Science.gov

Sample records for adsorption capacity compared

  1. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    PubMed

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. PMID:26476807

  2. Amphiphilic agarose-based adsorbents for chromatography. Comparative study of adsorption capacities and desorption efficiencies.

    PubMed

    Oscarsson, S; Angulo-Tatis, D; Chaga, G; Porath, J

    1995-01-01

    A number of hydrophobic derivatives attached to cross-linked agarose were studied as protein adsorbents. Differences in the adsorption and desorption behaviour were determined as functions of type and concentration of selected salts. Whereas octyl- and phenyl-Sepharose adsorb serum albumin preferentially, pyridyl-S-agarose shows a much stronger preferential affinity for IgG in the presence of high concentrations of lyotropic salts, such as sulphates. In contrast to pyridyl-S-agarose, a large portion of proteins remained fixed to octyl- and phenyl-Sepharose after extensive washing with 1 M NaOH. PMID:7881534

  3. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption. PMID:22508113

  4. Evaluating the Adsorptive Capacities of Chemsorb 1000 and Chemsorb 1425

    NASA Technical Reports Server (NTRS)

    Monje, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa N.; Melendez, Orlando

    2014-01-01

    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity.

  5. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  6. High capacity adsorption media and method of producing

    DOEpatents

    Tranter, Troy J.; Herbst, R. Scott; Mann, Nicholas R.; Todd, Terry A.

    2008-05-06

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  7. Effect of moisture on adsorption isotherms and adsorption capacities of CO{sub 2} on coals

    SciTech Connect

    Ekrem Ozdemir; Karl Schroeder

    2009-05-15

    The effect of moisture on the adsorption isotherms and adsorption capacities of CO{sub 2} on Argonne Premium coals has been investigated. In some experiments a small hysteresis was observed between the adsorption and desorption isotherms. The hysteresis was absent or negligible for high-rank and as-received coals but was discernible for lower rank and dried coals. An equation that accounted for the volumetric changes when an adsorbate alters the structure of an adsorbent was employed to interpret the data. The best-fit solutions indicate that the coal volume decreases upon drying. The microscopic shrinkage estimated using helium expansion was greater than the shrinkage reported using the bed-height technique. The microscopic shrinkage was 5-10% for low-moisture medium and high-rank coals and up to 40% for low-rank coals having higher moisture contents. The CO{sub 2} swelling of coals during adsorption isotherm measurements was estimated to be about the same as the shrinkage that occurred during the moisture loss. The adsorption capacity, isosteric heat of adsorption, average pore size, and surface area of the as-received (moist) and dried Argonne coals were estimated after accounting for the volume changes. The isosteric heat of adsorption of CO{sub 2} was found to be between 23 and 25 kJ/mol for as-received coals and between 25 and 27 kJ/mol for dried coals, regardless of the rank. The degree of drying was shown to affect the adsorption capacity and the calculated surface area. For dried coals, the adsorption capacity showed the typical 'U-shape' dependence on rank whereas the as-received coals displayed a more linear dependence. A relationship is proposed to quantify the effect of moisture on the adsorption capacity. The mechanism of CO{sub 2} adsorption on moist coals and the implications of the lower adsorption capacity of wet coals to coal seam sequestration of CO{sub 2} are presented. 70 refs., 12 figs., 2 tabs.

  8. Methane Adsorption on Aggregates of Fullerenes: Site-Selective Storage Capacities and Adsorption Energies

    PubMed Central

    Kaiser, Alexander; Zöttl, Samuel; Bartl, Peter; Leidlmair, Christian; Mauracher, Andreas; Probst, Michael; Denifl, Stephan; Echt, Olof; Scheier, Paul

    2013-01-01

    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118–281 meV are in the optimal range for high-density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane–methane and fullerene–methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes. PMID:23744834

  9. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe(3+)-grafting.

    PubMed

    Akgül, Murat

    2014-02-28

    In this paper, a batch system was applied to study the adsorption behavior of congo red (CR) on raw and modified clinoptilolites. Raw clinoptilolite (Raw-CL) was treated with Fe(NO3)3 in ethanol to obtain its iron-grafted form (Fe-CL). Adsorbents were characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), energy dispersive X-ray spectroscopy (EDX), thermogravimetric/differential thermal analysis (TG/DTA), zeta-potential measurement and N2 gas adsorption-desorption techniques. Effects of the experimental parameters (initial pH, dye concentration, temperature and adsorption time) were investigated to find optimum conditions that result in highest adsorption capacity for CR removal. The obtained results suggest that the solution pH appears to be a key factor of the CR adsorption process. The maximum dye adsorption was achieved with Fe-CL adsorbent at pH ∼6.3 and the corresponding adsorption capacity was found to be 36.7mg/g, which is higher than that of its raw counterpart (16.9mg/g). A significant decrease in CR removal was given by Fe-CL between pH 7 and 11 opposite to Raw-CL which has nearly constant qe in the same pH range. The Fe(3+)-grafting increased the zeta potential of raw clinoptilolite, leading to a higher adsorption capacity compared to that of unfunctionalized adsorbent. Also, temperature change was found to have a significant effect on the adsorption process. PMID:24413045

  10. Effect of calcium on adsorption capacity of powdered activated carbon.

    PubMed

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger. PMID:25078809

  11. Novel biosorbent with high adsorption capacity prepared by chemical modification of white pine (Pinus durangensis) sawdust. Adsorption of Pb(II) from aqueous solutions.

    PubMed

    Salazar-Rabago, J J; Leyva-Ramos, R

    2016-03-15

    The natural sawdust (NS) from white pine (Pinus durangensis) was chemically modified by a hydrothermal procedure using citric, malonic and tartaric acids. The adsorption capacity of modified sawdust (MS) towards Pb(II) was considerably enhanced due to the introduction of carboxylic groups on the surface of MS during the modification, and the adsorption capacity was almost linearly dependent on the concentration of carboxylic sites. The NS surface was acidic, and the MS surface became more acidic after the modification. At T = 25 °C and pH = 5, the maximum adsorption capacity of the optimal MS towards Pb(II) was 304 mg/g, which is exceptionally high compared to NS and other MS reported previously. The adsorption capacity of MS was considerably reduced from 304 to 154 mg/g by decreasing the solution pH from 5 to 3 due to electrostatic interactions. The adsorption of Pb(II) on MS was reversible at pH = 2, but not at pH = 5. The contribution percentage of ion exchange to the overall adsorption capacity ranged from 70 to 99% and 10-66% at the initial pH of 3 and 5, respectively. Hence, the adsorption of Pb(II) on MS was mainly due to ion exchange at pH = 3 and to both ion exchange and electrostatic attraction at pH = 5. PMID:26773434

  12. [Particulate matter adsorption capacity of 10 evergreen species in Beijing].

    PubMed

    Wang, Bing; Zhang Wei-kang; Niu, Xiang; Wang, Xiao-yan

    2015-02-01

    In the atmosphere, high concentrations of air particles PM (Particulate matter) cause not only environmental pollution, but also serious harm to human body. Green plants as an air filter, can effectively improve the air quality in urban and suburb, and protect human health. Therefore, it is necessary to understand the adsorption capacity of air particulate matter of different species. Based on aerosol generator (QRJZFSQ-I), the leaf surface of ten plants including six evergreen trees and four evergreen shrubs were measured to determine the atmosphere adsorption (TSP, PM10, PM2.5 and PM10) capacity in Beijing, the results showed that: (1) There was obvious difference in the PM adsorption capacity of the leaf surface of different species, the highest were Cedrus deodara and Pinus tabuliformis, which were (18.95 ± 0.71) μg x cm(-2) and (14.61 ± 0.78) μg x cm(-2) respectively, while Abiesfabri was the minimum, which was (8.02 ± 0.4) μg x cm(-2); (2) There was also difference in the per unit leaf area particulate adhesion ability among different tree species, the tree species with the strongest leaf PM10 adhesion ability were Pinus tabulformis and Cedrus deodara, those with the strongest leaf PM2.5 adhesion ability were Cedrus deodara, Juniperus procumbens , Juniperus chinensis cv. kaizuka and Pinus tabuliformis, while those with the strongest leaf PM10 adhesion ability were Cedrus deodara, Juniperus procumbens, Abies fabri and Pinus tabuliformis; (3) The proportions of particulate matters (PM10 and PM2.5) in TSP were different. PM10 had mainly two kinds of trends in April-June, one was firstly decreasing and then increasing, with the main tree type of the shrub species; and the other was increasing, with the main tree type of the tree species. But this change trend was not obvious in PM2.5. PMID:26031064

  13. COMPARISON OF PROCEDURES TO DETERMINE ADSORPTION CAPACITY OF VOLATILE ORGANIC COMPOUNDS ON ACTIVATED CARBON

    EPA Science Inventory

    Numerous volatile organic compounds (VOCs) are under regulatory consideration for inclusion in the National Primary Drinking Water Standards. Adsorption is a cost-effective treatment technology for control of VOCs. Adsorption capacities were determined for fifteen VOCs in distill...

  14. Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study

    SciTech Connect

    Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.; Denton, Kelley; Tao Zhimin; Asefa, Tewodros

    2009-07-15

    The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption and release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of {approx}2.7-3.3 nm and moderate to high surface areas up to {approx}1000 m{sup 2}/g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post

  15. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers.

    PubMed

    Gao, Da-Wen; Hu, Qi; Pan, Hongyu; Jiang, Jiping; Wang, Peng

    2015-10-01

    Pyromellitic dianhydride (PMDA) modified jute fiber (MJF) were prepared with microwave treatment to generate a biosorbent for aniline removal. The characterization of the biosorbent was investigated by SEM, BET and FT-IR analysis to discuss the adsorption mechanism. The studies of various factors influencing the adsorption behavior indicated that the optimum dosage for aniline adsorption was 3g/L, the maximum adsorption capacity was observed at pH 7.0 and the adsorption process is spontaneous and endothermic. The aniline adsorption follows the pseudo second order kinetic model and Langmuir isotherm model. Moreover, the biosorbent could be regenerated through the desorption of aniline by using 0.5M HCl solution, and the adsorption capacity after regeneration is even higher than that of virgin MJF. All these results prove MJF is a promising adsorbent for aniline removal in wastewater. PMID:26172392

  16. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China)

    PubMed Central

    Zhang, Wei-Kang; Wang, Bing; Niu, Xiang

    2015-01-01

    Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2). The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily. PMID:26287227

  17. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    PubMed Central

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the

  18. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Chun-Hsin Wu; Chung-Hsuang Hung

    2006-11-15

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl{sub 2}) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150{sup o}C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer Emmett Teller (BET) surface area could adsorb more HgCl{sub 2} at room temperature. The equilibrium adsorptive capacity of HgCl{sub 2} for WPAC measured in this study was 1.49 x 10{sup -1} mg HgCl{sub 2}/g PAC at 25{sup o}C with an initial HgCl{sub 2} concentration of 25 {mu}g/m{sup 3}. With the increase of adsorption temperature {le} 150{sup o}C, the equilibrium adsorptive capacity of HgCl{sub 2} for WPAC was decreased to 1.34 x 10{sup -1} mg HgCl{sub 2}/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl{sub 2}. It was demonstrated that the mechanisms for adsorbing HgCl{sub 2} onto WPAC were physical adsorption and chemisorption at 25 and 150{sup o}C, respectively. 35 refs., 4 figs., 4 tabs.

  19. Effect of pH on protein adsorption capacity of strong cation exchangers with grafted layer.

    PubMed

    Wrzosek, Katarzyna; Polakovič, Milan

    2011-09-28

    The effect of pH on the static adsorption capacity of immunoglobulin G, human serum albumin, and equine myoglobin was investigated for a set of five strong cation exchangers with the grafted tentacle layer having a different ligand density. A sharp maximum of adsorption capacity with pH was observed for adsorbents with a high ligand density. The results were elucidated using the protein structure and calculations of pK(a) of ionizable groups of surface basic residues. Inverse size-exclusion experiments were carried out to understand the relation between the adsorption capacity and pore accessibility of the investigated proteins. PMID:21855072

  20. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater. PMID:26209151

  1. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles. PMID:21172719

  2. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  3. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    PubMed

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs. PMID:26521219

  4. Investigation of Mg modified mesoporous silicas and their CO 2 adsorption capacities

    NASA Astrophysics Data System (ADS)

    Zhao, Huiling; Yan, Wei; Bian, Zijun; Hu, Jun; Liu, Honglai

    2012-02-01

    CO 2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg 2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO 2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO 2 adsorption performance showed that the CO 2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO 2 adsorption capacity increased from 0.42 mmol g -1 of pure silica SBA-15 to 1.35 mmol g -1 of Mg-Al-SBA-15-I1 by the ion-exchange method enhanced with Al 3+ synergism. Moreover, it also increased from 0.67 mmol g -1 of pure silica MCM-41 to 1.32 mmol g -1 of Mg-EDA-MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO 2 adsorption/desorption cycles showed Mg-urea-MCM-41-D10 possessed quite good recyclability.

  5. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    PubMed

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. PMID:23941894

  6. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water.

    PubMed

    Yao, Yuan; Volchek, Konstantin; Brown, Carl E; Robinson, Adam; Obal, Terry

    2014-01-01

    Perfluorinated compounds (PFCs) are emerging environmental pollutants. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are the two primary PFC contaminants that are widely found in water, particularly in groundwater. This study compared the adsorption behaviors of PFOS and PFOA on several commercially available adsorbents in water. The tested adsorbents include granular activated carbon (GAC: Filtrasorb 400), powdered activated carbon, multi-walled carbon nanotube (MCN), double-walled carbon nanotube, anion-exchange resin (AER: IRA67), non-ion-exchange polymer, alumina, and silica. The study demonstrated that adsorption is an effective technique for the removal of PFOS/PFOA from aqueous solutions. The kinetic tests showed that the adsorption onto AER reaches equilibrium rapidly (2 h), while it takes approximately 4 and 24 h to reach equilibrium for MCN and GAC, respectively. In terms of adsorption capacity, AER and GAC were identified as the most effective adsorbents to remove PFOS/PFOA from water. Furthermore, MCN, AER, and GAC proved to have high PFOS/PFOA removal efficiencies (≥98%). AER (IRA67) and GAC (Filtrasorb 400) were thus identified as the most promising adsorbents for treating PFOS/PFOA-contaminated groundwater at mg L(-1) level based on their equilibrium times, adsorption capacities, removal efficiencies, and associated costs. PMID:25521134

  7. Reservoir capacity estimates in shale plays based on experimental adsorption data

    NASA Astrophysics Data System (ADS)

    Ngo, Tan

    from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative

  8. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  9. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses.

    PubMed

    Gonzalez, Aridane G; Pokrovsky, Oleg S; Beike, Anna K; Reski, Ralf; Di Palma, Anna; Adamo, Paola; Giordano, Simonetta; Fernandez, J Angel

    2016-01-01

    Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring. PMID:26407060

  10. Non-contact analysis of the adsorptive ink capacity of nano silica pigments on a printing coating base.

    PubMed

    Jiang, Bo; Huang, Yu Dong

    2014-01-01

    Near infrared spectra combined with partial least squares were proposed as a means of non-contact analysis of the adsorptive ink capacity of recording coating materials in ink jet printing. First, the recording coating materials were prepared based on nano silica pigments. 80 samples of the recording coating materials were selected to develop the calibration of adsorptive ink capacity against ink adsorption (g/m2). The model developed predicted samples in the validation set with r2  = 0.80 and SEP = 1.108, analytical results showed that near infrared spectra had significant potential for the adsorption of ink capacity on the recording coating. The influence of factors such as recording coating thickness, mass ratio silica: binder-polyvinyl alcohol and the solution concentration on the adsorptive ink capacity were studied. With the help of the near infrared spectra, the adsorptive ink capacity of a recording coating material can be rapidly controlled. PMID:25329464

  11. Non-Contact Analysis of the Adsorptive Ink Capacity of Nano Silica Pigments on a Printing Coating Base

    PubMed Central

    Jiang, Bo; Huang, Yu Dong

    2014-01-01

    Near infrared spectra combined with partial least squares were proposed as a means of non-contact analysis of the adsorptive ink capacity of recording coating materials in ink jet printing. First, the recording coating materials were prepared based on nano silica pigments. 80 samples of the recording coating materials were selected to develop the calibration of adsorptive ink capacity against ink adsorption (g/m2). The model developed predicted samples in the validation set with r2  = 0.80 and SEP  = 1.108, analytical results showed that near infrared spectra had significant potential for the adsorption of ink capacity on the recording coating. The influence of factors such as recording coating thickness, mass ratio silica: binder-polyvinyl alcohol and the solution concentration on the adsorptive ink capacity were studied. With the help of the near infrared spectra, the adsorptive ink capacity of a recording coating material can be rapidly controlled. PMID:25329464

  12. Facile preparation of hierarchical hollow structure gamma alumina and a study of its adsorption capacity

    NASA Astrophysics Data System (ADS)

    Lan, Shi; Guo, Na; Liu, Lu; Wu, Xiaomin; Li, Linlin; Gan, Shucai

    2013-10-01

    The hierarchical shell and hollow core structure gamma alumina (γ-Al2O3) with high adsorption affinity toward organic pollutants was fabricated via a facile homogeneous precipitation method. The microstructure, morphology, and functional groups of the as-synthesized γ-Al2O3 were characterized in detail. The N2 adsorption-desorption measurement (BET) experimental result showed the surface area of γ-Al2O3 (Al90-600) is 320.6 m2/g and the average pore size is 17.8 nm. The effects of reaction parameters on the synthesis of hierarchical hollow structure were systematically investigated. The dye removal ability of this adsorbent was determined by batch adsorption procedure. The isotherms and kinetics of adsorption process were determined and analyzed in detail, which were found to obey the Langmuir isotherm model and the pseudo-second-order for both the Congo red (CR) and Methyl orange (MO). The maximum adsorption capacity of γ-Al2O3 for CR is 835.0 mg/g, which is higher than that of many other previously reported hierarchical structured adsorbents. This facile synthetic approach is a very promising way for the design and synthesis of the typical hierarchical hollow structure materials with powerful adsorption capacity for the removal of organic contaminants from wastewater.

  13. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    NASA Technical Reports Server (NTRS)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  14. Assessment of CO₂ adsorption capacity on activated carbons by a combination of batch and dynamic tests.

    PubMed

    Balsamo, Marco; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Erto, Alessandro; Rodríguez-Reinoso, Francisco; Lancia, Amedeo

    2014-05-27

    In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance of three different activated carbons (AC) obtained from olive stones by chemical activation followed by physical activation with CO2 at varying times (i.e., 20, 40, and 60 h). Kinetic and thermodynamic CO2 adsorption tests from simulated flue gas at different temperatures and CO2 pressures are carried out under both batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with a CO2/N2 mixture) conditions. The textural characterization of the AC samples shows a direct dependence of both micropore and ultramicropore volume on the activation time; hence, AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that when CO2 pressure is lower than 0.3 bar, the lower the activation time, the higher CO2 adsorption capacity; a ranking of ω(eq)(AC20) > ω(eq)(AC40) > ω(eq)(AC60) can be exactly defined when T = 293 K. This result is likely ascribed to the narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of flue gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight the fact that the adsorption of N2 on the synthesized AC samples can be considered to be negligible. Finally, the importance of proper analysis for data characterization and adsorption experimental results is highlighted for the correct assessment of the CO2 removal performance of activated carbons at different CO2 pressures and operating temperatures. PMID:24784997

  15. Fugitive gas adsorption capacity of biomass and animal-manure derived biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research characterized and investigated ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and pore volumes of the a...

  16. Ammonia adsorption capacity of biomass and animal-manure derived biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to characterize and investigate ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and...

  17. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity.

    PubMed

    Orlando, U S; Baes, A U; Nishijima, W; Okada, M

    2002-09-01

    Anion exchangers were prepared from different agricultural residues (AR) after reaction with epichlorohydrin and dimethylamine in the presence of pyridine and N,N-dimethylformamide (EDM method). Agricultural residues anion exchangers (AR-AE) produced by the EDM method were inexpensive and showed almost the same NO3- removal capacities as Amberlite IRA-900. AR-AE produced from AR with higher hemicelluloses, lignin, ash and extractive contents resulted in the lower yields. Sugarcane bagasse with the highest alpha-cellulose contents of 51.2% had the highest yield (225%) and lowest preparation cost. The highest maximum adsorption capacity (Qmax) for nitrate was obtained from rice hull (1.21 mmol g(-1)) and pine bark natural exchangers (1.06 mmol g(-1)). No correlation was found between Qmax and alpha-cellulose content in the original AR. AR-AE produced from different AR demonstrated comparable Qmax due to the removal of non-active compounds such as extractives, lignin and hemicelluloses from AR during the preparation process. Similar preparation from pure cellulose and pure alkaline lignin demonstrated that the EDM method could not produce anion exchangers from pure lignin due to its solubilization after the reaction with epichlorohydrin. PMID:12227509

  18. Effect of surface area and chemisorbed oxygen on the SO2 adsorption capacity of activated char

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.

    1996-01-01

    The objective of this study was to determine whether activated char produced from Illinois coal could be used effectively to remove sulfur dioxide from coal combustion flue gas. Chars were prepared from a high-volatile Illinois bituminous coal under a wide range of pyrolysis and activation conditions. A novel char preparation technique was developed to prepare chars with SO2 adsorption capacities significantly greater than that of a commercial activated carbon. In general, there was no correlation between SO2 adsorption capacity and surface area. Temperature-programmed desorption (TPD) was used to determine the nature and extent of carbon-oxygen (C-O) complexes formed on the char surface. TPD data revealed that SO2 adsorption was inversely proportional to the amount of C-O complex. The formation of a stable C-O complex during char preparation may have served only to occupy carbon sites that were otherwise reactive towards SO2 adsorption. A fleeting C(O) complex formed during SO2 adsorption is postulated to be the reaction intermediate necessary for conversion of SO2 to H2SO4. Copyright ?? 1996 Elsevier Science Ltd.

  19. Nanosheet-structured boron nitride spheres with a versatile adsorption capacity for water cleaning.

    PubMed

    Liu, Fei; Yu, Jie; Ji, Xixi; Qian, Muqi

    2015-01-28

    Here, we report the synthesis of nanosheet-structured boron nitride spheres (NSBNSs) by a catalyzing thermal evaporation method from solid B powders. The NSBNSs consist of radially oriented ultrathin nanosheets with the sheet edges oriented on the surface. Formation of this unique structure occurs only at a certain reaction temperature. The diameter from 4 μm to 700 nm and the nanosheet thickness from 9.1 to 3.1 nm of the NSBNSs can be well-controlled by appropriately changing the mass ratio of boron powders and catalyst. The NSBNSs possess versatile adsorption capacity, exhibiting excellent adsorption performance for oil, dyes, and heavy metal ions from water. The oil uptake reaches 7.8 times its own weight. The adsorption capacities for malachite green and methylene blue are 324 and 233 mg/g, while those for Cu(2+), Pb(2+), and Cd(2+) are 678.7, 536.7, and 107.0 mg/g, respectively. The adsorption capacities of the NSBNSs for Cu(2+) and Pb(2+) are higher or much higher than those of the adsorbents reported previously. These results demonstrate the great potential of NSBNSs for water treatment and cleaning. PMID:25552343

  20. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  1. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  2. Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide-biochar nano-composites derived from pulp and paper sludge

    NASA Astrophysics Data System (ADS)

    Chaukura, Nhamo; Murimba, Edna C.; Gwenzi, Willis

    2016-02-01

    A Fe2O3-biochar nano-composite (Fe2O3-BC) was prepared from FeCl3-impregnated pulp and paper sludge (PPS) by pyrolysis at 750 °C. The characteristics and methyl orange (MO) adsorption capacity of Fe2O3-BC were compared to that of unactivated biochar (BC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the composite material was nano-sized. Fourier transform infrared (FTIR) spectroscopy revealed the presence of hydroxyl and aromatic groups on BC and on Fe2O3-BC, but Brunauer-Emmett-Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) porosity were lower for Fe2O3-BC than BC. Despite the lower BET surface area and porosity of Fe2O3-BC, its MO adsorption capacity was 52.79 % higher than that of BC. The equilibrium adsorption data were best represented by the Freundlich model with a maximum adsorption capacity of 20.53 mg g-1 at pH 8 and 30 min contact time. MO adsorption obeyed pseudo-second-order kinetics for both BC and Fe2O3-BC with R 2 values of 0.996 and 0.999, respectively. Higher MO adsorption capacity for Fe2O3-BC was attributed to the hybrid nature of the nano-composites; adsorption occurred on both biochar matrix and Fe2O3 nanocrystals. Gibbs free energy calculations confirmed the adsorption is energetically favourable and spontaneous with a high preference for adsorption on both adsorbents. The nano-composite can be used for the efficient removal of MO (>97 %) from contaminated wastewater.

  3. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices. PMID:26301850

  4. Strengthening of Graphene Aerogels with Tunable Density and High Adsorption Capacity towards Pb2+

    PubMed Central

    Han, Zhuo; Tang, Zhihong; Shen, Shuling; Zhao, Bin; Zheng, Guangping; Yang, Junhe

    2014-01-01

    Graphene aerogels (GAs) with high mechanical strength, tunable density and volume have been prepared only via soaking graphene hydrogels (GHs) in ammonia solution. The density and volume of the obtained GAs are controlled by adjusting the concentration of ammonia solution. Although volume of the GAs decreases with increasing the concentration of ammonia solution, its specific surface area maintains at about 350 m2 g−1, and the inner structure changes to radial after ammonia solution treatment. Thus, GAs are particularly suitable for the adsorption and energy storage applications owing to their high specific surface area and unique porous structure. The adsorption capacity of GAs for Pb2+ from aqueous solution maintains at about 80 mg g−1, which could reach as high as 5000 g m−3 per unit volume and they can be separated easily from water after adsorption. PMID:24848100

  5. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    PubMed Central

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-01-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g−1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water. PMID:26843015

  6. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate.

    PubMed

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-01-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g(-1) at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na(+), Mg(2+), or Fe(3+)) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na(+), Mg(2+), and Fe(3+) were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na(+), Mg(2+), and Fe(3+). We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water. PMID:26843015

  7. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    NASA Astrophysics Data System (ADS)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-02-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g-1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water.

  8. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    PubMed

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  9. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    PubMed Central

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (Ro) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  10. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks-74.

    PubMed

    Adhikari, Abhijit Krishna; Lin, Kuen-Song

    2014-04-01

    Two metal organic frameworks of MOF-74 group (zinc and copper-based) were successfully synthesized, characterized, and evaluated for CO2 adsorption. The both samples such as MOF-74(Zn) and MOF-74(Cu) were characterized with FE-SEM for morphology and particle size, XRD patterns for phase structure, FTIR for organic functional groups, nitrogen adsorption for pore textural properties, and X-ray absorption spectroscopy for fine structural parameters and oxidation states of central metal atoms. CO2 adsorption isotherms of MOF-74 samples were measured in a volumetric adsorption unit at 273 K and pressure up to 1.1 bar. The MOF-74(Zn) and MOF-74(Cu) adsorbents have the pore widths of 8.58 and 8.04 angstroms with the BET specific surface areas of 1,474 and 1,345 m2 g(-1), respectively. CO2 adsorption capacities of MOF-74(Zn) and MOF-74(Cu) were 4.10 and 3.38 mmol x g(-1), respectively measured at 273 K and 1.1 bar. The oxidation state of central atoms in MOF-74(Zn) was Zn(II) confirmed by XANES spectra while MOF-74(Cu) was composed of Cu(I) and Cu(II) central atoms. The bond distances of Zn--O and Cu--O were 1.98 and 1.94 angstroms, respectively. PMID:24734683

  11. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    SciTech Connect

    Petitpas, G; Benard, P; Klebanoff, L E; Xiao, J; Aceves, S M

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  12. High-capacity adsorption of dissolved hexavalent chromium using amine-functionalized magnetic corn stalk composites.

    PubMed

    Song, Wen; Gao, Baoyu; Zhang, Tengge; Xu, Xing; Huang, Xin; Yu, Huan; Yue, Qinyan

    2015-08-01

    Easily separable amine-functionalized magnetic corn stalk composites (AF-MCS) were employed for effective adsorption and reduction of toxic hexavalent chromium [Cr(VI)] to nontoxic Cr(III). The saturated magnetization of AF-MCS reached 6.2emu/g, and as a result, it could be separated from aqueous solution by a magnetic process for its superparamagnetism. The studies of various factors influencing the sorption behavior indicated that the optimum AF-MCS dosage for Cr(VI) adsorption was 1g/L, and the maximum adsorption capacity was observed at pH 3.0. The chromium adsorption perfectly fitted the Langmuir isotherm model and pseudo second order kinetic model. Furthermore, characterization of AF-MCS was investigated by means of XRD, SEM, TEM, FT-IR, BET, VSM and XPS analysis to discuss the uptake mechanism. Basically, these results demonstrated that AF-MCS prepared in this work has shown its merit in effective removal of Cr(VI) and rapid separation from effluents simultaneously. PMID:25690680

  13. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. PMID:24934321

  14. Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung

    2006-11-15

    This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

  15. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity.

    PubMed

    Hokkanen, Sanna; Bhatnagar, Amit; Sillanpää, Mika

    2016-03-15

    In recent decades, increased domestic, agricultural and industrial activities worldwide have led to the release of various pollutants, such as toxic heavy metals, inorganic anions, organics, micropollutants and nutrients into the aquatic environment. The removal of these wide varieties of pollutants for better quality of water for various activities is an emerging issue and a robust and eco-friendly treatment technology is needed for the purpose. It is well known that cellulosic materials can be obtained from various natural sources and can be employed as cheap adsorbents. Their adsorption capacities for heavy metal ions and other aquatic pollutants can be significantly affected upon chemical treatment. In general, chemically modified cellulose exhibits higher adsorption capacities for various aquatic pollutants than their unmodified forms. Numerous chemicals have been used for cellulose modifications which include mineral and organic acids, bases, oxidizing agent, organic compounds, etc. This paper reviews the current state of research on the use of cellulose, a naturally occurring material, its modified forms and their efficacy as adsorbents for the removal of various pollutants from waste streams. In this review, an extensive list of various cellulose-based adsorbents from literature has been compiled and their adsorption capacities under various conditions for the removal of various pollutants, as available in the literature, are presented along with highlighting and discussing the key advancement on the preparation of cellulose-based adsorbents. It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of these adsorbents on a commercial scale, leading to the improvement of pollution control. PMID:26789698

  16. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs)

    USGS Publications Warehouse

    Hsi, H.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2001-01-01

    Laboratory studies were conducted to determine the role of sulfur functional groups and micropore surface area of carbon-based adsorbents on the adsorption of Hg0 from simulated coal combustion flue gases. In this study, raw activated carbon fibers that are microporous (ACF-20) were impregnated with elemental sulfur between 250 and 650 ??C. The resulting samples were saturated with respect to sulfur content. Total sulfur content of the sulfur impregnated ACF samples decreased with increasing impregnation temperatures from 250 and 500 ??C and then remained constant to 650 ??C. Results from sulfur K-edge X-ray absorption near-edge structure (S-XANES) spectroscopy showed that sulfur impregnated on the ACF samples was in both elemental and organic forms. As sulfur impregnation temperature increased, however, the relative amounts of elemental sulfur decreased with a concomitant increase in the amount of organic sulfur. Thermal analyses and mass spectrometry revealed that sulfur functional groups formed at higher impregnation temperatures were more thermally stable. In general, sulfur impregnation decreased surface area and increased equilibrium Hg0 adsorption capacity when compared to the raw ACF sample. The ACF sample treated with sulfur at 400 ??C had a surface area of only 94 m2/g compared to the raw ACF sample's surface area of 1971 m2/g, but at least 86% of this sample's surface area existed as micropores and it had the largest equilibrium Hg0adsorption capacities (2211-11343 ??g/g). Such a result indicates that 400 ??C is potentially an optimal sulfur impregnation temperature for this ACF. Sulfur impregnated on the ACF that was treated at 400 ??C was in both elemental and organic forms. Thermal analyses and CS2extraction tests suggested that elemental sulfur was the main form of sulfur affecting the Hg0 adsorption capacity. These findings indicate that both the presence of elemental sulfur on the adsorbent and a microporous structure are important properties for

  17. Adsorption capacities of activated carbons for geosmin and 2-methylisoborneol vary with activated carbon particle size: Effects of adsorbent and adsorbate characteristics.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Sakamoto, Asuka; Taniguchi, Takuma; Pan, Long; Matsushita, Taku; Shirasaki, Nobutaka

    2015-11-15

    The adsorption capacities of nine activated carbons for geosmin and 2-methylisoborneol (MIB) were evaluated. For some carbons, adsorption capacity substantially increased when carbon particle diameter was decreased from a few tens of micrometers to a few micrometers, whereas for other carbons, the increase of adsorption capacity was small for MIB and moderate for geosmin. An increase of adsorption capacity was observed for other hydrophobic adsorbates besides geosmin and MIB, but not for hydrophilic adsorbates. The parameter values of a shell adsorption model describing the increase of adsorption capacity were negatively correlated with the oxygen content of the carbon among other characteristics. Low oxygen content indicated low hydrophilicity. The increase of adsorption capacity was related to the hydrophobic properties of both adsorbates and activated carbons. For adsorptive removal of hydrophobic micropollutants such as geosmin, it is therefore recommended that less-hydrophilic activated carbons, such as coconut-shell-based carbons, be microground to a particle diameter of a few micrometers to enhance their equilibrium adsorption capacity. In contrast, adsorption by hydrophilic carbons or adsorption of hydrophilic adsorbates occur in the inner pores, and therefore adsorption capacity is unchanged by particle size reduction. PMID:26302219

  18. Adsorptive capacity and evolution of the pore structure of alumina on reaction with gaseous hydrogen fluoride.

    PubMed

    McIntosh, Grant J; Agbenyegah, Gordon E K; Hyland, Margaret M; Metson, James B

    2015-05-19

    Brunauer-Emmet-Teller (BET) specific surface areas are generally used to gauge the propensity of uptake on adsorbents, with less attention paid to kinetic considerations. We explore the importance of such parameters by modeling the pore size distributions of smelter grade aluminas following HF adsorption, an industrially important process in gas cleaning at aluminum smelters. The pore size distributions of industrially fluorinated aluminas, and those contacted with HF in controlled laboratory trials, are reconstructed from the pore structure of the untreated materials when filtered through different models of adsorption. These studies demonstrate the presence of three distinct families of pores: those with uninhibited HF uptake, kinetically limited porosity, and pores that are surface blocked after negligible scrubbing. The surface areas of the inaccessible and blocked pores will overinflate estimates of the adsorption capacity of the adsorbate. We also demonstrate, contrary to conventional understanding, that porosity changes are attributed not to monolayer uptake but more reasonably to pore length attenuation. The model assumes nothing specific regarding the Al2O3-HF system and is therefore likely general to adsorbate/adsorbent phenomena. PMID:25913681

  19. Volumetric Interpretation of Protein Adsorption: Capacity Scaling with Adsorbate Molecular Weight and Adsorbent Surface Energy

    PubMed Central

    Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.

    2009-01-01

    Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher

  20. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study.

    PubMed

    Liu, Na; Charrua, Alberto Bento; Weng, Chih-Huang; Yuan, Xiaoling; Ding, Feng

    2015-12-01

    The physicochemical properties of biochars produced from soybeans (SBB), corn stalks (CSB), rice stalks (RSB), poultry manure (PMB), cattle manure (CMB), and pig manure (PgMB) and their adsorption characteristics of atrazine were investigated. The adsorption capacity increased with the increase of temperature and initial atrazine concentration. More atrazine was removed from basic solutions than acidic solutions, due to the effects of adsorption and hydrolysis. The Freundlich isotherm adsorption parameters indicated that the adsorption capacity decreased in the order SBB>RSB>CMB>CSB>PMB>PgMB, which is associated to the pore volume of biochars. The total pore volume and biochar pH were concluded to play important roles in determining the adsorption capacity, and they may have contributed to physical adsorption mechanisms dominating the overall adsorption process (the low activation energy for all of the biochars). Modified Freundlich and intraparticle diffusion models were used to describe the kinetics of the adsorption process. PMID:26364228

  1. Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility.

    PubMed

    Wang, Zhong; Wang, WenZhong; Jiang, Dong; Zhang, Ling; Zheng, Yali

    2016-07-28

    Capturing formaldehyde (HCHO) from indoor air with porous adsorbents still faces challenges due to their low uptake capacity, difficult regeneration, and especially, the sorption capacity reduction that is caused by the competitive adsorption of H2O when exposed to a humid atmosphere. In this work, MIL-101 is modified with ethylenediamine (ED) on its open-metal sites to substantially improve the HCHO adsorption properties. The HCHO uptake capacity of modified MIL-101 can be up to 5.49 mmol g(-1) in this study, which is among the highest-levels of various adsorbents reported thus far. Moreover, this modification both improved the material's recyclability and water resistibility, allowing for cyclic and selective tests with stable adsorption capacities, revealing the potential utility of amine-modified MOFs for indoor air purification. PMID:27338802

  2. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    PubMed

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. PMID:25697373

  3. Comparative analysis of tropaeolin adsorption onto raw and acid-treated kaolinite: optimization by Response Surface Methodology.

    PubMed

    de Sales, Priscila F; Magriotis, Zuy M; Rossi, Marco A L S; Resende, Ricardo F; Nunes, Cleiton A

    2015-03-15

    The comparative adsorption of Tropaeolin (TP) onto raw kaolinite (RK) and kaolinite submitted to acid treatment (AK) was studied. RK and AK were characterized by zeta potential and energy dispersive X-ray spectroscopy (EDS). The adsorption was investigated using Composite Central Design (CCD) and the parameters evaluated were initial TP solution concentration, quantity of adsorbent and the pH of the solution. The optimized parameters were: initial TP solution concentration of 75 mg L(-1), pH 4 and 0.12 g adsorbent. Kinetic data were evaluated by pseudo-first order, pseudo-second order and Avrami models. The equilibrium adsorption was analyzed by Langmuir, Freundlich and Sips isotherms. The kinetic data were best fitted to the pseudo-second order model. The Sips isotherm model gives the better correlation to predict the adsorption equilibrium. The maximum adsorption capacities were 18.3 mg g(-1) and 23.2 mg g(-1) for RK and AK, respectively. The calculated thermodynamic parameters showed that the process was spontaneous, endothermic and involving the disorganization of the adsorption system for both adsorbents. The desorption step showed that the AK sample was more suitable as an adsorbent. PMID:25559496

  4. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements.

    PubMed

    Luengo, Carina; Brigante, Maximiliano; Antelo, Juan; Avena, Marcelo

    2006-08-15

    The adsorption kinetics of phosphate on goethite has been studied by batch adsorption experiments and by in situ ATR-IR spectroscopy at different pH, initial phosphate concentrations and stirring rates. Batch adsorption results are very similar to those reported by several authors, and show a rather fast initial adsorption taking place in a few minutes followed by a slower process taking place in days or weeks. The adsorption kinetics could be also monitored by integrating the phosphate signals obtained in ATR-IR experiments, and a very good agreement between both techniques was found. At pH 4.5 two surface complexes, the bidentate nonprotonated (FeO)(2)PO(2) and the bidentate protonated (FeO)(2)(OH)PO complexes, are formed at the surface. There are small changes in the relative concentrations of these species as the reaction proceeds, and they seem to evolve in time rather independently. At pH 7.5 and 9 the dominating surface species is (FeO)(2)PO(2), which is accompanied by an extra unidentified species at low concentration. They also seem to evolve independently as the reaction proceeds. The results are consistent with a mechanism that involve a fast adsorption followed by a slow diffusion into pores, and are not consistent with surface precipitation of iron phosphate. PMID:16643942

  5. A comparative study and evaluation of sulfamethoxazole adsorption onto organo-montmorillonites.

    PubMed

    Lu, Laifu; Gao, Manglai; Gu, Zheng; Yang, Senfeng; Liu, Yuening

    2014-12-01

    Three organo-montmorillonites were prepared using surfactants, and their adsorption behaviors toward sulfamethoxazole (SMX) were investigated. The surfactants used were cetyltrimethyl ammonium bromide (CTMAB), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HDAPS) and 1,3-bis(hexadecyldimethylammonio)-propane dibromide (BHDAP). The properties of the organo-montmorillonites were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption isotherm measurements. Results showed that the interlayer spacing of montmorillonite was increased and the surface area as well as the morphology were changed. Batch adsorption experiments showed that the surfactant loading amount had a great effect on the adsorption of SMX. The adsorption process was pH dependent and the maximum adsorption capacity was obtained at pH3 for HDAPS-Mt, while CTMAB-Mt and BHDAP-Mt showed a high removal efficiency at 3-11. The adsorption capacity increased with the initial SMX concentration and contact time but decreased with increasing solution ionic strength. Kinetic data were best described by the pseudo second-order model. Equilibrium data were best represented by the Langmuir model, and the Freundlich constant (n) indicated a favorable adsorption process. The maximum adsorption capacity of SMX was 235.29 mg/g for CTMAB-Mt, 155.28 mg/g for HDAPS-Mt and 242.72 mg/g for BHDAP-Mt. Thermodynamic parameters were calculated to evaluate the spontaneity and endothermic or exothermic nature. The adsorption mechanism was found to be dominated by electrostatic interaction, while hydrophobic interaction played a secondary role. PMID:25499502

  6. Reservoir capacity estimates in shale plays based on experimental adsorption data

    NASA Astrophysics Data System (ADS)

    Ngo, Tan

    from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative

  7. Evaluation of Adsorption Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+, Cu2+ and Zn2.

    PubMed

    Humelnicu, Doina; Ignat, Maria; Suchea, Mirela

    2015-01-01

    Adsorption capacity of the two adsorbents was investigated as a function of contact time between adsorbent and heavy metal ions solutions, the initial heavy metals concentration of the synthetic wastewater, pH value, temperature and adsorbent mass. Preliminary experiments at different pH values between 2.0 and 7.0 were performed, and were observed that maximum adsorption occurs at pH 5 for copper (q(max) = 92.59 mg · g(–1)), 6.0 for lead (qmax = 97.08 mg · g(–1)) and 6.5 for zinc ions (q(max) = 73.52 mg · g(–1)), respectively. The sorption capacity of studied adsorbents for Pb(2+), Cu(2+) and Zn(2+) was calculated using Langmuir and Freundlich models. Thermodynamic parameters – enthalpy change (ΔH(0)), entropychange (ΔS(0)) and free energy (ΔG(0)) – were calculated for predicting the nature of adsorption. Scanning electron micrograph(SEM) revealed changes in the surface morphology of the adsorbent as a result of heavy metal ions adsorption.EDS characterization confirmed qualitatively the presence of adsorbed species in the samples. On the basis of the obtained results the adsorption it was proposed an ordered adsorption: Pb(2+), Cu(2+) and Zn(2+), on the sorbents we investigated. PMID:26680724

  8. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment. PMID:25409587

  9. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  10. Porphyrin-Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue.

    PubMed

    Hou, Yuxia; Sun, Junshan; Zhang, Daopeng; Qi, Dongdong; Jiang, Jianzhuang

    2016-04-25

    A series of four porphyrin-alkaline earth metal- organic frameworks [Mg(HDCPP)2 (DMF)2 ]n ⋅(H2 O)7 n (1), [Ca(HDCPP)2 (H2 O)2 ]n (DMF)1.5 n (2), [Sr(DCPP)(H2 O)(DMA)]n (3), and [Ba(DCPP)(H2 O)(DMA)]n (4) was isolated for the first time from solvothermal reaction between metal-free 5,15-di(4- carboxyphenyl)porphyrin (H2 DCPP) and alkaline earth ions. Single-crystal X-ray diffraction analysis reveals the 2D and 3D supramolecular network with periodic nanosized porosity for 1/2 and 3/4, respectively. The whole series of MOFs, in particular, compounds 1 and 2 with intrinsic low molecular formula weight, exhibit superior adsorption performance for methylene blue (MB) with excellent capture capacity as represented by the thus far highest adsorption amount of 952 mg g(-1) for 2 and good selectivity, opening a new way for the potential application of the main group metal-based MOFs. PMID:27002679

  11. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J; Dai, Sheng; Oyola, Yatsandra

    2014-05-13

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  12. Shape of the hydrogen adsorption regions of MOF-5 and its impact on the hydrogen storage capacity

    NASA Astrophysics Data System (ADS)

    Cabria, I.; López, M. J.; Alonso, J. A.

    2008-11-01

    The adsorption of molecular hydrogen on a metal-organic framework (MOF) material, MOF-5, has been studied using the density-functional formalism. The calculated potential-energy surface shows that there are two main adsorption regions: both near the OZn4 oxide cores at the vertices of the cubic skeleton of MOF-5. The adsorption energies in those regions are between 100 and 130 meV/molecule. Those adsorption regions have the shape of long, wide, and deep connected trenches and passage of the molecule between regions needs to surpass small barriers of 30-50 meV. The shape of these regions, and not only the presence of metal atoms, explains the large storage capacity measured for MOF-5. The elongated shape explains why some authors have previously identified only one type of adsorption site, associated to the Zn oxide core, and others identified two or three sites. One should consider adsorption regions rather than adsorption sites. A third region of adsorption is near the benzenic rings of the MOF-5. We have also analyzed the possibility of dissociative chemisorption. The chemisorption energy with respect to two separated H atoms is 1.33 eV/H atom; but, since dissociating the free molecule costs 4.75 eV, the physisorbed H2 molecule is more stable than the dissociated chemisorbed state by about 2 eV. Dissociation of the adsorbed molecule costs less energy, but the dissociation barrier is still high.

  13. Biomimetic mineralization of nano-sized, needle-like hydroxyapatite with ultrahigh capacity for lysozyme adsorption.

    PubMed

    Ma, Yi; Zhang, Juan; Guo, Shanshan; Shi, Jie; Du, Wenying; Wang, Zheng; Ye, Ling; Gu, Wei

    2016-11-01

    Because of its superior biocompatibility, hydroxyapatite (HA) has been widely exploited as a promising vehicle to deliver a broad range of therapeutics in a variety of biological systems. Herein, we report a biomimetic process to prepare nano-sized, colloidal stable HA with needle-like morphology by using carboxymethyl cellulose (CMC) as the template. It was revealed that the needle-like HA was transformed from the spherical amorphous calcium phosphate (ACP) nanoparticles after a 14-day period of aging under ambient conditions. The needle-like HA/CMC exhibited an ultra-high lysozyme adsorption capacity up to 930-940mg/g. Moreover, a sustained and pH-sensitive release of adsorbed lysozyme from HA/CMC was evidenced. Therefore, our biomimetic needle-like HA/CMC nanoparticles hold great potential in serving as an efficient carrier for the delivery and controlled release of lysozyme. PMID:27524053

  14. Assessing The Hydrogen Adsorption Capacity Of Single-Wall Carbon Nanotube / Metal Composites

    NASA Astrophysics Data System (ADS)

    Heben, Michael J.; Dillon, Anne C.; Gilbert, Katherine E. H.; Parilla, Philip A.; Gennett, Thomas; Alleman, Jeffrey L.; Hornyak, G. Louis; Jones, Kim M.

    2003-07-01

    Carefully controlled and calibrated experiments indicate a maximum capacity for adsorption of hydrogen on SWNTs is ˜8 wt% under room temperature and pressure conditions. Samples displaying this maximum value were prepared by sonicating purified SWNTs in a dilute nitric acid solution with a high-energy probe. The process cuts the SWNT into shorter segments and introduces a Ti-6Al-4V alloy due to the disintegration of the ultrasonic probe. The Ti-6Al-4V alloy is a well-known metal hydride and its contribution to the measured hydrogen uptake was accounted for in order to assess the amount of hydrogen stored on the SWNT fraction. The principal purpose of this paper is to present key details associated with the measurement procedures in order to illustrate the degree of rigor with which the findings were obtained.

  15. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  16. Copper Accumulation, Availability and Adsorption Capacity in Sandy Soils of Vineyards with Different Cultivation Duration

    NASA Astrophysics Data System (ADS)

    Mallmann, F. J. K.; Miotto, A.; Bender, M. A.; Gubiani, E.; Rheinheimer, D. D. S.; Kaminski, J.; Ceretta, C. A.; Šimůnek, J.

    2015-12-01

    Bordeaux mixture is a copper-based (Cu) fungicide and bactericide applied in vineyards to control plant diseases. Since it is applied several times per year, it accumulates in large quantities on plants and in soil. This study evaluates the Cu accumulation in, and desorption kinetics and adsorption capability of a sandy Ultisol in a natural field and in 3 vineyards for 5 (V1), 11 (V2), and 31 (V3) years in South of Brazil. Soil samples were collected in 8 depths (0-60 cm) of all four soil profiles, which all displayed similar soil properties. The following soil properties were measured: pH, organic matter (OM), soil bulk density, Cu total concentration, and Cu desorption and adsorption curves. A two first-order reactions model and the Langmuir isotherm were fitted to the desorption and adsorption curves, respectively. An increase in the total mass of Cu in the vineyards followed a linear regression curve, with an average annual increase of 7.15 kg ha-1. Cu accumulated down to a depth of 5, 20, and 30 cm in V1, V2 and V3, respectively, with the highest Cu content reaching 138.4 mg kg-1 in the 0-5 cm soil layer of V3. Cu desorption parameters showed a high correlation with its total concentration. Approximately 57 and 19% of total Cu were immediately and slowly available, respectively, indicating a high potential for plant absorption and/or downward movement. Cu concentrations extracted by EDTA from soil layers not affected by anthropogenic Cu inputs were very low. The maximum Cu adsorption capacity of the 0-5 and 5-10 cm soil layers increased with the vineyard age, reaching concentrations higher than 900 mg kg-1. This increase was highly related to OM and pH, which both increased with cultivation duration. Despite of low clay content of these soils, there is low risk of groundwater Cu contamination for actual conditions. However, high Cu concentrations in the surface layer of the long-term vineyards could cause toxicity problems for this and for companion crops.

