Science.gov

Sample records for adsorption distribution coefficient

  1. Radionuclide adsorption distribution coefficients measured in Hanford sediments for the low level waste performance assessment project

    SciTech Connect

    Kaplan, D.I.; Serne, R.J.; Owen, A.T.

    1996-08-01

    Preliminary modeling efforts for the Hanford Site`s Low Level Waste-Performance Assessment (LLW PA) identified {sup 129}I, {sup 237}Np, {sup 79}Se, {sup 99}Tc, and {sup 234},{sup 235},{sup 238}U as posing the greatest potential health hazard. It was also determined that the outcome of these simulations was very sensitive to the parameter describing the extent to which radionuclides sorb to the subsurface matrix, i.e., the distribution coefficient (K{sub d}). The distribution coefficient is a ratio of the radionuclide concentration associated with the solid phase to that in the liquid phase. The objectives of this study were to (1) measure iodine, neptunium, technetium, and uranium K{sub d} values using laboratory conditions similar to those expected at the LLW PA disposal site, and (2) evaluate the effect of selected environmental parameters, such as pH, ionic strength, moisture concentration, and radio nuclide concentration, on K{sub d} values of selected radionuclides. It is the intent of these studies to develop technically defensible K{sub d} values for the PA. The approach taken throughout these studies was to measure the key radio nuclide K{sub d} values as a function of several environmental parameters likely to affect their values. Such an approach provides technical defensibility by identifying the mechanisms responsible for trends in K{sub d} values. Additionally, such studies provide valuable guidance regarding the range of K{sub d} values likely to be encountered in the proposed disposal site.

  2. Adsorption coefficients for TNT on soil and clay minerals

    NASA Astrophysics Data System (ADS)

    Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen

    2007-04-01

    To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.

  3. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent rotor. A numerical simulation helps to understand the phenomena of heat and mass transfer in the rotor block. Overall transfer coefficients were estimated by performing both experiment and calculation. It was examined that the transient overall equivalent heat and mass transfer coefficient was not constant. It seems that both film fluid and diffusion resistance govern the coefficients in the block, and the influence of air flow on the time averaged coefficients is estimated by a considering the laminar forced convection from a flat plate. There is little difference of the coefficient between adsorption and desorption process. The correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  4. Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption

    NASA Astrophysics Data System (ADS)

    Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi

    A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.

  5. Molecular properties affecting the adsorption coefficient of pesticides from various chemical families.

    PubMed

    Langeron, Julie; Blondel, Alodie; Sayen, Stéphanie; Hénon, Eric; Couderchet, Michel; Guillon, Emmanuel

    2014-01-01

    Forty pesticides were selected in function of their chemical families and their physico-chemical properties to represent a wide range of pesticide properties. Adsorption of these pesticides was studied on two soils by batch experiments. The two soils differed largely in organic matter and calcite contents. Distribution coefficient Kd was determined for each pesticide on the two soils. Adsorption was higher for the soil having the highest organic matter content and the lowest calcite content. In order to identify pesticide properties governing retention, eight molecular descriptors were determined from three-dimensional (3D) structure of molecules. Class-specific quantitative structure properties relationship (QSPR) soil adsorption models using one and two parameters were developed from experimental Kd. Three properties seemed to influence most retention of pesticides: hydrophobicity, solubility, and polarisability. Models combining these properties were suggested and discussed. PMID:24801285

  6. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect

    Hull, Laurence Charles; Grossman, Christopher; Fjeld, R. A.; Coates, C.J.; Elzerman, A.

    2002-08-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  7. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-05-10

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  8. Distribution of trace impurities of metals during their adsorption from solutions of phosphoric acid

    SciTech Connect

    Toranov, A.N.; Evseeva, N.K.; Kremenskaya, I.N.

    1986-09-01

    The phase distribution of trace impurities of metals between solutions of phosphoric acid and a polymer adsorbent based on a copolymer of styrene with divinylbenzene, impregnated with di-2-ethylhexyldithiophosphoric acid, was investigated. The influence of the composition of the aqueous and solid phases on the distribution coefficients of trace impurities of metals is discussed. It was shown that the coefficients of interfacial distribution in the case of adsorption by an impregnated adsorbent is higher than in the case of liquid extraction.

  9. Distribution coefficient of selenium in Japanese agricultural soils.

    PubMed

    Nakamaru, Yasuo; Tagami, Keiko; Uchida, Shigeo

    2005-03-01

    In order to evaluate the selenium (Se) sorption level in Japanese soils, soil/soil solution distribution coefficients (K(d)s) were obtained for 58 agricultural soil samples (seven soil classification groups) using 75Se as a tracer. Although several chemical forms of Se are present in agricultural fields, selenite was used, because it is the major inorganic Se form in acid soils such as found in Japan. The Kd values obtained covered a wide range, from 12 to 1060l/kg, and their arithmetic mean was 315l/kg. Among the soil groups, Andosols had higher Kd values. The Kd values for all samples were highly correlated with soil active-aluminum (Al) and active-iron (Fe) contents. Thus, active-Al and active-Fe were considered to be the major adsorbents of Se. Then, a new sequential extraction procedure was applied to 12 soil samples in order to quantify the effect of soil components on Se adsorption. The sequential extraction results showed that 80-100% of the adsorbed Se was recovered as Al-bound Se and Fe-bound Se. The amount of Al-bound Se was the highest in the soils that showed high Kd values, though the relative contribution of Fe-bound Se tended to increase with decreasing Kd values. The high values of Kd seemed to be caused mainly by the adsorption of Se onto active-Al in Japanese soils. PMID:15686752

  10. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  11. Distribution Coefficients of Impurities in Metals

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.

    2014-04-01

    Impurities dissolved in very pure metals at the level of parts per million often cause an elevation or depression of the freezing temperature of the order of millikelvins. This represents a significant contribution to the uncertainty of standard platinum resistance thermometer calibrations. An important parameter for characterizing the behavior of impurities is the distribution coefficient , which is the ratio of the solid solubility to liquid solubility. A knowledge of for a given binary system is essential for contemporary methods of evaluating or correcting for the effect of impurities, and it is therefore of universal interest to have the most complete set of values possible. A survey of equilibrium values of (in the low concentration limit) reported in the literature for the International Temperature Scale of 1990 fixed points of Hg, Ga, In, Sn, Zn, Al, Au, Ag, and Cu is presented. In addition, thermodynamic calculations of using MTDATA are presented for 170 binary systems. In total, the combined values of from all available sources for 430 binary systems are presented. In addition, by considering all available values of for impurities in 25 different metal solvents (1300 binary systems) enough data are available to characterize patterns in the value of for a given impurity as a function of its position in the periodic table. This enables prediction of for a significant number of binary systems for which data and calculations are unavailable. By combining data from many sources, values of for solutes (atomic number from 1 to 94) in ITS-90 fixed points from Hg to Cu are suggested, together with some tentative predicted values where literature data and calculations are unavailable.

  12. Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media

    PubMed Central

    Camper, Anne K.; Hayes, Jason T.; Sturman, Paul J.; Jones, Warren L.; Cunningham, Alfred B.

    1993-01-01

    Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics. PMID:16349075

  13. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  14. First Principles Investigation of the C3 Coefficients for Molecular Adsorption on Transition Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Kara, Abdelkader; Matos, Jeronimo; Yildirim, Handan

    2015-03-01

    C6 coefficients are used to investigate the strength of the long-range interactions for weakly interacting dimers as a function of separation distance. These coefficients are useful both as a measure for the accuracy of the various van der Waals (vdW) inclusive methods as well as reference for use in large-scale molecular dynamics simulations. In the case of molecule-surface interaction, the C3 coefficient is the counterpart to the C6 coefficient that is used for testing the interaction of dimers. We will present the results of the vdW inclusive density functional theory (DFT) calculations evaluating the C3 coefficients for the adsorption of M/X(110) and X(111), with X: Ag, Au, Cu, Pt, Pd, Ni, Rh and M: Benzene, Thiophene, Sexithiophene, Pentacene and Olympicene, as described by the PBE exchange-correlation functional and the self-consistent vdW-DF, optimized vdW-DFs and vdW-DF2 functionals. Work supported by the U.S. Department of Energy Basic Energy Science under Contract No. DE-FG02-11ER16243.

