear Energy (DOE-NE) beginning in FY 2012. The marine testing program is being conducted at PNNL’s Marine Sciences Laboratory (MSL), located at Sequim Bay, along the coast of Washington. One of the main efforts of the marine testing program is the determination of adsorption capacity and adsorption kinetics for uranium and selected other elements (e.g. vanadium, iron, copper, nickel, and zinc) for adsorbent materials provided primarily by Oak Ridge National Laboratory (ORNL), but also includes other Fuel Resources Program participants. This report summarizes the major marine testing results that have been obtained to date using time series sampling for 42 to 56 days using either flow-through column or recirculating flume exposures. The major results are highlighted in this report, and the full data sets are appended as a series of Excel spreadsheet files. Over the four year period (2012-2016) that marine testing of amidoxime-based polymeric adsorbents was conducted at PNNL’s Marine Science Laboratory, there has been a steady progression of improvement in the 56-day adsorbent capacity from 3.30 g U/kg adsorbent for the ORNL 38H adsorbent to the current best performing adsorbent prepared by a collaboration between the University of Tennessee and ORNL to produce the adsorbent SB12-8, which has an adsorption capacity of 6.56 g U/kg adsorbent. This nearly doubling of the adsorption capacity in four years is a significant advancement in amidoxime-based adsorbent technology and a significant achievement for the Uranium from Seawater program. The achievements are evident when compared to the several decades of work conducted by the Japanese scientists beginning in the 1980’s (Kim et al., 2013). The best adsorbent capacity reported by the Japanese scientists was 3.2 g U/kg adsorbent for a

  20. Relationship between the adsorption capacity of pesticides by wood residues and the properties of woods and pesticides.

    PubMed

    Rodriguez-Cruz, Sonia; Andrades, Maria S; Sanchez-Camazano, Maria; Sanchez-Martin, Maria J

    2007-05-15

    With the aim to explore the potential use of wood residues in technologies aimed at preventing the pollution of soil and water, we studied the adsorption of four non-ionic pesticides (linuron, alachlor, metalaxyl, and chlorpyrifos) and two ionic pesticides (dicamba and paraquat) with a Kow range of -4.5 to 4.7 by nine types of wood with lignin content in the 18.2-26.9% range. The Freundlich Kf values were considered as indicators of the adsorption capacity. A statistical study was carried out using simple and multiple correlations to establish the degree to which the different parameters of the woods and of the pesticides were involved in adsorption. In the case of the non-ionic pesticides, positive and negative significant correlations were observed between Kf and the lignin (r = 0.73-0.83, p < 0.05-0.01), and soluble C contents of the woods (r = 0.66-0.84), p < 0.1-0.01). For dicamba, a correlation between Kf and pH (r = -0.66, p < 0.1) of the woods was found, while for paraquat, this was seen between Kf and the cation exchange capacity (r = 0.71, p < 0.1) of the woods. No significant correlation was observed between Kf and the total C content of the woods. A highly significant correlation between Kf and Kow values (r > or = 0.93, p < 0.01) was found in the adsorption of the pesticides by the woods (with the exception of paraquat) showing that this parameter is very important in this adsorption process. The determination coefficient of the multiple correlation between Kf and the parameters Kow, soluble C, and lignin contents accounts for nearly 100% of the variability in adsorption for non-ionic pesticides. Based on the results of our study and of those of the literature related to the adsorption of aromatic hydrocarbons, we used the Kow values to define a predictive model of adsorption of hydrophobic organic compounds in general by the woods.

  1. Molecular basis for the high CO2 adsorption capacity of chabazite zeolites.

    PubMed

    Pham, Trong D; Hudson, Matthew R; Brown, Craig M; Lobo, Raul F

    2014-11-01

    CO2 adsorption in Li-, Na-, K-CHA (Si/Al=6,=12), and silica chabazite zeolites was investigated by powder diffraction. Two CO2 adsorption sites were found in all chabazites with CO2 locating in the 8-membered ring (8MR) pore opening being the dominant site. Electric quadrupole-electric field gradient and dispersion interactions drive CO2 adsorption at the middle of the 8 MRs, while CO2 polarization due to interaction with cation sites controls the secondary CO2 site. In Si-CHA, adsorption is dominated by dispersion interactions with CO2 observed on the pore walls and in 8 MRs. CO2 adsorption complexes on dual cation sites were observed on K-CHA, important for K-CHA-6 samples due to a higher probability of two K(+) cations bridging CO2. Trends in isosteric heats of CO2 adsorption based on cation type and concentration can be correlated with adsorption sites and CO2 quantity. A decrease in the hardness of metal cations results in a decrease in the direct interaction of these cations with CO2.

  2. First-Principles Calculation of Phonon and Schottky Heat Capacities of Plutonium Dioxide

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroki; Machida, Masahiko; Kato, Masato

    2015-05-01

    Plutonium dioxide (PuO2) is a key ingredient of mixed oxide (MOX) and advanced nuclear fuels. Its thermophysical data is crucial in understanding the high-temperature behaviors of nuclear fuels. In particular, the high-temperature heat capacity is of great importance for their safety and performance analyses. Here, we evaluate the main contributions to the heat capacity of PuO2 from 0 to 1400 K through suitable first-principles calculations. Consequently, we successfully obtain a temperature dependence in good agreement with experimental measurements. This success mainly results from accurate calculations of the Schottky heat capacity caused by the excited levels of f-electrons of Pu. Our calculations resolve the mystery of why previous works failed to reproduce the measurement data. This study extends the possibility of performing simulation-based nuclear-fuel research instead of difficult measurements.

  3. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    NASA Astrophysics Data System (ADS)

    Shiga, Motoyuki; Shinoda, Wataru

    2005-10-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice IhH2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions.

  4. Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors.

    PubMed

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    Activated carbon is an elemental material used for hygienic applications, particularly as an adsorbent for harmful gases and vapors. In Japanese industrial and occupational hygiene, activated carbon produced from coconut shell is a traditional and popular adsorbent material due to its excellent adsorption ability and cost advantage. In this research, in order to clarify the effect of the preliminary content of moisture on the adsorption capacity in detail, we prepared several coconut shell activated carbons which were preconditioned by equilibration with moisture at different relative humidities. We measured their adsorption capacities as breakthrough times for 6 kinds of organic vapor, and attempted to determine the relationships between the relative weight increase of water adsorption and the decrease of adsorption capacities of the activated carbon specimens for the organic vapors. The procedure of the quantitative evaluation of the effect of moisture and the results are useful for practical applications of activated carbon, particularly those used as adsorbents in workplaces.

  5. [Ecological footprint calculation and development capacity analysis of China in 1999].

    PubMed

    Xu, Zhongmin; Zhang, Zhiqiang; Cheng, Guodong; Chen, Dongjing

    2003-02-01

    The ecological footprint method put forward and improved by William Rees and Mathis Wackernagel presents a methodologically simple but integrated framework for national natural capital accounting, which is capable of measuring the impact of Human's consumption on ecosystem. Based on the ecological footprint theory and calculation method, a flow network analysis method was introduced to illuminate the structure of complex ecological economic system, and the relationship among ecological footprint, diversity and development capacity was analyzed. In this paper, the ecological footprints of China and its provinces was calculated and compared with the national and local ecological carrying capacity. The results showed that the ecological footprints of China and most of its provinces were beyond the available ecological capacity, and China and its most provinces run 'national or regional ecological deficit'. In case of China, the national ecological deficit was 0.645 hm2 per cap in 1999. Secondly, we introduced a flow network analysis method, taking various ecological productive area as note, and adopted Ulanowicz's development capacity formula to analyze the relationship among ecological footprint diversity, development capacity and output. The results demonstrated that Ulanowicz's development capacity was a good predictor of economic system output. At the same time, two distinct ways to change development capacity were produced. Increasing ecological footprint or increasing ecological footprint's diversity would both increase development capacity. Due to the fact that the ecological footprints had already been beyond bio-capacities, the only way to increase development capacity was to increase ecological footprint's diversity. The positive relationship between ecological footprint diversity and resources utilization efficiency demonstrated that there was no conflict between increasing ecological footprint's diversity and reducing footprints while not comprising our

  6. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Chen, Jianhua; Zhang, Xueliang; Chen, Yiping

    2014-02-01

    Activated carbons with high mesoporosity and abundant oxygen-containing functional groups were prepared from water hyacinth using H3PO4 activation (WHAC) to eliminate Pb(II) in water. Characterizations of the WHAC were performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The BET analysis showed that WHAC possesses a high mesoporosity (93.9%) with a BET surface area of 423.6 m2/g. The presence of oxygen-containing functional groups including hydroxyl, carbonyl, carboxyl and phosphate groups renders the WHAC a favorable adsorbent for Pb(II) with the maximum monolayer capacity (qm) 118.8 mg/g. The adsorption behavior follows pseudo-first order kinetic and Langmuir isotherm. The desorption study demonstrated that the WHAC could be readily regenerated using 0.1 M HCl (pH = 1.0). The desorbed WHAC could be reused at least six times without significant adsorption capacity reduction. The adsorption process was spontaneous and endothermic with ΔG (-0.27, -1.13, -3.02, -3.62, -5.54, and -9.31 kJ/mol) and ΔH (38.72 kJ/mol). Under the optimized conditions, a small amount of the adsorbent (1.0 g/L) could remove as much as 90.1% of Pb(II) (50 mg/L) in 20 min at pH 6.0 and temperature of 298 K. Therefore, the WHAC has a great potential to be an economical and efficient adsorbent in the treatment of lead-contaminated water.

  7. High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites.

    PubMed

    Li, Liangjun; Tang, Sifu; Wang, Chao; Lv, Xiaoxia; Jiang, Min; Wu, Huaizhi; Zhao, Xuebo

    2014-03-04

    A UiO type MOF with Lewis basic bipyridyl sites was synthesized and structurally characterized. After being activated by Soxhlet-extraction, this MOF exhibits high storage capacities for H2, CH4 and CO2, and shows unusual stepwise adsorption for liquid CO2 and solvents, indicating a sequential filling mechanism on different adsorption sites.

  8. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations.

    PubMed

    Tang, Shaobin; Cao, Zexing

    2011-01-28

    The interactions of nitrogen oxides NO(x) (x = 1,2,3) and N(2)O(4) with graphene and graphene oxides (GOs) were studied by the density functional theory. Optimized geometries, binding energies, and electronic structures of the gas molecule-adsorbed graphene and GO were determined on the basis of first-principles calculations. The adsorption of nitrogen oxides on GO is generally stronger than that on graphene due to the presence of the active defect sites, such as the hydroxyl and carbonyl functional groups and the carbon atom near these groups. These active defect sites increase the binding energies and enhance charge transfers from nitrogen oxides to GO, eventually leading to the chemisorption of gas molecules and the doping character transition from acceptor to donor for NO(2) and NO. The interaction of nitrogen oxides with GO with various functional groups can result in the formation of hydrogen bonds OH⋅⋅⋅O (N) between -OH and nitrogen oxides and new weak covalent bonds C⋅⋅⋅N and C⋅⋅⋅O, as well as the H abstraction to form nitrous acid- and nitric acidlike moieties. The spin-polarized density of states reveals a strong hybridization of frontier orbitals of NO(2) and NO(3) with the electronic states around the Fermi level of GO, and gives rise to the strong acceptor doping by these molecules and remarkable charge transfers from molecules to GO, compared to NO and N(2)O(4) adsorptions on GO. The calculated results show good agreement with experimental observations.

  9. Simultaneous activation/sulfurization method for production of sulfurized activated carbons: characterization and Hg(II) adsorption capacity.

    PubMed

    Shamsijazeyi, Hadi; Kaghazchi, Tahereh

    2014-01-01

    As an inexpensive method for modification of activated carbons (ACs), sulfurization has attracted significant attention. However, the resulting sulfurized activated carbons (SACs) often are less porous than the original ACs. In this work, we propose a new method for concurrent sulfurization/activation that can lead to preparation of SACs with more porosity than the corresponding non-sulfurized ACs. By using scanning electron microscopy, nitrogen adsorption/desorption, and iodine number experiments, the porous structure of the SACs has been compared with that of non-sulfurized ACs. The specific surface areas of SACs are higher than the corresponding ACs, regardless of the type of activation agents used. For instance, the specific surface area of SAC and AC activated with phosphoric acid is 1,637 and 1,338 m(2)/g, respectively. Additionally, sulfur contents and surface charges (pHpzc) of the SACs and non-sulfurized ACs are compared. In fact, the SACs have higher sulfur contents and more acidic surfaces. Furthermore, the Hg(II) adsorption capacity of SACs has been compared with the corresponding non-sulfurized ACs. The Hg(II) adsorption isotherms on a selected SAC is measured at different pH values and temperatures. Hg(II) adsorptions as high as 293 mg/g are observed by using SACs prepared by the method proposed in this study.

  10. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    PubMed Central

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (Ro) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  11. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    PubMed

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine.

  12. Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons.

    PubMed

    Afrane, G; Achaw, Osei-Wusu

    2008-09-01

    Coconut shells of West Africa Tall, a local variety of the coconut species Cocos nucifera L., were taken from five different geographical locations in Ghana and examined for the presence and concentration levels of some selected mineral elements using atomic absorption spectrometer. Activated carbons were subsequently made from the shells by the physical method. The iodine adsorption characteristics of the activated carbons measured showed a definite relationship to the concentration levels of potassium and other mineral elements in the precursor shell. Samples with lower total minerals content recorded higher iodine numbers. It was observed that the origin of the shells was related to the concentration levels of the analyzed mineral elements in the shells, which in turn affected the adsorption capacity of the activated carbons. The results of this study have important implications for the sourcing of coconuts whose shells are used in the manufacture of activated carbons.

  13. Effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing yellow zein.

    PubMed

    Sessa, D J; Palmquist, D E

    2008-09-01

    The Freundlich model was evaluated for use to assess the effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing corn zein. Because zein protein and its color/odor components are all adsorbed by activated carbon, a method to monitor their removal was needed. Yellow color is due to xanthophylls; a contributor to off-odor is diferuloylputrescine. The off-odor component absorbs ultraviolet (UV) light at about 325 nm and its removal coincides with removal of yellow color. A spectrophotometric method based on UV absorbances 280 nm for protein and 325 nm for the off-odor component was used to monitor their adsorptions onto activated carbon. Equilibrium studies were performed over temperature range from 25 to 60 degrees C for zein dissolved in 70% aqueous ethanol. Runs made at 55 degrees C adsorbed significantly more of the color/odor components than the protein.

  14. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  15. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  16. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Tran, Minh Thi; Nguyen, Thi Huyen Trang; Vu, Quoc Trung; Nguyen, Minh Vuong

    2016-03-01

    The research results of poly(1-naphthylamine)/Fe3O4 (PNA/Fe3O4) nanocomposites synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. XRD patterns and TEM images showed that the Fe3O4 grain size varied from 13 to 20 nm. The results of Raman spectral analysis showed that PNA participated in part of the PNA/Fe3O4 composite samples. The grain size of PNA/Fe3O4 composite samples is about 25-30 nm measured by SEM. The results of vibrating sample magnetometer measurements at room temperature showed that the saturation magnetic moment of PNA/Fe3O4 samples decreased from 63.13 to 43.43 emu/g, while the PNA concentration increased from 5% to 15%. The nitrogen adsorption-desorption isotherm of samples at 77 K at a relative pressure P/ P 0 of about 1 was studied in order to investigate the surface and porous structure of nanoparticles by the BET method. Although the saturation magnetic moments of samples decreased with the polymer concentration increase, the arsenic adsorption capacity of the PNA/Fe3O4 sample with the PNA concentration of 5% is better than that of Fe3O4 in a solution with pH = 7. In the solution with pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  17. Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wu, Zhongyu; Zhang, Yufeng; Meng, Jianqiang

    2017-04-01

    The development of efficient adsorbents with high sorption capacity remains as a challenge for the removal of micropollutants occurred globally in water resources. In this work, poly (amic acid) (PAA) electrospun nanofiber membranes grafted with hyperbranched polyols were synthesized and used for boron removal. The PAA nanofiber was reacted with hyperbranched polyethylenimine (HPEI) and further with glycidol to introduce the vicinal hydroxyl groups. The chemical composition and surface characteristics of the obtained PAA-g-PG membranes were evaluated by FESEM, FTIR, XPS and water contact angles (WCA) measurements. The boron adsorption thermodynamics and kinetics were investigated systematically. The results showed that the PAA nanofiber spun from concentration of 15% had uniform morphology and narrow diameter distribution. The PAA-g-PG nanofiber membrane had a maximum boron uptake of 5.68 mmol/g and could adsorb 0.82 mmol/g boron from a 5 mg/L solution in 15 min. Both the high surface area of nanofibers and the hyperbranched structure should contribute to the high boron uptake and high adsorption rate. The nanofiber membrane obeyed the Langmuir adsorption model and the pseudo-first-order kinetic model. The regeneration efficiency of the nanofiber membrane remained 93.9% after 10 cycled uses, indicating good regenerability of the membrane.

  18. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs)

    USGS Publications Warehouse

    Hsi, H.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2001-01-01

    Laboratory studies were conducted to determine the role of sulfur functional groups and micropore surface area of carbon-based adsorbents on the adsorption of Hg0 from simulated coal combustion flue gases. In this study, raw activated carbon fibers that are microporous (ACF-20) were impregnated with elemental sulfur between 250 and 650 ??C. The resulting samples were saturated with respect to sulfur content. Total sulfur content of the sulfur impregnated ACF samples decreased with increasing impregnation temperatures from 250 and 500 ??C and then remained constant to 650 ??C. Results from sulfur K-edge X-ray absorption near-edge structure (S-XANES) spectroscopy showed that sulfur impregnated on the ACF samples was in both elemental and organic forms. As sulfur impregnation temperature increased, however, the relative amounts of elemental sulfur decreased with a concomitant increase in the amount of organic sulfur. Thermal analyses and mass spectrometry revealed that sulfur functional groups formed at higher impregnation temperatures were more thermally stable. In general, sulfur impregnation decreased surface area and increased equilibrium Hg0 adsorption capacity when compared to the raw ACF sample. The ACF sample treated with sulfur at 400 ??C had a surface area of only 94 m2/g compared to the raw ACF sample's surface area of 1971 m2/g, but at least 86% of this sample's surface area existed as micropores and it had the largest equilibrium Hg0adsorption capacities (2211-11343 ??g/g). Such a result indicates that 400 ??C is potentially an optimal sulfur impregnation temperature for this ACF. Sulfur impregnated on the ACF that was treated at 400 ??C was in both elemental and organic forms. Thermal analyses and CS2extraction tests suggested that elemental sulfur was the main form of sulfur affecting the Hg0 adsorption capacity. These findings indicate that both the presence of elemental sulfur on the adsorbent and a microporous structure are important properties for

  19. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures.

    PubMed

    Park, J H; Ok, Y S; Kim, S H; Cho, J S; Heo, J S; Delaune, R D; Seo, D C

    2015-12-01

    The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L(-1) in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g(-1) as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g(-1)) > MgO (8.669 mg g(-1)) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg(-1)) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption.

  20. Hydrogen adsorption and storage on Palladium - functionalized graphene with NH-dopant: A first principles calculation

    NASA Astrophysics Data System (ADS)

    Faye, Omar; Szpunar, Jerzy A.; Szpunar, Barbara; Beye, Aboubaker Chedikh

    2017-01-01

    We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H2 molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315-0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H2 molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H2 adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H2 molecules, which helps also to avoid the desorption of Pd(H2)n (n = 1-5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  1. Synthesis of bilayer MoS{sub 2} nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity

    SciTech Connect

    Ye, Lijuan; Xu, Haiyan; Zhang, Dingke; Chen, Shijian

    2014-07-01

    Highlights: • Hexagonal phase of MoS{sub 2} nanosheets was synthesized by a facile hydrothermal method. • FE-SEM and TEM images show the sheets-like morphology of MoS{sub 2}. • Bilayer MoS{sub 2} can be grown under the optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. • The MoS{sub 2} nanosheets possess high methyl orange adsorption capacity due to the large surface area. - Abstract: Molybdenum disulfide (MoS{sub 2}) nanosheets have received significant attention recently due to the potential applications for exciting physics and technology. Here we show that MoS{sub 2} nanosheets can be prepared by a facile hydrothermal method. The study of the properties of the MoS{sub 2} nanosheets prepared at different conditions suggests that the mole ratio of precursors and hydrothermal time significantly influences the purity, crystalline quality and thermal stability of MoS{sub 2}. X-ray diffraction, Raman spectra and transmission electron microscopy results indicate that bilayer MoS{sub 2} can be grown under an optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. Moreover, such ultrathin nanosheets exhibit a prominent photoluminescence and possess high methyl orange adsorption capacity due to the large surface area, which can be potentially used in photodevice and photochemical catalyst.

  2. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  3. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps

    PubMed Central

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric G.; Kim, Hyunho; McKay, Ian S.; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, 27Al/29Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick’s 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  4. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  5. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  6. Superfine powdered activated carbon incorporated into electrospun polystyrene fibers preserve adsorption capacity.

    PubMed

    Apul, Onur G; Hoogesteijn von Reitzenstein, Natalia; Schoepf, Jared; Ladner, David; Hristovski, Kiril D; Westerhoff, Paul

    2017-03-17

    A composite material consisted of superfine powdered activated carbon (SPAC) and fibrous polystyrene (PS) was fabricated for the first time by electrospinning. SPAC is produced by pulverizing powdered activated carbon. The diameter of SPAC (100-400nm) is more than one hundred times smaller than conventional powdered activated carbon, but it maintains the internal pore structure based on organic micropollutant adsorption isotherms and specific surface area measurements. Co-spinning SPAC into PS fibers increased specific surface area from 6m(2)/g to 43m(2)/g. Unlike metal oxide nanoparticles, which are non-accessible for sorption from solution, electrospinning with SPAC created porous fibers. Composite SPAC-PS electrospun fibers, containing only 10% SPAC, had 30% greater phenanthrene sorption compared against PS fibers alone. SPAC particles embedded within the polymer were either partially or fully incorporated, and the accessibility of terminal adsorption sites were conserved. Conserving the adsorptive functionality of SPAC particles in electrospun non-woven polymeric fiber scaffolding can enable their application in environmental applications such as drinking water treatment.

  7. Virial expansion of the second layer in physical adsorption - An ab initio calculation for helium on argon crystal

    NASA Technical Reports Server (NTRS)

    Oh, B. K.; Kim, S. K.

    1974-01-01

    A model of helium adsorption on an argon crystal is built up from the premise that local adsorption predominates in the first layer and nonlocal adsorption in the second. Application of the virial expansion theorem to the second layer gives a series in which the first term represents the motion of a single molecule in the external potential field and the second a two-body interaction under this field. The thermodynamic functions of the adsorbed phase are calculated ab initio, the gas-solid interaction potential being derived from lattice summation and the partition function from an appropriate choice of a site-spacing polynomial to describe the periodic potential. The mutual interaction of adsorbed molecules is calculated with a two-dimensional Lennard-Jones potential. The second virial coefficient is calculated and its dependence on temperature and choice of potential is studied. It is found that the second virial coefficient is very well approximated by a two-dimensional gas in free space. The adsorption isotherm, isosteric heat, and specific heat are obtained and compared with the results of Ross and Steele, giving excellent agreement.

  8. Periodic density-functional calculations on work-function change induced by adsorption of halogens on Cu(111).

    PubMed

    Roman, Tanglaw; Groß, Axel

    2013-04-12

    Using periodic density-functional theory calculations, we address the work-function change induced by the adsorption of chlorine and iodine on Cu(111) which are shown to change the work function in opposite ways, contrary to what one may expect for these two electron acceptors. In contrast to previous studies, we demonstrate that substrate effects play only a minor role in work-function changes brought about by halogen adsorption on metals. Instead, polarization on the adsorbate not only explains the sign of the work-function change as a contributor to a positive surface dipole moment, but it is also the decisive factor in the dependence of adsorption-induced work-function changes on the coverage of halogens on metal surfaces.

  9. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Ping; Wang, Juan

    2016-12-01

    The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with "upright" hydrogen and bidentate complex on site of two oxygens (one with "upright" hydrogen and one with "lying" hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with "lying" hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.

  10. Capacity calculation of the electrotechnical scheme of discharge gap replacement of the ozonizer in the COMSOL environment

    NASA Astrophysics Data System (ADS)

    Isaev, Yu N.; Kolchanova, V. A.; Maltsev, A. P.; Aksenov, V. P.

    2017-02-01

    The investigation of electrostatic field distribution of ozonator electrode gap caused by inhomogeneous permittivity has been done. The paper presents calculation of electrostatic field energy of ozonator electrode gap. From the energy of electrostatic field distribution the information about electrode system capacity has been extracted. For calculation of the electrostatic field and capacity of electrode system the software integrated environment COMSOL has been used.

  11. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

    NASA Astrophysics Data System (ADS)

    Bévillon, E.; Colombier, J. P.; Recoules, V.; Stoian, R.

    2015-05-01

    Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature.

  12. Potential of mean force calculation of the free energy of adsorption of Type I winter flounder antifreeze protein on ice

    NASA Astrophysics Data System (ADS)

    Battle, Keith; Alan Salter, E.; Wesley Edmunds, R.; Wierzbicki, Andrzej

    2010-04-01

    Antifreeze proteins (AFPs) are a unique class of proteins that inhibit ice growth without changing the melting point of ice. In this work, we study the detailed molecular mechanism of interactions between the hydrophobic side of the winter flounder (WF) AFP and two mutants, AAAA and SSSS, in which threonine residues are substituted by serines and alanines, respectively. Umbrella sampling molecular dynamics simulations of the separation of the proteins from the (2 0 1) surface in an explicit water box is carried out to calculate the potential of mean force free energies of adsorption using AMBER10i. We estimate wild-type WF's free energy of adsorption to ice to be about -12.0 kcal/mol. Gas-phase pseudopotential plane-wave calculations of methane adsorption onto select surfaces of ice are also carried out under periodic boundary conditions to address the possible enthalpic role of WF's methyl groups in binding. The contributions of hydrophobic residues to the free energy of adsorption are discussed.

  13. Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics

    PubMed Central

    Wang, Feng; Stuart, Steven J.; Latour, Robert A.

    2009-01-01

    The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions. PMID:19768127

  14. Predicting Enzyme Adsorption to Lignin Films by Calculating Enzyme Surface Hydrophobicity*

    PubMed Central

    Sammond, Deanne W.; Yarbrough, John M.; Mansfield, Elisabeth; Bomble, Yannick J.; Hobdey, Sarah E.; Decker, Stephen R.; Taylor, Larry E.; Resch, Michael G.; Bozell, Joseph J.; Himmel, Michael E.; Vinzant, Todd B.; Crowley, Michael F.

    2014-01-01

    The inhibitory action of lignin on cellulase cocktails is a major challenge to the biological saccharification of plant cell wall polysaccharides. Although the mechanism remains unclear, hydrophobic interactions between enzymes and lignin are hypothesized to drive adsorption. Here we evaluate the role of hydrophobic interactions in enzyme-lignin binding. The hydrophobicity of the enzyme surface was quantified using an estimation of the clustering of nonpolar atoms, identifying potential interaction sites. The adsorption of enzymes to lignin surfaces, measured using the quartz crystal microbalance, correlates to the hydrophobic cluster scores. Further, these results suggest a minimum hydrophobic cluster size for a protein to preferentially adsorb to lignin. The impact of electrostatic contribution was ruled out by comparing the isoelectric point (pI) values to the adsorption of proteins to lignin surfaces. These results demonstrate the ability to predict enzyme-lignin adsorption and could potentially be used to design improved cellulase cocktails, thus lowering the overall cost of biofuel production. PMID:24876380

  15. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity.

    PubMed

    Lian, Fei; Cui, Guannan; Liu, Zhongqi; Duo, Lian; Zhang, Guilong; Xing, Baoshan

    2016-07-01

    N-doping is one of the most promising strategies to improve the adsorption capacity and selectivity of carbon adsorbents. Herein, synthesis, characterization and dye adsorption of a novel N-doped microporous biochar derived from direct annealing of crop straws under NH3 is presented. The resultant products exhibit high microporosity (71.5%), atomic percentage of nitrogen (8.81%), and adsorption capacity to dyes, which is about 15-20 times higher than that of original biochar. Specifically, for the sample NBC800-3 pyrolyzed at 800°C in NH3 for 3 h, its adsorption for acid orange 7 (AO7, anionic) and methyl blue (MB, cationic) is up to 292 mg g(-1) and 436 mg g(-1), respectively, which is among the highest ever reported for carbonaceous adsorbents. The influences of N-doping and porous structure on dye adsorption of the synthesized carbons are also discussed, where electrostatic attraction, π-π electron donor-accepter interaction, and Lewis acid-base interaction mainly contribute to AO7 adsorption, and surface area (especially pore-filling) dominates MB adsorption. The N-doped biochar can be effectively regenerated and reused through direct combustion and desorption approaches.

  16. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.

    PubMed

    Pang, Quan; Nazar, Linda F

    2016-04-26

    Lithium-sulfur batteries are attractive electrochemical energy storage systems due to their high theoretical energy density and very high natural abundance of sulfur. However, practically, Li-S batteries suffer from short cycling life and low sulfur utilization, particularly in the case of high-sulfur-loaded cathodes. Here, we report on a light-weight nanoporous graphitic carbon nitride (high-surface-area g-C3N4) that enables a sulfur electrode with an ultralow long-term capacity fade rate of 0.04% per cycle over 1500 cycles at a practical C/2 rate. More importantly, it exhibits good high-sulfur-loading areal capacity (up to 3.5 mAh cm(-2)) with stable cell performance. We demonstrate the strong chemical interaction of g-C3N4 with polysulfides using a combination of spectroscopic experimental studies and first-principles calculations. The 53.5% concentration of accessible pyridinic nitrogen polysulfide adsorption sites is shown to be key for the greatly improved cycling performance compared to that of N-doped carbons.

  17. Facile synthesis of hydroxy-modified MOF-5 for improving the adsorption capacity of hydrogen by lithium doping.

    PubMed

    Kubo, Masaru; Hagi, Hayato; Shimojima, Atsushi; Okubo, Tatsuya

    2013-11-01

    A facile synthesis of partially hydroxy-modified MOF-5 and its improved H2-adsorption capacity by lithium doping are reported. The reaction of Zn(NO3)2·6H2O with a mixture of terephthalic acid (H2BDC) and 2-hydroxyterephthalic acid (H2BDC-OH) in DMF gave hydroxy-modified MOF-5 (MOF-5-OH-x), in which the molar fraction (x) of BDC-OH(2-) was up to 0.54 of the whole ligand. The MOF-5-OH-x frameworks had high BET surface areas (about 3300 m(2) g(-1)), which were comparable to that of MOF-5. We suggest that the MOF-5-OH-x frameworks are formed by the secondary growth of BDC(2-)-rich MOF-5 seed crystals, which are nucleated during the early stage of the reaction. Subsequent Li doping into MOF-5-OH-x results in increased H2 uptake at 77 K and 0.1 MPa from 1.23 to 1.39 wt.% and an increased isosteric heat of H2 adsorption from 5.1-4.2 kJ mol(-1) to 5.5-4.4 kJ mol(-1).

  18. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity.

    PubMed

    Yang, Seung Jae; Im, Ji Hyuk; Kim, Taehoon; Lee, Kunsil; Park, Chong Rae

    2011-02-15

    Nanostructured ZnO materials have unique and highly attractive properties and have inspired interest in their research and development. This paper presents a facile method for the preparation of novel ZnO-based nanostructured architectures using a metal organic framework (MOF) as a precursor. In this approach, ZnO nanoparticles and ZnO@C hybrid composites were produced under several heating and atmospheric (air or nitrogen) conditions. The resultant ZnO nanoparticles formed hierarchical aggregates with a three-dimensional cubic morphology, whereas ZnO@C hybrid composites consisted of faceted ZnO crystals embedded within a highly porous carbonaceous species, as determined by several characterization methods. The newly synthesized nanomaterials showed relatively high photocatalytic decomposition activity and significantly enhanced adsorption capacities for organic pollutants.

  19. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    PubMed

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  20. Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations.

    PubMed

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery; Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2017-02-08

    The interaction of formaldehyde (H2CO) onto Fe-doped graphene (FeG) was studied in detail from density functional theory calculations and electronic structure analyses. Our aim was to obtain insights into the adsorption, desorption and sensing properties of FeG towards H2CO, a hazardous organic compound. The adsorption of H2CO was shown to be energetically stable onto FeG, with adsorption energies of up to 1.45 eV and favored in different conformations. This interaction was determined to be mostly electrostatic in nature, where the oxygen plays an important role in this contribution; besides, our quantum molecular dynamics results showed the high stability of the FeG-H2CO interaction at ambient temperature (300 K). All the interactions were determined to be accompanied by an increase in the HOMO-LUMO energy gap with respect to the isolated adsorbent, indicating that FeG is highly sensitive to H2CO with respect to pristine graphene. Finally, it was found that external electric fields of 0.04-0.05 a.u. were able to induce the pollutant desorption from the adsorbent, allowing the adsorbent reactivation for repetitive applications. These results indicate that FeG could be a promising candidate for adsorption/sensing platforms of H2CO.

  1. Experimental approach to the anion problem in DFT calculation of the partial charge transfer during adsorption at electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Marichev, V. A.

    2005-08-01

    In DFT calculation of the charge transfer (Δ N), anions pose a special problem since their electron affinities are unknown. There is no method for calculating reasonable values of the absolute electronegativity ( χA) and chemical hardness ( ηA) for ions from data of species themselves. We propose a new approach to the experimental measurement of χA at the condition: Δ N = 0 at which η values may be neglected and χA = χMe. Electrochemical parameters corresponding to this condition may be obtained by the contact electric resistance method during in situ investigation of anion adsorption in the particular system anion-metal.

  2. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect

    Han, Yong; Evans, James W.

    2015-10-28

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)

  3. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE PAGES

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less

  4. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).

  5. Water adsorption in SAPO-34: elucidating the role of local heterogeneities and defects using dispersion-corrected DFT calculations.

    PubMed

    Fischer, Michael

    2015-10-14

    The chabazite-type silicoaluminophosphate SAPO-34 is a promising adsorbent for applications in thermal energy storage using water adsorption-desorption cycles. In order to develop a microscopic understanding of the impact of local heterogeneities and defects on the water adsorption properties, the interaction of different models of SAPO-34 with water was studied using dispersion-corrected density-functional theory (DFT-D) calculations. In addition to SAPO-34 with isolated silicon atoms, the calculations considered models incorporating two types of heterogeneities (silicon islands, aluminosilicate domains), and two defect-containing (partially and fully desilicated) systems. DFT-D optimisations were performed for systems with small amounts of adsorbed water, in which all H2O molecules can interact with framework protons, and systems with large amounts of adsorbed water (30 H2O molecules per unit cell). At low loadings, the host-guest interaction energy calculated for SAPO-34 with isolated Si atoms amounts to approximately -90 kJ mol(-1). While the presence of local heterogeneities leads to the creation of some adsorption sites that are energetically slightly more favourable, the interaction strength is drastically reduced in systems with defects. At high water loadings, energies in the range of -70 kJ mol(-1) are obtained for all models. The DFT-D interaction energies are in good agreement with experimentally measured heats of water adsorption. A detailed analysis of the equilibrium structures was used to gain insights into the binding modes at low coverages, and to assess the extent of framework deprotonation and changes in the coordination environment of aluminium atoms at high water loadings.

  6. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.