  17. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.

    PubMed

    Musso, T B; Parolo, M E; Pettinari, G; Francisca, F M

    2014-12-15

    Sorption of Cu(II) and Zn(II) on three natural clays meeting the international requirements for use as liners was evaluated by means of batch tests. The purpose of this research was to determine the retention capacities of the clays for metal cations commonly present in urban solid waste leachates. The pH and ionic strength conditions were set at values frequently found in real leachates. The changes observed in the XRD patterns and FTIR spectra upon adsorption can be considered an evidence of clay-metal electrostatic interaction. The Langmuir model was found to best describe the sorption processes, offering maximum sorption capacities from 8.16 to 56.89 mg/g for Cu(II) and from 49.59 to 103.83 mg/g for Zn(II). All samples remove more Zn(II) than Cu(II), which may be related to the different geometry of the hydrated Cu(II) cation. The total amount of metal sorption was strongly influenced by the total specific surface area, the presence of carbonates and the smectite content of the clays. In addition to their known quality as physical barriers, the adsorbed amounts obtained indicate the suitability of the tested clays to contribute to the retardation of Cu(II) and Zn(II) transport through clay liners. PMID:25156265

  18. Surface-Energetic Heterogeneity of Nanoporous Solids for CO2 and CO Adsorption: The Key to an Adsorption Capacity and Selectivity at Low Pressures.

    PubMed

    Kim, Moon Hyeon; Cho, Il Hum; Choi, Sang Ok; Lee, In Soo

    2016-05-01

    This study has been focused on surface energetic heterogeneity of zeolite (H-mordenite, "HM"), activated carbon ("RB2") and metal-organic framework family ("Z1200") materials and their isotherm features in adsorption of CO2 and CO at 25 degrees C and low pressures ≤ 850 Torr. The nanoporous solids showed not only distinctive shape of adsorption isotherms for CO2 with relatively high polarizability and quadrupole moment but also different capacities in the CO2 adsorption. These differences between the adsorbents could be well correlated with their surface nonuniformity. The most heterogeneous surfaces were found with the HM that gave the highest CO2 uptake at all pressures allowed, while the Z1200 consisted of completely homogeneous surfaces and even CO2 adsorption linearly increased with pressure. An intermediate character was indicated on the surface of RB2 and thus this sorbent possessed isotherm features between the HM and Z1200 in CO2 adsorption. Such different surface energetics was fairly consistent with changes in CO2/CO selectivity on the nanoporous adsorbents up to equilibrated pressures near 850 Torr. PMID:27483776

  19. Illite spatial distribution controls Cr(VI) adsorption capacity and kinetics

    NASA Astrophysics Data System (ADS)

    WANG, L.; Li, L.

    2013-12-01

    In the natural surbsurface, clays typically are the major sorbing minerals for contaminants. Clays are known to distribute unevenly with low permeability 'clay' zones, which can have significant impacts on the sorption of contaminants. In this work, the effects of illite spatial distribution on Cr(VI) adsorption was examined using column experiments and reactive transport modeling. Three columns were set up with the same volume fraction of illite (10%). The Mixed column has illite evenly distributed within a quartz matrix; the Flow-transverse column has illite distributed in one horizontal zone in the direction that is perpendicular to the main flow; the Flow-parallel column has illite distributed in one cylindrical zone in the direction parallel to the main flow direction. Cr(VI) adsorption experiments were carried out under flow velocities of 0.58, 2.93, and 14.67 m/day. Two-dimensional reactive transport modeling was used to understand the role of illite distribution in determining Cr(VI) sorption capacity and kinetics. The result showed that illite spatial distribution strongly influence Cr(VI) sorption, the extent of which depend on the flow conditions . The Cr(VI) sorption kinectics was influenced by the permeability contrast and the preferential flow paths were taken place in high permeability zones. Under the flow rate of 0.58 m/day, the Cr(VI) adsorption in the Mixed and Flow-transverse columns was very similar, showing similar breakthrough time and sorption capacity. In contrast, an early breakthrough and an extended of Cr(VI) occured in the Flow-parallel column. The 2D reactive transport model showed that the inlet fluids flow through the quartz zone and bypass the lower permeability illite zone. Cr(VI) was first adsorbed on the illite-quartz interface early on and gradually diffuse into the illite zone over time. At the flow velocity of 2.93 m/day, the difference among the three columns was similar to the difference at the flow rate of 0.58 m/day. At

  20. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation.

    PubMed

    Guo, Xun; Zhang, Xitong; Zhao, Shijun; Huang, Qing; Xue, Jianming

    2016-01-01

    Density functional theory (DFT) calculation is employed to study the adsorption properties of Pb and Cu on recently synthesized two-dimensional materials MXenes, including Ti3C2, V2C1 and Ti2C1. The influence of surface decoration with functional groups such as H, OH and F have also been investigated. Most of these studied MXenes exhibit excellent capability to adsorb Pb and Cu, especially the adsorption capacity of Pb on Ti2C1 is as high as 2560 mg g(-1). Both the binding energies and the adsorption capacities are sensitive to the functional groups attached to the MXenes' surface. Ab initio molecular dynamics (ab-init MD) simulation confirms that Ti2C1 remains stable at room temperature after adsorbing Pb atoms. Our calculations imply that these newly emerging two-dimensional MXenes are promising candidates for wastewater treatment and ion separation. PMID:26602974

  1. EFFECT OF MOLECULAR OXYGEN ON ADSORPTIVE CAPACITY AND EXTRACTION EFFICIENCY OF GRANULATED ACTIVATED CARBON FOR THREE ORTHO-SUBSTITUTED PHENOLS

    EPA Science Inventory

    Adsorptive capacity of activated carbon for several organic compounds was found to be strongly influenced by the presence of molecular oxygen. This influence is manifested by the polymerization of adsorbate on the surface of activated carbon. As a result, GAC exhibits much high...

  2. EFFECT OF HEAT ON THE ADSORPTION CAPACITY OF AN ACTIVATED CARBON FOR DECOLORIZING/DEODORIZING YELLOW ZEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Freundlich model was evaluated for use to assess the effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing corn zein. Because zein protein and its color/odor components are all adsorbed by activated carbon, a method to monitor their removal was needed. Y...

  3. The effect of low-NO{sub x} combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    SciTech Connect

    Pedersen, K.H.; Jensen, A.D.; Dam-Johansen, K.

    2010-02-15

    Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NO{sub x} combustion technologies. In this work, pulverized fuel has been combusted in an entrained flow reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NO{sub x} formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA adsorption capacity based on measurements on a carbon black. The NO{sub x} formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NO{sub x} formation. The type of fuel had high impact on the AEA adsorption behavior of the ash. Ashes produced from a Columbian and a Polish coal showed similar AEA requirements, but the specific AEA adsorptivity of the carbon in the Columbian coal ash was up to six times higher. The AEA requirements of a South African coal ash was unaffected by the applied operating conditions and showed up to 12 times higher AEA adsorption compared to the two other coal ashes. This may be caused by larger particles formed by agglomeration of the primary coal particles in the feeding phase or during the combustion process, which gave rise to increased formation of soot. (author)

  4. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity.

    PubMed

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  5. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity

    PubMed Central

    Huang, Zhujian; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  6. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    PubMed

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. PMID:25656422

  7. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water.

    PubMed

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-09-15

    Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas. PMID:21719194

  8. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  9. Molecular basis for the high CO2 adsorption capacity of chabazite zeolites.

    PubMed

    Pham, Trong D; Hudson, Matthew R; Brown, Craig M; Lobo, Raul F

    2014-11-01

    CO2 adsorption in Li-, Na-, K-CHA (Si/Al=6,=12), and silica chabazite zeolites was investigated by powder diffraction. Two CO2 adsorption sites were found in all chabazites with CO2 locating in the 8-membered ring (8MR) pore opening being the dominant site. Electric quadrupole-electric field gradient and dispersion interactions drive CO2 adsorption at the middle of the 8 MRs, while CO2 polarization due to interaction with cation sites controls the secondary CO2 site. In Si-CHA, adsorption is dominated by dispersion interactions with CO2 observed on the pore walls and in 8 MRs. CO2 adsorption complexes on dual cation sites were observed on K-CHA, important for K-CHA-6 samples due to a higher probability of two K(+) cations bridging CO2. Trends in isosteric heats of CO2 adsorption based on cation type and concentration can be correlated with adsorption sites and CO2 quantity. A decrease in the hardness of metal cations results in a decrease in the direct interaction of these cations with CO2. PMID:25273234

  10. A comparative study of the vibration damping capacity of superalloys

    SciTech Connect

    Wang, J.; Chung, D.D.L.

    1999-10-01

    A comparative study of nickel-base, iron-base, and iron-nickel base superalloys showed Inconel MA754 (oxide dispersion strengthened) to be particularly high in vibration damping capacity. Dynamic mechanical testing was performed using a Perkin-Elmer Corp. (Norwalk, Connecticut) DMA7e instrument under dynamic flexure by three-point bending at a frequency of 0.2 Hz, with a displacement in the range of 5 to 9 {micro}m and a temperature of 475 C. The span in three-point bending was 20 mm. The sample length (in the span direction) was in the range of 20 to 25 mm. The sample width was 6 mm or less, and the sample thickness was in the range of 0.5 to 1.2 mm. The loss tangent, tan {delta}, and storage modulus were measured simultaneously.

  11. High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites.

    PubMed

    Li, Liangjun; Tang, Sifu; Wang, Chao; Lv, Xiaoxia; Jiang, Min; Wu, Huaizhi; Zhao, Xuebo

    2014-03-01

    A UiO type MOF with Lewis basic bipyridyl sites was synthesized and structurally characterized. After being activated by Soxhlet-extraction, this MOF exhibits high storage capacities for H2, CH4 and CO2, and shows unusual stepwise adsorption for liquid CO2 and solvents, indicating a sequential filling mechanism on different adsorption sites. PMID:24445724

  12. Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Weifeng; Tang, Yusheng; Xi, Jia; Kong, Jie

    2015-01-01

    Graphene sheets were covalently functionalized with poly(1-vinylimidazole) (PVI) type poly(ionic liquid), by utilizing a diazonium addition reaction and the subsequent grafting of PVI polymers onto the graphene sheet surface by a quaternarization reaction. The resultant modified graphene sheets showed improved dispersion property when being dissolved in DMF and ethanol. FTIR, XPS, XRD and TEM observations confirmed the success of the covalent functionalization, and thermogravimetric analysis revealed that the grafting ratio of PVI was ∼12 wt%. The obtained PVI-functionalized graphene showed a high capability for removing anionic dyes such as methyl blue (MB) from water solution. The experimental data of isotherm fitted well with the Langmuir adsorption model. The adsorption capacity of 1910 mg g-1 for methyl blue (MB) dye was observed for functionalized graphene sheets with poly(ionic liquid)s, which was higher than that of unmodified graphene. The high adsorption capacity observed in this study emphasizes that poly(ionic liquid)s-modified graphene materials have a great potential for water purification as they are highly efficient and stable adsorbents for sustainability.

  13. Comparative adsorption of Eu(III) and Am(III) on TPD.

    PubMed

    Fan, Q H; Zhao, X L; Ma, X X; Yang, Y B; Wu, W S; Zheng, G D; Wang, D L

    2015-09-01

    Comparative adsorption behaviors of Eu(III) and Am(III) on thorium phosphate diphosphate (TPD), i.e., Th4(PO4)4P2O7, have been studied using a batch approach and surface complexation model (SCM) in this study. The results showed that Eu(III) and Am(III) adsorption increased to a large extent with the increase in TPD dose. Strong pH-dependence was observed in both Eu(III) and Am(III) adsorption processes, suggesting that inner-sphere complexes (ISCs) were possibly responsible for the adsorption of Eu(III) and Am(III). Meanwhile, the adsorption of Eu(III) and Am(III) decreased to a different extent with the increase in ion strength, which was possibly related to outer-sphere complexes and/or ion exchange. In the presence of fulvic acid (FA), the adsorption of Eu(III) and Am(III) showed high enhancement mainly due to the ternary surface complexes of TPD-FA-Eu(3+) and TPD-FA-Am(3+). The SCM showed that one ion exchange (≡S3Am/Eu) and two ISCs (≡(XO)2Am/EuNO3 and ≡(YO)2Am/EuNO3) seemed more reasonable to quantitatively describe the adsorption edges of both Eu(III) and Am(III). Our findings obviously showed that Eu(III) could be a good analogue to study actinide behaviors in practical terms. However, it should be kept in mind that there are still obvious differences between the characteristics of Eu(III) and Am(III) in some special cases, for instance, the complex ability with organic matter and adsorption affinity to a solid surface. PMID:26198355

  14. Evaluation of Fuller's earth for the adsorption of mercury from aqueous solutions: a comparative study with activated carbon.

    PubMed

    Oubagaranadin, John U Kennedy; Sathyamurthy, N; Murthy, Z V P

    2007-04-01

    Fuller's earth (FE) has been used as an adsorbent in this work to remove mercury from aqueous solutions. For the purpose of comparison, simultaneous experiments using activated carbon (AC) have also been done. The aim of the work is to test how best FE can be used as an adsorbent for mercury. Equilibrium isotherms, such as Freundlich, Langmuir, Dubinin-Redushkevich, Temkin, Harkins-Jura, Halsey and Henderson have been tested. Kinetic studies based on Lagergren first-order, pseudo-second-order rate expressions and intra-particle diffusion studies have been done. The batch experiments were conducted at room temperature (30 degrees C) and at the normal pH (6.7+/-0.2) of the solution. It has been observed that Hg(II) removal rate is better for FE than AC, due to large dosage requirement, whereas the adsorption capacity of AC is found to be much better than FE. Hence, although FE can be used as an adsorbent, a high dosage is required, when compared to AC. Hybrid fractional error function analysis shows that the best-fit for the adsorption equilibrium data is represented by Freundlich isotherm. Kinetic and film diffusion studies show that the adsorption of mercury on FE and AC is both intra-particle diffusion and film diffusion controlled. PMID:16987602

  15. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4.

    PubMed

    Namane, A; Mekarzia, A; Benrachedi, K; Belhaneche-Bensemra, N; Hellal, A

    2005-03-17

    In order to evaluate the adsorptive capacities of granular activated carbon produced from coffee grounds by chemical activation, the adsorption of different phenols and acid and basic dyes, has been carried out. The comparison with a commercial activated carbon has been made. Adsorption isotherms of phenols and dyes (acid and basic) onto produced and commercial granular activated carbons were experimentally determined by batch tests. Both Freundlich and Langmuir models are well suited to fit the adsorption isotherm data. As a result, the coffee grounds based activated carbon may be promising for phenol and dye removal from aqueous streams. PMID:15752865

  16. Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols.

    PubMed

    Csepregi, Kristóf; Neugart, Susanne; Schreiner, Monika; Hideg, Éva

    2016-01-01

    Thirty-seven samples of naturally occurring phenolic compounds were evaluated using three common in vitro assays for total antioxidant activity (TAC) testing: the Trolox Equivalent Antioxidant Capacity (TEAC), the Ferric Reducing Antioxidant Potential (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, in addition to the Folin-Ciocalteu reagent reactivity (FCR). We found that antioxidant hierarchies depended on the choice of assay and applied ANOVA analyses to explore underlying structure-TAC dependencies. In addition to statistically confirming the empirically established connection between flavonoid ring-B catechol and high TEAC or FRAP, new correlations were also found. In flavonoids, (i) hydroxyl groups on ring-B had a positive effect on all four TAC assays; (ii) the presence of a 3-hydroxyl group on ring-C increased TEAC and FRAP, but had no effect on DPPH or FCR; (iii) Phenolic acids lacking a 3-hydroxyl group had significantly lower FRAP or DPPH than compounds having this structure, while TEAC or FCR were not affected. Results demonstrated that any TAC-based ranking of phenolic rich samples would very much depend on the choice of assay, and argue for use of more than one technique. As an illustration, we compared results of the above four assays using either grapevine leaf extracts or synthetic mixtures of compounds prepared according to major polyphenols identified in the leaves. PMID:26867192

  17. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  18. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study.

    PubMed

    Luengo, Carina; Brigante, Maximiliano; Avena, Marcelo

    2007-07-15

    The adsorption kinetics of phosphate and arsenate on goethite is studied and compared. Batch adsorption experiments were performed at different adsorbate concentrations, pH, temperatures and stirring rates. For both oxoanions the adsorption rate increases by increasing adsorbate concentration, decreasing pH and increasing temperature. It does not change by changing stirring rate. The adsorption takes place in two processes: a fast one that takes place in less than 5 min and a slow one that takes place in several hours or more. The rate of the slow process does not depend directly on the concentration of phosphate or arsenate in solution, but depends linearly on the amount of phosphate or arsenate that was adsorbed during the fast process. Apparent activation energies and absence of stirring rate effects suggest that the slow process is controlled by diffusion into pores, although the evidence is not conclusive. The similarities in the adsorption kinetics of phosphate and arsenate are quantitatively shown by using a three-parameters equation that takes into account both the fast and the slow processes. These similarities are in line with the similar reactivity that phosphate and arsenate have in general and may be important for theoretical and experimental studies of the fate of these oxoanions in the environment. PMID:17448491

  19. Hydrogen adsorption on palladium: a comparative theoretical study of different surfaces

    NASA Astrophysics Data System (ADS)

    Dong, W.; Ledentu, V.; Sautet, Ph.; Eichler, A.; Hafner, J.

    1998-08-01

    The interaction of atomic hydrogen with the Pd(111), Pd(100) and Pd(110) surfaces is studied by ab-initio density functional calculations within the generalized gradient approximation (GGA). For the three surfaces, we have determined the preferred adsorption sites, the adsorption structures, the work function changes and the surface diffusion barrier, including relaxation effects. This comparative study allows some common features to be seen, in particular in the adsorption energies and geometries for both surface and subsurface H-atoms, and some significant differences such as the surface diffusion and the dispersion of the H-induced surface state. The origin of these differences is explained by a detailed analysis of the electronic structures of both clean and hydrogen-covered surfaces. Our study leads to an interesting correlation between the hydrogen diffusion barrier and the surface roughness since it plays an important part in the catalytic activity of the respective surfaces.

  20. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Tran, Minh Thi; Nguyen, Thi Huyen Trang; Vu, Quoc Trung; Nguyen, Minh Vuong

    2016-03-01

    The research results of poly(1-naphthylamine)/Fe3O4 (PNA/Fe3O4) nanocomposites synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. XRD patterns and TEM images showed that the Fe3O4 grain size varied from 13 to 20 nm. The results of Raman spectral analysis showed that PNA participated in part of the PNA/Fe3O4 composite samples. The grain size of PNA/Fe3O4 composite samples is about 25-30 nm measured by SEM. The results of vibrating sample magnetometer measurements at room temperature showed that the saturation magnetic moment of PNA/Fe3O4 samples decreased from 63.13 to 43.43 emu/g, while the PNA concentration increased from 5% to 15%. The nitrogen adsorption-desorption isotherm of samples at 77 K at a relative pressure P/ P 0 of about 1 was studied in order to investigate the surface and porous structure of nanoparticles by the BET method. Although the saturation magnetic moments of samples decreased with the polymer concentration increase, the arsenic adsorption capacity of the PNA/Fe3O4 sample with the PNA concentration of 5% is better than that of Fe3O4 in a solution with pH = 7. In the solution with pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  1. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures.

    PubMed

    Park, J H; Ok, Y S; Kim, S H; Cho, J S; Heo, J S; Delaune, R D; Seo, D C

    2015-12-01

    The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L(-1) in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g(-1) as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g(-1)) > MgO (8.669 mg g(-1)) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg(-1)) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption. PMID:26040973

  2. Synthesis of bilayer MoS{sub 2} nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity

    SciTech Connect

    Ye, Lijuan; Xu, Haiyan; Zhang, Dingke; Chen, Shijian

    2014-07-01

    Highlights: • Hexagonal phase of MoS{sub 2} nanosheets was synthesized by a facile hydrothermal method. • FE-SEM and TEM images show the sheets-like morphology of MoS{sub 2}. • Bilayer MoS{sub 2} can be grown under the optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. • The MoS{sub 2} nanosheets possess high methyl orange adsorption capacity due to the large surface area. - Abstract: Molybdenum disulfide (MoS{sub 2}) nanosheets have received significant attention recently due to the potential applications for exciting physics and technology. Here we show that MoS{sub 2} nanosheets can be prepared by a facile hydrothermal method. The study of the properties of the MoS{sub 2} nanosheets prepared at different conditions suggests that the mole ratio of precursors and hydrothermal time significantly influences the purity, crystalline quality and thermal stability of MoS{sub 2}. X-ray diffraction, Raman spectra and transmission electron microscopy results indicate that bilayer MoS{sub 2} can be grown under an optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. Moreover, such ultrathin nanosheets exhibit a prominent photoluminescence and possess high methyl orange adsorption capacity due to the large surface area, which can be potentially used in photodevice and photochemical catalyst.

  3. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  4. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps

    PubMed Central

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric G.; Kim, Hyunho; McKay, Ian S.; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, 27Al/29Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick’s 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  5. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  6. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity.

    PubMed

    Lian, Fei; Cui, Guannan; Liu, Zhongqi; Duo, Lian; Zhang, Guilong; Xing, Baoshan

    2016-07-01

    N-doping is one of the most promising strategies to improve the adsorption capacity and selectivity of carbon adsorbents. Herein, synthesis, characterization and dye adsorption of a novel N-doped microporous biochar derived from direct annealing of crop straws under NH3 is presented. The resultant products exhibit high microporosity (71.5%), atomic percentage of nitrogen (8.81%), and adsorption capacity to dyes, which is about 15-20 times higher than that of original biochar. Specifically, for the sample NBC800-3 pyrolyzed at 800 °C in NH3 for 3 h, its adsorption for acid orange 7 (AO7, anionic) and methyl blue (MB, cationic) is up to 292 mg g(-1) and 436 mg g(-1), respectively, which is among the highest ever reported for carbonaceous adsorbents. The influences of N-doping and porous structure on dye adsorption of the synthesized carbons are also discussed, where electrostatic attraction, π-π electron donor-accepter interaction, and Lewis acid-base interaction mainly contribute to AO7 adsorption, and surface area (especially pore-filling) dominates MB adsorption. The N-doped biochar can be effectively regenerated and reused through direct combustion and desorption approaches. PMID:27039365

  7. Effect of carboxyethylation degree on the adsorption capacity of Cu(II) by N-(2-carboxyethyl)chitosan from squid pens.

    PubMed

    Huang, Jun; Xie, Haihua; Ye, Hui; Xie, Tian; Lin, Yuecheng; Gong, Jinyan; Jiang, Chengjun; Wu, Yuanfeng; Liu, Shiwang; Cui, Yanli; Mao, Jianwei; Mei, Lehe

    2016-03-15

    Chitosan was prepared by N-deacetylation of squid pens β-chitin, and N-carboxyethylated chitosan (N-CECS) with different degrees of substitution (DS) were synthesized. DS values of N-CECS derivatives calculated by (1)H nuclear magnetic resonance (NMR) spectroscopy were 0.60, 1.02 and 1.46, respectively. The adsorption capacity of Cu(II) by N-CECS correlated well with the DS and pH ranging from 3.2 to 5.8. The maximum Cu(II) adsorption capacity (qm) of all three N-CECS at pH 5.4 was 207.5mg g(-1), which was 1.4-fold higher than that of chitosan. The adsorption equilibrium process was better described by the Langmuir than Freundlich isotherm model. Adsorption of Cu(II) ion onto N-CECS followed a pseudo-second order mechanism with chemisorption as the rate-limiting step. In a ternary adsorption system, the adsorption capacity of Cu(II) by N-CECS also presented high values, and qm for Cu(II), Cd(II), and Pb(II) were 150.2, 28.8, and 187.9mg g(-1), respectively. PMID:26794766

  8. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater.

    PubMed

    Oyola, Yatsandra; Dai, Sheng

    2016-06-01

    Uranium is dissolved in the ocean at a uniform concentration of 3.34 ppb, which translates to approximately 4-5 billion tons of uranium. The development of adsorbents that can extract uranium from seawater has been a long term goal, but the extremely dilute uranium concentration along with the competition of other metal salts (which are at higher concentrations) has hindered the development of an economical adsorption process. Several acid monomers were co-grafted with acrylonitrile (AN) to help increase the hydrophilicity of the adsorbent to improve access to the metal adsorption sites. Grafting various acid monomers on PE fibers was found to significantly affect the uranium adsorption in simulated seawater in the following order: acrylic acid (AA) < vinyl sulfonic acid (VSA) < methacrylic acid (MAA) < itaconic acid (ITA) < vinyl phosphonic acid (VPA). Interestingly, the uranium adsorption capacity significantly increased when Mohr's salt was added with acrylic acid, most likely due to the reduction of co-polymerization of the monomers. When testing under more realistic conditions, the acid-grafted PE fiber adsorbents were exposed to natural seawater (more dilute uranium), the uranium adsorption capacity increased in the following order: MAA < AA (Mohr's salt) < VSA < ITA (Mohr's salt) < ITA < VPA, which agreed well with the simulated seawater results. Characterization of the adsorbents indicated that the increase in uranium adsorption capacity with each acid monomer was related to higher grafting of AN and therefore a higher conversion to amidoxime (AO). PMID:27145863

  9. SO 2 adsorption capacity of K 2CO 3-impregnated activated carbon as a function of K 2CO 3 content loaded by soaking and incipient wetness

    NASA Astrophysics Data System (ADS)

    Fortier, H.; Zelenietz, C.; Dahn, T. R.; Westreich, P.; Stevens, D. A.; Dahn, J. R.

    2007-01-01

    The SO 2 adsorption capacity of K 2CO 3-impregnated activated carbons, prepared by soaking carbon in large volumes of K 2CO 3 in solution of various concentrations, varies linearly with respect to the loading of K 2CO 3 on the carbon up to about 12% K 2CO 3 by weight. Above 12%, the capacity for SO 2 levels out and then decreases. This suggests that at high loadings the K 2CO 3 either aggregates and/or blocks pores of the activated carbon. In contrast, the adsorption capacity of carbons prepared by repeatedly (maximum of three times total) loading K 2CO 3 via incipient wetness is much larger than that of the soaked samples, up to 70% more, when the loading of K 2CO 3 is greater than 12%. Static and dynamic adsorption, DSC, SEM, EDX and incipient wetness studies of the samples show that the impregnant aggregates but does not block carbon pores.

  10. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study

    PubMed Central

    2013-01-01

    The phenolic compounds are known by their carcinogenicity and high toxicity as well as creating unpleasant taste and odor in water resources. The present study develops a cost-effective technology for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-chlorophenol (2-CP), and 4-chlorophenol (4-CP). So, two sorbents, rice bran ash (RBA) and biomass of brown algae, Cystoseiraindica, were used and results were compared with the commercially granular activated carbon (GAC). The phenolic compounds were determined using a high performance liquid chromatography (HPLC) under batch equilibrium conditions. The effects of contact time, pH, initial adsorbate concentration, and adsorbent dosages on the removal efficiency were studied. The adsorption data were simulated by isotherm and kinetic models. Results indicated that RBA and GAC had the lowest efficiency for the removal of 2-CP, while the order of removal efficiency for C. indica biomass was as follows: 2-CP > 4-CP > phenol. The efficiency of GAC was higher than those of other adsorbents for all of the phenolic compounds. Furthermore, the adsorption capacity of RBA was found to be higher than that of C. indica biomass. The optimal initial pH for the removal of phenol, 2-CP and 4-CP was determined to be 5, 7, and 7 for RBA, GAC, and algal biomass, respectively. Kinetic studies suggested that the pseudo-second order best fitted the kinetic data. PMID:24355013

  11. Effects of Mn, Cu doping concentration to the properties of magnetic nanoparticles and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Thi, Tran Minh; Trang, Nguyen Thi Huyen; Van Anh, Nguyen Thi

    2015-06-01

    The research results of Fe3O4 and Mn, Cu doped Fe3O4 nanomaterials synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. The X-ray diffraction patterns and transmission electron microscopy images showed that samples had the cubic spinel structure with the grain sizes were varied from 9.4 nm to 18.1 nm. The results of vibrating sample magnetometer measurements at room temperature showed that saturation magnetic moments of Fe1-xCuxFe2O4 and Fe1-xMnxFe2O4 samples decreased from 65.9 emu/g to 53.2 emu/g and 65.9 emu/g to 61.5 emu/g, respectively, with the increase of Cu, Mn concentrations from 0.0 to 0.15. The nitrogen adsorption-desorption isotherm of a typical Fe3O4 sample at 77 K was studied in order to investigate the surface and porous structure of nanoparticles by BET method. The specific surface area of Fe3O4 magnetic nanoparticles was calculated about of 100.2 m2/g. The pore size distribution of about 15-20 nm calculated by the BJH (Barrett, Joyner, and Halendar) method at a relative pressure P/P0 of about 1. Although the saturation magnetic moments of samples decreased when the increase of doping concentration, but the arsenic adsorption capacity of Cu doped Fe3O4 nanoparticles is better than that of Fe3O4 and Mn doped Fe3O4 nanoparticles in a solution with pH = 7. In the solution with a pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  12. Effect of carbonation temperature on CO2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO3

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-07-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO2 capture mainly due to their high CO2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO2 adsorption capacity of CaO derived from aragonite CaCO3 sample. At 300 °C, the sample reached the CO2 adsorption capacity of 0.098 g-CO2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO2 adsorption capacity of the CaO derived from aragonite CaCO3.

  13. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    PubMed Central

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  14. High adsorption capacity of two Zn-based metal-organic frameworks by ultrasound assisted synthesis.

    PubMed

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2016-11-01

    Micro- and nano-rods and plates of two 3D, porous Zn(II)-based metal-organic frameworks [Zn(oba)(4-bpdh)0.5]n·(DMF)1.5 (TMU-5) and [Zn(oba)(4-bpmb)0.5]n (DMF)1.5 (TMU-6) were prepared by sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction and IR spectroscopy. These MOFs were synthesized using a non-linear dicarboxylate (H2oba=4,4-oxybisbenzoic acid) and two linear N-donor (4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene and 4-bpmb=N(1),N(4)-bis((pyridin-4-yl)methylene)benzene-1,4-diamine) ligands by ultrasonic irradiation. Sonication time and concentration of initial reagents influencing size and morphology of nano-structured MOFs, were also studied. Calcination of TMU-5 and TMU-6 at 550°C under air atmosphere yields ZnO nanoparticles. TMU-5 and TMU-6 exhibited maximum percent adsorption of 96.2% and 92.8% of 100ppm rhodamine B dye, respectively, which obeys first order reaction kinetics. PMID:27245956

  15. Ethane/ethylene adsorption on carbon nanotubes: temperature and size effects on separation capacity.

    PubMed

    Albesa, Alberto G; Rafti, Matías; Rawat, Dinesh S; Vicente, José Luis; Migone, Aldo D

    2012-01-24

    We present the results of Monte Carlo simulations of the adsorption of single-component ethane and ethylene and of equimolar mixtures of these two gases on bundles of closed, single-walled carbon nanotubes. Two types of nanotube bundles were used in the simulations: homogeneous (i.e., those in which all the nanotubes have identical diameters) and heterogeneous (those in which nanotubes of different diameters are allowed). We found that at the same pressure and temperature more ethane than ethylene adsorbs on the bundles over the entire range of pressures and temperatures explored. The simulation results for the equimolar mixtures show that the pressure at which maximum separation is attained is a very sensitive function of the diameter of the nanotubes present in the bundles. Simulations using heterogeneous bundles yield better agreement with single-component experimental data for isotherms and isosteric heats than those obtained from simulations using homogeneous bundles. Possible applications of nanotubes in gas separation are discussed. We explored the effect of the diameter of the nanotubes on the separation ability of these sorbents, both for the internal and for the external sites. We found that substrate selectivity is a decreasing function of temperature. PMID:22168522

  16. Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss.

    PubMed

    Hart, Connor J; Cuisinier, Marine; Liang, Xiao; Kundu, Dipan; Garsuch, Arnd; Nazar, Linda F

    2015-02-11

    A versatile, cost-effective electrochemical analysis strategy is described that determines the specific S(n)(2-) adsorptivity of materials, and allows prediction of the long-term performance of sulphur composite electrodes in Li-S cells. Measurement of nine different materials with varying surface area, and hydrophobicity using this protocol determined optimum properties for capacity stabilization. PMID:25562067

  17. Comparative evaluation of cyanide removal by adsorption, biodegradation, and simultaneous adsorption and biodegradation (SAB) process using Bacillus cereus and almond shell.

    PubMed

    Dwivedi, Naveen; Balomajumder, Chandrajit; Mondal, Prasenji

    2016-07-01

    The present study aimed to investigate the removal efficiency of cyanide from contaminated water by adsorption, biodegradation and simultaneous adsorption and biodegradation (SAB) process individually in a batch reactor. Adsorption was achieved by using almond shell granules and biodegradation was conducted with suspended cultures of Bacillus cereus, whereas SAB process was carried out using Bacillus cereus and almond shell in a batch reactor. The effect of agitation time, pH, and initial cyanide concentration on the % removal of cyanide has been discussed. Under experimental conditions, optimum removal was obtained at pH 7 with agitation time of 48 hrs and temperature of 35 degrees C. Cyanide was utilized by bacteria as sole source of nitrogen for growth. The removal efficiencies of cyanide by adsorption, biodegradation, and SAB were found to be 91.38%, 95.87%, and 99.63%, respectively, at initial cyanide concentration of 100 mg l(-1). The removal efficiency of SAB was found to be better as compared to that of biodegradation and adsorption alone. PMID:27498500

  18. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.

    PubMed

    Pang, Quan; Nazar, Linda F

    2016-04-26

    Lithium-sulfur batteries are attractive electrochemical energy storage systems due to their high theoretical energy density and very high natural abundance of sulfur. However, practically, Li-S batteries suffer from short cycling life and low sulfur utilization, particularly in the case of high-sulfur-loaded cathodes. Here, we report on a light-weight nanoporous graphitic carbon nitride (high-surface-area g-C3N4) that enables a sulfur electrode with an ultralow long-term capacity fade rate of 0.04% per cycle over 1500 cycles at a practical C/2 rate. More importantly, it exhibits good high-sulfur-loading areal capacity (up to 3.5 mAh cm(-2)) with stable cell performance. We demonstrate the strong chemical interaction of g-C3N4 with polysulfides using a combination of spectroscopic experimental studies and first-principles calculations. The 53.5% concentration of accessible pyridinic nitrogen polysulfide adsorption sites is shown to be key for the greatly improved cycling performance compared to that of N-doped carbons. PMID:26841116

  19. New V(IV)-based metal-organic framework having framework flexibility and high CO2 adsorption capacity.

    PubMed

    Liu, Ying-Ya; Couck, Sarah; Vandichel, Matthias; Grzywa, Maciej; Leus, Karen; Biswas, Shyam; Volkmer, Dirk; Gascon, Jorge; Kapteijn, Freek; Denayer, Joeri F M; Waroquier, Michel; Van Speybroeck, Veronique; Van Der Voort, Pascal

    2013-01-01

    A vanadium based metal-organic framework (MOF), VO(BPDC) (BPDC(2-) = biphenyl-4,4'-dicarboxylate), adopting an expanded MIL-47 structure type, has been synthesized via solvothermal and microwave methods. Its structural and gas/vapor sorption properties have been studied. This compound displays a distinct breathing effect toward certain adsorptives at workable temperatures. The sorption isotherms of CO(2) and CH(4) indicate a different sorption behavior at specific temperatures. In situ synchrotron X-ray powder diffraction measurements and molecular simulations have been utilized to characterize the structural transition. The experimental measurements clearly suggest the existence of both narrow pore and large pore forms. A free energy profile along the pore angle was computationally determined for the empty host framework. Apart from a regular large pore and a regular narrow pore form, an overstretched narrow pore form has also been found. Additionally, a variety of spectroscopic techniques combined with N(2) adsorption/desorption isotherms measured at 77 K demonstrate that the existence of the mixed oxidation states V(III)/V(IV) in the titled MOF structure compared to pure V(IV) increases the difficulty in triggering the flexibility of the framework. PMID:23256823

  20. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    PubMed

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. PMID:20851447

  1. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim T M; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-09-01

    The present work investigates the potential of coagulation-flocculation and ozonation to pretreat biologically stabilized landfill leachate before granular activated carbon (GAC) adsorption. Both iron (III) chloride (FeCl3) and polyaluminium chloride (PACl) are investigated as coagulants. Better organic matter removal is observed when leachate was treated with FeCl3. At a dose of 1mg FeCl3/mg CODo (CODo: initial COD content), the COD and α254 removal was 66% and 88%, respectively. Dosing 1mg PACl/mg CODo resulted in 44% COD and 72% α254 removal. The settle-ability of sludge generated by PACl leveled off at 252mL/g, while a better settle-ability of 154mL/g was obtained for FeCl3 after dosing 1mg coagulant/mg CODo. For ozonation, the percentage of COD and α254 removal increased as the initial COD concentration decreased. Respectively 44% COD and 77% α254 removal was observed at 112mg COD/L compared to 5% COD and 26% α254 removal at 1846mg COD/L. Subsequent activated carbon adsorption of ozonated, coagulated and untreated leachate resulted in 77%, 53% and 8% total COD removal after treatment of 6 bed volumes. Clearly showing the benefit of treating the leachate before GAC adsorption. Mathematical modeling of the experimental GAC adsorption data with Thomas and Yoon-Nelson models show that ozonation increases the adsorption capacity and breakthrough time of GAC by a factor of 2.5 compared to coagulation-flocculation. PMID:26117422

  2. Community Prevention Coalition Context and Capacity Assessment: Comparing the United States and Mexico

    ERIC Educational Resources Information Center

    Brown, Louis D.; Chilenski, Sarah M.; Ramos, Rebeca; Gallegos, Nora; Feinberg, Mark E.

    2016-01-01

    Effective planning for community health partnerships requires understanding how initial readiness--that is, contextual factors and capacity--influences implementation of activities and programs. This study compares the context and capacity of drug and violence prevention coalitions in Mexico to those in the United States. Measures of coalition…

  3. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity.

    PubMed

    Lounsbury, Amanda W; Yamani, Jamila S; Johnston, Chad P; Larese-Casanova, Philip; Zimmerman, Julie B

    2016-06-01

    Nano metal oxides are of interest for aqueous selenium (Se) remediation, and as such, nano-hematite (nα-Fe2O3) was examined for use as a Se adsorbent. The effect of surface area on adsorption was also studied. nα-Fe2O3 particles were synthesized from Fe(NO3)3 and FeCl3 via forced hydrolysis. The resulting particles have similar sizes, morphologies, aggregate size, pore size, and PZC. The nα-Fe2O3 from FeCl3 (nα-Fe2O3-C) differs from the nα-Fe2O3 from Fe(NO3)3 (nα-Fe2O3-N) with a ∼25±2m(2)/g greater surface area. Selenite Se(IV) adsorption capacity on nα-Fe2O3 has a qmax ∼17mg/g for the freeze-dried and re-suspended nα-Fe2O3. The Δqmax for nα-Fe2O3 from Fe(NO3)3 and FeCl3 that remained in suspension was 4.6mg/g. For selenate Se(VI), the freeze-dried and re-suspended particles realize a Δqmax= 1.5mg/g for nα-Fe2O3 from Fe(NO3)3 and FeCl3. The nα-Fe2O3 from Fe(NO3)3 and FeCl3 that remained in suspension demonstrated Se(VI) Δqmax=5.4mg/g. In situ ATR-FTIR isotherm measurements completed for Se(VI) at a pH 6 suggest that Se(VI) forms primarily outer-sphere complexes with nα-Fe2O3 synthesized from both salts. PMID:26905609

  4. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-12-01

    Anatase TiO2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption analysis, UV-vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO2 NSs possess high surface area up to 378 m2 g-1. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  5. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  6. Preparation and characterization of EDTAD-modified magnetic-Fe3O4 chitosan composite: application of comparative adsorption of dye wastewater with magnetic chitosan.

    PubMed

    Yang, Hongyu; Li, Yunchun; Ho, Steven Sai Hang; Tian, Xiumei; Xia, Yunxue; Shen, Yaou; Zhao, Maojun; Pan, Guangtang

    2013-01-01

    Ethylenediaminetetraacetic dianhydride (EDTAD)-modified magnetic-Fe3O4 chitosan (EMC), prepared using the cross-link agent glutaraldehyde and chemicals Fe3O4, chitosan, and EDTAD, was used to compare the adsorption of methylene blue (MB) with magnetic chitosan (MC). The composite structure was confirmed by multiple characterization techniques, including scanning electron microscopy (SEM), X-ray powder diffraction, Fourier transform infrared spectroscopy (FTIR), and potentiometric titration methods. The characterization results suggest that Fe3O4 particles successfully bound on the surface of chitosan, and the EDTAD thoroughly modified the MC. Furthermore, EMC had more amino, carboxyl, and hydroxy groups than typical MC. Adsorption conditions, such as pH values, initial concentrations of MB, reaction temperature, and contact time were systematically examined. In comparison, the maximum adsorption capacity of EMC was approximately twice as much as that of MC. The recovery efficiency for EMC was >80% using 0.1 M HCl as an eluent solution. Therefore, the results reported herein indicate that EMC is very attractive and imply a practical application for dye wastewater treatment. PMID:23823557

  7. Environmental and Economic Assessment of Electrothermal Swing Adsorption of Air Emissions from Sheet-Foam Production Compared to Conventional Abatement Techniques.

    PubMed

    Johnsen, David L; Emamipour, Hamidreza; Guest, Jeremy S; Rood, Mark J

    2016-02-01

    A life-cycle assessment (LCA) and cost analysis are presented comparing the environmental and economic impacts of using regenerative thermal oxidizer (RTO), granular activated carbon (GAC), and activated carbon fiber cloth (ACFC) systems to treat gaseous emissions from sheet-foam production. The ACFC system has the lowest operational energy consumption (i.e., 19.2, 8.7, and 3.4 TJ/year at a full-scale facility for RTO, GAC, and ACFC systems, respectively). The GAC system has the smallest environmental impacts across most impact categories for the use of electricity from select states in the United States that produce sheet foam. Monte Carlo simulations indicate the GAC and ACFC systems perform similarly (within one standard deviation) for seven of nine environmental impact categories considered and have lower impacts than the RTO for every category for the use of natural gas to produce electricity. The GAC and ACFC systems recover adequate isobutane to pay for themselves through chemical-consumption offsets, whereas the net present value of the RTO is $4.1 M (20 years, $0.001/m(3) treated). The adsorption systems are more environmentally and economically competitive than the RTO due to recovered isobutane for the production process and are recommended for resource recovery from (and treatment of) sheet-foam-production exhaust gas. Research targets for these adsorption systems should focus on increasing adsorptive capacity and saturation of GAC systems and decreasing electricity and N2 consumption of ACFC systems. PMID:26727459

  8. Comparing the removal of perchlorate when using single-walled carbon nanotubes (SWCNTs) or granular activated carbon: adsorption kinetics and thermodynamics.

    PubMed

    Lou, Jie C; Hsu, Yung S; Hsu, Kai L; Chou, Ming S; Han, Jia Y

    2014-01-01

    This study aims to remove perchlorate using single-walled carbon nanotubes (SWCNTs) or granular activated carbon (GAC). Dynamic and equilibrium adsorption experiments were performed to evaluate the thermodynamic behavior of perchlorate on SWCNTs and GAC. Key parameters affecting the adsorption, such as pH, ionic strength, and temperature were studied. The experimental results showed that the dynamic adsorption experiment achieved equilibrium in approximately eight hours. The adsorption capacity increased as the concentration of perchlorate increased or as the ionic strength decreased. The selected adsorption models were the modified Freundlich, the pseudo-1st-order, and the pseudo-2nd-order equations. The results showed that the modified Freundlich equation best described the kinetic adsorption processes. The maximal adsorption capacities of GAC and SWCNTs were 33.87-28.21 mg/g and 13.64 - 10.03 mg/g, respectively, at a constant temperature between 5°C and 45°C. The thermodynamic parameters, such as the equilibrium constant (K0 ), the standard free energy changes (ΔG°), the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°), were obtained. The results of the isothermal equilibrium adsorption experiment showed that low pH levels, low ionic strength, and low-temperature conditions facilitated the perchlorate adsorption, indicating that GAC and SWCNTs are potential absorbents for water treatment. PMID:24410681

  9. STATISTICAL COMPARISON OF THE EFFECT OF RELATIVE AND ABSOLUTE HUMIDITY ON FIXED-BED CARBON ADSORPTION CAPACITY

    EPA Science Inventory

    The paper describes statistical methods used to evaluate data for toluene (at several typical operating temperatures and humidity levels) and to determine which measure of humidity (relative or absolute) is more important in determining carbon adsorption efficiency. The water con...

  10. Modification of ASM3 for the determination of biomass adsorption/storage capacity in bulking sludge control.

    PubMed

    Makinia, J; Rosenwinkel, K H; Phan, L C

    2006-01-01

    The selector activated sludge (SAS) systems are known to prevent excessive growth of filamentous microorganisms responsible for bulking sludge, but these systems were hardly ever modelled. This study aimed to develop a model capable of predicting rapid substrate removal in the SAS systems. For this purpose, the Activated Sludge Model No. 3 (ASM3) was extended with three processes (adsorption, direct growth on the adsorbed substrate under aerobic or anoxic conditions). The modified ASM3 was tested against the results of batch experiments with the biomass originating from two full-scale SAS systems in Germany. The endogenous biomass was mixed with various readily biodegradable substrates (acetate, peptone, glucose and wastewater) and the utilisation of substrate (expresses as COD) and oxygen uptake rates (OURs) were measured during the experiments. In general, model predictions fitted to the experimental data, but a considerable number of kinetic (5) and stoichiometric (2) parameters needed to be adjusted during model calibration. The simulation results revealed that storage was generally a dominating process compared to direct growth in terms of the adsorbed substrate utilisation. The contribution of storage ranged from 65-71% (Plant A) and 69-92% (Plant B). PMID:16605021

  11. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Takács, Erzsébet; Wojnárovits, László; Koczog Horváth, Éva; Fekete, Tamás; Borsa, Judit

    2012-09-01

    Cellulose as a renewable raw material was used for preparation of adsorbent of organic impurities in wastewater treatment. Hydrophobic surface of cellulose substrate was developed by grafting glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. Adsorption equilibrium data fitted the Freundlich isotherm for both solutes.

  12. Comparable quality attributes of hepatitis E vaccine antigen with and without adjuvant adsorption-dissolution treatment

    PubMed Central

    Zhang, Yue; Li, Min; Yang, Fan; Li, Yufang; Zheng, Zizheng; Zhang, Xiao; Lin, Qingshan; Wang, Ying; Li, Shaowei; Xia, Ningshao; Zhang, Jun; Zhao, Qinjian

    2015-01-01

    Most vaccines require adjuvants for antigen stabilization and immune potentiation. Aluminum-based adjuvants are the most widely used adjuvants for human vaccines. Previous reports demonstrated the preservation of antigen conformation and other antigen characteristics after recovery from adjuvanted Hepatitis B and human papillomavirus vaccines. In this study, we used a combination of various physiochemical and immunochemical methods to analyze hepatitis E vaccine antigen quality attributes after recovery from adjuvants. All biochemical and biophysical methods showed similar characteristics of the p239 protein after recovery from adjuvanted vaccine formulation compared to the antigen in solution which never experienced adsorption/desorption process. Most importantly, we demonstrated full preservation of key antigen epitopes post-recovery from adjuvanted vaccine using a panel of murine monoclonal antibodies as exquisite probes. Antigenicity of p239 was probed with a panel of 9 mAbs using competition/blocking ELISA, surface plasmon resonance and sandwich ELISA methods. These multifaceted analyses demonstrated the preservation of antigen key epitopes and comparable protein thermal stability when adsorbed on adjuvants or of the recovered antigen post-dissolution treatment. A better understanding of the antigen conformation in adjuvanted vaccine will enhanced our knowledge of antigen-adjuvant interactions and facilitate an improved process control and development of stable vaccine formulation. PMID:26018442

  13. Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes.

    PubMed

    Ellerie, Jaclyn R; Apul, Onur G; Karanfil, Tanju; Ladner, David A

    2013-10-15

    Multi-walled carbon nanotubes (MWCNTs), nano-graphene platelets (NGPs), and superfine powdered activated carbon (S-PAC) were comparatively evaluated for their applicability as adsorptive coatings on microfiltration membranes. The objective was to determine which materials were capable of contaminant removal while causing minimal flux reduction. Methylene blue and atrazine were the model contaminants. When applied as membrane coatings, MWCNTs had minimal retention capabilities for the model contaminants, and S-PAC had the fastest removal. The membrane coating approach was also compared with a stirred vessel configuration, in which the adsorbent was added to a stirred flask preceding the membrane cell. Direct application of the adsorbent to the membrane constituted a greater initial reduction in permeate concentrations of the model contaminants than with the stirred flask setup. All adsorbents except S-PAC showed flux reductions less than 5% after application as thin-layer membrane coatings, and flux recovery after membrane backwashing was greater than 90% for all materials and masses tested. PMID:23911830

  14. Formation of High-Capacity Protein-Adsorbing Membranes Through Simple Adsorption of Poly(acrylic acid)-Containing Films at low pH

    PubMed Central

    Bhattacharjee, Somnath; Dong, Jinlan; Ma, Yiding; Hovde, Stacy; Geiger, James H; Baker, Gregory L.; Bruening, Merlin L.