  15. On the distribution of seismic reflection coefficients and seismic amplitudes

    SciTech Connect

    Painter, S.; Paterson, L.; Beresford, G.

    1995-07-01

    Reflection coefficient sequences from 14 wells in Australia have a statistical character consistent with a non-Gaussian scaling noise model based on the Levy-stable family of probability distributions. Experimental histograms of reflection coefficients are accurately approximated by symmetric Levy-stable probability density functions with Levy index between 0.99 and 1.43. These distributions have the same canonical role in mathematical statistics as the Gaussian distribution, but they have slowly decaying tails and infinite moments. The distribution of reflection coefficients is independent of the spatial scale (statistically self-similar), and the reflection coefficient sequences have long-range dependence. These results suggest that the logarithm of seismic impedance can be modeled accurately using fractional Levy motion, which is a generalization of fractional Brownian motion. Synthetic seismograms produced from the authors` model for the reflection coefficients also have Levy-stable distributions. These isolations include transmission losses, the effects of reverberations, and the loss of resolution caused by band-limited wavelets, and suggest that actual seismic amplitudes with sufficient signal-to-noise ratio should also have a Levy-stable distribution. This prediction is verified using post-stack seismic data acquired in the Timor Sea and in the continental USA. However, prestack seismic amplitudes from the Timor Sea are nearly Gaussian. They attribute the difference between prestack and poststack data to the high level of measurement noise in the prestack data.

  16. Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions

    SciTech Connect

    Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander

    2010-01-21

    A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/r{sup D}propor tor{sup -D} where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A 'box-counting' procedure could also be applied giving the 'capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term 'fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis.The fractal coefficients analysis provides some important advantages in examining earthquake spatial

  17. Distribution of reflection coefficients in absorbing chaotic microwave cavities.

    PubMed

    Méndez-Sánchez, R A; Kuhl, U; Barth, M; Lewenkopf, C H; Stöckmann, H-J

    2003-10-24

    The distribution of reflection coefficients P(R) for chaotic microwave cavities with time-reversal symmetry is investigated in different absorption and antenna coupling regimes. For all regimes the agreement between experimental distributions and random-matrix theory predictions is very good, provided both the antenna coupling T(a) and the wall absorption strength T(w) are taken into account in an appropriate way. These parameters are determined by independent experimental quantities. PMID:14611349

  18. The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments

    SciTech Connect

    Wang, Xuchen; Lee, C. )

    1990-10-01

    The methylated amines - monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA) - are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using {sup 14}C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.

  19. Application of distribution coefficients to radiological assessment models

    SciTech Connect

    Schell, W.R.; Sanchez, A.L.; Underhill, D.W.; Thomas, E.

    1985-01-01

    A field and laboratory investigation of the transport of fallout radionuclides in natural, organic rich ecosystems has been initiated. Mountain-top peat bogs in Pennsylvania, New York and Virginia were sampled by coring, dated by Pb-210 methods and measured for bomb-produced Sr-90, Pu-239, 240, and Cs-137; laboratory measurements of the distribution coefficients for Cs-137, Sr-85, Ru-106, Am-241, and Co-57 by the constant shaking method have been made. These natural terrestrial ecosystems are labeled with fallout radionuclides from nuclear weapons tests which are environmental tracers of element transport. To explain the differences between the input from fallout and the distribution of Cs-137 in peat cores, a simple ''theoretical plate'' transport model has been used. Each year of growth is assumed to be a ''theoretical plate'' and Cs-137 deposited is transferred between plates by advection and mixing processes. The annual deposition of Cs-137 occurs on the (then) uppermost layer and is proportional to the atmospheric input. The theoretical plate model finds values of the advection and mixing coefficients which give the best fit between Cs-137 profile in the bog and the atmospherically-derived Cs-137. For the three bogs tested so far, the advection coefficients indicate an upward movement of Cs-137 as well as downward transport. Values for the diffusion coefficient range from 10E/sup -7/ to 10E/sup -9/ cm/sup 2/ s/sup -1/ depending on organic content and porosity. The mass transport values from the model are compared to laboratory measurements of distribution coefficients in simulated acid rain conditions. Based on the diffusion coefficients calculated from the model, a thickness of 8 to 20 cm of peat surrounding a leaking cannister of Cs-137 would not allow the radionuclide to enter an aquifer for 300 years from a low level waste disposal site.

  20. Review of Distribution Coefficients for Radionuclides in Carbonate Minerals

    SciTech Connect

    Sutton, M

    2009-08-14

    An understanding of the transport of radionuclides in carbonate minerals is necessary to be able to predict the fate of (and potentially remediate) radionuclides in the environment. In some environments, carbonate minerals such as calciate, aragonite, dolomite and limestone are present and an understanding of the sorption of radionuclides in these carbonate minerals is therefore advantageous. A list of the radionuclides of interest is given in Table 1. The distribution coefficient, K{sub d} is defined as the ratio of the contaminant concentration bound on the solid phase to the contaminant concentration remaining in the liquid phase at equilibrium. Some authors report distribution coefficients and other report partition coefficients, the data presented in this work assumes equality between these two terms, and data are presented and summarized in this work as logarithmic distribution coefficient (log K{sub D}). Published literature was searched using two methods. Firstly, the JNC Sorption Database, namely Shubutani et al (1999), and Suyama and Sasamoto (2004) was used to select elements of interest and a number of carbonate minerals. Secondly, on-line literature search tools were used to locate relevant published articles from 1900 to 2009. Over 300 data points covering 16 elements (hydrogen, carbon, calcium, nickel, strontium, technetium, palladium, iodine, cesium, samarium, europium, holmium, uranium, neptunium, plutonium and americium) were used to calculate an average and range of log K{sub d} values for each element. Unfortunately, no data could be found for chlorine, argon, krypton, zirconium, niobium, tin, thorium and curium. A description of the data is given below, together with the average, standard deviation, minimum, maximum and number of inputs for radionuclide K{sub d} values for calcite, aragonate, limestone, dolomite and unidentified carbonate rocks in Table 2. Finally, the data are condensed into one group (carbonate minerals) of data for each

  1. Correlation of cadmium distribution coefficients to soil characteristics.

    PubMed

    Holm, Peter E; Rootzén, Helle; Borggaard, Ole K; Møberg, Jens Peter; Christensen, Thomas H

    2003-01-01

    Cadmium (Cd) distribution between the soil solid phase and the soil solution is a key issue in assessing the environmental effect of Cd in the terrestrial environmental. Previous studies have shown that many individual minerals and other components found in soils can bind Cd, but most studies on whole soil samples have shown that pH is the main parameter controlling the distribution. To identify further the components that are important for Cd binding in soil we measured Cd distribution coefficients (Kd) at two fixed pH values and at low Cd loadings for 49 soils sampled in Denmark. The Kd values for Cd ranged from 5 to 3000 L kg(-1). The soils were described pedologically and characterized in detail (22 parameters) including determination of contents of the various minerals in the clay fraction. Correlating parameters were grouped and step-wise regression analysis revealed that the organic carbon content was a significant variable at both pH values. Cation exchange capacity (CEC) and gibbsite were important at the low pH (5.3) while iron oxides also were important at the high pH (6.7). None of the other clay minerals present in the soils (illite, smectite, kaolinite, hydroxy interlayered clay minerals [HIM], chlorite, quartz, microcline, plagioclase) were significant in explaining the Cd distribution coefficient. PMID:12549552

  2. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Jiang, Huabei

    2013-02-01

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data—up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  3. Adsorption and Distribution of Fluorescent Solutes near the Articular Surface of Mechanically Injured Cartilage

    PubMed Central

    Decker, Sarah G.A.; Moeini, Mohammad; Chin, Hooi Chuan; Rosenzweig, Derek H.; Quinn, Thomas M.