    PubMed

    Croteau, T; Bertram, A K; Patey, G N

    2008-10-30

    Grand canonical Monte Carlo calculations are used to determine water adsorption and structure on defect-free kaolinite surfaces as a function of relative humidity at 235 K. This information is then used to gain insight into ice nucleation on kaolinite surfaces. Results for both the SPC/E and TIP5P-E water models are compared and demonstrate that the Al-surface [(001) plane] and both protonated and unprotonated edges [(100) plane] strongly adsorb at atmospherically relevant relative humidities. Adsorption on the Al-surface exhibits properties of a first-order process with evidence of collective behavior, whereas adsorption on the edges is essentially continuous and appears dominated by strong water lattice interactions. For the protonated and unprotonated edges no structure that matches hexagonal ice is observed. For the Al-surface some of the water molecules formed hexagonal rings. However, the a o lattice parameter for these rings is significantly different from the corresponding constant for hexagonal ice ( Ih). A misfit strain of 14.0% is calculated between the hexagonal pattern of water adsorbed on the Al-surface and the basal plane of ice Ih. Hence, the ring structures that form on the Al-surface are not expected to be good building-blocks for ice nucleation due to the large misfit strain.

  7. CO2 Adsorption in Low-Rank Coals: Progress Toward Assessing the National Capacity to Store CO2 in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stanton, R. W.; Burruss, R. C.; Flores, R. M.; Warwick, P. D.

    2001-05-01

    Subsurface environments for geologic storage of CO2 from combustion of fossil fuel include saline formations, depleted oil and gas reservoirs, and unmineable coalbeds. Of these environments, storage in petroleum reservoirs and coal beds offers a potential economic benefit of enhanced recovery of energy resources. Meaningful assessment of the volume and geographic distribution of storage sites requires quantitative estimates of geologic factors that control storage capacity. The factors that control the storage capacity of unmineable coalbeds are poorly understood. In preparation for a USGS assessment of CO2 storage capacity we have begun new measurements of CO2 and CH4 adsorption isotherms of low-rank coal samples from 4 basins. Initial results for 13 samples of low-rank coal beds from the Powder River Basin (9 subbituminous coals), Greater Green River Basin (1 subbituminous coal), Williston Basin (2 lignites) and the Gulf Coast (1 lignite) indicate that their adsorption capacity is up to 10 times higher than it is for CH4. These values contrast with published measurements of the CO2 adsorption capacity of bituminous coals from the Fruitland Formation, San Juan basin, and Gates Formation, British Columbia, that indicate about twice as much carbon dioxide as methane can be adsorbed on coals. Because CH4 adsorption isotherms are commonly measured on coals, CO2 adsorption capacity can be estimated if thecorrect relationship between the gases is known. However, use a factor to predict CO2 adsorption that is twice that of CH4 adsorption, which is common in the published literature, grossly underestimates the storage capacity of widely distributed, thick low-rank coal beds. Complete petrographic and chemical characterization of these low-rank coal samples is in progress. Significant variations in adsorption measurements among samples are depicted depending on the reporting basis used. Properties were measured on an "as received" (moist) basis but can be converted to a

  8. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.

    PubMed

    Hughes, Zak E; Wright, Louise B; Walsh, Tiffany R

    2013-10-29

    The molecular simulation of biomolecules adsorbed at noble metal interfaces can assist in the development of bionanotechnology applications. In line with advances in polarizable force fields for adsorption at aqueous gold interfaces, there is scope for developing a similar force field for silver. One way to accomplish this is via the generation of in vacuo adsorption energies calculated using first-principles approaches for a wide range of different but biologically relevant small molecules, including water. Here, we present such first-principles data for a comprehensive range of bio-organic molecules obtained from plane-wave density functional theory calculations using the vdW-DF functional. As reported previously for the gold force field, GolP-CHARMM (Wright, L. B.; Rodger, P. M.; Corni, S.; Walsh, T. R. GolP-CHARMM: first-principles based force-fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9, 1616-1630), we have used these data to construct a a new force field, AgP-CHARMM, suitable for the simulation of biomolecules at the aqueous Ag(111) and Ag(100) interfaces. This force field is derived to be consistent with GolP-CHARMM such that adsorption on Ag and Au can be compared on an equal footing. Our force fields are used to evaluate the water overlayer stability on both silver and gold, finding good agreement with known behaviors. We also calculate and compare the structuring (spatial and orientational) of liquid water adsorbed at both silver and gold. Finally, we report the adsorption free energy of a range of amino acids at both the Au(111) and Ag(111) aqueous interfaces, calculated using metadynamics. Stronger adsorption on gold was noted in most cases, with the exception being the carboxylate group present in aspartic acid. Our findings also indicate differences in the binding free energy profile between silver and gold for some amino acids, notably for His and Arg. Our analysis suggests that the relatively

  9. Adsorption, dissociation, penetration, and diffusion of N2 on and in bcc Fe: first-principles calculations.

    PubMed

    Yeo, Sang Chul; Han, Sang Soo; Lee, Hyuck Mo

    2013-04-14

    We report first-principles calculations of adsorption, dissociation, penetration, and diffusion for the complete nitridation mechanism of nitrogen molecules on a pure Fe surface (bcc, ferrite phase). The mechanism of the definite reaction path was calculated by dividing the process into four steps. We investigated various reaction paths for each step including the energy barrier based on the climb image nudged elastic band (CI-NEB) method, and the complete reaction pathway was computed as the minimum energy path (MEP). The adsorption characteristics of nitrogen (N) and molecular nitrogen (N2) indicate that nitrogen atoms and molecules are energetically favorable at the hollow sites on pure Fe(100) and (110). The dissociation of the nitrogen molecule (N2) was theoretically supported by electronic structure calculations. The penetration of nitrogen from the surface to the sub-surface has a large energy barrier compared with the other steps. The activation energy calculated for nitrogen diffusion in pure bcc Fe was in good agreement with the experimental results. Finally, we confirmed the rate-determining step for the full nitridation reaction pathway. This study provides fundamental insight into the nitridation mechanism for nitrogen molecules in pure bcc Fe.

  10. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity.

    PubMed

    Lounsbury, Amanda W; Yamani, Jamila S; Johnston, Chad P; Larese-Casanova, Philip; Zimmerman, Julie B

    2016-06-05

    Nano metal oxides are of interest for aqueous selenium (Se) remediation, and as such, nano-hematite (nα-Fe2O3) was examined for use as a Se adsorbent. The effect of surface area on adsorption was also studied. nα-Fe2O3 particles were synthesized from Fe(NO3)3 and FeCl3 via forced hydrolysis. The resulting particles have similar sizes, morphologies, aggregate size, pore size, and PZC. The nα-Fe2O3 from FeCl3 (nα-Fe2O3-C) differs from the nα-Fe2O3 from Fe(NO3)3 (nα-Fe2O3-N) with a ∼25±2m(2)/g greater surface area. Selenite Se(IV) adsorption capacity on nα-Fe2O3 has a qmax ∼17mg/g for the freeze-dried and re-suspended nα-Fe2O3. The Δqmax for nα-Fe2O3 from Fe(NO3)3 and FeCl3 that remained in suspension was 4.6mg/g. For selenate Se(VI), the freeze-dried and re-suspended particles realize a Δqmax= 1.5mg/g for nα-Fe2O3 from Fe(NO3)3 and FeCl3. The nα-Fe2O3 from Fe(NO3)3 and FeCl3 that remained in suspension demonstrated Se(VI) Δqmax=5.4mg/g. In situ ATR-FTIR isotherm measurements completed for Se(VI) at a pH 6 suggest that Se(VI) forms primarily outer-sphere complexes with nα-Fe2O3 synthesized from both salts.

  11. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    SciTech Connect

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Park, Jiyeon; Bonheyo, George T.; Jeters, Robert T.; Schlafer, Nicholas J.; Wood, Jordana R.

    2015-08-31

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light exposed and darkened flumes for a 42 day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80 % of the adsorbent mass after 42 days. The

  12. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions.

  13. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Jiang, Chuanjia; Le, Yao; Yu, Jiaguo

    2017-01-05

    The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600°C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4mg/g at 30°C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO3(2-)>SO4(2-)>H2PO4(-)>Cl(-). This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  14. Atomic properties of element 113 and its adsorption on inert surfaces from ab initio Dirac-Coulomb calculations.

    PubMed

    Pershina, V; Borschevsky, A; Eliav, E; Kaldor, U

    2008-12-25

    Fully relativistic ab initio Dirac-Coulomb Fock-space coupled cluster calculations were performed on Tl and element 113. The calculated polarizabilty of element 113, 29.85 au, is the smallest in group 13, except for B. The estimated atomic and van der Waals radii of element 113 are also the smallest among these elements. Using the calculated atomic properties and an adsorption model, adsorption enthalpies of elements Al through 113 on inert surfaces, such as Teflon and polyethylene, are predicted. The trends in the atomic properties and DeltaH(ads) in group 13 were found to reverse from In to element 113, reflecting the strong relativistic contraction and stabilization of the outer np(1/2) orbital, which are largest for element 113. The small values of DeltaH(ads) for element 113 on Teflon (14 kJ/mol) and polyethylene (16 kJ/mol) guarantee its transport from the target chamber to the chemistry set up, and the 6 kJ/mol difference relative to Tl values makes possible the separation and identification of the superheavy element on the inert surfaces.

  15. Large-scale calculations of gas phase thermochemistry: Enthalpy of formation, standard entropy, and heat capacity

    NASA Astrophysics Data System (ADS)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; Ditz, Jonas C.; Lindh, Roland; van der Spoel, David

    2016-09-01

    Large scale quantum calculations for molar enthalpy of formation (ΔfH0), standard entropy (S0), and heat capacity (CV) are presented. A large data set may help to evaluate quantum thermochemistry tools in order to uncover possible hidden shortcomings and also to find experimental data that might need to be reinvestigated, indeed we list and annotate approximately 200 problematic thermochemistry measurements. Quantum methods systematically underestimate S0 for flexible molecules in the gas phase if only a single (minimum energy) conformation is taken into account. This problem can be tackled in principle by performing thermochemistry calculations for all stable conformations [Zheng et al., Phys. Chem. Chem. Phys. 13, 10885-10907 (2011)], but this is not practical for large molecules. We observe that the deviation of composite quantum thermochemistry recipes from experimental S0 corresponds roughly to the Boltzmann equation (S = RlnΩ), where R is the gas constant and Ω the number of possible conformations. This allows an empirical correction of the calculated entropy for molecules with multiple conformations. With the correction we find an RMSD from experiment of ≈13 J/mol K for 1273 compounds. This paper also provides predictions of ΔfH0, S0, and CV for well over 700 compounds for which no experimental data could be found in the literature. Finally, in order to facilitate the analysis of thermodynamics properties by others we have implemented a new tool obthermo in the OpenBabel program suite [O'Boyle et al., J. Cheminf. 3, 33 (2011)] including a table of reference atomization energy values for popular thermochemistry methods.

  16. CO2 adsorption on Fe-doped graphene nanoribbons: First principles electronic transport calculations

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.; Abdullah, H.; Al Ezzi, M.; Rakhmatullaeva, G. V.; Bahlouli, H.; Tit, N.

    2016-12-01

    Decoration of graphene with metals and metal-oxides is known to be one of the effective methods to enhance gas sensing and catalytic properties of graphene. We use density functional theory in combination with the nonequilibrium Green's function formalism to study the conductance response of Fe-doped graphene nanoribbons to CO2 gas adsorption. A single Fe atom is either adsorbed on graphene's surface (aFe-graphene) or it substitutes the carbon atom (sFe-graphene). Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurities. The reduction in the transmission is more pronounced in the case of aFe-graphene. In addition, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. Pristine graphene is also found to be less sensitive to the molecular adsorption. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing graphene-based solid-state gas sensors.

  17. A study of the alumina-silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid.

    PubMed

    Yokoyama, Takushi; Ueda, Akira; Kato, Koichi; Mogi, Katsumi; Matsuo, Shorin

    2002-08-01

    Two kinds of adsorbents (Si adsorbent and Al adsorbent) for the removal of silicic acid from geothermal water to retard the formation of silica scales were prepared using silicic acid contained in geothermal water. The Si adsorbent was prepared by evaporating geothermal water, and the Al adsorbent was prepared by evaporating geothermal water after the addition of aluminum chloride. The specific surface area of the Si adsorbent was small and it's adsorption capacity of silicic acid was low. Although the specific surface area of the Al adsorbent was also small, it was significantly increased by the adsorption of silicic acid and it's adsorption capacity was high. Based on the change in the local structure of aluminum ion by the adsorption of silicic acid, the Al adsorbent was considered to be silica particles covered with crystalline aluminum hydroxide. Moreover, it was concluded that the increase in the specific surface area of the Al adsorbent and the decrease in the zeta potential were due to the formation of an amorphous aluminosilicate with a large surface area and a negative charge (one 4-coordinated Al) by the reaction between aluminum ions and silicic acids.

  18. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue

    NASA Astrophysics Data System (ADS)

    Kempton, Willett; Tomić, Jasna

    As the light vehicle fleet moves to electric drive (hybrid, battery, and fuel cell vehicles), an opportunity opens for "vehicle-to-grid" (V2G) power. This article defines the three vehicle types that can produce V2G power, and the power markets they can sell into. V2G only makes sense if the vehicle and power market are matched. For example, V2G appears to be unsuitable for baseload power—the constant round-the-clock electricity supply—because baseload power can be provided more cheaply by large generators, as it is today. Rather, V2G's greatest near-term promise is for quick-response, high-value electric services. These quick-response electric services are purchased to balance constant fluctuations in load and to adapt to unexpected equipment failures; they account for 5-10% of electric cost—$ 12 billion per year in the US. This article develops equations to calculate the capacity for grid power from three types of electric drive vehicles. These equations are applied to evaluate revenue and costs for these vehicles to supply electricity to three electric markets (peak power, spinning reserves, and regulation). The results suggest that the engineering rationale and economic motivation for V2G power are compelling. The societal advantages of developing V2G include an additional revenue stream for cleaner vehicles, increased stability and reliability of the electric grid, lower electric system costs, and eventually, inexpensive storage and backup for renewable electricity.

  19. Fourier transform infra-red (FTIR) spectroscopy investigation, dose effect, kinetics and adsorption capacity of phosphate from aqueous solution onto laterite and sandstone.

    PubMed

    Coulibaly, Lassina Sandotin; Akpo, Sylvain Kouakou; Yvon, Jacques; Coulibaly, Lacina

    2016-12-01

    Environmental pollution by phosphate in developing countries is growing with extensive and diffuse pollution. Solving these problem with intensive technologies is very expensive. Using natural sorbent such as laterite and sandstone could be a solution. The main objective of the study is to evaluate the P-removal efficiency of these materials under various solution properties. Laterite and sandstone used mainly contain very high levels of finely grained iron and aluminum oxy-hydroxides and diverse dioctahedral clays. Phosphate adsorption tests were carried out using crushed laterite and sandstone. Optimal doses and pH effects on phosphate adsorption were studied with a potassium hydrogeno-phosphate solution of 5 mg/L at 30 °C. The main results were that the optimal dosage is 15 and 20 mg/L respectively for laterite and sandstone. The phosphate adsorptions efficiency of laterite and sandstone are pH-dependent, they increase when the pH grows up to the Point of Zero Charge (PZC) and slowly decrease beyond. The adsorption capacities of the materials also increase proportionally with the initial phosphate concentration. The pseudo-second-order successfully described the kinetics of the phosphate adsorption on the two adsorbents. With this model, the adsorption capacity values are obtained, which give an idea of the maximum phosphate uptake that the laterite and sandstone could achieve. The changes on the FTIR spectra of raw materials and phosphate adsorbed material confirm the mechanism of chemisorptions. Considering the above, laterite and sandstone could be used as efficient and cheap adsorbent for the removal of phosphate in aqueous solution.

  20. A Initio Calculations Performed on Carbon Monoxide Adsorption on the IRON(100) Surface and Complementing Theoretical Techniques

    NASA Astrophysics Data System (ADS)

    Meehan, Timothy Erickson

    1992-01-01

    Unrestricted Hartree-Fock calculations were performed on Fe_{x}CO clusters to model the CO(alpha_1), CO(alpha_2), and CO( alpha_3) adsorptions on the Fe(100) surface. Clusters of FeCO(C_{4v}) and a multiplicity of 5, Fe_2 CO(C_{2v}) and a multiplicity of 7, and Fe_2CO(C _{s}) and a multiplicity of 7, were constructed to model, respectively, the adsorption for the on top site, bridging site, and tilted CO structure at the 4-fold site. The CO position was optimized with respect to the Fe bulk distances using gradient techniques and the partial geometry optimization. CO stretching frequencies were calculated for each optimized geometry, and we find no evidence supporting CO adsorption in the bridging site. Using a full basis set the calculated CO stretching frequencies for the FeCO(C_{4v}), Fe_2CO(C_ {2v}), and the Fe_2 CO(C_{s}) clusters are 1992, 1767, and 771 cm^{ -1}, respectively. The CSOV analysis was executed to analyze the major orbital interactions between the CO and Fe_{x} clusters. For both Fe_2CO clusters, the CO pi^* perpendicular to the Fe _2 axis had a more significant contribution involving the pi backdonation from the Fe_2 clusters. Furthermore, the spin minority d electrons are mainly responsible for the pi backdonation. Due to problems with SCF convergence incurred during the Fe_{x}CO studies, we were forced to investigate a number of different techniques to achieve SCF convergence. Therefore, techniques that generate starting guesses of the eigenvectors for the SCF procedure and techniques used to accelerate SCF convergence are reviewed. The standard guesses of H _{core} and charge build -up are examined, and we introduce a new incremental cluster method for generating starting guesses for large clusters. The standard techniques of extrapolation, DIIS, damping, level shifting, restrict, and symmetry blocking are examined, and we also developed the hacker method and partial geometry optimization as new techniques to achieve SCF convergence. Results

  1. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-12-01

    Anatase TiO2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption analysis, UV-vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO2 NSs possess high surface area up to 378 m2 g-1. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  2. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC.

  3. Dioxygen molecule adsorption and oxygen atom diffusion on clean and defective aluminum(111) surface using first principles calculations

    NASA Astrophysics Data System (ADS)

    Guiltat, Mathilde; Brut, Marie; Vizzini, Sébastien; Hémeryck, Anne

    2017-03-01

    First principles calculations are conducted to investigate kinetic behavior of oxygen species at the surface of clean and defective Al(111) substrate. Oxygen island, aluminum vacancy, aluminum sub-vacancy, aluminum ad-atom and aluminum terraces defects are addressed. Adsorption of oxygen molecule is first performed on all these systems resulting in dissociated oxygen atoms in main cases. The obtained adsorbed configurations are then picked to study the behavior of atomic oxygen specie and get a detailed understanding on the effect of the local environment on the ability of the oxygen atom to diffuse on the surface. We pointed out that local environment impacts energetics of oxygen atom diffusion. Close packed oxygen island, sub-vacancy and ad-atoms favor oxygen atom stability and decrease mobility of oxygen atom on the surface, to be seen as surface area for further nucleation of oxygen island.

  4. Preparation and characterization of a hierarchical porous char from sewage sludge with superior adsorption capacity for toluene by a new two-step pore-fabricating process.

    PubMed

    Kong, Lingjun; Xiong, Ya; Tian, Shuanghong; Luo, Rongshu; He, Chun; Huang, Haibao

    2013-10-01

    A kind of hierarchical porous char (SCCA/Zn) was prepared from sewage sludge by a new two-step pore-fabricating process coupling citric acid (CA) with ZnCl2 in a pyrolysis process. The char was characterized by element analysis, N2-adsorption and mercury intrusion measurement etc. It is found that coupling CA and ZnCl2 can synergistically fabricate pores in the pyrolysis process, resulting in a hierarchical porous char, SCCA/Zn, with the largest SBET of 867.6 m(2) g(-1) due to the fact that the former contributes to the fabrication of macro-pores, which provides more space for fabricating meso- and micro-pores by ZnCl2 activation. Although the SBET of SCCA/Zn was 15% less than that of activated carbon fiber (ACF, SBET=999.5 m(2) g(-1)), SCCA/Zn had a higher toluene adsorption capacity (0.83 g g(-1)) than ACF. The inconsistence between their SBET and adsorption capacity can be ascribed to the strong hydrophobic property of SCCA/Zn.

  5. Ammonia adsorption on Cl/Si(0 0 1): First-principles calculations

    NASA Astrophysics Data System (ADS)

    Lange, B.; Schmidt, W. G.

    2008-03-01

    Motivated by recent experiments [C.C. Finstad, A.G. Thorsness, A.J. Muscat, Surf. Sci. 600 (2006) 3363], the interaction between ammonia and the Cl-terminated Si(0 0 1) surface is studied using density functional theory (DFT). The reaction NH 3 (gas) + Si(0 0 1):Cl → Si(0 0 1):NH 2 + HCl (gas) is endothermic, even if temperature effects are included in the calculation. We find that the formation of ionic bonds between surface-bonded NH3+ and nearby Cl - rather than the desorption of HCl corresponds to a local energy minimum.

  6. Thermodynamic investigations using molecular dynamics simulations with potential of mean force calculations for cardiotoxin protein adsorption on mixed self-assembled monolayers.

    PubMed

    Hung, Shih-Wei; Hsiao, Pai-Yi; Lu, Ming-Chang; Chieng, Ching-Chang

    2012-10-25

    Understanding protein adsorption onto solid surfaces is of critical importance in the field of bioengineering, especially for applications such as medical implants, diagnostic biosensors, drug delivery systems, and tissue engineering. This study proposed the use of molecular dynamics simulations with potential of mean force (PMF) calculations to identify and characterize the mechanisms of adsorption of a protein molecule on a designed surface. A set of model systems consisting of a cardiotoxin (CTX) protein and mixed self-assembled monolayer (SAM) surfaces were used as examples. The set of mixed SAM surfaces with varying topographies were created by mixing alkanethiol chains of different lengths. The results revealed that CTX proteins underwent similar conformal changes upon adsorption onto the various mixed SAMs but showed distinctive characteristics in free energy profiles. Enhancement of the adsorption affinity, i.e., the change in free energy of adsorption, for mixed SAMs was demonstrated by using atomic force microscopic measurements. A component analysis conducted to quantify the physical mechanisms that promoted CTX adsorption revealed contributions from both SAMs and the solvent. Further component analyses of thermodynamic properties, such as the free energy, enthalpy, and entropy, indicated that the contribution from SAMs was driven by enthalpy, and the contribution from the solvent was driven by entropy. The results indicated that CTX adsorption was an entropy-driven process, and the entropic component from the solvent, i.e., the hydrophobic interaction, was the major driving force for CTX adsorption onto SAMs. The study also concluded that the surfaces composed of mixtures of SAMs with different chain lengths promoted the adsorption of CTX protein.

  7. Ab initio calculations for dissociative hydrogen adsorption on lithium oxide surfaces

    SciTech Connect

    Sutjianto, A. |; Tam, S.W.; Curtiss, L.A.; Johnson, C.E.; Pandey, R.

    1994-12-01

    Lithium ceramics are one class of materials being considered as tritium breeders for fusion technology,and hydrogen is known to enhance the release of tritium from lithium ceramic materials. Dissociative hydrogen chemisorption on the Li{sub 2}O surfaces of the (100), (110), and (111) planes has been investigated with ab initio Hartree-Fock calculations. Calculations for unrelaxed crystal Li{sub 2}O structures indicated that except for the (100) surface, the (110) and (111) surfaces are stable. Results on the heterolytic sites of n-layer (110) (where n {ge} 2) slabs and three-layer (111) slabs suggest that dissociative hydrogen chemisorption is endothermic. For a one-layer (110) slab at 100% surface coverage, the dissociative hydrogen chemisorption is exothermic, forming OH{sup {minus}} and Li{sup +}H{sup {minus}}Li{sup +}. The results also indicate that the low coordination environment in surface step structures, such as kinks and ledges, may plan an important role in the hydrogen chemisorption process. On the homolytic sites of the (110) and (111) surfaces, there is no hydrogen chemisorption.

  8. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    NASA Astrophysics Data System (ADS)

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-05-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g‑1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment.

  9. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal

    NASA Astrophysics Data System (ADS)

    Farmany, Abbas; Mortazavi, Seyede Shima; Mahdavi, Hossein

    2016-10-01

    Fe3O4/SiO2 core/shell nanocrystals were synthesized by ultrasond-assisted procedure. The core/shell nanocrystals were characterized using XRD, FT-IR spectroscopy, SEM and BET. The BET analysis confirmed that iron oxide nanocrystal with the surface area of 208.0 m2/g can be used as an excellent adsorbent for organic and inorganic pollutants. The core/shell nanocrystal was used as an adsorbent for removal of insecticide O,O-diethyl-O[2-isopropyl-6-methylpyridimidinyl] phosphorothioate (diazinon). In continue the influence of different parameters such as pH, adsorbent dosage and shaking time on the adsorption capacity were studied. The experimental data were fitted well with the pseudo-second-order kinetic model (R2=0.9706). The adsorption isotherm was described well by Langmuir isotherm.

  10. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    PubMed Central

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-01-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g−1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment. PMID:27142194

  11. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.

    2016-03-01

    We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.

  12. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  13. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  14. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  15. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  16. Calculation of the standard heat capacity at constant pressure for cobalt ferrite-zinc ferrite solid solutions

    SciTech Connect

    Chachanidze, G.D.; Pavlenishvili, T.A.; Machaladze, T.E.; Khutsishvili, D.I.

    1994-08-01

    Magnetic, electrical, and other properties of Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} solid solutions are widely studied because of their high coercive force and Curie temperature ({Tc}), which makes these compounds applicable in modern electronic devices. However, the information published on their thermodynamic properties is limited. This paper focuses on calculation of the standard heat capacity C{sub p}{sup 0} (298 K) for cobalt zinc ferrites using correlation analysis of the relationship between C{sub p}{sup 0} (298 K) and the saturation magnetic moment {mu}{sub o}. The authors studied the solid solutions Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.2, 0.4, 0.5, 0.6, and 0.8), whose magnetic and thermal parameters, crucial in our calculations, are known to be strongly dependent on the preparation conditions. An equation was derived for calculation of the standard heat capacity at constant pressure from the saturation magnetic moment of Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} solid solutions. The equation allows a satisfactory estimation of the standard heat capacity at 298 Kelvin for any cobalt ferrite-zinc ferrite solid, providing the saturation magnetic moment is available.

  17. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03 mmol g(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters.

  18. Rb+ adsorption at the quartz(101)-aqueous interface: comparison of resonant anomalous x-ray reflectivity with ab initio calculations

    DOE PAGES

    Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...

    2015-01-29

    We study adsorption of Rb+ to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb+ distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights of 1.8 ±more » 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb+ between these two conditions. At pH 7, the lowest energy structure shows that Rb+ adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb+ coverage was -0.11 C/m2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less

  19. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    NASA Astrophysics Data System (ADS)

    Gatica, José M.; Harti, Sanae; Vidal, Hilario

    2010-09-01

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N 2 physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  20. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    NASA Astrophysics Data System (ADS)

    Dong, Tingting; Yang, Liangrong; Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao; Qu, Hongnan; Rong, Meng; Liu, Huizhou

    2017-04-01

    A series of ethanediamine (EDA) - modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m-2, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA-EDA and PGMA-EDA-Cd were examined and analyzed.

  1. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    PubMed

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters.

  2. Effect of Heat Treatment on the Nitrogen Content and Its Role on the Carbon Dioxide Adsorption Capacity of Highly Ordered Mesoporous Carbon Nitride.

    PubMed

    Lakhi, Kripal S; Park, Dae-Hwan; Joseph, Stalin; Talapaneni, Siddulu N; Ravon, Ugo; Al-Bahily, Khalid; Vinu, Ajayan

    2017-03-02

    Mesoporous carbon nitrides (MCNs) with rod-shaped morphology and tunable nitrogen contents have been synthesized through a calcination-free method by using ethanol-washed mesoporous SBA-15 as templates at different carbonization temperatures. Carbon tetrachloride and ethylenediamine were used as the sources of carbon and nitrogen, respectively. The resulting MCN materials were characterized with low- and high-angle powder XRD, nitrogen adsorption, high-resolution (HR) SEM, HR-TEM, elemental analysis, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure techniques. The carbonization temperature plays a critical role in controlling not only the crystallinity, but also the nitrogen content and textural parameters of the samples, including specific surface area and specific pore volume. The nitrogen content of MCN decreases with a concomitant increase in specific surface area and specific pore volume, as well as the crystallinity of the samples, as the carbonization temperature is increased. The results also reveal that the structural order of the materials is retained, even after heat treatment at temperatures up to 900 °C with a significant reduction of the nitrogen content, but the structure is partially damaged at 1000 °C. The carbon dioxide adsorption capacity of these materials is not only dependent on the textural parameters, but also on the nitrogen content. The MCN prepared at 900 °C, which has an optimum BET surface area and nitrogen content, registers a carbon dioxide adsorption capacity of 20.1 mmol g(-1) at 273 K and 30 bar, which is much higher than that of mesoporous silica, MCN-1, activated carbon, and multiwalled carbon nanotubes.

  3. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane

    SciTech Connect

    Mielke, Steven L. E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu

    2015-01-28

    We present an improved version of our “path-by-path” enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P{sup −6}) to O(P{sup −12}), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational–rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan–Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300–3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

  4. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational-rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2015-01-28

    We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P(-6)) to O(P(-12)), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

  5. The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Yu, Qingchun

    2016-11-01

    This study investigated the effects of moisture on high-pressure methane adsorption in carboniferous shales from the Qaidam Basin, China. The shale characteristics, including the organic/inorganic compositions and pore structure (volume and surface) distribution, were obtained using various techniques. Gibbs adsorption measurements were performed over a pressure range up to 6 MPa and temperatures of 308.15 K on dry samples and moisture-equilibrated samples to analyze the correlations between organic/inorganic matter, pore structure, and moisture content on the methane sorption capacity. Compared to dry samples, the sorption capacity of wet samples (0.44-2.52% of water content) is reduced from 19.7 ± 5.3% to 36.1% ± 6.1%. Langmuir fitting is conducted to investigate moisture-dependent variations of adsorbed methane density, Langmuir pressure, and volume. By combining the pore volume and surface distribution analyses, our observations suggested that the main competition sites for CH4-H2O covered pores of approximately 2-7 nm, whereas the effective sites for methane and water were predominantly distributed within smaller (<4 nm) and larger pores (>10 nm), respectively. Regarding the compositional correlations, the impact of moisture on the amount of adsorbed methane shows a roughly linearly decreasing trend with increasing TOC content ranging from 0.62 to 2.88%, whereas the correlation between the moisture effect and various inorganic components is more complicated. Further fitting results indicate that illite/smectite mixed formations are closely related to the methane capacity, whereas the illite content show an evident connection to the pore structural (volume and surface) variations in the presence of moisture.

  6. The Effect of Oxidation on the Surface Chemistry of Sulfur-Containing Carbons and their Arsine Adsorption Capacity

    DTIC Science & Technology

    2010-01-01

    hydrogen sulfide . Carbon 2004;42(3):469–76. Fig. 6 – Water adsorption isotherms of the samples studied. 1786 C A R B O N 4 8 ( 2 0 1 0 ) 1 7 7 9 –1 7 8...that oxygen- and sulfur-containing groups participate in arsine oxida- tion to arsenic tri- and pentoxide and/or in the formation of arsenic sulfides ...technological difficulties, arsine is also a powerful toxin susceptible to oxidation with a strong exothermic effect. Of all the methods to separate

  7. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-03-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.

  8. Functionalized SBA-15 materials for bilirubin adsorption

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  9. New V(IV)-based metal-organic framework having framework flexibility and high CO2 adsorption capacity.

    PubMed

    Liu, Ying-Ya; Couck, Sarah; Vandichel, Matthias; Grzywa, Maciej; Leus, Karen; Biswas, Shyam; Volkmer, Dirk; Gascon, Jorge; Kapteijn, Freek; Denayer, Joeri F M; Waroquier, Michel; Van Speybroeck, Veronique; Van Der Voort, Pascal

    2013-01-07

    A vanadium based metal-organic framework (MOF), VO(BPDC) (BPDC(2-) = biphenyl-4,4'-dicarboxylate), adopting an expanded MIL-47 structure type, has been synthesized via solvothermal and microwave methods. Its structural and gas/vapor sorption properties have been studied. This compound displays a distinct breathing effect toward certain adsorptives at workable temperatures. The sorption isotherms of CO(2) and CH(4) indicate a different sorption behavior at specific temperatures. In situ synchrotron X-ray powder diffraction measurements and molecular simulations have been utilized to characterize the structural transition. The experimental measurements clearly suggest the existence of both narrow pore and large pore forms. A free energy profile along the pore angle was computationally determined for the empty host framework. Apart from a regular large pore and a regular narrow pore form, an overstretched narrow pore form has also been found. Additionally, a variety of spectroscopic techniques combined with N(2) adsorption/desorption isotherms measured at 77 K demonstrate that the existence of the mixed oxidation states V(III)/V(IV) in the titled MOF structure compared to pure V(IV) increases the difficulty in triggering the flexibility of the framework.

  10. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  11. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  12. Incorrect calculation of power outputs masks the ergogenic capacity of creatine supplementation.

    PubMed

    Havenetidis, Konstadinos; Cooke, Carlton B; Butterly, Ron; King, Roderick F G J

    2006-10-01

    This study assessed the effect of incorrect calculation of power output measurement on the ergogenic properties of creatine. Fifteen males performed repeated Wingate anaerobic tests, under baseline, placebo, and creatine conditions. Statistics showed significant differences (p < 0.05) following creatine-supplemented conditions compared with placebo conditions, whereas no significant differences existed between the baseline and placebo conditions. However, the performance enhancement effect of creatine became significant only when the corrected (for the inertia of the flywheel) method was employed for measuring peak and minimum power. Mean (+/- SD) values across all cycle sprints for placebo versus creatine were 1033 +/- 100 W versus 1130 +/- 95 W for peak power and 385 +/- 78 W versus 427 +/- 70 W for minimum power. No significant differences were shown using the uncorrected method for peak power (756 +/- 97 W versus 786 +/- 88 W) and minimum power 440 +/- 64 W pre versus 452 +/- 65 W post). In conclusion, the present study suggests that the potentiating effect of creatine might be underestimated if the inertial effects of the flywheel are not considered in power output determination.

  13. Carbon dioxide adsorption in graphene sheets

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish Kumar; Ramaprabhu, Sundara

    2011-09-01

    Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes) have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 °C).

  14. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint

    SciTech Connect

    Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

    2012-09-01

    The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

  15. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    PubMed

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  16. Dynamics of Pb(II) adsorption on nanostructured γ-alumina: calculations of axial dispersion and overall mass transfer coefficients in the fixed-bed column.

    PubMed

    Saadi, Zahra; Saadi, Reyhaneh; Fazaeli, Reza

    2015-09-01

    In the present study, the removal of metal ions Pb(II) using nanostructured γ-alumina was investigated by tests on batch operations and fixed-bed columns. Optimization was determined for factors effective on adsorption such as pH, contact time of metal solution with adsorbent and initial solution concentration. The optimum pH level was determined at 4.5 and the maximum adsorption percentage was achieved at 150 minutes. pHpzc was measured 8.3 for nanostructured γ-Al2O3. The Langmuir, Freundlich and Temkin isotherms were used to analyze the experimental data. The Langmuir isotherm model showed the best agreement with the experimental data. The model showed evaluations for maximum adsorption capacity of adsorbent at 119.04 mg/g and adsorbent bed performance for different flow rates, bed heights and influent concentrations were also investigated. The lumped method was used to solve the bed equations, to predict the breakthrough curve and model overall mass transfer coefficient (Koverall) and axial dispersion coefficient (Dz) parameters to make comparisons with experimental results.

  17. Comparisons of multilayer H2O adsorption onto the (110) surfaces of alpha-TiO2 and SnO2 as calculated with density functional theory.

    PubMed

    Bandura, Andrei V; Kubicki, James D; Sofo, Jorge O

    2008-09-18

    Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.