    2012-01-01

    Layer-by-layer polyelectrolyte adsorption is a simple, convenient method for introducing ion-exchange sites in porous membranes. This study demonstrates that adsorption of poly(acrylic acid) (PAA)-containing films at pH 3 rather than pH 5 increases the protein-binding capacity of such polyelectrolyte-modified membranes 3- to 6-fold. The low adsorption pH generates a high density of –COOH groups that function as either ion-exchange sites or points for covalent immobilization of metal-ion complexes that selectively bind tagged proteins. When functionalized with nitrilotriacetate (NTA)-Ni2+ complexes, membranes containing PAA/polyethyleneimine (PEI)/PAA films bind 93 mg of histidine6-tagged (His-tagged) ubiquitin per cm3 of membrane. Additionally these membranes isolate His-tagged COP9 signalosome complex subunit 8 from cell extracts and show >90% recovery of His-tagged ubiquitin. Although modification with polyelectrolyte films occurs by simply passing polyelectrolyte solutions through the membrane for as little as 5 min, with low-pH deposition the protein binding capacities of such membranes are as high as for membranes modified with polymer brushes and 2–3 fold higher than for commercially available IMAC resins. Moreover, the buffer permeabilities of polyelectrolyte-modified membranes that bind His-tagged protein are ~30% of the corresponding permeabilities of unmodified membranes, so protein capture can occur rapidly with low pressure drops. Even at a solution linear velocity of 570 cm/h, membranes modified with PAA/PEI/PAA exhibit a lysozyme dynamic binding capacity (capacity at 10% breakthrough) of ~ 40 mg/cm3. Preliminary studies suggest that these membranes are stable under depyrogenation conditions (1 M NaOH). PMID:22468687

  15. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  16. Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface.

    PubMed

    Wood, Mary H; Casford, M T; Steitz, R; Zarbakhsh, A; Welbourn, R J L; Clarke, Stuart M

    2016-01-19

    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations. PMID:26707597

  17. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    PubMed Central

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-01-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g−1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment. PMID:27142194

  18. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    NASA Astrophysics Data System (ADS)

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-05-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g‑1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment.

  19. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green.

    PubMed

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-01-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g(-1)) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment. PMID:27142194

  20. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  1. Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid.

    PubMed

    Rey-Mafull, Carlos A; Tacoronte, Juan E; Garcia, Raquel; Tobella, Jorge; Llópiz, Julio C; Iglesias, Alberto; Hotza, Dachamir

    2014-01-01

    Samples of commercial activated carbons (AC) obtained from different sources: Norit E Supra USP, Norit B Test EUR, and ML (Baracoa, Cuba) were investigated. The adsorption of acetaminophen, Co = 2500 mg/L, occured in simulated gastric fluid (SGF) at pH 1.2 in contact with activated carbon for 4 h at 310 K in water bath with stirring. Residual acetaminophen was monitored by UV visible. The results were converted to scale adsorption isotherms using alternative models: Langmuir TI and TII, Freundlich, Dubinin-Radushkevich (DR) and Temkin. Linearized forms of the characteristic parameters were obtained in each case. The models that best fit the experimental data were Langmuir TI and Temkin with R(2) ≥0.98. The regression best fits followed the sequence: Langmuir TI = Temkin > DR > LangmuirTII > Freundlich. The microporosity determined by adsorption of CO2 at 273 K with a single term DR regression presented R(2) > 0.98. The adsorption of acetaminophen may occur in specific sites and also in the basal region. It was determined that the adsorption process of acetaminophen on AC in SGF is spontaneous (ΔG <0) and exothermic (-ΔHads.). Moreover, the area occupied by the acetaminophen molecule was calculated with a relative error from 7.8 to 50%. PMID:24570846

  2. A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: effect of acid treatment.

    PubMed

    Erdoğan Alver, Burcu

    2013-11-15

    In this study, ethylene (C2H4) and sulphur dioxide (SO2) adsorption properties of clinoptilolite tuff from Gördes, Turkey and that of acid treated forms were studied at 293K using volumetric apparatus up to 38 and 100 kPa, respectively. In order to consider the effect of acid treatment on structural and gas adsorption properties of zeolite, clinoptilolite mineral was modified with 0.1, 0.5, 1.0 and 2.0M HCl solutions at 70 °C during 3h. XRD, XRF, TG/DTG, DTA and N2 adsorption methods were employed for thermal and structural characterization of clinoptilolite samples before and after the acid treatment. SO2 adsorption capacities (2.356-2.739 mmol/g) of the clinoptilolite samples were superior to those of the C2H4 adsorptions (0.619-1.219 mmol/g). PMID:24100260

  3. Comparative Study of Water Adsorption on a H(+) and K(+) Ion Exposed Mica Surface: Monte Carlo Simulation Study.

    PubMed

    Debbarma, Rousan; Malani, Ateeque

    2016-02-01

    Clay minerals are used in variety of applications ranging from composites to electronic devices. For their efficient use in such areas, understanding the effect of surface-active agents on interfacial properties is essential. We investigated the role of surface ions in the adsorption of water molecules by using a muscovite mica surface populated with two different, H(+) and K(+), surface ions. A series of grand canonical Monte Carlo (GCMC) simulations at various relative vapor pressures (p/p0) were performed to obtain the water structure and adsorption isotherm on the H(+)-exposed mica (H-mica) surface. The obtained results were compared to the recent simulation data of water adsorption on the K(+)-exposed mica (K-mica) surface reported by Malani and Ayyappa (Malani, A.; Ayappa, K. G. J. Phys. Chem. B 2009, 113, 1058-1067). Water molecules formed two prominent layers adjacent to the H-mica surface, whereas molecular layering was observed adjacent to the K-mica surface. The adsorption isotherm of water on the K-mica surface was characterized by three stages that corresponded to rapid adsorption in the initial regime below p/p0 = 0.1, followed by a linear development regime for p/p0 = 0.1-0.7 and rapid film thickening for p/p0 ≥ 0.7, whereas only latter two regimes were observed in the H-mica system. In addition, the film thickness of adsorbed water molecules for p/p0 < 0.7 was lower as compared to that for the K-mica surface and comparable beyond. The film thickness obtained from the MC simulations was in excellent agreement with the interferometry experimental data of Balmer et al. (Balmer, T. E.; Christenson, H. K.; Spencer, N. D.; Heuberger, M. Langmuir 2008, 24, 1566-1569). It was observed that the hydration behaviors of the two ions were completely different and depended on the size of their hydration shell and their ability to form hydrogen bonds. The behavior of water adsorption between these two cases was illustrated using the water density distribution

  4. Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures

    SciTech Connect

    Faella, C.; Lima, C.; Martinelli, E.; Nigro, E.

    2008-07-08

    Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings.

  5. Preparation of hybrid organic-inorganic mesoporous silicas applied to mercury removal from aqueous media: Influence of the synthesis route on adsorption capacity and efficiency.

    PubMed

    Pérez-Quintanilla, Damián; Sánchez, Alfredo; Sierra, Isabel

    2016-06-15

    New hybrid organic-inorganic mesoporous silicas were prepared by employing three different synthesis routes and mercury adsorption studies were done in aqueous media using the batch technique. The organic ligands employed for the functionalization were derivatives of 2-mercaptopyrimidine or 2-mercaptothiazoline, and the synthesis pathways used were post-synthesis, post-synthesis with surface ion-imprinting and co-condensation with ion-imprinting. The incorporation of functional groups and the presence of ordered mesopores in the organosilicas was confirmed by XRD, TEM and SEM, nitrogen adsorption-desorption isotherms, (13)C MAS-NMR, (29)Si MAS-NMR, elemental and thermogravimetric analysis. The highest adsorption capacity and selectivity observed was for the material functionalized with 2-mercaptothiazoline ligand by means the co-condensation with ion-imprinting route (1.03mmolg(-1) at pH 6). The prepared material could be potential sorbent for the extraction of this heavy metal from environmental and drinking waters. PMID:27023632

  6. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    NASA Astrophysics Data System (ADS)

    Gatica, José M.; Harti, Sanae; Vidal, Hilario

    2010-09-01

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N 2 physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  7. Community Prevention Coalition Context and Capacity Assessment: Comparing the United States and Mexico.

    PubMed

    Brown, Louis D; Chilenski, Sarah M; Ramos, Rebeca; Gallegos, Nora; Feinberg, Mark E

    2016-04-01

    Effective planning for community health partnerships requires understanding how initial readiness-that is, contextual factors and capacity-influences implementation of activities and programs. This study compares the context and capacity of drug and violence prevention coalitions in Mexico to those in the United States. Measures of coalition context include community problems, community leadership style, and sense of community. Measures of coalition capacity include the existence of collaborative partnerships and coalition champions. The assessment was completed by 195 members of 9 coalitions in Mexico and 139 members of 7 coalitions in the United States. Psychometric analyses indicate the measures have moderate to strong internal consistency, along with good convergent and discriminant validity in both settings. Results indicate that members of Mexican coalitions perceive substantially more serious community problems, especially with respect to education, law enforcement, and access to alcohol and drugs. Compared to respondents in the United States, Mexican respondents perceive sense of community to be weaker and that prevention efforts are not as valued by the population where the coalitions are located. The Mexican coalitions appear to be operating in a substantially more challenging environment for the prevention of violence and substance use. Their ability to manage these challenges will likely play a large role in determining whether they are successful in their prevention efforts. The context and capacity assessment is a valuable tool that coalitions can use in order to identify and address initial barriers to success. PMID:26205249

  8. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity. PMID:22160758

  9. CTAB-assisted synthesis of mesoporous F-N-codoped TiO{sub 2} powders with high visible-light-driven catalytic activity and adsorption capacity

    SciTech Connect

    Xie Yi Zhao Xiujian Li Yuanzhi; Zhao Qingnan; Zhou Xuedong; Yuan Qihua

    2008-08-15

    This article describes the preparation of mesoporous rod-like F-N-codoped TiO{sub 2} powder photocatalysts with anatase phase via a sol-gel route at the temperature of 373 K, using cetyltrimethyl ammonium bromide (CTAB) as surfactant. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-vis DRS). The results showed that the photocatalysts possessed a homogeneous pore diameter and a high surface area of 106.3-160.7 m{sup 3} g{sup -1}. The increasing CTAB reactive concentration extended the visible-light absorption up to 600 nm. The F-N-codoped TiO{sub 2} powders exhibited significant higher adsorption capacity for methyl orange (MO) than that of Degussa P25 and showed more than 6 times higher visible-light-induced catalytic degradation for MO than that of P25. - Graphical abstract: The introduction of surfactant CTAB not only extended the visible light absorption of mesoporous F-N-codoped TiO{sub 2} up to 600 nm but also significantly enhanced the adsorption capacity and visible-light-induced degradation for methyl orange. Mesoporous rod-like F-N-codoped TiO{sub 2} powder photocatalysts were synthesized via a sol-gel route at low temperature of 373 K.

  10. Polyamine-Cladded 18-Ring-Channel Gallium Phosphites with High-Capacity Hydrogen Adsorption and Carbon Dioxide Capture.

    PubMed

    Sie, Ming-Jhe; Lin, Chia-Her; Wang, Sue-Lein

    2016-06-01

    In this study, we synthesized a unique inorganic framework bearing the largest 18-membered-ring channels in gallium phosphites, denoted as NTHU-15, which displayed genuine porosity even though large organic templates were present. The idea of using the "template-cladded" strategy succeeded in releasing channel space of up to ∼24% of the unit-cell volume as highly positive-charged organic templates were manipulated to cling to the anionic inorganic walls. NTHU-15 showed both high H2 uptake of 3.8 mmol/g at 77 K and effective CO2 adsorption of ∼2.4 mmol/g at 298 K, which surpassed those of all other known extra-large-channel inorganic framework structures. NTHU-15 has been successful at overcoming the long-standing problem of organic-templated extra-large-channel structures as opposed to a "true open" framework. Moreover, it realized practical gas sorption functionality in innovated metal phosphites. In view of its high stability in hot water and high selectivity for CO2 adsorption, NTHU-15 may be the first novel inorganic framework material to be applied to the field of flue gas cleaning. PMID:27181272

  11. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  12. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu

    2014-12-01

    Now the lithium ion batteries are widely used in electric vehicles (EV). The cycle life is among the most important characteristics of the power battery in EV. In this report, the battery cycle life experiment is designed according to the actual working condition in EV. Five different commercial lithium ion cells are cycled alternatively under 45 °C and 5 °C and the test results are compared. Based on the cycle life experiment results and the identified battery aging mechanism, the battery cycle life models are built and fitted by the genetic algorithm. The capacity loss follows a power law relation with the cycle times and an Arrhenius law relation with the temperature. For automotive application, to save the cost and the testing time, a battery SOH (state of health) estimation method combined the on-line model based capacity estimation and regular calibration is proposed.

  13. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  14. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels.

    PubMed

    Vellingiri, Kowsalya; Kim, Ki-Hyun; Kwon, Eilhann E; Deep, Akash; Jo, Sang-Hee; Szulejko, Jan E

    2016-01-15

    The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg(-1) Pa(-1))), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs. PMID:26562781

  15. Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents.

    PubMed

    Zietzschmann, Frederik; Aschermann, Geert; Jekel, Martin

    2016-10-01

    The adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC) was compared between regionally different waters within two groups, namely five drinking waters and seven wastewater treatment plant (WWTP) effluents. In all waters, OMP were spiked to adjust similar ratios of the initial OMP and DOC concentrations (c0,OMP/c0,DOC). PAC was dosed specific to the respective DOC (e.g. 2 mg PAC/per mg DOC). Liquid chromatography with online carbon detection shows differences of the background organic matter (BOM) compositions. The OMP removals at given DOC-specific PAC doses vary by ±15% (drinking waters) and ±10% (WWTP effluents). Similar BOM-induced adsorption competition in the waters of the respective group results in overall relationships between the PAC loadings and the liquid phase concentrations of each OMP (in the case of strong adsorbates). Weaker adsorbates show no overall relationships because of the strong BOM-induced adsorption competition near the initial OMP concentration. Correlations between OMP removals and UV254 removals were independent of the water (within the respective group). The equivalent background compound (EBC) model was applied to the experimental data. Using global EBC Freundlich coefficients, the initial EBC concentration correlates with the DOC (both water groups separately) and the low molecular weight (LMW) organics concentrations (all waters combined). With these correlations, the EBC could be initialized by using the DOC or the LMW organics concentration of additional drinking water, WWTP effluent, and surface water samples. PMID:27344250

  16. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  17. Comparative study of metal adsorption on the metal and the oxide surfaces

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.; Vladimirov, G. G.; Remar, D.; Moutinho, A. M. C.

    2002-05-01

    Adsorption of Ti, Cr, Fe, Ni and Cu atoms at coverage not exceeding two monolayers on the surface of ultrathin (10-15 Å) alumina and magnesia films (γ-Al 2O 3(111) or α-Al 2O 3(1000) and MgO(111) grown on Mo(110) were studied in ultrahigh vacuum by means of electron spectroscopy techniques (Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS), high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED), work function measurements and reflection absorption infrared spectroscopy (RAIRS)). At very low metal coverage and low substrate temperature (85 K) when the film can be viewed as consisting of separate adatoms and/or very small clusters the electronic properties of adatoms on the oxide films, on one hand, and on Mo(110) surface, on the other hand, are quite different. With increasing metal coverage, the properties on both the oxide and the metallic substrates change becoming similar at the coverage close to monolayer. On the Mo(110) surface the electronic properties change gradually with the metal coverage, whereas on the oxide there is a critical coverage of about 0.15 ML separating ionic and metallic adsorption of the metal species. It is shown that the lateral interaction of adatoms on the oxide surface plays a dominant role in the formation of the band-like structure of the adsorbed 2D film.

  18. Approaches to developing the capacity of health policy analysis institutes: a comparative case study

    PubMed Central

    2012-01-01

    Objectives To review and assess (i) the factors that facilitate the development of sustainable health policy analysis institutes in low and middle income countries and (ii) the nature of external support for capacity development provided to such institutes. Methods Comparative case studies of six health policy analysis institutes (3 from Asia and 3 from Africa) were conducted. In each region an NGO institute, an institute linked to government and a university based institute were included. Data collection comprised document review, semi-structured interviews with stakeholders and discussion of preliminary findings with institute staff. Findings The findings are organized around four key themes: (i) Financial resources: three of the institutes had received substantial external grants at start-up, however two of these institutes subsequently collapsed. At all but one institute, reliance upon short term, donor funding, created high administrative costs and unpredictability. (ii) Human resources: the retention of skilled human resources was perceived to be key to institute success but was problematic at all but one institute. In particular staff often moved to better paid positions elsewhere once having acquired necessary skills and experience, leaving remaining senior staff with heavy workloads. (iii) Governance and management: board structures and roles varied according to the nature of institute ownership. Boards made important contributions to organizational capacity through promoting continuity, independence and fund raising. Routine management systems were typically perceived to be strong. (iv) Networks: linkages to policy makers helped promote policy influences. External networks with other research organizations, particularly where these were longer term institutional collaborations helped promote capacity. Conclusions The development of strong in-country analytical and research capacity to guide health policy development is critical, yet many health policy

  19. Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene

    NASA Astrophysics Data System (ADS)

    Jand, Sara Panahian; Chen, Yanxin; Kaghazchi, Payam

    2016-03-01

    Adsorption of Li2Sx on pristine and defective (Stone-Wales (SW) and vacancy) graphene is studied using density functional theory. Results show that the interaction between Li2Sx and graphene is dominated by dispersion interaction (physisorption), which depends on the size of molecule as well as the existence and type of defect sites on graphene. We find that single Li2Sx molecules interact only slightly stronger to the SW sites than to the defect-free sites, but they interact very strongly with single-vacant defects. In the later cases, the vacant site catches one S atom from the Li2Sx molecule, leading to the formation of a Li2Sx-1 molecule, which adsorbs weakly on the created S-doped graphene. This study suggests that defect sites can not improve the ability of graphene to catch lithium polysulfides in Li-S batteries.

  20. Adsorption of azo dyes using peanut hull and orange peel: a comparative study.

    PubMed

    do Nascimento, Graziele Elisandra; Duarte, Marta Maria Menezes Bezerra; Campos, Natália Ferreira; da Rocha, Otidene Rossiter Sá; da Silva, Valdinete Lins

    2014-01-01

    This work proposes the use of agro-industrial wastes, specifically peanut hull (HP) and orange peel (OP), as adsorbents for dyes, such as Remazol Golden Yellow RNL-150% (RYG), Gray Reactive BF-2R (RG) and Reactive Turquoise Q-G125 (RT). Characterization by Brunauer-Emmett-Teller indicates that the adsorbents are mesoporous, with pHzpc values of 5.0 for HP and 4.0 for OP. Fourier transform-infrared spectroscopy identified carbonyl and sulphonic groups. The initial pH of the best-adsorbing solution of the three colours was 2.0. Increasing the concentration of the adsorbent promoted an increase in the percentage of removal until saturation of the adsorbent. In a factorial design, the largest value of q was obtained with 0.25 g of the adsorbent, with a particle size of < 0.4 mm and a stirring speed of 300 rpm. Such conditions were used in kinetic studies and studies of adsorption equilibrium. The evolution kinetics were rapid in the first few minutes, and after 180 min the system reached equilibrium. The kinetic model that best fit the experimental data to a 95% confidence level for the F test was the pseudo-second-order model for RYG/HP, RG/OP and RT/OP. There was no significant difference between the kinetic models as evaluated by the F test for RYG/OP, RG/HP and RT/HP. The experimental results indicated favourable dye adsorption characteristics for the adsorbents studied. The results of the F test showed that for RYG and RG, there was no significant difference between the two evaluated models. This study suggests that HP and OP are viable alternatives for the treatment of effluents containing RYG, RG and RT dyes. PMID:24701942

  1. Synthesis of fungus-like MoS2 nanosheets with ultrafast adsorption capacities toward organic dyes

    NASA Astrophysics Data System (ADS)

    Song, HaoJie; You, Shengsheng; Jia, XiaoHua

    2015-11-01

    Fungus-like molybdenum disulfide (MoS2) nanosheets with a thickness of a few nanometers have been successfully synthesized via one-pot hydrothermal method. The as-prepared MoS2 nanosheets with a high surface area of 106.989 m2 g-1 exhibited excellent wastewater treatment performance with high removal capacities toward organic dyes. In addition, the fungus-like MoS2 nanosheets can absorb Congo red completely within 2 min. Successful access to high quality fungus-like MoS2 nanosheets will make it possible for their potential application in catalysis and other fields.

  2. Comparative carotenoid compositions during maturation and their antioxidative capacities of three citrus varieties.

    PubMed

    Yoo, Kyung-Mi; Moon, BoKyung

    2016-04-01

    This study investigated total carotenoid content, comparative carotenoid composition, vitamin C content, and total antioxidant capacity of three citrus varieties which are Yuza (Citrus junos Sieb ex Tabaka), Kjool (Citrus unshiu Marcow), and Dangyooja (Citrus grandis Osbeck). Seven carotenoids were identified, with β-cryptoxanthin, astaxanthin, and zeaxanthin being predominant in citrus varieties. Ripening increased the total carotenoid in three citrus varieties. Individual carotenoid of canthaxanthin, astaxanthin, and α-carotene in citrus varieties decreased with maturation, whereas the others increased with ripening. Yuza exhibited the highest total antioxidant capacity in 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, with VCEAC values of 582.9 mg/100 g and 451.5 mg/100g, respectively. The relative VCEAC values were vitamin C (1.00)>lycopene (0.375), α-carotene (0.304), β-carotene (0.289), β-cryptoxanthin (0.242), and zeaxanthin (0.099). These results indicate that Yuza contains higher amounts of total carotenoids, individual carotenoids, and vitamin C than other Korean citrus varieties. PMID:26593526

  3. Phosphate adsorption on aluminum-coordinated functionalized macroporous–mesoporous silica: Surface structure and adsorption behavior

    SciTech Connect

    Huang, Weiya; Li, Dan; Zhu, Yi; Xu, Kai; Li, Jianqiang; Han, Boping; Zhang, Yuanming

    2013-12-15

    Graphical abstract: - Highlights: • Al-coordinated functionalized macroporous–mesoporous silica for phosphate removal. • It had the maximum adsorption capacity of 23.59 mg P/g. • Over 95% of the final adsorption capacity reached in the first 1 min. - Abstract: In this study, Al(III)-coordinated diamino-functionalized macroporous–mesoporous silica was synthesized and characterized by X-ray diffraction, N{sub 2} adsorption–desorption, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. Because of well-defined and interconnecting macroporous–mesoporous networks, the resulting adsorbent (MM-SBA) exhibited a significantly better phosphate adsorption performance and faster removal rate, as compared with the mesoporous adsorbent (M-SBA). Based on the Freundlich and Langmuir models, the phosphate adsorption capacity and the maximum adsorption capacity of MM-SBA were 7.99 mg P/g and 23.59 mg P/g, respectively. In the kinetic study of MM-SBA, over 95% of its final adsorption capacity reached in the first 1 min; whereas that of M-SBA was less than 79%.

  4. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute.

    PubMed

    Suriyanon, Nakorn; Permrungruang, Jutima; Kaosaiphun, Jidanan; Wongrueng, Aunnop; Ngamcharussrivichai, Chawalit; Punyapalakul, Patiparn

    2015-10-01

    The selective adsorption mechanisms of naproxen (NAP), acetaminophen (ACT), and clofibric acid (CFA) on silica-based porous materials were examined by single and mixed-batch adsorption. Effects of the types and densities of surface functional groups on adsorption capacities were determined, including the role of hydrophobic and hydrophilic dissolved organic matters (DOMs). Hexagonal mesoporous silica (HMS), superparamagnetic HMS (HMS-SP) and SBA-15 were functionalized and applied as adsorbents. Compared with powdered activated carbon (PAC), amine-functionalized HMS had a better adsorption capacity for CFA, but PAC possessed a higher adsorption capacity for the other pharmaceuticals than HMS and its two derivatives. In contrast to PAC, the adsorption capacity of the mesoporous silicas varied with the solution pH, being highest at pH 5. Electrostatic interactions and hydrogen bonding were found to be the main mechanisms. Increase in grafted amine group density on silica surfaces can enhance the CFA adsorption capacity. Further, hydrophilic DOM can decrease CFA adsorption capacities on amino-grafted adsorbents by adsorption site competition, while hydrophobic DOM can interfere with CFA adsorption by the interaction between hydrophobic DOM and CFA. Finally, in a competitive adsorption study, the adsorption capacity of hydrophilic adsorbents for acidic pharmaceuticals varied with their pKa values. PMID:26025186

  5. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay.

    PubMed

    Younker, Jessica M; Walsh, Margaret E

    2015-12-15

    Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions. PMID:26259095

  6. Understanding the Adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal-Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments.

    PubMed

    Liu, Kai; Zhang, Siyu; Hu, Xiyue; Zhang, Kunyang; Roy, Ajay; Yu, Gang

    2015-07-21

    To examine the effects of different functionalization methods on adsorption behavior, anionic-exchange MIL-101(Cr) metal-organic frameworks (MOFs) were synthesized using preassembled modification (PAM) and postsynthetic modification (PSM) methods. Perfluorooctanoic acid (PFOA) adsorption results indicated that the maximum PFOA adsorption capacity was 1.19 and 1.89 mmol g(-1) for anionic-exchange MIL-101(Cr) prepared by PAM and PSM, respectively. The sorption equilibrium was rapidly reached within 60 min. Our results indicated that PSM is a better modification technique for introducing functional groups onto MOFs for adsorptive removal because PAM places functional groups onto the aperture of the nanopore, which hinders the entrance of organic contaminants. Our experimental results and the results of complementary density functional theory calculations revealed that in addition to the anion-exchange mechanism, the major PFOA adsorption mechanism is a combination of Lewis acid/base complexation between PFOA and Cr(III) and electrostatic interaction between PFOA and the protonated carboxyl groups of the bdc (terephthalic acid) linker. PMID:26066631

  7. Volumetric interpretation of protein adsorption kinetics

    NASA Astrophysics Data System (ADS)

    Barnthip, Naris

    Protein adsorption is believed to be a very important factor ultimately leading to a predictive basis for biomaterials design and improving biocompatibility. Standard adsorption theories are modified to accommodate experimental observations. Adsorption from single-protein solutions and competitive adsorption from binary solutions are mainly considered. The standard solution-depletion method of measuring protein adsorption is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure protein adsorption to hydrophobic octyl sepharose (OS) adsorbent particles. Standard radiometric methods have also been used as a further check on the electrophoresis method mentioned above for purified-protein cases. Experimental results are interpreted in terms of an alternative kinetic model called volumetric interpretation of protein adsorption. A partitioning process between bulk solution and a three-dimensional interphase region that separates bulk solution from the physical adsorbent surface is the concept of the model. Protein molecules rapidly diffuse into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface, then follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible. An important role of water in protein adsorption is emphasized and supported by this model. The fundamental aspects including the reversibility/irreversibility of protein adsorption, the multilayer adsorption, the applicability of thermodynamic/computational models, the capacity of protein adsorption, and the mechanism of so called Vroman effect are discussed and compared to the conventional theories. Superhydrophobic effect on the adsorption of human serum albumin is also examined.

  8. A comparative study of water adsorption and desorption of swellable and non-swellable 2:1 layer silicates

    NASA Astrophysics Data System (ADS)

    Schnetzer, Florian; Thissen, Peter; Emmerich, Katja

    2015-04-01

    Our society aims for sustainable use of natural resources and conscientious land use. By far the most abundant natural resources are phyllosilicate-containing geomaterials (clays and soils) that are utilized as they occur in nature in various applications. One of the most important type of clays are bentonites. Bentonites act as binders of mineral particles and as hydraulic sealing by swelling under hydration. Bentonites consist of swellable clay minerals (smectites) and other phases (minerals, liquids, organic matter and air). Smectites hydrate and swell. Saturation depends on available moisture and compaction of the bentonites, which determine the ratio between strongly bound water in hydration shells of interlayer cations and surface bound water together with pore water. Thus, understanding of hydration of smectites is mandatory for understanding and controlling related processes and for monitoring of the hydration state in different applications. The hydration properties and the resulting interlayer organization of water (0W, 1W, 2W) were thoroughly studied for interlayer cations in particular by Ferrage et al., 2005; 2007 (and references herein). However, correlation with structure properties (layer charge, aspect ratio) was restricted to few samples. The influence of the ratio of interlayer to edge exchangeable cations is even more pronounced for small particles with an increased contribution from edge sites to CEC [Emmerich et al., 2011]. For a better understanding of hydration behavior of clay minerals, swellable and non-swellable 2:1 clay minerals are compared with respect to layer charge, exchangeable cations and particle size properties. The aim of the present work is to study the adsorption and desorption of water on homoionic smectites and vermiculite compare to a non-swellable illite. First results from water vapor adsorption isotherms show different kinetics of smectite hydration at low and high relative humidity (r. h.) with respect to equilibration

  9. Efficient Cadmium Bioaccumulation by Displayed Hybrid CS3 Pili: Effect of Heavy Metal Binding Motif Insertion Site on Adsorption Capacity and Selectivity.

    PubMed

    Eskandari, Vajiheh; Yakhchali, Bagher; Sadeghi, Mehdi; Karkhane, Ali Asghar; Ahmadi-Danesh, Houra

    2015-12-01

    The objective of this study was to evaluate the influence of insertion site of the metal binding motif on the bioaccumulation capacity of the hybrid CS3 pili displayed on the surface of Escherichia coli using both computational and experimental methods. Two metal binding motifs (cadmium binding motif (cbm) and cadmium binding beta motif (cbβm)), identified by searching against the PROSITE database, were inserted into five putative permissive sites of CstH protein (CS3 pili subunit) by using SOEing PCR technique. The expression and surface display of the hybrid pili were evaluated using dot and Western blotting methods and also immunofluorescence microscopy. The cadmium binding affinity and selectivity of the recombinant bacteria displaying various hybrid pili were evaluated using atomic absorption procedure. The results showed that the cadmium binding motifs enabled the cells to sequester cadmium 8- to 16-fold higher than the E.coli expressing native pili. The location of the metal binding motifs in the pili subunit had also a significant effect on the metal-binding properties of the hybrid pili. The insertion at positions 107-108 and 92-93 of the mature CstH showed the highest adsorption in comparison to other positions. PMID:26438314

  10. Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar.

    PubMed

    Zhang, Xiaokai; Sarmah, Ajit K; Bolan, Nanthi S; He, Lizhi; Lin, Xiaoming; Che, Lei; Tang, Caixian; Wang, Hailong

    2016-01-01

    Biochar is a carbonaceous sorbent and can be used as a potential material to reduce the bioavailability of organic pollutants in contaminated soils. In the present study, the adsorption and desorption of diethyl phthalate (DEP) onto soils amended with bamboo biochar was investigated with a special focus on the effect of biochar application rates and aging conditions on the adsorption capacity of the soils. Biochar amendment significantly enhanced the soil adsorption of DEP that increased with increasing application rates of biochar. However, the adsorption capacity decreased by two aging processes (alternating wet and dry, and constantly moist). In the soil with low organic carbon (OC) content, the addition of 0.5% biochar (without aging) increased the adsorption by nearly 98 times compared to the control, and exhibited the highest adsorption capacity among all the treatments. In the soil with high OC content, the adsorption capacity in the treatment of 0.5% biochar without aging was 3.5 and 3 times greater than those of the treatments of biochar aged by alternating wet and dry, and constantly moist, respectively. Moreover, constantly moist resulted in a greater adsorption capacity than alternating wet and dry treatments regardless of biochar addition. This study revealed that biochar application enhanced soil sorption of DEP, however, the enhancement of the adsorption capacity was dependent on the soil organic carbon levels, and aging processes of biochar. PMID:26004250

  11. Building academic health centers' capacity to shape and respond to comparative effectiveness research policy.

    PubMed

    VanLare, Jordan M; Conway, Patrick H; Rowe, John W

    2011-06-01

    In recent years, the focus on comparative effectiveness research (CER), the funding available to support it, and the range of possible effects of CER policy on academic health centers (AHCs) have increased substantially. CER has implications for the research, education, and clinical care components of AHCs' missions. The current funding and policy environment have created specific opportunities for AHCs to shape and respond to CER policies across the four dimensions of the CER enterprise: research, human and scientific capital, data infrastructure, and translation and dissemination. Characteristics such as the degree of physician-hospital integration, the status of a health information technology infrastructure, and the presence of a well-developed cross-functional health services research capacity linked to the care delivery enterprise could help AHCs respond to these opportunities and influence future policies. AHCs are also essential to the development of methodologies and the training of the next cadre of researchers. Further, a focus on understanding what works in health care and increasing adoption of evidence-based practice must become embedded in the fabric of AHCs. Those AHCs most successful in responding to the CER challenge may leverage it as a point of differentiation in the marketplace for health care and lead transformational improvements in health. PMID:21512371

  12. (Actino)Bacterial "intelligence": using comparative genomics to unravel the information processing capacities of microbes.

    PubMed

    Pinto, Daniela; Mascher, Thorsten

    2016-08-01

    Bacterial genomes encode numerous and often sophisticated signaling devices to perceive changes in their environment and mount appropriate adaptive responses. With their help, microbes are able to orchestrate specific decision-making processes that alter the cellular behavior, but also integrate and communicate information. Moreover and beyond, some signal transducing systems also enable bacteria to remember and learn from previous stimuli to anticipate environmental changes. As recently suggested, all of these aspects indicate that bacteria do, in fact, exhibit cognition remarkably reminiscent of what we refer to as intelligent behavior, at least when referred to higher eukaryotes. In this essay, comprehensive data derived from comparative genomics analyses of microbial signal transduction systems are used to probe the concept of cognition in bacterial cells. Using a recent comprehensive analysis of over 100 actinobacterial genomes as a test case, we illustrate the different layers of the capacities of bacteria that result in cognitive and behavioral complexity as well as some form of 'bacterial intelligence'. We try to raise awareness to approach bacteria as cognitive organisms and believe that this view would enrich and open a new path in the experimental studies of bacterial signal transducing systems. PMID:26852121

  13. Comparative study of metal atom adsorption on free-standing h-BN and h-BN/Ni (1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hwang, Yubin; Chung, Yong-Chae

    2014-04-01

    In this paper, a comparative study of the adsorption behavior of single metal atoms (Li, Sc, Ti, Co, Ni, and Cu) on two systems, a free-standing hexagonal boron nitride (h-BN) sheet and an h-BN/Ni (1 1 1) surface, was performed using density functional theory calculations. It was found that the Ni (1 1 1) supporting layer under the h-BN sheet could significantly improves the adsorption energies for single metal adatoms with h-BN. In particular, in the case of Li and Sc, the improved adsorption energies were higher than the cohesive energies of their atoms. The mechanism for these strong adsorptions was primarily due to the charge transfer increases from the adsorbed metal atoms to the h-BN, except for the case of Ni. On the other hand, the adsorption behavior was greatly affected by the interface interaction between the h-BN and Ni (1 1 1) for the adsorption of a single Ni atom. These results may provide fundamental information on the interaction between the adsorbed metal atoms between the h-BN based systems, and suggest that the use of a metal-adsorbed h-BN/Ni (1 1 1) system has good potential for nanosensors and nanocatalysts.

  14. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue.

    PubMed

    Kırbıyık, Çisem; Pütün, Ayşe Eren; Pütün, Ersan

    2016-01-01

    In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform-infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process. PMID:26819399

  15. CO adsorption on the GaPd(1[combining macron]1[combining macron]1[combining macron]) surface: a comparative DFT study using different functionals.

    PubMed

    Alarcón Villaseca, S; Levchenko, S V; Armbrüster, M

    2016-06-01

    CO adsorption on the polar (1[combining macron]1[combining macron]1[combining macron]) surface of the intermetallic compound GaPd is examined within ab initio methods using an all-electron full-potential electronic structure approach. Comparison between the PW-LDA, GGA-PBE, GGA-RPBE, GGA-revPBE, and hybrid HSE06 functionals is considered through bulk, clean surface and CO adsorption calculations. The choice of the functional is found to have a strong influence in the description of single CO adsorption on the surface model proposed in literature. As expected from the so called "CO adsorption puzzle", differences in the obtained results demonstrate that classic LDA and PBE functionals can only partially describe the complex CO adsorption bonding scenario on a surface containing transition metal elements (in this case Pd atoms), where the energies of the substrate-adsorbate electronic states are shifted, yielding important differences in the absolute values of the adsorption energies, vibrational frequencies and surface-adsorbate interaction. So far the hybrid functional HSE06 correctly retrieves all the tendencies observed experimentally as confirmed by comparing our first-principles results to experimental findings. PMID:27223480

  16. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature.

    PubMed

    Hamon, Lomig; Serre, Christian; Devic, Thomas; Loiseau, Thierry; Millange, Franck; Férey, Gérard; De Weireld, Guy

    2009-07-01

    Hydrogen sulfide gravimetric isotherm adsorption measurements were carried out on MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks (MOFs). A two-step adsorption mechanism related to a breathing effect was observed for MIL-53 terephthalate-based MOFs. Methane adsorption measurements highlighted the regenerability of MIL-53(Al, Cr) and MIL-47(V) MOFs after H(2)S treatment, whereas MIL-100 and MIL-101 CH(4) adsorption capacities were significantly decreased. PMID:19505146

  17. [Adsorption Capacity of the Air Particulate Matter in Urban Landscape Plants in Different Polluted Regions of Beijing].

    PubMed

    Zhang, Wei-kang; Wang, Bing; Niu, Xiang

    2015-07-01

    Urban landscape plants, as one of the important factors of the urban ecosystem, play an important role in stagnating airborne particulates and purifying urban atmospheric environment. In this article, six kinds of common garden plants were studied, and aerosol generator (QRJZFSQ-I) was used to measure the ability of their leaves to stagnate atmospheric particulates (TSP and PM2.5) in different polluted regions. Meanwhile, environmental scanning electron microscope was used to observe changes in the leaf structure of the tested tree species. The results showed: (1)Among the tested tree species, the ability of coniferous species to stagnate atmospheric particulates was higher than that of broad-leaved species per unit leaf area. Pinus tabuliformis stagnated the highest volume of (3. 89± 0. 026) µg . m-2, followed by Pinus bungeana of (2. 82 ± 0. 392) µg . cm-2, and Populus tomentosa stagnated the minimum of (2. 00 ± 0. 118) µg . cm-2; (2) Through observing the leaf microstructure morphology, coniferous species were found to have tightly packed stomas, stoma density and surface roughness higher than those of broad-leaved species, and they could also secrete oil; (3) In different polluted regions, the leaves of the same tree species showed significant difference in stagnating TSP. Per unit leaf area, the tree species leaves situated around the 5th Ring Road had higher ability to absorb TSP than the tree species leaves at Botanical Garden, while their abilities to absorb PM2.5 showed no significant difference; (4) In different polluted regions, significantly adaptive changes were found in leaf structure. Comparing to the region with light pollution, the outer epidermal cells of the plant leaves in region with heavy pollution shrank, and the roughness of the leaf skin textures as well as the stomatal frequency and villous length increased. In spite of the significant changes in plant leaves exposed to the heavy pollution, these plants could still maintain normal

  18. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    PubMed

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). PMID:27612776

  19. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species.

    PubMed

    Wang, Zhe; Liu, Xin; Bao, Weikai

    2016-02-01

    Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (N(mass)) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chl(mass)), light-saturated assimilation rate (A(mass)) and photosynthetic nitrogen/phosphorus use efficiency. N(mass), Chl(mass) and A(mass) were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of N(mass) versus Chl(mass) was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chl(mass) and A(mass). In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale. PMID:26552378

  20. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives

    PubMed Central

    2014-01-01

    Background The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development’s Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global ‘hot spot’ regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. Methods A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Results Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of

  1. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite.

    PubMed

    Wang, Fei; Liu, Chengshuai; Shih, Kaimin

    2012-11-01

    Understanding the interaction of perfluorochemicals, persistent pollutants with known human health effects, with mineral compounds in surface water and groundwater environments is essential to determining their fate and transport. Kinetic experiments showed that adsorption equilibrium can be achieved within 48 h and the boehmite (AlOOH) surface is receptive to perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorption. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg m(-2) and 0.633 μg m(-2), respectively. Compared to the adsorption capacity on γ-alumina, the abundant hydroxyl groups on boehmite surfaces resulted in the 2-3 times higher adsorption of PFOS and PFOA. Increasing solution pH led to a moderate decrease in PFOS and PFOA adsorption, owing to an increase in ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl and CaCl(2) in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride, and the Ca(2+) bridging effect between perfluorochemicals. PMID:22897837

  2. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes.

    PubMed

    Chen, Zhe; Pierre, Dramou; He, Hua; Tan, Shuhua; Pham-Huy, Chuong; Hong, Hao; Huang, Jilong

    2011-02-28

    The aim of this study was to understand the interaction between carboxylated carbon nanotubes (c-CNTs) and anticancer agents and evaluate the drug-loading ability of c-CNTs. We prepared carboxylated multi-walled carbon nanotubes (c-MWNTs) with nitric acid treatment, then evaluated the adsorption ability of c-MWNTs as adsorbents for loading of the anticancer drug, epirubicin hydrochloride (EPI), and investigated the adsorption behavior of EPI on c-MWNTs. Unmodified multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) were included as comparative adsorbents. The results showed that carbon nanotubes were able to form supramolecular complexes with EPI via π-π stacking and possessed favorable loading properties as drug carriers. The Freundilich adsorption model was successfully employed to describe the adsorption process. Because of the high surface area and hydrogen bonding, c-MWNTs' adsorption efficiency was the highest and the most stable and their drug-loading capacity was superior to that of MWNTs. With the increase of pH, the adsorption capacity of EPI on the c-MWNTs increased. Low-temperature facilitated the adsorption. More rapid EPI adsorption rate and higher drug-loading ability were observed from c-MWNTs with smaller diameter. Moreover, the adsorption kinetics of EPI on c-MWNTs could be well depicted by using the pseudo-second-order kinetic model. PMID:21145959

  3. A comparative study of using in-line near-infrared spectra, ultraviolet spectra and fused spectra to monitor Panax notoginseng adsorption process.

    PubMed

    Jiang, Cheng; Qu, Haibin

    2015-01-01

    The step of enriching and purifying saponins by macroporous resin column chromatography is closely related to the safety and efficacy of Panax notoginseng products during their manufacturing processes. Adsorption process is one of the most critical unit operations within each chromatographic cycle. In order to understand the adsorption process directly, it is necessary to develop a rapid and precise method to monitor the adsorption process in real time. In this study, comparative evaluation of using near-infrared (NIR) spectra, ultraviolet (UV) spectra and fused spectra to monitor the adsorption process of P. notoginseng was conducted. The uninformative variable elimination by partial least squares (UVE-PLS) regression models were established for quantification of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1 and ginsenoside Rd in effluents based on different spectra. There was a significant improvement provided by the models based on fused spectra. The results in this work were conducive to solving the problems about real-time quantitative analysis of saponins during P. notoginseng adsorption. The fusion method of NIR and UV spectra combined with UVE-PLS regression could be a promising strategy to real-time analyze the components, which are difficult to be quantified by individual spectroscopic technique. PMID:25255448

  4. A Comparative Study of Relational Learning Capacity in Honeybees (Apis mellifera) and Stingless Bees (Melipona rufiventris)

    PubMed Central

    Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith

    2012-01-01

    Background Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Methodology/Principal Findings Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Conclusions/Significance Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments. PMID:23251542

  5. Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids by high performance liquid chromatography coupled with diode array and/or mass spectrometry and for antioxidant capacity...

  6. Comparative Fecal Metagenomics Unveils Unique Functional Capacity of the Swine Gut

    EPA Science Inventory

    Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health and to food and water safety due to the presence of human pathogens in pig feces. Limited information on the physiological...

  7. Explaining differences in the lifespan and replicative capacity of cells: a general model and comparative analysis of vertebrates.

    PubMed

    Gillooly, James F; Hayward, April; Hou, Chen; Burleigh, J Gordon

    2012-10-01

    A better understanding of the factors that govern individual cell lifespan and the replicative capacity of cells (i.e. Hayflick's limit) is important for addressing disease progression and ageing. Estimates of cell lifespan in vivo and the replicative capacity of cell lines in culture vary substantially both within and across species, but the underlying reasons for this variability remain unclear. Here, we address this issue by presenting a quantitative model of cell lifespan and cell replicative capacity. The model is based on the relationship between cell mortality and metabolic rate, which is supported with data for different cell types from ectotherms and endotherms. These data indicate that much of the observed variation in cell lifespan and cell replicative capacity is explained by differences in cellular metabolic rate, and thus by the three primary factors that control metabolic rate: organism size, organism temperature and cell size. Individual cell lifespan increases as a power law with both body mass and cell mass, and decreases exponentially with increasing temperature. The replicative capacity of cells also increases with body mass, but is independent of temperature. These results provide a point of departure for future comparative studies of cell lifespan and replicative capacity in the laboratory and in the field. PMID:22810428

  8. Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Wang, Lu; Zhao, Jijun; Yan, Tianying

    2012-06-01

    The adsorption properties of H2, CO, NO, and NO2 in several typical nanoporous materials (covalent organic framework (COF)-105, COF-108, metal-organic framework (MOF)-5, and MOF-177) at 298 K were investigated by grand canonical Monte Carlo simulations. Good agreement between simulated results and experimental data has been achieved for H2 adsorption on MOF-5 and MOF-177, indicating the reliability of the theoretical approach. The simulated adsorption isotherms for these four gases show analogical trend, i.e., increasing nearly linearly with pressure. Among the four host materials, COF-108 exhibits the highest hydrogen uptake (˜0.89 wt. % at 100 bars) owing to its low densities and high surface area. The adsorption amounts of NO2 in these materials are higher than those of the other three gases because of the stronger gas-sorbent interaction. In particular, NO2 adsorption amount in MOF-177 can reach as high as 10.7 mmol/g at 298 K and 10 bars. The interaction between the four gases (H2, CO, NO, and NO2) and the COF/MOF adsorbents is further discussed in terms of the isosteric heat.

  9. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols.

    PubMed

    Qiu, Chao; Qin, Yang; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2016-12-15

    Polyphenols are known to have potent antioxidant capacity and other health-beneficial bioactivities. However, extremely low absorption rate of polyphenols restricts their bioactivity in vivo. Development of biopolymer nanoparticle carrier is a promising solution. For the first time, we have successfully prepared worm-like amylopectin nanoparticles (APNPs) and spherical amylose nanoparticles (AMNPs) using fractionated amylose and amylopectin from potato starch. Additionally, adsorption kinetics and adsorption isotherms of three polyphenols (procyanidins, epicatechins and catechins) on AMNPs and APNPs were investigated. We found that procyanidins, epicatechins, and catechins could bind to AMNPs at levels of up to 1.2, 1.5, and 1.4g/g, respectively, while the APNPs demonstrated higher adsorption amounts of 1.4, 4.3, and 2.2g/g, respectively. Furthermore, the particle size of polyphenol-loaded nanoparticles was not significantly changed. The results suggested that APNPs and AMNPs can be applied as an effective nanocarrier by delivering active compounds for nutraceutical and pharmaceutical industries. PMID:27451221

  10. Adsorption characteristics of haloacetonitriles on functionalized silica-based porous materials in aqueous solution.

    PubMed

    Prarat, Panida; Ngamcharussrivichai, Chawalit; Khaodhiar, Sutha; Punyapalakul, Patiparn

    2011-09-15

    The effect of the surface functional group on the removal and mechanism of dichloroacetonitrile (DCAN) adsorption over silica-based porous materials was evaluated in comparison with powdered activated carbon (PAC). Hexagonal mesoporous silicate (HMS) was synthesized and functionalized by three different types of organosilanes (3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane and n-octyldimethysilane). Adsorption kinetics and isotherm models were used to determine the adsorption mechanism. The selective adsorption of five haloacetonitriles (HANs) in the single and mixed solute systems was also studied. The experiments revealed that the surface functional groups of the adsorbents largely affected the DCAN adsorption capacities. 3-Mercaptopropyl-grafted HMS had a high DCAN adsorption capacity compared to PAC. The adsorption mechanism is believed to occur via an ion-dipole electrostatic interaction in which water interference is inevitable at low concentrations of DCAN. In addition, the adsorption of DCAN strongly depended on the pH of the solution as this related to the charge density of the adsorbents. The selective adsorption of the five HANs over PAC was not observed, while the molecular structure of different HANs obviously influenced the adsorption capacity and selectivity over 3-mercaptopropyl-grafted HMS. PMID:21752539

  11. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite.