    2013-01-01

    The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces. PMID:24268155

  4. The Sampling Distribution of the Kristof Reliability Coefficient, the Feldt Coefficient, and Guttman's Lambda-2

    ERIC Educational Resources Information Center

    Sedere, M. U.; Feldt, Leonard S.

    1977-01-01

    Two new reliability coefficients have been derived for situations in which a test must be divided into parts of unequal length. This report summarizes a study of the statistical bias and the standard errors of these coefficients and compares them to Guttman's lambda coefficients and Cronbach's alpha coefficient. (Author/JKS)

  5. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  6. DISTRIBUTION COEFFICIENTS FOR THE VOGTLE EARLY SITE PERMIT

    SciTech Connect

    Kaplan, D; Margaret Millings, M

    2006-07-18

    A series of sediment distribution coefficients, Kd values, measurements were conducted for Southern Nuclear Company, Inc. in support of their Early Site Permit application at Plant Vogtle, Georgia. Nineteen sediment and a representative groundwater samples from the Vogtle site were provided for the Savannah River National Laboratory to conducted site-specific Co, Cs, and Sr Kd measurements. The median Kd values of Co was 6.5 mL/g, for Sr was 10.0 mL/g, and for Cs was 18.8 mL/g. Cation exchange capacity (6.8 to 33.6 meq/100 g), particle size distribution (70 to 94% sand) and pH (4.7 to 5.2) were also measured in five sediments. The Kd values and the sediment properties values measured in these sediments were consistent with those measured in this region of the country.

  7. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale.

    PubMed

    Kodešová, Radka; Kočárek, Martin; Kodeš, Vít; Drábek, Ondřej; Kozák, Josef; Hejtmánková, Kateřina

    2011-02-15

    Study was focused on the evaluation of pesticide adsorption in soils, as one of the parameters, which are necessary to know when assessing possible groundwater contamination caused by pesticides commonly used in agriculture. Batch sorption tests were performed for 11 selected pesticides and 13 representative soils. The Freundlich equations were used to describe adsorption isotherms. Multiple-linear regressions were used to predict the Freundlich adsorption coefficients from measured soil properties. Resulting functions and a soil map of the Czech Republic were used to generate maps of the coefficient distribution. The multiple linear regressions showed that the K(F) coefficient depended on: (a) combination of OM (organic matter content), pH(KCl) and CEC (cation exchange capacity), or OM, SCS (sorption complex saturation) and salinity (terbuthylazine), (b) combination of OM and pH(KCl), or OM, SCS and salinity (prometryne), (c) combination of OM and pH(KCl), or OM and ρ(z) (metribuzin), (d) combination of OM, CEC and clay content, or clay content, CEC and salinity (hexazinone), (e) combination of OM and pH(KCl), or OM and SCS (metolachlor), (f) OM or combination of OM and CaCO(3) (chlorotoluron), (g) OM (azoxystrobin), (h) combination of OM and pH(KCl) (trifluralin), (i) combination of OM and clay content (fipronil), (j) combination of OM and pH(KCl), or OM, pH(KCl) and CaCO(3) (thiacloprid), (k) combination of OM, pH(KCl) and CEC, or sand content, pH(KCl) and salinity (chlormequat chloride). PMID:21144657

  8. Effects of calcium and magnesium on strontium distribution coefficients

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.; Hemming, C.H.; Welhan, J.

    1997-01-01

    The effects of calcium and magnesium on the distribution of strontium between a surficial sediment and simulated wastewater solutions were measured as part of an investigation to determine strontium transport properties of surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experimental techniques were used to determine strontium linear sorption isotherms and distribution coefficients (K(d)'s) using simulated wastewater solutions prepared at pH 8.0??0.1 with variable concentrations of calcium and magnesium. Strontium linear sorption isotherm K(d)'s ranged from 12??1 to 85??3 ml/g, increasing as the concentration of calcium and magnesium decreased. The concentration of sorbed strontium and the percentage of strontium retained by the sediment were correlated to aqueous concentrations of strontium, calcium, and magnesium. The effect of these cation concentrations on strontium sorption was quantified using multivariate least-squares regression techniques. Analysis of data from these experiments indicates that increased concentrations of calcium and magnesium in wastewater discharged to waste disposal ponds at the INEL increases the availability of strontium for transport beneath the ponds by decreasing strontium sorption to the surficial sediment.

  9. Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor

    PubMed Central

    Muthukumar, M.

    2012-01-01

    Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728

  10. Optimal smoothing of site-energy distributions from adsorption isotherms

    SciTech Connect

    Brown, L.F.; Travis, B.J.

    1983-01-01

    The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.

  11. Calculation of distribution coefficients for radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstroem, U.

    1995-01-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub d}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions. In the commonly used K{sub d}-methodology. however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U, and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories. 59 refs., 7 figs., 3 tabs.

  12. Calculation of distribution coefficients for Radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstrom, U.

    1995-10-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub a}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions (e.g., surface complexation and ion exchange). In the commonly used K{sub d}-methodology, however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments or from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories.

  13. Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance.

    PubMed

    Hühn, Jonas; Fedeli, Chiara; Zhang, Qian; Masood, Atif; Del Pino, Pablo; Khashab, Niveen M; Papini, Emanuele; Parak, Wolfgang J

    2016-06-01

    Protein adsorption to nanoparticles is described as a chemical reaction in which proteins attach to binding sites on the nanoparticle surface. This process is defined by a dissociation coefficient, which tells how many proteins are adsorbed per nanoparticle in dependence of the protein concentration. Different techniques to experimentally determine dissociation coefficients of protein adsorption to nanoparticles are reviewed. Results of more than 130 experiments in which dissociation coefficients have been determined are compared. Data show that different methods, nanoparticle systems, and proteins can lead to significantly different dissociation coefficients. However, we observed a clear tendency of smaller dissociation coefficients upon less negative towards more positive zeta potentials of the nanoparticles. The zeta potential thus is a key parameter influencing protein adsorption to the surface of nanoparticles. Our analysis highlights the importance of the characterization of the parameters governing protein-nanoparticle interaction for quantitative evaluation and objective literature comparison. PMID:26748245

  14. Asymptotically Distribution-Free (ADF) Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Alberto; Coffman, Donna L.; Hartmann, Wolfgang M.

    2007-01-01

    The point estimate of sample coefficient alpha may provide a misleading impression of the reliability of the test score. Because sample coefficient alpha is consistently biased downward, it is more likely to yield a misleading impression of poor reliability. The magnitude of the bias is greatest precisely when the variability of sample alpha is…

  15. Characterization of rock matrix block size distribution, dispersivity, and mass transfer coefficients in fractured porous media

    NASA Astrophysics Data System (ADS)

    Sharifi Haddad, Amin

    Fractured porous media are important structures in petroleum engineering and geohydrology. The accelerating global demand for energy has turned the focus to fractured formations. The fractured porous media are also found in conventional naturally fractured reservoirs and the water supply from karst (carbonate) aquifers. Studying mass transfer processes allows us to explore the complexities and uncertainties encountered with fractured rocks. This dissertation is developing an analytical methodology for the study of mass transfer in fractured reservoirs. The dissertation begins with two cases that demonstrate the importance of the rock matrix block size distribution and dispersivity through a transient mass exchange mechanism between rock matrix blocks and fractures. The first case assumes a medium with no surface adsorption, and the second case includes the surface adsorption variable. One of the main focuses of this work is the characterization of the rock matrix block size distribution in fractured porous media. Seismic surveying, well test analysis, well logging, and geomechanical tools are currently used to characterize this property, based on measurements of different variables. This study explores an innovative method of using solute transport to determine the fracture intensity. This methodology is applied to slab-shaped rock matrix blocks and can easily be extended to other geometries. Another focus of this dissertation is the characterization of dispersivity in field scale studies. Improving our knowledge of dispersivity will enable more accurate mass transfer predictions and advance the study of transport processes. Field tracer tests demonstrated that dispersivity is scale-dependent. Proposed functions for the increasing trend of dispersivity include linear and asymptotic scale-dependence. This study investigated the linear dispersivity trend around the injection wellbore. An analysis of the tracer concentration in a monitoring well was used to

  16. Atomistic simulations of crystal-melt interfaces in a model binary alloy: Interfacial free energies, adsorption coefficients, and excess entropy

    NASA Astrophysics Data System (ADS)

    Becker, C. A.; Olmsted, D. L.; Asta, M.; Hoyt, J. J.; Foiles, S. M.