  18. Vibrational mode analysis and heat capacity calculation of K2SiSi3O9-wadeite

    NASA Astrophysics Data System (ADS)

    Chang, Linlin; Liu, Xi; Liu, Hong; Kojitani, Hiroshi; Wang, Sicheng

    2013-07-01

    The phonon dispersions and vibrational density of state (VDoS) of the K2SiSi3O9-wadeite (Wd) have been calculated by the first-principles method using density functional perturbation theory. The vibrational frequencies at the Brillouin zone center are in good correspondence with the Raman and infrared experimental data. The calculated VDoS was then used in conjunction with a quasi-harmonic approximation to compute the isobaric heat capacity ( C P ) and vibrational entropy (S_{298}0), yielding C P ( T) = 469.4(6) - 2.90(2) × 103 T -0.5 - 9.5(2) × 106 T -2 + 1.36(3) × 109 T -3 for the T range of 298-1,000 K and S_{298}0 = 250.4 J mol-1 K-1. In comparison, these thermodynamic properties were calculated by a second method, the classic Kieffer's lattice vibrational model. On the basis of the vibrational mode analysis facilitated by the first-principles simulation result, we developed a new Kieffer's model for the Wd phase. This new Kieffer's model yielded C P ( T) = 475.9(6) - 3.15(2) × 103 T -0.5 - 8.8(2) × 106 T -2 + 1.31(3) × 109 T -3 for the T range of 298-1,000 K and S_{298}0 = 249.5(40) J mol-1 K-1, which are in good agreement both with the results from our first method containing the component of the first-principles calculation and with some calorimetric measurements in the literature.

  19. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes.

    PubMed

    Chatterjee, Sudipta; Lee, Min W; Woo, Seung H

    2010-03-01

    The adsorption performance of chitosan (CS) hydrogel beads was investigated after multiwalled carbon nanotubes (MWCNTs) impregnation for the removal of congo red (CR) as an anionic dye. The study of the adsorption capacity of CS/CNT beads as a function of the CNT concentration indicated that 0.01% CNT impregnation was the most useful for enhancing the adsorption capacity. The sulfur (%) in the CS/CNT beads measured by energy dispersive X-ray (EDX) was 2.5 times higher than that of normal CS beads after CR adsorption. Equilibrium adsorption isotherm data of the CS/CNT beads exhibited better fit to the Langmuir isotherm model than to the Freundlich isotherm model, and the heterogeneity factor (n) value of the CS/CNT beads calculated from the Sips isotherm model was close to unity (0.98). The maximum adsorption capacity of CS/CNT beads obtained from the Langmuir model was 450.4 mg g(-1).

  20. Tuning the work function of VO2(1 0 0) surface by Ag adsorption and incorporation: Insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Chen, Lanli; Wang, Xiaofang; Shi, Siqi; Cui, Yuanyuan; Luo, Hongjie; Gao, Yanfeng

    2016-03-01

    VO2 is an attractive material for application to thermochromic optoelectronic devices such as smart windows, and Ag/VO2 double-layered structure can effectively decrease the phase transition temperature (Tc) of VO2 thin film, which is very important for practical application of VO2. Previous works has shown that the decrease in phase transition temperature (Tc) seems to be relevant with the work function of VO2 in Ag/VO2 double-layered thin film, although the underlying mechanism of tuning its Tc by Ag incorporation and adsorption on the VO2(1 0 0) surface has been rarely investigated. Our first-principles calculations reveal that the adsorption of Ag atoms on the VO2(1 0 0) surface rather than incorporation of Ag exhibits a lower work function, which is ascribed to an integrated effect of charge transfer from Ag to VO2(1 0 0) surface and enhanced surface dipole moment. The results suggest that the decrease in work function of VO2 with Ag adsorption favors the reduction in Tc. The current findings are helpful to understand the fundamental mechanism for yielding high-efficiency VO2-based optoelectronic devices.

  1. Adsorption of inert gases including element 118 on noble metal and inert surfaces from ab initio Dirac-Coulomb atomic calculations.

    PubMed

    Pershina, V; Borschevsky, A; Eliav, E; Kaldor, U

    2008-10-14

    The interaction of the inert gases Rn and element 118 with various surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of atomic properties. The calculated polarizability of element 118, 46.3 a.u., is the largest in group 18, the ionization potential is the lowest at 8.91 eV, and the estimated atomic radius is the largest, 4.55 a.u. These extreme values reflect, in addition to the general trends in the Periodic Table, the relativistic expansion and destabilization of the outer valence 7p(3/2) orbital. Van der Waals coefficients C(3) and adsorption enthalpies DeltaH(ads) of Ne through element 118 on noble metals and inert surfaces, such as quartz, ice, Teflon, and graphite, were calculated in a physisorption model using the atomic properties obtained. The C(3) coefficients were shown to steadily increase in group 18, while the increase in DeltaH(ads) from Ne to Rn does not continue to element 118: The large atomic radius of the latter element is responsible for a decrease in the interaction energy. We therefore predict that experimental distinction between Rn and 118 by adsorption on these types of surfaces will not be feasible. A possible candidate for separating the two elements is charcoal; further study is needed to test this possibility.

  2. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    USGS Publications Warehouse

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. Ionic Adsorption and Desorption of CNT Nanoropes

    PubMed Central

    Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow

    2016-01-01

    A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment. PMID:28335306

  4. Infrared absorption spectroscopic and DFT calculation studies on the adsorption structures of nitromethane on the single crystals of Cu and Ag

    NASA Astrophysics Data System (ADS)

    Itoh, K.; Iwa, A.; Uriu, Y.; Kadokura, K.

    2008-07-01

    The adsorption structures of nitromethane on Ag(1 1 0), Ag(1 1 1), Cu(1 1 0) and Cu(1 1 1) at 80 K were studied by using infrared reflection absorption spectroscopy (IRAS) and non-local density functional theory (DFT) calculation performed on nitromethane/Cu(1 1 0) and nitromethane/Cu(1 1 1) cluster models. Upon increasing exposure levels, the adsorbate on each substrate exhibits discrete spectral changes, characterizing sub-monolayer and/or monolayer, amorphous and multilayer (crystalline) states. The DFT calculation successively simulated the IRA spectra of nitromethane on the copper substrates, suggesting that nitromethane adsorbs on Cu(1 1 0) through an on-top coordination with one of the oxygen atom of the NO 2 group to the Cu atom and that nitromethane adsorbs on Cu(1 1 1) through a bridging coordination of the oxygen atom. In both states nitromethane takes an eclipsed form with the molecular plane perpendicular to the substrates surface and the hydrogen atom pointing to the surface in the molecular plane plays an important role in stabilizing the adsorption states in addition to the coordination interaction.

  5. Insights into the Mechanism of Fe(II) Adsorption and Oxidation at Fe-Clay Mineral Surfaces from First-Principles Calculations

    SciTech Connect

    Alexandrov, Vitali Y.; Rosso, Kevin M.

    2013-10-02

    Interfacial reactivity of redox-active iron-bearing mineral surfaces plays a crucial role in many environmental processes including biogeochemical cycling of various elements and contaminants. Herein, we apply density-functional-theory (DFT) calculations to provide atomistic insights into the heterogeneous reaction between aqueous Fe(II) and the Fe-bearing clay mineral nontronite Fe2Si4O10(OH)2 by studying its adsorption mechanism and interfacial Fe(II)-Fe(III) electron transfer (ET) at edge and basal surfaces. We find that edge-bound Fe(II) adsorption complexes at different surface sites (ferrinol, silanol and mixed) may coexist on both (010) and (110) edge facets, with complexes at ferrinol FeO(H) sites being the most energetically favorable and coupled to proton transfer. Calculation of the ET activation energy suggests that interfacial ET into dioctahedral Fe(III) sheets is probable at the clay edges and occurs predominantly but not exclusively through the complexes adsorbed at ferrinol sites and might also involve mixed sites. No clear evidence is found for complexes on basal surface that are compatible with ET through the basal sheet despite this experimentally hypothesized ET interface. This study suggests a strong pH-dependence of Fe(II) surface complexation at basal versus edge facets and highlights the importance of the protonation state of bridging ligands and proton coupled electron transfer to facilitate ET into Fe-rich clay minerals.

  6. Electronic and magnetic properties of TM atoms adsorption on 2D silicon carbide by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Luo, M.; Shen, Y. H.; Yin, T. L.

    2017-02-01

    The magnetic properties of different transition-metal (TM) atoms (TM=Co, Cu, Mn, Fe, and Ni) adsorption on SiC monolayer are investigated using density functional theory (DFT). Magnetism appears in the cases of Co, Cu, Mn, and Fe. Among all the magnetic cases, the Co-adsorbed system has the most stable structure. Therefore, we further study the interaction in the two-Co-adsorbed system. Our results show that the interaction between two Co atoms is always FM and the p-d hybridization mechanism results in such ferromagnetic states. However, the FM interaction is obviously depressed by the increasing Co-Co distance, which could be well explained by the Zener-RKKY theory. Moreover, different magnetic behavior is observed in the two-Mn-adsorbed system and a long-range AFM state is showing. Such multiple magnetic properties may suggest promising applications of TM-adsorbed SiC monolayer in the future.

  7. Adsorption-desorption studies of indigocarmine from industrial effluents by using deoiled mustard and its comparison with charcoal.

    PubMed

    Gupta, Vinod K; Jain, Rajeev; Malathi, S; Nayak, Arunima

    2010-08-15

    Deoiled mustard obtained from local oil mills has been used as an inexpensive and effective adsorbent for the removal of indigocarmine dye from industrial effluents. The influence of various factors on the adsorption capacity has been studied by batch experiments. The adsorption studies validate both Langmuir and Freundlich adsorption isotherms. Thermodynamic parameters such as DeltaG degrees, DeltaH degrees, and DeltaS degrees for the adsorption process were calculated, which indicated the feasibility of the adsorption process. Desorption profiles revealed that a significant portion (85%) could be desorbed from deoiled mustard by using 30% glycerol as eluting agent.

  8. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    NASA Astrophysics Data System (ADS)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun

    2014-09-01

    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00-10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (qmax) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.

  9. Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: Studies on the kinetic, isotherm, and effects of environmental parameters.

    PubMed

    Kalhori, Ebrahim Mohammadi; Al-Musawi, Tariq J; Ghahramani, Esmaeil; Kazemian, Hossein; Zarrabi, Mansur

    2017-02-09

    The synthesized MgO nanoparticles were used to coat the light-weight expanded clay aggregates (LECA) and as a metronidazole (MNZ) adsorbent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transformed infrared (FTIR) techniques were employed to study the surface morphology and characteristics of the adsorbents. MgO/LECA clearly revealed the advantages of the nanocomposite particles, showing high specific surface area (76.12 m(2)/g), significant adsorption sites and functional groups. Between pH 5 and 9, the MNZ sorption was not significantly affected. Kinetic studies revealed that the MNZ adsorption closely followed the Avrami model, with no dominant process controlling the sorption rate. The study of the effects of foreign ions revealed that the addition of carbonate raised the MNZ removal efficiency of LECA by 8% and the total removal of MNZ by MgO/LECA. Furthermore, nitrate and hardness only marginally influenced the MNZ removal efficiency and their effects can be ranked in the order of carbonate>nitrate>hardness. The isotherm adsorption of MNZ was best fitted with the Langmuir model enlighten the monolayer MNZ adsorption on the homogeneous LECA and MgO/LECA surfaces. The maximum adsorption capacity under optimum conditions was enhanced from 56.31 to 84.55 mg/g for LECA and MgO/LECA, respectively. These findings demonstrated that the MgO/LECA nanocomposite showed potential as an efficient adsorbent for MNZ removal.

  10. Ab Initio Density Funcitonal Calculations of Adsorption of Transiton Metal Atoms on theta-Al2O3 (010) Surface

    SciTech Connect

    Narula, Chaitanya Kumar; Stocks, George Malcolm

    2012-01-01

    The catalytic properties of metal clusters and particles depend on their environment, however, little is known so far about the subnanometer metal particles, smallest being single atoms, supported on metal oxide substrates, especially, the systems that can be experimentally synthesized. Employing first principles density functional theory approach, we have studied single metal atoms, Ni, Pt, Pd, Cu, Au, and Ag, adsorbed on a -Al2O3 (010) surface. We find that metal adsorption on a dry alumina surface follows the binding strength order of Pd>Pt>Ni>Cu>Au>Ag. Interestingly, Ni, Pt, and Pd atoms, supported on alumina, exhibit no magnetization whereas Cu, Ag, and Au exhibit unpaired electrons. The bonding picture that emerges from this study shows that Ni, Pt, and Pd, are d10 species with d-s hybrid character that are able to interact with the 2p orbital of surface oxygen. The interaction of Group 11 (Cu, Ag, Au) atoms with 010 surface of -Al2O3 is superficially similar to that of Group 10 metals. Group 11 metals with filled d orbitals have low tendency for d-s hybridization due to larger energy gaps than Group 10 metals. As a result of the overlap with O 2p, the d orbital shifts to lower energy. The magnetization of Group 11 metals is primarily due to single electrons in s orbitals.

  11. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    PubMed

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  12. Dissociative adsorption of H2 on Cu(100): Fixed-site calculations for impact at hollow and top sites

    NASA Astrophysics Data System (ADS)

    Mowrey, R. C.; Kroes, G. J.; Baerends, E. J.

    1998-04-01

    The reaction of H2 on Cu(100) is studied using a wave-packet method to solve a four-dimensional quantum mechanical model for impact on the high-symmetry hollow and top sites. The potential energy surface (PES) is a fit to the results of density functional calculations treating a periodic overlayer of H2 on a Cu slab. The dynamics calculations include motion in the azimuthal coordinate although the PES does not depend on φ for impact on the top and hollow sites. Large dissociation probabilities (˜0.9) are found for impact at the hollow site but those for impact at the top site are lower (˜0.3). Dissociation probabilities for molecules incident with "helicoptering" motion (mj=j) are larger than those for molecules with "cartwheeling" motion (mj=0). This differs from the results of previous calculations for impact at the azimuthally corrugated bridge site which predicted comparable probabilities for the two orientations of incident molecules. The dissociation probabilities from fixed-site calculations at the different impact sites are combined to yield an averaged probability which is compared with experiment and the results of six-dimensional quantum calculations. Vibrationally inelastic scattering is predicted to occur primarily for impact at the top site.

  13. First-Principles Calculation Study of Mechanism of Cation Adsorption Selectivity of Zeolites: A Guideline for Effective Removal of Radioactive Cesium

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko

    2013-02-01

    Zeolites have attracted attention in the reprocessing of radioactive nuclear waste because of their high selective affinity for radioisotopes of Cs. Very recently, their useful properties have been widely utilized in decontamination after the accident at the Fukushima Daiichi Nuclear Power Plants. In this study, we study the high selectivity in the Cs adsorption of zeolites using first-principles calculations and clarify the mechanism of the cation selectivity of zeolites. We obtain energy surfaces on all capture locations for Cs/Na ions inside the micropores of a zeolite, ``mordenite'', and find three crucial conditions for the highly ion-selective exchange of Na for Cs: i) micropores with a radius of ˜3 Å, ii) a moderate Al/Si ratio, and iii) a uniform distribution of Al atoms around each micropore. These insights suggest a guideline for developing zeolites with high Cs selectivity and for enhancing the cation selectivity in more general situations.

  14. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    PubMed

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  15. Reuse of Solid Waste in Adsorption of the Textile Dye

    NASA Astrophysics Data System (ADS)

    Meziti, Chafika; Boukerroui, Abdelhamid

    This work presents the study of the reuse of a regenerated spent bleaching earth (RSBE). The RSBE material was tested in the removal of a basic textile dye presents in aqueous solution. The effect of physicochemical parameters such as stirring speed, initial concentration, contact time and temperature have been invested and thermodynamic nature of the adsorption process was determined by calculating the ΔH°, ΔS° and ΔG° values The results obtained show that the adsorption mechanism was described by the Langmuir model and the adsorption capacity, qmax (72.41 to 82.37 mg.g-1), increases with temperature (20-50 °C). The thermodynamic parameters show a presence of a strong affinity between two phases (liquid-solid) and an endothermic equilibrium adsorption process. However, the phenomenon of the adsorption kinetic follows the pseudo second order kinetic model.

  16. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  17. Lysozyme immobilization via adsorption process using sulphonic acid functionalized silane grafted copolymer.

    PubMed

    Anirudhan, T S; Rauf, Tharun A

    2013-07-01

    A unique silane based adsorbent material, [stearyl alcohol (SA)-grafted-epichlorohydrin (E)]-grafted-aminoproypyl silanetriol (APST) was synthesized and functionalized with sulphonyl groups via sulphonation process [(SA-g-E)-g-APST/SO3H]. The adsorbent material characterization was done by FTIR, XRD, and TGA analysis. Immobilization of protein Lysozyme (LYZ) using batch adsorption process was carried out for studying the protein-particle interaction. The most suitable pH for maximum adsorption was found to be 7.0. Pseudo-second-order kinetic model was found to be the best fit and the adsorption equilibrium was attained within 3h. Studies on diffusion parameters explained that the adsorption mechanism was controlled by film diffusion mode. The adsorption process was then evaluated using the various isotherm models and the Sips isotherm model proved to be the best fit with a maximum adsorption capacity of 37.68 mg/g. The isotherm favorability of the adsorption process was calculated by calculating the separation factor (R(L)) and the values confirmed the favorability of the adsorption process. Studies on adsorption percentage with respect to temperature and thermodynamic studies revealed that adsorption process is exothermic, spontaneous with maximum entropy. Batch adsorption/desorption studies in acidic medium, for over six cycles showed the repeatability and regeneration capability of the adsorbent material (SA-g-E)-g-APST/SO3H.

  18. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    SciTech Connect

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  19. The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations.

    PubMed

    Jakubov, Tim S; Mainwaring, David E

    2007-03-15

    A method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier. The latter equation takes into account interactions between the solid thick cylindrical wall and confined fluid, this body-body interaction potential has been primarily calculated using the Lennard-Jones (6-12) expression for the atom-atom pair potentials and expressed by hypergeometrical functions having good convergences. All numerical calculations shown here have been performed for the model graphite-argon system at 90 K. Finally, an analysis of the accuracy of the proposed method is considered.

  20. Enthalpy and entropy effects in hydrogen adsorption on carbon nanotubes.

    PubMed

    Efremenko, Irena; Sheintuch, Moshe

    2005-07-05

    Interaction energies and entropies associated with hydrogen adsorption on the inner and outer surfaces of zigzag single-wall carbon nanotubes (SWCNT) of various diameters are analyzed by means of molecular mechanics, density functional theory, and ab initio calculations. For a single molecule the strongest interaction, which is 3.5 greater than that with the planar graphite sheet, is found inside a (8,0) nanotube. Adsorption on the outer surfaces is weaker than that on graphite. Due to the steric considerations, both processes are accompanied by an extremely strong decline in entropy. Absence of specific adsorption sites and weak attractive interaction between hydrogen molecules within carbon nanotubes results in their close packing at low temperatures. Using the calculated geometric and thermodynamic parameters in Langmuir isotherms we predict the adsorption capacity of SWCNTs at room temperature to be smaller than 1 wt % even at 100 bar.

  1. Electronic storage capacity of ceria: role of peroxide in Aux supported on CeO2(111) facet and CO adsorption.

    PubMed

    Liu, Yinli; Li, Huiying; Yu, Jun; Mao, Dongsen; Lu, Guanzhong

    2015-11-07

    Density functional theory (DFT+U) was used to study the adsorption of Aux (x = 1-4) clusters on the defective CeO2(111) facet and CO adsorption on the corresponding Aux/CeO2-x catalyst, in this work Aux clusters are adsorbed onto the CeO2-x + superoxide/peroxide surface. When Au1 is supported on the CeO2(111) facet with an O vacancy, the strong electronegative Au(δ-) formed is not favorable for CO adsorption. When peroxide is adsorbed on the CeO2(111) facet with the O vacancy, Aux was oxidized, resulting in stable Aux adsorption on the defective ceria surface with peroxide, which promotes CO adsorption on the Aux/CeO2-x catalyst. With more Au atoms in supported Aux clusters, CO adsorption on this surface becomes stronger. During both the Au being supported on CeO2-x and CO being adsorbed on Aux/CeO2-x, CeO2 acts as an electron buffer that can store/release the electrons. These results provide a scientific understanding for the development of high-performance rare earth catalytic materials.

  2. Sulfate adsorption in Michigan forest soils

    SciTech Connect

    MacDonald, N.W.

    1987-01-01

    The occurrence of acidic atmospheric deposition raised concerns over adverse cation leaching effects on Michigan forest soils with low cation exchange capacities. Leaching effects of acid deposition depend on mobility of sulfate in the soil. Little was known, however, concerning the ability of these soils to adsorb sulfate. The objectives of this study were to determine the ability of representative Michigan forest soils to adsorb sulfate, to relate sulfate adsorption to soil properties, and to develop equations to predict sulfate adsorption in similar forest soils. Frigid zone soil series studied were Grayling (Typic Udipsamments), Rubicon (Entic Haplorthods), Kalkaska (Typic Haplorthods), and Montcalm (Eutric Glossoboralfs). Mesic zone series studied were Spinks (Psammentic Hapludals) and Oshtemo (Typic Hapludalfs). Six randomly located pedons of each series were sampled. Sulfate adsorption was determined by shaking 10 gram soil samples for 24 hours in 50 mL 0.01 M CaCl/sub 2/ solution containing 10 mg SO/sub 4/-S L/sup -1/. Solution filtrates were turbidimetrically analyzed for SO/sub 4/-S and adsorption was calculated from reduction in SO/sub 4/-S concentration. Bw, Bs, and Bh horizons of frigid zone soils and E and Bt horizons of mesic zone soils had the highest sulfate adsorbing abilities. No significant differences were found between series in total sulfate adsorptive capacity.

  3. Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations.

    PubMed

    Pershina, V; Borschevsky, A; Eliav, E; Kaldor, U

    2008-01-14

    The interaction of elements 112 and 114 with inert surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of their atomic properties. The calculated polarizabilities of elements 112 and 114 are significantly lower than corresponding Hg and Pb values due to the relativistic contraction of the valence ns and np(12) orbitals, respectively, in the heavier elements. Due to the same reason, the estimated van der Waals radius of element 114 is smaller than that of Pb. The enthalpies of adsorption of Hg, Pb, and elements 112 and 114 on inert surfaces such as quartz, ice, and Teflon were predicted on the basis of these atomic calculations using a physisorption model. At the present level of accuracy, -DeltaH(ads) of element 112 on these surfaces is slightly (about 2 kJ/mol) larger than -DeltaH(ads)(Hg). The calculated -DeltaH(ads) of element 114 on quartz is about 7 kJ/mol and on Teflon is about 3 kJ/mol smaller than the respective values of -DeltaH(ads)(Pb). The trend of increasing -DeltaH(ads) in group 14 from C to Sn is thus reversed, giving decreasing values from Sn to Pb to element 114 due to the relativistic stabilization and contraction of the np(12) atomic orbitals. This is similar to trends shown by other atomic properties of these elements. The small difference in DeltaH(ads) of Pb and element 114 on inert surfaces obtained within a picture of physisorption contrasts with the large difference (more than 100 kJ/mol) in the chemical reactivity between these elements.

  4. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels.

    PubMed

    Vellingiri, Kowsalya; Kim, Ki-Hyun; Kwon, Eilhann E; Deep, Akash; Jo, Sang-Hee; Szulejko, Jan E

    2016-01-15

    The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg(-1) Pa(-1))), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs.

  5. Development of TREN dendrimers over mesoporous SBA-15 for CO 2 adsorption

    NASA Astrophysics Data System (ADS)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-09-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 °C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 °C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  6. Application of van der Waals functionals to the calculation of dissociative adsorption of N2 on W(110) for static and dynamic systems

    NASA Astrophysics Data System (ADS)

    Migliorini, Davide; Nattino, Francesco; Kroes, Geert-Jan

    2016-02-01

    The fundamental understanding of molecule-surface reactions is of great importance to heterogeneous catalysis, motivating many theoretical and experimental studies. Even though much attention has been dedicated to the dissociative chemisorption of N2 on tungsten surfaces, none of the existing theoretical models has been able to quantitatively reproduce experimental reaction probabilities for the sticking of N2 to W(110). In this work, the dissociative chemisorption of N2 on W(110) has been studied with both static electronic structure and ab initio molecular dynamics (AIMD) calculations including the surface temperature effects through surface atom motion. Calculations have been performed using density functional theory, testing functionals that account for the long range van der Waals (vdW) interactions, which were previously only considered in dynamical calculations within the static surface approximation. The vdW-DF2 functional improves the description of the potential energy surface for N2 on W(110), returning less deep molecular adsorption wells and a better ratio between the barriers for the indirect dissociation and the desorption, as suggested by previous theoretical work and experimental evidence. Using the vdW-DF2 functional less trapping-mediated dissociation is obtained compared to results obtained with standard semi-local functionals such as PBE and RPBE, improving agreement with experimental data at Ei = 0.9 eV. However, at Ei = 2.287 and off-normal incidence, the vdW-DF2 AIMD underestimates the experimental reaction probabilities, showing that also with the vdW-DF2 functional the N2 on W(110) interaction is not yet described with quantitative accuracy.

  7. Adsorption kinetics of Rhodamine-B on used black tea leaves

    PubMed Central

    2012-01-01

    Rhodamine B (Rh-B) is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL) for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process. PMID:23369452

  8. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  9. Rb+ adsorption at the quartz(101)-aqueous interface: comparison of resonant anomalous x-ray reflectivity with ab initio calculations

    SciTech Connect

    Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; Bandura, Andrei V.; Zhang, Zhan; Wesolowski, David J.; Fenter, Paul

    2015-01-29

    We study adsorption of Rb+ to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb+ distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights of 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb+ between these two conditions. At pH 7, the lowest energy structure shows that Rb+ adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb+ coverage was -0.11 C/m2, in good agreement with the range of the surface charge magnitudes reported in the literature.

  10. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  11. MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Mielke, Steven L.; Clarkson, Kenneth L.; Truhlar, Donald G.

    2012-08-01

    We present a Fortran program package, MSTor, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsional motions by the recently proposed MS-T method. This method interpolates between the local harmonic approximation in the low-temperature limit, and the limit of free internal rotation of all torsions at high temperature. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes six utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Catalogue identifier: AEMF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 77 434 No. of bytes in distributed program, including test data, etc.: 3 264 737 Distribution format: tar.gz Programming language: Fortran 90, C, and Perl Computer: Itasca (HP Linux cluster, each node has two-socket, quad-core 2.8 GHz Intel Xeon X5560 “Nehalem EP” processors), Calhoun (SGI Altix XE 1300 cluster, each node containing two quad-core 2.66 GHz Intel Xeon “Clovertown”-class processors sharing 16 GB of main memory), Koronis (Altix UV 1000 server with 190 6-core Intel Xeon X7542 “Westmere” processors at 2.66 GHz), Elmo (Sun Fire X4600 Linux cluster with AMD Opteron cores), and Mac Pro (two 2.8 GHz Quad-core Intel Xeon

  12. Preparation and copper ions adsorption properties of thiosemicarbazide chitosan from squid pens.

    PubMed

    Lin, Yue-Cheng; Wang, Hong-Peng; Gohar, Faryal; Ullah, Muhammad Haseeb; Zhang, Xiang; Xie, Dong-Fang; Fang, Hui; Huang, Jun; Yang, Jun-Xing

    2017-02-01

    Chitosan was prepared by alkaline N-deacetylation of β-chitin from squid pens. Thiosemicarbazide group was introduced to chitosan via formaldehyde-derived linkages, and thiosemicarbazide chitosan (TSFCS) with different degrees of substitution (DS) was synthesized. The DS values of TSFCS calculated by elemental analysis were 0.19, 0.36 and 0.63. The structure of the TSFCS was confirmed by elemental analysis, FTIR, XRD, TGA and SEM. The adsorption capacity of Cu(II) ions by TSFCS showed good correlation with the DS and pH (pH range 2.2-5.8). The maximum Cu(II) ions adsorption capacity of all three TSFCS samples reached 134.0mgg(-1) at pH 3.6, but chitosan showed no adsorption at this pH. The adsorption equilibrium process of Cu(II) ions onto TSFCS was better described by the Langmuir model than the Freundlich isotherm model. Cu(II) ions adsorbed by TSFCS could be released using 0.01M Na2EDTA and the adsorption capacity could retain above 80% after five adsorption-desorption cycles. TSFCS exhibited good potential for heavy metal removal because of its high adsorption capacity at the low pH.

  13. Assessment of multi-mycotoxin adsorption efficacy of grape pomace.

    PubMed

    Avantaggiato, Giuseppina; Greco, Donato; Damascelli, Anna; Solfrizzo, Michele; Visconti, Angelo

    2014-01-15

    Grape pomace (pulp and skins) was investigated as a new biosorbent for removing mycotoxins from liquid media. In vitro adsorption experiments showed that the pomace obtained from Primitivo grapes is able to sequester rapidly and simultaneously different mycotoxins. Aflatoxin B1 (AFB1) was the most adsorbed mycotoxin followed by zearalenone (ZEA), ochratoxin A (OTA), and fumonisin B1 (FB1), whereas the adsorption of deoxynivalenol (DON) was negligible. AFB1 and ZEA adsorptions were not affected by changing pH values in the pH 3-8 range, whereas OTA and FB1 adsorptions were significantly affected by pH. Equilibrium adsorption isotherms obtained at different temperatures (5-70 °C) and pH values (3 and 7) were modeled and evaluated using the Freundlich, Langmuir, Sips, and Hill models. The goodness of the fits and the parameters involved in the adsorption mechanism were calculated by the nonlinear regression analysis method. The best-fitting models to describe AFB1, ZEA, and OTA adsorption by grape pomace were the Sips, Langmuir, and Freundlich models, respectively. The Langmuir and Sips models were the best models for FB1 adsorption at pH 7 and 3, respectively. The theoretical maximum adsorption capacities (mmol/kg dried pomace) calculated at pH 7 and 3 decreased in the following order: AFB1 (15.0 and 15.1) > ZEA (8.6 and 8.3) > OTA (6.3-6.9) > FB1 (2.2 and 0.4). Single- and multi-mycotoxin adsorption isotherms showed that toxin adsorption is not affected by the simultaneous presence of different mycotoxins in the liquid medium. The profiles of adsorption isotherms obtained at different temperatures and pH and the thermodynamic parameters (ΔG°, ΔH°, ΔS°) suggest that mycotoxin adsorption is an exothermic and spontaneous process, which involves physisorption weak associations. Hydrophobic interactions may be associated with AFB1 and ZEA adsorption, whereas polar noncovalent interactions may be associated with OTA and FB1 adsorption. In conclusion, this study

  14. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae.

    PubMed

    Chen, Hao; Zhao, Jie; Wu, Junyong; Dai, Guoliang

    2011-08-15

    This paper reports on the development of organo-modified silkworm exuviae (MSE) adsorbent prepared by using hexadecyltrimethylammonium bromide (HDTMAB) for removing methyl orange (MO), a model anionic dye, from aqueous solution. The natural and modified samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FT-IR). Batch adsorption experiments were carried out to remove MO from its aqueous solutions using SE and MSE. It was observed that the adsorption capacity of MSE is 5-6 times of SE. The different parameters effecting on the adsorption capacity such as pH of the solution, initial dye concentration, temperature and contact time have been investigated. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on the MSE can be described perfectly with Langmuir isotherm model compared with Freundlich and Dubinin-Radushkevich (D-R) isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. The adsorption process has been found exothermic in nature and thermodynamic parameters have been calculated. The adsorption kinetic followed the pseudo-second order kinetic model. The results of FT-IR, EDS and desorption studies all suggest that methyl orange adsorption onto the MSE should be mainly controlled by the hydrophobic interaction mechanism, along with a considerable contribution of the anionic exchange mechanism. The results indicate that HDTMAB-modified silkworm exuviae could be employed as low-cost material for the removal of methyl orange anionic dye from wastewater.

  15. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber.

    PubMed

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution.

  16. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  17. Heat Capacity of γ-Fe2SiO4 and Thermodynamic Calculation of Fayalite - γ-Fe2SiO4 Phase Transition Boundary

    NASA Astrophysics Data System (ADS)

    Yong, W.; Dachs, E.; Withers, A. C.; Essene, E. J.

    2007-12-01

    The low-temperature heat capacity (Cp) of γ-Fe2SiO4 was measured between 5 and 303 K using the heat capacity option of a physical properties measurement system (PPMS). Fayalite powder was used as the starting material to synthesize the γ-Fe2SiO4 at 8.5 GPa and 1273 K by a 1,000-ton Walker-type multi-anvil device at the university of Minnesota. The heat capacity data were measured at more than 100 different temperatures with both logarithmic spacing and linear spacing. The measured heat capacity data show a broad lambda-transition at 11.8 K, probably related to a paramagnetic-antiferromagnetic transition just like the 65 K transition in fayalite. The difference in the Cp between fayalite and γ-Fe2SiO4 is reduced as the temperature increases in the range of 50-300 K. The Cp and entropy of γ- Fe2SiO4 at standard temperature and pressure (S°298) are 131.1±0.6 J mol-1K-1 and 140.2±0.4 J mol-1K-1, respectively. The Gibbs free energy at standard pressure and temperature (G°f,298) is calculated to be 1,369.3±2.7 J mol-1 based on the new entropy data. Based on current thermodynamic data, the calculated phase boundary for the fayalite - γ- Fe2SiO4 transition at high temperatures and pressures is consistent with the results of previous experimental studies.

  18. Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations with Different Implicit Solvent Models

    DTIC Science & Technology

    2008-10-30

    definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the...Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 7587. (22) Lei , H.; Wu, C.; Liu, H.; Duan, Y. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 4925. (23) Martinez, J

  19. The influence of the carbon surface chemical composition on Dubinin-Astakhov equation parameters calculated from SF6 adsorption data-grand canonical Monte Carlo simulation.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Kowalczyk, Piotr; Harris, Peter J F

    2011-10-05

    Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.

  20. Adsorption of dyes on Sahara desert sand.

    PubMed

    Varlikli, Canan; Bekiari, Vlasoula; Kus, Mahmut; Boduroglu, Numan; Oner, Ilker; Lianos, Panagiotis; Lyberatos, Gerasimos; Icli, Siddik

    2009-10-15

    Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Q(e)=11.98 mg/g, for initial dye solution concentration 3.5 x 10(-5)mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found -6411 J/mol, -30360 J/mol and -76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures.

  1. Adsorption of Gases on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mbaye, Mamadou Thiao

    2014-01-01

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  2. First-principles calculations of the adsorption of nitromethane and 1,1-diamino-2,2-dinitroethylene (FOX-7) molecules on the alpha-Al2O3(0001) surface.

    PubMed

    Sorescu, Dan C; Boatz, Jerry A; Thompson, Donald L

    2005-02-03

    First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of nitromethane (NM) and 1,1-diamino-2,2-dinitroethylene (FOX-7) molecules on the basal plane of an alpha-Al(2)O(3) crystal. The calculations employ a (2 x 2) supercell slab model and 3D periodic boundary conditions. On the basis of these calculations, we have determined that both NM and FOX-7 molecules can adsorb nondissociatively on the surface with the most stable adsorption configurations parallel to the surface. The binding energies are in the range 25.3-26.0 kcal/mol for NM and 35.6-48.3 kcal/mol for FOX-7 depending on the relative molecular orientation and the surface sites. The minimum energy pathways for NM dissociation have been determined, and a low-energy pathway leading to H-atom elimination with formation of adsorbed CH(2)NO(2) and hydroxyl species has been identified. Additional calculations have focused on adsorption properties of aci-nitromethane tautomers and on description of the energetic pathways connecting adsorbed nitromethane molecule with these tautomers.

  3. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by Mercaptoethylamine/Mercaptopropyltrimethoxysilane functionalized vermiculites.