    PubMed

    Wang, Li; Wang, Aiqin

    2008-12-15

    A series of surfactant-modified montmorillonites (MMT) were prepared using octyltrimethylammonium bromide (OTAB), dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and stearyltrimethylammonium bromide (STAB), and the organification of MMT was proved by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron micrographic (SEM) and transmission electron microscope (TEM). The adsorption of Congo Red (CR) anionic dye from aqueous solution onto surfactant-modified MMT was carried out. Compared with MMT, the adsorption capacity of surfactant-modified MMT for CR was greatly enhanced and MMT modified with CTAB (2.0 CEC) exhibited the higher adsorption capacity. The effects of pH value of the dye solution, adsorption temperature, adsorption time and the initial dye concentration on the adsorption capacity of CR on CTAB-MMT have been investigated. The results showed that the adsorption kinetic of CR on CTAB-MMT could be best described by the pseudo-second-order model and that the adsorption isotherm of CR was in good agreement with the Langmuir equation. The IR spectra and SEM analysis also revealed that the adsorption of CTAB-MMT was a chemical adsorption process between CTAB and the NH(2), -N=N- and SO(3) groups of CR. PMID:18400385

  12. A comparative study of the photosynthetic capacity in two green tide macroalgae using chlorophyll fluorescence.

    PubMed

    Wang, Ying; Qu, Tongfei; Zhao, Xinyu; Tang, Xianghai; Xiao, Hui; Tang, Xuexi

    2016-01-01

    Green tides have occurred in the Yellow Sea, China, every year from 2007 to 2015. The free-floating Ulva prolifera (Müller) J. Agardh was the causative macroalgal species. The co-occurring, attached U. intestinalis was also observed. Photosynthetic capacities were determined using chlorophyll fluorescence in situ and after 7 days lab acclimation, and a significant differences were noted. Pigment composition showed no obvious differences, but concentrations varied significantly, especially chlorophyll b in U. prolifera two times increase was observed after acclimation. The optimal photochemical efficiency of PS II (Fv/Fm) was significantly higher in U. prolifera. Photosynthetic rate (α), maximum relative electron transport rate (rETRmax), and minimum saturating irradiance (Ek), obtained from rapid light response curves (RLCs), showed almost the same photosynthetic physiological status as Fv/Fm. Quenching coefficients and low temperature (77 K) chlorophyll fluorescence emission spectra of thylakoid membranes analysis showed U. prolifera has a better recovery activity and plasticity of PSII than U. intestinalis. Furthermore, energy dissipation via non-photochemical quenching (NPQ) and state transitions showed efficacious photoprotection solution especially in U. prolifera suffered from the severe stresses. Results in the present study suggested that U. prolifera's higher photosynthetic capacity would contribute to its free-floating proliferation, and efficacious photoprotection in addition to favorable oceanographic conditions and high nutrient levels support its growth and aggregation. PMID:27386261

  13. Effect of DOM Size on Organic Micropollutant Adsorption by GAC.

    PubMed

    Kennedy, Anthony M; Summers, R Scott

    2015-06-01

    Granular activated carbon (GAC) adsorption of the micropollutants 2-methylisoborneol (MIB) and warfarin (WFN) at ng/L levels was investigated in five waters with isolated natural dissolved organic matter (DOM) held at a constant dissolved organic carbon concentration. Each water was evaluated for competitive adsorption effects based on the pretreatment of ultrafiltration, coagulation, and additional background micropollutants. Using the breakthrough with unfractionated DOM as a baseline, on average, the water with lower molecular weight (MW) DOM decreased MIB and WFN adsorption capacity by 59%, whereas the water with higher MW DOM increased MIB and WFN adsorption capacity by 64%. All waters showed similar decreasing MIB and WFN adsorption capacity with increasing empty bed contact time (EBCT), with more dramatic effects seen for the more strongly adsorbing WFN. On average, MIB and WFN adsorption kinetics were two times slower in the water with higher MW DOM compared to the water with lower MW DOM, as described by the intraparticle pore diffusion tortuosity. Increased adsorption competition from 27 micropollutants other than MIB and WFN at environmentally relevant concentrations had little to no effect on MIB and WFN breakthrough behavior. Any competitive effect from background micropollutants became indiscernible at longer EBCTs. PMID:25955134

  14. Proposing a sequential comparative analysis for assessing multilateral health agency transformation and sustainable capacity: exploring the advantages of institutional theory

    PubMed Central

    2014-01-01

    Background This article proposes an approach to comparing and assessing the adaptive capacity of multilateral health agencies in meeting country and individual healthcare needs. Most studies comparing multilateral health agencies have failed to clearly propose a method for conducting agency comparisons. Methods This study conducted a qualitative case study methodological approach, such that secondary and primary case study literature was used to conduct case study comparisons of multilateral health agencies. Results Through the proposed Sequential Comparative Analysis (SCA), the author found a more effective way to justify the selection of cases, compare and assess organizational transformative capacity, and to learn from agency success in policy sustainability processes. Conclusions To more affectively understand and explain why some multilateral health agencies are more capable of adapting to country and individual healthcare needs, SCA provides a methodological approach that may help to better understand why these agencies are so different and what we can learn from successful reform processes. As funding challenges continue to hamper these agencies' adaptive capacity, learning from each other will become increasingly important. PMID:24886283

  15. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1987-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  16. CO2 adsorption on chemically modified activated carbon.

    PubMed

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  17. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    PubMed Central

    2011-01-01

    Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases) generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices. PMID:21575148

  18. A comparative DFT study of the adsorption of H2O molecules at Bi, Hg, and Ga surfaces

    NASA Astrophysics Data System (ADS)

    Ivaništšev, Vladislav; Nazmutdinov, Renat R.; Lust, Enn

    2013-03-01

    Adsorption of a H2O molecule on Bi, Ga and Hg electrode surfaces is studied in the framework of cluster model at the density functional theory (DFT) level. At bismuth(111) single crystal plane the hollow site is energetically more preferable for the H2O adsorption (- 31.1 kJ mol- 1), while the adsorption at top site of Hg and Ga metal surfaces is confirmed to be energetically the most preferable (- 35.6 and - 24.7 kJ mol- 1, respectively). The calculations for Bi(111), Hg, and Ga are further extended to include the effect of external electrical field, and data analysis is completed with the help of the mean field approximation in order to model adsorbed water behaviour in the H2O molecules' bilayer. An associate of 13 H2O molecules is modelled in order to address the influence of lateral interactions in a water bilayer. The Ga surface is argued to be more hydrophilic than the Bi(111) and Hg surfaces. Despite the weaker adsorption energy of a single H2O molecule at the Ga surface, water molecules at the Ga/water interface are additionally stabilized by stronger hydrogen bonds. We stress the important role of the H2O bilayer at a metal electrode surface, which depends on the atomic corrugation of a metal surface.

  19. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars

    PubMed Central

    Abbasi, Arshad Mehmood; Guo, Xinbo; Fu, Xiong; Zhou, Lin; Chen, Youngsheng; Zhu, Yong; Yan, Huaifeng; Liu, Rui Hai

    2015-01-01

    Mango (Mangifera indica L.), also called “the king of fruits”, is one of the most popular fruits in tropical regions. Pulp and peel samples of mango cultivars were analyzed to estimate total phenolic, total flavonoid and total anthocyanin contents. Phenolic acids, hydrophilic peroxyl radical scavenging capacity (hydro-PSC) and oxygen radical scavenging capacity (ORAC) in vitro were also determined. Total phenolics and flavonoid contents were found maximum in the peel of Xiao Tainang and Da Tainang cultivars, respectively, whereas Xiao Tainang also exhibited significant antioxidant capacity. Noteworthy, concentrations of gallic acid, protocatechuic acid, ferulic acid, chlorogenic acid and caffeic acids at 79.15, 64.33, 33.75, 27.19 and 13.62 mg/100 g fresh weight (FW) were quantified for Da Tainang, Xiao Tainang and of Jidan cultivars, respectively. Comparatively, a higher level of phenolics and significant antioxidant capacity in mango peel indicated that it might be useful as a functional food and value-added ingredient to promote human health. PMID:26075869

  20. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    SciTech Connect

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  1. Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter

    PubMed Central

    Yao, Yuxiang; Tang, Hongzhi; Su, Fei; Xu, Ping

    2015-01-01

    Arthrobacter is one of the most prevalent genera of nicotine-degrading bacteria; however, studies of nicotine degradation in Arthrobacter species remain at the plasmid level (plasmid pAO1). Here, we report the bioinformatic analysis of a nicotine-degrading Arthrobacter aurescens M2012083, and show that the moeB and mogA genes that are essential for nicotine degradation in Arthrobacter are absent from plasmid pAO1. Homologues of all the nicotine degradation-related genes of plasmid pAO1 were found to be located on a 68,622-bp DNA segment (nic segment-1) in the M2012083 genome, showing 98.1% nucleotide acid sequence identity to the 69,252-bp nic segment of plasmid pAO1. However, the rest sequence of plasmid pAO1 other than the nic segment shows no significant similarity to the genome sequence of strain M2012083. Taken together, our data suggest that the nicotine degradation-related genes of strain M2012083 are located on the chromosome or a plasmid other than pAO1. Based on the genomic sequence comparison of strain M2012083 and six other Arthrobacter strains, we have identified 17 σ70 transcription factors reported to be involved in stress responses and 109 genes involved in environmental adaptability of strain M2012083. These results reveal the molecular basis of nicotine degradation and survival capacities of Arthrobacter species. PMID:25721465

  2. Assessing the Adsorption Properties of Shales

    NASA Astrophysics Data System (ADS)

    Pini, R.

    2014-12-01

    Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity through the mechanism of adsorption. The current ability to extract natural gas that is adsorbed in the rock's matrix is limited and current technology focuses primarily on the free gas in the fractures, thus leading to very low recovery efficiencies. Shales constitute also a great portion of so-called caprocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing leakage phenomena. Whether it is a reservoir or a caprock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm. The data are analyzed by using thermodynamically rigorous measures of adsorption and a graphical method is applied for their interpretation. The density of the adsorbed phase is estimated and compared to data reported in the literature; the latter is key to disclose gas-reserves and/or potential storage capacity estimates. When evaluated against classic adsorbent materials, the adsorption mechanism in shales is further complicated by

  3. Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland

    NASA Astrophysics Data System (ADS)

    Machemer, Steven D.; Wildeman, Thomas R.

    1992-01-01

    Metal removal processes from acid mine drainage were studied in an experimental constructed wetland in the Idaho Springs-Central City mining district of Colorado. The wetland was designed to passively remove heavy metals from the mine drainage flowing from the Big Five Tunnel. Concurrent studies were performed in the field on the waters flowing from the wetland and in the laboratory on the wetland substrate. Both studies suggest that there is competition for organic adsorption sites among Fe, Cu, Zn and Mn. Iron and Cu appear to be more strongly adsorbed than Zn and Mn. The adsorption of metals varies with the fluctuation of pH in the outflow water. Also indicated by field and laboratory studies is the microbial reduction of sulfate with a corresponding increase in the sulfide concentration of the water. As sulfide is generated. Cu and Zn are completely removed. The field results suggest that upon start up of a constructed wetland, the adsorption of dissolved metals onto organic sites in the substrate material will be an important process. Over time, sulfide precipitation becomes the dominant process for metal removal from acid mine drainage.

  4. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria

    PubMed Central

    2013-01-01

    Background In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels. An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. Results A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. Conclusions The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and

  5. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  6. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.

    PubMed

    Machado, Daniele Longo; Moreira Neto, João; da Cruz Pradella, José Geraldo; Bonomi, Antonio; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-01-01

    Although adsorption is an essential step in the enzymatic hydrolysis of lignocellulosic materials, literature reports controversial results in relation to the adsorption of the cellulolitic enzymes on different biomasses/pretreatments, which makes difficult the description of this phenomenon in hydrolysis mathematical models. In this work, the adsorption of these enzymes on Avicel and sugarcane bagasse pretreated by the hydrothermal bagasse (HB) and organosolv bagasse (OB) methods was evaluated. The results have shown no significant adsorption of β-glucosidase on Avicel or HB. Increasing solids concentration from 5% (w/v) to 10% (w/v) had no impact on the adsorption of cellulase on the different biomasses if stirring rates were high enough (>100 rpm for Avicel and >150 rpm for HB and OB). Adsorption equilibrium time was low for Avicel (10 Min) when compared with the lignocellulosic materials (120 Min). Adsorption isotherms determined at 4 and 50 °C have shown that for Avicel there was a decrease in the maximum adsorption capacity (Emax) with the temperature increase, whereas for HB increasing temperature increased Emax . Also, Emax increased with the content of lignin in the material. Adsorption studies of cellulase on lignin left after enzymatic digestion of HB show lower but significant adsorption capacity (Emax = 11.92 ± 0.76 mg/g). PMID:25322902

  7. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  8. Enhanced adsorption of quaternary amine using modified activated carbon.

    PubMed

    Prahas, Devarly; Wang, M J; Ismadji, Suryadi; Liu, J C

    2014-01-01

    This study examined different methodologies to modify activated carbon (AC) for the removal of quaternary amine, tetramethylammonium hydroxide (TMAH), from water. Commercial carbon (WAC) was treated by nitric acid oxidation (NA-WAC), silica impregnation (SM-WAC0.5), and oxygen plasma (P10-WAC), and their characteristics and adsorption capacity were compared. The Langmuir model fitted the equilibrium adsorption data well under different pH. The maximum adsorption capacity of WAC was 27.77 mg/g, while those of NA-WAC, SM-WAC 0.5, and P10-WAC were 37.46, 32.83 and 29.03 mg/g, respectively. Nitric acid oxidation was the most effective method for enhancing the adsorption capacity of TMAH. Higher pH was favorable for TMAH adsorption. Desorption study revealed that NA-WAC had no considerable reduction in performance even after five cycles of regeneration by 0.1 N hydrochloric acid. It was proposed that electrostatic interaction was the main mechanism of TMAH adsorption on activated carbon. PMID:24845325

  9. Rate of permeabilization of giant vesicles by amphiphilic polyacrylates compared to the adsorption of these polymers onto large vesicles and tethered lipid bilayers.

    PubMed

    Vial, F; Cousin, F; Bouteiller, L; Tribet, C

    2009-07-01

    We examined by fluorescence microscopy the permeabilization of giant vesicles by hydrophobically modified polyacrylates (called amphipols). Amphipols trigger permeabilization to FITC-dextran of egg-PC/DPPA vesicles with no breakage of the lipid bilayers. The polyanionic amphipols were passing through bilayers as shown by permeabilization of multilamellar vesicles. Remarkably, the vesicles were not simultaneously permeable but became leaky one after the other. Altogether, our observations suggest a random formation of pores having diameters above a few nanometers. Decreasing pH and increasing ionic strength and polymer concentration were increasing the rate of permeabilization. The rate and efficiency of permeabilization was compared to the rate and density of adsorption of amphipols onto lipid membranes (as estimated by titration calorimetry onto large unilamellar vesicles and neutron reflectivity measurements on tethered bilayers). The polymer adsorption layer is built up in a few minutes. We conclude that the rate-limiting step for permeabilization is not the adsorption from the bulk solution but relates to slow intramembrane reorganizations. PMID:19371041

  10. Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells

    PubMed Central

    Bavin, Emma P.; Smith, Olivia; Baird, Arabella E. G.; Smith, Lawrence C.; Guest, Deborah J.

    2015-01-01

    Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs) differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to generate artificial tendons. Induced pluripotent stem cells (iPSCs) have now been derived from horses but, to date, there are no reports on their ability to differentiate into tendon cells. As iPSCs can be produced from adult cell types, they provide a more accessible source of cells than ESCs, which require the use of horse embryos. The aim of this study was to compare tendon differentiation by ESCs and iPSCs produced through two independent methods. In two-dimensional differentiation assays, the iPSCs expressed tendon-associated genes and proteins, which were enhanced by the presence of transforming growth factor-β3. However, in three-dimensional (3D) differentiation assays, the iPSCs failed to differentiate into functional tendon cells and generate artificial tendons. These results demonstrate the utility of the 3D in vitro tendon assay for measuring tendon differentiation and the need for more detailed studies to be performed on equine iPSCs to identify and understand their epigenetic differences from pluripotent ESCs prior to their clinical application. PMID:26664982

  11. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion. PMID:21936376

  12. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate

    PubMed Central

    Di Luca, Alessio; Hamill, Ruth M.; Mullen, Anne Maria; Slavov, Nikolai; Elia, Giuliano

    2016-01-01

    Two dimensional Difference Gel Electrophoresis (2-D DIGE) and mass spectrometry were applied to investigate the changes in metabolic proteins that occur over a seven day (day 1, 3 and 7) post mortem ageing period in porcine centrifugal exudate from divergent meat quality phenotypes. The objectives of the research were to enhance our understanding of the phenotype (water holding capacity) and search for biomarkers of this economically significant pork quality attribute. Major changes in protein abundance across nine phenotype-by-time conditions were observed. Proteomic patterns were dominated by post mortem ageing timepoint. Using a machine learning algorithm (l1-regularized logistic regression), a model was derived with the ability to discriminate between high drip and low drip phenotypes using a subset of 25 proteins with an accuracy of 63%. Models discriminating between divergent phenotypes with accuracy of 72% and 73% were also derived comparing respectively, high drip plus intermediate phenotype (considered as one phenotype) versus low drip and comparing low drip plus intermediate phenotype (considered as one phenotype) versus high drip. In all comparisons, the general classes of discriminatory proteins identified include metabolic enzymes, stress response, transport and structural proteins. In this research we have enhanced our understanding of the protein related processes underpinning this phenotype and provided strong data to work toward development of protein biomarkers for water holding capacity. PMID:26950297

  13. Evaluation of the capacity of welded attachments to elbows as compared to the methodology of ASME Code Case N-318

    NASA Astrophysics Data System (ADS)

    Rawls, G. B.; Wais, E. A.; Rodabaugh, E. C.

    This paper presents the results of a series of tests conducted to assess the capacity of various configurations of integral welded attachments. These tests are unique in that the attachments are welded to the outer radius of pipe elbows. The lug configurations tested include both rectangular and cross (cruciform) shapes. Both limit load and fatigue tests are performed on the lug-elbow configurations. The results of the limit load tests are presented as limit moments. The results of the fatigue tests are cycles-to-failure. Markl's equation is then used, with the fatigue results, to determine stress intensification factors. The limit moments and stress intensification factors are then compared to those developed using the methodology of ASME Code Case N-318. The level of conservatism in the Code Case methodology is then compared to the test results.

  14. TiO2 hollow microspheres with mesoporous surface: Superior adsorption performance for dye removal

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Cai, Xia; Shen, Fenglei

    2014-06-01

    TiO2 hollow microspheres with mesoporous surface were synthesized by a facile template-assisted solvothermal reaction. The adsorption performance of TiO2 hollow microspheres for removing Methylene Blue from aqueous solution has been investigated. The comparative adsorption study indicated that adsorption capacity of TiO2 hollow microspheres with mesoporous surface is markedly higher than that of solid microsphere. The equilibrium data fitted well with the Langmuir model and the maximum adsorption capacity reached 196.83 mg/g. The kinetics of dye adsorption followed the pseudo-second-order model and the adsorbed dye could be degraded completely by the subsequent photocatalytic process. These TiO2 hollow microspheres can be considered as a low-cost alternative adsorbent for removal of organic pollutants from wastewater.

  15. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Qinzhong; Zhang, Zhiyong; Ma, Yuhui; He, Xiao; Zhao, Yuliang; Chai, Zhifang

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (Δ H 0 , Δ S 0 , and Δ G 0 ) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment.

  16. Adsorption of aniline and toluidines on montmorillonite

    SciTech Connect

    Essington, M.E. )

    1994-09-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. In order to assess the ability of clay liner material to restrict the mobility of amine compounds under a variety of chemical conditions and to further elucidate amine adsorption characteristics, the adsorption of aniline and o-, m-, and p-toluidine on Ca[sup 2+]- and K[sup +]-saturated Wyoming bentonite (SWy-1) was investigated. Adsorption experiments were performed under conditions of varied pH and ionic environment. Amine adsorption on montmorillonite is pH dependent. Maximum amine adsorption occurs when solution pH is approximately equal to the pK[sub a] of the anilinium ion deprotonation reaction (pH 4.45-5.08). An amine adsorption envelope results from the combined influence of increasing anilinium ion and anilinium-aniline complex formation (as pH decreases to the pK[sub a]) and amine competition with H[sup +] for surface sites, decreasing anilinium-aniline complex concentration, and decreasing aniline available for water bridging with exchangeable Ca[sup 2+] and K[sup +] (as solution pH decreases below the pK[sub a]). For any given amine, maximum adsorption increases with decreasing ionic strength. Maximum amine adsorption is greater in the Ca[sup 2+] systems than in the K[sup +] systems at equivalent cation charge and reflects the formation of an amine water bridge with the exchangeable Ca[sup 2+]. Amine adsorption is also greater in chloride systems compared with sulfate systems at comparable cation concentrations, possibly due to the formation of aqueous anilinium-sulfate complexes. The amine compounds are retained mainly by bentonite through a cation exchange process, the capacity of the clay to adsorb the amine compounds being a significant percentage of the exchange capacity at the pK[sub a]. However, amine retention decreases with increasing pH and is minimal at solution pH values greater than 7. 19 refs., 6 figs.

  17. Water adsorption on a copper formate paddlewheel model of CuBTC: A comparative MP2 and DFT study

    NASA Astrophysics Data System (ADS)

    Toda, Jordi; Fischer, Michael; Jorge, Miguel; Gomes, José R. B.

    2013-11-01

    Simultaneous adsorption of two water molecules on open metal sites of the HKUST-1 metal-organic framework (MOF), modeled with a Cu2(HCOO)4 cluster, was studied by means of density functional theory (DFT) and second-order Moller-Plesset (MP2) approaches together with correlation consistent basis sets. Experimental geometries and MP2 energetic data extrapolated to the complete basis set limit were used as benchmarks for testing the accuracy of several different exchange-correlation functionals in the correct description of the water-MOF interaction. M06-L and some LC-DFT methods arise as the most appropriate in terms of the quality of geometrical data, energetic data and computational resources needed.

  18. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite.

    PubMed

    Wang, Li; Wang, Aiqin

    2007-08-25

    A series of biopolymer chitosan/montmorillonite (CTS/MMT) nanocomposites were prepared by controlling the molar ratio of chitosan (CTS) and montmorillonite (MMT). The nanocomposites were characterized by FTIR and XRD. The effects of different molar ratios of CTS and MMT, initial pH value of the dye solution and temperature on adsorption capacities of samples for Congo Red (CR) dye have been investigated. The adsorption capacities of CTS, MMT and CTS/MMT nanocomposite with CTS to MMT molar ratio of 5:1 for CR were compared. The results indicated that the adsorption capacity of CTS/MMT nanocomposite was higher than the mean values of those of CTS and MMT. The adsorption kinetics and isotherms were also studied. It was shown that all the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation. PMID:17349744

  19. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  20. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    PubMed

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. PMID:12628781

  1. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism.

    PubMed

    Chen, Tan; Zhou, Zeyu; Han, Rong; Meng, Ruihong; Wang, Hongtao; Lu, Wenjing

    2015-09-01

    Static equilibrium experiments were carried out to investigate the impact factors and the mechanism of cadmium adsorption on biochar derived from municipal sewage sludge. An appropriate dosage of biochar is sufficient; in the experiment, 0.2% is the optimal dosage for the largest removal capacity, while the removal capacity of biochar reduces with the increasing dosage. pH is another dominant factor of the adsorption process. The removal capacity of biochar is lower than 20 mg·g(-1) when the solution initial pH is lower than 2 pH units, comparatively retaining more than 40 mg·g(-1) at the solution initial pH higher than 3 pH units. Temperature has weak influence on the adsorptive performance. The main mechanism of the adsorption process of biochar for cadmium mainly involves (1) surface precipitation by forming insoluble cadmium compounds in alkaline condition, and (2) ion exchange for cadmium with exchangeable cations in the biochar, such as calcium ions. PMID:25966459

  2. Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica.

    PubMed

    Ryan, M C; Graham, G R; Rudolph, D L

    2001-01-01

    Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water. PMID:11577895

  3. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  4. Adsorption behavior of heavy metals on biomaterials.

    PubMed

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-01

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples. PMID:15373400

  5. K4Nb6O17·4.5H2O: a novel dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III).

    PubMed

    Ma, Yuli; Liu, Xiaoqing; Li, Yang; Su, Yiguo; Chai, Zhanli; Wang, Xiaojing

    2014-08-30

    A series of orthorhombic phase K4Nb6O17·4.5H2O was synthesized via a hydrothermal approach. When presented in an acidic pH range, K4Nb6O17·4.5H2O showed a strong ability in quick reduction from Cr(VI) to Cr(III). The resulted Cr(III) ions were removed by an effective adsorption through simply adjusting the solution pH from strong acidity to near neutrality, owing to the sample's unique nano-sheet structure with a wide layer spacing. The Cr(III) ions adsorbed onto samples were released again for reusing by eluting with 1molL(-1) HCl solution, and K4Nb6O17·4.5H2O regenerated by immersing in a KOH solution. The reduction efficiency of Cr(VI) was still up to 98% after irradiation for 60min, and the removal efficiency of Cr(III) ions was as high as 83% even after five cycles. Therefore, K4Nb6O17·4.5H2O is clearly demonstrated to be an excellent dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III). The relevant materials reported herein might be found various environment-related applications. PMID:25113515

  6. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  7. In vitro adsorption of aluminum by an edible biopolymer poly(γ-glutamic acid).

    PubMed

    Rajan, Yesudoss Christu; Inbaraj, Baskaran Stephen; Chen, Bing Huei

    2014-05-21

    Accumulation of aluminum in human has been reported to be associated with dementia, Parkinson's disease, and Alzheimer's disease. The objectives of this study were to evaluate an edible biopolymer poly(γ-glutamic acid) (γ-PGA) for aluminum removal efficiency under in vitro conditions as affected by pH, contact time, aluminum concentration, temperature, ionic strength, and essential metals in both aqueous aluminum solution and simulated gastrointestinal fluid (GIF). A low aluminum adsorption occurred at pH 1.5-2.5, followed by a maximum adsorption at pH 3.0-4.0 and precipitating thereafter as aluminum hydroxide at pH > 4. Adsorption was extremely fast with 81-96% of total adsorption being attained within 1 min, reaching equilibrium in 5-10 min. Kinetic data at low (10 mg/L) and high (50 mg/L) concentrations were well described by pseudo-first-order and pseudo-second-order models, respectively. Equilibrium adsorption isotherms at different temperatures were precisely fitted by both Langmuir and Redlich-Peterson models with the maximum adsorption capacities at 25, 37, and 50 °C being 35.85, 38.68, and 44.23 mg/g, respectively. Thermodynamic calculations suggested endothermic and spontaneous nature of aluminum adsorption by γ-PGA with increased randomness at the solid/solution interface. Variation in ionic strengths did not alter the adsorption capacity, however, the incorporation of essential metals significantly reduced the aluminum adsorption by following the order copper > iron > zinc > calcium > potassium. Compared to aqueous solution, the aluminum adsorption from simulated GIF was high at all studied pH (1-4) with Langmuir monolayer adsorption capacity being 49.43 mg/g at 37 °C and pH 4. The outcome of this study suggests that γ-PGA could be used as a safe detoxifying agent for aluminum. PMID:24799126

  8. Large scale purification of puerarin from Puerariae Lobatae Radix through resins adsorption and acid hydrolysis.

    PubMed

    Guo, Hai-Dong; Zhang, Qing-Feng; Chen, Ji-Guang; Shangguang, Xin-Cheng; Guo, Yu-Xian

    2015-02-01

    Puerarin is the major isoflavone of Puerariae Lobatae Radix. A method for large scale purification of puerarin was developed through resins adsorption and acid hydrolysis. The adsorption properties of six macroporous resins (D101, S-8, H103, X-5, HPD600, AB-8) were compared through the adsorption kinetics and equilibrium adsorption isotherms. Results showed that H103 resin had the best adsorption rate and capacity. The mass transfer zone motion model was further used for analyzing the fixed bed adsorption of H103 resin. Its length of mass transfer zone with 2mg/ml of puerarin in water and 10% ethanol at flow rate of 10ml/min were 41.6 and 47.5cm, while the equilibrium adsorption capacity was 165.03 and 102.88mg/g, respectively. By using 75% ethanol, puerarin could be well desorbed from the resin with recovery of 97.4%. Subsequently, H103 resin was successfully used for puerarin purification from Puerariae Lobatae Radix. The content of total isoflavones and puerarin in the resin adsorption product were 69.25% and 41.78%, respectively, which were about three times increased compared to the crude extract. Then, the product was hydrolyzed by 2.5M HCl at 90°C for 1h. Puerarin with purity of 90% and a byproduct daidzein with purity of 78% were obtained. PMID:25553536

  9. Comparative Study on Synergetic Degradation of a Reactive Dye Using Different Types of Fly Ash in Combined Adsorption and Photocatalysis

    NASA Astrophysics Data System (ADS)

    Giri Babu, P. V. S.; Swaminathan, G.

    2016-07-01

    A comprehensive study was carried out on four different fly ashes used as a catalyst for the degradation of Acid Red 1 using ultraviolet rays. These fly ashes are collected from different thermal power stations located at various places in India and having different chemical compositions. Three fly ashes are from lignite-based thermal power plants, and one is from the coal-based power plant. One fly ash is classified as Class F, two fly ashes are classified as Class C and remaining one is not conforming to ASTM C618 classification. X-Ray Fluorescence analysis was used to identify the chemical composition of fly ashes and SiO2, Al2O3, CaO, Fe2O3 and TiO2 were found to be the major elements present in different proportions. Various analysis were carried out on all the fly ashes like Scanning Electron Microscopy to identify the microphysical properties, Energy Dispersive X-Ray spectroscopy to quantify the elements present in the catalyst and X-Ray Diffraction to identify the catalyst phase analysis. The radical generated during the reaction was identified by Electron paramagnetic resonance spectroscopy. The parameters such as initial pH of the dye solution, catalyst dosage and initial dye concentration which influence the dye degradation efficiency were studied and optimised. In 60 min duration, the dye degradation efficiency at optimum parametric values of pH 2.5, initial dye concentration of 10 mg/L and catalyst dosage of 1.0 g/L using various fly ashes, i.e., Salam Power Plant, Barmer Lignite Power Plant, Kutch Lignite Power Plant and Neyveli Lignite Thermal Power plant (NLTP) were found to be 40, 60, 67 and 95 % respectively. The contribution of adsorption alone was 18 % at the above mentioned optimum parametric values. Among the above four fly ash NLTP fly ashes proved to be most efficient.

  10. Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides.

    PubMed

    Lu, Xinyu; Deng, Shubo; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang

    2016-07-15

    Adsorption of perfluorooctane sulfonate (PFOS) on manufactured nanoparticles (NPs) is critical for understanding their transport and fate in aquatic environments. In this study, the adsorption behavior of PFOS on nanosized Al2O3, Fe2O3, SiO2 and TiO2 was examined in terms of adsorption isotherms and influences of pH, ionic strength and heavy metallic cations. The nano-oxides had much higher adsorption capacities than bulk particles due to higher surface hydroxyl density. PFOS adsorption showed strong pH dependence due to different species of surface hydroxyl groups on nano-oxides. Besides electrostatic interaction, sulfonic group of PFOS possibly formed hydrogen bonds on the surface of nano-oxides. Because of the bridging effect in the co-adsorption process, the coexisting PFOS and heavy metallic cations greatly enhanced their adsorption onto the nano-oxides. Comparative adsorption of different perfluorinated sulfonates indicated the possible formation of bilayer PFOS adsorption on the nano-oxides, leading to the enhanced Cu(II) adsorption on the sulfonic groups of PFOS on the surfaces through electrostatic interaction. PMID:27127908

  11. [Adsorption of Cr (VI) on magnetic graphene from aqueous solution].

    PubMed

    Liu, Wei; Yang, Qi; Li, Bo; Chen, Hai; Nie, Lan-Yu

    2015-02-01

    Chemical deposition method was applied to prepare magnetic graphene composites using graphite oxide and ferric salt (FeCl2 - 4H2O and FeCl3 x 6H2O) as starting materials. The static experiments were performed to study kinetics, thermodynamic, adsorption isotherm and effects of various parameters, such as pH, temperature and time on Cr(VI) adsorption. The results showed that adsorption kinetics followed the pseudo-second-order model. Compared with Freundlich isotherm, Langmuir isotherm could better describe the adsorption process. The parameters of thermodynamics were ΔHθ = 33.89 kJ x mol(-1), ΔSθ = 120.15 J x (mol x K)(-1), ΔGθ = -2.51 kJ x mol(-1) (303 K), it demonstrated that the adsorption was a spontaneously endothermic process. It also indicated that the optimal pH was 2. Higher temperature and extension of time were in favor of adsorption. When used repeatedly for three times, the adsorption capacity decreased from 3.9 mg x g(-1) to 2.1 mg x g(-1) with an initial concentration of 5 mg x L(-1). By using a permanent magnet, the recycling process of adsorbent was easy to be operated and adsorbent could be regenerated by sodium hydrate solution. Hence, the composites is a promising adsorbent for efficient removal of Cr(VI) from wastewater. PMID:26031080

  12. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    PubMed

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-01-01

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example. PMID:27585356

  13. Adsorption of hydrofluorocarbons HFC-134 and HFC-134A on X and Y zeolites: Effect of ion-exchange on selectivity and heat of adsorption

    SciTech Connect

    Savitz, S.; Siperstein, F.R.; Huber, R.; Tieri, S.M.; Gorte, R.J.; Myers, A.L.; Grey, C.P.; Corbin, D.R.

    1999-09-30

    Adsorption isotherms and heats of adsorption were measured for HFC-134 (1,1,2,2-tetrafluoroethane) and HFC-134a (1,1,1,2-tetrafluoroethane) on a series of ion-exchanged (H, Li, Na, Rb, Cs) faujasites using volumetric and calorimetric techniques. The species and number of ions present in the zeolite strongly influence the heats of adsorption and the preferential adsorption of HFC-134 compared to HFC-134a. The selectivity is considerably higher in X than in Y zeolites because of the larger number of nonframework ions in X zeolites. The saturation capacity is six molecules per supercavity for both HFCs. The differences in observed heats of adsorption (except for RbX) can be explained by reasonable and consistent values of dispersion and ion-dipole electrostatic energies. The high selectivities for NaX and RbX indicate that either zeolite would be highly effective for gas separation.

  14. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    PubMed

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180. PMID:19295102

  15. A Comparative Analysis on Assessment of Land Carrying Capacity with Ecological Footprint Analysis and Index System Method.

    PubMed

    Qian, Yao; Tang, Lina; Qiu, Quanyi; Xu, Tong; Liao, Jiangfu

    2015-01-01

    Land carrying capacity (LCC) explains whether the local land resources are effectively used to support economic activities and/or human population. LCC can be evaluated commonly with two approaches, namely ecological footprint analysis (EFA) and the index system method (ISM). EFA is helpful to investigate the effects of different land categories whereas ISM can be used to evaluate the contributions of social, environmental, and economic factors. Here we compared the two LCC-evaluation approaches with data collected from Xiamen City, a typical region where rapid economic growth and urbanization are found in China. The results show that LCC assessments with EFA and ISM not only complement each other but also are mutually supportive. Both assessments suggest that decreases in arable land and increasingly high energy consumption have major negative effects on LCC and threaten sustainable development for Xiamen City. It is important for the local policy makers, planners and designers to reduce ecological deficits by controlling fossil energy consumption, protecting arable land and forest land from converting into other land types, and slowing down the speed of urbanization, and to promote sustainability by controlling rural-to-urban immigration, increasing hazard-free treatment rate of household garbage, and raising energy consumption per unit industrial added value. Although EFA seems more appropriate for estimating LCC for a resource-output or self-sufficient region and ISM is more suitable for a resource-input region, both approaches should be employed when perform LCC assessment in any places around the world. PMID:26121142

  16. A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets

    PubMed Central

    Sittig, Simone P.; Bakdash, Ghaith; Weiden, Jorieke; Sköld, Annette E.; Tel, Jurjen; Figdor, Carl G.; de Vries, I. Jolanda M.

    2016-01-01

    Dendritic cells (DCs) are central players of immune responses; they become activated upon infection or inflammation and migrate to lymph nodes, where they can initiate an antigen-specific immune response by activating naive T cells. Two major types of naturally occurring DCs circulate in peripheral blood, namely, myeloid and plasmacytoid DCs (pDCs). Myeloid DCs (mDCs) can be subdivided based on the expression of either CD1c or CD141. These human DC subsets differ in surface marker expression, Toll-like receptor (TLR) repertoire, and transcriptional profile, suggesting functional differences between them. Here, we directly compared the capacity of human blood mDCs and pDCs to activate and polarize CD4+ T cells. CD141+ mDCs show an overall more mature phenotype over CD1c+ mDC and pDCs; they produce less IL-10 and more IL-12 than CD1c+ mDCs. Despite these differences, all subsets can induce the production of IFN-γ in naive CD4+ T cells. CD1c+ and CD141+ mDCs especially induce a strong T helper 1 profile. Importantly, naive CD4+ T cells are not polarized towards regulatory T cells by any subset. These findings further establish all three human blood DCs—despite their differences—as promising candidates for immunostimulatory effectors in cancer immunotherapy. PMID:27057096

  17. A Comparative Analysis on Assessment of Land Carrying Capacity with Ecological Footprint Analysis and Index System Method

    PubMed Central

    Qian, Yao; Tang, Lina; Qiu, Quanyi; Xu, Tong; Liao, Jiangfu

    2015-01-01

    Land carrying capacity (LCC) explains whether the local land resources are effectively used to support economic activities and/or human population. LCC can be evaluated commonly with two approaches, namely ecological footprint analysis (EFA) and the index system method (ISM). EFA is helpful to investigate the effects of different land categories whereas ISM can be used to evaluate the contributions of social, environmental, and economic factors. Here we compared the two LCC-evaluation approaches with data collected from Xiamen City, a typical region where rapid economic growth and urbanization are found in China. The results show that LCC assessments with EFA and ISM not only complement each other but also are mutually supportive. Both assessments suggest that decreases in arable land and increasingly high energy consumption have major negative effects on LCC and threaten sustainable development for Xiamen City. It is important for the local policy makers, planners and designers to reduce ecological deficits by controlling fossil energy consumption, protecting arable land and forest land from converting into other land types, and slowing down the speed of urbanization, and to promote sustainability by controlling rural-to-urban immigration, increasing hazard-free treatment rate of household garbage, and raising energy consumption per unit industrial added value. Although EFA seems more appropriate for estimating LCC for a resource-output or self-sufficient region and ISM is more suitable for a resource-input region, both approaches should be employed when perform LCC assessment in any places around the world. PMID:26121142

  18. Decision-making capacity for treatment in psychiatric and medical in-patients: cross-sectional, comparative study†

    PubMed Central

    Owen, Gareth S.; Szmukler, George; Richardson, Genevra; David, Anthony S.; Raymont, Vanessa; Freyenhagen, Fabian; Martin, Wayne; Hotopf, Matthew

    2013-01-01

    Background Is the nature of decision-making capacity (DMC) for treatment significantly different in medical and psychiatric patients? Aims To compare the abilities relevant to DMC for treatment in medical and psychiatric patients who are able to communicate a treatment choice. Method A secondary analysis of two cross-sectional studies of consecutive admissions: 125 to a psychiatric hospital and 164 to a medical hospital. The MacArthur Competence Assessment Tool - Treatment and a clinical interview were used to assess decision-making abilities (understanding, appreciating and reasoning) and judgements of DMC. We limited analysis to patients able to express a choice about treatment and stratified the analysis by low and high understanding ability. Results Most people scoring low on understanding were judged to lack DMC and there was no difference by hospital (P = 0.14). In both hospitals there were patients who were able to understand yet lacked DMC (39% psychiatric v. 13% medical in-patients, P<0.001). Appreciation was a better ‘test’ of DMC in the psychiatric hospital (where psychotic and severe affective disorders predominated) (P<0.001), whereas reasoning was a better test of DMC in the medical hospital (where cognitive impairment was common) (P = 0.02). Conclusions Among those with good understanding, the appreciation ability had more salience to DMC for treatment in a psychiatric setting and the reasoning ability had more salience in a medical setting. PMID:23969482

  19. Comparative capacity of orally administered amoxicillin and parenterally administered penicillin-streptomycin to protect rabbits against experimentally induced streptococcal endocarditis.

    PubMed Central

    Pujadas, R; Escriva, E; Jane, J; Fernandez, F; Fava, P; Garau, J

    1986-01-01

    A single-intramuscular-dose immunization regimen with a penicillin G-streptomycin combination was compared with three oral-dose amoxicillin regimens for the capacity to prevent Streptococcus sanguis infections of experimentally induced valvular heart lesions in rabbits. Challenge doses of 10(4), 10(6), and 10(8) CFU of a strain of S. sanguis equally susceptible to penicillin and amoxicillin were used in this study. Measured by recovery of test organisms from endocardial lesions, the lowest concentration of these inocula was infective for 60% of the recipients; the two higher-concentration inocula were infective for all recipients. The penicillin G-streptomycin combination provided complete protection against infection with inocula of all sizes. A single-oral-dose amoxicillin regimen (50 mg/kg of body weight) prevented endocarditis when rabbits were challenged with 10(4) CFU, but protection diminished with increasing inoculum concentrations. Similar results were achieved when five oral doses of amoxicillin (8.5 mg/kg of body weight) added at 8-h intervals were included in the single-oral-dose regimen. In contrast, when rabbits received two oral doses of amoxicillin (50 mg/kg of body weight) with a 10-h interval between doses, prophylaxis was fully effective with even the highest inoculum concentration. PMID:3729348

  20. Alternative Serotype Adenovirus Vaccine Vectors Elicit Memory T Cells with Enhanced Anamnestic Capacity Compared to Ad5 Vectors

    PubMed Central

    Penaloza-MacMaster, Pablo; Provine, Nicholas M.; Ra, Joshua; Borducchi, Erica N.; McNally, Anna; Simmons, Nathaniel L.; Iampietro, Mark J.

    2013-01-01

    The failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers. PMID:23152535

  1. Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Feng, Jiangtao; Yan, Wei

    2013-08-01

    P25 or self-prepared TiO2 coated polypyrrole (PPy/P25 or PPy/TiO2) composites as novel adsorbents were prepared. Their adsorption-desorption characteristics for Methylene Blue (MB) were comparatively investigated. X-ray photoelectron spectroscopy (XPS) showed that PPy/TiO2 possessed higher doping level than PPy/P25. Thermogravimetric analysis (TGA) indicated that PPy/TiO2 contained more PPy than PPy/P25. The results of water vapor adsorption suggested that the PPy/TiO2 composite was more hydrophobic than PPy/P25. The adsorption results revealed that the composites pretreated in the solution with higher pH value exhibited larger adsorption capacities. The ionic concentration in MB solution slightly impacted the removal of MB by the PPy/TiO2 composite. The adsorption equilibrium results showed that the adsorption of MB was completed in a short time of 30 min. Pseudo-second-order and Langmuir isotherm models were effectively employed to describe the adsorption behavior of MB. PPy/TiO2 and PPy/P25 were found to have better removal ability for MB compared with pure PPy; especially PPy/TiO2, on which the maximum adsorption amount was about 3.6 or 5.5 times higher than that of PPy/P25 or pure PPy, respectively. The thermodynamic analysis indicated that the adsorption of MB was spontaneous and endothermic in nature. The regeneration experiments exhibited that PPy/TiO2 can be reused at least seven times without obvious loss of its original adsorption capacity. Electrostatic interaction, hydrogen bonding and hydrophobic interaction played the roles in MB adsorption performance. It is expected that the PPy/TiO2 composite can be considered as a stable adsorbent for dye removal.

  2. Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain.

    PubMed

    Arnal, Laura; Grunert, Tom; Cattelan, Natalia; de Gouw, Daan; Villalba, María I; Serra, Diego O; Mooi, Frits R; Ehling-Schulz, Monika; Yantorno, Osvaldo M

    2015-01-01

    Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host. PMID:26696973

  3. Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain

    PubMed Central

    Arnal, Laura; Grunert, Tom; Cattelan, Natalia; de Gouw, Daan; Villalba, María I.; Serra, Diego O.; Mooi, Frits R.; Ehling-Schulz, Monika; Yantorno, Osvaldo M.

    2015-01-01

    Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host. PMID:26696973

  4. Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents.

    PubMed

    Shin, Eun Woo; Han, James S; Jang, Min; Min, Soo-Hong; Park, Jae Kwang; Rowell, Roger M

    2004-02-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface structure of the materials was investigated with X-ray diffraction (XRD), a N2 adsorption-desorption technique, Fourier transform-infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) to understand the effect of surface properties on the adsorption behavior of phosphate. The mesoporous materials were loaded with Al components by reaction with surface silanol groups. In the adsorption test, the Al-impregnated mesoporous materials showed fast adsorption kinetics as well as high adsorption capacities, compared with activated alumina. The uniform mesopores of the Al-impregnated mesoporous materials caused the diffusion rate in the adsorption process to increase, which in turn caused the fast adsorption kinetics. High phosphate adsorption capacities of the Al-impregnated mesoporous materials were attributed to not only the increase of surface hydroxyl density on Al oxide due to well-dispersed impregnation of Al components but also the decrease in stoichiometry of surface hydroxyl ions to phosphate by the formation of monodentate surface complexes. PMID:14968882

  5. Study On Adsorption of Bromate From Aqueous Solution On Modified Activated Carbon

    NASA Astrophysics Data System (ADS)

    Liu, Tong-mian; Cui, Fu-yi; Zhao, Zhi-wei; Liu, Dong-mei; Zhu, Qi; Wang, Huan

    2010-11-01

    A coal-based activated carbon was treated chemically with nitric acid, sodium hydroxide and ammonia for its surface modification, and its adsorption capacity was investigated with bromate. Several techniques were used to characterize the physicochemical properties of these materials including BET, XPS, pHpzc and Boehm titration. The results indicated that the specific surface area of the activated carbon decreased after oxidation with nitric acid. But the amount of surface acidic oxygen-containing functional groups of the oxidized sample increased compared to the raw carbon and the points of zero charge (pHpzc) decreased. The specific surface area of the activated carbon also decreased after sodium hydroxide treatment and the points of zero charge increased. The changes of surface chemical properties after the ammonia treatment was opposite to the oxidized sample. As a result, the pHpzc of the carbon was increased to near pH9.3, the amount of surface basic groups was increased. Furthermore, the data of bromate adsorption on all the samples were fitted to the Langmuir isotherm model well which indicates monolayer adsorption. In addition, the adsorption capacity of ammonia treatment sample was the highest and its saturated adsorption capacity reached 1.55 mg/g. A strong correlation was found between basic groups and adsorption capacity of bromate. Enhancement of basic groups was favorable for bromate removal.

  6. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  7. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass.

    PubMed

    Sainio, Tuomo; Turku, Irina; Heinonen, Jari

    2011-05-01

    Adsorptive purification of concentrated acid hydrolyzate of lignocellulose was investigated. Cation exchange resin (CS16GC), neutral polymer adsorbent (XAD-16), and granulated activated carbon (GAC) were studied to remove furfural, HMF, and acetic acid from a synthetic hydrolyzate containing 20 wt.% H(2)SO(4). Adsorption isotherms were determined experimentally. Loading and regeneration were investigated in a laboratory scale column. GAC has the highest adsorption capacity, but regeneration with water was not feasible. XAD-16 and CS16GC had lower adsorption capacities but also shorter cycle times due to easier regeneration. Productivity increased when regenerating with 50 wt.% EtOH(aq) solution. To compare adsorbents, process performance was quantified by productivity and fraction of inhibitors removed. GAC yields highest performance when high purity is required and ethanol can be used in regeneration. For lower purities, XAD-16 and GAC yield approximately equal performance. When using ethanol must be avoided, CS16GC offers highest productivity. PMID:21441022

  8. Effects of molecular oxygen and pH on the adsorption of aniline to activated carbon

    SciTech Connect

    Fox, P.; Pinisetti, K.

    1994-12-31

    This paper examines the influence of molecular oxygen and pH on the adsorption of aniline to F-300 Calgon Carbon. Molecular oxygen increased the adsorptive capacity of GAC for anilines by 250--400 % at pH 3, 30--83% at pH 5, 17--42% at pH 9, and B-45% at pH 11 (higher than those obtained in the absence of molecular oxygen). At pH 7, some of the products formed are poorly adsorbed as evidenced by an increase in UV absorbance in the oxic isotherms as compared to the other isotherms. Oxygen uptake measurements revealed significant consumption of molecular oxygen during the adsorption of aniline compounds. It is speculated that the increase in the GAC adsorptive capacity under oxic conditions was due to the polymerization of these adsorbates on the carbon surface.

  9. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: in comparison with powder activated carbon.

    PubMed

    Li, Xiaona; Chen, Shuo; Fan, Xinfei; Quan, Xie; Tan, Feng; Zhang, Yaobin; Gao, Jinsuo

    2015-06-01

    Carbon nanofibers (CNFs) were prepared by electrospun polyacrylonitrile (PAN) polymer solutions followed by thermal treatment. For the first time, the influence of stabilization procedure on the structure properties of CNFs was explored to improve the adsorption capacity of CNFs towards the environmental pollutants from aqueous solution. The adsorption of three organic chemicals including ciprofloxacin (CIP), bisphenol (BPA) and 2-chlorophenol (2-CP) on electrospun CNFs with high surface area of 2326m(2)/g and micro/mesoporous structure characteristics were investigated. The adsorption affinities were compared with that of the commercial powder activated carbon (PAC). The adsorption kinetics and isotherms showed that the maximum adsorption capacities (qm) of CNFs towards the three pollutants are sequenced in the order of CIP>BPA>2-CP, which are 2.6-fold (CIP), 1.6-fold (BPA) and 1.1-fold (2-CP) increase respectively in comparison with that of PAC adsorption. It was assumed that the micro/mesoporous structure of CNFs, molecular size of the pollutants and the π electron interaction play important roles on the high adsorption capacity exhibited by CNFs. In addition, electrostatic interaction and hydrophobic interaction also contribute to the adsorption of CNFs. This study demonstrates that the electrospun CNFs are promising adsorbents for the removal of pollutants from aqueous solutions. PMID:25702869

  10. Assessing the adsorption properties of shales

    NASA Astrophysics Data System (ADS)

    Pini, Ronny

    2015-04-01

    applied, where these measures are simultaneously evaluated through a graphical method. The density of the adsorbed phase is estimated and compared to data reported in the literature; the latter is key to disclose gas-reserves and/or potential storage capacity estimates. The comparison with engineered materials highlights the complexity of the adsorption process in rocks. In fact, when evaluated against classic adsorbent materials, these preliminary data show that the adsorption mechanism in shales is further complicated by the presence of resident fluids (such as oil) that can additionally contribute to their total uptake capacity. This further highlights the need of improving our current understanding of the fundamental mechanisms controlling the uptake and release of fluids from these materials, and provides substantial research opportunities under the common goal of providing an efficient and sustainable use of unconventional resources.