    2009-02-01

    Monte Carlo and molecular-dynamics simulations are employed in a study of the equilibrium structural and thermodynamic properties of crystal-melt interfaces in a model binary alloy system described by Lennard-Jones interatomic interactions with zero size mismatch, a ratio of interaction strengths equal to 0.75, and interspecies interactions given by Lorentz-Berthelot mixing rules. This alloy system features a simple lens-type solid-liquid phase diagram at zero pressure, with nearly ideal solution thermodynamics in the solid and liquid solution phases. Equilibrium density profiles are computed for (100)-oriented crystal-melt interfaces and are used to derive the magnitudes of the relative adsorption coefficients (Γi(j)) at six temperatures along the solidus/liquidus boundary. The values for Γ1(2) , the relative adsorption of the lower melting-point species (1) with respect to the higher melting point species (2), are found to vary monotonically with temperature, with values that are positive and in the range of a few atomic percent per interface site. By contrast, values of Γ2(1) display a much more complex temperature dependence with a large peak in the magnitude of the relative adsorption more than ten times larger than those found for Γ1(2) . The capillary fluctuation method is used to compute the temperature dependence of the magnitudes and anisotropies of the crystal-melt interfacial free energy (γ) . At all temperatures we obtain the ordering γ100>γ110>γ111 for the high-symmetry (100), (110), and (111) interface orientations. The values of γ monotonically decrease with decreasing temperature (i.e., increasing concentration of the lower melting-point species). Using the calculated temperature-dependent values of γ and Γ1(2) in the Gibbs adsorption theorem, we estimate that roughly 25% of the temperature dependence of γ for the alloys can be attributed to interface adsorption, while the remaining contribution arises from the relative excess entropy

  17. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of ~ 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  18. Trace element distribution coefficients in alkaline series. [Titanites; bitite

    SciTech Connect

    Lemarchand, F.; Villemant, B.; Calas, G.

    1987-05-01

    Mineral/groundmass partition coefficients for U, Th, Zr, Hf, Ta, Rb, REE, Co and Sc have been systematically measured in olivine, clinopyroxene, amphibole, biotite, Ti-magnetites, titanite, zircon and feldspars, in basaltic to trachytic lavas from alkaline series (Velay, Chaine des Puys: Massif Central, France and Fayal: Azores). Average partition coefficients are defined within the experimental uncertainty for limited compositional ranges (basalt-hawaiite, mugearites, benmoreite-trachyte), and are useful for trace element modelling. The new results for U, Th, Ta, Zr and Hf partition coefficients show contrasting behaviour. They can thus be used as ''key elements'' for identifying fractionating mineral phases in differentiation processes (e.g. Ta and Th for amphibole and mica). Partition coefficient may be calculated using the two-lattice model suggested by NIELSEN (1985). Such values show a considerably reduced chemical dependence in natural systems, relative to weight per cent D values. The residual variations may be accounted for by temperature or volatile influence. This calculation greatly enhances modelling possibilities using trace elements for comparing differentiation series as well as for predicting the behaviour of elements during magmatic differentiation.

  19. EFFECTS OF COVAPORS ON ADSORPTION RATE COEFFICIENTS OF ORGANIC VAPORS ADSORBED ONTO ACTIVATED CARBON FROM FLOWING AIR

    SciTech Connect

    G. WOOD

    2000-12-01

    Published breakthrough time, adsorption rate, and capacity data for components of organic vapor mixtures adsorbed from flows through fixed activated carbon beds have been analyzed. Capacities (as stoichiometric centers of constant pattern breakthrough curves) yielded stoichiometric times {tau}, which are useful for determining elution orders of mixture components. We also calculated adsorption rate coefficients k{sub v} of the Wheeler (or, more general Reaction Kinetic) breakthrough curve equation, when not reported, from breakthrough times and {tau}. Ninety-five k{sub v} (in mixture)/ k{sub v} (single vapor) ratios at similar vapor concentrations were calculated and averaged for elution order categories. For 43 first-eluting vapors the average ratio (1.07) was statistically no different (0.21 standard deviation) than unity, so that we recommend using the single-vapor k{sub v} for such. Forty-seven second-eluting vapor ratios averaged 0.85 (0.24 standard deviation), also not significantly different from unity; however, other evidence and considerations lead us recommend using k{sub v} (in mixture) = 0.85 k{sub v} (single vapor). Five third- and fourth-eluting vapors gave an average of 0.56 (0.16 standard deviation) for a recommended k{sub v} (in mixture) = 0.56 k{sub v} (single vapor) for such.

  20. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    SciTech Connect

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  1. The distribution of nitrogen species and adsorption of ammonium in sediments from the tidal Potomac River and estuary

    NASA Astrophysics Data System (ADS)

    Simon, N. S.; Kennedy, M. M.

    1987-07-01

    The distribution of dissolved ammonium, adsorbed ammonium and residual, organic and total nitrogen was measured in Potomac River tidal, transition zone and lower estuary sediments to a depth of 66 cm. For these sediments, exchangeable ammonium, and thereby adsorbed ammonium concentrations, were determined directly using an ammonia electrode in alkaline sediment suspensions. Ammonia electrode data were comparable to data obtained by KCl extraction of fresh sediment. The conventional unitless ammonium adsorption coefficient, calculated as the slope of the regression line drawn when sediment-adsorbed ammonium (μmol g -1 dry wt of sediment) is plotted against interstitial water ammonium (μmol g -1 dry wt sediment), is 1·5 for this system. When a modified ammonium adsorption coefficient is calculated from sediment-adsorbed ammonium concentrations and a ratio of interstitial water ammonium and potassium concentrations, the regression equation through the data has a zero intercept and is more nearly linear than the regression equation of data based on conventional calculations. The use of a ratio including ammonium and potassium concentrations in the interstitial water term takes into account ionic strength variations in the estuary and competition between ammonium and potassium for adsorption sites.

  2. A solid-phase extraction method for rapidly determining the adsorption coefficient of pharmaceuticals in sewage sludge.

    PubMed

    Berthod, Laurence; Roberts, Gary; Whitley, David C; Sharpe, Alan; Mills, Graham A

    2014-12-15

    The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. PMID:25299795

  3. A solid-phase extraction method for rapidly determining the adsorption coefficient of pharmaceuticals in sewage sludge

    PubMed Central

    Berthod, Laurence; Roberts, Gary; Whitley, David C.; Sharpe, Alan; Mills, Graham A.

    2014-01-01

    The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. PMID:25299795

  4. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm. PMID:26890386

  5. Effect of water content on strontium retardation factor and distribution coefficient in Chinese loess.

    PubMed

    Huo, Lijuan; Qian, Tianwei; Hao, Junting; Liu, Hongfang; Zhao, Dongye

    2013-12-01

    Geological burial and landfill are often employed for disposal of nuclear wastes. Typically, radionuclides from nuclear facilities transport through the unsaturated zone before reaching the groundwater aquifer. However, transport studies are often conducted under saturated and steady-state flow conditions. This research aimed to examine the effects of unsaturated flow conditions and soil water content (θ) on Sr sorption and retardation in Chinese loess through 1D column transport experiments. Reagent SrCl2 was used as a surrogate for the radioactive isotope ((90)Sr) in the experiment because of their analogous adsorption and transportation characteristics. The spatial distribution of Sr along the column length was determined by segmenting the soil bed and analysing the Sr content in each soil segment following each column breakthrough test. The single-region (SR) and two-region (TR) models were employed to interpret the transport data of Sr as well as a tracer (Br(-)), which resulted in the dispersion coefficient (D) and retardation factor (Rd) under a given set of unsaturated flow conditions. For the tracer, the SR and TR models offered nearly the same goodness of fitting to the breakthrough curves (R(2) ≈ 0.97 for both models). For the highly sorptive Sr, however, the TR model provided better fitting (R(2), 0.80-0.96) to the Sr retention profiles than the SR model (R(2), 0.20-0.89). The Sr retention curves exhibited physical non-equilibrium characteristics, particularly at lower water content of the soil. For the unsaturated soil, D and the pore water velocity (v) displayed a weak linear correlation, which is attributed to the altering dispersivity as the water content varies. A much improved linear correlation was observed between D and v/θ. The retardation factor of Sr increased from 69.1 to 174.2 as θ decreased from 0.46 to 0.26 (cm(3) cm(-3)), while the distribution coefficient (Kd) based on Rd remained nearly unchanged at various θ levels. These