    PubMed

    Tran, Lytuong; Wu, Pingxiao; Zhu, Yajie; Yang, Lin; Zhu, Nengwu

    2015-05-01

    Vermiculites modified with Mercaptoethylamine (MEA) and 3-Mercaptopropyltrimethoxysilane (MPTMS) were used as effective adsorbents for the removal of Hg(II) from aqueous solution. The physicochemical characteristics of the pristine and functionalized vermiculites were analyzed by XRD, BET, FTIR, SEM, TEM and Zeta potentials, confirming that the vermiculite was successfully functionalized by the organic ligands containing the thiol (SH) metal-chelating groups. Batch adsorption experiments demonstrated that the factors such as initial pH, contact time, temperature, coexisting cations and initial Hg(II) concentration could significantly influence the adsorption behaviors typically for VER and MEA-VER, whereas the adsorption capacity of MPTMS-VER showed negligible dependence on such factors. The maximum adsorption capacity of Hg(II) ions was greatly improved after functionalization, which was in the order of MPTMS-VER>MEA-VER>VER (286.29 μg g(-1), 176.33 μg g(-1), 99.95 μg g(-1), respectively). The adsorption isotherm could be well described with Langmuir model and the kinetic studies indicated that the adsorption process fitted well with the pseudo-second-order model. The calculated thermodynamic parameters suggested that the adsorption process was feasible and spontaneous. The adsorption mechanism of Hg(II) on thiol groups was studied through XPS analysis. Considering the favorable adsorption capacities, thiol-functionalized vermiculites show a promising application in the removal of Hg(II) from wastewater.

  4. Adsorption Characteristics of Different Adsorbents and Iron(III) Salt for Removing As(V) from Water

    PubMed Central

    Ćurko, Josip; Matošić, Marin; Crnek, Vlado; Stulić, Višnja

    2016-01-01

    Summary The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V) from water: Bayoxide® E33 (granular iron(III) oxide), Titansorb® (granular titanium oxide) and a suspension of precipitated iron(III) hydroxide. Results of As(V) adsorption stoichiometry of two commercial adsorbents and precipitated iron(III) hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III) hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V). Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III) hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V) from water. PMID:27904416

  5. Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances.

    PubMed

    Ozeki, K; Aoki, H

    2016-08-12

    Removal of radioactive substances, such as cesium (Cs) and strontium (Sr), has become an emerging issue after the Fukushima Daiichi Nuclear Power Plant Disaster. To assess the possibility that hydroxyapatite (HA) and zeolites can be used for removal of radioactive substances, the adsorption capacities of Cs and Sr on the HA and a zeolite were investigated. The influence of Fe ions on Cs and Sr adsorption on the HA and the zeolite was also evaluated, because Fe ions are the most effective inhibitor of Cs adsorption on the zeolite.In the Cs adsorption process on the HA and the zeolite, the zeolite showed a higher adsorption ratio than the HA, and the maximum sorption capacity of the zeolite was calculated as 196 mg/g, whereas the HA showed a higher Sr adsorption ratio than the zeolite. The maximum sorption capacity of Sr on the HA was 123 mg/g. Under coexistence with Fe, Cs adsorption on the zeolite decreased with increasing Fe concentration, reaching 2.0 ± 0.8% at 0.1 M Fe concentration. In contrast, Cs adsorption on the zeolite was improved by adding the HA. In the case of coexistence of the HA, the Cs adsorption on the mixture of the HA and the zeolite was 52.4% ± 3.6 % at 0.1 M Fe concentration, although Cs adsorption on the HA alone was quite low. In the Fe adsorption processes of the HA and the zeolite, the HA exhibited a maximum sorption capacity of 256 mg/g, which was much higher than that of the zeolite (111 mg/g). The high affinity of Fe on the HA contributes to the improvement of the deteriorated Cs adsorption on the zeolite due to Fe ions.

  6. Adsorption of methylene blue onto sonicated sepiolite from aqueous solutions.

    PubMed

    Küncek, Ilknur; Sener, Savaş

    2010-01-01

    The aim of the present study is to enhance the methylene blue (MB) adsorption of sepiolite by ultrasonic treatment. The natural sepiolite was pretreated by sonication to improve the surface characteristics and enhance the dye uptake capacity. Sonication process resulted in a significant increase in the specific surface area (SSA) of sepiolite. The FTIR spectrum of the sonicated sepiolite indicates that the tetrahedral sheet is probably distorted after sonication process. The effect of various parameters such as sonication, pH, initial dye concentration and temperature on dye adsorption has been investigated. The adsorbed amount of MB on sepiolite increased after sonication as well as with increasing pH and temperature. The experimental data were evaluated by applying the pseudo-first- and second-order, and the intraparticle diffusion adsorption kinetic models. Adsorption process of MB onto sepiolite followed the pseudo-second-order rate expression. The experimental data were analyzed by Langmuir and Freundlich isotherms, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Maximum monolayer adsorption capacity of sepiolite for MB increased from 79.37 to 128.21 mg/g after the sonication. Various thermodynamic parameters, such as Delta G(0), Delta H(0) and DeltaS(0) were calculated. The thermodynamics of MB/sepiolite system indicated spontaneous and endothermic nature of the process. Adsorption measurements showed that the process was very fast and physical in nature.

  7. Cooling Capacity Optimization: Calculation of Hardening Power of Aqueous Solution Based on Poly(N-Vinyl-2-Pyrrolidone)

    NASA Astrophysics Data System (ADS)

    Koudil, Z.; Ikkene, R.; Mouzali, M.

    2013-11-01

    Polymer quenchants are becoming increasingly popular as substitutes for traditional quenching media in hardening metallic alloys. Water-soluble organic polymer offers a number of environmental, economic, and technical advantages, as well as eliminating the quench-oil fire hazard. The close control of polymer quenchant solutions is essential for their successful applications, in order to avoid the defects of structure of steels, such as shrinkage cracks and deformations. The aim of the present paper is to evaluate and optimize the experimental parameters of polymer quenching bath which gives the best behavior quenching process and homogeneous microstructure of the final work-piece. This study has been carried out on water-soluble polymer based on poly(N-vinyl-2-pyrrolidone) PVP K30, which does not exhibit inverse solubility phenomena in water. The studied parameters include polymer concentration, bath temperature, and agitation speed. Evaluation of cooling power and hardening performance has been measured with IVF SmartQuench apparatus, using standard ISO Inconel-600 alloy. The original numerical evaluation method has been introduced in the computation software called SQ Integra. The heat transfer coefficients were used as input data for calculation of microstructural constituents and the hardness profile of cylindrical sample.

  8. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    NASA Astrophysics Data System (ADS)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  9. Adsorptive removal of cesium using bio fuel extraction microalgal waste.

    PubMed

    Inoue, Katsutoshi; Gurung, Manju; Adhikari, Birendra Babu; Alam, Shafiq; Kawakita, Hidetaka; Ohto, Keisuke; Kurata, Minoru; Atsumi, Kinya

    2014-04-30

    An adsorption gel was prepared from microalgal waste after extracting biodiesel oil by a simple chemical treatment of crosslinking using concentrated sulfuric acid. The adsorbent exhibited notably high selectivity and adsorption capacity towards Cs(+) over Na(+) from aqueous solutions, within the pH range of slightly acidic to neutral. The adsorption followed Langmuir isotherm and the maximum adsorption capacity of the gel for Cs(+) calculated from Langmuir model was found to be 1.36 mol kg(-1). Trace concentration of Cs(+) ions present in aqueous streams was successfully separated from Na(+) ions using a column packed with the adsorbent at pH 6.5. The adsorption capacity of the gel towards Cs(+) in column operation was 0.13 mol kg(-1). Although the adsorbed Cs(+) ions were easily eluted using 1M hydrochloric acid solution, simple incineration is proposed as an alternative for the treatment of adsorbent loaded with radioactive Cs(+) ions due to the combustible characteristics of this adsorbent.

  10. Effect of functionalized groups on gas-adsorption properties: syntheses of functionalized microporous metal-organic frameworks and their high gas-storage capacity.

    PubMed

    Wang, Yanlong; Tan, Chunhong; Sun, Zhihao; Xue, Zhenzhen; Zhu, Qilong; Shen, Chaojun; Wen, Yuehong; Hu, Shengmin; Wang, Yong; Sheng, Tianlu; Wu, Xintao

    2014-01-27

    The microporous metal-organic framework (MMOF) Zn4O(L1)2⋅9 DMF⋅9 H2O (1-H) and its functionalized derivatives Zn4O(L1-CH3)2⋅9 DMF⋅9 H2O (2-CH3) and Zn4O(L1-Cl)2⋅9 DMF⋅9 H2O (3-Cl) have been synthesized and characterized (H3L1=4-[N,N-bis(4-methylbenzoic acid)amino]benzoic acid, H3L1-CH3=4-[N,N-bis(4-methylbenzoic acid)amino]-2-methylbenzoic acid, H3L1-Cl=4-[N,N-bis(4-methylbenzoic acid)amino]-2-chlorobenzoic acid). Single-crystal X-ray diffraction analyses confirmed that the two functionalized MMOFs are isostructural to their parent MMOF, and are twofold interpenetrated three-dimensional (3D) microporous frameworks. All of the samples possess enduring porosity with Langmuir surface areas over 1950 cm(2) g(-1). Their pore volumes and surface areas decrease in the order 1-H>2-CH3 >3-Cl. Gas-adsorption studies show that the H2 uptakes of these samples are among the highest of the MMOFs (2.37 wt% for 3-Cl at 77 K and 1 bar), although their structures are interpenetrating. Furthermore, this work reveals that the adsorbate-adsorbent interaction plays a more important role in the gas-adsorption properties of these samples at low pressure, whereas the effects of the pore volumes and surface areas dominate the gas-adsorption properties at high pressure.

  11. Adsorption of Single and Binary Gases on Polystyrene and Carbon Adsorbents

    NASA Astrophysics Data System (ADS)

    Rothstein, Daniel P.

    Time-dependent transmissions of light organic gases at low concentrations through crosslinked polystyrene and activated carbon adsorbents were measured and analyzed to extract kinetic and equilibrium parameters and to evaluate these parameters in terms of several models of adsorption. Mass -balance in the adsorber bed allows calculation of the equilibrium adsorbed-phase concentration and the model-independent adsorption capacity. Adsorption isotherms are calculated from transmission curves for eight light organic gases adsorbed on polystyrene at several temperatures. The power-law forms of the Freundlich and Chakravarti-Dhar isotherms and the concentration-dependent adsorption capacities indicate heterogeneous adsorption well below monolayer coverage. The effects of heterogeneity increase as non-linearity of the isotherm increases. A mesopore structure is indicated for polystyrene. Characteristic curves are independent of temperature, but the use of an affinity coefficient is not able to demonstrate their independence of adsorbate. Isosteric hearts of adsorption are larger than the heats of vaporization and decrease with increasing surface coverage for three alkanes adsorbed on polystyrene. The transmission curves of several binary mixtures of gases with non-linear isotherms reveal adsorption interference, with adsorption capacities smaller than those from single -component experiments. The pairs with unequal adsorption capacities exhibit displacement, in qualitative agreement with adsorption interference models. The equilibrium adsorption of the binary mixtures cannot be reproduced by single-component isotherm parameters alone, but are described by modified Freundlich isotherms requiring binary experiments. Adsorption in a porous medium is described by a model including four dynamic processes: gas- and solid -phase diffusion, interfacial mass-transfer resistance, and a first-order chemical reaction. A new time-dependent solution to the differential equations of

  12. CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models

    PubMed Central

    Vargas, Diana P.; Giraldo, Liliana; Moreno-Piraján, Juan C.

    2012-01-01

    Activated carbon honeycomb-monoliths with different textural properties were prepared by chemical activation of African palm shells with H3PO4, ZnCl2 and CaCl2 aqueous solutions of various concentrations. The adsorbents obtained were characterized by N2 adsorption at 77 K, and their carbon dioxide adsorption capacities were measured at 273 K and 1 Bar in volumetric adsorption equipment. The experimental adsorption isotherms were fitted to Langmuir and Tóth models, and a better fit was observed to Tóth equation with a correlation coefficient of 0.999. The maximum experimental values for adsorption capacity at the highest pressure (2.627–5.756 mmol·g−1) are between the calculated data in the two models. PMID:22942710

  13. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    PubMed

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180.

  14. Preparation of char from lotus seed biomass and the exploration of its dye removal capacity through batch and column adsorption studies.

    PubMed

    Nethaji, S; Sivasamy, A; Kumar, R Vimal; Mandal, A B

    2013-06-01

    Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge. Batch studies were carried out by varying the parameters such as initial aqueous pH, adsorbent dosage, adsorbent particle size, and initial adsorbate concentration. Langmuir and Freundlich isotherms were used to test the isotherm data and the Freundlich isotherm best fitted the data. Thermodynamic studies were carried out and the thermodynamic parameters such as ∆G, ∆H, and ∆S were evaluated. Adsorption kinetics was carried out and the data were tested with pseudofirst-order model, pseudosecond-order model, and intraparticle diffusion model. Adsorption of MG was not solely by intraparticle diffusion but film diffusion also played a major role. Continuous column experiments were also conducted using microcolumn and the spent adsorbent was regenerated using ethanol and was repeatedly used for three cycles in the column to determine the reusability of the regenerated adsorbent. The column data were modeled with the modeling equations such as Adam-Bohart model, Bed Depth Service Time (BDST) model, and Yoon-Nelson model for all the three cycles.

  15. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.

    PubMed

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang

    2016-07-01

    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.

  16. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite.

    PubMed

    Alkaram, Uday F; Mukhlis, Abduljabar A; Al-Dujaili, Ammar H

    2009-09-30

    The natural bentonite (BC) and kaolinite (KC) were modified with two surfactant of hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium bromide (PTMA) to form four kinds of organic-modified clays, i.e., HDTMA-bentonite (BHM), HDTMA-kaolinite (KHM), PTMA-bentonite (KPM) and PTMA-kaolinite (KPM). The modified minerals were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. The surface areas were determined using methylene blue adsorption method. Cation-exchange capacity (CEC) was estimated using an ethylenediamine complex of copper method and the modifier loading was calculated from the total carbon analysis. The ability of raw and organo-modified clays to remove phenol from aqueous solutions has been carried out as a function of contact time, pH and temperatures using a batch technique. The removal of phenol from aqueous solutions by modified clays seems to be more effective than unmodified samples. The adsorption capacity was found to increase with increasing temperature indication that the adsorptions were endothermic. The adsorption of phenol onto these clays was found to be increased by increasing of pH value and the adsorption patterns data are correlated well by Langmuir and Freundlich isotherm models and that the adsorption is physical in nature. The experimental data fitted very well with the pseudo-second-order kinetic model. The thermodynamic study of adsorption process showed that the adsorption of phenol with these six adsorbents was carried out spontaneously, and the process was endothermic in nature.

  17. A Modular Approach To Study Protein Adsorption on Surface Modified Hydroxyapatite.

    PubMed

    Ozhukil Kollath, Vinayaraj; Van den Broeck, Freya; Fehér, Krisztina; Martins, José C; Luyten, Jan; Traina, Karl; Mullens, Steven; Cloots, Rudi

    2015-07-13

    Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces.

  18. K4Nb6O17·4.5H2O: a novel dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III).

    PubMed

    Ma, Yuli; Liu, Xiaoqing; Li, Yang; Su, Yiguo; Chai, Zhanli; Wang, Xiaojing

    2014-08-30

    A series of orthorhombic phase K4Nb6O17·4.5H2O was synthesized via a hydrothermal approach. When presented in an acidic pH range, K4Nb6O17·4.5H2O showed a strong ability in quick reduction from Cr(VI) to Cr(III). The resulted Cr(III) ions were removed by an effective adsorption through simply adjusting the solution pH from strong acidity to near neutrality, owing to the sample's unique nano-sheet structure with a wide layer spacing. The Cr(III) ions adsorbed onto samples were released again for reusing by eluting with 1molL(-1) HCl solution, and K4Nb6O17·4.5H2O regenerated by immersing in a KOH solution. The reduction efficiency of Cr(VI) was still up to 98% after irradiation for 60min, and the removal efficiency of Cr(III) ions was as high as 83% even after five cycles. Therefore, K4Nb6O17·4.5H2O is clearly demonstrated to be an excellent dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III). The relevant materials reported herein might be found various environment-related applications.

  19. The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran.

    PubMed

    Ozer, A; Pirinççi, H B

    2006-09-21

    The adsorption of Cd(II) ions which is one of the most important toxic metals by using sulphuric acid-treated wheat bran (STWB) was investigated. The effects of solution pH and temperature, contact time and initial Cd(II) concentration on the adsorption yield were studied. The equilibrium time for the adsorption process was determined as 4 h. The adsorbent used in this study gave the highest adsorption capacity at around pH 5.4. At this pH, adsorption capacity for an initial Cd(II) ions concentration of 100 mg/L was found to be 43.1 mg/g at 25 degrees C for contact time of 4 h. The equilibrium data were analysed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The maximum adsorption capacity (qmax) which is a Langmuir constant decreased from 101.0 to 62.5 mg/g with increasing temperature from 25 to 70 degrees C. Langmuir isotherm data were evaluated to determine the thermodynamic parameters for the adsorption process. The enthalpy change (deltaH(o)) for the process was found to be exothermic. The free energy change (deltaG(o)) showed that the process was feasible. The kinetic results indicated that the adsorption process of Cd(II) ions by STWB followed first-order rate expression and adsorption rate constant was calculated as 0.0081 l/min at 25 degrees C. It was observed that the desorption yield of Cd(II) was highly pH dependent.

  20. Ab initio prediction of adsorption isotherms for small molecules in metal-organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg.

    PubMed

    Sillar, Kaido; Sauer, Joachim

    2012-11-07

    A hybrid method that combines density functional theory for periodic structures with wave function-based electron correlation methods for finite-size models of adsorption sites is employed to calculate energies for adsorption of CH(4) onto different sites in the metal-organic framework (MOF) CPO-27-Mg (Mg-MOF-74) with chemical accuracy. The adsorption energies for the Mg(2+), linker, second layer sites are -27.8, -18.3, and -15.1 kJ/mol. Adsorbate-adsorbate interactions increase the average CH(4) adsorption energy by about 10% (2.4 kJ/mol). The free rotor-harmonic oscillator-ideal gas model is applied to calculate free energies/equilibrium constants for adsorption on the individual sites. This information is used in a multisite Langmuir model, augmented with a Bragg-Williams model for lateral interactions, to calculate adsorption isotherms. This ab initio approach yields the contributions of the individual sites to the final isotherms and also of the lateral interactions that contribute about 15% to the maximum excess adsorption capacity. Isotherms are calculated for both absolute amounts, for calculation of isosteric heats of adsorption as function of coverage, and excess amounts, for comparison with measured isotherms. Agreement with observed excess isotherms is reached if the experimentally determined limited accessibility of adsorption sites (78%) is taken into account.

  1. A comparative study and evaluation of sulfamethoxazole adsorption onto organo-montmorillonites.

    PubMed

    Lu, Laifu; Gao, Manglai; Gu, Zheng; Yang, Senfeng; Liu, Yuening

    2014-12-01

    Three organo-montmorillonites were prepared using surfactants, and their adsorption behaviors toward sulfamethoxazole (SMX) were investigated. The surfactants used were cetyltrimethyl ammonium bromide (CTMAB), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HDAPS) and 1,3-bis(hexadecyldimethylammonio)-propane dibromide (BHDAP). The properties of the organo-montmorillonites were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption isotherm measurements. Results showed that the interlayer spacing of montmorillonite was increased and the surface area as well as the morphology were changed. Batch adsorption experiments showed that the surfactant loading amount had a great effect on the adsorption of SMX. The adsorption process was pH dependent and the maximum adsorption capacity was obtained at pH3 for HDAPS-Mt, while CTMAB-Mt and BHDAP-Mt showed a high removal efficiency at 3-11. The adsorption capacity increased with the initial SMX concentration and contact time but decreased with increasing solution ionic strength. Kinetic data were best described by the pseudo second-order model. Equilibrium data were best represented by the Langmuir model, and the Freundlich constant (n) indicated a favorable adsorption process. The maximum adsorption capacity of SMX was 235.29 mg/g for CTMAB-Mt, 155.28 mg/g for HDAPS-Mt and 242.72 mg/g for BHDAP-Mt. Thermodynamic parameters were calculated to evaluate the spontaneity and endothermic or exothermic nature. The adsorption mechanism was found to be dominated by electrostatic interaction, while hydrophobic interaction played a secondary role.

  2. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.

    PubMed

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed

    2014-12-16

    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  3. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.

    PubMed

    Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke

    2013-11-01

    Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption.

  4. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    PubMed

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  5. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    PubMed

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C.

  6. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    PubMed

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants.

  7. Fractional coverage metrics based on ecological home range for calculation of the effective peak capacity in comprehensive two-dimensional separations.

    PubMed

    Rutan, Sarah C; Davis, Joe M; Carr, Peter W

    2012-09-14

    Optimization of comprehensive two-dimensional separations frequently relies on the assessment of the peak capacity of the system. A correction is required for the fact that many pairs of separation systems are to some degree correlated, and consequently the entire separation space is not chemically accessible to solutes. This correction is essentially a measure of the fraction of separation space area where the solutes may elute. No agreement exists in the literature as to the best form of the spatial coverage factor. In this work, we distinguish between spatial coverage factors that measure the maximum occupiable space, which is characteristic of the separation dimensionality, and the space actually occupied by a particular sample, which is characteristic of the sample dimensionality. It is argued that the former, which we call f(coverage), is important to calculating the peak capacity. We propose five criteria for a good f(coverage) metric and use them to evaluate various area determination methods that are used to measure animal home ranges in ecology. We consider minimum convex hulls, convex hull peels, α-hulls, three variations of local hull methods, and a kernel method and compare the results to the intuitively satisfying but subjective Stoll-Gilar method. The most promising methods are evaluated using two experimental LC×LC data sets, one with fixed separation chemistry but variable gradient times, and a second with variable first dimension column chemistry. For the 12 separations in the first data set, in which f(coverage) is expected to be constant, the minimum convex hull is the most precise method (f(coverage)=0.68±0.04) that gives similar results to the Stoll-Gilar method (f(coverage)=0.67±0.06). The minimum convex hull is proposed as the best method for calculating f(coverage), because it has no adjustable parameters, can be scaled to different retention time normalizations, is easily calculated using available software, and represents the expected

  8. [Kinetics of adsorption of Pb2+ onto small river sediment].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Bi, Chun-Juan; Sun, Chao; Sun, Yue-Di; Xu, Shi-Yuan

    2009-06-15

    The batch experiments of adsorption of Pb2+ onto small river sediments were conducted. The kinetics of the sorption process was analyzed. The results showed that the equilibrium time of adsorption increased with the increasing of sediment mass in solution, while both adsorbed Pb2+ on per unit of sediment and Pb2+ concentration in the solution after equilibrium decreased. More than 95% of Pb2+ in solution was removed when sediment contents larger than 0.6 g x L(-1). Both pseudo-first-order and pseudo-second-order kinetics were tested and it was found that the latter gave a better explanation of the adsorption process. The equilibrium adsorption capacities calculated from the pseudo-second-order model could represent the true value. There was no significant correlation between initial adsorption rate of Pb2+ and the amount of sediment in solution. However, the pseudo-second-order rate constant increased in the solution with more adsorbent, namely chemical adsorption controlled the process. Elovich equation could explain the mechanism of sorption in the solution with higher contents of sediment; nevertheless, the process of low concentration of adsorbent adsorbing Pb2+ disagreed well with Elovich equation. In terms of adsorption rate in the sorption, intra-particle diffusion dominated in the more sediment solution. On the other hand, multi-linearity was presented for the adsorption rate in less adsorbent solution. The first, sharper portion represented adsorption on the external surface. The second portion indicated Pb2+ diffused gradually into the interior of particles and intra-particle diffusion controlled.

  9. Adsorption of copper ion on magnetite-immobilised chitin.

    PubMed

    Wong, K S; Wong, K H; Ng, S; Chung, W K; Wong, P K

    2007-01-01

    The adsorption of Cu2+ from aqueous solution by magnetite-immobilised chitin (MC) was studied in batch mode. Two conventional adsorbents, cation exchange resin (CER) and activated carbon (AC) were used for the comparison. The physicochemical parameters including pH, concentration of adsorbent, temperature and initial Cu2+ concentration were optimised. Under the optimised conditions, the removal efficiencies of Cu2+ for MC, CER and AC were 91.67, 93.36 and 89.16%, respectively. In addition, the removal capacities of Cu2+ for MC, CER and AC were 56.71, 74.84 and 6.55 mg/g, respectively. The adsorption isotherm studies indicated that the adsorptive behaviour of Cu2+ on three adsorbents could be well described by the Langmuir model. The maximum adsorption capacities (qmax) for MC, CER and AC were 53.19, 89.29 and 5.82 mg/g, respectively. The applicability of the kinetic model has been investigated for MC. Experimental results indicated that a pseudo-second-order reaction model provided the best description of the data with a correlation coefficient 0.999 for different initial Cu2+ concentrations. The rate constants were also determined. Various thermodynamic parameters such as standard free energy (DeltaG 0), enthalpy (DeltaH 0) and entropy (DeltaS 0) were calculated for predicting the adsorption nature of MC. The results indicated that this system was a spontaneous and endothermic process.

  10. Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions

    NASA Astrophysics Data System (ADS)

    Khaled, K. F.

    2010-09-01

    The effects of thiourea derivatives, namely N-methyl thiourea (MTU), N-propyl thiourea (PTU) and N-allyl thiourea (ATU) on the corrosion behaviour of iron in 1.0 M solution of HNO 3 have been investigated in relation to the concentration of thiourea derivatives. The experimental data obtained using the techniques of weight loss, Tafel polarization and electrochemical impedance spectroscopy, EIS. The results showed that these compounds revealed a good corrosion inhibition, (ATU) being the most efficient and (MTU) the least. Computational studies have been used to find the most stable adsorption sites for thiourea derivatives. This information help to gain further insight about corrosion system, such as the most likely point of attack for corrosion on iron (1 1 0), the most stable site for thiourea derivatives adsorption and the binding energy of the adsorbed layer. The efficiency order of the inhibitors obtained by experimental results was verified by theoretical analysis.

  11. Study on the adsorption properties of O{sub 3}, SO{sub 2}, and SO{sub 3} on B-doped graphene using DFT calculations

    SciTech Connect

    Rad, Ali Shokuhi; Shabestari, Sahand Sadeghi; Mohseni, Soheil; Aghouzi, Samaneh Alijantabar

    2016-05-15

    We investigated the structure, adsorption, electronic states, and charge transfer of O{sub 3}, SO{sub 2} and SO{sub 3} molecules on the surface of a B-doped graphene using density functional theory (DFT). We found weak physisorption of SO{sub 2} (−10.9 kJ/mole, using B3LYP-D) and SO{sub 3} (−15.7 kJ/mole, using B3LYP-D) on the surface of B-doped graphene while there is strong chemisorption for O{sub 3} (−96.3 kJ/mole, using B3LYP-D ) on this surface. Our results suggest the potential of B-doped graphene as a selective sensor/adsorbent for O{sub 3} molecule. We noticed some change in hybridizing of boron from sp{sup 2} to sp{sup 3} upon adsorption of O{sub 3} which cases transformation of the adsorbent from 2D to 3D. - Graphical abstract: The electronic property of B-doped graphene is responsible to highly adsorption of O{sub 3} molecules while the adsorption of SO{sub 2} and SO{sub 3} molecules on this surface exhibits only a weak interaction. - Highlights: • B-doped graphene clearly is n-type semiconductor. • High negatively charge of C-atoms neighboring the boron dopant. • Chemisorption of O{sub 3} and physisorption of SO{sub 2} and SO{sub 3} on the surface of B-doped graphene.

  12. Comparison of the Adsorption of Fe(III) on Alpha- and Gamma-MnO2 Nanostructure

    NASA Astrophysics Data System (ADS)

    Dinh, Van-Phuc; Le, Ngoc-Chung; Le, Thi-Diem; Bui, Tan-Anh; Nguyen, Ngoc-Tuan

    2017-01-01

    Aqueous industrial wastes from heavy industry factories contain a large amount of Fe ions, which constitute a hazard for human life even at trace concentrations. Adsorption technology is a promising method for removing Fe(III) from aqueous solutions. In this report, the adsorption of the Fe(III) ion on γ- and α-MnO2 nanostructures was compared. The results showed that the maximum adsorption was obtained at pH = 3.5 for both materials after 120 min for γ-MnO2 and 80 min for α-MnO2. Adsorption isotherm models, such as Langmuir, Freundlich, Sips, Tempkin, and Dubinin-Radushkevich were applied to determine adsorption capacity as well as the nature of the uptake. The highest R 2, the smallest of root mean squared error (RMSE), and the nonlinear Chi-square test (χ2) values determined that the Sips model was the most appropriate equation to describe the adsorption of Fe(III) on γ- and α-MnO2. The maximum monolayer adsorption capacity calculated from the Langmuir model and the maximum adsorption capacity calculated from the Sips model of γ-MnO2 was more than four times that of α-MnO2. The heat of the adsorption as well as the mean free energy estimated from Tempkin and Dubinin-Radushkevich was determined to be less than 8 kJ/mol, which showed that the adsorption on both materials followed a physical process. Kinetic studies showed that a pseudo-second-order model was accurately described on both samples with three stages.

  13. Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange.

    PubMed

    Fan, Jimin; Zhao, Zhihuan; Liu, Wenhui; Xue, Yongqiang; Yin, Shu

    2016-05-15

    The different crystal forms of nitrogen doped-titanium oxide (N-TiO2) with different particle sizes were produced by precipitation-solvothermal method and their adsorption mechanism were also investigated. The adsorption kinetics showed that rutile N-TiO2 displayed higher adsorption capacity than anatase for methyl orange (MO) and its adsorption behavior followed the pseudo-second-order kinetics. The equilibrium adsorption rate of N-TiO2 for MO was well fitted by the Langmuir isotherm model and the adsorption process was monolayer adsorption. The adsorption capacity decreased with increasing temperature. The average correlation coefficient was beyond 97%. The thermodynamic parameters (ΔaGm(ө), ΔaHm(ө), and ΔaSm(ө)) were calculated. It was found that anatase and rutile N-TiO2 had different adsorption enthalpy and entropy. The smaller the particle size, the greater the surface area and surface energy was, then ΔaGm(ө) decreased and the standard equilibrium constant increased at the same time. The adsorption process onto different crystalline phase N-TiO2 was exothermic and non-spontaneous.

  14. Calculating in situ density and heat capacity of rocks with GMIN: new type of input data for thermomechanical modeling of subduction zones

    NASA Astrophysics Data System (ADS)

    Burchard, M.; Gerya, T.

    2003-04-01

    The technique of minimizing the Gibbs free energy of specified rock compositions by varying the amounts and compositions of coexisting phases has provided new insights and possibilities for petrological investigations. For thermomechanical modeling of subduction zone processes density, isobaric heat capacity, thermal expansion and compressibility can then be extracted as a function of the amounts and compositions of coexisting phases [1]. At present two programs offer the possibility of calculating phase diagrams with this technique, Holland and Powell's Thermocalc [2] and De Capitani's Theriac/Domino [3] package. The first one is a command line program producing a text output which can be converted to graphics with a user-written MathematicaTM program. It uses the Holland and Powell data base [2]. De Capitani's program is distributed as a Fortran 77 source code and uses the Berman database. Neither of these programs offers interfaces for use with geodynamic modeling programs. We have therefore enhanced our new Gibbs minimization program GMin [4] with an interface able to transfer density, entahalpy and volume values into databases or other programs. The minimization algorithm of our program is based on the de Capitani method [3], modified and adapted for the Holland and Powell database [2]. To achieve rapid convergence and stability of minimization we have optimized the computing strategy for models of solid solutions used in [2]. The standard program is divided in two parts, a front end and a calculation program controlled by the front end program. This construction opens the possibility of starting up several calculations in parallel on different computers and different operating systems. In this way large numbers of calculations can be performed on normal PC-networks (servers and clients) controlled by only one front end program. The front end is able to create pressure and temperature ordered databases containing density, enthalpy, volume and composition which

  15. A Study of Adsorptive Characteristics of Australian Coals

    NASA Astrophysics Data System (ADS)

    Lan, Y. P.; Tsai, L. L.

    2012-04-01

    Ever since the Kyoto Protocol, controlling carbon dioxide emission and reducing its content in atmosphere are very important environmental issues up to today. One of the effective methods for permanent sequestration of anthropogenic CO2 is to inject CO2 into deep, unminable coal seams and recover coal bed methane at the same time. CO2-ECBM technology had been proved to be very promising to meet the needs of both environment and energy. Beside other external environment factors, capacity of CO2 adsorption and CH4 desorption are the most influencing factors in selection of sites for the geological storage of CO2. Therefore, the objective of this study is to understand the relationship between gas adsorption and CO2 sequestration, by various experiments for the characterization of Australian of coals. Generally speaking, coal seam gas comprises mostly of CH4, CO2, C2H6, and N2. However, some of the Australian coals were reported with significant amount of CO2 up to 90%, which might strongly affect their capacity of CO2 capture and storage (CCS). High to medium volatile bituminous coals from Sydney Basin and Bowen Basin, southeast Australia were selected in this study. Experiments include maceral composition and vitrinite reflectance measurements, petrographic analysis, Proximate analysis, Ultimate analysis, specific surface area analysis as well as CO2 and CH4 adsorption experiments were performed. Parameters for difference adsorption functions (Langmuir, BET, D-R and D-A) were then calculated to fit their adsorption isotherms the best fitting curve can then be found. Among these adsorption functions, Langmuir is the most basic and commonly used function theory. The results of all experiments were synthesized to discuss the relations among each other, so as to establish the relationship between gas adsorption and coal characteristics.

  16. Metal-organic frameworks with high capacity and selectivity for harmful gases

    PubMed Central

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128

  17. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  18. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-07-19

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m2/g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 degrees C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (Ea) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as DeltaG degrees, DeltaS and DeltaH degrees were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process.

  19. Selective and effective adsorption of methyl blue by barium phosphate nano-flake.

    PubMed

    Zhang, Fan; Zhao, Zongshan; Tan, Ruiqin; Guo, Yanqun; Cao, Lujie; Chen, Liang; Li, Jia; Xu, Wei; Yang, Ye; Song, Weijie

    2012-11-15

    We report the synthesis of barium phosphate (BP) nano-flake and its adsorption behavior to methyl blue (MB) in aqueous solution. The as-obtained BP nano-flake revealed pure rhombohedral crystal structure. The adsorption capacity of MB onto BP reached 1500 mg g(-1). The adsorption equilibrium results fitted well with the Freundlich isotherm model. The adsorption process took less than 30 min to reach equilibrium. The adsorption kinetics was elucidated by the pseudo-second-order kinetic equation. It followed 2-stage and 3-stage intra-particle diffusion models for the low and high concentration of dye solutions, respectively. The adsorption of MB using the BP nano-flake was highly selective, compared with the adsorption of other dyes. The interactions between MB and BP were mainly the ionic interaction and hydrogen bonds, which were confirmed by the X-ray photoelectron spectroscopic results and the density functional theory calculations. The BP nano-flake revealed less than 5% decrease in adsorption amount when it was recycled and reused five times. The present work shows that the BP nano-flake is promising for practical applications in MB removal from aqueous solutions.

  20. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.

    PubMed

    Ghassabzadeh, Hamid; Mohadespour, Ahmad; Torab-Mostaedi, Meisam; Zaheri, Parisa; Maragheh, Mohammad Ghannadi; Taheri, Hossein

    2010-05-15

    The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 degrees C.

  1. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study.

    PubMed

    Jauris, I M; Matos, C F; Saucier, C; Lima, E C; Zarbin, A J G; Fagan, S B; Machado, F M; Zanella, I

    2016-01-21

    The interactions of sodium diclofenac drug (s-DCF) with different graphene species were investigated using both first principles calculations based on Density Functional Theory (DFT) and adsorption experiments. Through batch adsorption experiments, it was found that rGO was a good adsorbent for removing the s-DCF drug from aqueous solutions. The general-order kinetic model shows the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. The equilibrium data (at 25 °C) were fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the s-DCF drug was 59.67 mg g(-1) for rGO. The s-DCF adsorption onto pristine graphene, graphene with a vacancy, reduced oxide graphene (rGO) and functionalized graphene nanoribbons were simulated providing a good understanding of the adsorption process of this molecule on graphene-family surfaces. The results predict a physisorption regime in all cases. Based on these results, the ab initio calculations and the adsorption experiments point out that the graphene-family are promising materials for extracting s-DCF from wastewater effluents.