  11. Size-fractionation and characterization of landfill leachate and the improvement of Cu{sup 2+} adsorption capacity in soil and aged refuse

    SciTech Connect

    Lou Ziyang; Chai Xiaoli; Niu Dongjie; Ou Yuanyang; Zhao Youcai

    2009-01-15

    Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.

  12. Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica.

    PubMed

    Huang, Xin; Wang, Yanpin; Liao, Xuepin; Shi, Bi

    2010-11-15

    Tannin is well known to be an inexpensive and ubiquitous natural biomass, which has high chelating affinity towards many metal ions. In this study, bayberry tannin (BT) was immobilized on mesoporous silica matrix to prepare a novel adsorbent, which was subsequently used for the adsorptive recovery of Au(3+) from aqueous solutions. It was found that bayberry tannin-immobilized mesoporous silica (BT-SiO(2)) was able to effectively recover Au(3+) from acidic solutions (pH 2.0). The equilibrium adsorption capacity of Au(3+) on BT-SiO(2) was high up to 642.0 mg/g at 323 K. Due to its mesoporous structure, BT-SiO(2) exhibited an extremely fast adsorption rate to Au(3+) as compared with other tannin gel adsorbent. The presence of other coexisting metal ions, such as Pb(2+), Ni(2+), Cu(2+) and Zn(2+), did not decrease the adsorption capacity of Au(3+) on BT-SiO(2), and BT-SiO(2) had almost no adsorption capacity to these coexisting metal ions, which suggested the high adsorption selectivity of BT-SiO(2) to Au(3+). Additionally, about 73% of adsorbed Au(3+) can be desorbed using aqua regia, and the Au(3+) solution was concentrated about 18.0 times as compared with the original solution. Consequently, the outstanding characteristics of BT-SiO(2) provide the possibility of effective recovery and concentration of Au(3+) from diluted solutions. PMID:20728986

  13. Facile synthesis of boehmite/PVA composite membrane with enhanced adsorption performance towards Cr(VI).

    PubMed

    Luo, Lei; Cai, Weiquan; Zhou, Jiabin; Li, Yuanzhi

    2016-11-15

    A novel boehmite/PVA composite membrane (BPCM) with remarkably enhanced adsorption performance towards Cr(VI) was successfully synthesized from Al(NO3)3·9H2O using HAc as the peptizing agent via a facile sol-gel method. The physicochemical properties of the BPCM, the boehmite powder (BP) without PVA and a commercial boehmite powder (CBP) were comparatively characterized by XRD, TGA-DSC, FT-IR and XPS. Batch adsorption experiments showed that the adsorption performance of the BPCM is much better than those of BP and CBP. Its adsorption process was well described by the pseudo-second-order kinetic model, and its equilibrium data fit the Langmuir isotherm well with a maximum adsorption capacity of 36.41mgg(-1). Its interference adsorption experiment in presence of coexisting anions showed that SO4(2-) and HPO4(2-) have greater effect than those of the Cl(-), F(-), C2O4(2-) and HCO3(-). A three step action mechanism including adsorption of Cr(VI) anions, complexation between Cr(VI) anions and the functional groups on the surface of BPCM, and the reduction of Cr(VI) to Cr(III) was proposed to illustrate the adsorption process. This efficient film could be easily separated after adsorption, exhibiting great potential for the removal of Cr(VI) from aqueous solution, and other fields of environmental remediation. PMID:27450337

  14. Adsorption of o-cresol and benzoic acid in an adsorber packed with an ion-exchange resin: A comparative study of diffusional models

    SciTech Connect

    Run-Tun Huang; Teh-Liang Chen; Hung-Shan Weng

    1994-10-01

    Both solid- and pore-diffusion models were employed to simulate the adsorption of o-cresol and benzoic acid in a fixed-bed adsorber packed with an anion-exchange resin. The equilibrium adsorption data were modeled by a Langmuir isotherm. When the shape of the adsorption isotherm was approximately linear (as in the case of o-cresol), both models agreed well with the experimental break-through data, and they could be effectively applied to predict the breakthrough curve of longer columns. For a favorable adsorption isotherm (say, benzoic acid), however, better results were obtained by using the solid-diffusion model. In addition to the shape of the adsorption isotherm, several factors, such as the type of adsorbent, modeling of equilibrium data, computation efficiency, and concentration dependence of the intraparticle diffusivity, should also be taken into account for selecting a suitable diffusion model.

  15. Dye adsorption behavior of Luffa cylindrica fibers.

    PubMed

    Demir, H; Top, A; Balköse, D; Ulkü, S

    2008-05-01

    Using natural Luffa cylindrica fibers as adsorbent removal of methylene blue dye from aqueous solutions at different temperatures and dye concentrations was investigated in this study. Thermodynamics and kinetics of adsorption were also investigated. The adsorption isotherms could be well defined with Langmuir model instead of Freundlich model. The thermodynamic parameters of methylene blue (MB) adsorption indicated that the adsorption is exothermic and spontaneous. The average MB adsorption capacity was found out as 49 mg/g and average BET surface area of fibers was calculated as 123 m(2)/g. PMID:17919814

  16. Gas adsorption on microporous carbon thin films

    SciTech Connect

    O'Shea, S.; Pailthorpe, B.A.; Collins, R.E.; Furlong, D.N. )

    1992-05-01

    A gas adsorption study was performed on amorphous hydrogenated carbon thin films which are deposited by reactive magnetron sputtering using acetylene gas. It is found that the films are highly microporous. Annealing significantly increases the adsorption capacity of the films and decreases the effects of low-pressure hysteresis in the adsorption isotherms. The general gas adsorption behavior closely resembles that of powdered activated carbons. The Dubinin-Radushkevich equation can be used to model the submonolayer adsorption isotherm for a variety of gases. 38 refs., 9 figs., 3 tabs.

  17. Removal of mercury by adsorption: a review.

    PubMed

    Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing

    2016-03-01

    Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility. PMID:26620868

  18. The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products.

    PubMed

    Yousef, Rushdi Ibrahim; El-Eswed, Bassam; Alshaaer, Mazen; Khalili, Fawwaz; Khoury, Hani

    2009-06-15

    Geopolymers consist of an amorphous, three-dimensional structure resulting from the polymerization of aluminosilicate monomers that result from dissolution of kaolin in an alkaline solution at temperatures around 80 degrees C. One potential use of geopolymers is as Portland cement replacement. It will be of great importance to provide a geopolymer with suitable mechanical properties for the purpose of water storage and high adsorption capacity towards pollutants. The aim of this work is to investigate the effect of using Jordanian zeolitic tuff as filler on the mechanical performance and on the adsorption capacity of the geopolymers products. Jordanian zeolitic tuff is inexpensive and is known to have high adsorption capacity. The results confirmed that this natural zeolitic tuff can be used as a filler of stable geopolymers with high mechanical properties and high adsorption capacity towards methylene blue and Cu(II) ions. The XRD measurements showed that the phillipsite peaks (major mineral constituent of Jordanian zeolite) were disappeared upon geopolymerization. The zeolite-based geopolymers revealed high compressive strength compared to reference geopolymers that employ sand as filler. Adsorption experiments showed that among different geopolymers prepared, the zeolite-based geopolymers have the highest adsorption capacity towards methylene blue and copper(II) ions. PMID:19036505

  19. Adsorption of Zn(2+) and Ni(2+) in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth (Eichhornia crassipes).

    PubMed

    Gwenzi, Willis; Musarurwa, Tinashe; Nyamugafata, Phillip; Chaukura, Nhamo; Chaparadza, Allen; Mbera, Sharron

    2014-01-01

    The Zn(2+) and Ni(2+) adsorption capacities of six biosorbents derived from water hyacinth (Eichhornia crassipes) (WH) and sawdust (SD) were investigated, with activated carbon as the control. The biosorbents were raw biomass (WH, SD), charred WH (BWH) and SD and sulphonated bio-chars of WH and SD. The effect of the initial solution pH and Zn(2+) and Ni(2+) concentrations on adsorption capacity was studied, and adsorption isotherms for Zn(2+) and Ni(2+) evaluated. The initial solution pH significantly influenced adsorption (p < 0.05) but the relationship was generally nonlinear. Zn(2+) suppressed Ni(2+) adsorption on all biosorbents. The adsorption capacities of the biosorbents were statistically (p ≤ 0.05) similar to or higher than that of activated carbon. The effects of pyrolysis and bio-char sulphonation on adsorption were inconsistent and dependent on biomass type; in most cases bio-char was a better biosorbent than the original biomass, while sulphonation resulted in less or comparable adsorption. Adsorption data obeyed at least one of three isotherms (linear, Langmuir and Freundlich) (r(2) = 0.90-0.995, p < 0.05). The study revealed that low-cost biosorbents may be used as alternatives to activated carbon in applications including selective separation of Zn(2+) from multi-metal ion solutions containing Ni(2+), and water and wastewater treatment. PMID:25353949

  20. Highly efficient adsorption of chlorophenols onto chemically modified chitosan

    NASA Astrophysics Data System (ADS)

    Zhou, Liang-Chun; Meng, Xiang-Guang; Fu, Jing-Wei; Yang, Yu-Chong; Yang, Peng; Mi, Chun

    2014-02-01

    A novel chemically modified chitosan CS-SA-CD with phenol and β-cyclodextrin groups was prepared. The adsorptions of phenol, 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) on the functional chitosan from aqueous solution were investigated. CS-SA-CD exhibited excellent adsorption ability for chlorophenols especially for DCP and TCP. The maximum adsorption capacities of phenol, 2-CP, 4-CP, DCP and TCP on CS-SA-CD were 59.74, 70.52, 96.43, 315.46 and 375.94 mg/g, respectively. The scanning electron microscope and Brunauer-Emmett-Teller analyses revealed that the introduction of phenol group changed the surface morphology and surface properties of chitosan. The modified chitosan CS-SA-CD possesses larger surface areas (4.72 m2/g), pore volume (7.29 × 10-3 mL/g) and average pore diameter (59.99 Å) as compared to those of chitosan 3.27 m2/g, 2.00 × 10-3 mL/g and 15.95 Å, respectively. The enhanced adsorption of chlorophenols was also attributed to the interaction of hydrogen bond between Cl atom and sbnd OH group. The adsorption of chlorophenols on CS-SA-CD followed the pseudo-second-order kinetic model. Adsorbent could be regenerated easily and the regenerated CS-SA-CD remained 80-91% adsorption efficiency.

  1. Profiling Teacher Capacity in Statistical Thinking of National Curriculum Reform: A Comparative Study between Australia and China

    ERIC Educational Resources Information Center

    Zhang, Qinqiong; Stephens, Max

    2016-01-01

    In the official curriculum documents of many countries, statistical thinking have become part of the mainstream in school curriculum. We argue that teacher capacity is a key dimension in realizing essential goals for developing students' statistical literacy, reasoning and thinking in practical teaching. In this paper, a construct of Teacher…

  2. Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: Adsorption rates and equilibrium studies

    SciTech Connect

    Periasamy, K.; Namasivayam, C. . Dept. of Environmental Sciences)

    1994-02-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Cd(II) from synthetic wastewater. The adsorption data fit better with the Freundlich adsorption isotherm. The applicability of the Lagergren kinetic model has also been investigated. An almost quantitative removal of 20 mg/L Cd(II) by 0.7 g of PHC/L of aqueous solution was observed in the pH range 3.5--9.5. A comparative study with a commercial granular activated carbon (CAC) showed that the adsorption capacity (K[sub f]) of PHC was 31 times larger than that of CAC.

  3. Random sequential adsorption of human adenovirus 2 onto polyvinylidene fluoride surface influenced by extracellular polymeric substances.

    PubMed

    Lu, Ruiqing; Li, Qi; Nguyen, Thanh H

    2016-03-15

    Virus removal by membrane bioreactors depends on virus-membrane and virus-foulant interactions. The adsorption of human adenovirus 2 (HAdV-2) on polyvinylidene fluoride (PVDF) membrane and a major membrane foulant, extracellular polymeric substances (EPS), were measured in a quartz crystal microbalance. In 3-100mM CaCl2 solutions, irreversible adsorption of HAdV-2 was observed on both pristine and EPS-fouled PVDF surfaces. The HAdV-2 adsorption kinetics was successfully fitted with the random sequential adsorption (RSA) model. The applicability of the RSA model for HAdV-2 adsorption is confirmed by comparing the two fitting parameters, adsorption rate constant k(a) and area occupied by each adsorbed HAdV-2 particle a, with experimentally measured parameters. A linear correlation between the fitting parameter k(a) and the measured attachment efficiency was found, suggesting that the RSA model correctly describes the interaction forces dominating the HAdV-2 adsorption. By comparing the fitting parameter d(ads) with the hydrodynamic diameter of HAdV-2, we conclude that virus-virus and virus-surface interactions determine the area occupied by each adsorbed HAdV-2 particle, and thus influence the adsorption capacity. These results provide insights into virus retention and will benefit improving virus removal in membrane filtration. PMID:26720514

  4. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils.

    PubMed

    Zhao, Xiulan; Jiang, Tao; Du, Bin

    2014-03-01

    Batch experiments and sequential extraction analysis were employed to investigate the effects of soil organic matter and CaCO3 on the adsorption and desorption of cadmium (Cd(2+)) onto and from two purple paddy soils, an acidic purple paddy soil (APPS) and a calcareous purple paddy soil (CPPS). The Cd(2+) adsorption isotherms on both soils could be well-described by the Langmuir and Freundlich equations. CPPS had a higher capacity and a stronger affinity for Cd(2+) adsorption compared with APPS. The adsorption process of Cd(2+) on APPS was dominated by electrostatic attractions, whereas the adsorption mechanism varied depending on the Cd(2+) concentrations in equilibrium solutions on CPPS. At low equilibrium concentrations, the adsorption process was primarily specific adsorption, but nonspecific adsorption dominated at high equilibrium concentrations. Removal of organic matter decreased the amount of Cd(2+) adsorption on both of the soils, slightly affected the Cd(2+) desorption rate and exchangeable Cd (EXC-Cd) in APPS and increased the desorption rate and EXC-Cd in CPPS, suggesting that the effect of organic matter on Cd(2+) adsorption-desorption depends on the soils. CPPS and APPS containing CaCO3 exhibited higher adsorption amounts but lower desorption rates and lower proportions of EXC-Cd than those of their corresponding soils without CaCO3, demonstrating that CaCO3 played an important role in Cd(2+) specific adsorption on soil. The changes in the thermodynamic parameters, including free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)), as evaluated by the Van't Hoff equations, indicated that the adsorption was a spontaneous and endothermic process with the primary interaction forces of dipole interactions and hydrogen bonds on APPS, whereas both physical and chemical interactions dominated the adsorption on CPPS. PMID:24289979

  5. [A pilot study comparing pulse high volume hemofiltration (pHVHF) and coupled plasma filtration adsorption (CPFA) in septic shock patients].

    PubMed

    Lentini, P; Cruz, D; Nalesso, F; de Cal, M; Bobek, I; Garzotto, F; Zanella, M; Brendolan, A; Piccinni, P; Ronco, C

    2009-01-01

    High-volume hemofiltration (HVHF) and coupled plasma filtration adsorption (CPFA) have shown potential to improve the treatment of sepsis in animals, but there have been no studies comparing these two treatments in humans. Our aim was to compare the hemodynamic effects of HVHF and CPFA in septic shock patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy (CRRT). We performed a cross-over study enrolling patients with septic shock and AKI who were receiving CRRT. Patients were treated with pulse HVHF and continuous veno-venous hemofiltration (CVV H) on day 1 and CPFA and CVV H on day 2 or vice versa. HVHF was performed for 8-10 hours with a replacement fluid rate of 85 mL/kg/h. CPFA was performed for 8-10 hours with a plasma flow rate of 15%. CVV H was performed for the rest of the day with a replacement fluid rate of 35 mL/kg/h. The primary endpoints were changes in mean arterial pressure, vasopressor requirement (expressed as vasopressor score, VS), and noradrenaline dose after pulse HVHF and CPFA. The two treatments were compared using nonparametric tests. We enrolled 8 patients (median age 70.5 years, SOFA 12.5, SAPS II 69.5). There was a trend towards a reduction in VS with HVHF and CPFA (HVHF p=0.13, CPFA p<0.05). There was no significant difference between the two treatments in terms of percentage change in VS score (p=0.22). The data from this pilot study provide no evidence for a difference in hemodynamic effects between pulse HVHF and CPFA in patients with septic shock already receiving CRRT. A larger sample size is needed to adequately explore this issue. PMID:19918752

  6. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  7. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm.

    PubMed

    Biswas, Krishna; Bandhopadhyay, Durjoy; Ghosh, Uday Chand

    2008-04-01

    Fluoride is an accumulative poison at high dose of intake for humans and animals. In the present study, the sorption of fluoride from aqueous solution has been investigated on synthetic hydrous ferric oxide (HFO), hydrous zirconium oxide (HZO) and hydrous zirconium(IV)-iron(III) oxide (HZFO) by batch mode experiments. Both HFO and HZFO were crystalline and HZO was amorphous in nature. The parametes studied were the effect of pH and sorption equilibriums. The results showed increase in fluoride-sorption with increasing pH from nearly 2.0 to 5.0, 4.6 and 6.8 for HFO, HZO and HZFO, respectively. Analysis of temperature dependent sorption data obtained at equilibrium solution pH 6.8 (+/- 0.2) has been described by the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherm model equations. The present sorption data fit, in general, found very well with the Langmuir and Redlich-Peterson models; and the data fit for HZFO and HFO found to increase, but for HZO the data found to decrease with increasing temperature. The computed thermodynamic parameters such as deltaG0, delltaH0 and deltaS0 from the Langmuir equilibrium constant (b, L/Umg) values show that the fluoride-sorption on HZFO was more spontaneous and endothermic process compared to HFO. The deltaH0 value obtained for fluoride adsorption on HZO indicates exothermic nature. PMID:19295101

  8. Adsorption of ethene on Pt(1 1 1) and ordered Pt xSn/Pt(1 1 1) surface alloys: A comparative HREELS and DFT investigation

    NASA Astrophysics Data System (ADS)

    Essen, J. M.; Haubrich, J.; Becker, C.; Wandelt, K.

    2007-08-01

    The adsorption of ethene (C 2H 4) on Pt(1 1 1) and the Pt 3Sn/Pt(1 1 1) and Pt 2Sn/Pt(1 1 1) surface alloys has been investigated experimentally by high-resolution electron energy loss spectroscopy and temperature programmed desorption. The experimental results have been compared with density functional theory (DFT) calculations allowing us to perform a complete assignment of all vibration modes and loss features to the species present on the surfaces. On Pt(1 1 1) as well as on the Pt-Sn surface alloys an η2 di-σ-bonded conformation of ethene has been found to be the most stable adsorbed form. In addition to this majority species a minor amount of π-bonded ethene has been identified, which is more abundant on the Pt 2Sn surface alloy than on the other surfaces. Additionally the HREELS spectra of ethene on Pt(1 1 1) and the Pt-Sn surface alloys differ only slightly in terms of the energetic positions of the loss peaks.

  9. Comparative activity of TiO2 microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Liu, Hong; Liu, Yuan; He, Guang'an; Jiang, Chengchun

    2014-11-01

    TiO2 microspheres have been employed as a promisingly new photocatalyst for water and wastewater treatment. P25 TiO2 is commonly employed and its properties are well established as photocatalyst. In this study, photocatalytic activities of the two TiO2 samples are compared by degrading sulfosalicylic acid (SSA), phenol, and 2,4-Dichlorophenoxyacetic acid (2,4-D) under 365 nm UV illumination in a suspension system at neutral pH and associated optimized TiO2 dosages. The results showed that the three organic compounds unexceptionally degraded more rapidly on P25 than on TiO2 microspheres in terms of the concentration-time curves and total organic carbon removals at 120 min. This might me attributed the presence of oxygen vacancies and Ti(III) defects already present on P25 as determined by electron paramagnetic resonance, implying that the defects played an important role for the enhancement of the charge transfer step as rate-determining step. The degradations of three organic compounds on P25 and TiO2 microspheres could be well described by the first-order rate equation, while the degradation kinetics of SSA on TiO2 microspheres was quite different. The difference was ascribed to the medium adsorption ability of SSA on the TiO2 surface.

  10. Random sequential adsorption of tetramers

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał

    2013-07-01

    Adsorption of a tetramer built of four identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Tetramers were adsorbed on a two-dimensional, flat and homogeneous surface. Two different models of the adsorbate were investigated: a rhomboid and a square one; monomer centres were put on vertices of rhomboids and squares, respectively. Numerical simulations allow us to establish the maximal random coverage ratio as well as the available surface function (ASF), which is crucial for determining kinetics of the adsorption process. These results were compared with data obtained experimentally for KfrA plasmid adsorption. Additionally, the density autocorrelation function was measured.

  11. [Adsorption and Desorption Characteristics of Endosulfan in Purple Soil].

    PubMed

    Zhao, Yan; Zheng, Guo-can; Zhu, Heng; Zhang, Jin-zhong; Zhu, Xiu-ying; Hu, Shu-chun; Wu, Ya-lin

    2015-09-01

    In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0. 115 mg.(g.min)-1, respectively. The adsorption thermodynamic process could be well described by the Langmuir isotherm with the maximum adsorption capacities of α-, β-endosulfan as 0. 257 mg . g -1 and 0. 155 mg . g -1, respectively. The adsorption process of endosulfan in purple soil may be an exothermic physicochemical process, and is dominated by physical adsorption. Under the experimental conditions examined in this study, the initial pH of adsorption solution had a relative great influence on the adsorption capacity, whereas the temperature and adsorbent amount had no significant influence. The desorption experiments found that the maximum desorption capacities of α-, β-endosulfan adsorbed in purple soil were 0. 029 mg . g -1 and 0. 017 mg . g -1 at 6 and 4 h, and accounted for 10. 5% and 16. 1% in the maximum adsorption capacities, respectively. PMID:26717711

  12. Removal of phenol from aqueous solutions by adsorption.

    PubMed

    Roostaei, Nadia; Tezel, F Handan

    2004-02-01

    Experiments have been conducted to examine the liquid-phase adsorption of phenol from water by silica gel, HiSiv 3000, activated alumina, activated carbon, Filtrasorb-400, and HiSiv 1000. Experiments were carried out for the analysis of adsorption equilibrium capacities and kinetics. The adsorption isotherm model of the Langmuir-Freundlich type was the best to describe adsorption equilibrium data for phenol for the adsorbents studied. Results of kinetic experiments indicated that HiSiv 1000 had the highest rate of adsorption among the adsorbents studied and therefore more detailed studies were carried out with this adsorbent. The influence of particle size, temperature, and thermal regeneration on adsorption of phenol by HiSiv 1000 was evaluated. From particle size experiments it appeared that adsorption capacity of HiSiv 1000 did not change by changing the particle size, but the rate of adsorption decreased considerably by increasing the particle size. The effect of temperature on adsorption was studied by determining equilibrium isotherms for HiSiv 1000 at 25, 40, and 55 degrees C. The results showed that adsorption capacity decreased with increasing temperature. Thermal regeneration of HiSiv 1000 was performed at 360 degrees C. It was observed that adsorption capacity of HiSiv 1000 did not change after 14 regeneration cycles. Equilibrium experiments showed that the adsorption capacities of activated carbon and Filtrasorb-400 were several times higher than that of HiSiv 1000. PMID:15160741

  13. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst.

    PubMed

    Chen, Jiangyao; Li, Guiying; He, Zhigui; An, Taicheng

    2011-06-15

    A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO(2) particles with increasing of TiO(2) content, and anatase was the only crystalline phase with nano-scale TiO(2) particles. With increasing of the cation exchange capacity to TiO(2) molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of tolueneadsorption capacities for different pollutants of various components. PMID:21501924

  14. A Test of Canine Olfactory Capacity: Comparing Various Dog Breeds and Wolves in a Natural Detection Task.

    PubMed

    Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta

    2016-01-01

    Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container's lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them. PMID:27152412

  15. A Test of Canine Olfactory Capacity: Comparing Various Dog Breeds and Wolves in a Natural Detection Task

    PubMed Central

    Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta

    2016-01-01

    Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container’s lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them. PMID:27152412

  16. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  17. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    PubMed

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration. PMID:26606195

  18. Adsorptive removal of nitrilotris(methylenephosphonic acid) antiscalant from membrane concentrates by iron-coated waste filtration sand.

    PubMed

    Boels, L; Tervahauta, T; Witkamp, G J

    2010-10-15

    Iron-coated waste filtration sand was investigated as a low-cost adsorbent for the removal of nitrilotris(methylenephosphonic acid) (NTMP) from membrane concentrates. The adsorption of this phosphonate-based antiscalant on this material was measured and compared with two commercially available anion exchange resins and activated carbon. Comprehensive adsorption experiments were conducted in several synthetic concentrate solutions and in a concentrate collected from a full scale nano-filtration brackish water desalination plant. The effect of pH, ionic strength and the presence of competitive anions on the equilibrium adsorption were investigated. The results showed that, in contrast to the anion exchange resins, the adsorption on coated filtration sand is not suppressed at increasing ionic strength and is much less affected by the competitive anions carbonate and sulphate. The adsorption decreased slightly when the pH was raised from 7.0 to 8.0. The adsorption isotherms in the real nano-filtration concentrate, measured in the concentration interval of 5-50 mg dm(-1) NTMP, showed that the maximum adsorption capacity of coated filtration sand was 4.06 mg g(-1). The adsorption capacity per unit mass of the adsorbents at low NTMP concentration (12.5 mg dm(-3)) followed the decreasing order Amberlite IRA-410>coated filtration sand>Amberlite IRA-900>Norit SAE Super. This demonstrates that the use of iron-coated waste filtration sand offers a promising means for the removal of NTMP from membrane concentrates. PMID:20667427

  19. Progress in Adsorption-Based CO2 Capture by Metal-Organic Frameworks

    SciTech Connect

    Liu, Jian; Thallapally, Praveen K.; McGrail, B. Peter; Brown, Daryl R.; Liu, Jun

    2012-01-01

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, large surface areas, and potential applications as novel adsorbents. The recent progress in adsorption-based CO2 capture by MOFs is reviewed and summarized in this paper. CO2 adsorption in MOFs has been divided into two sections, adsorption at high pressures and selective adsorption at approximate atmospheric pressures. Keys to CO2 adsorption in MOFs at high pressures and low pressures are summarized to be pore volumes of MOFs, and heats of adsorption, respectively. Many MOFs have high CO2 selectivities over N2 and CH4. Water effects on CO2 adsorption in MOFs are presented and compared with benchmark zeolites. In addition, strategies appeared in the literature to enhance CO2 adsorption capacities and/or selectivities in MOFs have been summarized into three main categories, catenation and interpenetration, chemical bonding enhancement, and electrostatic force involvement. Besides the advantages, two main challenges for using MOFs in CO2 capture, the cost of synthesis and the stability toward water vapor, have been analyzed and possible solutions and path-forward have been proposed to address the two challenges as well.

  20. [Effects of biochars produced from different sources on arsenic adsorption and desorption in soil].

    PubMed

    Guan, Lian-Zhu; Zhou, Jing-Jing; Zhang, Yun; Zhang, Guang-Cai; Zhang, Jin-Hai; Chan, Zhong-Xiang

    2013-10-01

    By using OECD Guideline 106 batch equilibrium method, this paper studied the characteristics of As (V) adsorption and desorption in brown soil as affected by the biochars produced from dairy manure, pine needle, and corn straw. When the addition amount of the biochars was 0.5%, the maximum adsorption amount of As (V) was decreased in the order of dairy manure biochar > pine needle biochar > corn straw biochar, which was related to the basic characteristics of the biochars. The adsorption isotherm of As (V) could be well fitted by Langmuir model (R2 = 0.997). In comparing with CK, both the adsorption capacity (lgKf = 1.99-2.10) and the adsorption intensity (1/N = 0.413-0.449) of As (V) were low, and the main adsorption mechanism was physical adsorption. The desorption rate of As (V) (14.5%-18.7%) was decreased in the order of dairy manure biochar > pine needle biochar > corn straw biochar. The addition of the biochars decreased the adsorption of As (V) by brown soil, which could induce the increase of the bioavailability of As, and strengthen the toxicity of As in soil. PMID:24483091

  1. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, J.A.; Lizzio, A.A.; Daley, M.A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700-925 ??C to remove carbon-oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  2. Comparative Study of Phenolic Profile, Antioxidant Capacity, and Color-composition Relation of Roselle Cultivars with Contrasting Pigmentation.

    PubMed

    Camelo-Méndez, Gustavo A; Jara-Palacios, M José; Escudero-Gilete, M Luisa; Gordillo, Belén; Hernanz, Dolores; Paredes-López, Octavio; Vanegas-Espinoza, Pablo E; Del Villar-Martínez, Alma A; Heredia, Francisco J

    2016-03-01

    Roselle is a plant that accumulates anthocyanins significantly, hence its importance as food coloring and as a source of antioxidant compounds for human health. This study was aimed to determine phenolic composition and antioxidant capacity of methanolic extracts, and beverages obtained from native roselle cultivars in Mexico (Negra, Sudan, Rosa and Blanca) with different degrees of pigmentation, and to establish the color-composition relationship. Chromatographic methods were used to determine phenolic compounds: flavanols, flavonols, benzoic, hibiscus and phenolic acids as well as two main anthocyanins (cyanidin 3-sambubioside and delphinidin 3-sambubioside). The antioxidant capacity was evaluated by ABTS and FRAP assays. Tristimulus colorimetry showed to be a useful technique to determine the color-composition relationship, leading to equations that allowed to predict anthocyanin content of roselle (R > 0.84). Also, a stepwise linear discriminant analysis (SLDA) was developed in order to classify roselle cultivars. The obtained mathematical model could be an important tool to be used in colorimetric characterization of functional compounds used in food processing. PMID:26646703

  3. EVALUATING MULTICOMPONENT COMPETITIVE ADSORPTION IN FIXED BEDS

    EPA Science Inventory

    An equilibrium column model (ECM) was developed to evaluate multicomponent competition in fixed-bed adsorption columns. The model ignores mass transfer resistances and uses ideal adsorbed solution theory to predict the competitive effects in multicomponent mixtures. The bed capac...

  4. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  5. Tracking Drug Loading Capacities of Calcium Silicate Hydrate Carrier: A Comparative X-ray Absorption Near Edge Structures Study.

    PubMed

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Yiu, Yun-Mui; Hu, Yongfeng; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-08-01

    Mesoporous spheres of calcium silicate hydrate (MS-CSH) have been prepared by an ultrasonic method. Following an earlier work in which we have revealed the interactions between ibuprofen (IBU) and CSH carriers with different morphologies by X-ray absorption near edge structures (XANES) analysis. In the present investigation, two new drug molecules, alendronate sodium (ALN) and gentamicin sulfate (GS), were incorporated into MS-CSH, and their drug loading capacities (DLCs) were measured using thermogravimetric analysis to establish the relationship between drug-carrier interactions and DLCs. The XANES spectra clearly indicate that acidic functional groups of the drug molecules linked to the active sites (Ca-OH and Si-OH groups) of MS-CSH on the surface by electrostatic interactions. In addition, it is found that the stoichiometric ratio of Ca(2+) ions of CSH carriers and the functional groups of drug molecules may significantly influence the DLCs. PMID:26162602

  6. Adsorption study of low-cost and locally available organic substances and a soil to remove pesticides from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Rojas, Raquel; Morillo, José; Usero, José; Vanderlinden, Eva; El Bakouri, Hicham

    2015-01-01

    Sorption and desorption of chlorfenvinphos, chlorpyrifos, simazine and trifluralin on sunflower seed shells, rice husk, composted sewage sludge and an agricultural soil was studied. Film diffusion and sorption pointed to be related with pesticide physicochemical characteristics. Trifluralin and chlorpyrifos were the pesticides which showed the fastest sorption kinetics and the best sorption capacities when sorbed on all organic wastes. Rice husk revealed as the best adsorbent for simazine. Chlorfenvinphos showed comparable adsorption levels for all sorbents. Koc and Kf values suggested that not only the organic matter content but also the nature of the organic matter and other factors, such as physicochemical characteristics of the surface could be play a significant role in pesticide adsorption. Low desorption percentages were detected; nevertheless Kfd and H values reveal a weak and reversible adsorption. The studied organic residues can be used as an effective and alternative adsorbent for removing pesticides, because of their high adsorption capacity, being natural and economic.

  7. Adsorption of simazine on zeolite H-Y and sol-gel technique manufactured porous silica: A comparative study in model and natural waters.

    PubMed

    Sannino, Filomena; Marocco, Antonello; Garrone, Edoardo; Esposito, Serena; Pansini, Michele

    2015-01-01

    In this work, we studied the removal of simazine from both a model and well water by adsorption on two different adsorbents: zeolite H-Y and a porous silica made in the laboratory by using the sol-gel technique. The pH dependence of the adsorption process and the isotherms and pseudo-isotherms of adsorption were studied. Moreover, an iterative process of simazine removal from both the model and well water, which allowed us to bring the residual simazine concentration below the maximum concentration (0.05 mg L(-1)) of agrochemicals in wastewater to be released in surface waters or in sink allowed by Italian laws, was proposed. The results obtained were very interesting and the conclusions drawn from them partly differed from what could reasonably be expected. PMID:26357888

  8. Enhanced adsorptive removal of Safranine T from aqueous solutions by waste sea buckthorn branch powder modified with dopamine: Kinetics, equilibrium, and thermodynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Bai, Bo; Wang, Honglun; Suo, Yourui

    2015-12-01

    Polydopamine coated sea buckthorn branch powder (PDA@SBP) was facilely synthesized via a one-pot bio-inspired dip-coating approach. The as-synthesized PDA@SBP was characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The adsorption progresses of Safranine T on the surface of PDA@SBP adsorbent were systematically investigated. More specifically, the effects of solution pH, contact time, initial concentration and temperature were evaluated, respectively. The experimental results showed the adsorption capacity of PDA@SBP at 293.15 K could reach up to 54.0 mg/g; the adsorption increased by 201.7% compared to that of native SBP (17.9 mg/g). Besides, kinetics studies showed that pseudo-second-order kinetic model adequately described the adsorption behavior. The adsorption experimental data could be fitted well a Freundlich isotherm model. Thermodynamic analyses showed that the ST adsorption was a physisorption endothermic process. Regeneration of the spent PDA@SBP adsorbent was conducted with 0.1 M HCl without significant reduction in adsorption capacity. On the basis of these investigations, it is believed that the PDA@SBP adsorbent could have potential applications in sewage disposal areas because of their considerable adsorption capacities, brilliant regeneration capability, and cost-effective and eco-friendly preparation and use.

  9. Adsorption and desorption of Zn(II) and Cu(II) on Ca- alginate immobilized activated rice bran

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kamalia, N. Z.; Kusumawati, W. A.

    2016-02-01

    Ca-alginate immobilized activated rice bran has been used for adsorption of Zn(II) and Cu(II) from aqueous solution. The effect of the pH, kinetics model, adsorption isotherm and desorption on the adsorption performance was investigated. Activated rice bran was immobilized by the entrapment in alginate beads. The adsorption strength of Ca-alginate immobilized activated rice bran was compared to Ca-alginate and non-immobilized activated rice bran. The concentrations of adsorbed ions were analyzed using Atomic Absorption Spectrophotometer (AAS). The result showed that pH of 4.0 and the contact time of 120 min are the optimum condition for adsorption of Zn(II) and Cu(II). The adsorption kinetic of Zn(II) and Cu(II) followed the pseudo-second-order model with adsorption rate constant 4.9 x 10-2 and 3.14 g.mg-1.min-1, respectively. The both adsorption processes obeyed Langmuir isotherm with adsorption capacity of 2.03 and 2.42 mg.g-1 of adsorbent, respectively. The strength of Zn adsorption on Ca-alginate immobilized activated rice bran (86.63%) was more effective compared to Ca-alginate beads (60.96%) and activated rice bran (43.85%). The strength of Cu adsorption was 80.00%, 61.50% and 22.10%, respectively. The desorption of Zn(II) and Cu(II) showed that recovery percentage of the adsorption was 76.56% and 57.80% with the condition of using HCl 0.1 M as desorption agent for 1 hour.

  10. Adsorption characteristics of water vapor on gear-pellet and honeycomb-pellet types of adsorbents containing A-type zeolite

    SciTech Connect

    Nakamura, A.; Munakata, K.; Hara, K.; Narita, S.; Sugiyama, T.; Kotoh, K.; Tanaka, M.; Uda, T.

    2015-03-15

    It is necessary to recover or process tritiated species that are extensively coexistent in nuclear fusion installations. A conventional way to recover tritium release to atmosphere is catalytic oxidation of tritiated species and adsorption of tritiated water vapor on adsorbents with high surface areas. Therefore, new adsorbents with low pressure loss and high surface areas need to be developed and utilized for such large-scale adsorption systems. In this study, attention was focused on new adsorbents, which are gear-type pellet MS5A adsorbent, gear-type pellet MS4A adsorbent and honeycomb-type pellet MS5A adsorbent. The adsorption characteristics of the new adsorbent were comparatively studied with conventional type of adsorbents (pellet-type MS5A adsorbent and pebble-type MS5A adsorbent), in terms of adsorption capacity, pressure loss and adsorption rate. It was found that the adsorption capacity of water vapor on the gear-type adsorbents is higher than that on a honeycomb-type adsorbent. The experimental breakthrough curves indicate that the adsorption rates of water vapor on gear-type and honeycomb-type adsorbents are smaller than that on conventional type adsorbents. Various adsorption models were also tested to correlate the experimental isotherms. It was found that the Langmuir-Freundlich model could properly correlate the experimental adsorption isotherms.

  11. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content. PMID:27337897

  12. Metal-organic frameworks with high capacity and selectivity for harmful gases

    PubMed Central

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity of each “benchmark” MOF for each gas. The capacity of each MOF is compared to that of a sample of Calgon BPL activated carbon. We find that pore functionality plays a dominant role in determining the dynamic adsorption performance of MOFs. MOFs featuring reactive functionality outperform BPL carbon in all but one case and exhibit high dynamic adsorption capacities up to 35% by weight. PMID:18711128

  13. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes.

    PubMed

    Xu, B J; Yuan, S H; Chang, S K C

    2007-03-01

    The objective of this study was to characterize the phenolic compounds and antioxidant activities of U.S.-produced cool season legumes. A total of 33 cool season legume samples were selected. Some common beans and soybeans were included for comparisons. Total phenolic content (TPC), total flavonoid content (TFC), and condensed tannin content (CTC) were analyzed. Ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and oxygen radical absorbance capacity (ORAC) were used for analyzing antioxidant properties. Color of the legume flour and the seed coat was also analyzed. TPC, TFC, CTC, FRAP, DPPH, and ORAC values of legumes were significantly different not only between classes but also among samples within each class. Among cool season legume classes, lentils possessed the highest concentrations of the phenolic compounds and antioxidant activities. Colored common beans and black soybeans exhibited higher TPC, TFC, CTC, FRAP, DPPH, and ORAC values than those of yellow peas, green peas, and chickpeas. Antioxidant activities (FRAP, DPPH, and ORAC) were strongly correlated (r= 0.96, 0.94, and 0.89, respectively, P < 0.01) with TPC. TPC and ORAC were moderately correlated (P < 0.01) with either the seed hull surface color or the flour color. PMID:17995859

  14. [Influences of cation species on adsorption and desorption of oxytetracycline in two typical soils of China].

    PubMed

    Bao, Yan-Yu; Zhou, Qi-Xing; Zhang, Hao

    2009-02-15

    On the basis of the OECD Guideline 106, batch sorption methods were employed to reveal the effect of different cations (0.01 mol x L(-1) Ca2+, K+ and Na+) on oxytetracycline (OTC) adsorption and desorption process in two tested soils (cinnamon soil and red soil). Results show that the Freundlich model is the best isotherm to describe the experimental data of adsorption and desorption, and the average fitting correlation coefficient is 0.989. Except for the adsorption isotherm of cinnamon soil on OTC in 0.01 mol x L(-1) KCl, the other isotherms resemble the L-type curves. To the same cation, OTC adsorption capacity (lgKf) in the red soil (ranging from 2.907 to 3.173) is always higher than in the cinnamon soil (ranging from 2.577 to 2.885), and the adsorption strength (1/n) in the red soil (ranging from 0.672 to 0.825) is always lower than the cinnamon (ranging from 0.713 to 1.005). The dominant mechanism is physical adsorption in two soils. To the same soil, cation species don't affect OTC adsorption capacity (lgKf) (p > 0.05). And Ca2+ can reduce significantly the adsorption strength (p < 0.05), comparing with K+ and Na+. The apparent adsorption-desorption hysteresis is found, and the average hysteresis index (HI) in all soils are from 0.015 to 0.053. To the same cation, OTC HI is significantly higher than that of red soil (p < 0.05). In cinnamon soil, there is significantly HI difference (p < 0.01) between K+ and Ca2+, Na+. However, three cations have no significantly difference effect on HI in red soil. PMID:19402514

  15. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    PubMed

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties. PMID:27011990

  16. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals. PMID:17980962

  17. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites.

    PubMed

    Dou, Baojuan; Li, Jinjun; Wang, Yufei; Wang, Hailin; Ma, Chunyan; Hao, Zhengping

    2011-11-30

    Hierarchically structured carbon-silica aerogel (CSA) composites were synthesized from cheap water glass precursors and granulated activated carbon via a post-synthesis surface modification with trimethylchlorosilane (TMCS) and a low-cost ambient pressure drying procedure. The resultant CSA composites possess micro/mesoporous structure and hydrophobic surface. The adsorption and desorption performance of benzene on carbon-silica aerogel composite (CSA-2) under static and dynamic conditions were investigated, comparing with pure silica aerogel (CSA-0) and microporous activated carbon (AC). It was found that CSA-2 has high affinity towards aromatic molecules and fast adsorption kinetics. Excellent performance of dynamic adsorption and desorption observed on CSA-2 is related to its higher adsorption capacity than CSA-0 and less mass transfer resistance than AC, arising from the well-developed microporosity and open foam mesostructure in the CSA composites. PMID:21962860

  18. Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers

    SciTech Connect

    Juang, R.S.; Wu, F.C.; Tseng, R.L.

    1996-05-01

    Phenolic compounds exist widely in the industrial effluents such as those from oil refineries and the coal tar, plastics, leather, paint, pharmaceutical, and steel industries. Since they are highly toxic and are, in general, not amenable to biological degradation, methods of treatment are continuously being modified and developed. Liquid-phase adsorption equilibria of eight phenolic compounds onto activated carbon fibers were measured in the concentration range 40--500 g/m{sup 3} at 303 K. High adsorption capacities were observed for the chlorinated phenols compared to the methyl-substituted phenols. Several two- and three-parameter isotherm equations were tested. Among the equations tried, the three-parameter equation of Jossens et al. based on a heterogeneous surface adsorption theory was found to be the most satisfactory over the entire range of concentration. The widely used two-parameter equations of Langmuir and Freundlich were not applicable to the present adsorption systems.

  19. Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol

    PubMed Central

    2012-01-01

    Adsorption of methylene blue (MB) on agar was investigated as a function of temperature (308-328 K), different concentrations of NaCl and HCl and various weight percentages of binary mixtures of ethanol with water. It was observed that the maximum experimental adsorption capacity, qm, exp, in water is up to 50 mg g-1 and decreases with increase in weight percentage of ethanol and NaCl and HCl concentration compared to that of water. Analysis of data using ARIAN model showed that MB adsorbs as monomer and dimer on the surface of agar. Binding constants of MB to agar were calculated using the Temkin isotherm. The process is exothermic in water and other solutions. The mean adsorption energy (E) value indicated binding of MB to agar is chemical adsorption. Kinetics of this interaction obeys from the pseudo-second-order model and diffusion of the MB molecules into the agar is the main rate-controlling step. PMID:22339759

  20. Selective adsorption for removal of nitrogen compounds from hydrocarbon streams over carbon-based adsorbents

    NASA Astrophysics Data System (ADS)

    Almarri, Masoud S.

    The ultimate goal of this thesis is to develop a fundamental understanding of the role of surface oxygen functional groups on carbon-based adsorbents in the adsorption of nitrogen compounds that are known to be present in liquid fuels. N2 adsorption was used to characterize pore structures. The surface chemical properties of the adsorbents were characterized by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques with a mass spectrometer to identify and quantify the type and concentration of oxygen functional groups on the basis of CO2 and CO evolution profiles. It was found that although surface area and pore size distribution are important for the adsorption process, they are not primary factors in the adsorption of nitrogen compounds. On the other hand, both the type and concentration of surface oxygen-containing functional groups play an important role in determining adsorptive denitrogenation performance. Higher concentrations of the oxygen functional groups on the adsorbents resulted in a higher adsorption capacity for the nitrogen compounds. A fundamental insight was gained into the contributions of different oxygen functional groups by analyzing the changes in the monolayer maximum adsorption capacity, qm, and the adsorption constant, K, for nitrogen compounds on different activated carbons. Acidic functional groups such as carboxylic acids and carboxylic anhydrides appear to contribute more to the adsorption of quinoline, while the basic oxygen functional groups such as carbonyls and quinones enhance the adsorption of indole. Despite the high number of publications on the adsorptive desulfurization of liquid hydrocarbon fuels, these studies did not consider the presence of coexisting nitrogen compounds. It is well-known that, to achieve ultraclean diesel fuel, sulfur must be reduced to a very low level, where the concentrations of nitrogen and sulfur compounds are comparable. The adsorptive denitrogenation and

  1. Adsorption of azo dyes from aqueous solution by the hybrid MOFs/GO.

    PubMed

    Li, Ling; Shi, Zhennan; Zhu, Hongyang; Hong, Wei; Xie, Fengwei; Sun, Keke

    2016-01-01

    In this work, a hybrid of chromium(III) terephthalate metal organic framework (MIL-101) and graphene oxide (GO) was synthesized and its performance in the removal of azo dyes (Amaranth, Sunset Yellow, and Carmine) from water was evaluated. The adsorption for azo dyes on MIL-101/GO was compared with that of MIL-101, and it was found that the addition of GO enhanced the stability of MIL-101 in water and increased the adsorption capacity. The maximum adsorption capacities of MIL-101/GO were 111.01 mg g(-1) for Amaranth, 81.28 mg g(-1) for Sunset Yellow, and 77.61 mg g(-1) for Carmine. The adsorption isotherms and kinetics were investigated, showing that the adsorption fits the Freundlich isotherm and the pseudo-second-order kinetic model. The recyclability of MIL-101/GO was shown by the regeneration by acetone. The high adsorption capability and excellent reusability make MIL-101/GO a competent adsorbent for the removal dyes from aqueous solution. PMID:27054746

  2. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation. PMID:26630756

  3. Building research capacity in Botswana: a randomized trial comparing training methodologies in the Botswana ethics training initiative

    PubMed Central

    2013-01-01

    Background Little empirical data are available on the extent to which capacity-building programs in research ethics prepare trainees to apply ethical reasoning skills to the design, conduct, or review of research. A randomized controlled trial was conducted in Botswana in 2010 to assess the effectiveness of a case-based intervention using email to augment in-person seminars. Methods University faculty and current and prospective IRB/REC members took part in a semester-long training program in research ethics. Participants attended two 2-day seminars and were assigned at random to one of two on-line arms of the trial. Participants in both arms completed on-line international modules from the Collaborative Institutional Training Initiative. Between seminars, intervention-arm participants were also emailed a weekly case to analyze in response to set questions; responses and individualized faculty feedback were exchanged via email. Tests assessing ethics knowledge were administered at the start of each seminar. The post-test included an additional section in which participants were asked to identify the ethical issues highlighted in five case studies from a list of multiple-choice responses. Results were analyzed using regression and ANOVA. Results Of the 71 participants (36 control, 35 intervention) enrolled at the first seminar, 41 (57.7%) attended the second seminar (19 control, 22 intervention). In the intervention arm, 19 (54.3%) participants fully completed and 8 (22.9%) partially completed all six weekly cases. The mean score was higher on the post-test (30.3/40) than on the pre-test (28.0/40), and individual post- and pre-test scores were highly correlated (r = 0.65, p < 0.0001). Group assignment alone did not have an effect on test scores (p > 0.84), but intervention-arm subjects who completed all assigned cases answered an average of 3.2 more questions correctly on the post-test than others, controlling for pre-test scores (p = 0

  4. Adsorption of octylamine on titanium dioxide

    NASA Astrophysics Data System (ADS)

    Siwińska, Daria; Kołodziejczak-Radzimska, Agnieszka; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2009-05-01

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO 2 in the production of pharmaceuticals.