  6. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    NASA Astrophysics Data System (ADS)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  7. The Anomalous Distributions and Soret Coefficient in a Nonequilibrium Colloidal System

    NASA Astrophysics Data System (ADS)

    Zhou, Yanjun; Du, Jiulin

    2016-02-01

    We study the density distribution and Soret coefficient in a nonequilibrium colloidal system by using the overdamped Langevin equation for Brownian motion in an inhomogeneous strong friction medium. Based on the relation between the temperature gradient, the interaction potential and the q-parameter in nonextensive statistics, we show that the colloidal particle density can be a function of the temperature and anomalously follows the noted α-distribution, or equivalently it can also be a function of the potential energy following Tsallis distribution. With the q-parameter we can establish a new formula of Soret coefficient and thus, bridge the gap between the ideally theoretical Soret coefficient and available experiments.

  8. Transport coefficients in Lorentz plasmas with the power-law kappa-distribution

    SciTech Connect

    Jiulin, Du

    2013-09-15

    Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution.

  9. Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients

    SciTech Connect

    Zhang Jiefang; Tian Qing; Wang Yueyue; Dai Chaoqing; Wu Lei

    2010-02-15

    We present a systematic analysis of the self-similar propagation of optical pulses within the framework of the generalized cubic-quintic nonlinear Schroedinger equation with distributed coefficients. By appropriately choosing the relations between the distributed coefficients, we not only retrieve the exact self-similar solitonic solutions, but also find both the approximate self-similar Gaussian-Hermite solutions and compact solutions. Our analytical and numerical considerations reveal that proper choices of the distributed coefficients could make the unstable solitons stable and could restrict the nonlinear interaction between the neighboring solitons.

  10. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine in soil.

    PubMed

    Williams, C F; Watson, J E; Nelson, S D

    2014-01-01

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through the columns at 0.5, 1.0 and 1.5 mL min(-1) representing average linear velocities of 1.8, 3.5 and 5.3 cm h(-1) respectively. Each flow rate was replicated three times and three carbamazepine pulses were applied to each column resulting in a total of 9 columns with 27 total carbamazepine pulses. Breakthrough curves were used to determine KD using the parameter fitting software CXTFIT. Results indicate that as flow rate decreased from 5.3 to 1.8 cm h(-1), KD increased an average of 21%. Additionally, KD determined by column leaching (14.7-22.7 L kg(-1)) was greater than KD determined by a 2h batch equilibrium adsorption (12.6 L kg(-1)). Based on these KD's carbamazepine would be generally characterized as non-mobile in the soil investigated. However, repeated carbamazepine applications resulted in an average 22% decrease in KD between the first and third applications. Decreasing KD is attributed to differences in sorption site kinetics and carbamazepine residence time in contact with the soil. This would indicate that the repeated use of reclaimed wastewater at high application rates for long-term irrigation or groundwater recharge has the potential to lead to greater transport of carbamazepine than KD determined by batch equilibrium would predict. PMID:24050717

  11. Constructing Confidence Intervals for Reliability Coefficients Using Central and Noncentral Distributions.

    ERIC Educational Resources Information Center

    Weber, Deborah A.

    Greater understanding and use of confidence intervals is central to changes in statistical practice (G. Cumming and S. Finch, 2001). Reliability coefficients and confidence intervals for reliability coefficients can be computed using a variety of methods. Estimating confidence intervals includes both central and noncentral distribution approaches.…

  12. Experimental determination of the distributed dynamic coefficients for a hydrodynamic fluid film bearing

    NASA Astrophysics Data System (ADS)

    Gyurko, John Harrison

    Most current rotor bearing analysis utilizes lumped parameter bearing coefficients to model the static and dynamic characteristics of fluid film bearings. By treating the stiffness and damping properties of the fluid film as acting upon the axial centerline of the rotor, these models are limited in their analysis to first order lateral rotor-bearing motion. The development of numerical methods that distribute the dynamic properties of the fluid film around the bearing circumference allow for higher order analysis of the motion between the bearing and rotor. Assessment of the accuracy of the numerical method used to calculate distributed dynamic fluid film bearing coefficients is performed by developing a novel hydrodynamic journal bearing test rig and experimental testing procedure capable of obtaining measured distributed dynamic coefficients over a range of bearing operating conditions. The instrumented bearing test rig is used to measure the dynamic bearing displacement and fluid film pressure responses from application of an externally applied excitation force. Least squares solution to a system of perturbated pressure equations, populated by measured displacement and pressure responses, is used to determine the hydrodynamic stiffness and damping properties for a finite region of the bearing surface. Incremental rotation of pressure sensors embedded in the body of the test bearing allow for measurement of the fluid film circumferential pressure distribution which is used to calculate a set of experimentally determined dynamic bearing coefficients. Distributed bearing coefficients derived from experimental measurements are compared to numerically calculated distributed coefficients as well as to lumped parameter coefficients generated from experimental and numerical methods found in the literature. Overall, the numerically calculated distributed coefficients successfully model both the circumferential distribution and the operating conditions of the experimental

  13. A surface structural approach to ion adsorption: The charge distribution (CD) model

    SciTech Connect

    Hiemstra, T.; Van Riemsdijk, W.H.

    1996-05-10

    Cation and anion adsorption at the solid/solution interface of metal hydroxides plays an important role in several fields of chemistry, including colloid and interface chemistry, soil chemistry and geochemistry, aquatic chemistry, environmental chemistry, catalysis, and chemical engineering. An ion adsorption model for metal hydroxides has been developed which deals with the observation that in the case of inner sphere complex formation only part of the surface complex is incorporated into the surface by a ligand exchange reaction while the other part is located in the Stern layer. The charge distribution (CD) concept of Pauling, used previously in the multi site complexation (MUSIC) model approach, is extended to account for adsorbed surface complexes. In the new model, surface complexes are not treated as point charges, but are considered as having a spatial distribution of charge in the interfacial region. The new CD model can describe within a single conceptual framework all important experimental adsorption phenomena, taking into account the chemical composition of the crystal surface. The CD model has been applied to one of the most difficult and challenging ion adsorption phenomena, i.e., PO{sub 4} adsorption on goethite, and successfully describes simultaneously the basic charging behavior of goethite, the concentration, pH, and salt dependency of adsorption, the shifts in the zeta potentials and isoelectric point (IEP), and the OH/P exchange ratio. This is all achieved within the constraint that the experimental surface speciation found from in situ IR spectroscopy is also described satisfactorily.

  14. Determining Partition Coefficient (Log P), Distribution Coefficient (Log D) and Ionization Constant (pKa) in Early Drug Discovery.

    PubMed

    Bharate, Sonali S; Kumar, Vikas; Vishwakarma, Ram A

    2016-01-01

    An early prediction of physicochemical properties is highly desirable during drug discovery to find out a viable lead candidate. Although there are several methods available to determine partition coefficient (log P), distribution coefficient (log D) and ionization constant (pKa), none of them involves simple and fixed, miniaturized protocols for diverse set of compounds. Therefore, it is necessary to establish simple, uniform and medium-throughput protocols requiring small sample quantities for the determination of these physicochemical properties. Log P and log D were determined by shake flask method, wherein, the compound was partitioned between presaturated noctanol and water phase (water/PBS pH 7.4) and the concentration of compound in each phase was determined by HPLC. The pKa determination made use of UV spectrophotometric analysis in a 96-well microtiter plate containing a series of aqueous buffers ranging from pH 1.0 to 13.0. The medium-throughput miniaturized protocols described herein, for determination of log P, log D and pKa, are straightforward to set up and require very small quantities of sample (< 5 mg for all three properties). All established protocols were validated using diverse set of compounds. PMID:27137915

  15. Approximate sampling distribution of the serial correlation coefficient for small samples.

    USGS Publications Warehouse

    Tasker, Gary D.