  2. Structure and hydrogen adsorption properties in low density nanoporous carbons from simulations

    SciTech Connect

    Peng, L.; Morris, James R

    2012-01-01

    We systematically model the hydrogen adsorption in nanoporous carbons over a wide range of carbon bulk densities (0.6 - 2.4 g/cm3) by using tight binding molecular dynamics simulations for the carbon structures and thermodynamics calculations of the hydrogen adsorption. The resulting structures are in good agreement with the experimental data of ultra-microporous carbon (UMC), a wood-based activated carbon, as indicated by comparisons of the microstructure at atomic level, pair distribution function, and pore size distribution. The hydrogen adsorption calculations in carbon structures demonstrate both a promising hydrogen storage capacity (excess uptake of 1.33 wt% at 298K and 5 MPa, for carbon structures at the lower range of densities) and a reasonable heat of adsorption (12-22 kJ/mol). This work demonstrates that increasing the heat of adsorption does not necessarily increase the hydrogen uptake. In fact, the available adsorption volume is as important as the isosteric heat of adsorption for hydrogen storage in nanoporous carbons.

  3. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  4. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  5. Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Yeh, Wen-Chun; Wei, Yuan-Yaw; Teng, Shi-Ping

    2008-12-30

    Utilization of local Taiwan laterite (LTL) to remove aqueous cesium was investigated in this work under the conditions of various contact time, cesium (Cs) loading and temperature. Experimental results show that adsorption is instantaneous. Freundlich and Langmuir simulation results demonstrate that local Taiwan laterite has high affinity and sorption capacity for Cs at low temperatures, which may be attributed to enhanced desorption as temperature increased. Thermodynamic parameters including DeltaH, DeltaG and DeltaS were calculated and it is indicated that Cs adsorption on LTL is an exothermic, spontaneous and physical adsorption reaction. Moreover, the adsorbed Cs is distributed evenly on the LTL surface, which is confirmed by SEM/EDS mapping images. Furthermore, the absence of apparent shifting or broadening of the kaolinite signal in XRD patterns after Cs adsorption is an indication of the non-expanding characteristic of kaolinite structure.

  6. Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol

    PubMed Central

    2012-01-01

    Adsorption of methylene blue (MB) on agar was investigated as a function of temperature (308-328 K), different concentrations of NaCl and HCl and various weight percentages of binary mixtures of ethanol with water. It was observed that the maximum experimental adsorption capacity, qm, exp, in water is up to 50 mg g-1 and decreases with increase in weight percentage of ethanol and NaCl and HCl concentration compared to that of water. Analysis of data using ARIAN model showed that MB adsorbs as monomer and dimer on the surface of agar. Binding constants of MB to agar were calculated using the Temkin isotherm. The process is exothermic in water and other solutions. The mean adsorption energy (E) value indicated binding of MB to agar is chemical adsorption. Kinetics of this interaction obeys from the pseudo-second-order model and diffusion of the MB molecules into the agar is the main rate-controlling step. PMID:22339759

  7. Mercapto functionalized silica entrapped polyacrylamide hydrogel: Arsenic adsorption behaviour from aqueous solution.

    PubMed

    Kumar, Rajesh; Jain, S K; Verma, S; Malodia, P

    2015-10-15

    In this article, 3-mercaptopropyl functionalized silica entrapped polyacrylamide hydrogel (MPFS-PAA) was prepared and characterized by FT-IR, scanning electron microscopy (SEM) and energy dispersion X-ray spectroscopy (EDS). Synthesized hydrogel was evaluated for removal of arsenic(III) from aqueous solution. Adsorption studies were carried out by batch method as function of contact time, initial concentration of arsenic and pH. As(III) adsorption data fitted well with Langmuir and Freundlich isotherm models. Adsorption capacity of arsenic 92.5 μg/g was obtained at initial concentration of 100 μg/L by Langmuir isotherm. Adsorption kinetics was tested for pseudo-second order reaction at different contact time. The rate constants of pseudo second order reaction were calculated and good correlation coefficient R(2) 99.67 obtained. The results indicates that MPFS-PAA is an effective adsorbent for removal of As(III) from aqueous solution.

  8. Thermodynamical and structural insights of orange II adsorption by Mg RAlNO 3 layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Mustapha Bouhent, Mohamed; Derriche, Zoubir; Denoyel, Renaud; Prevot, Vanessa; Forano, Claude

    2011-05-01

    [Mg 1- x Al x(OH) 2][(NO 3) x, nH 2O] Layered Double Hydroxide (LDH) sorbents with variable Mg/Al molar ( R=(1- x)/ x) ratios were investigated for adsorption of azo dye, orange II (OII) at various pH and temperature conditions. Mg 2AlNO 3 displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg 2AlNO 3 at 40 °C. Adsorption isotherms have been fitted using the Langmuir model and free energy of adsorption (Δ G°), enthalpy (Δ H°) and entropy (Δ S°) were calculated. The experimental values for Δ G° in temperature range between 10 and 40 °C were found to be negative indicating that a spontaneous process occurred. Positive calculated enthalpy values, characteristic of an endothermic process were found. Characterization of solids (PXRD, FTIR, UV-vis, TGA/DTA, adsorption isotherm BET analysis, SEM and Zetametry) before and after adsorption showed that adsorption proceeds in two steps. First, adsorption occurs at the LDH surface, followed by intercalation via anion exchange.

  9. Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases.

    PubMed

    Choi, Sunho; Watanabe, Taku; Bae, Tae-Hyun; Sholl, David S; Jones, Christopher W

    2012-05-03

    The MOF Mg/DOBDC has one of the highest known CO2 adsorption capacities at the low to moderate CO2 partial pressures relevant for CO2 capture from flue gas but is difficult to regenerate for use in cyclic operation. In this work, Mg/DOBDC is modified by functionalization of its open metal coordination sites with ethylene diamine (ED) to introduce pendent amines into the MOF micropores. DFT calculations and experimental nitrogen physisorption and thermogravimetric analysis suggest that 1 ED molecule is added to each unit cell, on average. This modification both increases the material's CO2 adsorption capacity at ultradilute CO2 partial pressures and increases the regenerability of the material, allowing for cyclic adsorption-desorption cycles with identical adsorption capacities. This is one of the first MOF materials demonstrated to yield significant adsorption capacities from simulated ambient air (400 ppm CO2), and its capacity is competitive with the best-known adsorbents based on amine-oxide composites.

  10. Galactose adsorption on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Alatalo, Matti; Puisto, Mikko

    2014-03-01

    In order to understand the valorisation of biomass, it is essential to study the behavior of sugar molecules on catalytic surfaces. We have studied the adsorption of galactose molecules on the Ru(0001) surface using first principles calculations. We present results for the fully relaxed configurations of the molecule at different adsorption sites. We also compare the effect of the inclusion of the van der Waals interactions on both the energetics of the free galactose molecule and the adsorption energy of galactose on Ru(0001). We compare our results, obtained using periodically repeated supercells, to those obtained with cluster calculations.

  11. Study of Solar Driven Silica gel-Water based Adsorption Chiller

    NASA Astrophysics Data System (ADS)

    Habib, K.; Assadi, M. K.; Zainudin, M. H. B.

    2015-09-01

    In this study, a dynamic behaviour of a solar powered single stage four bed adsorption chiller has been analysed designed for Malaysian climate. Silica gel and water have been used as adsorbent-refrigerant pair. A simulation program has been developed for modeling and performance evaluation of the chiller using the meteorological data of Kuala Lumpur. The optimum cooling capacity and coefficient of performance (COP) are calculated in terms of adsorption/desorption cycle time and regeneration temperature. Results indicate that the chiller is feasible even when low temperature heat source is available. Results also show that the adsorption cycle can achieve a cooling capacity of 14 kW when the heat source temperature is about 85°C.

  12. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

    PubMed

    Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind

    2014-08-22

    Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems.

  13. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    NASA Astrophysics Data System (ADS)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [sbnd Cdbnd O] and [Csbnd Osbnd C]. CH4 distributed in the distance of 0.99-16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [sbnd Cdbnd O] (1.64 Å) < [Csbnd Osbnd C] (1.89 Å) < [sbnd COOH] (3.78 Å) < [-CH3] (4.11 Å) according to the average RDF curves. CH4 enriches around [sbnd Cdbnd O] and [Csbnd O-C] whereas is rather dispersed about [-COOH] and [CH3]. Simulation and experiment data are both in strong agreement with the Langmuir and D-A isothermal adsorption model and the D-A model fit better than Langmuir model. Preferential adsorption sites and orientations in vitrinite are

  14. Protein adsorption using novel carboxymethyl-curdlan microspheres.

    PubMed

    Rafigh, Sayyid Mahdi; Vaziri Yazdi, Ali; Safekordi, Ali Akbar; Heydari Nasab, Amir; Ardjmand, Mehdi; Naderi, Fereshteh; Mozafari, Hamid

    2016-06-01

    Carboxymethyl-curdlan as a water soluble curdlan derivative, was synthesized in an aqueous alkaline medium using monochloroacetic acid. Novel carboxymethyl-curdlan (CC) microspheres were prepared by the method of W/O/W emulsion. The chemical and morphological structures of CC microspheres were investigated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and particle size analysis. The CC microspheres were spherical, free flowing, non-aggregated and uniform mono-disperse with diameter of 260μm. The prepared CC microspheres were applied to adsorbing Bovine serum albumin (BSA) as model protein. Factors influencing the adsorption of BSA such as solution pH, temperature, initial BSA concentration and ionic strength were examined by batch experiments. The maximum adsorption capacity was calculated as 168mg/g under optimal conditions including BSA initial concentration (4mg/mL), pH (4.7), adsorption time (9h) and temperature (35°C). The adsorption isotherm followed the Langmuir model and the adsorption kinetics fitted the pseudo-second-order model. In addition, the CC microspheres can be also regenerated and re-used.

  15. Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent.

    PubMed

    Zeng, Xiaowei; Fan, Yunge; Wu, Guolin; Wang, Chunhong; Shi, Rongfu

    2009-09-30

    A novel post-crosslinked polymeric adsorbent PDM-2 was prepared by Friedel-Crafts reaction of pendant vinyl groups without external crosslinking agent. Both the specific surface area and the pore volume of starting copolymer PDM-1 increased significantly after post-crosslinking. Batch adsorption runs of phenol from aqueous solution onto PDM-1 and PDM-2 were investigated. Commercial macroporous resins XAD-4 and AB-8 were chosen as the comparison. Experimental results showed that isotherms of phenol adsorption onto these four polymeric adsorbents could be represented by Freundlich model reasonably. PDM-2 exhibited higher adsorption capacity of phenol than other three adsorbents, which resulted from synergistic effect of larger specific surface area and polar groups on the network. The adsorption process for phenol was proved to be exothermic and spontaneous in nature. Thermodynamic parameters such as Gibb's free energy (DeltaG), change in enthalpy (DeltaH) and change in entropy (DeltaS) were calculated. Kinetics studies indicated that phenol uptake onto PDM-1 and PDM-2 followed the pseudo-second order model and the intraparticle diffusion process was a rate-controlling step. Column adsorption runs demonstrated that nearly 100% regeneration efficiency for PDM-2 by 3BV industrial alcohol and the adsorbate phenol can be easily recovered by further distilling. Continuous column adsorption-regeneration cycles indicated negligible capacity loss of PDM-2 during operation.

  16. Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V).

    PubMed

    Zhang, Lingfan; Liu, Xin; Xia, Wei; Zhang, Wenqing

    2014-03-01

    In this present study, an inorganic-biopolymer composite based on chitosan-zirconium(IV) was prepared and investigated as a biosorbent for the removal of vanadium(V) ions from aqueous solution. The resulting composite before and after adsorbed V(V) were characterized by using FT-IR, XRD, SEM and EDS, respectively. Various relevant parameters affecting the adsorption capacity such as pH, initial concentration, contact time, temperature and co-existing ions were evaluated. The results demonstrated that the optimum pH was found to be 4.0 and the equilibrium was achieved after 4h for V(V) adsorption. The Langmuir isotherm model could be well described the adsorption of V(V), with the maximum adsorption capacity of 208 mg g(-1) at 30 °C. The kinetics data were well fitted to pseudo-second-order equation, indicating that chemical sorption as the rate-limiting step of adsorption mechanism. The calculated thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicated that the adsorption process was feasible, spontaneous and endothermic in nature. Moreover, co-existing ions including nitrate, chloride and sulfate had a certain effect on the uptake of V(V). The V(V) loaded chitosan-zirconium(IV) composite could be regenerated by 0.01 mol L(-1) sodium hydroxide, with efficiency greater than 95%.

  17. Adsorption of Cu2+ and Pb2+ ion on dolomite powder.

    PubMed

    Pehlivan, Erol; Ozkan, Ali Müjdat; Dinç, Salih; Parlayici, Serife

    2009-08-15

    Natural Turkish dolomite was shown to be effective for removing Cu(2+) and Pb(2+) from aqueous solution. Selected information on pH, dose required, initial metal concentration, adsorption capacity of the raw dolomite powder was evaluated for its efficiency in adsorbing metal ions. Dolomite exhibited good Cu(2+) and Pb(2+) removal levels at all initial metal amount tested (0.04-0.32 mmol, 20 mL). It is important to note that the adsorption capacities of the materials in equilibrium vary, depending on the characteristics of the individual adsorbent, the initial concentration of the adsorbate and pH of the solution. One hour was enough for the removal of metal ions from (0.2 mmol in 20 mL) aqueous solution. Effective removal of metal ions was demonstrated at pH values of 5.0. The adsorptive behavior of dolomite was described by fitting data generated from the study of the Langmuir and Freundlich isotherm models. The adsorption capacity of dolomite was found as 8.26 mg for Cu(2+) and 21.74 mg for Pb(2+), respectively, from the calculation of adsorption isotherm equation. More than 85% of studied cations were removed by dolomite from aqueous solution in single step. The mechanism for cations removal by dolomite includes surface complexation and ion exchange.

  18. Calculation of difference in heat capacities at constant pressure and constant volume with the aid of the empirical Nernst and Lindemann equation

    NASA Astrophysics Data System (ADS)

    Leontev, K. L.

    1981-07-01

    An expression is obtained for heat capacity differences of materials at a constant pressure and volume, on the basis of the rigorous thermodynamic equation (Kittel, 1976), and by using the Grueneisen law (Kikoin and Kikoin, 1976) of constancy of the ratio of the cubic expansion coefficient to the molar heat capacity. Conditions are determined, where the empirical Nernst and Lindemann (Filippov, 1967) equation is regarded as rigorous.

  19. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  20. Adsorption of chloridazon from aqueous solution on modified kerolite-rich materials.

    PubMed

    Ureña-Amate, María D; Socías-Viciana, María M; González-Pradas, E; Cantos-Molina, A; Villafranca-Sánchez, M; López-Teruel, C

    2008-02-01

    The adsorption of chloridazon (5-amine-4-chloro-2-phenylpyridazin-3(2H)-one) on kerolite samples heated at 110 degrees C (K-110), 200 degrees C (K-200), 400 degrees C (K-400), 600 degrees C (K-600) and acid-treated with H(2)SO(4) solutions of two different concentrations (0.25 and 0.5 M) (K-0.25 and K-0.5, respectively) from pure water at 25 degrees C has been studied by using batch and column experiments. The adsorption experimental data points were fitted to the Freundlich equation in order to calculate the adsorption capacities (K(f)) of the samples; K(f) values ranged from 184.7 mg kg(-1) (K-0.5) up to 2253 mg kg(-1) (K-600). This indicated that the heat treatment given to the kerolite greatly increases its adsorption capacity for the herbicide whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) was also calculated; R values ranging from 52.8% (K-0.5) up to 88.3% (K-600). Thus, the results showed that the 600 degrees C heat-treated kerolite was more effective in relation to adsorption of chloridazon and it might be reasonably used in removing this herbicide from water.

  1. Selective adsorption of Hg(II) by γ-radiation synthesized silica-graft-vinyl imidazole adsorbent.

    PubMed

    Sun, Jian; Chen, Zhimin; Ge, Mengyi; Xu, Ling; Zhai, Maolin

    2013-01-15

    Silica-based adsorbent was prepared by γ-radiation induced grafting of vinyl imidazole (VIM) onto the silanized silica, which was silanized by chlorotrimethylsilane (TMCS). The effects of monomer concentration and absorbed dose on the grafting yield were investigated to optimize the reaction conditions. Thermodynamic analysis, FTIR analysis and XPS spectra manifested that VIM was successfully grafted onto the silica surface. The SS-g-VIM adsorbent had excellent selectivity for Hg(II) adsorption in mixture divalent cationic metal solution and a high adsorption capacity of Hg(II). The theoretical maximum adsorption capacity was calculated to be 355.9 mg g(-1) (1.774 mmol g(-1)) in HgCl(2)/HNO(3) solution at pH 5 at room temperature. The adsorption kinetics and adsorption isotherm were investigated. It was found that the Langmuir isotherm model fitted well with the adsorption process and the adsorption of Hg(II) onto SS-g-VIM adsorbent could be considered as a spontaneous, endothermic and chemical sorption process. The comprehensive results suggested that SS-g-VIM adsorbent has potential application for the removal of Hg(II) from wastewater.

  2. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres.

    PubMed

    Iram, Mahmood; Guo, Chen; Guan, Yueping; Ishfaq, Ahmad; Liu, Huizhou

    2010-09-15

    Fe(3)O(4) hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe(3)O(4) hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 degrees C and pH 6, was found to be 105 mg g(-1). Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe(3)O(4) nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  3. A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-07-29

    A fundamental investigation of the pressure effect on individual adsorption sites was undertaken based on adsorption energy distribution and adsorption isotherm measurements. For this purpose, we measured adsorption equilibrium data at pressures ranging from 100 to 1000bar at constant flow and over a wide concentration range for three low-molecular-weight solutes, antipyrine, sodium 2-naphthalenesulfonate, and benzyltriethylammonium chloride, on an Eternity C18 stationary phase. The adsorption energy distribution was bimodal for all solutes, remaining clearly so at all pressures. The bi-Langmuir model best described the adsorption in these systems and two types of adsorption sites were identified, one with a low and another with a high energy of interaction. Evidence exists that the low-energy interactions occur at the interface between the mobile and stationary phases and that the high-energy interactions occur nearer the silica surface, deeper in the C18 layer. The contribution of each type of adsorption site to the retention factor was calculated and the change in solute molar volume from the mobile to stationary phase during the adsorption process was estimated for each type of site. The change in solute molar volume was 2-4 times larger at the high-energy site, likely because of the greater loss of solute solvation layer when penetrating deeper into the C18 layer. The association equilibrium constant increased with increasing pressure while the saturation capacity of the low-energy site remained almost unchanged. The observed increase in saturation capacity for the high-energy site did not affect the column loading capacity, which was almost identical at 50- and 950-bar pressure drops over the column.

  4. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67.

    PubMed

    Pan, Yong; Li, Zhi; Zhang, Zhe; Tong, Xiong-Shi; Li, Hai; Jia, Chong-Zhi; Liu, Bei; Sun, Chang-Yu; Yang, Lan-Ying; Chen, Guang-Jin; Ma, De-Yun

    2016-03-15

    ZIF-67(zinc-methylimidazolate framework-67), one of the zeolitic imidazolate frameworks (ZIFs), was used for the removal of phenol from aqueous solutions via adsorption and shows high adsorption capacity for phenol. The thermodynamic and kinetic adsorption behavior of ZIF-67 for phenol in water with concentration ranging from 50 to 300 ppm were investigated in a batch reactor and a ZIF-67 packed column, respectively. The effects of pH, contact time, zeta potential of the adsorbent and temperature on the adsorption behavior were evaluated, and the results demonstrated that the adsorption is primarily brought about by a specific favorable interaction (electrostatic interaction) between phenol and ZIF-67 surface. The suitability of the Langmuir adsorption model to the equilibrium data was investigated for each phenol-adsorbent system, which the results showed that the equilibrium data for all the phenol-sorbent systems fitted the Langmuir model. Thermodynamic parameters such as Gibbs free energy are calculated from the experimental data at different temperatures. The adsorbent could be perfectly regenerated at 120 °C with little loss in the adsorption ability.

  5. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Zeng, Guangming; Liu, Yan; Wang, Xueli; Lin, Ningbo; Qi, Yu

    2013-08-01

    In this study, graphene oxide (GO) was synthesized via modified Hummers’ method, and characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS). The adsorption of Zn(II) on GO as a function of pH, adsorbent dosage, foreign ions, contact time, and temperature was investigated using batch technique. Results showed that the suitable pH for Zn(II) removal was about 7.0, and the optimal dosage was 2 mg. The adsorption of Zn(II) onto GO increased sharply within 20 min and obtained equilibrium gradually. Meanwhile, foreign ion and temperature also affected the adsorption performance of GO. The adsorption process was found to be well described by the pseudo-second-order rate model. Equilibrium studies indicated that the data of Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacity for Zn(II) was up to 246 mg/g with a Langmuir adsorption equilibrium constant of 5.7 L/g at 20 °C. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Zn(II) sorption on GO was an exothermic and spontaneous process in nature. The possibility of Zn(II) recovery was investigated and the result revealed that the maximum Zn(II) recovery yield was achieved with hydrochloric acid.

  6. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces.

    PubMed

    Liu, Jing; Cheney, Marcos A; Wu, Fan; Li, Meng

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg(0). The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg(0) adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg(0), and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  7. Removal of beta-blockers from aqueous media by adsorption onto graphene oxide.

    PubMed

    Kyzas, George Z; Koltsakidou, Anastasia; Nanaki, Stavroula G; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2015-12-15

    The aim of the present study is the evaluation of graphene oxide (GhO) as adsorbent material for the removal of beta-blockers (pharmaceutical compounds) in aqueous solutions. The composition and morphology of prepared materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Atenolol (ATL) and propranolol (PRO) were used as model drug molecules and their behavior were investigated in terms of GhO dosage, contact time, temperature and pH. Adsorption mechanisms were proposed and the pH-effect curves after adsorption were discussed. The kinetic behavior of GhO-drugs system was analyzed after fitting to pseudo-first and -second order equations. The adsorption equilibrium data were fitted to Langmuir, Freundlich and Langmuir-Freundlich model calculating the maximum adsorption capacity (67 and 116 mg/g for PRO and ATL (25 °C), respectively). The temperature effect on adsorption was tested carrying out the equilibrium adsorption experiments at three different temperatures (25, 45, 65 °C). Then, the thermodynamic parameters of enthalpy, free energy and entropy were calculated. Finally, the desorption of drugs from GhO was evaluated by using both aqueous eluants (pH2-10) and organic solvents.

  8. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    PubMed

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications.

  9. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal.

    PubMed

    Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-06-01

    Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous adsorption process. PAC dosage, pH, and natural organic matter (NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of pH had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at pH9. The presence of NOM, especially the fraction with molecular weight less than 1k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did.

  10. Multilayer adsorption on fractal surfaces.

    PubMed

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54.

  11. The adsorption of h-BN monolayer on the Ni(111) surface studied by density functional theory calculations with a semiempirical long-range dispersion correction

    SciTech Connect

    Sun, X.; Pratt, A.; Li, Z. Y.; Ohtomo, M.; Sakai, S.; Yamauchi, Y.

    2014-05-07

    The geometric and spin-resolved electronic structure of a h-BN adsorbed Ni(111) surface has been investigated by density functional theory calculations. Two energy minima (physisorption and chemisorption) are obtained when the dispersive van der Waals correction is included. The geometry of N atom on top site and B atom on fcc site is the most energetically favorable. Strong hybridization with the ferromagnetic Ni substrate induces considerable gap states in the h-BN monolayer. The induced π* states are spin-polarized.

  12. Adsorption of tetracycline on soil and sediment: effects of pH and the presence of Cu(II).

    PubMed

    Zhang, Zheyun; Sun, Ke; Gao, Bo; Zhang, Guixiang; Liu, Xitao; Zhao, Ye

    2011-06-15

    Tetracycline (TC) is frequently detected in the environment, however, knowledge on the environmental fate and transport of TC is still limited. Batch adsorption experiments of TC by soil and sediment samples were conducted. The distribution of charge and electrostatic potential of individual atoms of various TC species in the aqueous solution were determined using MOPAC version 0.034 W program in ChemBio3D Ultra software. Most of the adsorption isotherms on the soil, river and marine sediments were well fitted with the Freundlich and Polanyi-Manes (PMM) models. The single point organic carbon (OC)-normalized adsorption distribution coefficients (K(OC)) and PMM saturated adsorption capacity (Q(OC)(0)) values of TC were associated with the mesopore volume and clay content to a greater extent, indicating the mesopore volume of the soil and sediments and their clay content possibly influenced the fate and transport of TC in the natural environment. The adsorption of TC on soil and sediments strongly depended on the pH and presence of Cu(II). The presence of Cu(II) facilitated TC adsorption on soil and sediments at low pH (pH<5), possibly due to the metallic complexation and surface-bridging mechanism by Cu(II) adsorption on soil and sediments. The cation exchange interaction, metallic complexation and Coulombic interaction of mechanisms for adsorption of TC to soils and sediments were further supported by quantum chemical calculation of various TC species in different pH.

  13. Superconducting gap function in the organic superconductor (TMTSF)2ClO4 with anion ordering; First-principles calculations and quasiclassical analysis for angle-resolved heat capacity

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko

    2011-03-01

    We calculate angle-dependent heat capacity in a low magnetic field range on the basis of the Kramer-Pesch approximation together with an electronic structure obtained by first-principles calculations to determine a superconducting gap function of (TMTSF)2ClO4 through its comparisons with experiments. The present comparative studies reveal that a nodal d-wave gap function consistently explains the experimental results for (TMTSF)2ClO4. It is especially emphasized that the observed unusual axis asymmetry of the angle dependence eliminates the possibility of s-wave and nodeless d-wave functions. It is also found that the directional ordering of ClO4 anions does not have any significant effects on the Fermi surface structure contrary to the previous modelings since the two Fermi surfaces obtained by the band calculations almost cross within the present full accuracy in first-principles calculations.

  14. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments. Part 2: Interaction of GluR1270-300 with KYNA.

    PubMed

    Csapó, E; Bogár, F; Juhász, Á; Sebők, D; Szolomájer, J; Tóth, G K; Majláth, Z; Vécsei, L; Dékány, I

    2015-09-01

    In the course of our previous work, the interactions of two peptide fragments (GluR1201-230 and GluR1231-259) of human glutamate receptor (GluR1201-300) polypeptide with kynurenic acid (KYNA) were investigated by surface plasmon resonance (SPR) spectroscopy. Besides quantitation of the interactions, the enthalpies of binding of KYNA on certain peptide fragment-modified gold surfaces were also reported. In the present work, a third peptide fragment (GluR1270-300) of the glutamate receptor was synthesized and its interaction with KYNA was investigated by an SPR technique. This 31-membered peptide was chemically bonded onto a gold-coated SPR chip via a cysteine residue. The peptide-functionalized biosensor chip was analyzed by atomic force microscopy (AFM) and theoretical calculations were performed on the structure and dimensions of the peptide on the gold surface. In order to determine the isosteric heat of adsorption of the binding of KYNA on the peptide-functionalized gold thin film, SPR experiments were carried out between +10°C and +40°C. The results on the GluR1270-300-KYNA system were compared with the previously published binding parameters of the interactions of GluR1201-230 and GluR1231-259 with KYNA. The binding abilities of KYNA with all three peptide fragments immobilized on the gold surface were estimated by a molecular docking procedure and the binding free energies of these AMPA receptor subunits with KYNA were determined.

  15. Adsorption of acid dye onto organobentonite.

    PubMed

    Baskaralingam, P; Pulikesi, M; Elango, D; Ramamurthi, V; Sivanesan, S

    2006-02-06

    Removal of Acid Red 151 from aqueous solution at different dye concentrations, adsorbent doses and pH has been studied. The bentonite clay has been modified using cationic surfactants, which has been confirmed using XRD and FT-IR analyses. Experimental result has shown that the acidic pH favours the adsorption. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. The adsorption capacity has been found to be 357.14 and 416.66 mg g(-1) for the cetyldimethylbenzylammonium chloride-bentonite (CDBA-bent) and cetylpyridinium chloride-bentonite (CP-bent), respectively. Kinetic studies show that the adsorption followed second-order kinetics.

  16. Boric acid adsorption on humic acids: Ab initio calculation of structures, stabilities, 11B NMR and 11B, 10B isotopic fractionations of surface complexes

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2006-10-01

    Boric acid, B(OH) 3, forms complexes in aqueous solution with a number of bidentate O-containing ligands, HL -, where H 2L is C 2O 4H 2 (oxalic acid), C 3O 4H 4 (malonic acid), C 2H 6O 2 (ethylene glycol), C 6H 6O 2 (catechol), C 10H 8O 2 (dioxynaphthalene) and C 2O 3H 4 (glycolic acid). McElligott and Byrne [McElligott, S., Byrne, R.H., 1998. Interaction of B(OH)30 and HCO3- in seawater: Formation of B(OH)CO3-. Aquat. Geochem.3, 345-356.] have also found B(OH) 3 to form an aqueous complex with HCO3-1. Recently Lemarchand et al. [Lemarchand, E., Schott, J., Gaillardeet, J., 2005. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochim. Cosmochim. Acta69, 3519-3533] have studied the formation of surface complexes of B(OH) 3 on humic acid, determining 11B NMR shifts and fitted values of formation constants, and 11B, 10B isotope fractionations for a number of surface complexation models. Their work helps to clarify both the nature of the interaction of boric acid with the functional groups in humic acid and the nature of some of these coordinating sites on the humic acid. The determination of isotope fractionations may be seen as a form of vibrational spectroscopy, using the fractionating element as a local probe of the vibrational spectrum. We have calculated quantum mechanically the structures, stabilities, vibrational spectra, 11B NMR spectra and 11B, 10B isotope fractionations of a number of complexes B(OH) 2L - formed by reactions of the type: B(OH)3+HL-⇒B(OH)2L+HO using a 6-311G(d,p) basis set and the B3LYP method for determination of structures, vibrational frequencies and isotopic fractionations, the highly accurate Complete Basis Set-QB3 method for calculating the free energies and the GIAO HF method with a 6-311+G(2d,p) basis for the NMR shieldings. The calculations indicate that oxalic acid, malonic acid, catechol and glycolic acid all form stable complexes (Δ G < 0 for Reaction (1

  17. Graphene oxide and adsorption of chloroform: A density functional study

    NASA Astrophysics Data System (ADS)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth

    2016-05-01

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  18. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  19. Adsorption of crude oil on anhydrous and hydrophobized vermiculite.

    PubMed

    da Silva, Umberto G; de F Melo, Marcus A; da Silva, Adaílton F; de Farias, Robson F

    2003-04-15

    This publication reports the adsorption of crude oil on vermiculite samples, expanded and hydrophobized with carnauba (Copernícia Cerífera) wax. The adsorption studies were performed by using columns filled with the vermiculite matrices and by dispersion of the vermiculite samples in an oil-water (50 ppm of oil) emulsion. The hydrate vermiculite exhibits a very low adsorption capacity against crude oil. On the other hand, anhydrous (expanded) and hydrophobized matrices show a high adsorption capacity. The 10% hydrophobized matrix show a 50% increased adsorption capacity, in comparison with the expanded one. For adsorption performed in the water-oil emulsion, saturation of the solid hydrophobized matrix is achieved after 60 min. The hydrophobized samples exhibit adsorption factors in the 0.7-1.0 range.

  20. In vitro adsorption of tilidine HCl by activated charcoal.

    PubMed

    Cordonnier, J A; Van den Heede, M A; Heyndrickx, A M

    In vitro studies were carried out in order to determine the adsorption of tilidine HCl, a narcotic analgesic, by activated charcoal (max. adsorption capacity 185.5 mg/g of charcoal). The path of the adsorption isotherms at pH 1.2 and 7.5 suggests that the in vivo adsorption of tilidine HCl may be increased when the drug passes from the stomach to the intestine, unless the intestinal content exerts a displacing effect. Nevertheless, the adsorption was dependent on the quantity of activated charcoal used, becoming more complete when the quantity of activated charcoal was increased. The effects of additives on the adsorption capacity of activated charcoal were also investigated in vitro. Ethanol, sorbitol and sucrose significantly reduced drug adsorption, while cacao powder, milk and starch had no effect on tilidine adsorption. At an acid pH, Federa Activated Charcoal significantly adsorbed more drug than either Norit A or Activated Charcoal Merck.

  1. Multiscale Study of Hydrogen Adsorption on Six Designed Covalent Organic Frameworks Based on Porphyrazine, Cyclobutane and Scandium

    NASA Astrophysics Data System (ADS)

    Li, Le-Le; Gao, Teng-Fei; Zhang, Ruan-Yu; Zhang, Hong

    2014-09-01

    The first-principles method of hydrogen adsorption is used to investigate the interaction of H2 with the scandium-porphyrazine (Sc-Pz) and porphyrazine (Pz) clusters. The result shows that the interaction of H2 with Sc-Pz is stronger than with Pz. Then grand canonical Monte Carlo simulations are used to investigate hydrogen adsorption in six designed covalent organic frameworks (COFs), which are designed based on porphyrazine, cyclobutane and scandium. When the pressure is from 0.1 to 100 bar and the temperature is 298 K and 77 K, the hydrogen adsorption capacities of the six COFs are calculated. We further study the importance of Sc and fillers to improve the H2 uptake in the modified COFs by analyzing the isosteric heat of hydrogen adsorption.

  2. A first-principles study of Hg adsorption on Pd(1 1 1) and Pd/γ-Al2O3(1 1 0) surfaces

    NASA Astrophysics Data System (ADS)

    Geng, Lu; Han, Lina; Cen, Wanglai; Wang, Jiancheng; Chang, Liping; Kong, Dejin; Feng, Gang

    2014-12-01

    Spin-polarized density functional theory calculations were carried out to investigate the adsorption of Hgn (n = 1-3) on the perfect, step and vacancy-defective Pd(1 1 1) surfaces as well as the Pd/γ-Al2O3(1 1 0) surface. It is found that Hg atoms prefer to adsorb on the hollow sites on Pd(1 1 1) surfaces. The adsorption of Hg on the step and vacancy-defective Pd(1 1 1) surfaces is stronger than on the perfect Pd(1 1 1) surface, which indicates that the existence of vacancy and step defects can enhance the mercury adsorption activity of Pd adsorbents. As indicated by the calculated adsorption energies, the mercury adsorption on γ-Al2O3 is weak. The γ-Al2O3 supported single Pd atom shows as good Hg adsorption activity as the perfect Pd(1 1 1) surface at low Hg coverage, while more coordination unsaturated active Pd atoms is needed to achieve high Hg adsorption capacity. In addition, it was also found that the Hg adsorption on Pd/γ-Al2O3 weakens the binding of Pd to the γ-Al2O3 surface.

  3. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  4. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    NASA Astrophysics Data System (ADS)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  5. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  6. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers.

    PubMed

    Sun, Yubing; Wu, Zhen-Yu; Wang, Xiangxue; Ding, Congcong; Cheng, Wencai; Yu, Shu-Hong; Wang, Xiangke

    2016-04-19

    The adsorption mechanism of U(VI) and Eu(III) on carbonaceous nanofibers (CNFs) was investigated using batch, IR, XPS, XANES, and EXAFS techniques. The pH-dependent adsorption indicated that the adsorption of U(VI) on the CNFs was significantly higher than the adsorption of Eu(III) at pH < 7.0. The maximum adsorption capacity of the CNFs calculated from the Langmuir model at pH 4.5 and 298 K for U(VI) and Eu(III) were 125 and 91 mg/g, respectively. The CNFs displayed good recyclability and recoverability by regeneration experiments. Based on XPS and XANES analyses, the enrichment of U(VI) and Eu(III) was attributed to the abundant adsorption sites (e.g., -OH and -COOH groups) of the CNFs. IR analysis further demonstrated that -COOH groups were more responsible for U(VI) adsorption. In addition, the remarkable reducing agents of the R-CH2OH groups were responsible for the highly efficient adsorption of U(VI) on the CNFs. The adsorption mechanism of U(VI) on the CNFs at pH 4.5 was shifted from inner- to outer-sphere surface complexation with increasing initial concentration, whereas the surface (co)precipitate (i.e., schoepite) was observed at pH 7.0 by EXAFS spectra. The findings presented herein play an important role in the removal of radionuclides on inexpensive and available carbon-based nanoparticles in environmental cleanup applications.