  5. Adsorption and release of ofloxacin from acid- and heat-treated halloysite.

    PubMed

    Wang, Qin; Zhang, Junping; Zheng, Yue; Wang, Aiqin

    2014-01-01

    Halloysite nanotube is an ideal vehicle of the controlled release of drugs. In this study, we systematically investigated the effects of acid- and heat-treatments on the physicochemical properties, structure and morphology of halloysite by XRD, FTIR, SEM and TEM. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that HCl treatment has no influence on the crystal structure of halloysite, whereas it becomes amorphous after calcined at temperature higher than 500 °C. Both acid- and heat-treatments have no evident influence on the tubular structure of halloysite. OFL was adsorbed onto halloysite via electrostatic interaction between protonated OFL and negative halloysite surface, cation exchange as well as electrostatic interaction between the OFL-Al(3+) complexes and the negative halloysite surface. Acid-treatment facilitates the release of the adsorbed OFL compared with the natural halloysite in spite of a slight decrease of adsorption capacity. However, heat-treatment results in a sharp decrease of adsorption capacity for OFL owning to the OFL-promoted dissolution of aluminum and the disappearance of the porous structure. Although heat-treatment also facilitates release of the adsorbed OFL, the amount of OFL released is in fact less than the natural halloysite owing to the very low adsorption capacity. Thus, acid-activation is an effective protocol to improve the adsorption and release of halloysite for cationic drug molecules. PMID:24060930

  6. Global versus local adsorption selectivity

    NASA Astrophysics Data System (ADS)

    Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves

    2015-10-01

    The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

  7. Adsorption of sulfur dioxide by native clinoptilolite

    SciTech Connect

    Merkun, I.I.; Kel'tsev, N.V.; Bratchuk, F.N.; Rogovik, M.I.

    1982-11-10

    The purpose of the present work was to study the adsorption capacity of the little-studied native clinoptilolite from Beregovo in the Zakarpatskaya region (Ruthenia) for sulfur dioxide. Adsorption of SO/sub 2/ under analogous conditions by Patrick's silica gel, prepared by us by a known method, was studied for comparison. Results indicated that native clinoptilolite studied has much higher adsorption capacity than Patrick's silica gel for sulfur dioxide in the temperature range studied. The adsorption capacity of this zeolite alters little with increase of temperature in the range 25-75/sup 0/. It is considered that native clinoptilolite can be used for removing sulfur dioxide from waste gases in the temperature and pressure ranges studied.

  8. Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications.

    PubMed

    Besser, Benjamin; Tajiri, Henrique Akira; Mikolajczyk, Gerd; Möllmer, Jens; Schumacher, Thomas C; Odenbach, Stefan; Gläser, Roger; Kroll, Stephen; Rezwan, Kurosch

    2016-02-10

    Porous adsorbents with hierarchical structured macropores ranging from 1 to 100 μm are prepared using a combination of freeze casting and additional sacrificial templating of polyurethane foams, with a zeolite 13X powder serving as adsorbent. The pore system of the prepared monoliths features micropores assigned to the zeolite 13X particle framework, interparticular pores of ∼1-2 μm, lamellar pores derived from freeze casting of ∼10 μm, and an interconnected pore network obtained from the sacrificial templates ranging from around 100 to 200 μm with a total porosity of 71%. Gas permeation measurements show an increase in intrinsic permeability by a factor of 14 for monoliths prepared with an additional sacrificial templated foam compared to monoliths solely providing freeze casting pores. Cyclic CO2 adsorption and desorption tests where pressure swings between 8 and 140 kPa reveal constant working capacities over multiple cycles. Furthermore, the monoliths feature a high volumetric working capacity of ∼1.34 mmol/cm(3) which is competitive to packed beds made of commercially available zeolite 13X beads (∼1.28 mmol/cm(3)). Combined with the faster CO2 uptake showing an adsorption of 50% within 5-8 s (beads ∼10 s), the monoliths show great potential for pressure swing adsorption applications, where high volumetric working capacities, fast uptakes, and low pressure drops are needed for a high system performance. PMID:26760054

  9. Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets.

    PubMed

    Liu, Dan; Lei, Weiwei; Qin, Si; Klika, Karel D; Chen, Ying

    2016-01-01

    Highly porous boron nitride nanosheets (BNNSs) were tested as a re-usable adsorbent for the removal of pharmaceuticals from aqueous solution. The BNNSs exhibit both unprecedentedly high adsorption capacities and excellent recyclability while maintaining their high adsorption capacity by a simple regeneration process. These advantages render BNNSs a promising material for water remediation applications. PMID:26618906

  10. A comparative study of CO adsorption on tetrahexahedral Pt nanocrystals and interrelated Pt single crystal electrodes by using cyclic voltammetry and in situ FTIR spectroscopy.

    PubMed

    Liu, Hai-Xia; Tian, Na; Ye, Jin-Yu; Lu, Bang-An; Ren, Jie; Huangfu, Zhi-Chao; Zhou, Zhi-You; Sun, Shi-Gang

    2014-01-01

    This study focuses on CO adsorption at tetrahexahedral Pt nanocrystals (THH Pt NCs) by using cyclic voltammetry and in situ FTIR spectroscopy. Since the electrochemically prepared THH Pt NCs in this study are enclosed by {730} facets which could be considered by a subfacet configuration of 2{210} + {310}, we have also studied CO adsorption on the interrelated Pt(310) and Pt(210) single crystal electrodes as a comparison. Cyclic voltammetry results demonstrated that CO adsorbs dominantly on the (100) sites of THH Pt NCs at low CO coverage (θ(CO)≤ 0.135), while on both (100) and (110) sites at higher CO coverage. On ordered Pt(310) and Pt(210), i.e. they were flame annealed and then cooled in H(2) + Ar, CO adsorption also illustrates relative priority on (100) sites at low CO coverage; while at high CO coverage or on oxygen-disordered Pt(310) and Pt(210) when they were cooled in air after flame annealing, the adsorption of CO presents a weak preference on (100) sites of Pt(310) and even no preference at all on (100) sites of Pt(210). In situ FTIR spectroscopic studies illustrated that CO adsorption on THH Pt NCs yields anomalous infrared effects (AIREs), which are depicted by the Fano-like IR feature on a dense distribution (60 μm(-2)) and the enhancement of abnormal IR absorption on a sparse distribution (22 μm(-2)) of THH Pt NCs on glassy carbon substrate. Systematic investigation of CO coverage dependence of IR features revealed that, on THH Pt NCs, the IR band center (ν(COL)) of linearly bonded CO (COL) is rapidly shifted to higher wavenumbers along with the increase of CO coverage to 0.184, yielding a fast linear increase rate with a high slope (dν(COL)/dθ(IR)(CO) = 219 cm(-1)); when θ > 0.184, the increase of ν(COL) with θCO slows down and deviates drastically from linearity. In contrast, the ν(COL) on the ordered Pt(310) electrode maintains a linear increase with θ(IR)(CO) for the whole range of θ(IR)(CO) variation, and gives a much smaller

  11. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  12. Nickel adsorption on single and dual site clay surfaces; Effect of pH and nickel loadings

    NASA Astrophysics Data System (ADS)

    Rajapaksha, A. U.; Vithanage, M. S.; Bandara, A.; Weerasooriya, R.

    2011-12-01

    We examined Ni sorption to single and dual site clays (Al dominant, Fe dominant and both Al and Fe rich sorbents) as adsorbents for removal of Ni from aqueous solutions to (i) compare the capacities, (ii) study the effect of solution pH, (iii) examine the effect of ionic strength on adsorption (iv) determine the adsorption capacity through isotherm models. Gibbsite and goethite were selected as the single site sorbent for Al and Fe while Natural Red Earth (NRE) and laterite, were used as the sorbents with dual sites for this study. The effect of pH on the sorption was studied by adjusting the pH in the range of 4-10. In these experiments, the adsorbent concentration was kept at 5 g/l of solution containing 10 mg/l Ni(II) at 25 0C. Adsorption isotherms were conducted in 0.01 M NaNO3 solution, at pH ≈ 7.5. Both single and dual site clay minerals have exhibited no dependence on ionic strength indicating inner-sphere surface complexation. However, gibbsite demonstrated highest adsorption. Adsorption increased 4-5 folds with the pH increase from 6.0 to 8.5 with maximum adsorption at pH > 8.0. Elemental mapping demonstrated the distribution of elements on the grain including sorbed Ni. These results indicate that > AlO- sites attract Ni better than >FeO- sites. Adsorption shows decrease from gibbsite > laterite > goethite > NRE. Gibbsite showed best fit for the Langmuir equation with r2 around 0.98. This indicates homogeneous adsorption. Maximum adsorption capacity for gibbsite is reported as 5.08x10-4 mol/kg. Therefore, gibbsite and laterite have a good potential to be used to remove nickel from aqueous solutions. Key words : Gibbsite, Geothite, Laterite, Natural Red Earth, Ni sorption

  13. Motivation and manipulation capacities of the blue and yellow macaw and the tufted capuchin: a comparative approach.

    PubMed

    Brunon, Anaïs; Bovet, Dalila; Bourgeois, Aude; Pouydebat, Emmanuelle

    2014-09-01

    This study compared the motivation of the blue and yellow macaw (n=8) and the tufted capuchin (n=3) to manipulate objects that presented different features, their manipulative repertoires, and their ability to solve complex manipulation tasks. Results show that both species seem to be more motivated to manipulate objects that look like food items and that manipulative behavior may be considered as play behavior in the blue and yellow macaws, and would improve foraging motor skills. The tufted capuchins performed more different action styles than the macaws when manipulating objects, and performed substrate-use behavior - the object is put in relationship with a substrate - while the macaws did not. This is an interesting difference because these characteristics are supposed to be precursory of tool-use, behavior never observed in this macaw species. It may be due to the arboreal lifestyle of the macaw and its neophobic character that do not allow it to easily contact objects. Following the same method and using more individuals, further comparative studies should be conducted in order to test these hypotheses. Both species were able to solve complex manipulation tasks. PMID:25043567

  14. Comparing the Predictive Capacity of Observed In-Session Resistance to Self-Reported Motivation in Cognitive Behavioral Therapy

    PubMed Central

    Westra, Henny A.

    2010-01-01

    Self-report measures of motivation for changing anxiety have been weakly and inconsistently related to outcome in cognitive behavioral therapy (CBT). While clients may not be able to accurately report their motivation, ambivalence about change may nonetheless be expressed in actual therapy sessions as opposition to the direction set by the therapist (i.e., resistance). In the context of CBT for generalized anxiety disorder, the present study compared the ability of observed in-session resistance in CBT session 1 and two self-report measures of motivation for changing anxiety (the Change Questionnaire & the Client Motivational for Therapy Scale) to (1) predict client and therapist rated homework compliance (2) predict post-CBT and one-year post-treatment worry reduction, and (3) differentiate those who received motivational interviewing prior to CBT from those who received no pretreatment. Observed in-session resistance performed very well on each index, compared to the performance of self-reported motivation which was inconsistent and weaker relative to observed resistance. These findings strongly support both clinician sensitivity to moments of client resistance in actual therapy sessions as early as session 1, and the inclusion of observational process measures in CBT research. PMID:21159325

  15. Aerobic Capacity, Physical Activity and Metabolic Risk Factors in Firefighters Compared with Police Officers and Sedentary Clerks

    PubMed Central

    Leischik, Roman; Foshag, Peter; Strauß, Markus; Littwitz, Henning; Garg, Pankaj; Dworrak, Birgit; Horlitz, Marc

    2015-01-01

    Background This study examined the association between the physical work environment and physiological performance measures, physical activity levels and metabolic parameters among German civil servants. A main focus in this study was to examine the group differences rather than measuring the absolute values in an occupational group. Methods We prospectively examined 198 male German civil servants (97 firefighters [FFs], 55 police officers [POs] and 46 sedentary clerks [SCs]). For each parameter, the groups were compared using a linear regression adjusted for age. Results The 97 FFs showed a similar maximal aerobic power (VO2max l/min) of 3.17±0.44 l/min compared with the POs, who had a maximal aerobic power of 3.13±0.62 l/min (estimated difference, POs vs. FFs: 0.05, CI: -0.12-0.23, p=0.553). The maximal aerobic power of the FFs was slightly higher than that of the SCs, who had a maximal aerobic power of 2.85±0.52 l/min (-0.21, CI: -0.39-0.04, p=0.018 vs. FFs). The average physical activity (in metabolic equivalents [METS]/week) of the FFs was 3818.8±2843.5, whereas those of the POs and SCs were 2838.2±2871.9 (-808.2, CI: 1757.6-141.2, p=0.095) and 2212.2±2292.8 (vs. FFs: -1417.1, CI: -2302-531.88, p=0.002; vs. POs: -2974.4, CI: -1611.2-393.5, p=0.232), respectively. For the FFs, the average body fat percentage was 17.7%±6.2, whereas it was 21.4%±5.6 for the POs (vs. FFs: 2.75, CI: 0.92-4.59, p=0.004) and 20.8%±6.5 for the SCs (vs. FFs: 1.98, CI: -0.28-4.25, p=0.086; vs. POs: -0.77, CI: 3.15-1.61, p=0.523). The average waist circumference was 89.8 cm±10.0 for the FFs, 97.8 cm±12.4 (5.63, CI: 2.10-9.15, p=0.002) for the POs, and 97.3±11.7 (vs. FFs: -4.89, CI: 1.24-8.55, p=0.009; vs. POs: -0.73, CI: -5.21-3.74, p=0.747) for the SCs. Conclusions The FFs showed significantly higher physical activity levels compared with the SCs. The PO group had the highest cardiovascular risk of all of the groups because it included more participants with metabolic

  16. Preparation of nanocrystalline Fe 3-x LaxO4 ferrite and their adsorption capability for Congo red.

    PubMed

    Wang, Lixia; Li, Jianchen; Wang, Yingqi; Zhao, Lijun

    2011-11-30

    This investigation was to increase the adsorption capacity of magnetite for Congo red (CR) by adulterating a small quantity of La(3+) ions into it. The adsorption capability of nanocrystalline Fe(3-x)La(x)O(4) (x=0, 0.01, 0.05, 0.10) ferrite to remove CR from aqueous solution was evaluated carefully. Compared with undoped magnetite, the adsorption values were increased from 37.4 to 79.1 mg g(-1). The experimental results prove that it is effectual to increase the adsorption capacity of magnetite by doped La(3+) ions. Among the La(3+)-doped magnetite, Fe(2.95)La(0.05)O(4) nanoparticles exhibit the highest saturation magnetization and the maximum adsorption capability. The desorption ability of La(3+)-doped magnetite nanoparticles loaded by CR can reach 92% after the treatment of acetone. Furthermore, the Fe(3-x)La(x)O(4) nanoparticles exhibited a clearly ferromagnetic behavior under applied magnetic field, which allowed their high-efficient magnetic separation from wastewater. It is found that high magnetism facilitates to improve their adsorption capacity for the similar products. PMID:21944701

  17. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater.

    PubMed

    Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin

    2016-09-15

    The increasing concerns on toxicity of sulfonamide antibiotics in water require a prompt action to establish efficient wastewater treatment processes for their removal. In this study, adsorptive removal of a model sulfonamide antibiotic, sulfachloropyridazine (SCP), from wastewater is presented for the first time using a metal organic framework (MOF). A high surface area and thermally stable MOF, HKUST-1, was synthesized by a facile method. Batch adsorption studies were systematically carried out using HKUST-1. The high surface area and unsaturated metal sites resulted in a significant adsorption capacity with faster kinetics. Most of the SCP was removed in 15min and the kinetic data were best fitted with the pseudo second order model. Moreover, isothermal data were best fitted with the Langmuir model. The thermodynamic results showed that the adsorption is a spontaneous and endothermic process. The adsorption capacity of HKUST-1 is 384mg/g at 298K which is the highest compared to most of the materials for the antibiotics. The high adsorption capacity is attributed mainly to π-π stacking, hydrogen bonding and electrostatic interactions. PMID:27318714

  18. The effect of polysaccharide types on adsorption properties of LbL assembled multilayer films.

    PubMed

    Xu, Jie; Yang, Lixing; Hu, Xiaoxia; Xu, Shimei; Wang, Jide; Feng, Shun

    2015-03-01

    Three types of biocompatible films were fabricated via electrostatic layer-by-layer (LbL) adsorption of oppositely charged cationic polyurethane and anionic polysaccharides with different primary structures, including sodium hyaluronate, sodium carboxymethyl cellulose and sodium alginate. The adsorption behaviors of films were investigated by using the cationic dye methylene blue (MB) as a model drug at various pH values and salt concentrations. The relationship between the type of polysaccharide and the adsorption behavior of LbL films was comparatively studied. It was found that the adsorption capacity increased with an increase of the initial concentration of MB in the concentration range of the experiment to all of the films, and the pH of environment ranged from 3.0 to 9.0. The Langmuir equation fit perfectly to the experiment data. In addition, a pseudo second-order adsorption model can well describe the adsorption behaviors of MB for three films. The results showed that the type of side chains and the charge density of the polysaccharides played key roles in the adsorption properties of the PU/polysaccharide multilayer films. PMID:25609027

  19. Phenolic resin-based porous carbons for adsorption and energy storage applications

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Nilantha P.

    view. So far, carbons with high surface area and nitrogen content have been vastly studied. Also, there are several reports showing the importance of pore size towards CO2 adsorption at ambient conditions. In the case of nitrogen containing carbons, it was shown that the incorporation of nitrogen into carbon matrix is a challenging task. In chapter 3, we discussed how to improve the surface area and pore size distribution of phenolic resin-based carbons to obtain optimum CO 2 adsorption capacities at ambient conditions. The chemical and physical activation of polymer/carbon particles is used to generate necessary physical properties of the final carbons, which display unprecedented CO2 adsorption capacities at ambient conditions. Moreover, the modified Stober-like methods are used for the synthesis of nitrogen containing carbon particles. These facile synthesis methods afford highly porous nitrogen containing carbons with comparatively high CO2 adsorption capacities at ambient conditions. Chapter 4 begins with synthesis of ultra large mesoporous carbons using (ethylene oxide)38 (butylene oxide)46 (ethylene oxide) 38 triblock copolymer as a soft template and phenolic resins as the carbon precursors. Even though, there are many reports dealing with the synthesis of mesoporous silica with large pores for bio-molucular adsorption their high cost discourage them to use in industrial applications. However, cheap mesoporous carbons with large pores (>15 nm) are potential materials for bio-molecular adsorption on large scale. The first part of chapter 4 is demonstrates the synthesis of mesoporous carbons with ultra large pores for bio-molecular adsorption. Lysozyme was selected as a model biomolecule for adsorption processes. The second part of Chapter 4 is focused on functionalized polymer spheres for heavy metal ions adsorption. It is shown that the synthesis of functionalized polymer spheres can be achieved by using modified Stober method; the reacting spheres show very

  20. A comparative study of the acidity toward the aqueous phase and adsorptive properties of Al{sub 13}-pillared montmorillonite and Al{sub 13}-pillared saponite

    SciTech Connect

    Bergaoui, L.; Mrad, I.; Ghorbel, A.; Lambert, J.F.

    1999-04-15

    The selectivity of an Al{sub 13}-pillared saponite and an Al{sub 13}-pillared montmorillonite for Cd{sup 2+} and Cu{sup 2+} adsorption was studied. The quantity of metal adsorbed on both pillared clays depends on the pH of the solution and the pillars density. Adsorption equilibria are regulated by the protonation equilibria of the amphoteric sites on the pillars. Pillared clays adsorb more cadmium and copper than classic aluminum hydroxides which is simply attributable to a higher density of surface aluminum groups. Significant differences in behavior are observed between pillared montmorillonite and pillared saponite. Pillared montmorillonite appears to be more acidic, which is correlated with a more advanced degree of structural modification of the pillars on calcination. The authors propose a tentative, partial structural model of pillar transformation compatible with these differences. At the same time, both pillared clays have similar affinities for cadmium II at low pH (5--6), but pillared montmorillonite seems to be a more efficient cadmium trap at pH = 8 when its surface groups are negatively ionized. Thus, the nature of the clay layers conditions the structural modifications of the intercalated [Al{sub 13}] polycations, which in turn determine adsorptive behavior.

  1. UV erythema reducing capacity of mizolastine compared to acetylsalicylic acid or both combined in comparison to indomethacin.

    PubMed

    Grundmann, J U; Böckelmann, R; Bonnekoh, B; Gollnick, H P

    2001-10-01

    UV light exerts hazardous effects such as induction of skin cancer and premature skin aging. In this study we evaluated an assumptive anti-inflammatory effect of the nonsedative histamine H1-receptor antagonist, mizolastine, on UV-induced acute sunburn reaction. Therefore, a clinical, randomized, double-blind, four-arm, crossover study was conducted in healthy young female volunteers (skin type II) comparing the UV sensitivity under mizolastine, acetyl-salicylic acid (ASA), indomethacin or a mizolastine/ASA combination. Moreover, HaCaT keratinocytes were incubated with mizolastine under various UV treatment modalities in vitro to study its effect on the release of inflammatory cytokines, i.e. interleukin (IL)-1 alpha, IL-6 and tumor necrosis factor alpha (TNF-alpha). All three drugs were effective in suppressing the UVB-, UVA- and combined UVA/UVB-erythema. However, the strongest effects were observed using the combined treatment with both 250 mg ASA and 10 mg mizolastine. An inhibitory effect in vitro of 10 nM mizolastine upon UV-induced cytokine release from HaCaT keratinocytes was observed for IL-1 alpha at 24 h after 10 J/cm2 UVA1, for IL-6 at 48 h after 10 J/cm2 UVA1 and 30 mJ/cm2 UVB, and also for TNF-alpha at 4 h after 10 J/cm2 UVA, 10 J/cm2 UVA1 and 30 mJ/cm2 UVB, respectively. The combination of mizolastine and ASA can be strongly recommended as a protective measure against UV erythema development with a lower unwanted side effect profile than that of the hitherto treatment modality, i.e. indomethacin. PMID:11683039

  2. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  3. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.

    PubMed

    Jung, Chanil; Park, Junyeong; Lim, Kwang Hun; Park, Sunkyu; Heo, Jiyong; Her, Namguk; Oh, Jeill; Yun, Soyoung; Yoon, Yeomin

    2013-12-15

    Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study. PMID:24231319

  4. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production

    PubMed Central

    2012-01-01

    Background A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved. Results Both genomes were re-annotated, resulting in 14 fewer genes (net) in the PCA genome; 28 fewer (net) in the KN400 genome; and ca. 400 gene start and stop sites moved. 96% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP) between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb) were found in 3.6% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail. Conclusions The improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The electrically conductive pili appear

  5. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume.

    PubMed

    Liu, Han-Bing; Yang, Bing; Xue, Nan-Dong

    2016-11-15

    A series of hydrophobic-modified (polydimethylsiloxane (PDMS) coating) activated carbons (ACs) were developed to answer a fundamental question: what are the determinants that dominate the adsorption on ACs under humid conditions? Using column experiments, an inter-comparison among bare-AC and PDMS-coated ACs was conducted regarding the association of surface characteristics and adsorption capacity. Primary outcomes occurred in two dominating markers, hydrophobicity and total micropore volume, which played a key role in water adsorption on ACs. However, their contributions to water adsorption on ACs substantially differed under different Pwater/Pair conditions. Hydrophobicity was the only contributor in Pwater/Pair=0.1-0.6, while the two markers contributed equally in Pwater/Pair=0.7-1.0. Furthermore, PDMS-coated AC had a significant increase in benzene adsorption capacities compared to bare-AC at 0-90% relative humidity, while these differences were not significant among PDMS-coated ACs. It is thus presumed that the balance between the two markers can be shifted to favor almost unchanged benzene adsorption capacities among PDMS-coated ACs over a large range of relative humidity. These findings suggest potential benefits of PDMS coating onto ACs in enhancing selective adsorption of hydrophobic volatile organic compounds under high humid conditions. To develop new porous materials with both high total micropore volume and hydrophobicity should thus be considered. PMID:27450334

  6. Adsorption characteristics of hexavalent chromium on HCB/TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yonggang

    2014-10-01

    Sol-gel method was adopted to prepare HCB/TiO2 and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO2 was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pHpzc) characteristics of the surface of HCB/TiO2 which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25-45 °C, so Cr(VI) adsorption by HCB/TiO2 is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g-1 in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  7. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  8. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents. PMID:27160635

  9. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials

    SciTech Connect

    Furukawa, H; Gandara, F; Zhang, YB; Jiang, JC; Queen, WL; Hudson, MR; Yaghi, OM

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)(4)(-CO2)(n) secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

  10. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent.

    PubMed

    Li, Kun; Li, Pei; Cai, Jun; Xiao, Shoujun; Yang, Hu; Li, Aimin

    2016-07-01

    A quaternary ammonium salt modified chitosan magnetic composite adsorbent (CS-CTA-MCM) was prepared by combination of Fe3O4 nanoparticles. Various techniques were used to characterize the molecular structure, surface morphology, and magnetic feature of this composite adsorbent. CS-CTA-MCM was employed for the removal of Cr(VI) and methyl orange (MO), an anionic dye, from water in respective single and binary systems. Compared with chitosan magnetic adsorbent (CS-MCM) without modification, CS-CTA-MCM shows evidently improved adsorption capacities for both pollutants ascribed to the additional quaternary ammonium salt groups. Based on the adsorption equilibrium study, MO bears more affinity to CS-CTA-MCM than Cr(VI) causing a considerable extent of preferential adsorption of dye over metal ions in their aqueous mixture. However, at weak acidic solutions, Cr(VI) adsorption is evidently improved due to more efficient Cr(VI) forms, i.e. dichromate and monovalent chromate, binding to this chitosan-based adsorbent. Thus chromium could be efficient removal together with MO at suitable pH conditions. The adsorption isotherms and kinetics indicate that adsorptions of Cr(VI) and MO by CS-CTA-MCM both follow a homogeneous monolayer chemisorption process. This magnetic adsorbent after saturated adsorption could be rapidly separated from water and easily regenerated using dilute NaOH aqueous solutions then virtually reused with little adsorption capacity loss. PMID:27060639

  11. Effectiveness and potential of straw- and wood-based biochars for adsorption of imidazolium-type ionic liquids.

    PubMed

    Shi, Kaishun; Qiu, Yuping; Ben Li; Stenstrom, Michael K

    2016-08-01

    The growing industrial application of imidazolium-type ionic liquids (ITILs) is likely to result in their release to the environment. Water-soluble ITILs are difficult to remove from wastewaters using traditional adsorbents. In this work, we developed different biochars derived from straw and wood (named as SBB and WBB, respectively) to improve the adsorption effectiveness for removal of ITILs from wastewaters. SBB had high O/C element ratio (0.143), while WBB had high ratio of Vmicro/Vtotal (61.5%) compared with commercial activated carbon (AC). Both of them showed greater adsorption of ITILs than AC with different adsorption mechanisms. FTIR spectra revealed that electrostatic interactions were the dominant driving force in SBB adsorption, while high micropore volume promoted adsorption in WBB. The adsorption of [C2mim][BF4] on SBB and WBB was strongly enhanced by trivalent PO4(3-) anions, suggesting that PO4(3-) anions could be used as promoter to increase the removal efficiency of ITILs from wastewater. Using HCl solution (pH=0.5) as regenerant, SBB and WBB were regenerated with nearly 100% recovery of adsorption capacity over ten consecutive adsorption-desorption cycles. Straw-based biochar and wood-based biochar are efficient sorbents for removal of water-soluble ionic liquids from aqueous solutions. PMID:27107176

  12. How comparative psychology can shed light on human evolution: Response to Beran et al.'s discussion of "Cognitive capacities for cooking in chimpanzees".

    PubMed

    Rosati, Alexandra G; Warneken, Felix

    2016-06-01

    We recently reported a study (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015) examining whether chimpanzees possess several cognitive capacities that are critical to engage in cooking. In a subsequent commentary, Beran, Hopper, de Waal, Sayers, and Brosnan Learning & Behavior (2015) asserted that our paper has several flaws. Their commentary (1) critiques some aspects of our methodology and argues that our work does not constitute evidence that chimpanzees can actually cook; (2) claims that these results are old news, as previous work had already demonstrated that chimpanzees possess most or all of these capacities; and, finally, (3) argues that comparative psychological studies of chimpanzees cannot adequately address questions about human evolution, anyway. However, their critique of the premise of our study simply reiterates several points we made in the original paper. To quote ourselves: "As chimpanzees neither control fire nor cook food in their natural behavior, these experiments therefore focus not on whether chimpanzees can actually cook food, but rather whether they can apply their cognitive skills to novel problems that emulate cooking" (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015, p. 2). Furthermore, the methodological issues they raise are standard points about psychological research with animals-many of which were addressed synthetically across our 9 experiments, or else are orthogonal to our claims. Finally, we argue that comparative studies of extant apes (and other nonhuman species) are a powerful and indispensable method for understanding human cognitive evolution. PMID:27007910

  13. [Characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant].

    PubMed

    Wang, Chang-Hui; Pei, Yuan-Sheng

    2011-08-01

    Batch tests have been used to investigate the characteristics of orthophosphate adsorption on ferric-alum residuals (FARs) from drinking water treatment plant. ICP, SEM and XRD analyses confirm that the FARs enriched in Fe and Al elements and presented amorphism structure. Orthophosphate sorption by the FARs can be described by the pseudo-second-order kinetics equation. Fine adsorption effects of the FARs were found under lower pH values, particularly a 40.13% drop of the adsorptive capacity from pH 4.6 to pH 7.6. The FARs with grain sizes of 0.6-0.9 mm had the highest adsorption capacity of orthophosphate. Experimental data could be better fitted by the isotherm models of Langmuir (R2 = 0.9736) and Freundlich (R2 = 0.9916). The maximal adsorptive capacity reached 45.45 mg x g(-1) estimated from Langmuir isotherm model. Compared with other natural and industrial materials, FARs has relatively higher adsorption capacity. Under similar testing conditions, it was found that only about 10% orthophosphate could be desorbed from the FARs. Further study demonstrated that the mean energy of orthophosphate sorption on the FARs was 13.36 kJ x mol(-1) and the deltaH0 > 0, deltaS0 > 0 and deltaG0 < 0, which indicated that orthophosphate sorption on the FARs was a spontaneously endothermic chemical reaction. It can be therefore highly valued that the FARs may be applied to phosphate removal from wastewater and surface water. PMID:22619965

  14. A high-capacity hydrophobic adsorbent for human serum albumin.

    PubMed

    Belew, M; Peterson, E A; Porath, J

    1985-12-01

    A simple method, based on salting out hydrophobic interaction chromatography, for the efficient removal of trace amounts of serum albumin from partially purified protein preparations is described. The method is also successfully applied for the purification of albumin from Cohn fraction IV, a by-product obtained from the commercial fractionation of human serum proteins by the ethanol precipitation procedure. About 70% of the adsorbed albumin can be eluted by buffer of low ionic strength and can thus be lyophilized directly, if required. The adsorbent can be used for several cycles of adsorption and desorption without affecting its selectivity or capacity. Its adsorption properties and capacity for serum albumin are compared with those of the commercially available adsorbent Blue Sepharose CL-6B. PMID:3879424

  15. Comparative Effects of Vigorous-Intensity and Low-Intensity Blood Flow Restricted Cycle Training and Detraining on Muscle Mass, Strength, and Aerobic Capacity.

    PubMed

    Kim, Daeyeol; Singh, Harshvardhan; Loenneke, Jeremy P; Thiebaud, Robert S; Fahs, Christopher A; Rossow, Lindy M; Young, Kaelin; Seo, Dong-Il; Bemben, Debra A; Bemben, Michael G

    2016-05-01

    Kim, D, Singh, H, Loenneke, JP, Thiebaud, RS, Fahs, CA, Rossow, LM, Young, K, Seo, D-i, Bemben, DA, and Bemben, MG. Comparative effects of vigorous-intensity and low-intensity blood flow restricted cycle training and detraining on muscle mass, strength, and aerobic capacity. J Strength Cond Res 30(5): 1453-1461, 2016-Traditional high-intensity aerobic training has been shown to improve muscle protein synthesis and aerobic capacity; however, recent research indicates that low-intensity aerobic training with blood flow restriction (BFR) may have similar effects. The purpose of this study was to compare the effects of vigorous-intensity (VI) cycling vs. low-intensity cycling with BFR (LI-BFR) on muscle mass, strength, and aerobic capacity after training and subsequent detraining. Thirty-one physically active subjects were assigned to one of 3 groups: VI (n = 10, 60-70% heart rate reserve [HRR]), LI-BFR (n = 11, 30% HRR with BFR at 160-180 mm Hg), and no exercise control (n = 10, no exercise). Subjects in VI and LI-BFR cycled 3 times per week for 6 weeks (total 18 sessions). Body composition, muscle mass, strength, and aerobic capacity were measured pre, post, and after 3 weeks of detraining. A group × time interaction (p = 0.019) effect for both knee flexion and leg lean mass was found. For both VI and LI-BFR groups, knee flexion strength was significantly increased between pre and post (p = 0.024, p = 0.01) and between pre and 3 week-post (p = 0.039, p = 0.003), respectively. For the LI-BFR group, leg lean mass was significantly increased between pre and 3 week-post (p = 0.024) and between post and 3 week-post (p = 0.013). However, there were no significant differences between groups for any variables. The LI-BFR elicits an increase in the knee flexion muscle strength over time similar to the VI. An increase in the leg lean mass over time was seen in the LI-BFR, but not in VI and CON. PMID:26439780

  16. Parametric study of a silica gel-water adsorption refrigeration cycle -- The influence of thermal capacitance and heat exchanger UA-values on cooling capacity, power density, and COP

    SciTech Connect

    Boelman, E.C.; Saha, B.B.; Kashiwagi, Takao

    1997-12-31

    The influence of heat exchanger UA-values (adsorber/desorber, evaporator, and condenser) is investigated for an adsorption chiller, with consideration given to the thermal capacitance of the adsorber/desorber by means of a lumped-parameter cycle simulation model developed by the authors and co-workers for the single-stage silica gel-water adsorption chiller. The closed-cycle-type chiller, for use in air conditioning, is driven by low-grade waste heat (85 C [185 F]) and cooled by water at 31 C (88 F) and operates on relatively short cycle times (420 seconds adsorption/desorption; 30 second adsorber/desorber sensible cooling and heating). The results showed cycle performance to be considerably affected by the thermal capacitance and UA-value of the adsorber/desorber, which is attributed to the severe sensible cooling/heating requirements resulting from batched cycle operation. The model is also sensitive to the evaporator UA-value--but to a lesser extent. The condenser UA-value is the least sensitive parameter due to the working pair adsorption behavior in the temperature range defined for desorption and condensation.

  17. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater.

    PubMed

    Nguyen, T A H; Ngo, H H; Guo, W S; Zhang, J; Liang, S; Yue, Q Y; Li, Q; Nguyen, T V

    2013-11-01

    This critical review discusses the potential use of agricultural waste based biosorbents (AWBs) for sequestering heavy metals in terms of their adsorption capacities, binding mechanisms, operating factors and pretreatment methods. The literature survey indicates that AWBs have shown equal or even greater adsorption capacities compared to conventional adsorbents. Thanks to modern molecular biotechnologies, the roles of functional groups in biosorption process are better understood. Of process factors, pH appears to be the most influential. In most cases, chemical pretreatments bring about an obvious improvement in metal uptake capacity. However, there are still several gaps, which require further investigation, such as (i) searching for novel, multi-function AWBs, (ii) developing cost-effective modification methods and (iii) assessing AWBs under multi-metal and real wastewater systems. Once these challenges are settled, the replacement of traditional adsorbents by AWBs in decontaminating heavy metals from wastewater can be expected in the future. PMID:24045220

  18. Adsorption of chlorine dioxide gas on activated carbons.

    PubMed

    Wood, Joseph P; Ryan, Shawn P; Snyder, Emily Gibb; Serre, Shannon D; Touati, Abderrahmane; Clayton, Matthew J

    2010-08-01

    Research and field experience with chlorine dioxide (ClO2) gas to decontaminate structures contaminated with Bacillus anthracis spores and other microorganisms have demonstrated the effectiveness of this sterilant technology. However, because of its hazardous properties, the unreacted ClO2, gas must be contained and captured during fumigation events. Although activated carbon has been used during some decontamination events to capture the ClO2 gas, no data are available to quantify the performance of the activated carbon in terms of adsorption capacity and other sorbent property operational features. Laboratory experiments were conducted to determine and compare the ClO2 adsorption capacities of five different types of activated carbon as a function of the challenge ClO2 concentration. Tests were also conducted to investigate other sorbent properties, including screening tests to determine gaseous species desorbed from the saturated sorbent upon warming (to provide an indication of how immobile the ClO2 gas and related compounds are once captured on the sorbent). In the adsorption tests, ClO2 gas was measured continuously using a photometric-based instrument, and these measurements were verified with a noncontinuous method utilizing wet chemistry analysis. The results show that the simple activated carbons (not impregnated or containing other activated sorbent materials) were the most effective, with maximum adsorption capacities of approximately 110 mg/g. In the desorption tests, there was minimal release of ClO(2) from all sorbents tested, but desorption levels of chlorine (Cl2) gas (detected as chloride) varied, with a maximum release of nearly 15% of the mass of ClO2 adsorbed. PMID:20842929

  19. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water.

    PubMed

    Guo, Yuexin; Jia, Zhiqian

    2016-11-01

    Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles. PMID:27322899

  20. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    SciTech Connect

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  1. Adsorption of dimethyl sulfide from aqueous solution by a cost-effective bamboo charcoal.

    PubMed

    Wang, Ming; Huang, Zheng-Hong; Liu, Guangjia; Kang, Feiyu

    2011-06-15

    The adsorption of dimethyl sulfide from an aqueous solution by a cost-effective bamboo charcoal from Dendrocalamus was studied in comparison with other carbon adsorbents. The bamboo charcoal exhibited superior adsorption on dimethyl sulfide compared with powdered activated carbons at different adsorbent dosages. The adsorption characteristics of dimethyl sulfide onto bamboo charcoal were investigated under varying experimental conditions such as particle size, contact time, initial concentration and adsorbent dosage. The dimethyl sulfide removal was enhanced from 31 to 63% as the particle size was decreased from 24-40 to >300 mesh for the bamboo charcoal. The removal efficiency increased with increasing the adsorbent dosage from 0.5 to 10mg, and reached 70% removal efficiency at 10mg adsorbed. The adsorption capacity (μg/g) increased with increasing concentration of dimethyl sulfide while the removal efficiency decreased. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of dimethyl sulfide is more appropriately described by the Freundlich isotherm (R(2), 0.9926) than by the Langmuir isotherm (R(2), 0.8685). Bamboo charcoal was characterized by various analytical methods to understand the adsorption mechanism. Bamboo charcoal is abundant in acidic and alcohol functional groups normally not observed in PAC. A distinct difference is that the superior mineral composition of Fe (0.4 wt%) and Mn (0.6 wt%) was detected in bamboo charcoal-elements not found in PAC. Acidic functional group and specific adsorption sites would be responsible for the strong adsorption of dimethyl sulfide onto bamboo charcoal of Dendrocalamus origin. PMID:21549503

  2. Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model.

    PubMed

    Kazemnejad, Somaieh; Khanmohammadi, Manijeh; Mobini, Sahba; Taghizadeh-Jahed, Masoud; Khanjani, Sayeh; Arasteh, Shaghayegh; Golshahi, Hannaneh; Torkaman, Giti; Ravanbod, Roya; Heidari-Vala, Hamed; Moshiri, Ali; Tahmasebi, Mohammad-Naghi; Akhondi, Mohammad-Mehdi

    2016-06-01

    The reconstruction capability of osteochondral (OCD) defects using silk-based scaffolds has been demonstrated in a few studies. However, improvement in the mechanical properties of natural scaffolds is still challengeable. Here, we investigate the in vivo repair capacity of OCD defects using a novel Bombyx mori silk-based composite scaffold with great mechanical properties and porosity during 36 weeks. After evaluation of the in vivo biocompatibility and degradation rate of these scaffolds, we examined the effectiveness of these fabricated scaffolds accompanied with/without autologous chondrocytes in the repair of OCD lesions of rabbit knees after 12 and 36 weeks. Moreover, the efficiency of these scaffolds was compared with fibrin glue (FG) as a natural carrier of chondrocytes using parallel clinical, histopathological and mechanical examinations. The data on subcutaneous implantation in mice showed that the designed scaffolds have a suitable in vivo degradation rate and regenerative capacity. The repair ability of chondrocyte-seeded scaffolds was typically higher than the scaffolds alone. After 36 weeks of implantation, most parts of the defects reconstructed by chondrocytes-seeded silk scaffolds (SFC) were hyaline-like cartilage. However, spontaneous healing and filling with a scaffold alone did not eventuate in typical repair. We could not find significant differences between quantitative histopathological and mechanical data of SFC and FGC. The fabricated constructs consisting of regenerated silk fiber scaffolds and chondrocytes are safe and suitable for in vivo repair of OCD defects and promising for future clinical trial studies. PMID:26822846

  3. Assessing and comparing the total antioxidant capacity of commercial beverages: application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods.

    PubMed

    Queirós, Raquel B; Tafulo, Paula A R; Sales, M Goreti F

    2013-01-01

    This work measures and tries to compare the Antioxidant Capacity (AC) of 50 commercial beverages of different kinds: 6 wines, 12 beers, 18 soft drinks and 14 flavoured waters. Because there is no reference procedure established for this purpose, three different optical methods were used to analyse these samples: Total Radical trapping Antioxidant Parameter (TRAP), Trolox Equivalent Antioxidant Capacity (TEAC) and Ferric ion Reducing Antioxidant Parameter (FRAP). These methods differ on the chemical background and nature of redox system. The TRAP method involves the transfer of hydrogen atoms while TEAC and FRAP involves electron transfer reactions. The AC was also assessed against three antioxidants of reference, Ascorbic acid (AA), Gallic acid (GA) and 6-hydroxy-2,5,7,8-tetramethyl- 2-carboxylic acid (Trolox). The results obtained were analyzed statistically. Anova one-way tests were applied to all results and suggested that methods and standards exhibited significant statistical differences. The possible effect of sample features in the AC, such as gas, flavours, food colouring, sweeteners, acidity regulators, preservatives, stabilizers, vitamins, juice percentage, alcohol percentage, antioxidants and the colour was also investigated. The AC levels seemed to change with brand, kind of antioxidants added, and kind of flavour, depending on the sample. In general, higher ACs were obtained for FRAP as method, and beer for kind of sample, and the standard expressing the smaller AC values was GA. PMID:22931382

  4. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was first order with respect to both the initial Al concentration and the clay surface area. Changes in pH within this narrow range had virtually no effect on adsorption rate. This zero order reaction dependence suggested that the H/sup +/, compared to Al, has a weak affinity for the surface. The rates of adsorption decreased in the order of montmorillonite > kaolinite > vermiculite when compared on the basis of equal surface areas, but changed to kaolinite > montmorillonite > vermiculite when the clays were compared on an equal exchange capacity basis. The calculated apparent activation energies were < 32 kJ mol/sup -1/, indicating that over the temperature range of the study the adsorption process is only marginally temperature sensitive. The mechanism is governed by a simple electrostatic cation exchange involving outer sphere complexes between adsorbed Al and the clay surface. Vermiculite, may have a second reaction step governed by both electrostatic attraction and internal ion diffusion. Equilibrium constants for the formation of an adsorbed Al clay complex were also estimated and are 10/sup 5.34/, 10/sup 5.18/, and 10/sup 4.94/ for kaolinite, montmorillonite, and vermiculite, respectively, suggesting that these clays could play a significant role in controlling soil solutions Al concentrations.

  5. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores. PMID:27391585

  6. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. PMID:26082184

  7. Bond selectivity in the dissociative adsorption of c-CH 2N 2 on single crystals: a comparative DFT-LSD investigation for Pd(110) and Cu(110)

    NASA Astrophysics Data System (ADS)

    Rochefort, Alain; McBreen, Peter H.; Salahub, Dennis R.

    1996-02-01

    A comparison between the reactivity of palladium and copper cluster models toward diazirine ( c-CH 2N 2) was made using the LCGTO-MCP-LSD method. Adsorption with the nitrogen pair directly over surface atoms (the μ-top site) is clearly more stable than when the NN pair is perpendicular to the rows of the (110) surface (the μ-bridge site). The NN bond is strongly affected by adsorption, a significant decrease of its bond order is observed for both palladium and copper. One main difference between palladium and copper with regards to the adsorption of c-CH 2N 2 is the magnitude of the MN bond order; palladium tends to form a stronger chemisorption bond than copper. A second difference is that partial occupation of the LUMO of diazirine only occurs for the copper cluster model systems. The concerted dissociation of CN bonds is energetically demanding but appears to be easier on Pd than on Cu by around 28 kcal mol -1. The study of electronically perturbed diazirine (excited, ionized or isomerized) provides insight on how chemisorption induces variations in bond lengths and vibrational frequencies as a result of charge transfer. The results of the calculations show that the μ-top adsorbed state is more similar to the n_ →π∗ first excited state of the free molecule than to the ionized state. A more striking result is obtained when the first excited states of the chemisorbed complexes are studied. A 0.4 eV electron excitation in the {c- CH2N2}/{Cu4} complex (μ-top) leads to a significant decrease of the bond order of the NN bond but does not induce even a small change for the {c- CH2N2}/{Pd4} complex. The calculations provide some insights on the markedly different bond scission selectivity observed in experimental studies of the thermal decomposition of diazirine on Pd and Cu surfaces. Experiments show that NN bond scission occurs with essentially 100% selectivity on copper, whereas NN bond retention as well as NN bond scission occurs on Pd(110).

  8. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    PubMed

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate. PMID:20391797

  9. Periodic Mesoporous Organosilica Nanocubes with Ultrahigh Surface Areas for Efficient CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Wei, Yong; Li, Xiaomin; Zhang, Renyuan; Liu, Yong; Wang, Wenxing; Ling, Yun; El-Toni, Ahmed Mohamed; Zhao, Dongyuan

    2016-02-01

    Ultrahigh surface area single-crystals of periodic mesoporous organosilica (PMOs) with uniform cubic or truncated-cubic morphology and organic/inorganic components homogeneously distributed over the whole frameworks have successfully been prepared by a sol-gel surfactant-templating method. By tuning the porous feature and polymerization degree, the surface areas of the obtained PMO nanocubes can reach as high as 2370 m2/g, which is the highest for silica-based mesoporous materials. The ultrahigh surface area of the obtained PMO single crystals is mainly resulted from abundant micropores in the mesoporous frameworks. Furthermore, the diameter of the nanocubes can also be well controlled from 150 to 600 nm. The materials show ultrahigh CO2 adsorption capacity (up to 1.42 mmol/g at 273 K) which is much higher than other porous silica materials and comparable to some carbonaceous materials. The adsorption of CO2 into the PMO nanocubes is mainly in physical interaction, therefore the adsorption-desorption process is highly reversible and the adsorption capacity is much dependent on the surface area of the materials. Moreover, the selectivity is also very high (~11 times to N2) towards CO2 adsorption.