    1983-01-01

    The probability density function for the sample serial correlation coefficient r can be approximated by a derived distribution. This distribution is derived from a large Monte Carlo study at points between rho=-0.9 and rho=0.9 and for n=10, 20, and 30.-after Author

  16. Site energy distribution analysis of Cu (Ⅱ) adsorption on sediments and residues by sequential extraction method.

    PubMed

    Jin, Qiang; Yang, Yan; Dong, Xianbin; Fang, Jimin

    2016-01-01

    Many models (e.g., Langmuir model, Freundlich model and surface complexation model) have been successfully used to explain the mechanism of metal ion adsorption on the pure mineral materials. These materials usually have a homogeneous surface where all sites have the same adsorption energies. However, it's hardly appropriate for such models to describe the adsorption on heterogeneous surfaces (e.g., sediment surface), site energy distribution analysis can be to. In the present study, the site energy distribution analysis was used to describe the surface properties and adsorption behavior of the non-residual and residual components extracted from the natural aquatic sediment samples. The residues were prepared "in-situ" by using the sequential extraction procedure. The present study is intended to investigate the roles of different components and the change of site energy distribution at different temperatures of the sediment samples in controlling Cu (Ⅱ) adsorption. The results of the site energy distribution analysis indicated firstly, that the sorption sites of iron/manganese hydrous oxides (IMHO) and organic matter (OM) have higher energy. Secondly, light fraction (LF) and carbonates have little influence on site energy distribution. Finally, there was increase in site energies with the increase of temperature. Specially, low temperature (5 °C) significantly influenced the site energies of IMHO and OM, and also had obvious effect on the energy distribution of the sediments after removing target components. The site energy distribution analysis proved to be a useful method for us to further understand the energetic characteristics of sediment in comparison with those previously obtained. PMID:26552542

  17. Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.

    PubMed

    Tiemeyer, Sebastian; Paulus, Michael; Tolan, Metin

    2010-09-01

    The adsorption orientation of the proteins lysozyme and ribonuclease A (RNase A) to a neutral 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a negatively charged stearic acid lipid film was investigated by means of X-ray reflectivity. Both proteins adsorbed to the negatively charged lipid monolayer, whereas at the neutral monolayer, no adsorption was observed. For acquiring comprehensive information on the proteins' adsorption, X-ray reflectivity data were combined with electron densities obtained from crystallographic data. With this method, it is possible to determine the orientation of adsorbed proteins in solution underneath lipid monolayers. While RNase A specifically coupled with its positively charged active site to the negatively charged lipid monolayer, lysozyme prefers an orientation with its long axis parallel to the Langmuir film. In comparison to the electrostatic maps of the proteins, our results can be explained by the discriminative surface charge distribution of lysozyme and RNase A. PMID:20707324

  18. Calculated spanwise lift distributions, influence functions, and influence coefficients for unswept wings in subsonic flow

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W; Zlotnick, Martin

    1955-01-01

    Spanwise lift distributions have been calculated for nineteen unswept wings with various aspect ratios and taper ratios and with a variety of angle-of-attack or twist distributions, including flap and aileron deflections, by means of the Weissinger method with eight control points on the semispan. Also calculated were aerodynamic influence coefficients which pertain to a certain definite set of stations along the span, and several methods are presented for calculating aerodynamic influence functions and coefficients for stations other than those stipulated. The information presented in this report can be used in the analysis of untwisted wings or wings with known twist distributions, as well as in aeroelastic calculations involving initially unknown twist distributions.

  19. Distribution coefficients of purine alkaloids in water-ammonium sulfate-alkyl acetate-dialkyl phthalate systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-12-01

    The distribution of purine alkaloids (caffeine, theobromine, theophylline) was studied in the systems: alkyl acetates-dialkyl phtalate-salting-out agent (ammonium sulfate). The quantitative characteristics of the extraction-distribution coefficients ( D) and the degree of extraction ( R, %) are calculated. The relationships between the distribution coefficients of alkaloids and the length of the hydrocarbon radical in the molecule of alkyl acetate (dialkyl phtalate) are determined. The possibility of predicting the distribution coefficients is demonstrated.

  20. ON THE PROPORTIONALITY OF FINE MASS CONCENTRATION AND EXTINCTION COEFFICIENT FOR BIMODAL SIZE DISTRIBUTIONS

    EPA Science Inventory

    For a bimodal size distribution of ambient aerosol, an upper limit in particle size can be chosen for the fine aerosol fraction so that the extinction coefficient for light scattering and absorption is directly proportional to the fine mass concentration, with no dependence on th...

  1. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through th...

  2. A computerized method to estimate friction coefficient from orientation distribution of meso-scale faults

    NASA Astrophysics Data System (ADS)

    Sato, Katsushi

    2016-08-01

    The friction coefficient controls the brittle strength of the Earth's crust for deformation recorded by faults. This study proposes a computerized method to determine the friction coefficient of meso-scale faults. The method is based on the analysis of orientation distribution of faults, and the principal stress axes and the stress ratio calculated by a stress tensor inversion technique. The method assumes that faults are activated according to the cohesionless Coulomb's failure criterion, where the fluctuations of fluid pressure and the magnitude of differential stress are assumed to induce faulting. In this case, the orientation distribution of fault planes is described by a probability density function that is visualized as linear contours on a Mohr diagram. The parametric optimization of the function for an observed fault population yields the friction coefficient. A test using an artificial fault-slip dataset successfully determines the internal friction angle (the arctangent of the friction coefficient) with its confidence interval of several degrees estimated by the bootstrap resampling technique. An application to natural faults cutting a Pleistocene forearc basin fill yields a friction coefficient around 0.7 which is experimentally predicted by the Byerlee's law.

  3. Analysis of swarm coefficients in a gas for bi-modal electron energy distribution model

    NASA Astrophysics Data System (ADS)

    Govinda-Raju, Gorur

    2015-03-01

    Cross sections for collision between electrons and neutrals in a gas discharge are essential for theoretical and computational developments. They are also required to interpret and analyze the results of experimental studies on swarm parameters namely drift velocity, characteristic energy, and ionization and attachment coefficients. The cross sections and swarm coefficients are interconnected through the most important electron energy distribution function. The traditional method of solving the Boltzmann equation numerically yields the required distribution (EEDF). However there are many situations where a simpler approach is desirable for deriving the energy distribution analytically. Energy distribution in non-uniform electric fields, in crossed electric and magnetic fields, breakdown in mixtures of gases for electrical power or plasma applications, calculation of longitudinal diffusion coefficients are examples. In other studies the swarm parameters are employed to derive the cross sections in an unfolding procedure that also involves the energy distribution function. Application of Boltzmann solution method, though more rigorous, consumes enormous efforts in time and technical expertise. In an attempt to provide a simpler method the present author has previously suggested a bimodal electron energy distribution in gases. In this paper the author has generalized the idea of bi-modal energy distribution by considering a model gas with representative cross sections and adopted numerical methods for greater accuracy. The parameters considered are the nature of the two distributions, their relative ratio, and the dependence of cross sections on electron energy. A new method for determining the combination of distributions has been shown to be adequate for calculation of swarm parameters. The results for argon are shown to yield very good agreement with available experimental and theoretical values.

  4. The Effect of Baffles on the Temperature Distribution and Heat-transfer Coefficients of Finned Cylinders

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Rollin, Vern G

    1936-01-01

    This report presents the results of an investigation to determine the effect of baffles on the temperature distribution and the heat-transfer coefficient of finned cylinders. The tests were conducted in a 30-inch wind tunnel on electrically heated cylinders with fins of 0.25 and 0.31 inch pitch. The results of these tests showed that the use of integral baffles gave a reduction of 31.9 percent in the rear wall temperatures and an increase of 54.2 percent in the heat transfer coefficient as compared with a cylinder without baffles.