  7. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    PubMed

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-03-08

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m(2)/g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications.

  8. Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones.

    PubMed

    Ahmed, Muthanna J; Theydan, Samar K

    2012-10-01

    Adsorption capacity of an agricultural waste, palm-tree fruit stones (date stones), for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) at different temperatures was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m2/g and 475.88 mg/g, respectively. The effects of pH (2-12), adsorbent dose (0.6-0.8 g/L) and contact time (0-150 min) on the adsorptive removal process were studied. Maximum removal percentages of 89.95% and 92.11% were achieved for Ph and PNPh, respectively. Experimental equilibrium data for adsorption of both components were analyzed by the Langmuir, Freundlich and Tempkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm equation with maximum adsorption capacities of 132.37 and 161.44 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both components. The calculated thermodynamic parameters, namely ΔG, ΔH, and ΔS showed that adsorption of Ph and PNPh was spontaneous and endothermic under examined conditions.

  9. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies.

    PubMed

    Diaz-Flores, Paola E; López-Urías, Florentino; Terrones, Mauricio; Rangel-Mendez, J Rene

    2009-06-15

    Carbon nanotubes are novel materials that have been investigated for diverse applications, but only a few studies have been focused on environmental issues. In this work, we report on the efficient adsorption of phenol and cadmium ions on N-doped carbon nanotubes (CNx), which have been modified in air at different temperatures. The pristine and modified CNx nanotubes were characterized by SEM, TGA, elemental analysis and their surface areas were also determined. The adsorption experiments of toxic pollutants were carried out in batch reactors at 25 degrees C. The characterization of modified CNx by these techniques showed an increase in oxygen content and surface area in comparison with the pristine CNx tubes. The individual adsorption capacity was 0.10 and 0.07 mmol/g for phenol and Cd(2+), respectively. The experimental data of the competitive adsorption of phenol and Cd(2+) revealed that the cadmium removal was favored as the phenol concentration increased, whereas the phenol adsorption capacity was slightly affected at any cadmium concentration. These results suggest that modified CNx tubes have a great potential in environmental applications as adsorbents of organic and inorganic compounds in aqueous phases. In addition, first-principles calculations were carried out in order to elucidate the mechanism of Cd(2+) adsorption on CNx.

  10. Adsorption study of anionic reactive dye from aqueous solution to Mg-Fe-CO3 layered double hydroxide (LDH)

    NASA Astrophysics Data System (ADS)

    Ahmed, I. M.; Gasser, M. S.

    2012-10-01

    Mg-Fe-Cl Layered double hydroxides (LDHs) have been prepared using a method involving separate nucleation and aging steps with Mg/Fe = 3. The interlayer anions readily replaced by carbonate are characterized by X-ray diffraction (XRD) and FTIR. The effects of different parameters, such as pH, contact time, concentration of dye and temperature on the capacity and adsorption mechanism of Mg-Fe-CO3-LDH in removing an anionic dye (congo red, CR) from aqueous solution were separately investigated. The results show that Mg-Fe-CO3-LDH is particularly efficient in removing CR and the dye removal increases with decreasing pH. The adsorption of CR on Mg-Fe-CO3-LDH reached equilibrium after 15 min where 100 mg/L CR was removed. The equilibrium isotherm indicates that the adsorption of CR onto Mg-Fe-CO3-LDH fits to Langmuir and Freundlich equation as well. The adsorption data obtained from the Langmuir model gave good values of the determination coefficient and the saturated adsorption capacity of Mg-Fe-CO3-LDH for CR was found to be 104.6 mg/g. The regeneration study indicates that the prepared LDH could be used for several cycles. The thermodynamic parameters have been calculated, and the adsorption process was found to be spontaneous, endothermic in nature and follows a pseudo-second-order kinetic model.

  11. Development of a polyaniline-lignocellulose composite for optimal adsorption of Congo red.

    PubMed

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-04-01

    A polyaniline lignocellulose composite (PLC) was synthesized and used in the removal of Congo red (CR) from aqueous solution. The adsorption process showed good fits to both the pseudo-second-order and pseudo-first-order models and the Redlich Peterson isotherm. Boundary layer diffusion was the rate-limiting step. The adsorption was spontaneous and endothermic. The combined effect of pH and initial dye concentration was antagonistic; the combined effect of initial dye concentration and temperature was synergistic, while the combined effect of pH and temperature was reciprocal. The maximum CR adsorption capacity of PLC was evaluated as 1672.5 mg g(-1). The optimal removal was calculated as 99.85% at pH 4.29, initial dye concentration of 28.5 mg L(-1) and adsorbent dosage of 0.69 g L(-1). The predicted removal capacity showed a good correlation to the experimental results. PLC has demonstrated a superior adsorption capacity to many other adsorbents reported and could be used as an efficient adsorbent for CR removal from industrial wastewater.

  12. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  13. Adsorption of an anionic azo dye by cross-linked chitosan/bentonite composite.

    PubMed

    Liu, Qian; Yang, Bingchao; Zhang, Lujie; Huang, Ruihua

    2015-01-01

    In this study, cross-linked chitosan (CCS)/bentonite (BT) composite was prepared by the intercalation of chitosan in bentonite and the cross-linking reaction between chitosan and glutaraldehyde. CCS/BT composite was characterized by using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analyses (TGA). Their adsorption characteristics were assessed by using an azo dye (Amido Black 10B) as a model adsorbate. The adsorption of Amido Black 10B onto the CCS/BT composite was found to be optimal at pH 2. The adsorption isotherm was well described by the Langmuir model and the maximum adsorption capacity was 323.6 mg/g at 293K and pH 2. Amido Black 10B adsorption kinetics followed a pseudo-second-order kinetic model. The calculated thermodynamic parameters showed that the adsorption of Amido Black 10B by CCS/BT composite was spontaneous and endothermic in nature.

  14. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  15. Theoretical and experimental study of isothiazolinone adsorption onto ordered mesoporous silica

    NASA Astrophysics Data System (ADS)

    Mardones, Lucas E.; Legnoverde, María Soledad; Simonetti, Sandra; Basaldella, Elena I.

    2016-12-01

    Mesoporous silica SBA-15 particles were synthesized in order to evaluate their effectiveness as encapsulating agents for a commercial biocide composed of a mixture of methylisothiazolinone and chloromethylisothiazolinone (MIT/CMIT). Three powdered samples of silica particles having different textural properties, sizes and morphologies were hydrothermally obtained and then characterized by SEM, TEM, SAXS, and nitrogen adsorption-desorption measurements. Adsorption of the biocide on the prepared materials was investigated, and the results showed that adsorption capacities increase as the particle size becomes smaller. Higher biocide amounts were also retained on particles having increased pore size and pore volume. Additionally, a most probable interaction mechanism between MIT/CMIT and SBA-15 is proposed on the basis of molecular modeling calculations. The theoretical approach indicates that two adsorption geometries with comparable minimum levels of strength can be adopted by the biocide: planar adsorption when the biocide molecule rings are adsorbed on the silica surface and vertical adsorption when the O atom of the MIT/CMIT interacts with the H atom of silanols.

  16. Adsorption of cadmium on husk of Lathyrus sativus: physico-chemical study.

    PubMed

    Panda, G C; Das, S K; Chatterjee, S; Maity, P B; Bandopadhyay, T S; Guha, A K

    2006-06-01

    Adsorption of cadmium (II) from aqueous solution by low-cost biosorbents was investigated. Husk of Lathyrus sativus (HLS) was found to be the most efficient in this respect and removed approximately 95% of the metal. The influence of pH, temperature, contact time and metal ion concentration on the adsorption process by HLS was studied. Hydrogen ion concentration of the solution greatly influenced the process with an optimum at pH 5.0-6.0, whereas temperature had no significant effect. The process was very fast and more than 90% of the total adsorption took place within the first 5 min and was found to follow pseudo-second order rate kinetics. The adsorption data can better be explained by Langmuir isotherm model and the calculated maximum adsorption capacity was 35 mg/g of HLS at pH 5.0 and 30 degrees C. Scanning electron micrographs showed that cadmium was present as micro precipitate on the surface of the adsorbent. Cadmium replaced calcium of the biomass as revealed from the EDX analysis indicating that the adsorption proceeds through ion exchange mechanism. Cadmium could be desorbed from the loaded biomass by lowering pH approximately 1.0 with mineral acid.

  17. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon.

    PubMed

    Bakkal Gula, C; Bilgin Simsek, E; Duranoglu, D; Beker, U

    2015-01-01

    The present paper discusses response surface methodology as an efficient approach for predictive model building and optimization of As(V) adsorption on activated carbon derived from a food industry waste: peach stones. The objectives of the study are application of a three-factor 2³ full factorial and central composite design technique for maximizing As(V) removal by produced activated carbon, and examination of the interactive effects of three independent variables (i.e., solution pH, temperature, and initial concentration) on As(V) adsorption capacity. Adsorption equilibrium was investigated by using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. First-order and second-order kinetic equations were used for modeling of adsorption kinetics. Thermodynamic parameters (ΔG °, ΔH °, and ΔS °) were calculated and used to explain the As(V) adsorption mechanism. The negative value of ΔH (-7.778 kJ mol⁻¹) supported the exothermic nature of the sorption process and the Gibbs free energy values (ΔG°) were found to be negative, which indicates that the As(V) adsorption is feasible and spontaneous.

  18. ZK-5: a CO₂-selective zeolite with high working capacity at ambient temperature and pressure.

    PubMed

    Liu, Qingling; Pham, Trong; Porosoff, Marc D; Lobo, Raul F

    2012-11-01

    The increased carbon dioxide concentration in the atmosphere caused by combustion of fossil fuels has been a leading contributor to global climate change. The adsorption-driven pressure or vacuum swing (PSA/VSA) processes are promising as affordable means for the capture and separation of CO₂. Herein, an 8-membered-ring zeolite ZK-5 (Framework Type Code: KFI) exchanged with different cations (H⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺) was synthesized as novel CO₂ adsorbent. The samples were characterized by SEM, energy-dispersive X-ray spectroscopy (EDAX), XRD, and gas adsorption (CO₂ and N₂). The Toth adsorption model was used to describe the CO₂ adsorption isotherms, and the isosteric heats of adsorption were calculated. CO₂ capture adsorbent evaluation criteria such as working capacity, regenerability and CO₂/N₂ selectivity were applied to evaluate the zeolite adsorbents for PSA/VSA applications. The in situ FTIR CO₂ adsorption spectra show that physisorption accounts for the largest fraction of the total CO₂ adsorbed. The CO₂ adsorption analysis shows that Mg-ZK-5 is the most promising adsorbent for PSA applications with the highest working capacity (ΔN(CO₂)=2.05 mmol g⁻¹), excellent selectivity (α(CO₂/N₂)=121), and low isosteric heat. Li-, Na- and K-ZK-5 with good working capacity (ΔN(CO₂)=1.55-2.16 mmol g⁻¹) and excellent selectivity (α(CO₂/N₂)=103-128) are promising CO₂ adsorbents for the VSA working region.

  19. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.

    PubMed

    Thakur, Sourbh; Pandey, Sadanand; Arotiba, Omotayo A

    2016-11-20

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) cationic dye from aqueous solution using organic/inorganic hydrogel nanocomposite of titania incorporated sodium alginate crosslinked polyacrylic acid (SA-cl-poly(AA)-TiO2). The hydrogel was prepared by graft copolymerization of acrylic acid (AA) onto sodium alginate (SA) biopolymer in the presence of a crosslinking agent, a free radical initiator and TiO2 nanoparticles. The hydrogel exhibited a high swelling capacity of 412.98g/g. The factors influencing adsorption capacity of the absorbents such as pH of the dye solutions, initial concentration of the dye, amount of absorbents, and temperature were investigated and used to propose a possible mechanism of adsorption. The adsorption process concurs with a pseudo-second-order kinetics and with Langmuir isotherm equation. A very high adsorption capacity (Qmax=2257.36 (mg/g)) and a correlation coefficient of 0.998 calculated from isotherm equations show the high efficiency of the absorbent and thus expected to be a good candidate as an absorbent for water treatment.

  20. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  1. Adsorption isotherms of charged nanoparticles.

    PubMed

    Dos Santos, Alexandre P; Bakhshandeh, Amin; Diehl, Alexandre; Levin, Yan

    2016-10-19

    We present theory and simulations which allow us to quantitatively calculate the amount of surface adsorption excess of charged nanoparticles onto a charged surface. The theory is very accurate for weakly charged nanoparticles and can be used at physiological concentrations of salt. We have also developed an efficient simulation algorithm which can be used for dilute suspensions of nanoparticles of any charge, even at very large salt concentrations. With the help of the new simulation method, we are able to efficiently calculate the adsorption isotherms of highly charged nanoparticles in suspensions containing multivalent ions, for which there are no accurate theoretical methods available.

  2. Adsorption of phenolic compounds by organoclays: implications for the removal of organic pollutants from aqueous media.

    PubMed

    Park, Yuri; Ayoko, Godwin A; Kurdi, Róbert; Horváth, Erzsébet; Kristóf, Janos; Frost, Ray L

    2013-09-15

    Montmorillonite (MMT) was converted to organoclays by intercalation of cationic surfactants into its interlayer space. Two types of organoclays were prepared from different surfactants (DDTMA and DDDMA) at different surfactant loadings, and the structural changes in the clays investigated using various techniques. The arrangements of surfactant molecules in the interlayer space was visually aided by molecular mechanical calculation (MM calculation), and the adsorption capacities of MMT and the organoclays for the removal of p-chlorophenol (PCP) and p-nitrophenol (PNP) from aqueous solutions were tested under different conditions. Two adsorption isotherm models (Langmuir and Freundlich isotherms) were used to determine the best fit model and the Freundlich isotherm was found to provide better fit for both PCP and PNP. Due to its hydrophobic properties, the adsorption is more favourable for PNP than PCP. Overall, the adsorption capacity of the organoclays was significantly improved by intercalation with large surfactant molecules as well as highly loaded surfactants as the intercalation with large surfactant molecules created the partitioning phase, which strongly attracted large amounts of organic pollutants. Possible mechanisms and the implications of the results for the use of these organoclays as adsorbents for the removal of phenols from the environment are discussed.

  3. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series.

    PubMed

    Rodríguez-Albelo, L Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A Rabdel; Calero, Sofia; Navarro, Jorge A R

    2017-02-15

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  4. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    NASA Astrophysics Data System (ADS)

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A. R.

    2017-02-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects.

  5. H{sub 2} adsorption in Li-decorated porous graphene

    SciTech Connect

    Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh; Munieswaran, P.; Saranya, C.; Mahendran, M.

    2015-06-24

    Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H{sub 2}) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H{sub 2} molecules get adsorbed on each Li atom. The maximum H{sub 2} storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE’s revised target for the on-board vehicles. The average H{sub 2} adsorption binding energy is 0.535 eV/H{sub 2}, which lies between 0.2-0.6 eV/H{sub 2} that is required for achieving adsorption and desorption at near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.

  6. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series

    PubMed Central

    Rodríguez-Albelo, L. Marleny; López-Maya, Elena; Hamad, Said; Ruiz-Salvador, A. Rabdel; Calero, Sofia; Navarro, Jorge A.R.

    2017-01-01

    The widespread emissions of toxic gases from fossil fuel combustion represent major welfare risks. Here we report the improvement of the selective sulfur dioxide capture from flue gas emissions of isoreticular nickel pyrazolate metal organic frameworks through the sequential introduction of missing-linker defects and extra-framework barium cations. The results and feasibility of the defect pore engineering carried out are quantified through a combination of dynamic adsorption experiments, X-ray diffraction, electron microscopy and density functional theory calculations. The increased sulfur dioxide adsorption capacities and energies as well as the sulfur dioxide/carbon dioxide partition coefficients values of defective materials compared to original non-defective ones are related to the missing linkers enhanced pore accessibility and to the specificity of sulfur dioxide interactions with crystal defect sites. The selective sulfur dioxide adsorption on defects indicates the potential of fine-tuning the functional properties of metal organic frameworks through the deliberate creation of defects. PMID:28198376

  7. The effects of fluorine substitution on the chemical properties and inhibitory capacity of Donepezil anti-Alzheimer drug; density functional theory and molecular docking calculations.

    PubMed

    Khosravan, Azita; Marani, Safora; Sadeghi Googheri, Mohammad Sadegh

    2017-01-01

    Drug fluorination has the potential to reproduce useful drugs with decreasing the side effect of them. Identifying the effect of this improvement on the chemical properties and biological interactions of drug symbolizes a meaningful progress in drug design. Here the fluorination of Donepezil as an anti-Alzheimer drug, including 7 fluorinated derivatives of it, was investigated computationally. In the first part of our calculations, the most important chemical properties of drug that affects the drug efficiency were investigated by applying the M06/6-31g (d, p) and M062X/6-31g (d, p) levels of theories. Findings showed that the fluorine substitution changed the drug stability as altered the solubility and molecular polarity. Furthermore, the intramolecular hydrogen bonding, charge distribution and electron delocalization of the drug were affected by this replacement. In the second section, the effect of fluorination on the drug⋯enzyme interactions was evaluated by using two effective methods Based on the molecular docking and density functional theory (DFT) calculations fluorine substitution influenced the Donepezil⋯Acetylcholinesterase interactions. Calculated binding energies by two computational methods displayed that the fluorine replacement changed the binding affinity of drug. Finally, the most significant non-bonded interactions between drugs and involved residues were investigated by bond length data analysis.

  8. [Heavy metal adsorption research on different size fractions of sediment in the Baotou section of the Yellow River by using modified fractal dimension model].

    PubMed

    Xue, Hong-Xi; He, Jiang; Fan, Qing-Yun; Lü, Chang-Wei; Wang, Xia; Liang, Ying; Sun, Ying; Shen, Li-Li; Sa, Ru-Li

    2008-01-01

    The expression of surface fractal dimension (SFD) for size fractions of the Yellow River sediment was deduced. Based on the expression, the SFD value of different size fractions of the sediment was calculated. The SFD value of the sediment in the Baotou section of the Yellow River is 1.91, and the SFD value of the sediment smaller than 63 microm is 1.36, indicating strong ablation and separating ability of the Yellow River water. Using the modified fractal model, Freundlich model and Langmuir model to fit the data of heavy metal (Cu, Pb, Zn and Cd) adsorption, it is found that the modified fractal model is more available. And the adsorptive thermodynamics is better described by combining the modified fractal model and metastable equilibrium adsorption (MEA) theory. The variation extents of equilibrium adsorption capacity influenced by different grain size are ranked as Cu > Pb > Zn approximately equal to Cd. For each selected heavy metal, the higher initial concentration is, the stronger variation of adsorption capacity will be. The adsorptions of Cu and Pb are mainly associated with mineral composition of the sediment, while the adsorptions of Zn and Cd are mainly associated with physical characteristics of the sediment surface.

  9. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies.

    PubMed

    Karagozoglu, B; Tasdemir, M; Demirbas, E; Kobya, M

    2007-08-17

    In this study, sepiolite, fly ash and apricot stone activated carbon (ASAC) were used as adsorbents for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the basic dye (Astrazon Blue FGRL) from aqueous solutions at various concentrations (100-300 mg/L), adsorbent doses (3-12 g/L) and temperatures (303-323 K). The result showed that the adsorption capacity of the dye increased with increasing initial dye concentration, adsorbent dose and temperature. Three kinetic models, the pseudo-first-order, second-order, intraparticle diffusion, were used to predict the adsorption rate constants. The kinetics of adsorption of the basic dye followed pseudo-second-order kinetics. Equations were developed using the pseudo-second-order model which predicts the amount of the basic dye adsorbed at any contact time, initial dye concentration and adsorbent dose within the given range accurately. The adsorption equilibrium data obeyed Langmuir isotherm. The adsorption capacities (Q0) calculated from the Langmuir isotherm were 181.5 mg/g for ASAC, 155.5 mg/g for sepiolite and 128.2 mg/g for fly ash at 303 K. Thermodynamical parameters were also evaluated for the dye-adsorbent systems and revealed that the adsorption process was endothermic in nature.

  10. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption

    SciTech Connect

    Mason, JA; Sumida, K; Herm, ZR; Krishna, R; Long, JR

    2011-08-01

    Two representative metal-organic frameworks, Zn4O(BTB)(2)(BTB3- = 1,3,5-benzenetribenzoate; MOF-177) and Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), are evaluated in detail for their potential use in post-combustion CO2 capture via temperature swing adsorption (TSA). Low-pressure single-component CO2 and N-2 adsorption isotherms were measured every 10 degrees C from 20 to 200 degrees C, allowing the performance of each material to be analyzed precisely. In order to gain a more complete understanding of the separation phenomena and the thermodynamics of CO2 adsorption, the isotherms were analyzed using a variety of methods. With regard to the isosteric heat of CO2 adsorption, Mg-2(dobdc) exhibits an abrupt drop at loadings approaching the saturation of the Mg2+ sites, which has significant implications for regeneration in different industrial applications. The CO2/N-2 selectivities were calculated using ideal adsorbed solution theory (IAST) for MOF-177, Mg-2(dobdc), and zeolite NaX, and working capacities were estimated using a simplified TSA model. Significantly, MOF-177 fails to exhibit a positive working capacity even at regeneration temperatures as high as 200 degrees C, while Mg-2(dobdc) reaches a working capacity of 17.6 wt% at this temperature. Breakthrough simulations were also performed for the three materials, demonstrating the superior performance of Mg-2(dobdc) over MOF-177 and zeolite NaX. These results show that the presence of strong CO2 adsorption sites is essential for a metal-organic framework to be of utility in post-combustion CO2 capture via a TSA process, and present a methodology for the evaluation of new metal-organic frameworks via analysis of single-component gas adsorption isotherms.

  11. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  12. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.

    PubMed

    El-Bayaa, A A; Badawy, N A; Alkhalik, E Abd

    2009-10-30

    It is important to assess the effects of ionic strength when studying adsorption of metal ions on clay mineral because the background salt may complex metals and compete for adsorption sites. The sorption behavior of vermiculite pure clay mineral has been studied with respect to copper and chromium as a function of ionic strength in single metal ion solutions. Background electrolytes used in these experiments were KCl, NaCl and NH4Cl. The studies were conducted by a batch method at temperature 25 degrees C. The adsorption capacity and adsorption energy for each metal ion were calculated from the Langmuir adsorption isotherm. Also the competitive adsorption behavior of some heavy metal ions such as Cr(III), Cu(II), Ni(II) and Co(II) by vermiculite pure clay mineral was studied. The result shows the competition between coexisting heavy metal cations for the same adsorption sites of an adsorbent. However, when trivalent metal was added to the solution it competitively replaced divalent ions that had been previously adsorbed onto the vermiculite pure clay mineral, resulting in the desorption of these metals into the solution.

  13. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.

    PubMed

    Chen, Tao; Yan, Chunjie; Wang, Yixia; Tang, Conghai; Zhou, Sen; Zhao, Yuan; Ma, Rui; Duan, Ping

    2015-01-01

    This work aims to investigate the adsorption of Ce(III) onto chelating resin based on activated carbon (CRAC). The CRAC adsorbent was prepared from activated carbon (AC) followed by oxidation, silane coupling, ammoniation and phosphorylation, and characterized by Fourier transform-infrared spectrometry, nitrogen adsorption measurements and scanning electron microscopy. The effects of solution pH, adsorbent dosage and contact time were studied by batch technique. Langmuir and Freundlich isotherms were used to describe the adsorption behaviour of Ce(III) by CRAC, and the results showed that the adsorption behaviour well fitted the Langmuir model. The maximum uptake capacity (qmax) calculated by using the Langmuir equation for cerium ions was found to be 94.34 mg/g. A comparison of the kinetic models and the overall experimental data was best fitted with the type 1 pseudo second-order kinetic model. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the adsorption for Ce(III) was feasible, spontaneous and exothermic at 25-45 °C. The CRAC showed an excellent adsorptive selectivity towards Ce(III). Moreover, more than 82% of Ce(III) adsorbed onto CRAC could be desorbed with HCl and could be used several times.

  14. Parametric study of a silica gel-water adsorption refrigeration cycle -- The influence of thermal capacitance and heat exchanger UA-values on cooling capacity, power density, and COP

    SciTech Connect

    Boelman, E.C.; Saha, B.B.; Kashiwagi, Takao

    1997-12-31

    The influence of heat exchanger UA-values (adsorber/desorber, evaporator, and condenser) is investigated for an adsorption chiller, with consideration given to the thermal capacitance of the adsorber/desorber by means of a lumped-parameter cycle simulation model developed by the authors and co-workers for the single-stage silica gel-water adsorption chiller. The closed-cycle-type chiller, for use in air conditioning, is driven by low-grade waste heat (85 C [185 F]) and cooled by water at 31 C (88 F) and operates on relatively short cycle times (420 seconds adsorption/desorption; 30 second adsorber/desorber sensible cooling and heating). The results showed cycle performance to be considerably affected by the thermal capacitance and UA-value of the adsorber/desorber, which is attributed to the severe sensible cooling/heating requirements resulting from batched cycle operation. The model is also sensitive to the evaporator UA-value--but to a lesser extent. The condenser UA-value is the least sensitive parameter due to the working pair adsorption behavior in the temperature range defined for desorption and condensation.

  15. Adsorption of carbon black using carboxymethyl chitosan in deinking process

    NASA Astrophysics Data System (ADS)

    Muryeti, Budimulyani, Estuti; Sinurat, Ellya

    2017-03-01

    The study about synthesis, characterization, and application carboxymethyl chitosan as adsorbent in deinking process was conducted. Adsorption of carbon black onto carboxymethyl chitosan has been investigated in a batch system. This research was conducted to obtain the adsorption capacity of carboxymethyl chitosan. The experiments were carried out to study the effect of carbon black concentration, contact time and dosage of carboxymethyl chitosan to the adsorption capacity of carboxymethyl chitosan. The optimum condition of carbon black adsorption was achieved at contact time of 60 min and weight doses of 1.0 g. The adsorption capacity of carboxymethyl chitosan was 14.34 mg/g and the adsorption effectivity was 70.54%. The result indicates that carboxymethyl chitosan could be used as adsorbent of carbon black in deinking process.

  16. [Adsorption dynamics and breakthrough characteristics based on the fluidization condition].

    PubMed

    Wang, Jun; Wang, Yao; Huang, Xing; Yuan, Yi-Long; Chen, Rui-Hui; Zhou, Hang; Zhou, Dan-Dan

    2014-02-01

    Few studies on the adsorption dynamics and breakthrough characteristics based on the fluidization condition have been reported. In a fluidized bed adsorption reactor with phenol as the adsorbate and granular activated carbon as the adsorbent, the adsorption efficiency, adsorption dynamic characteristics, adsorption breakthrough curves and adsorption capacities were studied and compared with those of a fixed bed operated under the same conditions. The results showed that the adsorption efficiencies exceeded 93% in 5 min in both the fluidized conditions and fixed conditions at the superficial velocities of 8 mm x s(-1) and 13 mm x s(-1). Meanwhile, the above adsorption reactions fitted to Pseudo-second-order with linear correlation coefficients greater than 0.999. The adsorption capacity of fluidized conditions was 8.77 mg x g(-1) and 24.70 mg x g(-1) at the superficial velocities of 6 mm x s(-1) and 8 mm x s(-1). Generally, the fluidized bed reactor showed a higher adsorption efficiency and greater adsorption capacity than the fixed bed reactor.

  17. COMPETITIVE ADSORPTION OF VOCS AND BOM: THE ROLE OF MOLECULAR OXYGEN

    EPA Science Inventory

    In this study, the presence of background organic matter (BOM) was seen to reduce the adsorptive capacity of carbon for chloroform, chlorobenzene, and dibromochloropropane. Adsorption of these compounds was further reduced under oxic conditions. This additional reduction in cap...

  18. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    NASA Astrophysics Data System (ADS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  19. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  20. Comparative study of polymer containing beta-cyclodextrin and -COOH for adsorption toward aniline, 1-naphthylamine and methylene blue.

    PubMed

    Zhao, Dong; Zhao, Liang; Zhu, Cheng-Shen; Shen, Xiangyu; Zhang, Xiaozhuan; Sha, Baofeng

    2009-11-15

    Three different polymers P1, P2 and P3 (P1 containing both beta-CD and -COOH, P2 containing beta-CD and P3 containing -COOH) were synthesized and applied to adsorption toward aniline, 1-naphthylamine and methylene blue. The concentrations (C) before and after adsorption were determined and the adsorption capacities (q) of P1, P2 and P3 were calculated. The maximum adsorption capacities (q(max)) toward aniline: q(max) (P1)=104 micromol g(-1), q(max) (P2)=14.9 micromol g(-1) and q(max) (P3)=53.1 micromol g(-1); toward 1-naphthylamine: q(max) (P1)=184 micromol g(-1), q(max) (P2)=53.8 micromol g(-1) and q(max) (P3)=125 micromol g(-1); toward methylene blue: q(max) (P1)=200 micromol g(-1), q(max) (P2)=12.7 micromol g(-1) and q(max) (P3)=215 micromol g(-1). P1 exhibited remarkable adsorption toward all the three adsorbates. P2 was almost equal to P1 in adsorption toward methylene blue, but was less efficient than P1 in adsorption toward aniline and 1-naphthylamine. P3 also exhibited considerable adsorption toward aniline and 1-naphthylamine, but was inefficient toward methylene blue. P1 was obtained from nontoxic materials and through environment friendly procedures, so it was potentially an efficient and green adsorbent for water purification.

  1. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    SciTech Connect

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  2. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was first order with respect to both the initial Al concentration and the clay surface area. Changes in pH within this narrow range had virtually no effect on adsorption rate. This zero order reaction dependence suggested that the H/sup +/, compared to Al, has a weak affinity for the surface. The rates of adsorption decreased in the order of montmorillonite > kaolinite > vermiculite when compared on the basis of equal surface areas, but changed to kaolinite > montmorillonite > vermiculite when the clays were compared on an equal exchange capacity basis. The calculated apparent activation energies were < 32 kJ mol/sup -1/, indicating that over the temperature range of the study the adsorption process is only marginally temperature sensitive. The mechanism is governed by a simple electrostatic cation exchange involving outer sphere complexes between adsorbed Al and the clay surface. Vermiculite, may have a second reaction step governed by both electrostatic attraction and internal ion diffusion. Equilibrium constants for the formation of an adsorbed Al clay complex were also estimated and are 10/sup 5.34/, 10/sup 5.18/, and 10/sup 4.94/ for kaolinite, montmorillonite, and vermiculite, respectively, suggesting that these clays could play a significant role in controlling soil solutions Al concentrations.

  3. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments.

  4. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  5. Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A.

    PubMed

    Saha, Dipendu; Bao, Zongbi; Jia, Feng; Deng, Shuguang

    2010-03-01

    Adsorption equilibrium and kinetics of CO(2), CH(4), N(2)O, and N(2) on two newly discovered adsorbents, metal-organic frameworks MOF-5 and MOF-177 and one traditional adsorbent, zeolite 5A were determined to assess their efficacy for CO(2), CH(4), and N(2)O removal from air and separation of CO(2) from CH(4) in pressure swing adsorption processes. Adsorption equilibrium and kinetics data for CO(2), CH(4), N(2)O, and N(2) on all three adsorbents were measured volumetrically at 298K and gas pressures up to 800 Torr. Adsorption equilibrium capacities of CO(2) and CH(4) on all three adsorbents were determined gravimetrically at 298 K and elevated pressures (14 bar for CO(2) and 100 bar for CH(4)). The Henry's law and Langmuir adsorption equilibrium models were applied to correlate the adsorption isotherms, and a classical micropore diffusion model was used to analyze the adsorption kinetic data. The adsorption equilibrium selectivity was calculated from the ratio of Henry's constants, and the adsorbent selection parameter for pressure swing adsorption processes were determined by combining the equilibrium selectivity and working capacity ratio. Based on the selectivity and adsorbent selection parameter results, zeolite 5A is a better adsorbent for removing CO(2) and N(2)O from air and separation of CO(2) from CH(4), whereas MOF-177 is the adsorbent of choice for removing CH(4) from air. However, both MOF adsorbents have larger adsorption capacities for CO(2) and CH(4) than zeolite 5A at elevated pressures, suggesting MOF-5 and MOF-177 are better adsorbents for CO(2) and CH(4) storage. The CH(4) adsorption capacity of 22 wt.% on MOF-177 at 298K and 100 bar is probably the largest adsorption uptake of CH(4) on any dry adsorbents. The average diffusivity of CO(2), CH(4) and N(2)O in MOF-5 and MOF-177 is in the order of 10(-9) m(2)/s, as compared to 10(-11) m(2)/s for CO(2), CH(4) and N(2)O in zeolite 5A. The effects of gas pressure on diffusivity for different adsorabte

  6. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores.

  7. Competitive adsorption of VOCcs and BOM: Oxic and anoxic environments

    SciTech Connect

    Sorial, G.A.; Papadimas, S.P.; Suidan, M.T.; Speth, T.F.

    1994-01-01

    The effect of the presence of molecular oxygen on the adsorption of volatile organic compounds (VOCs) in distilled Milli-Q water and in water supplemented with background organic matter (BOM) is evaluated. Experiments are conducted under conditions where molecular oxygen is present in the test environment (oxic adsorption), and where oxygen is absent from the test environment (anoxic adsorption). Adsorption isotherms for tetrachloroethylene (PCE) and trichloroethylene (TCE) in Milli-Q water showed no impact of the presence of oxygen on their adsorption behavior, while adsorption isotherms for cis-1,2-dichloroethylene (DCE) showed higher capacities under toxic conditions. The Ideal Adsorbed Solution Theory (IAST) successfully predicted the VOCs anoxic adsorption isotherms in BOM. However, the IAST model did not predict the VOCs oxic adsorption isotherms in BOM.

  8. Factors affecting drug adsorption on beta zeolites.

    PubMed

    Pasti, Luisa; Sarti, Elena; Cavazzini, Alberto; Marchetti, Nicola; Dondi, Francesco; Martucci, Annalisa

    2013-05-01

    The adsorption behaviour of three commonly used drugs, namely ketoprofen, hydrochlorothiazide and atenolol, from diluted aqueous solutions on beta zeolites with different SiO2/Al2O3 ratio (i.e. 25, 38 and 360) was investigated by changing the ionic strength and the pH, before and after thermal treatment of the adsorbents. The selective adsorption of drugs was confirmed by thermogravimetry and X-ray diffraction. The adsorption capacity of beta zeolites was strongly dependent on both the solution pH and the alumina content of the adsorbent. Such a remarkable difference was interpreted as a function of the interactions between drug molecules and zeolite surface functional groups. Atenolol was readily adsorbed on the less hydrophobic zeolite, under pH conditions in which electrostatic interactions were predominant. On the other hand, ketoprofen adsorption was mainly driven by hydrophobic interactions. For undissociated molecules the adsorption capability increased with the increase of hydrophobicity.

  9. Zn(II) adsorption from synthetic solution and kaolin wastewater onto vermicompost.

    PubMed

    Jordão, Cláudio Pereira; Fernandes, Raphael Bragança Alves; de Lima Ribeiro, Kamilla; de Souza Nascimento, Bruna; de Barros, Priscila Martins

    2009-03-15

    The adsorption of Zn(II) from both synthetic solution and kaolin industry wastewater by cattle manure vermicompost was studied. The adsorption process was dependent on the various operating variables, viz., solution pH, particle size of the vermicompost, mass of vermicompost/volume of the Zn(II) solution ratio, contact time and temperature. The optimum conditions for Zn adsorption were pH 6.0, particle size of < or = 250 microm, 1 g per 10 mL adsorbent dose, contact time of 4h and temperature of 25 degrees C. Langmuir and Freundlich adsorption isotherms fit well in the experimental data and their constants were evaluated, with R(2) values from 0.95 to 0.99. In synthetic solution, the maximum adsorption capacity of the vermicompost for Zn(2+) ions was 20.48 mg g(-1) at 25 degrees C when the vermicompost dose was 1 g 10 mL(-1) and the initial adjusted pH was 2. The batch adsorption studies of Zn(II) on vermicompost using kaolin wastewater have shown the maximum adsorption capacity was 2.49 mg g(-1) at pH 2 (natural pH of the wastewater). The small values of the constant related to the energy of adsorption (from 0.07 to 0.163 L mg(-1)) indicated that Zn(2+) ions were binded strongly to vermicompost. The values of the separation factor, R(L), which has been used to predict affinity between adsorbate and adsorbent were between 0 and 1, indicating that sorption was very favorable for Zn(II) in synthetic solution and kaolin wastewater. The thermodynamic parameter, the Gibbs free energy, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The DeltaG degrees values were -19.656 kJ mol(-1) and -16.849 kJ mol(-1) for Zn(II) adsorption on vermicompost in synthetic solution at pH 6 and 2, respectively, and -13.275 kJ mol(-1) in kaolin wastewater at pH 2.