  10. Periodic Mesoporous Organosilica Nanocubes with Ultrahigh Surface Areas for Efficient CO2 Adsorption

    PubMed Central

    Wei, Yong; Li, Xiaomin; Zhang, Renyuan; Liu, Yong; Wang, Wenxing; Ling, Yun; El-Toni, Ahmed Mohamed; Zhao, Dongyuan

    2016-01-01

    Ultrahigh surface area single-crystals of periodic mesoporous organosilica (PMOs) with uniform cubic or truncated-cubic morphology and organic/inorganic components homogeneously distributed over the whole frameworks have successfully been prepared by a sol-gel surfactant-templating method. By tuning the porous feature and polymerization degree, the surface areas of the obtained PMO nanocubes can reach as high as 2370 m2/g, which is the highest for silica-based mesoporous materials. The ultrahigh surface area of the obtained PMO single crystals is mainly resulted from abundant micropores in the mesoporous frameworks. Furthermore, the diameter of the nanocubes can also be well controlled from 150 to 600 nm. The materials show ultrahigh CO2 adsorption capacity (up to 1.42 mmol/g at 273 K) which is much higher than other porous silica materials and comparable to some carbonaceous materials. The adsorption of CO2 into the PMO nanocubes is mainly in physical interaction, therefore the adsorption-desorption process is highly reversible and the adsorption capacity is much dependent on the surface area of the materials. Moreover, the selectivity is also very high (~11 times to N2) towards CO2 adsorption. PMID:26868049

  11. Preparation and characterization of a lipoid adsorption material and its atrazine removal performance.

    PubMed

    Chen, Zhiqiang; Wen, Qinxue; Lian, Jiaxiang; Ren, Nanqi

    2011-01-01

    A novel adsorbent named lipoid adsorption material (LAM), with a hydrophobic nucleolus (triolein) and a hydrophilic membrane structure (polyamide), was synthesized to remove hydrophobic organic chemicals (HOCs) from solution. Triolein, a type of lipoid, was entrapped by the polyamide membrane through an interfacial polymerization reaction. The method of preparation and the structure of the LAM were investigated and subsequent experiments were conducted to determine the characteristics of atrazine (a type of HOC) removal from wastewater using LAM as the adsorbent. The results showed that LAM had a regular structure compared with the prepolymer, where compact particles were linked with each other and openings were present in the structure of the LAM in which the fat drops formed from triolein were entrapped. In contrast to the atrazine adsorption behavior of powdered activated carbon (PAC), LAM showed a persistent adsorption capacity for atrazine when initial concentrations of 0.57, 1.12, 8.31 and 19.01 mg/L were present, and the equilibrium time was 12 hr. Using an 8 mg/L initial concentration of atrazine as an indicator of HOCs in aqueous solution, experiments on the adsorption capacity of the LAM showed 69.3% removal within 6-12 hr contact time, which was close to the 75.5% removal of atrazine by PAC. Results indicated that LAM has two atrazine removal mechanisms, namely the bioaccumulation of atrazine by the nucleous material and physical adsorption to the LAM membrane. Bioaccumulation was the main removal mechanism. PMID:22128536

  12. Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants

    PubMed Central

    Liu, Qing; Ning, Liqi; Zheng, Shudong; Tao, Mengna; Shi, Yao; He, Yi

    2013-01-01

    MIL-101(Cr) has drawn much attention due to its high stability compared with other metal-organic frameworks. In this study, three trace flue gas contaminants (H2O, NO, SO2) were each added to a 10 vol% CO2/N2 feed flow and found to have a minimal impact on the adsorption capacity of CO2. In dynamic CO2 regeneration experiments, complete regeneration occurred in 10 min at 328 K for temperature swing adsorption-N2-stripping under a 50 cm3/min N2 flow and at 348 K for vacuum-temperature swing adsorption at 20 KPa. Almost 99% of the pre-regeneration adsorption capacity was preserved after 5 cycles of adsorption/desorption under a gas flow of 10 vol% CO2, 100 ppm SO2, 100 ppm NO, and 10% RH, respectively. Strong resistance to flue gas contaminants, mild recovery conditions, and excellent recycling efficiency make MIL-101(Cr) an attractive adsorbent support for CO2 capture. PMID:24107974

  13. Periodic Mesoporous Organosilica Nanocubes with Ultrahigh Surface Areas for Efficient CO₂ Adsorption.

    PubMed

    Wei, Yong; Li, Xiaomin; Zhang, Renyuan; Liu, Yong; Wang, Wenxing; Ling, Yun; El-Toni, Ahmed Mohamed; Zhao, Dongyuan

    2016-01-01

    Ultrahigh surface area single-crystals of periodic mesoporous organosilica (PMOs) with uniform cubic or truncated-cubic morphology and organic/inorganic components homogeneously distributed over the whole frameworks have successfully been prepared by a sol-gel surfactant-templating method. By tuning the porous feature and polymerization degree, the surface areas of the obtained PMO nanocubes can reach as high as 2370 m(2)/g, which is the highest for silica-based mesoporous materials. The ultrahigh surface area of the obtained PMO single crystals is mainly resulted from abundant micropores in the mesoporous frameworks. Furthermore, the diameter of the nanocubes can also be well controlled from 150 to 600 nm. The materials show ultrahigh CO2 adsorption capacity (up to 1.42 mmol/g at 273 K) which is much higher than other porous silica materials and comparable to some carbonaceous materials. The adsorption of CO2 into the PMO nanocubes is mainly in physical interaction, therefore the adsorption-desorption process is highly reversible and the adsorption capacity is much dependent on the surface area of the materials. Moreover, the selectivity is also very high (~11 times to N2) towards CO2 adsorption. PMID:26868049

  14. Adsorption of β-carotene on modified magnesium silicate

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Guo, Ning; Fu, Yongfeng

    2016-02-01

    Modified flocculation magnesium silicate is prepared by a hydrothermal process at 120°C for 18 h after adding Al2(SO4)3 into the magnesium silicate gel. Compared with standard magnesium silicate with 328.116 m2 g-1 surface area, this modified magnesium silicate has a bigger BET surface area of 536.803 m2 g-1 and a lower interlayer water content. Modified magnesium silicate exhibits high β-carotene adsorption with a maximum adsorption capacity of 364.96 mg g-1. It is shown that when suspended in organic solvent, this material can be used effectively for carotenoid separation. Furthermore, our results suggest that modified magnesium silicate may be a promising candidate as an absorbent in the decoloring of oil.

  15. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils.

    PubMed

    Kumar, Mathava; Philip, Ligy

    2006-02-01

    Adsorption and desorption characteristics of endosulfan in four Indian soils were studied extensively. The soils used were clayey soil (CL--lean clay with sand), red soil (GM--silty gravel with sand), sandy soil (SM--silty sand with gravel) and composted soil (PT--peat) as per ASTM (American Society for Testing and Materials) standards. Adsorption and desorption rates were calculated from kinetic studies. These values varied for alpha and beta endosulfan depending on the soil type. Maximum specific adsorption capacities (qmax) for different soils were calculated by Langmuir model. The values varied from 0.1 to 0.45 mg g(-1) for alpha endosulfan and 0.0942-0.2722 mg g(-1) for beta endosulfan. Maximum adsorption took place in clay soil followed by composted soil and red soil. Adsorptions of alpha and beta endosulfan were negligible in sand. The binding characteristics of various functional groups were calculated using Scatchard plot. Effect of functional groups was more predominant in clayey soil. Organic matter also played a significant role in adsorption and desorption of endosulfan. Endosulfan adsorption decreased drastically in clay soil when the pH was reduced. Desorption was higher at both acidic and alkaline pH ranges compared to neutral pH. Results indicated that alpha endosulfan is more mobile compared to beta endosulfan and mobility of endosulfan is maximum in sandy soil followed by red soil. It can be inferred that crystal lattice of the clay soil plays a significant role in endosulfan adsorption and desorption. Immobilization of endosulfan is more advisable in clay soil whereas biological and or chemical process can be applied effectively for the remediation of other soil types. PMID:15990147

  16. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide.

    PubMed

    Chatterjee, Sudipta; Lee, Dae S; Lee, Min W; Woo, Seung H

    2009-06-01

    The adsorption of congo red (CR) onto chitosan (CS) beads impregnated by a cationic surfactant (CTAB, cetyl trimethyl ammonium bromide) was investigated. Chitosan beads impregnated at a ratio of 1/20 of CTAB to CS (0.05% of CTAB and 1% of CS) increased the CR adsorption capacity by 2.2 times from 162.3 mg/g (0% CTAB) to 352.5 mg/g (0.05% CTAB). The CR adsorption decreased with an increase in pH of the CR solution from 4.0 to 9.0. The Sips isotherm model showed a good fit with the equilibrium experimental data and the values of the heterogeneity factor (n) indicated heterogeneous adsorption of CR onto CS/CTAB beads, as well as CS beads. The kinetic data showed better fit to the pseudo second-order rate model than to the pseudo first-order rate model. The impregnation of CS beads by cationic surfactants showed the highest adsorption capacities of CR compared to any other adsorbents and would be a good method to increase adsorption efficiency for the removal of anionic dyes in a wastewater treatment process. PMID:19208471

  17. [Study of adsorption and desorption of behaviors of Pb2+ on thiol-modified bentonite by flame atomic absorption spectrometry].

    PubMed

    Chen, Wen; Xiong, Qiong-Xian; Pang, Xiao-Feng; Zhu, Xia-Ping; Han, Mei; Zhao, Qiu-Xiang; Liu, Wen-Hua

    2013-03-01

    A comparative analysis of the functional groups and surface structure of the Ca-bentonite (RB) and thiol-modified bentonite (TMB) were characterized by means of FTIR and SEM. The absorptive property of Pb2+ on TMB and RB and its influential factors was studied and the conditions for the adsorption were optimized by using FAAS method. Then the conditions for desorption of Pb2+ from the TMB by using simulated acid rain were studied and the contrast analysis of absorptive stability of Pb2+ on TMB and RB was given. The results showed that the adsorption rate of Pb2+ by TMB could reach more than 98%, when the initial Pb2+ concentration was 100 mg.L-1, the liquid-solid ratio was 5 g.L-1, pH was 6. 0, KNO3 ionic strength was 0. 1 mol.L-1 and adsorption period was 60min at 25 C. The saturated adsorption capacity of TMB was 67.27 mg.g-1; it's much more than that of RB (9.667 mg.g-1). The adsorption of Pb2+ on TMB follows Langmuir and Freundlich isotherm models well. Desorption experiments of Pb2+ from TMB with simulated acid rain (pH 3. 50) were done, and the desorption rate was 0. The results showed that TMB has a strong adsorption and fixation capacity for PbZ+; it is adapted to lead contaminated soil for chemical remediation. PMID:23705461

  18. Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules.

    PubMed

    Bassin, J P; Pronk, M; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2011-10-15

    The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used. PMID:21840028

  19. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores

    NASA Astrophysics Data System (ADS)

    Wang, Qinyu; Johnson, J. Karl

    1999-01-01

    The adsorption of hydrogen gas into single-walled carbon nanotubes (SWNTs) and idealized carbon slit pores is studied by computer simulation. Hydrogen-hydrogen interactions are modeled with the Silvera-Goldman potential. The Crowell-Brown potential is used to model the hydrogen-carbon interactions. Calculations include adsorption inside the tubes, in the interstitial regions of tube arrays, and on the outside surface of isolated tubes. Quantum effects are included through implementation of the path integral formalism. Comparison with classical simulations gives an indication of the importance of quantum effects for hydrogen adsorption. Quantum effects are important even at 298 K for adsorption in tube interstices. We compare our simulations with experimental data for SWNTs, graphitic nanofibers, and activated carbon. Adsorption isotherms from simulations are in reasonable agreement with experimental data for activated carbon, but do not confirm the large uptake reported for SWNTs and nanofibers. Although the adsorption potential for hydrogen in SWNTs is enhanced relative to slit pores of the same size, our calculations show that the storage capacity of an array of tubes is less than that for idealized slit pore geometries, except at very low pressures. Ambient temperature isotherms indicate that an array of nanotubes is not a suitable sorbent material for achieving DOE targets for vehicular hydrogen storage.

  20. Self-flocculated powdered activated carbon with different oxidation methods and their influence on adsorption behavior.

    PubMed

    Gong, Zailin; Li, Shujin; Ma, Jun; Zhang, Xiangdong

    2016-03-01

    The commercial powdered activated carbon (PAC) has been selectively oxidized by two methods. The two oxidized methods are wet oxidation with ammonium persulfate and thermal treatment after acidification with hydrochloride acid, respectively. The two oxidized PAC were then functionalized with thermoresponsive poly (N-isopropylacrylamide) (PNIPAM) in aqueous solution at ambient temperature. Comparing the two oxidized PAC products and their grafted derivatives, the oxidized PAC modified with thermal treatment after acidification shows larger surface area of 1184 m(2)/g and better adsorption of bisphenol A. Its derivative also exhibits relatively large surface area and adsorption capacity after grafted with PNIPAM. The maximum surface adsorption capacity simulated under Langmuir Models reached 156 mg/g. In addition, the grafted PAC products show self-flocculation behaviors with rapid response to temperature because of the thermal phase transition and entanglement behaviors of PNIPAM. The present study provides a new way to obtain carboxyl-rich activated carbon with large surface area and better adsorption capacity. The retrievable grafted PAC with good self-flocculation effect responsive to temperature will have high potential application in water remediation which requires pre-heating and emergency water treatment in the wild. PMID:26551226

  1. Adsorption characteristics of benzene on biosolid adsorbent and commercial activated carbons

    SciTech Connect

    Hung-Lung Chiang; Kuo-Hsiung Lin; Chih-Yu Chen; Ching-Guan Choa; Ching-Shyung Hwu; Nina Lai

    2006-05-15

    This study selected biosolids from a petrochemical wastewater treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl{sub 2}) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl{sub 2}-immersed biosolids pyrolyzed at 500{sup o}C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high. 18 refs., 9 figs., 3 tabs.

  2. Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu(2+) ion.

    PubMed

    Kim, J W; Sohn, M H; Kim, D S; Sohn, S M; Kwon, Y S

    2001-08-17

    Production of granular activated carbon by chemical activation has been attempted employing walnut shells as the raw material. The thermal characteristics of walnut shell were investigated by TG/DTA and the adsorption capacity of the produced activated carbon was evaluated using the titration method. As the activation temperature increased, the iodine value increased. However, a temperature higher than 400 degrees C resulted in a thermal degradation, which was substantiated by scanning electron microscopy (SEM) analysis, and the adsorption capacity decreased. Activation longer than 1h at 375 degrees C resulted in the destruction of the microporous structure of activated carbon. The iodine value increased with the increase in the concentration of ZnCl2 solution. However, excessive ZnCl2 in the solution decreased the iodine value. The extent of activation by ZnCl2 was compared with that by CaCl2 activation. Enhanced activation was achieved when walnut shell was activated by ZnCl2. Applicability of the activated carbon as adsorbent was examined for synthetic copper wastewater. Adsorption of copper ion followed the Freundlich model. Thermodynamic aspects of adsorption have been discussed based on experimental results. The adsorption capacity of the produced activated carbon met the conditions for commercialization and was found to be superior to that made from coconut shell. PMID:11489530

  3. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents

    NASA Astrophysics Data System (ADS)

    López-Muñoz, María-José; Arencibia, Amaya; Cerro, Luis; Pascual, Raquel; Melgar, Álvaro

    2016-03-01

    Titania and titanate nanotubes were evaluated as adsorbents for the removal of Hg(II) from aqueous solution. Commercial titanium dioxide (TiO2-P25, Evonik), a synthesized anatase sample obtained by the sol-gel method (TiO2-SG) and titanate nanotubes (TNT) prepared via hydrothermal treatment were compared. Mercury adsorption was analysed by kinetic and equilibrium experiments, studying the influence of pH and the type of adsorbents. The kinetics of Hg(II) adsorption on titania and titanate nanotubes could be well described by the pseudo-second order model. It was found that the process is generally fast with small differences between adsorbents, which cannot be explained by their dissimilarities in textural properties. Equilibrium isotherm data were best fitted with the Sips isotherm model. The maximum adsorption capacities of Hg(II) were achieved with titanate nanotubes sample, whereas between both titania samples, TiO2-SG exhibited the highest mercury uptake. For all adsorbents, adsorption capacities were enhanced as pH was increased, achieving at pH 10 Hg(II) adsorption capacities of 100, 121, and 140 mg g-1 for TiO2-P25, TiO2-SG, and TNT, respectively. Differences between samples were discussed in terms of their crystalline phase composition and chemical nature of both, mercury species and surface active sites.

  4. Activation of waste MDF sawdust charcoal and its reactive dye adsorption characteristics.

    PubMed

    Gan, Q; Allen, S J; Matthews, R

    2004-01-01

    This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and

  5. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    SciTech Connect

    Baybas, Demet; Ulusoy, Ulvi

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  6. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. PMID:24021928

  7. Comparative evaluations of organic matters and nitrogen removal capacities of integrated vertical-flow constructed wetlands: Domestic and nitrified wastewater treatment.

    PubMed

    Chang, Jun J; Liang, Kang; Wu, Su Q; Zhang, Sheng H; Liang, Wei

    2015-01-01

    Two groups of integrated vertical-flow constructed wetland (IVCW) microcosms were established for treating two types of representative wastewater: domestic and nitrified wastewater under two loading rates (LRs) over about two years. Their removal capacities of organic substance and nitrogen as well as the effects of loading rate (LR), outflow temperature and dissolved oxygen (DO) concentration were investigated and compared. Efficient chemical oxygen demand (COD) eliminations were achieved by the IVCWs, with the mass removal rates increasing linearly with the increasing LRs strongly, achieving average value of 56.07 g m(-2) d(-1) at the highest loading rate. Nevertheless, the effluent COD concentrations also increased, with the average value exceeding Class I A discharge standard (< 50 mg L(-1)) for municipal wastewater treatment plants in China at the highest loading rate. Greater total nitrogen (TN) mass removal rates but lower efficiencies were obtained at the high LR for both types of wastewater, and better removal was achieved for nitrified wastewater (NW) in comparison to domestic wastewater (DW), probably due to the prevailing anoxic conditions inside the IVCW beds restricted nitrification process of DW. The influences of LR, temperature and DO on COD removal were slight, but all remarkable on TN reduction. As compared to DO, temperature was more crucial for nitrogen removal, and the temperature dependence coefficient for TN removal of low LR of NW was significantly greater than others. PMID:25901854

  8. Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb(2+) as template.

    PubMed

    Ge, Huacai; Hua, Tingting; Chen, Xiaodong

    2016-05-01

    Poly(acrylic acid) grafted and glutaraldehyde-crosslinked chitosan nano adsorbent (PAACS) was synthesized by using Pb(2+) as a template ion. The structure and morphology of PAACS were characterized by FT-IR, XRD, SEM and elemental analyses. The adsorption of PAACS for different heavy metal ions was compared and the effects of various variables for adsorption of Pb(2+) were systematically studied. The results indicated that the PAACS was the aggregates of nanoparticles with the diameter of about 50-200 nm and had selectivity for Pb(2+) adsorption. The adsorption for Pb(2+) showed a maximum adsorption capacity of 734.3 mg g(-1) at pH 5.0 and 303 K, which was higher than in a study previously reported on ion-imprinted adsorbents. The adsorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The adsorption was spontaneous and changed from chemical process into physical process when the temperature exceeded 303 K. The adsorbent could be recycled with EDTA. Therefore, PAACS would be useful as a selective and high uptake nano adsorbent in the removal of Pb(2+) from effluents. PMID:26844403

  9. Polydopamine-mediated surface functionalization of electrospun nanofibrous membranes: Preparation, characterization and their adsorption properties towards heavy metal ions

    NASA Astrophysics Data System (ADS)

    Wu, Chunlin; Wang, Heyun; Wei, Zhong; Li, Chuan; Luo, Zhidong

    2015-08-01

    In this paper, a simple and versatile approach for the fabrication of a polyethyleneimine (PEI)-functionalized nanofibrous membrane utilizing polydopamine (PDA) as a mediator is proposed. The morphology and structure of the PDA-coated and PEI-grafted nanofibrous membranes were confirmed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Due to a large specific surface area and long fibrous morphology, the synthesized membranes were used as novel adsorbents for copper ion (Cu2+) removal from aqueous solutions. The adsorption of Cu2+ was investigated on the synthesized membranes regarding the membrane dosages, initial solution pH values, initial solution concentrations, contact times and temperatures. In addition, the adsorption equilibrium data of PEI-grafted membranes were well fitted with the Langmuir adsorption isotherm, and a maximum adsorption capacity value of 33.59 mg g-1 was determined (while it was 21.94 mg g-1 for the PDA-coated membranes). The thermodynamic parameters indicated that Cu2+ absorption was a spontaneous and exothermic adsorption process. In addition, XPS peak differentiation imitating analysis permitted the proposal of a copper-amine coordination adsorption mechanism that can be used to explain changes in the adsorption properties compared to PDA coating nanofibrous membranes.

  10. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    SciTech Connect

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-03-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested.

  11. Comparative study of water and carbon dioxide adsorption on CuFeO2 and CuFe1-xGaxO2 highly epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Rojas, S.; Joshi, T.; Borisov, P.; Lederman, D.; Cabrera, A. L.

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 and 52 nm thick CuFe1-xGaxO2 delafossite surfaces was performed in a Ultra-high vacuum (UHV) chamber. The thin films with epitaxial quality were grown by Pulsed Laser Deposition (PLD) on Al2O3 (0001) substrates . The adsorption / desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide is preferentially chemisorbed by CuFe1-xGaxO2 over water and we observed the opposite behavior with regard to chemisorption of CO2 and H2O over CuFeO2. Hydroxyls and metal carbonates were formed on the surface due to the chemisorption of H2O and CO2. Arrhenius plots for CO2 and H2O desorption were done and activation energy for desorption were obtained. Supported by FONDECyT 1130372.

  12. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    SciTech Connect

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-11

    A simple hydrogen adsorption measurement system utilizing the volumetric differential pressure technique has been designed, fabricated and calibrated. Hydrogen adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will be helpful in understanding the adsorption property of the studied carbon materials using the fundamentals of adsorption theory. The principle of the system follows the Sievert-type method. The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range, R1, S1, S2, and S3 having known fixed volume. The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operating pressure of the pressure transducer is 20 bar and calibrated with an accuracy of +-0.01 bar. High purity hydrogen is being used in the system and the amount of samples for the study is between 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of the adsorption process by eliminating the errors caused by temperature expansion effects and other non-adsorption related phenomena. The ideal gas equation of state is applied to calculate the hydrogen adsorption capacity based on the differential pressure measurements. Activated carbon with a surface area of 644.87 m{sup 2}/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m{sup 2}/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the

  13. Reversible adsorption of calcium ions by imprinted temperature sensitive gels

    NASA Astrophysics Data System (ADS)

    Alvarez-Lorenzo, Carmen; Guney, Orhan; Oya, Taro; Sakai, Yasuzo; Kobayashi, Masatoshi; Enoki, Takashi; Takeoka, Yukikazu; Ishibashi, Toru; Kuroda, Kenichi; Tanaka, Kazunori; Wang, Guoqiang; Grosberg, Alexander Yu.; Masamune, Satoru; Tanaka, Toyoichi

    2001-02-01

    With the aim of developing polymeric gels sensitive to external stimuli and able to reversibly adsorb and release divalent ions, copolymer gels of N-isopropylacrylamide (NIPA) and methacrylic (MAA) monomers were prepared. We chose calcium as a target divalent ion. Two MAAs form a complex with a calcium ion, and the NIPA component allows the polymers to swell and shrink reversibly in response to temperature. The adsorbing site develops an affinity to target ions when the adsorbing molecules come into proximity, but when they are separated, the affinity diminishes. To enhance the affinity to calcium, an imprinting technique was applied using Ca2+ and Pb2+ ions as templates in methylsulfoxide and dioxane media, respectively. The adsorption capacity of the imprinted gels was compared with that of the nonimprinted gels, and the effects of the templates, the solvents, and the amount of methacrylic monomers used in the synthesis and the medium temperature over the Ca2+ adsorption capacity of the gels from aqueous solutions were evaluated. The analysis of the adsorption revealed that (a) the adsorption can be described by the Langmuir isotherms; (b) there is an approximately linear relationship between saturation and methacrylic monomer concentration; (c) the affinity depends on the degree of gel swelling or shrinkage that can be switched on and off by temperature; (d) in the shrunken state, the affinity depends approximately linearly on the MAA concentration in the imprinted gels, whereas in the nonimprinted gels it is proportional to the square of MAA concentration; (e) the imprinted gels adsorb more than the nonimprinted gels when MAA concentration is less than that of permanent cross linkers. The success of imprinting of CaMAA2 and PbMAA2 complex is evidence for memory of such complex onto the weakly cross-linked gel.

  14. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    SciTech Connect

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  15. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II).

    PubMed

    Liu, Li; Li, Cui; Bao, Changli; Jia, Qiong; Xiao, Pengfei; Liu, Xiaoting; Zhang, Qiuping

    2012-05-15

    In this work, graphene oxide (GO) was firstly prepared, following by element analysis. Glutaraldehyde cross-linked chitosan (GCCS) and chitosan/graphene oxide (CSGO) composite with three different amounts of GO (5 wt%, 10 wt% and 15 wt%) were also prepared for the adsorption of Au(III) and Pd(II) in aqueous solution. The properties of the adsorbents were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and surface area analysis. Batch adsorption studies were carried out. The adsorption of Au(III) and Pd(II) onto CSGO composites was optimum at pH 3.0-5.0 for Au(III) and pH 3.0-4.0 for Pd(II), which was much wider than that of GCCS. The adsorption isotherms obeyed the Langmuir isotherm models for the adsorption of Au(III) and Pd(II). Chitosan with 5 wt% graphene oxide (CSGO(5)) composite had the largest adsorption capacity for Au(III) and Pd(II) compared with the other prepared adsorbents, where the maximum adsorption capacity were 1076.649 mg/g for Au(III) and 216.920 mg/g for Pd(II), respectively. The adsorption kinetics of Au(III) and Pd(II) onto CSGO(5) followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Thermodynamic parameters, such as Gibbs energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°), were calculated, showing that the adsorption of Au(III) and Pd(II) onto CSGO(5) were spontaneous, endothermic and feasible. The desorption studies of Au(III) and Pd(II) onto CSGO(5) showed that CSGO(5) can be used repeatedly without significantly changing its adsorption capacity and desorption percentage after 3 cycles. Besides CSGO(5) was successfully applied for the determination and separation of Au(III) and Pd(II) in ore samples. PMID:22483922

  16. Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS-PAGE and LC-MS.

    PubMed

    Gossmann, R; Fahrländer, E; Hummel, M; Mulac, D; Brockmeyer, J; Langer, K

    2015-06-01

    The behavior of nanosized drug carrier systems under cell culture conditions and therefore also the destiny in the body are highly influenced by the protein corona, which is formed upon entering a biological environment. Some of the adsorbed proteins, named opsonins, lead to a shortened plasma circulation half-life of the nanoparticles. Others are attributed to promote the transport of nanoparticles into other compartments of the body, just to mention two examples. Hence, detailed knowledge concerning the composition of the protein corona is of great importance. The aim of this work was to investigate the influence of the nanoparticle starting material and the surface modification on the composition of the adsorbed serum proteins in a cell culture environment. Therefore, positively charged nanoparticles based on the biodegradable polymer poly(dl-lactide-co-glycolide) (PLGA) stabilized with didodecyldimethylammonium bromide (DMAB) and negatively charged nanoparticles based on human serum albumin (HSA) were prepared and modified with hydrophilic polymers. By incubating the nanoparticles with fetal bovine serum (FBS) the adsorption of serum proteins on the colloidal system was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a semi-quantitative analysis of the protein corona was performed and after enzymatic in-solution-digestion the adsorbed proteins were identified using high resolution LC-MS. Our study accentuates the influence of the core material, surface charge, and surface modification on the amount and nature of the adsorbed proteins. The combination of SDS-PAGE and LC-MS turns out to be a simple and reliable method to investigate the protein corona of nanoparticles. PMID:25813886

  17. A comparative computational study on hydrogen adsorption on the Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cationic sites in zeolites.

    PubMed

    Kozyra, Paweł; Piskorz, Witold

    2016-05-14

    In this article the interaction between H2 and Ag(+), Cu(+), Mg(2+), Cd(2+), and Zn(2+) cations in cluster models of several sizes has been studied computationally. Depending on the changes imposed by the adsorption process on the H2 molecule the activation can vary in a wide range - from only slight weakening of the H-H bond to complete dissociation of the H2 molecule. The NOCV (Natural Orbitals for Chemical Valence) analysis allowed for decomposition of the electron density distortion into contributions easier for interpretation. Three essential factors have been identified (i-iii). In the case of bare cations the main contribution is a donation from σH2 to the cation (i). When a zeolite framework surrounding the cation is introduced, it hinders σ-donation and enhances π-backdonation from the cation to the antibonding orbital of the molecule (ii). For Cu(i) and Ag(i) sites π-backdonation becomes dominant, while for Mg(ii), Cd(ii), and Zn(ii) cations, the σ-donation, albeit diminished, still remains a dominant contribution. Calculations showed that the localization and coordination of Zn(ii) have crucial influence on its interaction with H2. We identified a Zn(2+) position at which the H2 molecule dissociates - here the interaction between H2 and oxygen framework (iii) plays a crucial role. Based on the calculations the mechanism of H2 transformation has been proposed. Upon heterolytic dissociation of H2 the Zn(0) moiety and two OH groups can be formed. Eventually, in two elementary steps, the H2 molecule can be restored. In this case, the ability of the site to activate/dissociate hydrogen is caused by the low coordination number of the zinc cation and the geometry of the site which allows positively charged H2 to interact with framework oxygen what enhances the formation of OH and Z-O-(ZnH)(+) groups. PMID:27092373

  18. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  19. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    NASA Astrophysics Data System (ADS)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  20. Cost of Mating and Insemination Capacity of a Genetically Modified Mosquito Aedes aegypti OX513A Compared to Its Wild Type Counterpart

    PubMed Central

    Bargielowski, Irka; Alphey, Luke; Koella, Jacob C.

    2011-01-01

    The idea of implementing genetics-based insect control strategies modelled on the traditional SIT is becoming increasingly popular. In this paper we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with its wild type counterpart with respect to their insemination capacities and the cost of courtship and mating. Genetically modified males inseminated just over half as many females as the wild type males during their lifetime. Providing days of rest from mating had no significant effect on the total number of females inseminated by males of either line, but it did increase their longevity. Producing sperm had a low cost in terms of energy investment; the cost of transferring this sperm to a receptive female was much higher. Continued mating attempts with refractory females suggest that males could not identify refractory females before investing substantial energy in courtship. Although over a lifetime OX513A males inseminated fewer females, the number of females inseminated over the first three days, was similar between males of the two lines, suggesting that the identified cost of RIDL may have little impact on the outcome of SIT-based control programmes with frequent releases of the genetically modified males. PMID:22022518

  1. Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 40°C) as compared to accelerated and antiradical assays.

    PubMed

    Mancebo-Campos, Vanessa; Salvador, María Desamparados; Fregapane, Giuseppe

    2014-05-01

    The individual and combined antioxidant and antiradical capacity of the main minor compounds of virgin olive oil (α-tocopherol, hydroxytyrosol, tyrosol and oleuropein aglycone) spiked in Purified Olive Oil (POO) as the lipid matrix model is described. The antioxidant activity was assessed under mild temperature conditions (25 and 40°C) to mimic the autoxidation process during real storage conditions. These results were compared with accelerated (Rancimat Induction Period) and antiradical (DPPH) tests. The higher concentration of o-diphenols (hydroxytyrosol or oleuropein aglycone) in olive oil led to a lower oxidation rate under the conditions studied, resulting in a strong antioxidant effect. Remarkably α-tocopherol acted as a pro-oxidant at 25 and 40°C, in particular during the first oxidation stage. In contrast, this compound behaved as an antioxidant under Rancimat and DPPH conditions. The oxidation rate constant as a function of the concentration of spiked compound fit an exponential decay model very well and therefore the progress of the oxidation reaction could be predicted. No synergistic or antagonistic effects were generally observed when combined antioxidant compounds were assayed. PMID:24360465

  2. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    EPA Science Inventory

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  3. Characterizing Nitrogen adsorption and desorption isotherms in soils using multifractal analysis

    NASA Astrophysics Data System (ADS)

    Paz Ferreiro, Jorge; Miranda, José G. V.; Vidal Vázquez, Eva

    2010-05-01

    The specific surface area is an attribute known to characterize the soil ability to retain and transport nutrients and water. A number of studies have shown that specific surface area correlates cation exchange capacity, organic matter content, water retention, aggregate stability and clay swelling. In the past fractal theory has been widely used to study different gas adsorption isotherms like water vapour and nitrogen adsorption isotherms. More recently we have shown that nitrogen adsorption isotherms showed multifractal nature. In this work, both N2 adsorption and desorption isotherms measured in a Mollisol were examined as a probability measure using the multifractal formalism in order to determinate its possible multifractal behaviour. Soil samples were collected in two different series of an Argiudoll located in the north of Buenos Aires and in the south of Santa Fe provinces, Argentina. Two treatments of each soil series were sampled at three depths, without replication, resulting in six samples per soil series and a total of twelve samples analyzed. Multifractal analysis was performed using the box counting method. Both, the N2 adsorption and desorption isotherms exhibited a well defined scaling behaviour indicating a fully developed multifractal structure of each isotherm branch. The singularity spectra and Rényi dimension spectra obtained for adsorption and also for desorption isotherms had shapes similar to the spectra of multifractal measures and several parameters were extracted from these spectra. The capacity dimension, D0, for both N2 adsorption and desorption data sets were not significantly different from 1.00. However, nitrogen adsorption and desorption data showed significantly different values of entropy dimension, D1, and correlation dimension, D2. For instance, entropy dimension values extracted from multifractal spectra of adsorption isotherms were on average 0.578 and varied from 0.501 to 0.666. In contrast, the corresponding figures for

  4. Study of Adsorption of Copper Species onto Multiwall Carbon Nanotubes

    EPA Science Inventory

    Functionalized CNTs have improved adsorptive capacities over pristine CNTs. These can be used for sensors, membranes, filters and matrix composite enhancements made possible because of their nano-size.

  5. Impact of carbon nanotube morphology on phenanthrene adsorption.

    PubMed

    Apul, Onur Guven; Shao, Ting; Zhang, Shujuan; Karanfil, Tanju

    2012-01-01

    The present study examined the roles of the specific surface area (SSA), diameter, and length of carbon nanotubes (CNT) on the adsorption of phenanthrene (PNT) by analyzing the adsorption isotherms obtained with several single-walled carbon nanotubes (SWNT) and multiwalled carbon nanotubes (MWNT). At low equilibrium concentrations (e.g., 1 ppb), MWNTs with larger outer diameters exhibited higher PNT adsorption capacity on an SSA basis than those with smaller diameters. With increasing equilibrium concentration, adsorption on an SSA basis became independent of MWNT diameter, and the total surface area controlled maximum adsorption capacity. A similar analysis for the adsorption of naphthalene, a planar molecule with one less benzene ring but 20 times higher solubility than PNT, showed no correlation with respect to MWNT outer diameter. The results indicated that the surface curvature of MWNT was more important on the adsorption of PNT than on the adsorption of naphthalene. Specific surface area normalized isotherms did not show a correlation between PNT adsorption and lengths of SWNTs and MWNTs. Characterization results indicated that the morphology of CNTs plays an important role on the SSA and pore volume. Data from the manufacturer may not always represent the characteristics of CNTs in a particular batch. Therefore, accurate characterization of CNTs is critical to systematically examine the behavior of CNTs, such as adsorption and transport, in environmental systems. PMID:22002628

  6. Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Rupp, J.

    2008-01-01

    Lithotypes (vitrain, clarain, and fusain) of high volatile bituminous Pennsylvanian coals (Ro of 0.56-0.62%) from Indiana (the Illinois Basin) have been studied with regard to meso- and micropore characteristics using low-pressure nitrogen and carbon dioxide adsorption techniques, respectively. High-pressure CO2 adsorption isotherms were obtained from lithotypes of the Lower Block Coal Member (the Brazil Formation) and the Springfield Coal Member (the Petersburg Formation), and after evacuation of CO2, the lithotypes were re-analyzed for meso- and micropore characteristics to investigate changes related to high-pressure CO2 adsorption. Coal lithotypes have differing Brunauer-Emmett-Teller (BET) surface areas and mesopore volumes, with significantly lower values in fusains than in vitrains or clarains. Fusains have very limited pore volume in the pore size width of 4-10 nm, and the volume, increases with an increase in pore size, in contrast to vitrain, for which a 4-10 nm range is the dominant pore'Wlidth. For clarain, both pores of 4-10 nm and pores larger than 20 nm contribute substantially to the mesoporosity. Micropore surface areas are the smallest for fusain (from 72.8 to 98.2 m2/g), largest for vitrain (from 125.0 to,158.4 m2 /g), and intermediate for clarain (from 110.5 to 124.4 m2/g). Similar relationships are noted for micropore volumes, and the lower values of these parameters in fusains are related to smaller volumes of all incremental micropore sizes. In the Springfield and the Lower Block Coal Members, among lithotypes studied, fusain has the lowest adsorption capacity. For the Lower Block, vitrain has significantly higher adsorption capacity than fusain and clarain, whereas for the Springfield, vitrain and clarain have comparable but still significantly higher adsorption capacities than fusain. The Lower Block vitrain and fusain have much higher adsorption capacities than those in the Springfield, whereas the clarains of the two coals are comparable

  7. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    PubMed

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs. PMID:27474817

  8. NO Adsorption on Pd(111)

    NASA Astrophysics Data System (ADS)

    Garda, Graciela R.; Ferullo, Ricardo M.; Castellani, Norberto J.

    The reactive behavior of NO on Pd(111) has been studied using a semiempirical theoretical method. The adsorption sites and the related electronic structure have been considered. In particular, the dissociation process has been studied and compared with CO. Different dissociation mechanisms have been proposed and the formation of NCO species has been considered. The results follow the trends reported in the experimental literature.

  9. Adsorption of Sr by immobilized microorganisms

    SciTech Connect

    Watson, J.S.; Scott, C.D.; Faison, B.D.

    1988-01-01

    Wastewaters from numerous industrial and laboratory operations can contain toxic or undesirable components such as metal ions, which must be removed before discharge to surface waters. Adsorption processes that have high removal efficiencies are attractive methods for removing such contaminants. For economic operations, it is desirable to have an adsorbent that is selective for the metal contaminant of interest, has high capacity for the contaminant, has rapid adsorption kinetics, can be economically produced, and can be regenerated to a concentrated waste product or decomposed to a low-volume waste. Selected microorganisms are potentially useful adsorbents for these applications because they can be inexpensive, have high selectivities, and have high capacities for adsorption of many heavy metals, which are often problems in a variety of industries. A laboratory-scale packed column containing microbial cells immobilized within a gelatin matrix has been prepared, and its application to removal of Sr from a simulated wastewater is described. 6 refs., 2 figs., 3 tabs.

  10. Argon Adsorption on Open Carbon Nanohorns

    NASA Astrophysics Data System (ADS)

    Russell, Brice; Calvillo, Angel; Khanal, Pravin; Migone, Aldo; Iijima, Sumio; Yudasaka, Masako

    We have measured adsorption isotherms for argon adsorbed on a 0.1692 g sample of chemically-opened carbon nanohorns. Two clear substeps are visible in the adsorption data, corresponding to groups of stronger binding sites (lower pressure substep) and weaker binding sites (higher pressure substep). We have measured adsorption at eight different temperatures in the range between approximately 70 and 110 K. The space at the interior of the individual nanohorns is accessible to sorbates in these chemically opened nanohorns. Consequently, higher loadings are obtained on these samples when compared to those measured on unopened (as-produced) nanohorns. Results for the kinetics of adsorption, the effective specific surface area, and the isosteric heat of adsorption as a function of sorbent loading will be presented and compared to results from other gases adsorbed on nanohorns. This work was supported by the NSF through Grant DMR-1006428.

  11. DFT study of Hg adsorption on M-substituted Pd(1 1 1) and PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jiancheng; Yu, Huafeng; Geng, Lu; Liu, Jianwen; Han, Lina; Chang, Liping; Feng, Gang; Ling, Lixia

    2015-11-01

    The adsorption of Hgn (n = 1-3) on the Au-, Ag-, Cu-substituted Pd(1 1 1) surfaces as well as the PdM/γ-Al2O3(1 1 0) (M = Au, Ag, Cu) surfaces has been investigated using spin-polarized density functional theory calculations. It is found that M-substituted Pd(1 1 1) surfaces show as good Hg adsorption capacity as the perfect Pd(1 1 1) at low Hg coverage, while the Hg adsorption capacity is only slightly weakened at high Hg coverage. On the basis of stepwise adsorption energies analysis, it is concluded that M-substituted Pd(1 1 1) surfaces can contribute to the binding of Hg atom on the surfaces at high Hg coverage. The electronic properties of the second metal atoms are the main factor contributes to the Hg adsorption capacity. Gas phase Pd2 shows better Hg adsorption capacity than Pd2/γ-Al2O3, while PdM/γ-Al2O3 can adsorb Hg more efficiently than bare PdM clusters. It suggests that the γ-Al2O3 support can enhance the activity of PdM for Hg adsorption and reduces the activity of Pd2. It is also found that Pd is the main active composition responsible for the interaction of mercury with the surface for PdM/γ-Al2O3 sorbent. Taking Hg adsorption capacity and economic costs into account, Cu addition is a comparatively good candidate for Hg capture.

  12. Protein adsorption to multi-component glasses

    NASA Astrophysics Data System (ADS)

    Hall, Matthew Micah

    2003-07-01

    The adsorption of human serum albumin (HSA) to sodium silicate, soda lime silicate (SLS), and sodium aluminosilicate (SAS) glass microspheres was investigated using sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with a colloidal silver stain for visualization. The 30 Na2O·70 SiO2 composition could not be evaluated due to an apparent chemical interference that occurred during silver staining. This inhibitory effect was attributed to the extensive corrosion that occurred during the protein elution and caused an elevation in the pH of the solution. The remaining glass compositions were sufficiently durable for further study. The HSA adsorption capacity of SLS glass microspheres containing 70 and 80 mol% SiO2 increased as CaO was substituted for Na2O. An abrupt decrease in the HSA adsorption capacity was observed for SLS glasses containing 60 mol% SiO2. A similar trend was observed for the SAS glass microspheres, although the SAS glasses adsorbed less HSA than the SLS glasses containing equivalent molar percentages of SiO2. The initial increase in HSA adsorption capacity for SLS and SAS glasses containing 70 and 80 MOM SiO2 was attributed to the introduction of positive charges into the glass surfaces via Ca2+ and Al3+ cations. The decrease in HSA adsorption capacity for SLS and SAS glasses containing 60 mol% SiO2 may be due to an enhanced affinity between the glasses and HSA, resulting in a "flattened" conformation that limits the total accessible area for adsorption.

  13. The neuroscience of social relations. A comparative-based approach to empathy and to the capacity of evaluating others' action value.

    PubMed

    Ferrari, Pier F

    2014-02-01

    One of the key questions in understanding human morality is how central are emotions in influencing our decisions and in our moral judgments. Theoretical work has proposed that empathy could play an important role in guiding our tendencies to behave altruistically or selfishly. Neurosciences suggest that one of the core elements of empathic behavior in human and nonhuman primates is the capacity to internally mimic the behavior of others, through the activation of shared motor representations. Part of the neural circuits involves parietal and premotor cortical regions (mirror system), in conjunction with other areas, such as the insula and the anterior cingulate cortex. Together with this embodied neural mechanism, there is a cognitive route in which individuals can evaluate the social situation without necessary sharing the emotional state of others. For example, several brain areas of the prefrontal cortex track the effects of one's own behavior and of the value of one's own actions in social contexts. It is here proposed that, moral cognition could emerge as the consequence of the activity of emotional processing brain networks, probably involving mirror mechanisms, and of brain regions that, through abstract-inferential processing, evaluate the social context and the value of actions in terms of abstract representations. A comparative-based approach to the neurobiology of social relations and decision-making may explain how complex mental faculties, such as moral judgments, have their foundations in brain networks endowed with functions related to emotional and abstract-evaluation processing of goods. It is proposed that in primate evolution these brain circuits have been coopted in the social domain to integrate mechanisms of self-reward, estimation of negative outcomes, with emotional engagement. PMID:25258451

  14. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  15. Measurements of water vapor adsorption on the Geysers rocks

    SciTech Connect

    Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

    1996-01-24

    The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ≤ p/p0 ≤ 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ≈ 0.6) were obtained in this study. In these cases the effects of activated

  16. Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhu, Qiufeng; Wang, Liting; An, Zehuan; Ye, Hong; Feng, Xudong

    2016-05-01

    A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a facile hydrothermal method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR) and zeta potential measurement. The adsorption of Cu(II) ions from aqueous solution on the SMNA was investigated with variations in contact time, pH and initial Cu(II) concentration. The results showed that hydrothermal method would generate nanowire/nanorod incomplete crystallite (δ-MnO2) adsorbent. The adsorption of Cu(II) onto SMNA increased sharply within 25 min and reached equilibrium gradually. The maximum adsorption capacities of SMNA for Cu(II) were ∼40-88 mg g-1, which was lower than δ-MnO2 (92.42 mg g-1) but had a lower pH dependency. As compared with δ-MnO2, higher adsorption capacities of SMNA (7.5-15 wt% of silica doping amount) for Cu(II) could be observed when pH of the aqueous solution was low (<4). The pseudo-second-order model was the best choice to describe the adsorption behavior of Cu(II) onto SMNA, suggesting that the removal of Cu(II) by the as-prepared adsorbents was dominated by migration of Cu(II). The possibility of Cu(II) recovery was also investigated and it revealed that SMNA was a promising recyclable adsorbent for removal of heavy metal ions in water and wastewater treatment.

  17. Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Zhou, Xia

    2015-10-01

    Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L-1, the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L-1 were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L-1 Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

  18. Modeling and fixed bed column adsorption of As(V) on laterite soil.

    PubMed

    Maji, Sanjoy K; Pal, Anjali; Pal, Tarasankar; Adak, Asok

    2007-09-01

    Laterite soil, an abundant locally available natural adsorbent, has been evaluated for As(V) removal from aqueous solutions in column mode operation. The column studies were conducted using columns of 10, 20, 30 cm bed depth with 2 cm internal diameter. Initial As(V) concentration was 0.5 mg/L and flow rate was 7.75 mL/min. Bohart and Adams sorption model was employed for the determination of different parameters like height of exchange zone, adsorption rate, time required for exchange zone to move, and the adsorption capacity. Effect of flow rate and initial concentration was studied. The adsorption capacity of the laterite soil for 0.5 mg/L of As(V) was found to be 62.32 mg/L, and the adsorption rate constant was 1.0911 L/mg h for the minimum bed depth of 8.47 cm. The column was designed by the BDST model. Freundlich isotherm model was used to compare the theoretical and experimental breakthrough profile in the dynamic process. The bed saturation obtained was 36-80%. Regeneration of the exhausted column was possible with 1M NaOH. PMID:17849300

  19. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.

    PubMed

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y Q

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries. PMID:26692345

  20. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    PubMed Central

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y. Q.

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25–0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries. PMID:26692345

  1. Novel composite films based on amidated pectin for cationic dye adsorption.

    PubMed

    Nesic, Aleksandra R; Velickovic, Sava J; Antonovic, Dusan G

    2014-04-01

    Pectin, with its tendency to gel in the presence of metal ions has become a widely used material for capturing the metal ions from wastewaters. Its dye-capturing properties have been much less investigated, and this paper is the first to show how films based on amidated pectin can be used for cationic dye adsorption. In the present study amidated pectin/montmorillonite composite films were synthesized by membrane casting, and they are stable in aqueous solution both below and above pectin pKa. FTIR, thermogravimetry and SEM-EDAX have confirmed the presence of montmorillonite in the cast films and the interactions between the two constituents. In order to evaluate the cationic dye adsorption of these films Basic Yellow 28 was used, showing that the films have higher adsorption capacity compared to the others reported in the literature. The results were fitted into Langmuir, Freundlich and Temkin isotherms indicating an exothermic process and setting the optimum amount of montmorillonite in the films to 30% of pectin mass. According to the Langmuir isotherm the maximum adsorption capacity is 571.4 mg/g. PMID:24268651

  2. Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI).

    PubMed

    Ge, Huacai; Ma, Ziwei

    2015-10-20

    A novel triethylenetetramine modified graphene oxide/chitosan composite (TGOCS) was successfully synthesized by microwave irradiation (MW) method and compared with one prepared by conventional heating. This composite was characterized by FTIR, XRD, SEM, BET and elemental analysis. Adsorption of Cr(VI) on the composite was studied. The experimental results indicated that the product obtained by MW had higher yield and uptake than one obtained by the conventional and uptake of TGOCS for Cr(VI) was higher than that of the recently reported adsorbents. The effects of various variables on adsorption of Cr(VI) by TGOCS were further researched. The highest adsorption capacity of 219.5mg g(-1) was obtained at pH 2. Adsorption followed pseudo-second-order kinetic model and Langmuir isotherm. The capacity increased as increasing temperature. The adsorbent could be recyclable. These results have important implications for the application expansion of microwave preparation and the design of new effective composites for Cr(VI) removal in effluents. PMID:26256186

  3. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    PubMed

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution. PMID:18808007

  4. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y. Q.

    2015-12-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

  5. Dye adsorption and bactericidal properties of TiO2/chitosan coating layer.

    PubMed

    Kamal, Tahseen; Anwar, Yasir; Khan, Sher Bahadar; Chani, Muhammad Tariq Saeed; Asiri, Abdullah M

    2016-09-01

    A new kind of titanium oxide dispersed in chitosan (TiO2/CS) nanocomposite adsorbent was prepared and adhered to high surface area substrate, cellulose microfibers mat (CMM). CS-CMM and TiO2/CS-CMM were used for the thymol violet (TV) dye removal from wastewater. Characterization of materials was carried out by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The adsorption properties of both the CS-CMM and TiO2/CS-CMM were investigated as a function of adsorbent dosage, solution pH, and contact time. It was revealed that the composites pretreated in the solution with higher pH value exhibited larger adsorption capacities. Kinetic studies showed that the composites could adsorb TV dye rapidly and reached the equilibrium in 90min. The adsorption process followed pseudo-second order kinetics and involved particle diffusion mechanism. The calculated maximum adsorption capacities of CS-CMM and TiO2/CS-CMM were 84.32 and 97.51mgg(-1), respectively. Compare to CS, the TiO2/CS nanocomposite coated CMM showed higher antibacterial characteristics as tested against Escherichia coli. PMID:27185126

  6. Design of a new integrated chitosan-PAMAM dendrimer biosorbent for heavy metals removing and study of its adsorption kinetics and thermodynamics.

    PubMed

    Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali

    2016-04-01

    In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. PMID:26836608

  7. Research and Development of a Small-Scale Adsorption Cooling System

    NASA Astrophysics Data System (ADS)

    Gupta, Yeshpal

    The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the <10 ton size range required for residential air conditioning. There are myriad reasons for the lack of small-scale systems such as low Coefficient of Performance (COP), high capital cost, scalability, and limited performance data. A numerical model to simulate an adsorption system was developed and its performance was compared with similar thermal-powered systems. Results showed that both the adsorption and absorption systems provide equal cooling capacity for a driving temperature range of 70--120 ºC, but the adsorption system is the only system to deliver cooling at temperatures below 65 ºC. Additionally, the absorption and desiccant systems provide better COP at low temperatures, but the COP's of the three systems converge at higher regeneration temperatures. To further investigate the viability of solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation

  8. [Soil texture as a regulating factor of Escherichia coli adsorption in a Rolling Pampa basin (Argentina)].