  5. Gamma convolution models for self-diffusion coefficient distributions in PGSE NMR

    NASA Astrophysics Data System (ADS)

    Röding, Magnus; Williamson, Nathan H.; Nydén, Magnus

    2015-12-01

    We introduce a closed-form signal attenuation model for pulsed-field gradient spin echo (PGSE) NMR based on self-diffusion coefficient distributions that are convolutions of n gamma distributions, n ⩾ 1 . Gamma convolutions provide a general class of uni-modal distributions that includes the gamma distribution as a special case for n = 1 and the lognormal distribution among others as limit cases when n approaches infinity. We demonstrate the usefulness of the gamma convolution model by simulations and experimental data from samples of poly(vinyl alcohol) and polystyrene, showing that this model provides goodness of fit superior to both the gamma and lognormal distributions and comparable to the common inverse Laplace transform.

  6. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    PubMed

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  7. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  8. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference. PMID:19420660

  9. Protein Adsorption Patterns and Analysis on IV Nanoemulsions—The Key Factor Determining the Organ Distribution

    PubMed Central

    Keck, Cornelia M.; Jansch, Mirko; Müller, Rainer H.

    2012-01-01

    Intravenous nanoemulsions have been on the market for parenteral nutrition since the 1950s; meanwhile, they have also been used successfully for IV drug delivery. To be well tolerable, the emulsions should avoid uptake by the MPS cells of the body; for drug delivery, they should be target-specific. The organ distribution is determined by the proteins adsorbing them after injection from the blood (protein adsorption pattern), typically analyzed by two-dimensional polyacrylamide gel electrophoresis, 2-D PAGE. The article reviews the 2-D PAGE method, the analytical problems to be faced and the knowledge available on how the composition of emulsions affects the protein adsorption patterns, e.g., the composition of the oil phase, stabilizer layer and drug incorporation into the interface or oil core. Data were re-evaluated and compared, and the implications for the in vivo distribution are discussed. Major results are that the interfacial composition of the stabilizer layer is the main determining factor and that this composition can be modulated by simple processes. Drug incorporation affects the pattern depending on the localization of the drug (oil core versus interface). The data situation regarding in vivo effects is very limited; mainly, it has to be referred to in the in vivo data of polymeric nanoparticles. As a conclusion, determination of the protein adsorption patterns can accelerate IV nanoemulsion formulation development regarding optimized organ distribution and related pharmacokinetics. PMID:24300396

  10. Analysis of segregation trends observed in iron meteorites using measured distribution coefficients

    NASA Astrophysics Data System (ADS)

    Sellamuthu, R.; Goldstein, J. I.

    1985-02-01

    Fe-Ni alloys of meteoritic composition were solidified by a plane front solidification technique. Distribution coefficients of Ni, P, Ir, Ge, and Cu were determined from the composition data of the plane front solidified alloys. Equations that describe the distribution coefficients (P, Ni, Ir, Ge, and Cu) as a function of S and P content as well as S to P ratio were used to calculate solute partitioning between solid and liquid during the solidification of IIAB, IIIAB, and IVA parent bodies. The calculated P versus Ni, Ir versus Ni, Ge versus Ni, and Cu versus Ni trends are in good agreement with the observed meteorite data for each chemical group. It is concluded that each chemical group formed as a single molten pool in a parent body and that solute partitioning that occurred during solidification is responsible for the observed compositional trends within a single meteorite group.

  11. Analysis of segregation trends observed in iron meteorites using measured distribution coefficients

    NASA Technical Reports Server (NTRS)

    Sellamuthu, R.; Goldstein, J. I.

    1985-01-01

    Fe-Ni alloys of meteoritic composition were solidified by a plane front solidification technique. Distribution coefficients of Ni, P, Ir, Ge, and Cu were determined from the composition data of the plane front solidified alloys. Equations that describe the distribution coefficients (P, Ni, Ir, Ge, and Cu) as a function of S and P content as well as S to P ratio were used to calculate solute partitioning between solid and liquid during the solidification of IIAB, IIIAB, and IVA parent bodies. The calculated P versus Ni, Ir versus Ni, Ge versus Ni, and Cu versus Ni trends are in good agreement with the observed meteorite data for each chemical group. It is concluded that each chemical group formed as a single molten pool in a parent body and that solute partitioning that occurred during solidification is responsible for the observed compositional trends within a single meteorite group.

  12. Investigation of basalt-radionuclide distribution coefficients: fiscal year 1980 annual report

    SciTech Connect

    Ames, L.L.; McGarrah, J.E.

    1980-12-01

    The Basalt Waste Isolation Project (Rockwell Hanford Operations) is conducting a safety assessment of nuclear waste storage in a repository on the Hanford Site. Pacific Northwest Laboratory, in support of the assessment effort, is generating radionuclide distribution coefficient data between simulated groundwaters and basalts and their secondary mineral products under the range of physicochemical conditions expected in a repository in basalt. Experimental radionuclide distribution coefficients were determined for crushed Pomona, Flow E, and Umtanum basalts at 23/sup 0/, 60/sup 0/, 150/sup 0/, and 300/sup 0/C at both normal oxygen partial pressure (approx. 0.2 atm) and lower oxygen partial pressure (approx. 10/sup -7/ atm), using a static technique. Little or no changes in distribution coefficients were noted for selenium, uranium, technetium, neptunium, or plutonium over the oxygen partial pressure range noted above. Sodium dithionite and hydrazine are now under study as system additives to lower Eh to -0.3 to -0.5 V, the conditions expected to prevail in the closed repository in basalt. Temperature change effects on most radionuclide distribution coefficient (Kd) values over the 23/sup 0/ to 300/sup 0/C range were major with the exception of iodine and technetium, neither of which were appreciably sorbed at normal to approx. 10/sup -7/ atm oxygen partial pressure. The effect of radionuclide concentration on the Kd value was shown graphically for cesium and strontium over a range of from 1 x 10/sup -10/ or 10/sup -12/ to 1 x 10/sup -4/M. Initial work was begun on Kd values obtained under controlled Eh and pH conditions to simulate specific oxygen partial pressure and pH conditions expected to occur in the repository environment.

  13. Coefficients of caffeine distribution in aliphatic alcohol-ammonium sulfate-water systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-11-01

    The extraction of caffeine with aliphatic alcohols C3-C9 from aqueous solutions in the presence of a salting-out agent (ammonium sulfate) is studied. Quantitative characteristics of extraction are calculated: the distribution coefficients ( D) and the degree of recovery ( R, %). Relations are found between log D of caffeine and the length of the hydrocarbon radical in the alcohol molecule, along with certain physicochemical properties of the extragents.

  14. Robust Approximations to the Non-Null Distribution of the Product Moment Correlation Coefficient I: The Phi Coefficient.

    ERIC Educational Resources Information Center

    Edwards, Lynne K.; Meyers, Sarah A.

    Correlation coefficients are frequently reported in educational and psychological research. The robustness properties and optimality among practical approximations when phi does not equal 0 with moderate sample sizes are not well documented. Three major approximations and their variations are examined: (1) a normal approximation of Fisher's Z,…

  15. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. PMID:21546674

  16. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTION COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS

    SciTech Connect

    Kaplan, D.; et. al

    2010-01-11

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.10-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide Kd variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  17. Multiscale characterization of pore size distributions using mercury porosimetry and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Tarquis, A. M.; Miranda, J. G. V.; Vidal Vázquez, E.