  10. Conceptual adsorption models and open issues pertaining to performance assessment

    SciTech Connect

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes.

  11. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jiancheng; Yu, Huafeng; Geng, Lu; Liu, Jianwen; Han, Lina; Chang, Liping; Feng, Gang; Ling, Lixia

    2015-11-01

    The adsorption of Hgn (n = 1-3) on the Au-, Ag-, Cu-substituted Pd(1 1 1) surfaces as well as the PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces has been investigated using spin-polarized density functional theory calculations. It is found that M-substituted Pd(1 1 1) surfaces show as good Hg adsorption capacity as the perfect Pd(1 1 1) at low Hg coverage, while the Hg adsorption capacity is only slightly weakened at high Hg coverage. On the basis of stepwise adsorption energies analysis, it is concluded that M-substituted Pd(1 1 1) surfaces can contribute to the binding of Hg atom on the surfaces at high Hg coverage. The electronic properties of the second metal atoms are the main factor contributes to the Hg adsorption capacity. Gas phase Pd2 shows better Hg adsorption capacity than Pd2/γ-Al2O3, while PdM/γ-Al2O3 can adsorb Hg more efficiently than bare PdM clusters. It suggests that the γ-Al2O3 support can enhance the activity of PdM for Hg adsorption and reduces the activity of Pd2. It is also found that Pd is the main active composition responsible for the interaction of mercury with the surface for PdM/γ-Al2O3 sorbent. Taking Hg adsorption capacity and economic costs into account, Cu addition is a comparatively good candidate for Hg capture.

  12. Thermodynamical and structural insights of orange II adsorption by Mg{sub R}AlNO{sub 3} layered double hydroxides

    SciTech Connect

    Mustapha Bouhent, Mohamed; Derriche, Zoubir; Denoyel, Renaud; Prevot, Vanessa; Forano, Claude

    2011-05-15

    [Mg{sub 1-x} Al{sub x}(OH){sub 2}][(NO{sub 3}){sub x}, nH{sub 2}O] Layered Double Hydroxide (LDH) sorbents with variable Mg/Al molar (R=(1-x)/x) ratios were investigated for adsorption of azo dye, orange II (OII) at various pH and temperature conditions. Mg{sub 2}AlNO{sub 3} displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg{sub 2}AlNO{sub 3} at 40 {sup o}C. Adsorption isotherms have been fitted using the Langmuir model and free energy of adsorption ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}) and entropy ({Delta}S{sup o}) were calculated. The experimental values for {Delta}G{sup o} in temperature range between 10 and 40 {sup o}C were found to be negative indicating that a spontaneous process occurred. Positive calculated enthalpy values, characteristic of an endothermic process were found. Characterization of solids (PXRD, FTIR, UV-vis, TGA/DTA, adsorption isotherm BET analysis, SEM and Zetametry) before and after adsorption showed that adsorption proceeds in two steps. First, adsorption occurs at the LDH surface, followed by intercalation via anion exchange. -- Graphical Abstract: Structural and thermodynamical insight of adsorption/Intercalation of OII in Mg{sub R}Al LDH Display Omitted Highlights: {yields} The nitrate containing hydrotalcite-like compounds (Mg{sub R}AlNO{sub 3} LDH) were prepared by the coprecipitation method. {yields} Adsorption of anionic orange dye(OII) is studied on LDHs at different temperatures. {yields} The adsorption process is well described by the Langmuir isotherm model. {yields} Mg{sub 2}AlNO{sub 3} displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg{sub 2}AlNO{sub 3} at 40 {sup o}C. {yields} Adsorption process does not occur on the surface of the LDH only but an intercalation process is also occurring concomitantly according to the thermodynamical values.

  13. Pseudo Order Kinetics Model to Predict the Adsorption Interaction of Corn-Stalk Adsorbent Surface with Metal Ion Adsorbate Cu (II) and Fe (II)

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Singh, W. B.; Barus, E. S.; Ridho, A.; Rawa, M. R.

    2017-01-01

    The adsorption process using cornstalk as adsorbent was used to remove the single metal ion such as copper ion and cadmium ion. The adsorption kinetics of each contaminant then used to predict the interaction type of metal ion on surface of corn stalk by calculating pseudo order 1st and 2nd. The identification type as chemically or physically interaction was predicted from the quality of r2 by plotting the adsorption capacity (q) and time (t). The r2 were 0.01 and 0.99 for pseudo order 1st and 2nd respectively for Fe (II). The r2 were 0.26 and 0.999 for pseudo order 1st and 2nd respectively for Cu (II). The result of adsorption interaction of metal ion and surface function of corn stalk is chemical type. SEM/EDX confirmed the Cu2+ presence on cornstalk surface.

  14. Thermodynamic features of dioxins' adsorption.

    PubMed

    Prisciandaro, Marina; Piemonte, Vincenzo; di Celso, Giuseppe Mazziotti; Ronconi, Silvia; Capocelli, Mauro

    2017-02-15

    In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir's model. In particular, the Langmuir isotherm parameters (K and wmax) have been validated through the estimation of the adsorption heat (ΔHads), which varies in the range 20-24kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  15. Adsorption studies of etherdiamine onto modified sugarcane bagasses in aqueous solution.

    PubMed

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Carvalho, Cornélio de Freitas; Gil, Laurent Frédéric

    2014-01-15

    In this study sugarcane bagasse was modified with succinic anhydride and EDTA dianhydride to obtain SCB 2 and EB adsorbents, respectively. These adsorbents were used to remove etherdiamine, which is used for iron ore flotation from single aqueous solutions. The removal and recovery of etherdiamine is important for environmental and economic reasons due to its toxicity and high cost. The results demonstrated that adsorption of etherdiamine by SCB 2 and EB was better fitted by a pseudo-second-order kinetic model than pseudo-first-order and Elovich models. Adsorption isotherms were better fitted by the Langmuir model rather than the Freundlich, Sips, and Temkin models. The maximum adsorption capacities (Qmax) of SCB 2 and EB for etherdiamine adsorption were found to be 869.6 and 1203.5 mg/g, respectively. The calculated ΔG° values for adsorption of etherdiamine on SCB 2 (-22.70 kJ/mol) and EB (-19.10 kJ/mol) suggested that chemisorption is the main mechanism by which etherdiamine is removed from the aqueous solution for both adsorbents. The high Qmax values showed that SCB 2 and EB are potential adsorbents for recovering the etherdiamine and treating effluents produced from iron ore flotation.

  16. Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies.

    PubMed

    Liu, Cheng-Hua; Chuang, Ya-Hui; Chen, Tsan-Yao; Tian, Yuan; Li, Hui; Wang, Ming-Kuang; Zhang, Wei

    2015-07-07

    Removal of arsenic (As) from water supplies is needed to reduce As exposure through drinking water and food consumption in many regions of the world. Magnetite nanoparticles (MNPs) are promising and novel adsorbents for As removal because of their great adsorption capacity for As and easy separation. This study aimed to investigate the adsorption mechanism of arsenate, As(V), and arsenite, As(III), on MNPs by macroscopic adsorption experiments in combination with thermodynamic calculation and microspectroscopic characterization using synchrotron-radiation-based X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Adsorption reactions are favorable endothermic processes as evidenced by increased adsorption with increasing temperatures, and high positive enthalpy change. EXAFS spectra suggested predominant formation of bidentate binuclear corner-sharing complexes ((2)C) for As(V), and tridentate hexanuclear corner-sharing ((3)C) complexes for As(III) on MNP surfaces. The macroscopic and microscopic data conclusively identified the formation of inner-sphere complexes between As and MNP surfaces. More intriguingly, XANES and XPS results revealed complex redox transformation of the adsorbed As on MNPs exposed to air: Concomitant with the oxidation of MNPs, the oxidation of As(III) and MNPs was expected, but the observed As(V) reduction was surprising because of the role played by the reactive Fe(II).

  17. Synthesis, characterization and adsorption performance of a novel post-crosslinked adsorbent.

    PubMed

    Zeng, Xiaowei; Yao, Hongjie; Ma, Ning; Fan, Yunge; Wang, Chunhong; Shi, Rongfu

    2011-02-01

    In this paper a post-crosslinked polymeric adsorbent PDHT-2 with high specific surface area was prepared by Friedel-Crafts reaction of the pendant vinyl groups without an externally added crosslinking agent. It was obvious that both the specific surface area and the pore volume of starting copolymer PDHT-1 increased significantly after post-crosslinking. Batch adsorption runs of phenol from aqueous solution onto adsorbent PDHT-1 and PDHT-2 were researched, and commercial macroporous resin XAD-4 was chosen for comparison purpose. Experimental results showed that the adsorption isotherms could be fitted by Langmuir model and Freundlich model and the adsorption capacity onto PDHT-2 was much larger than that onto PDHT-1 and XAD-4 with respect to phenol and phenolic compound, which possibly resulted from its larger specific surface area. The adsorption process for phenol onto the three adsorbents was proved to be exothermic and spontaneous in nature. The thermodynamic parameters such as Gibb's free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) had been calculated. The adsorption kinetic curves obeyed the pseudo-second order model and the intraparticle diffusion process was the rate-controlling step.

  18. Adsorption of crude and engine oils from water using raw rice husk.

    PubMed

    Razavi, Zahra; Mirghaffari, Nourollah; Rezaei, Behzad

    2014-01-01

    The raw rice husk (RRH) was used as a low cost adsorbent to remove three oil compounds with different viscosities (crude oil, engine oil and spent engine oil) from an aqueous environment. Some of the sorbent specifications were characterized using a CHNSO analyzer, Fourier transform infrared, scanning electron microscope and inductively coupled plasma spectroscopy. With decreasing RRH particles size, the oil adsorption percentage was reduced for crude, spent and engine oils from 50 to 30%, 65 to 20% and 70 to 0.01%, respectively. This was probably due to damage of the microcavities. The removal percentage by sorbent at optimized conditions was 88, 80 and 55% for engine, spent and crude oils, respectively, corresponding to their descending viscosity. The adsorption of crude and spent oils on rice husk followed the Freundlich isotherm model, while the adsorption of engine oil was fitted by the Langmuir model. The maximum adsorption capacity (qmax), calculated from the Langmuir model for the adsorption of engine oil on RRH, was 1,250 mg/g.

  19. Polychelated cryogels: hemoglobin adsorption from human blood.

    PubMed

    Erol, Kadir

    2017-02-01

    The separation and purification methods are extremely important for the hemoglobin (Hb) which is a crucial biomolecule. The adsorption technique is popular among these methods and the cryogels have been used quite much due to their macropores and interconnected flow channels. In this study, the Hb adsorption onto the Cu(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA)-Cu(II), cryogels was investigated under different conditions (pH, interaction time, initial Hb concentration, temperature and ionic strength) to optimize adsorption conditions. The swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), surface area (BET), elemental and ICP-OES analysis were performed for the characterization of cryogels. Polyethyleneimine (PEI) molecule was used as a Cu(II)-chelating ligand. The Hb adsorption capacity of cryogels was determined as 193.8 mg Hb/g cryogel. The isolation of Hb from human blood was also studied under optimum adsorption conditions determined and the Hb (124.5 mg/g cryogel) was isolated. The adsorption model was investigated in the light of Langmuir and Freundlich adsorption isotherm models and it was determined to be more appropriate to the Langmuir adsorption isotherm model.

  20. Phosphoryl functionalized mesoporous silica for uranium adsorption

    NASA Astrophysics Data System (ADS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  1. BTEX and MTBE adsorption onto raw and thermally modified diatomite.

    PubMed

    Aivalioti, Maria; Vamvasakis, Ioannis; Gidarakos, Evangelos

    2010-06-15

    The removal of BTEX (benzene, toluene, ethyl-benzene and xylenes) and MTBE (methyl tertiary butyl ether) from aqueous solution by raw (D(R)) and thermally modified diatomite at 550, 750 and 950 degrees C (D(550), D(750) and D(950) respectively) was studied. Physical characteristics of both raw and modified diatomite such as specific surface, pore volume distribution, porosity and pH(solution) were determined, indicating important structural changes in the modified diatomite, due to exposure to high temperatures. Both adsorption kinetic and isotherm experiments were carried out. The kinetics data proved a closer fit to the pseudo-second order model. Maximum values for the rate constant, k(2), were obtained for MTBE and benzene (48.9326 and 18.0996 g mg(-1)h(-1), respectively) in sample D(550). The isotherm data proved to fit the Freundlich model more closely, which produced values of the isotherm constant 1/n higher than one, indicating unfavorable adsorption. The highest adsorption capacity, calculated through the values of the isotherm constant k(F), was obtained for MTBE (48.42 mg kg(-1) (mg/L)(n)) in sample D(950).

  2. Optimization of conditions for Cu(II) adsorption on D151 resin from aqueous solutions using response surface methodology and its mechanism study.

    PubMed

    Zhang, Hao; Xiong, Chunhua; Liu, Fang; Zheng, Xuming; Jiang, Jianxiong; Zheng, Qunxiong; Yao, Caiping

    2014-01-01

    An experimental study on the removal of Cu(II) from aqueous solutions by D151 resin was carried out in a batch system. The response surface methodology (RSM)-guided optimization indicated that the optimal adsorption conditions are: temperature of 35 °C, pH of 5.38, and initial Cu(II) concentration of 0.36 mg/mL, and the predicted adsorption capacity from the model reached 328.3 mg/g. At optimum adsorption conditions, the adsorption capacity of Cu(II) was 321.6 mg/g, which obtained from real experiments what were in close agreement with the predicted value. The adsorption isotherms data fitted the Langmuir model well, and the correlation coefficient has been evaluated. The calculation data of thermodynamic parameters (ΔG, ΔS, and ΔH) confirmed that the adsorption process was endothermic and spontaneous in nature. The desorption study revealed that Cu(II) can be effectively eluted by 1 mol/l HCl solution, and the recovery was 100%. Moreover, the characterization was undertaken by infrared (IR) spectroscopy.

  3. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water

    PubMed Central

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Jin, Chunde; Sun, Qingfeng; Sheng, Chengmin

    2017-01-01

    Cellulose nanofibril/graphene oxide hybrid (CNF/GO) aerogel was fabricated via a one-step ultrasonication method for adsorptive removal of 21 kinds of antibiotics in water. The as-prepared CNF/GO aerogel possesses interconnected 3D network microstructure, in which GO nanosheets with 2D structure were intimately grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward the antibiotics. The removal percentages (R%) of the antibiotics were more than 69% and the sequence of six categories antibiotics according to the adsorption efficiency was as follows: Tetracyclines > Quinolones > Sulfonamides > Chloramphenicols > β-Lactams > Macrolides. The adsorption mechanism was proposed to be electrostatic attraction, p-π interaction, π-π interaction and hydrogen bonds. In detail, the adsorption capacities of CNF/GO aerogel were 418.7 mg·g−1 for chloramphenicol, 291.8 mg·g−1 for macrolides, 128.3 mg·g−1 for quinolones, 230.7 mg·g−1 for β-Lactams, 227.3 mg·g−1 for sulfonamides, and 454.6 mg·g−1 for tetracyclines calculated by the Langmuir isotherm models. Furthermore, the regenerated aerogels still could be repeatedly used after ten cycles without obvious degradation of adsorption performance. PMID:28368045

  4. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water.

    PubMed

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Jin, Chunde; Sun, Qingfeng; Sheng, Chengmin

    2017-04-03

    Cellulose nanofibril/graphene oxide hybrid (CNF/GO) aerogel was fabricated via a one-step ultrasonication method for adsorptive removal of 21 kinds of antibiotics in water. The as-prepared CNF/GO aerogel possesses interconnected 3D network microstructure, in which GO nanosheets with 2D structure were intimately grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward the antibiotics. The removal percentages (R%) of the antibiotics were more than 69% and the sequence of six categories antibiotics according to the adsorption efficiency was as follows: Tetracyclines > Quinolones > Sulfonamides > Chloramphenicols > β-Lactams > Macrolides. The adsorption mechanism was proposed to be electrostatic attraction, p-π interaction, π-π interaction and hydrogen bonds. In detail, the adsorption capacities of CNF/GO aerogel were 418.7 mg·g(-1) for chloramphenicol, 291.8 mg·g(-1) for macrolides, 128.3 mg·g(-1) for quinolones, 230.7 mg·g(-1) for β-Lactams, 227.3 mg·g(-1) for sulfonamides, and 454.6 mg·g(-1) for tetracyclines calculated by the Langmuir isotherm models. Furthermore, the regenerated aerogels still could be repeatedly used after ten cycles without obvious degradation of adsorption performance.

  5. Polymer modified biomass of baker's yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta.

    PubMed

    Yu, Jun-Xia; Li, Bu-Hai; Sun, Xiao-Mei; Yuan, Jun; Chi, Ru-An

    2009-09-15

    In this study, poly (methacrylic acid) modified biomass was prepared to improve the adsorption capacities for three dyes: methylene blue (MB), rhodamine B (RB) and basic magenta (BM). FTIR and potentiometric titration demonstrated that a large number of carboxyl groups were introduced on the biomass surface, and the concentration of the functional group was calculated to be 1.4 mmol g(-1) by using the first and second derivative method. According to the Langmuir equation, the maximum uptake capacities (q(m)) for MB, RB and BM were 869.6, 267.4 and 719.4 mg g(-1), which were 17-, 11- and 12-fold of that obtained on the unmodified biomass, respectively. Adsorption kinetics study showed that the completion of the adsorption process needed only 70 min, which is faster than that occur with the common sorbent such as activated carbon and resin. Temperature and ionic strength experiment showed that they both had effect on the adsorption capacity of the modified biomass. Good result was obtained when the modified biomass was used to treat dye wastewater.

  6. Electrokinetic investigation of surfactant adsorption.

    PubMed

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  7. Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites.

    PubMed

    González-Pradas, E; Socías-Viciana, M; Ureña-Amate, M D; Cantos-Molina, A; Villafranca-Sánchez, M

    2005-05-01

    The adsorption of chloridazon on heat treated sepiolite samples at 110 degrees C (S-110), 200 degrees C (S-200), 400 degrees C (S-400), 600 degrees C (S-600) and acid treated samples with H2SO4 solutions of two different concentrations (0.25 and 1.0M) (S-0.25 and S-1.0, respectively) from pure water at 25 degrees C has been studied by using batch experiments. In addition, column experiments were carried out with the natural (S-110) and 600 degrees C (S-600) heat treated samples, using a 10.30 mg l-1 aqueous solution of chloridazon. The adsorption experimental data points have been fitted to the Freundlich equation in order to calculate the adsorption capacities (Kf) of the samples; Kf values range from 2.89 mg kg-1 for the S-1.0 sample up to 164 mg kg-1 for the S-600 sample; so, the heat treatment given to the sepiolite greatly increases its adsorption capacity for the herbicide chloridazon whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) has also been calculated; R values ranging from 5.08% for S-1.0 up to 60.9% for S-600. The batch experiments showed that the strongest heat treatment is more effective than the natural and acid treated sepiolite in relation to adsorption of chloridazon. The column experiments also showed that 600 degrees C heat treated sepiolite might be reasonably used in removing chloridazon from water. Thus, as this type of clay is relatively plentiful, these activated samples might be reasonably used in order to remove chloridazon from water.

  8. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.

    PubMed

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal; Soylak, Mustafa

    2009-12-15

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g(-1). Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R(2) > 0.99). Thermodynamic parameters including the Gibbs free energy (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 degrees C.

  9. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost.

    PubMed

    He, Xin; Zhang, Yaxin; Shen, Maocai; Tian, Ye; Zheng, Kaixuan; Zeng, Guangming

    2017-02-08

    The simultaneous adsorption of heavy metals (Pb, Cd) and organic pollutant (tetracycline (TC)) by a sewage sludge-derived vermicompost was investigated. The maximal adsorption capacity for Pb, Cd, and TC in a single adsorptive system calculated from Langmuir equation was 12.80, 85.20, and 42.94 mg L(-1), while for mixed substances, the adsorption amount was 2.99, 13.46, and 20.89 mg L(-1), respectively. The adsorption kinetics fitted well to the pseudo-second-order model, implying chemical interaction between adsorbates and functional groups, such as -COOH, -OH, -NH, and -CO, as well as the formation of organo-metal complexes. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area measurement were adopted to gain insight into the structural changes and a better understanding of the adsorption mechanism. The sewage sludge-derived vermicompost can be a low cost and environmental benign eco-material for high efficient wastewater remediation.

  10. Comparative analysis of tropaeolin adsorption onto raw and acid-treated kaolinite: optimization by Response Surface Methodology.

    PubMed

    de Sales, Priscila F; Magriotis, Zuy M; Rossi, Marco A L S; Resende, Ricardo F; Nunes, Cleiton A

    2015-03-15

    The comparative adsorption of Tropaeolin (TP) onto raw kaolinite (RK) and kaolinite submitted to acid treatment (AK) was studied. RK and AK were characterized by zeta potential and energy dispersive X-ray spectroscopy (EDS). The adsorption was investigated using Composite Central Design (CCD) and the parameters evaluated were initial TP solution concentration, quantity of adsorbent and the pH of the solution. The optimized parameters were: initial TP solution concentration of 75 mg L(-1), pH 4 and 0.12 g adsorbent. Kinetic data were evaluated by pseudo-first order, pseudo-second order and Avrami models. The equilibrium adsorption was analyzed by Langmuir, Freundlich and Sips isotherms. The kinetic data were best fitted to the pseudo-second order model. The Sips isotherm model gives the better correlation to predict the adsorption equilibrium. The maximum adsorption capacities were 18.3 mg g(-1) and 23.2 mg g(-1) for RK and AK, respectively. The calculated thermodynamic parameters showed that the process was spontaneous, endothermic and involving the disorganization of the adsorption system for both adsorbents. The desorption step showed that the AK sample was more suitable as an adsorbent.

  11. Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling

    PubMed Central

    Yazdani, Maryam; Bahrami, Hajir; Arami, Mokhtar

    2014-01-01

    Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable. PMID:24587722

  12. Studies on adsorption-desorption of xenon on surface of BC-404 plastic scintillator based on soaking method

    NASA Astrophysics Data System (ADS)

    Yongchun, Xiang; Tieshuan, Fan; Chuanfei, Zhang; Fei, Luo; Qian, Wang; Rende, Ze; Qingpei, Xiang

    2017-03-01

    The phoswich coincidence detector is used to verify the CTBT treaty by measuring radioxenon and as such needs to possess high detection sensitivity. However, residual xenon adsorbed onto the surface of β detectors greatly influences subsequent measurements of weak samples. In this study, we investigate the adsorption-desorption behavior of xenon on BC-404 scintillator surfaces with different coating thicknesses using the soaking method. The results present the desorption behavior of xenon on a BC-404 surface for the first time. The calculated adsorption capacity for an uncoated surface is consistent with that from previous studies. However, due to factors such as limitations in coating technology, the effectiveness of coating on reducing the "memory effect" of the detector was poor. The proposed method is suitable for studying the adsorption-desorption behavior of gases on solid surfaces due to its simplicity and flexibility.

  13. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].

    PubMed

    Li, Jia; Lin, Jian-Wei; Zhan, Yan-Hui; Chen, Zu-Mei; Wang, Peng-Jun

    2014-02-01

    Surfactant-modified zeolites (SMZs) with different coverage types were prepared by loading of different amounts of cetylpyridinium bromide (CPB) onto natural zeolites and were used as adsorbents to remove phenanthrene from aqueous solution. The adsorption of phenanthrene from aqueous solution on monolayer and bilayer SMZs as a function of adsorbent dosage, initial phenanthrene concentration, contact time, and temperature was investigated using batch experiments. Results showed monolayer and bilayer SMZs were effective for the removal of phenanthrene from aqueous solution. The phenanthrene removal efficiency of SMZs increased with increasing adsorbent dosage, but the amount of phenanthrene adsorbed on SMZs decreased with increasing adsorbent dosage. The adsorption kinetics of phenanthrene on SMZs well followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phenanthrene on SMZs at a low concentration of phenanthrene in solution could be described by the Linear equation and Freundlich equation. The main mechanism for phenanthrene adsorption onto monolayer SMZ is hydrophobic interaction, and the main mechanism for phenanthrene adsorption onto bilayer SMZ is organic partitioning. The calculated thermodynamic parameters such as Gibbs free energy change (deltaG(theta)), enthalpy changes (deltaH(theta)), and entropy change (deltaS(theta)) showed that the adsorption process of phenanthrene on SMZs is spontaneous and exothermic in nature. When the CPB loading amount of bilayer SMZ was twice as much as that of monolayer SMZ, the phenanthrene adsorption capacity for bilayer SMZ was slightly higher than that for monolayer SMZ. In a conclusion, both monolayer and bilayer SMZs are promising adsorbents for the removal of phenanthrene from water and wastewater, and monolayer SMZ is a more cost-effective adsorbent for phenanthrene removal than bilayer SMZ.

  14. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    SciTech Connect

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  15. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    PubMed

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs.

  16. In situ and Ex situ adsorption and recovery of betalains from hairy root cultures of Beta vulgaris.

    PubMed

    Rudrappa, Thimmaraju; Neelwarne, Bhagyalakshmi; Aswathanarayana, Ravishankar G

    2004-01-01

    Various adsorbents were screened for in situ recovery of betalain pigments effluxed from hairy root cultures of red beet, Beta vulgaris. Alumina/silica (1:1) appeared ideal, showing in situ adsorption of 97% in a unit time of 30 min accounting for in situ recovery of 71.39% of the total betalaine effluxed. Other adsorbents such as Amberlite series (XAD-2 and -4), cyclodextrin, maltodextrin, dextrin white, and starches such as wheat starch and corn starch exhibited very poor in situ adsorption properties. Pretreatment of adsorbents with methanol significantly improved the adsorption capacities of some of the adsorbents, with a highest adsorption of 97.2% for alumina followed by alumina/silica (1:1) and higher adsorption by XAD-2 and -4. Complete in situ adsorption equilibrium was reached in 20 min for a solution containing 2.5 mg mL(-)(1) of betalain in adsorbents alumina, silica, and a mixture of alumina and silica. In situ betalain adsorption parameters for alumina/silica were determined using the Langmuir isotherm model where the adsorption capacity was found to be 0.174 mg g(-)(1) and the adsorption energy was 0.9 at pH 5.5 and 25 degrees C. Desorption of pigments from the adsorbents was invariably highest in poor adsorbents, indicating their poor adsorption energy for betalaines. Similarly, recovery by desorption was low in those adsorbents having high adsorption capacity, indicating that adsorbents such as activated ones with highest adsorption capacity with zero desorption property were unsuitable for the recovery of effluxed pigments. Ex situ recovery of betalain done using various combinations of alumina/silica and processed sand and different column geometries indicated that alumina with processed sand at a 2:1 ratio (w/w) and a minimum column material of 2 cm height and 2 cm diameter was good enough to cause 97% pigment adsorption from a solution containing 1.6 mg mL(-)(1). Desorption and recovery of pigments ex situ from columns were affected by various

  17. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: comparison with microfibers.

    PubMed

    Neghlani, Parvin Karimi; Rafizadeh, Mehdi; Taromi, Faramarz Afshar

    2011-02-15

    Polyacrylonitrile nanofibers (PAN-nFs) were produced using the electrospinning method. Subsequently, the electrospun fibers were modified by diethylenetriamine to produce aminated polyacrylonitrile (APAN) nanofibers. Finally, the adsorbability of copper ions on the surface of the nanofibers was examined in an aqueous solution. Attenuated total internal reflection (ATIR) analysis confirmed the surface amination of the produced PAN-nFs. The grafting yield was calculated by the gravimetric method. The optimum condition was determined to yield the maximum grafting of amine groups to PAN with no losses in sample flexibility. Atomic absorption spectroscopy (AAS) was used to measure the copper ion concentration in the solution. Results indicate that the adsorption process in nanofibers is three times faster in comparison with microfibers. Moreover, the pH effect was studied based on the adsorption behavior of copper ions on the APAN nanofibers. In addition, thermodynamic parameters were calculated, revealing that the process was endothermic and demonstrating that randomness increased at the solid-solution interface during the process. The obtained enthalpy value indicates that the chelation of copper ions among the aminated polyacrylonitrile can be regarded as a chemical adsorption process. The adsorption data fit well with the Langmuir isotherm. The saturation adsorption capacity obtained from the Langmuir model for Cu(II) ions was 116.522 mg/g which is five times more than the reported value for APAN microfibers [S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal, Langmuir,19 (2003)5058-5064]. Analysis using atomic force microscopy (AFM) showed that the surface roughness increased upon adsorption of the metal ion. Scanning electron microscopy (SEM) examination demonstrated that there were no cracks or sign of degradation on the surface after amination.

  18. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    SciTech Connect

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  19. Multicarboxylic hyperbranched polyglycerol modified SBA-15 for the adsorption of cationic dyes and copper ions from aqueous media

    NASA Astrophysics Data System (ADS)

    Chen, Zhengji; Zhou, Li; Zhang, Faai; Yu, Chuanbai; Wei, Zhibo

    2012-04-01

    The aim of the present work was to investigate the potential of multicarboxylic hyperbranched polyglycerol (HPG) modified mesoporous SBA-15 (SBA/HPG-COOH) as adsorbent for the removal of cationic dyes or/and heavy metal ions from aqueous media. The SBA/HPG-COOH adsorbents can be facilely synthesized through two steps: in situ anionic ring-opening polymerization of glycidol and further modification of hydroxyl groups by succinic anhydride. The resulting SBA/HPG-COOH was characterized by means of FTIR, TGA, XRD, SEM and nitrogen adsorption-desorption isotherms. The results demonstrate that the SBA/HPG-COOH was successfully synthesized and the density of carboxylic groups on the SBA/HPG-COOH is calculated to be as high as 1.5 mmol/g, posing a powerful base for adsorbing cationic adsorbates. Four kinds of dyes and copper ions were chosen as representatives to investigate the adsorption ability of SBA/HPG-COOH. The SBA/HPG-COOH adsorbent showed quick adsorption rate, high adsorption capacity (e.g., its saturated adsorption capacity for methylene blue (MB) can reach 0.50 mmol/g, while for unmodified SBA-15 is lower than 0.05 mmol/g), and high selectivity for cationic adsorbates. The fitness of Langmuir adsorption model and pseudo second-order kinetics on describing the adsorption isotherm and kinetics of SBA/HPG-COOH for MB dye was examined, respectively. It is believed that this robust SBA/HPG-COOH adsorbent will find important application in removal of cationic adsorbates from aqueous solution.

  20. Adsorption of bacteriophages on clay minerals

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    1999-01-01

    The ability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and φX-174) on clays (hectorite, saponite, kaolinite, and clay fraction of samples collected from a landfill site). The thermodynamic study not only determines the feasibility of the process but also provides information on the relative magnitudes of the different forces under a particular set of conditions. The total free energy of interaction during sorption of bacteriophages on clays (ΔG) has been assumed to be the summation of ΔGH (ΔG due to hydrophobic interactions) and ΔGEL (ΔG due to electrostatic interactions). The magnitude of ΔGH was determined from the different interfacial tensions (γ) present in the system, while ΔGEL was calculated from ζ-potentials of the colloidal particles. Calculated results show that surface hydrophobicities of the selected sorbents and sorbates dictate sorption. Among the selected bacteriophages, maximum sorption was observed with T-2, while hectorite has the maximum sorption capacity. Experimental results obtained from the batch adsorption studies also corroborated those obtained from the theoretical study.

  1. Contact time optimization of two-stage batch adsorber design using second-order kinetic model for the adsorption of phosphate onto alunite.

    PubMed

    Ozacar, Mahmut

    2006-09-01

    The adsorption of phosphate onto alunite in a batch adsorber has been studied. Four kinetic models including pseudo first- and second-order equation, intraparticle diffusion equation and the Elovich equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphate onto alunite could be described by the pseudo second-order equation. Adsorption of phosphate onto alunite followed the Langmuir isotherm. A model has been used for the design of a two-stage batch adsorber based on pseudo second-order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total operating time to achieve a specified amount of phosphate removal using a fixed mass of adsorbent. The results of two-stage batch adsorber design studies showed that the required times for specified amounts of phosphate removal significantly decreased. It is particularly suitable for low-cost adsorbents/adsorption systems when minimising operating time is a major operational and design criterion, such as, for highly congested industrial sites in which significant volume of effluent need to be treated in the minimum amount of time.

  2. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  3. Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: adsorption process and disposal methodology of depleted bioadsorbents.

    PubMed

    Feng, Yanfang; Dionysiou, Dionysios D; Wu, Yonghong; Zhou, Hui; Xue, Lihong; He, Shiying; Yang, Linzhang

    2013-06-01

    Swede rape straw (Brassica napus L.) was modified by oxalic acid under mild conditions producing an efficient dye adsorbent (SRSOA). This low-cost and environmental friendly bioadsorbent was characterized by various techniques and then applied to purify dye-contaminated aqueous solutions. Equilibrium study showed that the Langmuir model demonstrated the best fit to the equilibrium data and the methylene blue (MB) adsorption capacity calculated by this model was 432mgg(-1). The adsorption process and mechanism is also discussed. To properly deal with the dye-loaded bioadsorbents, the disposal methodology is discussed and a biochar based on depleted bioadsorbents was for the first time produced and examined. This method both solved the disposal problem of contaminant-loaded bioadsorbents and produced an useful adsorbent thereafter. The study indicates that SRSOA is a promising substitute for ACs in purifying dye-contaminated wastewater and that producing biochars from contaminant-loaded bioadsorbents maybe a feasible disposal method.

  4. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    EPA Science Inventory

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  5. Defluoridation of drinking water using adsorption processes.

    PubMed

    Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi

    2013-03-15

    Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process.

  6. Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon.

    PubMed

    Jahandar Lashaki, Masoud; Fayaz, Mohammadreza; Niknaddaf, Saeid; Hashisho, Zaher

    2012-11-30

    This paper investigates the effect of the kinetic diameter (KD) of the reference adsorbate on the accuracy of the Dubinin-Radushkevich (D-R) equation for predicting the adsorption isotherms of organic vapors on microporous activated carbon. Adsorption isotherms for 13 organic compounds on microporous beaded activated carbon were experimentally measured, and predicted using the D-R model and affinity coefficients. The affinity coefficients calculated based on molar volumes, molecular polarizabilities, and molecular parachors were used to predict the isotherms based on four reference compounds (4.3≤KD≤6.8 Å). The results show that the affinity coefficients are independent of the calculation method if the reference and test adsorbates are from the same organic group. Choosing a reference adsorbate with a KD similar to that of the test adsorbate results in better prediction of the adsorption isotherm. The relative error between the predicted and the measured adsorption isotherms increases as the absolute difference in the kinetic diameters of the reference and test adsorbates increases. Finally, the proposed hypothesis was used to explain reports of inconsistent findings among published articles. The results from this study are important because they allow a more accurate prediction of adsorption capacities of adsorbents which allow for better design of adsorption systems.

  7. Study of Adsorption of Copper Species onto Multiwall Carbon Nanotubes

    EPA Science Inventory

    Functionalized CNTs have improved adsorptive capacities over pristine CNTs. These can be used for sensors, membranes, filters and matrix composite enhancements made possible because of their nano-size.