    PubMed

    Behrends Kraemer, Filipe; Chagas, Celio I; Cosentino, Diego J; Paz, Marta; Moretton, Juan A

    2011-01-01

    Increase of bovine livestock rates in fragile areas of the Rolling Pampa entails a high risk of biological contamination. This biological contamination is regulated by edaphic variables such as texture, which control biological contaminants transport towards water bodies. In this work bacterial adsorption was correlated with individual particle sizes in 27 soils of a typical basin of the Rolling Pampa with slow centrifugation techniques. Bacterial adsorption values, using E. coli (ATCC 8739), ranged between 25.3 and 73.3% and significant correlation (R² = 0.6) was found between bacterial adsorption and clay content. This correlation was improved when particles smaller than 3 µm were considered (R² = 0.64) highlighting the capacity of very fine silt in adsorption mechanisms. Data obtained were compared with those proposed by Ling et al. (2002), finding similar slope but different intercept. This difference disappeared when a wild strain, isolated from bovine manures present in the basin, was used, since a bacterial adsorption increase of 48% was found. PMID:21731969

  9. Immobilization of Thermomyces lanuginosus Xylanase on Aluminum Hydroxide Particles Through Adsorption: Characterization of Immobilized Enzyme.

    PubMed

    Jiang, Ying; Wu, Yue; Li, Huixin

    2015-12-28

    Xylanase plays important roles in a broad range of industrial production as a biocatalyst, and its applications commonly require immobilization on supports to enhance its stability. Aluminum hydroxide, a carrier material with high surface area, has the advantages of simple and low-cost preparation and resistance to biodegradation, and can be potentially used as a proper support for xylanase immobilization. In this work, xylanase from Thermomyces lanuginosus was immobilized on two types of aluminum hydroxide particles (gibbsite and amorphous Al(OH)3) through adsorption, and the properties of the adsorbed enzymes were studied. Both particles had considerable adsorptive capacity and affinity for xylanase. Xylanase retained 75% and 64% of the original catalytic activities after adsorption to gibbsite and amorphous Al(OH)3. Both the adsorptions improved pH and thermal stability, lowered activation energy, and extended lifespan of the immobilized enzyme, as compared with the free enzyme. Xylanase adsorbed on gibbsite and amorphous Al(OH)3 retained 71% and 64% of its initial activity, respectively, after being recycled five times. These results indicated that aluminum hydroxides served as good supports for xylanase immobilization. Therefore, the adsorption of xylanase on aluminum hydroxide particles has promising potential for practical production. PMID:26282687

  10. Simultaneous removal of multi-pollutants in an intimate integrated flocculation-adsorption fluidized bed.

    PubMed

    Zhou, Dandan; Xu, Zhengxue; Wang, Yao; Wang, Jun; Hou, Dianxun; Dong, Shuangshi

    2015-03-01

    A novel intimate integrated flocculation-adsorption fluidized bed (IFAFB) was designed based on the hydraulic classification theory, and the operation, performance, characterization, and mechanisms of the novel process were developed. In this system, 150 mg · L(-1) kaolin clay and 100 mg · L(-1) phenol were used to simulate multi-pollutants in synthetic influent; resin beads and silica beads were the solid phases for the fluidized flocculator, and polymer aluminum chloride (PAC) and granular activated carbon were the flocculant and the adsorbent, respectively. The results showed that the Euler numeral was the most suitable dynamic parameter for flocculation in the fluidized bed when compared with the velocity gradient (G), Reynolds number (Re), and GRe (-1/2) . Additionally, the adsorption capacities of the fluidized regime were 8.77 and 24.70 mg · g(-1) greater than those of the fixed regime at superficial velocities of 6 and 8 mm · s(-1), respectively. In the IFAFB, the removal efficiencies of kaolin clay and phenol in the IFAFB reached 95 and 80 % simultaneously at total initial bed height of 35 mm. Flocs size, fractal dimension, and scanning electron microscopy (SEM) confirmed that the relationship of flocculation and adsorption in the IFAFB was mutually beneficial. Adsorption favored continuous growth of flocs and protected flocs from breakage, while flocculation removed fine particles as the first stage to prevent the adsorption of kaolin clay. PMID:25266059

  11. [Adsorption Properties of Fluorine onto Fulvic Acid-Bentonite Complex].

    PubMed

    Fang, Dun; Tian, Hua-jing; Ye, Xin; He, Ci-li; Dan, You-meng; Wei, Shi-yong

    2016-03-15

    Fulvic Acid-Bentonite (FA-BENT) complex was prepared using coprecipitation method, and basic properties of the complex and sorption properties of fluorine at different environmental conditions were studied. XRD results showed that the d₀₀₁ spacing of FA- BENT complex had no obvious change compared with the raw bentonite, although the diffraction peak intensity of smectite in FA-BENT complex reduced, and indicated that FA mainly existed as a coating on the external surface of bentonite. Some functional groups (such as C==O, −OH, etc. ) of FA were observed in FA-BENT FTIR spectra, thus suggesting ligand exchange-surface complexation between FA and bentonite. Higher initial pH values of the reaction system were in favor of the adsorption of fluorine onto FA-BENT, while the equilibrium capacity decreased with the increase of pH at initial pH ≥ 4.50. The adsorption of fluorine onto FA-BENT was also affected by ionic strength, and the main reason might be the "polarity" effect. The adsorption of fluorine onto FA-BENT followed pseudo-second-order kinetic model and was controlled by chemical process ( R² = 0.999 2). Compared with the Freundlich model, Langmuir model was apparently of a higher goodness of fit (R² > 0.994 9) for absorption of fluorine onto FA-BENT. Thermodynamic parameters indicated that the adsorption process of fluorine was an spontaneously endothermic reaction, and was an entropy-driven process (ΔH 32.57 kJ · mol⁻¹, ΔS 112.31 J · (mol · K)⁻¹, ΔG −0.65- −1.76 kJ · mol⁻¹). PMID:27337896

  12. Efficient removal of aniline by a water-compatible microporous and mesoporous hyper-cross-linked resin and XAD-4 resin: A comparative study

    NASA Astrophysics Data System (ADS)

    Xiao, Guqing; Long, Liping

    2012-06-01

    A novel water-compatible microporous and mesoporous hyper-cross-linked resin modified with phenolic hydroxyl group (named as GQ-03) was synthesized to remove aniline in aqueous solution as compared with XAD-4. The maximum adsorption capacity of GQ-03 emerged at the molecular state for both aniline and p-cresol while the pH dependency trend of aniline adsorbed onto XAD-4 was accordant with the dissociation curve of aniline. The ionic strength influenced the adsorption obviously. The pseudo-first-order rate equation could describe the adsorption process of aniline onto GQ-03 in two stages while this equation could characterize the entire adsorption process of XAD-4. The adsorption isotherms could be correlated to the Freundlich model, higher KF and n values for GQ-03 than XAD-4. The breakthrough capacity and the total adsorption capacity of GQ-03 and XAD-4 was up to 47.2 mg mL-1 and 28.3 mg mL-1, 271.7 mg mL-1 and 115.6 mg mL-1, respectively. The size matching between the pore diameter of GQ-03 and the molecular size of aniline, and hydrogen bonding between GQ-03 and aniline resulted in the larger adsorption capacity.

  13. Adsorption of low molecular weight halocarbons by montmorillonite

    SciTech Connect

    Estes, T.J.; Shah, R.V.; Vilker, V.L. )

    1988-04-01

    Montmorillonite clay from Clay Spur, WY, was found to adsorb several low molecular weight, hydrophobic halocarbons from aqueous solution at sub-parts-per-million levels. The halocarbons studied were trichloroethylene, tetrachloroethylene, hexachloroethane, and dibromochloropropane. When the montmorillonite was treated with sodium citrate-bicarbonate-dithionite (CBD), it adsorbed higher levels of halocarbons than the untreated clay. In addition, the CBD-treated clay exhibited a maximum in halocarbon adsorption around pH 4, while untreated clay showed little variation in adsorption over the pH range 2-10. Adsorption of trichloroethylene was inhibited by low concentrations of sodium chloride (0.01 M or greater) in solution. Aging the CBD-treated clay in water decreased its capacity to adsorb trichloroethylene. Desorption studies showed that the sorption of tetrachloroethylene to CBD-treated clay is an irreversible process when compared to sorption by fumed silica. The ability of montmorillonite to adsorb halocarbons and the instability of the clay in water are postulated to involve changes in the oxide surface coating on the clay.

  14. Graphene oxide and adsorption of chloroform: A density functional study

    NASA Astrophysics Data System (ADS)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth

    2016-05-01

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  15. Graphene oxide and adsorption of chloroform: A density functional study.

    PubMed

    Kuisma, Elena; Hansson, C Fredrik; Lindberg, Th Benjamin; Gillberg, Christoffer A; Idh, Sebastian; Schröder, Elsebeth

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study. PMID:27179497

  16. Long-term balance in heavy metal adsorption and release in biochar derived from sewage sludge

    NASA Astrophysics Data System (ADS)

    Sohi, Saran; Cleat, Robert; Graham, Margaret; Cross, Andrew

    2014-05-01

    In Europe, sewage sludge has major potential as a resource for producing biochar. Biochar from sludge could offer a means for the controlled recycling of phosphorus to soil, with the additional benefit of carbon stabilisation. Biochar made from contaminated feedstock could, however, also leach heavy metals into soil. Counter to release of metals, biochar from fresh plant biomass has a documented affinity and adsorption capacity. The longer term balance of release and adsorption of metals in sludge-derived biochar has not been established. Our work compared the adsorption and release of both indigenous metals and metals adsorbed to sludge derived biochar. The hypotheses were threefold: (1) the capacity to adsorb metals is lower than the potential to release them, (2) the affinity for indigenous metals is higher than for metals in solution, 3) oxidative ageing of biochar leads to partial release of adsorbed metals. Sludge biochar was produced in a horizontal, externally heated kiln at a feed rate of approx. 0.5 kg/hr. Dry sludge was converted in a 20 min. transit time with peak kiln temperature of 550°C. Elemental analysis using ICP OES (after a published preparation step) showed Zn, Pb and Cu to be the most abundant heavy metals in the biochar. The same elements were assessed in sequential water and Mehlich III extracts. Adsorption of the metals from pure and mixed Zn, Pb and Pb solutions were undertaken before and after the other extractions. All the treatments were applied to the same biochar after oxidative ageing, in which biochar C was also found to be very stable. Extractability of all three metals from fresh biochar was low (less than 5 %), but for two of the metals it was lower after ageing. For one of the metals, ageing increased extractability. For the same metal, adsorption was lower when undertaken with a mixed rather than pure solution. Capacity for adsorption of one of the other metals was higher after biochar ageing; the general capacity for metal

  17. Synthesis of Ordered Mesoporous Silica for Energy-efficient Adsorption Systems

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Komori, Kou; Inagi, Yuki; Fujisaki, Satoko; Yamamoto, Takuji

    Energy-efficient adsorption systems, such as adsorption heat pump, desiccant cooling, humidity control system, and so on, are expected as a energy exchange process because they are able to utilize low temperature exhaust heat. As an adsorbent for such systems, materials with large adsorption capacity in the pressure range of practical operation are preferable. To enable the design and synthesis of materials with large heat storage capacity, the pore structure of adsorbents should be optimized for each systems. In this paper, we synthesized ordered mesoporous silica (MPS) with an arrow pore size distribution of around 2nm by a solvent evaporation method and evaluated their water adsorption properties. The adsorption isotherms for MPSs showed steep increase at a relative humidity corresponding to their pore size. Since MPSs have a large adsorption capacity than conventional materials in the relative humidity region of practical operation, they are expected for new adsorbents for energy-efficient adsorption systems.

  18. Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater.

    PubMed

    Hong, Hye-Jin; Ryu, Jungho; Park, In-Su; Ryu, Taegong; Chung, Kang-Sup; Kim, Byuong-Gyu

    2016-01-01

    In this paper, we investigated alginate microspheres as a low-cost adsorbent for strontium (Sr(II)) removal and recovery from seawater. Alginate microspheres have demonstrated a superior adsorption capacity for Sr(II) ions (≈110 mg/g). A Freundlich isotherm model fits well with the Sr(II) adsorption of an alginate microsphere. The mechanism of Sr(II) adsorption is inferred as an ion exchange reaction with Ca(II) ions. The effects of the solution pH and co-existing ions in seawater are also investigated. Except for a pH of 1-2, Sr(II) adsorption capacity is not affected by pH. However, increasing the seawater concentration of metal cations seriously decreases Sr(II) uptake. In particular, highly concentrated (15,000 mg/L) Na(I) ions significantly interfere with Sr(II) adsorption. Sr(II) desorption was performed using 0.1 M HCl and CaCl2. Both regenerants show an excellent desorption efficiency, but the FTIR spectrum reveals that the chemical structure of the microsphere is destroyed after repeated use of HCl. Conversely, CaCl2 successfully desorbed Sr(II) without damage, and the Sr(II) adsorption capacity does not decrease after three repeated uses. The alginate microsphere was also applied to the adsorption of Sr(II) in a real seawater medium. Because of inhibition by co-existing ions, the Sr(II) adsorption capacity was decreased and the adsorption rate was retarded compared with D.I. water. Although the Sr(II) adsorption capacity was decreased, the alginate microsphere still exhibited 17.8 mg/g of Sr(II) uptake in the seawater medium. Considering its excellent Sr(II) uptake in seawater and its reusability, an alginate microsphere is an appropriate cost-effective adsorbent for the removal and recovery of Sr(II) from seawater. PMID:26454070

  19. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    PubMed

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods. PMID:26799950

  20. Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Hung; Sanjeeva Gandhi, M.; Mok, Young Sun

    2015-01-01

    The abatement of acetone using a combination of non-thermal plasma, catalysis and adsorption was investigated in a dielectric barrier discharge plasma reactor packed with silver-coated zeolite pellets serving as both adsorbent and catalyst. The removal of acetone in this reactor system was carried out by cyclic operation comprising two repetitive steps, namely, adsorption followed by plasma-catalytic oxidation. The effects of the zeolite-supported silver catalyst on the reduction of unwanted ozone emission and the behavior for the formation of gaseous byproducts were examined. The experimental results showed that the zeolite-supported catalyst had a high acetone adsorption capacity of 1.07 mmol g-1 at 25 °C. Acetone with a concentration of 300 ppm was removed from the gas stream and enriched on the zeolite surface during the adsorption step of the cyclic process (100 min). In the succeeding step, the adsorbed acetone was plasma-catalytically treated under oxygen-flowing atmosphere to recover the adsorption capability of the surface. The plasma-catalytic oxidation of the acetone adsorbed in the previous 100 min adsorption step was completed in 15 min. The abatement of acetone by the cyclic adsorption and plasma-catalytic oxidation process was able to increase the performance of the reactor with respect to the energy efficiency, compared to the case of continuous plasma-catalytic treatment. The use of the zeolite-supported silver catalyst largely decreased the emission of unreacted ozone and increased the amount of gaseous byproducts such as carbon oxides and aldehydes due to the enhanced oxidation of the adsorbed acetone and intermediates.

  1. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde Schiff's base.

    PubMed

    Monier, M

    2012-04-01

    A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin. PMID:22155403

  2. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes.

    PubMed

    Sui, Kunyan; Li, Yujin; Liu, Rongzhan; Zhang, Yang; Zhao, Xin; Liang, Hongchao; Xia, Yanzhi

    2012-09-01

    A bioadsorbent of calcium alginate/multi-walled carbon nanotubes (CA/MWCNTs) composite fiber was fabricated by wet spinning and was characterized. Adsorptions of methylene blue (MB) and methyl orange (MO) ionic dyes onto CA/MWCNT composite fibers were investigated with different MWCNTs content and pH values. The results showed that introduction of MWCNTs of CA/MWCNTs composite fiber could not only sharply increase the adsorption capacity of MO onto bioadsorbent by 3 times, but enhanced the adsorption rate for MB compared to that of native CA fiber. Adsorption kinetics was determined by fitting pseudo-first, second-order and the intra-particle diffusion models to the experimental data, with the second-order model providing the best description of MB and MO adsorption onto CA/MWCNT fibers. The equilibrium adsorption data were analyzed by two widely applied isotherms: Langmuir and Freundlich. The desorption experiments showed the percentage of desorption were found to be 79.7% and 80.2% for MB and MO, respectively. PMID:24751058

  3. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance

    NASA Astrophysics Data System (ADS)

    Zhang, Liyuan; Zhou, Dali; Yao, Qianqian; Zhou, Jiabei

    2016-04-01

    CH3COOLi and Ti(OC4H9)4 were employed as lithium and titanium sources, respectively to synthesize Li2TiO3 by the sol-gel process, followed by treating with hydrochloric acid to yield H2TiO3-lithium adsorbent. Various concentrations of LiOH and lithium sources were used as adsorption liquid to carry out adsorption experiment, the data from which were analyzed by Langmuir and Freundlich models. The results indicate that the optimal calcination temperature is 650 °C, and Li2TiO3 with particle size 60-80 nm is observed. The Li+ drawn out ratio from Li2TiO3 reaches 78.9%, and the dissolution of titanium ions can be as low as 0.07%. The protonated sample obtained has a lower basal spacing, while the crystal morphology is retained. The main factors affecting the adsorptive capacity are the Li+ concentration and pH in the liquid. The adsorption process of H2TiO3-lithium adsorbent can be seen as a process including surface adsorption and ion exchange. Compared with Langmuir model, Freundlich model is more suitable for describing the actual adsorption process.

  4. High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin.

    PubMed

    Johnson, Billy R; Eldred, Tim B; Nguyen, Andy T; Payne, William M; Schmidt, Emily E; Alansari, Amir Y; Amburgey, James E; Poler, Jordan C

    2016-07-20

    As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to develop new materials that remove them rapidly and at high capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 s to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 min. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates; thus, these nanomaterials act as a "contact resin". PMID:27348616

  5. Ligand Functionalization in Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption.

    PubMed

    Wang, Hao; Peng, Junjie; Li, Jing

    2016-06-01

    Ligand functionalization in metal-organic frameworks (MOFs) has been studied extensively and has been demonstrated to enhance gas adsorption and induce interesting gas adsorption phenomena. This account summarizes our recent study of three series of MOFs by ligand functionalization, as well as their carbon dioxide adsorption properties. While ligand functionalization does not change the overall structure of the frameworks, it can influence their gas adsorption behavior. In the first two series, we show how ligand functionalization influences the CO2 affinity and adsorption capacity of MOFs. We also show a special case in which subtle changes in ligand functionality alter the CO2 adsorption profile. PMID:27071491

  6. Adsorption studies of methylene blue dye on tunisian activated lignin

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Hamdi, N.; Srasra, E.

    2011-02-01

    Activated carbon prepared from natural lignin, providing from a geological deposit, was used as the adsorbent for the removal of methylene blue (MB) dye from aqueous solutions. Batch adsorption studies were conducted to evaluate various experimental parameters like pH and contact time for the removal of this dye. Effective pH for MB removal was 11. Kinetic study showed that the adsorption of dye was gradual process. Quasi equilibrium reached in 4 h. Pseudo-first-order, pseudo-second-order were used to fit the experimental data. Pseudo-second-order rate equation was able to provide realistic description of adsorption kinetics. The experimental isotherms data were also modelled by the Langmuir and Freundlich equation of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 147 mg/g. Activated lignin was shown to be a promising material for adsorption of MB from aqueous solutions.

  7. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  8. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Prola, Lizie D T; Machado, Fernando M; Bergmann, Carlos P; de Souza, Felipe E; Gally, Caline R; Lima, Eder C; Adebayo, Matthew A; Dias, Silvio L P; Calvete, Tatiana

    2013-11-30

    Multi-walled carbon nanotubes (MWCNT) and powder activated carbon (PAC) were used as adsorbents for adsorption of Direct Blue 53 dye (DB-53) from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N2 adsorption/desorption isotherms, and scanning and transmission electron microscopy. The effects of initial pH, contact time and temperature on adsorption capacity of the adsorbents were investigated. At pH 2.0, optimum adsorption of the dye was achieved by both adsorbents. Equilibrium contact times of 3 and 4 h were achieved by MWCNT and PAC adsorbents, respectively. The general order kinetic model provided the best fit of the experimental data compared to pseudo-first order and pseudo-second order kinetic adsorption models. For DB-53 dye, the equilibrium data (298-323 K) were best fitted to the Sips isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, with the values of 409.4 and 135.2 mg g(-1) for MWCNT and PAC, respectively. Studies of adsorption/desorption were conducted and the results showed that DB-53 loaded MWCNT could be regenerated (97.85%) using a mixture 50% acetone + 50% of 3 mol L(-1) NaOH. Simulated dye house effluents were used to evaluate the application of the adsorbents for effluent treatment (removal of 99.87% and 97.00% for MWCNT and PAC, respectively, were recorded). PMID:24076517

  9. Fast esterification of spent grain for enhanced heavy metal ions adsorption.

    PubMed

    Li, Qingzhu; Chai, Liyuan; Wang, Qingwei; Yang, Zhihui; Yan, Huxiang; Wang, Yunyan

    2010-05-01

    This work describes a novel method for fast esterification of spent grain to enhance its cationic adsorption capacity. The esterification of spent grain with citric acid was achieved by using sodium hypophosphite monohydrate (NaH(2)PO(2).H(2)O) as a catalyst in N,N-dimethylformamide (DMF). Fourier transform infrared (FTIR) spectroscopic analysis revealed the formation of ester groups after esterification, demonstrating that spent grain was successfully esterified with citric acid. The adsorption capacity of esterified spent grain (ESG) for each metal ion was greatly improved as compared with that of raw spent grain (RSG). Typically, Pb(2+) adsorption capacity increased from 125.84mg g(-1) of RSG to 293.30mg g(-1) of ESG. This increase can be attributed to both the formation of ester linkage and the grafting of carboxyl groups on spent grain. The results suggest that a fast process for esterification of spent grain has been realized and ESG has strong ability to adsorb heavy metal ions. PMID:20110169

  10. Numerical Analysis on Adsorption Characteristics of Activated Carbon/Ethanol Pair in Finned Tube Type Adsorber

    NASA Astrophysics Data System (ADS)

    Makimoto, Naoya; Kariya, Keishi; Koyama, Shigeru

    The cycle performance of adsorption cooling system depends on the thermophysical properties of the adsorbent/refrigerant pair and configuration of the adsorber/desorber heat exchanger. In this study, a twodimensional analysis is carried out in order to clarify the performance of the finned tube type adsorber/desorber heat exchanger using a highly porous activated carbon powder (ACP)/ethanol pair. The simulation results show that the average cooling capacity per unit volume of adsorber/desorber heat exchanger and coefficient of performance (COP) can be improved by optimizing fin thickness, fin height, fin pitch and tube diameter. The performance of a single stage adsorption cooling system using ACP/ethanol pair is also compared with that of activated carbon fiber (ACF)/ethanol pair. It is found that the cooling capacities of each adsorbent/refrigerant pair increase with the decrease of adsorption/desorption time and the cooling capacity of ACP/ethanol pair is approximately 2.5 times as much as that of ACF/ethanol pair. It is also shown that COP of ACP/ethanol pair is superior to that of ACF/ethanol pair.

  11. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    SciTech Connect

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  12. MOLECULAR OXYGEN AND THE ADSORPTION OF PHENOLS - EFFECT OF FUNCTIONAL GROUPS

    EPA Science Inventory

    This study reveals that the presence of molecular oxygen (oxic conditions) has a significant impact on the exhibited adsorptive capacity of granular activated carbon (GAC) for several phenolic compounds. The increase in the GAC adsorptive capacity under oxic conditions results f...

  13. Microemulsion synthesis of hydroxyapatite nanomaterials and their adsorption behaviors for Cr3+ ions

    NASA Astrophysics Data System (ADS)

    Gao, Y. L.; Wang, X. S.; Cui, H. H.; Mu, M. M.; Huang, F. Z.

    2016-05-01

    Hydroxyapatite (HAP) nanoparticles with different morphologies, such as nanorods, nanospheres, and their mixtures were successfully synthesized by microemulsion method with soluble additive. Their adsorption capacity for Cr3+ ion was investigated. Most of the Cr3+ were absorbed by HAP within 60 min. The adsorption capacity of the HAP nanospheres was the best, and the maximum Cr3+ removal ratio was 96.4%, revealing that the metal ions adsorption by HAP is dependent on the morphology of its particles.

  14. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  15. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.

    PubMed

    Shang, Guofeng; Shen, Guoqing; Liu, Liang; Chen, Qin; Xu, Zhiwei

    2013-04-01

    Three different biochars as cost-effective substitutes for activated carbon (AC) were tested for their hydrogen sulfide (H2S) adsorption ability. The biochars were produced from camphor (SC), bamboo (SB), and rice hull (SR) at 400°C by oxygen-limited pyrolysis. The surface area (SA), pH, and Fourier transform infrared spectras of the biochars and AC were compared. The maximum removal rates and the saturation constants were obtained using the Michaelis-Menten-type equation. The three biochars were found to be alkaline, and the SAs of the biochars were much smaller than that of the AC. The H2S breakthrough capacity was related to the local pH within the pore system of the biochar. The order observed in terms of both biochar and AC adsorption capacity was SR>SB>SC>AC. SR efficiently removed H2S within the inlet concentration range of 10-50 μL/L. Biochars derived from agricultural/forestry wastes are a promising H2S adsorbent with distinctive properties. PMID:23455220

  16. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  17. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes.

    PubMed

    Takaya, C A; Fletcher, L A; Singh, S; Anyikude, K U; Ross, A B

    2016-02-01

    The potential for biochar and hydrochar to adsorb phosphate and ammonium is important for understanding the influence of these materials when added to soils, compost or other high nutrient containing environments. The influence of physicochemical properties such as mineral content, surface functionality, pH and cation exchange capacity has been investigated for a range of biochars and hydrochars produced from waste-derived biomass feedstocks. Hydrochars produced from hydrothermal carbonisation at 250 °C have been compared to low and high temperature pyrolysis chars produced at 400-450 °C and 600-650 °C respectively for oak wood, presscake from anaerobic digestate (AD), treated municipal waste and greenhouse waste. In spite of differences in char physicochemical properties and processing conditions, PO4-P and NH4-N sorption capacities ranged from about 0 to 30 mg g(-1) and 105.8-146.4 mg g(-1) respectively. Chars with high surface areas did not possess better ammonium adsorption capacities than low surface area chars, which suggests that surface area is not the most important factor influencing char ammonium adsorption capacity, while char calcium and magnesium contents may influence phosphate adsorption. Desorption experiments only released a small fraction of adsorbed ammonium or phosphate (<5 mg g(-1) and a maximum of 8.5 mg g(-1) respectively). PMID:26702555

  18. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  19. Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves

    NASA Astrophysics Data System (ADS)

    Hu, Yun; He, Yinyun; Wang, Xiaowen; Wei, Chaohai

    2014-08-01

    Hydrophobic molecular sieve MCM-41 including surfactant template was synthesized by a simple method. The adsorption properties of this material toward phenanthrene were studied. The effects of adsorbent dose and pH value on the adsorption process as well as the adsorption mechanism and reuse performance were investigated. The template-containing MCM-41 showed a significant adsorption for phenanthrene, due to its hydrophobicity created by the surfactant template in MCM-41. The solution pH had little effect on the adsorption capacity. The adsorption kinetic could be fitted well with pseudo-second-order kinetic model. The adsorption equilibrium was fitted well by the linear model, and the adsorption process followed the liquid/solid phase distribution mechanism. The thermodynamic results indicated that the adsorption was a spontaneous and exothermic process.

  20. Adsorption of chlorophenols on granular activated carbon

    SciTech Connect

    Yang, M.

    1993-12-31

    Studies were undertaken of the adsorption of chlorinated phenols from aqueous solution on granular activated carbon (Filtrasorb-400, 30 x 40 mesh). Single-component equilibrium adsorption data on the eight compounds in two concentration ranges at pH 7.0 fit the Langmuir equation better than the Freundlich equation. The adsorptive capacities at pH 7.0 increase from pentachlorophenol to trichlorophenols and are fairly constant from trichlorophenols to monochlorophenols. The adsorption process was found to be exothermic for pentachlorophenol and 2,4,6-trichlorophenol, and endothermic for 2,4-dichlorophenol and 4-chlorophenol. Equilibrium measurements were also conducted for 2,4,5-trichlorophenol, 2,4-dichlorophenol, and 4-chlorophenol over a wide pH range. A surface complexation model was proposed to describe the effect of pH on adsorption equilibria of chlorophenols on activated carbon. The simulations of the model are in excellent agreement with the experimental data. Batch kinetics studies were conducted of the adsorption of chlorinated phenols on granular activated carbon. The results show that the surface reaction model best describes both the short-term and long-term kinetics, while the external film diffusion model describes the short-term kinetics data very well and the linear-driving-force approximation improved its performance for the long-term kinetics. Multicomponent adsorption equilibria of chlorophenols on granular activated carbon was investigated in the micromolar equilibrium concentration range. The Langmuir competitive and Ideal Adsorbed Solution (IAS) models were tested for their performance on the three binary systems of pentachlorophenol/2,4,6-trichlorophenol, 2,4,6-trichlorophenol/2,4-dichlorophenol, and 2,4-dichlorophenol/4-chlorophenol, and the tertiary system of 2,4,6-trichlorophenol/2,4-dichlorophenol/4-chlorophenol, and found to fail to predict the two-component adsorption equilibria of the former two binary systems and the tertiary system.

  1. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  2. Adsorption of Bisphenol A to a Carbon Nanotube Reduced Its Endocrine Disrupting Effect in Mice Male Offspring

    PubMed Central

    Wang, Wenwei; Jiang, Cuijuan; Zhu, Ledong; Liang, Nana; Liu, Xuejiao; Jia, Jianbo; Zhang, Chengke; Zhai, Shumei; Zhang, Bin

    2014-01-01

    Soluble carbon nanotubes (CNTs) have shown promise as materials for adsorption of environmental contaminants such as Bisphenol A (BPA), due to the high adsorption capacity and strong desorption hysteresis of BPA on CNTs. The adsorption of BPA to CNTs may change the properties of both BPA and CNTs, and induce different toxicity to human and living systems from that of BPA and CNTs alone. Herein, we report that oral exposure of BPA/MWCNT–COOH (carboxylated multi-walled carbon nantubes) adduct to mice during gestation and lactation period decreased the male offspring reproductive toxicity compared with those induced by BPA alone. The adduct decreased malondialdehyde (MDA) level in testis and follicle-stimulating hormone (FSH) in serum, but increased the level of serum testosterone in male offspring in comparison to BPA alone. Our investigations broadened the knowledge of nanotoxicity and provided important information on the safe application of CNTs. PMID:25210847

  3. Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars grown under organic and conventional conditions.

    PubMed

    Anton, Dea; Matt, Darja; Pedastsaar, Priit; Bender, Ingrid; Kazimierczak, Renata; Roasto, Mati; Kaart, Tanel; Luik, Anne; Püssa, Tõnu

    2014-06-01

    In the present study, four tomato cultivars were grown under organic and conventional conditions in separate unheated greenhouses in three consecutive years. The objective was to assess the influence of the cultivation system on the content of individual polyphenols, total phenolics, and antioxidant capacity of tomatoes. The fruits were analyzed for total phenolic content by the Folin-Ciocalteau method and antioxidant capacity by the DPPH free radical scavenging assay. Individual phenolic compounds were analyzed using HPLC-DAD-MS/MS. Among 30 identified and quantified polyphenols, significantly higher contents of apigenin acetylhexoside, caffeic acid hexoside I, and phloretin dihexoside were found in all organic samples. The content of polyphenols was more dependent on year and cultivar than on cultivation conditions. Generally, the cultivation system had minor impact on polyphenols content, and only a few compounds were influenced by the mode of cultivation in all tested cultivars during all three years. PMID:24811708

  4. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of

  5. Selective Adsorption of n-Alkanes from n-Octane on Metal-Organic Frameworks: Length Selectivity.

    PubMed

    Bhadra, Biswa Nath; Jhung, Sung Hwa

    2016-03-16

    The liquid-phase adsorption of n-alkanes (from n-octane (C8) solvent) with different chain lengths was carried out over three metal-organic frameworks (MOFs), viz., metal-azolate framework-6 (MAF-6), copper-benzenetricarboxylate (Cu-BTC), and iron-benzenetricarboxylate (MIL-100(Fe)), and a conventional adsorbent activated carbon (AC). MAF-6 and Cu-BTC were found to have significant selectivity for the adsorption of n-dodecane (C12) and n-heptane (C7), respectively, from C8. Selectivity for C12 on MAF-6 was also observed in competitive adsorption from binary adsorbate systems. To understand the selective adsorption of C12 on MAF-6 more, the adsorption of C12 from C8 over MAF-6 was investigated in detail and compared with that over AC. The obtained selectivities over MAF-6 and Cu-BTC for C12 and C7, respectively, might be explained by the similarity between cavity size of adsorbents and molecular length of n-alkanes. In the case of AC and MIL-100(Fe), no specific adsorption selectivity was observed because the cavity sizes of the two adsorbents are larger than the size of the n-alkanes used in this study. The adsorption capacities (qt) of n-alkanes over AC and MIL-100(Fe) decreased and increased, respectively, as the polarity (or length) of the adsorbates increased, probably because of nonpolar and polar interactions between the adsorbents and n-alkanes. On the basis of the results obtained, it can be concluded that matching the cavity size (of adsorbents) with the molecular length (of n-alknaes) is more important parameter than the MOF's hydrophilicity/hydrophobicity for the selective adsorption/separation of alkanes. PMID:26905721

  6. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    SciTech Connect

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.

  7. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders.

    PubMed

    Lin, Kaili; Pan, Jiayong; Chen, Yiwei; Cheng, Rongming; Xu, Xuecheng

    2009-01-15

    In this study, the hydroxyapatite (HAp) nanopowders prepared by chemical precipitation method were used as the adsorbent, and the potential of HAp nanopowders for phenol adsorption from aqueous solution was studied. The effect of contact time, initial phenol concentration, pH, adsorbent dosage, solution temperature and adsorbent calcining temperature on the phenol adsorption, and the adsorption kinetic, equilibrium and thermodynamic parameters were investigated. The results showed that the HAp nanopowders possessed good adsorption ability to phenol. The adsorption process was fast, and it reached equilibrium in 2h of contact. The initial phenol concentration, pH and the adsorbent calcining temperature played obvious effects on the phenol adsorption capacity onto HAp nanopowders. Increase in the initial phenol concentration could effectively increase the phenol adsorption capacity. At the same time, increase in the pH to high-acidity or to high-alkalinity also resulted in the increase in the phenol adsorption capacity. Increase in the HAp dosage could effectively increase the phenol adsorption percent. However, the higher calcining temperature of HAp nanopowders could obviously decrease the adsorption capacity. The maximum phenol adsorption capacity was obtained as 10.33mg/g for 400mg/L initial phenol concentrations at pH 6.4 and 60 degrees C. The adsorption kinetic and the isotherm studies showed that the pseudo-second-order model and the Freundlich isotherm were the best choices to describe the adsorption behaviors. The thermodynamic parameters suggested that the adsorption of phenol onto HAp was physisorption, spontaneous and endothermic in nature. PMID:18573599

  8. Random sequential adsorption of trimers and hexamers.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2013-12-01

    Adsorption of trimers and hexamers built of identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Particles were adsorbed on a two-dimensional, flat and homogeneous surface. Numerical simulations allowed us to determine the maximal random coverage ratio, RSA kinetics as well as the available surface function (ASF), which is crucial for determining the kinetics of the adsorption process obtained experimentally. Additionally, the density autocorrelation function was measured. All the results were compared with previous results obtained for spheres, dimers and tetramers. PMID:24193213

  9. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface. PMID:27148721

  10. Adsorption of mercury on laterite from Guizhou Province, China.

    PubMed

    Yu, Xiaohong; Zhu, Lijun; Guo, Baiwei; He, Shouyang

    2008-01-01

    The adsorption behaviors of Hg(II) on laterite from Guizhou Province, China, were studied and the adsorption mechanism was discussed. The results showed that different mineral compositons in the laterite will cause differences in the adsorption capacity of laterite to Hg(II). Illite and non-crystalloids are the main contributors to enhancing the adsorption capacity of laterite to Hg(II). The pH of the solution is an important factor affecting the adsorption of Hg(II) on laterite. The alkalescent environment (pH 7-9) is favorable to the adsorption of Hg(II). The amount of adsorbed Hg(II) increases with increasing pH. When the pH reaches a certain value, the amount of the adsorbed Hg(II) will reach the maximum level. The amount of adsorbed Hg(II) decreases with increasing pH. The optimal pHs of laterite and kaolinite are 9 and 8, respectively. The optimal initial concentrations of Hg(II) on laterite and kaolinite are 250 and 200 microg/ml, respectively. The adsorption isotherms were described by the Langmuir model. The adsorption of Hg(II) on laterite is a quick process while that of Hg(II) on kaolinite is a slow reaction. Laterite from Guizhou Province is a promising environmental material which can be used in the removal of Hg(II) from wastewater. PMID:19202872

  11. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2).

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-07-30

    The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330mg/g (1.05mmol/g) at pH 6-7. The adsorption kinetics was fast, almost reaching equilibrium in 2h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d001 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater. PMID:24373983

  12. EVALUATING CAPACITIES OF GAC PRELOADED WITH NATURAL WATER

    EPA Science Inventory

    Adsorption studies are conducted to determine how preloading a natural groundwater onto GAC affects the adsorption of cis-1,2-dichloroexthene in small-scale and pilot-scale columns. Capacities are determined from batch-isotherm tests, microcolumns, and pilot columns, which are p...

  13. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    SciTech Connect

    Troy G. Garn; Mitchell Greenhalgh; Veronica J. Rutledge; Jack D. Law

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuir linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.

  14. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption.

    PubMed

    Valix, M; Cheung, W H; McKay, G

    2004-08-01

    Activated carbons were prepared from bagasse through a low temperature (160 degrees C) chemical carbonisation treatment and gasification with carbon dioxide at 900 degrees C. The merit of low temperature chemical carbonisation in preparing chars for activation was assessed by comparing the physical and chemical properties of activated carbons developed by this technique to conventional methods involving the use of thermal and vacuum pyrolysis of bagasse. In addition, the adsorption properties (acid blue dye) of these bagasse activated carbons were also compared with a commercial activated carbon. The results suggest that despite the high ash content of the precursor, high surface areas (614-1433 m2 g(-1)) and microporous (median pore size from 0.45 to 1.2 nm) activated carbons can be generated through chemical carbonisation and gasification. The micropore area of the activated carbon developed from chars prepared by the low temperature chemical carbonisation provides favourable adsorption sites to acid blue dye (391 mg g(-1) of carbon). The alkalinity of the carbon surface and total surface area were shown to have complementary effects in promoting the adsorption of acid blue dye. Adsorption of the anionic coloured component of the acid dye was shown to be promoted in carbon exhibiting alkaline or positively charged surfaces. This study demonstrates that activated carbons with high acid dye adsorption capacities can be prepared from high ash bagasse based on low temperature chemical carbonisation and gasification. PMID:15212915

  15. Nanofluid heat capacities

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Gomez, Judith C.; Wang, Jun; Pradhan, Sulolit; Glatzmaier, Greg C.

    2011-12-01

    Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes, but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work, nano- and micron-sized particles were added to five base fluids (poly-α olefin, mineral oil, ethylene glycol, a mixture of water and ethylene glycol, and calcium nitrate tetrahydrate), and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here, we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

  16. Novel nano bearings constructed by physical adsorption

    PubMed Central

    Zhang, Yongbin

    2015-01-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488

  17. Novel nano bearings constructed by physical adsorption.

    PubMed

    Zhang, Yongbin

    2015-01-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488

  18. Adsorption of tetrahydrothiophene (THT) onto soils

    NASA Astrophysics Data System (ADS)

    Juriga, Martin; Kubinec, Róbert; Rajzinger, Ján; Jelemenský, Karol; Gužela, Štefan

    2014-08-01

    Adsorption is one of the major industrial separation technique nowadays. Although adsorption is most commonly used as a separation method, in some cases cause harmful and undesirable effects such as capture odorant from natural gas onto soil. In the event of an accident, the gas can leak from pipes in two ways - either directly into the surrounding air, or the soil where the odorant can be mostly absorbed depending of type of soil, water content and temperature. Design of experimental apparatus for measurement of breakthrough curves is studied in detail. Alternative arrangement of experimental apparatus, calibration of measuring devices, method of measurement and processing the data are narrowly discussed. Moreover, experimental measurements of breakthrough curves are presented. The actual measurement was made to identify the equilibrium adsorption capacity of THT (tetrahydrothiophene) onto soils. Experimental data were evaluated using Linear, Freundlich, Langmuir and Koble-Corrigan model.

  19. Novel nano bearings constructed by physical adsorption

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin

    2015-09-01

    The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film.

  20. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  1. Adsorption of lead onto smectite from aqueous solution.

    PubMed

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals. PMID

  2. ARSENIC TREATMENT BY ADSORPTIVE TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the removal of arsenic from drinking water using the adsorptive media treatment process. Fundamental information is provided on the design and operation of adsorptive media technology including the selection of the adsorptive media. The information cites...

  3. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  4. Synthesis and optimization of Fe₂O₃ nanofibers for chromate adsorption from contaminated water sources.

    PubMed

    Nalbandian, Michael J; Zhang, Miluo; Sanchez, Joel; Choa, Yong-Ho; Nam, Jin; Cwiertny, David M; Myung, Nosang V

    2016-02-01

    In this work, α-Fe2O3 nanofibers were synthesized via electrospinning and characterized to observe optimal morphological and dimensional properties towards chromate removal. The Fe2O3 nanofiber samples were tested in aqueous solutions containing chromate (CrO4(2-)) to analyze their adsorption capabilities and compare them with commercially-available Fe2O3 nanoparticles. Synthesized Fe2O3 nanofibers were observed with a variety of different average diameters, ranging from 23 to 63 nm, while having a constant average grain size at 34 nm, point zero charge at pH 7.1, and band gap at 2.2 eV. BET analysis showed an increase in specific surface area with decreasing average diameter, from 7.2 to 59.2 m(2)/g, due to the increased surface area-to-volume ratio with decreasing nanofiber size. Based on CrO4(2-) adsorption isotherms at pH 6, adsorption capacity of the Fe2O3 nanofibers increased with decreasing diameter, with the 23 nm sized nanofibers having an adsorption capacity of 90.9 mg/g, outperforming the commercially-available Fe2O3 nanoparticles by nearly 2-fold. Additionally, adsorption kinetics was also analyzed, increasing with decreasing nanofiber diameter. The enhanced performance of the nanofiber is suggested to be caused solely due to the increased surface area, in part by its size and morphology. Electrospun Fe2O3 nanofibers provide a promising solution for effective heavy metal removal through nanotechnology-integrated treatment systems. PMID:26433935

  5. Adsorption of Gases on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mbaye, Mamadou Thiao

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  6. Adsorption kinetics and thermodynamics of acid Bordeaux B from aqueous solution by graphene oxide/PAMAMs.

    PubMed

    Zhang, Fan; He, Shengfu; Zhang, Chen; Peng, Zhiyuan

    2015-01-01

    Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process. PMID:26398038

  7. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Lasheen, Mohamed R.; Ammar, Nabila S.; Ibrahim, Hanan S.

    2012-02-01

    Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd 2+, Cu 2+ and Pb 2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm -1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.

  8. Solvothermal synthesis of MnFe2O4-graphene composite-Investigation of its adsorption and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chella, Santhosh; Kollu, Pratap; Komarala, Eswara Vara P. R.; Doshi, Sejal; Saranya, Murugan; Felix, Sathiyanathan; Ramachandran, Rajendran; Saravanan, Padmanapan; Koneru, Vijaya Lakshmi; Venugopal, Velmurugan; Jeong, Soon Kwan; Nirmala Grace, Andrews

    2015-02-01

    Graphene manganese ferrite (MnFe2O4-G) composite was prepared by a solvothermal process. The as-prepared graphene manganese ferrite composite was tested for the adsorption of lead (Pb(II)) and cadmium (Cd(II)) ions by analytical methods under diverse experimental parameters. With respect to contact time measurements, the adsorption of Pb and Cd ions increased and reached equilibrium within 120 and 180 min at 37 °C with a maximum adsorption at pH 5 and 7 respectively. The Langmuir model correlates to the experimental data showing an adsorption capacity of 100 for Pb(II) and 76.90 mg g-1 for Cd(II) ions. Thermodynamic studies revealed that the adsorption of Pb and Cd ions onto MnFe2O4-G was spontaneous, exothermic and feasible in the range of 27-47 °C. Cytotoxicity behavior of graphene against bacterial cell membrane is well known. To better understand its antimicrobial mechanism, the antibacterial activity of graphene and MnFe2O4-G nanocomposite was compared. Under similar concentration and incubation conditions, nanocomposite MnFe2O4-G dispersion showed the highest antibacterial activity of 82%, as compared to graphene showing 37% cell loss. Results showed that the prepared composite possess good adsorption efficiency and thus could be considered as an excellent material for removal of toxic heavy metal ions as explained by adsorption isotherm. Hence MnFe2O4-G can be used as an adsorbent as well as an antimicrobial agent.

  9. Fluorocarbon adsorption in hierarchical porous frameworks.

    PubMed

    Motkuri, Radha Kishan; Annapureddy, Harsha V R; Vijaykumar, M; Schaef, H Todd; Martin, Paul F; McGrail, B Peter; Dang, Liem X; Krishna, Rajamani; Thallapally, Praveen K

    2014-01-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane > chlorodifluoromethane > chlorotrifluoromethane > tetrafluoromethane > methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling. PMID:25006832

  10. Fluorocarbon adsorption in hierarchical porous frameworks

    NASA Astrophysics Data System (ADS)

    Motkuri, Radha Kishan; Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Martin, Paul F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  11. Fluorocarbon adsorption in hierarchical porous frameworks

    SciTech Connect

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  12. [Adsorption and desorption of dyes by waste-polymer-derived activated carbons].

    PubMed

    Lian, Fei; Liu, Chang; Li, Guo-Guang; Liu, Yi-Fu; Li, Yong; Zhu, Ling-Yan

    2012-01-01

    Mesoporous activated carbons with high surface area were prepared from three waste polymers, i. e., tire rubber, polyvinyl chloride (PVC) and polyethyleneterephtalate (PET), by KOH activation. The adsorption/desorption characteristics of dyes (methylene blue and methyl orange) on the carbons were studied. The effects of pH, ionic strength and surface surfactants in the solution on the dye adsorption were also investigated. The results indicated that the carbons derived from PVC and PET exhibited high surface area of 2 666 and 2 831 m2 x g(-1). Their mesopore volume were as high as 1.06 and 1.30 cm3 g(-1), respectively. 98.5% and 97.0% of methylene blue and methyl orange were removed in 15 min by PVC carbon, and that of 99.5% and 95.0% for PET carbon. The Langmuir maximum adsorption capacity to these dyes was more than 2 mmol x g(-1), much higher than that of commercial activated carbon F400. Compared with Freundlich model, the adsorption data was fitted better by Langmiur model, indicating monolayer coverage on the carbons. The adsorption was highly dependent on solution pH, ionic strength and concentration of surface surfactants. The activated carbons exhibited higher adsorption to methylene blue than that of methyl orange, and it was very hard for both of the dyes to be desorbed. The observation in this study demonstrated that activated carbons derived from polymer waste could be effective adsorbents for the treatment of wastewater with dyes. PMID:22452203

  13. Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.

    2004-06-08

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  14. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  15. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  16. Poliovirus Adsorption by 34 Minerals and Soils

    PubMed Central

    Moore, Rebecca S.; Taylor, Dene H.; Sturman, Lawrence S.; Reddy, Michael M.; Fuhs, G. Wolfgang

    1981-01-01

    The adsorption of radiolabeled infectious poliovirus type 2 by 34 well-defined soils and mineral substrates was analyzed in a synthetic freshwater medium containing 1 mM CaCl2 and 1.25 mM NaHCO3 at pH 7. In a model system, adsorption of poliovirus by Ottawa sand was rapid and reached equilibrium within 1 h at 4°C. Near saturation, the adsorption could be described by the Langmuir equation; the apparent surface saturation was 2.5 × 106 plaque-forming units of poliovirus per mg of Ottawa sand. At low surface coverage, adsorption was described by the Freundlich equation. The soils and minerals used ranged from acidic to basic and from high in organic content to organic free. The available negative surface charge on each substrate was measured by the adsorption of a cationic polyelectrolyte, polydiallyldimethylammonium chloride. Most of the substrates adsorbed more than 95% of the virus. In general, soils, in comparison with minerals, were weak adsorbents. Among the soils, muck and Genesee silt loam were the poorest adsorbents; among the minerals, montmorillonite, glauconite, and bituminous shale were the least effective. The most effective adsorbents were magnetite sand and hematite, which are predominantly oxides of iron. Correlation coefficients for substrate properties and virus adsorption revealed that the elemental composition of the adsorbents had little effect on poliovirus uptake. Substrate surface area and pH, by themselves, were not significantly correlated with poliovirus uptake. A strong negative correlation was found between poliovirus adsorption and both the contents of organic matter and the available negative surface charge on the substrates as determined by their capacities for adsorbing the cationic polyelectrolyte, polydiallyldimethylammonium chloride. PMID:6274259

  17. Enhancing the hydrophobicity of mangrove bark by esterification for oil adsorption.

    PubMed

    Asadpour, Robabeh; Sapari, Nasiman Bin; Isa, Mohamed Hasnain; Orji, Kalu Uka

    2014-01-01

    Oil spills generally cause worldwide concern due to their detrimental effects on the environment and the economy. A