  8. Adsorption of methotrexate and calcium leucovorin onto cholestyramine in vitro.

    PubMed

    Merino-Sanjuán, M; Carrera, A; Monte, E; Jiménez-Torres, N V

    2004-07-08

    Methotrexate (MTX), an antimetabolite of folic acid, is a drug widely used in the treatment of different types of cancer. When high doses are administered, it is necessary to interrupt its action by administering calcium leucovorin (CaL). The main pathway of MTX and CaL elimination in humans occurs through the kidney, but about 10% is excreted in the faeces via the bile. Drugs, foods and sorbents in intestinal lumen modify MTX and CaL reabsorption. Individual and simultaneous studies on the adsorption of MTX and CaL from aqueous phosphate buffer by cholestyramine were carried out in order to calculate the adsorption process of MTX and CaL to cholestyramine, and to characterize the influence of CaL in the adsorption of MTX to cholestyramine and vice versa. The Langmuir binding isotherms determined in buffer solutions at pH 6 indicated a greater (12.58%) adsorption capacity of cholestyramine (1.43 mmol of drug/g of resin) than at pH 7 (1.25 mmol of drug/g of cholestyramine). The affinity constant of MTX to cholestyramine was a 45.27% higher (6.67 mM(-1)) than the affinity constant of CaL to the resin (3.65 mM(-1)). Results from simultaneous assays indicate that a displacement of the MTX bound to cholestyramine by CaL is not foreseeable. The results suggest that cholestyramine may be a potentially useful adjunctive therapy in the treatment of an overdose of MTX. Consequently, cholestyramine may be of clinical value in patients who develop early renal function impairment whilst undergoing MTX therapy.

  9. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    NASA Astrophysics Data System (ADS)

    Yang, Guide; Tang, Lin; Lei, Xiaoxia; Zeng, Guangming; Cai, Ye; Wei, Xue; Zhou, Yaoyu; Li, Sisi; Fang, Yan; Zhang, Yi

    2014-02-01

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe3O4/CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe3O4/CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe3O4/CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe3O4/CS was a promising adsorbent in environment pollution cleanup.

  10. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study.

    PubMed

    Liu, Na; Charrua, Alberto Bento; Weng, Chih-Huang; Yuan, Xiaoling; Ding, Feng

    2015-12-01

    The physicochemical properties of biochars produced from soybeans (SBB), corn stalks (CSB), rice stalks (RSB), poultry manure (PMB), cattle manure (CMB), and pig manure (PgMB) and their adsorption characteristics of atrazine were investigated. The adsorption capacity increased with the increase of temperature and initial atrazine concentration. More atrazine was removed from basic solutions than acidic solutions, due to the effects of adsorption and hydrolysis. The Freundlich isotherm adsorption parameters indicated that the adsorption capacity decreased in the order SBB>RSB>CMB>CSB>PMB>PgMB, which is associated to the pore volume of biochars. The total pore volume and biochar pH were concluded to play important roles in determining the adsorption capacity, and they may have contributed to physical adsorption mechanisms dominating the overall adsorption process (the low activation energy for all of the biochars). Modified Freundlich and intraparticle diffusion models were used to describe the kinetics of the adsorption process.

  11. Adsorption analysis of ammonia in an aqueous solution

    SciTech Connect

    Arman, B.; Panchal, C.B.

    1993-08-01

    An analysis is carried out to determine the effects of the diffusional resistance on the rate of the adsorption of ammonia in an aqueous solution. A performance prediction model is developed to calculate the local rate of heat and mass transfer, including physical and thermodynamic property calculations of the mixture. An algorithm is developed for calculating the interfacial conditions. The local heat- and mass-transfer calculation is then incorporated into the performance prediction method for adsorption for a given geometry.

  12. Simultaneous determination of cation exchange capacity and surface area of acid activated bentonite powders by methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Yener, Nilgün; Biçer, Cengiz; Önal, Müşerref; Sarıkaya, Yüksel

    2012-01-01

    To distinguish the ion exchanged and physically adsorbed methylene blue cations (MB+) on ionic surfaces, acid activated bentonite samples were used as porous adsorbents. A natural calcium bentonite (CaB) sample from Enez/Edirne, Turkey, was acid activated at 90 °C for 16 h with various HCl/CaB ratios. The irreversible exchange and physical adsorption of MB+ cations on the ionic solids have simultaneously occurred. The ion exchanged (mex) and physically adsorbed (mad) MB+ contents were obtained as the values of sorption capacity at c = 0 and the increase to a plateaus of adsorption isotherms, respectively. The mad value was taken to be monolayer adsorption capacity. Cation exchange capacity (CEC) and specific surface area (SMB) for each sample were calculated from the mex and mad values, respectively. Also, the BET specific surface areas (SBET) and pore size distribution were determined from low temperature nitrogen adsorption/desorption data. A linear correlation between the SMB and SBET values was found.

  13. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2015-11-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  14. Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries.

    PubMed

    Er, Dequan; Li, Junwen; Naguib, Michael; Gogotsi, Yury; Shenoy, Vivek B

    2014-07-23

    Two-dimensional (2-D) materials are capable of handling high rates of charge in batteries since metal ions do not need to diffuse in a 3-D lattice structure. However, graphene, which is the most well-studied 2-D material, is known to have no Li capacity. Here, adsorption of Li, as well as Na, K, and Ca, on Ti3C2, one representative MXene, is predicted by first-principles density functional calculations. In our study, we observed that these alkali atoms exhibit different adsorption energies depending on the coverage. The adsorption energies of Na, K, and Ca decrease as coverage increases, while Li shows little sensitivity to variance in coverage. This observed relationship between adsorption energies and coverage of alkali ions on Ti3C2 can be explained by their effective ionic radii. A larger effective ionic radius increases interaction between alkali atoms, thus lower coverage is obtained. Our calculated capacities for Li, Na, K, and Ca on Ti3C2 are 447.8, 351.8, 191.8, and 319.8 mAh/g, respectively. Compared to materials currently used in high-rate Li and Na ion battery anodes, MXene shows promise in increasing overall battery performance.

  15. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater.

  16. Adsorption of malathion on thermally treated egg shell material.

    PubMed

    Elwakeel, Khalid Z; Yousif, Ahmed M

    2010-01-01

    Thermally treated egg shell materials were prepared at different temperatures. The samples were investigated by means of FT-IR and thermogravimetric analysis (TGA). The adsorption behaviour of malathion on egg shell and its thermally treated samples was studied using batch method and gave uptake capacities up to 0.964 mmol/g. Adsorption kinetics as well as the adsorption isotherms were discussed. Regeneration of the loaded adsorbent beads towards the successive cycles was also clarified. The adsorption of malathion is maintained until the third cycle without a significant activity loss.

  17. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  18. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  19. Assessing the Adsorption Properties of Shales

    NASA Astrophysics Data System (ADS)

    Pini, R.

    2014-12-01

    Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity through the mechanism of adsorption. The current ability to extract natural gas that is adsorbed in the rock's matrix is limited and current technology focuses primarily on the free gas in the fractures, thus leading to very low recovery efficiencies. Shales constitute also a great portion of so-called caprocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing leakage phenomena. Whether it is a reservoir or a caprock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm. The data are analyzed by using thermodynamically rigorous measures of adsorption and a graphical method is applied for their interpretation. The density of the adsorbed phase is estimated and compared to data reported in the literature; the latter is key to disclose gas-reserves and/or potential storage capacity estimates. When evaluated against classic adsorbent materials, the adsorption mechanism in shales is further complicated by

  20. Porous cellulose spheres: Preparation, modification and adsorption properties.

    PubMed

    Ma, Xiaofei; Liu, Congzhi; Anderson, Debbie P; Chang, Peter R

    2016-12-01

    Porous cellulose spheres (PCS) were fabricated by precipitating the spheres from a cellulose ionic liquid solution, followed by freezing, solvent exchange, and drying. PCS had low crystallinity and a large surface area that facilitated modification with trisodium trimetaphosphate (STMP) to introduce phosphate ester groups into the porous structure of the heterogeneous system. The STMP-modified PCS (SPCS) were used to remove heavy metal ions from aqueous solution. With increasing STMP dosage, the adsorption capacity of SPCS obviously improved due to chelation between Pb(2+) and phosphate ester groups. The kinetic adsorption and isotherm data matched the pseudo-second order model and the Langmuir model well. The maximum adsorption capacity reached 150.6 mg g(-1) for SPCS. SPCS were competitive with other absorbents because the phosphate ester groups and porous structure contributed to Pb(2+) adsorption. Moreover, SPCS can be regenerated with ethylenediamine tetraacetic acid disodium salt (EDTA) solution for repetitious adsorption of Pb(2+).

  1. Study of Methylene Blue adsorption on keratin nanofibrous membranes.

    PubMed

    Aluigi, A; Rombaldoni, F; Tonetti, C; Jannoke, L

    2014-03-15

    In this work, keratin nanofibrous membranes (mean diameter of about 220nm) were prepared by electrospinning and tested as adsorbents for Methylene Blue through batch adsorption tests. The adsorption capacity of the membranes was evaluated as a function of initial dye concentration, pH, adsorbent dosage, time and temperature. The adsorption capacity increased with increasing the initial dye concentration and pH, while it decreased with increasing the adsorbent dosage and temperature, indicating an exothermic process. The adsorption results indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich and Temkin isotherm models. A mean free energy evaluated through the Dubinin-Radushkevich model of about 16kJmol(-1), indicated a chemisorption process which occurred by ion exchange. The kinetic data were found to fit the pseudo-second-order model better than the pseudo-first-order model. The obtained results suggest that keratin nanofibrous membranes could be promising candidates as dye adsorption filters.

  2. Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone.

    PubMed

    Zhang, Yongjun; Mancke, Raoul Georg; Sabelfeld, Marina; Geißen, Sven-Uwe

    2014-04-30

    A FAU-type zeolite was studied as an adsorbent to remove 2,4,6-trichlorophenol (TCP), a frequently detected recalcitrant pollutant in water bodies. Both adsorption isotherm and kinetics were studied with TCP concentrations from 10 to 100mg/L. It was observed that TCP was effectively adsorbed onto the zeolite with a high adsorption capacity and a high kinetic rate. Freundlich model and pseudo-second-order kinetics were successfully applied to describe the experimental data. The influence of solution pH was also studied. Furthermore, ozone was applied to regenerate the loaded zeolite. It was found that an effective adsorption of TCP was kept for at least 8 cycles of adsorption and regeneration. The ozonation also increased the BET specific surface of zeolite by over 60% and consequently enhanced the adsorption capacity.

  3. MOLECULAR OXYGEN AND THE ADSORPTION OF PHENOLS - EFFECT OF FUNCTIONAL GROUPS

    EPA Science Inventory

    This study reveals that the presence of molecular oxygen (oxic conditions) has a significant impact on the exhibited adsorptive capacity of granular activated carbon (GAC) for several phenolic compounds. The increase in the GAC adsorptive capacity under oxic conditions results f...

  4. Adsorptive recovery of olefins from mixtures with paraffins

    SciTech Connect

    Zhuravlev, A.M.; Alekseeva, R.V.; Gerasimenko, E.G.; Alekseev, Yu.A.

    1987-11-01

    The recovery of olefins from mixtures with paraffins by adsorption on synthetic zeolites, aimed at obtaining experimental data for developing a mathematical model, was examined for the purpose of finding a linear olefin source for biodegradable detergents and achieving commensurate reductions in water pollution. Studies were performed under static and dynamic conditions. Test mixtures were prepared from individual hydrocarbons with purities of 98-99.5% by weight. Isotherms of excess sorption and selectivity coefficients for solutions of dodecene mixed with dodecane, octane, cyclohexane, and heptene were determined. Calculations were performed by methods of excess quantities and total content. Data shows the dynamic capacity of the olefins to breakthrough in proportion to their concentration in the original mixture.

  5. A computational study of carbon dioxide adsorption on solid boron.

    PubMed

    Sun, Qiao; Wang, Meng; Li, Zhen; Du, Aijun; Searles, Debra J

    2014-07-07

    Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.

  6. Phosphorus recovery using pelletized adsorptive materials ...

    EPA Pesticide Factsheets

    Phosphorous (P) is one of the essential nutrients for growth and is generally the most limiting nutrient since, it cannot be fixed from the atmosphere. Methods for recovering phosphorous from water systems already exist, but advances are being made to find a more economic, efficient, effective and easy to use method that can allow for reuse of the recovered P. One area of study is in adsorption, which involves finding the best material for adsorption of phosphorous from water and for releasing it back into the environment through desorption or leaching. The goal of this research was to first optimize the capacity for a pelletized adsorptive material that was synthesized with varying amounts of a binder material from 0-20 % and then to study recovering the phosphate for reuse. The pelletized materials were studied through kinetics experiments as well as isotherm experiments to gain insight into the adsorption capacity and mechanism. Following successful adsorption, a simple leaching study was conducted to see how much phosphate would be released back into water without any added desorption aid. Desorption was then studied by changing the pH of solution. Presenting my thesis work with a poster at ACS.

  7. Adsorption equilibrium, kinetics and thermodynamics of dichloroacetic acid from aqueous solution using mesoporous carbon.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Cao, Yang; Chen, Shenglu

    2014-08-01

    The presence of disinfection by-products, such as trihalomethanes and haloacetic acids in water, is believed to be harmful to human health. In this work, mesoporous carbon was synthesized with the evaporation-induced self-assembly method and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dichloroacetic acid in batch experiments. Adsorption equilibrium was established in 480 min and the maximum adsorption (350mg/g) of dichloroacetic acid on the mesoporous carbon was observed to occur at 308 K and pH 3.0. Freundlich and Langmuir isotherms were used to analyse the equilibrium data at different temperatures; kinetic data were fitted to the pseudo-first-order and pseudo-second-order models and found that the adsorption capacity, mass transfer coefficient and diffusivity of dichloroacetic acid were directly affected by the physical and chemical parameters. In addition, the various thermodynamic parameters, such as Gibbs free energy (Delta G), enthalpy (Delta H = 54.35 kJmol-1) and entropy (Delta S = 258.36 Jmol-1 K-1) were calculated to analyse the adsorption process. The experimental results indicated that the mesoporous carbon was an excellent adsorbent for dichloroacetic acid removal from aqueous solutions.

  8. Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge.

    PubMed

    Babatunde, A O; Zhao, Y Q

    2010-12-15

    Excess phosphorus (P) in wastewaters promotes eutrophication in receiving waterways. A cost-effective method such as use of novel low-cost adsorbents for its adsorptive removal would significantly reduce such impacts. Using batch experiments, the intrinsic dynamics of P adsorption by waste alum sludge (an inevitable by-product of drinking water treatment plants) was examined. Different models of adsorption were used to describe equilibrium and kinetic data, calculate rate constants and determine the adsorption capacity. Results indicate that the intraparticle rate constant increased from 0.0075 mg g(-1)min(-1) at 5 mg L(-1) to 0.1795 mg g(-1)min(-1) at 60 mg L(-1) indicating that more phosphate is adsorbed per g min at higher P concentration. Further analyses indicate involvement of film and particle diffusion mechanisms as rate controlling steps at lower and higher concentrations, respectively. Mass transfer coefficient obtained ranged from 1.7 × 10(-6) to 1.8 × 10(-8) indicating a rapid transportation of phosphate molecules onto the alum sludge. These results further demonstrates that alum sludge-hitherto thought of as undesirable waste, can be used as novel adsorbent for P removal from wastewater through various applications, thus offsetting a portion of the disposal costs while at the same time improving water quality in sensitive watersheds.

  9. Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites.

    PubMed

    Yang, Xiaoxia; Li, Yanhui; Du, Qiuju; Wang, Xiaohui; Hu, Song; Chen, Long; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2016-02-01

    As a new member of the carbon family, graphene oxide (GO) has shown excellent adsorption ability to micro-pollutants in aqueous solutions. However, its tiny size makes it difficult to be removed from aqueous solutions using the conventional separation methods, which limits its practical application in the environmental protection. In this study, polyvinyl alcohol (PVA) was used as carrier immobilizing GO, and novel PVA/GO composites were prepared. The morphology and physicochemical properties of the composites were characterized by SEM, FTIR and TGA analysis. The adsorption properties of methylene blue (MB) onto the composites were studied through investigating the experimental parameters such as solution pH, adsorbent dosage, contact time and temperature. The isotherm data were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevich models. The calculated maximum adsorption capacity reached 476.2 mg/g at 50% GO content. The pseudo-first-order kinetic, pseudo-second-order kinetic and intra-particle diffusion models were used to explore the adsorption kinetics. The results showed that the dynamic data were fitted to the pseudo-second-order kinetic model.

  10. Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies.

    PubMed

    Mihaly-Cozmuta, L; Mihaly-Cozmuta, A; Peter, A; Nicula, C; Tutu, H; Silipas, Dan; Indrea, Emil

    2014-05-01

    This paper summarizes the conclusions of experiments conducted on the adsorption of Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), Pb(2+) and Zn(2+) onto zeolite. The focus of the experiments was to establish the influence of the initial pH of the contact solution as well as the selectivity of zeolite on the efficiency of the adsorption process. To this end, experimental adsorption isotherms were established for the pH values ranging from 1 to 4 by using the Na-form of clinoptilolite (particle size range 0.5-1 mm) as an adsorbent. Langmuir, Freundlich and Dubinin-Raduschkevich isotherm models were used to validate the experimental data and the Gibbs free energy was calculated based on the distribution coefficient. From the Langmuir model, correlations between the maximum adsorption capacity and selected physical-chemical parameters of the cations studied were established. The results of the experiments suggest that the selectivity of zeolite is strongly influenced by the pH of the contact solution, dehydration energy of cations, diffusion coefficient and the pH at which the precipitation of hydroxides occurs.

  11. Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite.

    PubMed

    Sismanoglu, Tuba; Kismir, Yasemin; Karakus, Selcan

    2010-12-15

    The adsorption of Reactive Blue 21 (RB21) and Reactive Red 195 (RR195) onto clinoptilolite type natural zeolite (ZEC) has been investigated at 298.15K. The uptake of single and binary reactive dyes from aqueous solutions has been determined by UV-vis spectroscopy. Two mono-component (RB21 and RR195) and binary component (RB21 with RR195, and RR195 with RB21), isotherms were determined. The mono-component Langmuir isotherm model was applied to experimental data and the isotherm constants were calculated for RB21 and RR195 dyes. The monolayer coverage capacities of clinoptilolite for RB21 and RR195 dyes in single solution system were found as 9.652 and 3.186 mg/g, respectively. Equilibrium adsorption for binary systems was analyzed by using the extended Langmuir models. The rate of kinetic processes of single and binary dye systems onto clinoptilolite was described by using two kinetics adsorption models. The pseudo-second-order model was the best choice among the kinetic models to describe the adsorption behaviour of single and binary dyes onto clinoptilolite.

  12. Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption.

    PubMed

    Sipponen, Mika Henrikki; Pihlajaniemi, Ville; Littunen, Kuisma; Pastinen, Ossi; Laakso, Simo

    2014-10-01

    A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available.

  13. Adsorption from n-heptane/benzene liquid mixture on acid leached bentonite powders

    NASA Astrophysics Data System (ADS)

    Sarıkaya, Yüksel; Baykal, Mehmet; Önal, Müşerref; Yener, Nilgün

    2013-10-01

    In this study, adsorption excess isotherms of n-heptane/benzene liquid mixture on hydrochloric acid leached bentonite powders were determined. Adsorptions were conducted at 25 °C for 48 h. Experimental results were evaluated with both Schay-Nagy (SN) and Everett (E) methods. Specific surface areas (SSN and SE) of the powders were calculated regarding monolayer adsorption capacity of the preferentially adsorbed benzene. Adsorption equilibrium constants (K ≫ 1) were obtained by the E-method. The SE and SSN values are closed to each other. SE-values were found much lower than the corresponding Brunauer, Emmett and Teller (BET)-values. This difference was discussed with respect to the interaction of adsorbed molecules with solid surface, their collision diameter, molar cross sectional surface area and orientation in dense monolayer. Even the maximum for the SE was not associated with the maxima for K and nanopore volume (V), their values changed approximately parallel to each other with respect to the HCl% by the leaching.

  14. Modeling of 1,4-cyclohexadiene adsorption thermodynamics on Si(001)-2 × 1 surface

    NASA Astrophysics Data System (ADS)

    Gorbunov, V. A.; Myshlyavtsev, A. V.; Myshlyavtseva, M. D.; Fefelov, V. F.

    2015-06-01

    The adsorption thermodynamics of 1,4-cyclohexadiene on Si(001)-2 × 1 are studied in the framework of the lattice gas model with the Monte Carlo and transfer-matrix methods. Adsorption isotherms, heat capacity, entropy as function of chemical potential and adlayer density were calculated. It is shown that there are two ordered phases for the model under consideration. The first phase consists of the tetra-σ complexes and there is a low surface concentration of the adsorbed molecules. The second phase consists of the π-complexes and there is a high surface concentration. The ordered phase consisting of the di-σ complexes is absent within the constructed model. The obtained set of ordered phases and the sequence of its arising with growth of chemical potential are in close correspondence with the experimental data. In the framework of the model under consideration the observed behavior of 1,4-cyclohexadiene adsorption layer on Si(001)-2 × 1 is explained by the presence of three adsorption states with different surface area per molecule and repulsive lateral interactions. Thus, the transition between π- and di-σ configurations and the formation of the π-complex phase can be the thermodynamically driven effect.

  15. The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments

    SciTech Connect

    Wang, Xuchen; Lee, C. )

    1990-10-01

    The methylated amines - monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA) - are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using {sup 14}C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.

  16. CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia.

    PubMed

    Tomić, Željko; Kukučka, Miroslav; Stojanović, Nikoleta Kukučka; Kukučka, Andrej; Jokić, Aleksandar

    2016-10-14

    The adsorption characteristics of synthetic zeolite CR-100 in a fixed-bed system using continuous flow of groundwater containing elevated ammonia concentration were examined. The possibilities for adsorbent mass calculation throughout mass transfer zone using novel mathematical approach as well as zeolite adsorption capacity at every sampling point in time or effluent volume were determined. The investigated adsorption process consisted of three clearly separated steps indicated to sorption kinetics. The first step was characterized by decrease and small changes in effluent ammonia concentration vs. experiment time and quantity of adsorbed ammonia per mass unit of zeolite. The consequences of this phenomenon were showed in the plots of the Freundlich and the Langmuir isotherm models through a better linear correlation according as graphical points contingent to the first step were not accounted. The Temkin and the Dubinin-Radushkevich isotherm models showed the opposite tendency with better fitting for overall measurements. According to the obtained isotherms parameter data, the investigated process was found to be multilayer physicochemical adsorption, and also that synthetic zeolite CR-100 is a promising material for removal of ammonia from Northern Banat groundwater with an ammonia removal efficiency of 90%.

  17. Tungsten oxide--fly ash oxide composites in adsorption and photocatalysis.

    PubMed

    Visa, Maria; Bogatu, Cristina; Duta, Anca

    2015-05-30

    A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau - BB and Bemacid Rot - BR) and one heavy metal ion-Cu(2+), and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate.

  18. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    SciTech Connect

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  19. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide.

    PubMed

    Glover, T Grant; Peterson, Gregory W; DeCoste, Jared B; Browe, Matthew A

    2012-07-17

    The adsorption of ammonia on Zr(OH)(4), as well as Zr(OH)(4) treated with sulfuric acid, were examined. The results show that treating Zr(OH)(4) with sulfuric acid leads to the formation of a sulfate on the surface of the material, and that the sulfate contributes to the ammonia adsorption capacity through the formation of an ammonium sulfates species. Calcination of Zr(OH)(4) decreases the ammonia adsorption capacity of the material and limits the formation of sulfate species. NMR and FTIR spectroscopy results are presented that show the presence of two distinct ammonium species on the surface of the material. The adsorption capacity of the materials is shown to be a complex phenomenon that is impacted by the surface area, the sulfur content, and the pH of the material. The results illustrate that Zr(OH)(4), which is known to adsorb acidic gases, can be modified and used to adsorb basic gases.

  20. Tetraethylenepentamine embedded zeolite A for carbon dioxide adsorption.

    PubMed

    Kim, Young-Ki; Mo, Yong-Hwan; Lee, Jun; You, Hyo-Sang; Yi, Chang-Keun; Park, Young Cheol; Park, Sang-Eon

    2013-04-01

    Tetraethylenepentamine (TEPA) embedded zeolite A crystals were synthesized by using TEPA and the preformed zeolite A precursor under the microwave irradiation. The presence of TEPA in zeolite A crystal was confirmed by TG analysis and FTIR, Raman spectra. The CO2 adsorptive behavior of TEPA embedded zeolite A samples was investigated by CO2 isotherms measured at 25 degrees C comparing with zeolite A. The optimum CO2 sorption capacity was found in the case of 7.5% TEPA embedded zeolite A, which showed 3.75 mmol g(-1) where as the zeolite A showed less CO2 adsorption capacity of 2.88 mmol g(-1). The adsorption capacity of TEPA embedded Zeolite A was sustained up to 90% during 4 cycles of temperature swing adsorption (TSA) from 40 degrees C to 140 degrees C, indicating that the TEPA embedded Zeolite A was found to be useful as one of the application to solid amine adsorbent for CO2.

  1. Three dimensional MOF-sponge for fast dynamic adsorption.

    PubMed

    Li, Huizeng; Li, Mingzhu; Li, Wenbo; Yang, Qiang; Li, Yanan; Gu, Zhenkun; Song, Yanlin

    2017-02-22

    Nowadays, environmental pollution is a big problem. Metal organic frameworks (MOFs) provide a novel strategy for exhaust gases adsorption and toxic pollutants removal. We proposed a facile and versatile method to prepare a highly efficient three dimensional MOF-sponge by coating MOF crystals on polyurethane sponge surface, mimicking the porous structure of the marine animal, sponge. Owing to combination of the spatial structure of the commercial sponge and the excellent adsorption capacity of MOF coatings, the MOF-sponge possessed good permeability and high dynamic adsorption capacity. Dynamic adsorption ability of the prepared Cu3(BTC)2-sponge was demonstrated by flowing gas-mixtures of NH3/N2 and an aquatic solution of Rhodamine B through it, with a capacity of 101.6 mg g(-1) and 8.8 mg g(-1) for NH3 and Rhodamine B, respectively.

  2. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.

    PubMed

    Chen, Suhong; Yue, Qinyan; Gao, Baoyu; Xu, Xing

    2010-09-01

    A new adsorbent modified from wheat residue was synthesized after reaction with epichlorohydrin and triethylamine by using the modifying agents of diethylenetriamine in the presence of organic medium of N,N-dimethylformamide. The performance of the modified wheat straw (MWS) was characterized by Fourier transform infrared spectroscopy and point of zero charge analysis. The adsorption was investigated in a batch adsorption system, including both equilibrium adsorption isotherms and kinetics. Results showed that MWR had great anion-adsorbing capacity, due to the existence of a large number of introduced amino groups, and the value of pH(PZC) was around 5.0. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models and were found to be best represented by the Freundlich isotherm model. Evaluation of the adsorption process identified its endothermic nature. The maximum adsorption capacity of MWS for the removal of Cr(VI) was 322.58mg/g at 328K, indicating that MWS has high chromium removal efficiency, compared to other adsorbents reported. The kinetics of adsorption followed the pseudo-second-order kinetic equation. The mechanism of adsorption was investigated using the intraparticle diffusion model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change) revealed that the adsorption of Cr(VI) onto MWS was endothermic and spontaneous; additionally, the adsorption can be characterized as an ion-exchange process. The results suggest that MWS is an inexpensive and efficient adsorbent for removing Cr(VI) ions from aqueous solution.

  3. Adsorption studies of methylene blue dye on tunisian activated lignin

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Hamdi, N.; Srasra, E.

    2011-02-01

    Activated carbon prepared from natural lignin, providing from a geological deposit, was used as the adsorbent for the removal of methylene blue (MB) dye from aqueous solutions. Batch adsorption studies were conducted to evaluate various experimental parameters like pH and contact time for the removal of this dye. Effective pH for MB removal was 11. Kinetic study showed that the adsorption of dye was gradual process. Quasi equilibrium reached in 4 h. Pseudo-first-order, pseudo-second-order were used to fit the experimental data. Pseudo-second-order rate equation was able to provide realistic description of adsorption kinetics. The experimental isotherms data were also modelled by the Langmuir and Freundlich equation of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 147 mg/g. Activated lignin was shown to be a promising material for adsorption of MB from aqueous solutions.

  4. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-04-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities (q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy (E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  5. Enhancement in dibenzothiophene reactive adsorption from liquid fuel via incorporation of sulfur heteroatoms into the nanoporous carbon matrix.

    PubMed

    Seredych, Mykola; Khine, Monmon; Bandosz, Teresa J

    2011-01-17

    Adsorption of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from simulated diesel fuel was investigated with polymer-derived carbon matrices. Sulfur was incorporated to the carbon surface via a high-temperature hydrogen sulfide reduction of oxygen-containing groups. The resultant carbons were characterized by nitrogen adsorption, thermal analysis, potentiometric titration, and elemental analysis. The selectivities for DBT and DMDBT adsorption were calculated with reference to naphthalene. The carbon matrices studied had comparable structures, hence, the effects of the sulfur functionalities were evident in an increase in dibenzothiophenes selectivity and the breakthrough capacity; this was especially visible at a breakthrough point where small pores are expected to be active in the adsorption process. Incorporation of sulfur atoms into the aromatic rings of the carbon matrix increases the ability of the surface to attract dibenzothiophenes via dispersive interactions (sulfur-sulfur bridges). Sulfur and sulfur-oxygen groups present in larger pores enhance the amount of adsorbed dibenzothiophenes via specific acid-base and polar interactions. They also contribute to the reactive adsorption of DBT and DMDBT (oxidized) and their chemisorption on the carbon surface.

  6. Batch adsorption of cadmium ions from aqueous solution by means of olive cake.

    PubMed

    Al-Anber, Zaid Ahmed; Matouq, Mohammed Abu Dayeh

    2008-02-28

    The use of natural adsorbent such as olive cake to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Jordan. In this study, batch adsorption experiments were carried out for the removal of cadmium ions from its aqueous solution using olive cake as adsorbent. Parameters effects such as temperature, pH and adsorbent dose on the adsorption process were studied. The adsorbent used in this study exhibited as good sorption at approximately pH 6 at temperatures 28, 35 and 45 degrees C. The removal efficiency was found to be 66% at pH 6 and temperature 28 degrees C. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The experimental results were in a good agreement with these models. Results show that when an increasing in temperature from 28 to 45 degrees C, the maximum adsorption capacity (qmax) is decreased from 65.4 to 44.4 mg/g and Freundlich constant (Kf) decreased from 19.9 to 15.7. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change (DeltaG degrees) and the enthalpy change (DeltaH degrees) showed that the process was feasible and exothermic, respectively. The dynamic data fitted to the first order, Lagergren-first order and pseudo second-order kinetic models. The experimental results indicated that the pseudo second-order reaction model provided the best description for these data with a correlation coefficient of 0.99. The adsorption rate constant was calculated as 8.4x10(-3) g mg(-1) min(-1) at 28 degrees C.

  7. EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER

    EPA Science Inventory

    Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...

  8. Adsorption dynamics of molecular nitrogen at an Fe(111) surface.

    PubMed

    Nosir, M A; Martin-Gondre, L; Bocan, G A; Díez Muiño, R

    2017-03-08

    We present an extensive theoretical study of N2 adsorption mechanisms on an Fe(111) surface. We combine the static analysis of a six-dimensional potential energy surface (6D-PES), based on ab initio density functional theory (DFT) calculations for the system, with quasi-classical trajectory (QCT) calculations to simulate the adsorption dynamics. There are four molecular adsorption states, usually called γ, δ, α, and ε, arising from our DFT calculations. We find that N2 adsorption in the γ-state is non-activated, while the threshold energy is associated with the entrance channel for the other three adsorption states. Our QCT calculations confirm that there are activated and nonactivated paths for the adsorption of N2 on the Fe(111) surface, which is in agreement with previous experimental investigations. Molecular dynamics at a surface temperature Ts = 300 K and impact energies Ei in the 0-5 eV range show the relative occupancy of the γ, δ, α, and ε states. The δ-state, however, is only marginally populated despite its adsorption energy being very similar to that of the γ-state. Our QCT calculations trace the dependence of molecular trapping on the surface temperature Ts and initial impact energy Ei and quantify the rates of the different competitive channels that eventually lead to molecular adsorption.

  9. Adsorption equilibrium, kinetics and thermodynamics of α-amylase on poly(DVB-VIM)-Cu(+2) magnetic metal-chelate affinity sorbent.

    PubMed

    Osman, Bilgen; Kara, Ali; Demirbel, Emel; Kök, Senay; Beşirli, Necati

    2012-09-01

    Designing an immobilised metal ion affinity process on large-scale demands that a thorough understanding be developed regarding the adsorption behaviour of proteins on metal-loaded gels and the characteristic adsorption parameters to be evaluated. In view of this requirement, interaction of α-amylase as a model protein with newly synthesised magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter, 53-212 μm) was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerising of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterised by N(2) adsorption/desorption isotherms, electron spin resonance, elemental analysis, scanning electron microscope and swelling studies. Cu(2+) ions were chelated on the m-poly(DVB-VIM) beads and used in adsorption of α-amylase in a batch system. The maximum α-amylase adsorption capacity of the m-poly(DVB-VIM)-Cu(2+) beads was determined as 10.84 mg/g at pH 6.0, 25 °C. The adsorption data were analyzed using three isotherm models, which are the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order, modified Ritchie's-second-order and intraparticle diffusion models were used to test dynamic experimental data. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes.

  10. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A.

    PubMed

    Arampatzidou, Anastasia C; Deliyanni, Eleni A

    2016-03-15

    Activated carbon prepared from potato peels, a solid waste by product has been studied for the adsorption of an endocrine disruptor, Bisphenol-A, from aqueous solutions. The potato peels biomass was activated with H3PO4, KOH and ZnCl2 in order the effect of the activation agent to be evaluated. The activated biomass was carbonized at 400, 600 and/or 800 °C in order the effect of carbonization temperature on the texture, surface chemistry and adsorption properties to be found. The activated carbons prepared were characterized by nitrogen adsorption, Scanning Electron Microscope, thermal analysis and Fourier Transform Infrared Spectroscopy. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second order rate kinetics. The adsorption capacity calculated from the Langmuir isotherm was found 454.62 mg g(-1) at an initial pH 3 at 25 °C for the phosphoric acid activated carbon carbonized at 400 °C that proved to be the best adsorbent.

  11. Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar.

    PubMed

    Zhang, Xiaokai; Sarmah, Ajit K; Bolan, Nanthi S; He, Lizhi; Lin, Xiaoming; Che, Lei; Tang, Caixian; Wang, Hailong

    2016-01-01

    Biochar is a carbonaceous sorbent and can be used as a potential material to reduce the bioavailability of organic pollutants in contaminated soils. In the present study, the adsorption and desorption of diethyl phthalate (DEP) onto soils amended with bamboo biochar was investigated with a special focus on the effect of biochar application rates and aging conditions on the adsorption capacity of the soils. Biochar amendment significantly enhanced the soil adsorption of DEP that increased with increasing application rates of biochar. However, the adsorption capacity decreased by two aging processes (alternating wet and dry, and constantly moist). In the soil with low organic carbon (OC) content, the addition of 0.5% biochar (without aging) increased the adsorption by nearly 98 times compared to the control, and exhibited the highest adsorption capacity among all the treatments. In the soil with high OC content, the adsorption capacity in the treatment of 0.5% biochar without aging was 3.5 and 3 times greater than those of the treatments of biochar aged by alternating wet and dry, and constantly moist, respectively. Moreover, constantly moist resulted in a greater adsorption capacity than alternating wet and dry treatments regardless of biochar addition. This study revealed that biochar application enhanced soil sorption of DEP, however, the enhancement of the adsorption capacity was dependent on the soil organic carbon levels, and aging processes of biochar.

  12. Adsorption of ammonium on biochar prepared from giant reed.

    PubMed

    Hou, Jie; Huang, Lei; Yan