    2009-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as those related with transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are becoming increasingly used to characterize soil structure. Mercury injection porosimetry and nitrogen adsorption isotherms are techniques commonly employed for assessing equivalent pore size diameters in the range from about 50 nm to 100 m and 2 to 500 nm, respectively. The multifractal formalism was used to describe Hg injection curves and N2 adsorption isotherms from two series of a Mollisol cultivated under no tillage and minimum tillage. Soil samples were taken from 0-10, 10-20 and 20-30 cm depths in two experimental fields located in the north of Buenos Aires and South of Santa Fe provinces, Argentina. All the data sets analyzed from the two studied soil attributes showed remarkably good scaling trends as assessed by singularity spectrum and generalized dimension spectrum. Both, experimental Hg injection curves and N2 adsorption isotherms could be fitted reasonably well with multifractal models. A wide variety of singularity and generalized dimension spectra was found for the variables. The capacity dimensions, D0, for both Hg injection and N2 adsorption data were not significantly different from the Euclidean dimension. However, the entropy dimension, D1, and correlation dimension, D2, obtained from mercury injection and nitrogen adsorption data showed significant differences. So, D1 values were on average 0.868 and varied from 0.787 to 0.925 for Hg intrusion curves. Entropy dimension, D1, values for N2 adsorption isotherms were on average 0.582 significantly lower than those obtained when using the former technique. Twenty-three out of twenty-four N2 isotherms had D1 values in a

  18. Electron distribution function and recombination coefficient in ultracold plasma in a magnetic field

    SciTech Connect

    Bobrov, A. A.; Bronin, S. Ya.; Zelener, B. B.; Zelener, B. V.; Manykin, E. A.; Khikhlukha, D. R.

    2013-07-15

    The electron distribution function and diffusion coefficient in energy space have been calculated for the first time for a weakly coupled ultracold plasma in a magnetic field in the range of magnetic fields B = 100-50000 G for various temperatures. The dependence of these characteristics on the magnetic field is analyzed and the distribution function is shown to depend on the electron energy shift in a magnetic field. The position of the 'bottleneck' of the distribution function has been found to be shifted toward negative energies with increasing magnetic field. The electron velocity autocorrelators as a function of the magnetic field have been calculated; their behavior suggests that the frequency of collisions between charged particles decreases significantly with increasing magnetic field. The collisional recombination coefficient {alpha}{sub B} has been calculated in the diffusion approximation for a weakly coupled ultracold plasma in a magnetic field. An increase in magnetic field is shown to lead to a decrease in {alpha}{sub B} and this decrease can be several orders of magnitude.

  19. Molecular Dynamics Calculation of Carbon/Hydrocarbon Reflection Coefficients on a Graphite Surface Employing Distributed Computing

    NASA Astrophysics Data System (ADS)

    Alman, D. A.; Ruzic, D. N.; Brooks, J. N.

    2001-10-01

    Reflection coefficients of carbon and hydrocarbon molecules have been calculated with a molecular dynamics code. The code uses the Brenner hydrocarbon potential, an empirical many-body potential that can model the chemical bonding in small hydrocarbon molecules and graphite surfaces. A variety of incident energies and angles have been studied. Typical results for carbon show reflection coefficients 0.4 at thermal energy, decreasing to a minimum of 0.15 at 10-20 eV, and then increasing again. Distributed computing is used to distribute the work among 10-20 desktop PCs in the laboratory. The system consists of a client application run on all of the PCs and a single server machine that distributes work and compiles the results sent back from the clients. The client-server software is written in Java and requires no commercial software packages. Thus, the MD code benefits from multiprocessor-like speed-up at no additional cost by using the idle CPU cycles that would otherwise be wasted. These calculations represent an important improvement to the WBC code, which has been used to model surface erosion, core plasma contamination, and tritium codeposition in many fusion design studies and experiments.

  20. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data

    NASA Astrophysics Data System (ADS)

    Aronica, G.; Hankin, B.; Beven, K.

    Monte-Carlo simulations of a two-dimensional finite element model of a flood in the southern part of Sicily were used to explore the parameter space of distributed bed-roughness coefficients. For many real-world events specific data are extremely limited so that there is not only fuzziness in the information available to calibrate the model, but fuzziness in the degree of acceptability of model predictions based upon the different parameter values, owing to model structural errors. Here the GLUE procedure is used to compare model predictions and observations for a certain event, coupled with both a fuzzy-rule-based calibration, and a calibration technique based upon normal and heteroscedastic distributions of the predicted residuals. The fuzzy-rule-based calibration is suited to an event of this kind, where the information about the flood is highly uncertain and arises from several different types of observation. The likelihood (relative possibility) distributions predicted by the two calibration techniques are similar, although the fuzzy approach enabled us to constrain the parameter distributions more usefully, to lie within a range which was consistent with the modellers' a priori knowledge of the system.

  1. No-reference peak signal to noise ratio estimation based on generalized Gaussian modeling of transform coefficient distributions

    NASA Astrophysics Data System (ADS)

    Ryu, Ji-Woo; Lee, Seon-Oh; Sim, Dong-Gyu; Han, Jong-Ki

    2012-02-01

    We present a no-reference peak signal to noise ratio (PSNR) estimation algorithm based on discrete cosine transform (DCT) coefficient distributions from H.264/MPEG-4 part 10 advanced video codec (H.264/AVC) bitstreams. To estimate the PSNR of a compressed picture without the original picture on the decoder side, it is important to model the distribution of transform coefficients obtained from quantized coefficients accurately. Whereas several conventional algorithms use the Laplacian or Cauchy distribution to model the DCT coefficient distribution, the proposed algorithm uses a generalized Gaussian distribution. Pearson's χ2 (chi-square) test was applied to show that the generalized Gaussian distribution is more appropriate than the other models for modeling the transform coefficients. The χ2 test was also used to find optimum parameters for the generalized Gaussian model. It was found that the generalized Gaussian model improves the accuracy of the DCT coefficient distribution, thus reducing the mean squared error between the real and the estimated PSNR.

  2. Electron transport coefficients under super-Gaussian distribution and magnetic field

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Zeng, Qinghong

    2015-09-01

    An electron thermal transport theory based on the super-Gaussian electron distribution function f0∝e-vm is investigated for magnetized laser plasmas in order to obtain accurate transport coefficients used in the radiation hydrodynamic codes. It is found that the super-Gaussian distribution suppresses the diffusive heat flow and the Righi-Leduc heat flow. The diffusive heat flow and Righi-Leduc heat flow can be suppressed by as much as 50% and 75% under the typical hohlraum plasma condition, respectively. The super-Gaussian distribution introduces isothermal heat flows associated with the gradients of electron density and the super-Gaussian exponential factor m. And the isothermal heat flows induce the anomalous Nernst effects. Moreover, the self-generated magnetic field in laser plasmas can be generated not only by the thermalelectric effect but also by the nonparallel gradients of electron temperature and the super-Gaussian exponential factor m, the nonparallel gradients of electron density, and the super-Gaussian exponential factor m.

  3. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    NASA Astrophysics Data System (ADS)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  4. Illite spatial distribution controls Cr(VI) adsorption capacity and kinetics

    NASA Astrophysics Data System (ADS)

    WANG, L.; Li, L.

    2013-12-01

    In the natural surbsurface, clays typically are the major sorbing minerals for contaminants. Clays are known to distribute unevenly with low permeability 'clay' zones, which can have significant impacts on the sorption of contaminants. In this work, the effects of illite spatial distribution on Cr(VI) adsorption was examined using column experiments and reactive transport modeling. Three columns were set up with the same volume fraction of illite (10%). The Mixed column has illite evenly distributed within a quartz matrix; the Flow-transverse column has illite distributed in one horizontal zone in the direction that is perpendicular to the main flow; the Flow-parallel column has illite distributed in one cylindrical zone in the direction parallel to the main flow direction. Cr(VI) adsorption experiments were carried out under flow velocities of 0.58, 2.93, and 14.67 m/day. Two-dimensional reactive transport modeling was used to understand the role of illite distribution in determining Cr(VI) sorption capacity and kinetics. The result showed that illite spatial distribution strongly influence Cr(VI) sorption, the extent of which depend on the flow conditions . The Cr(VI) sorption kinectics was influenced by the permeability contrast and the preferential flow paths were taken place in high permeability zones. Under the flow rate of 0.58 m/day, the Cr(VI) adsorption in the Mixed and Flow-transverse columns was very similar, showing similar breakthrough time and sorption capacity. In contrast, an early breakthrough and an extended of Cr(VI) occured in the Flow-parallel column. The 2D reactive transport model showed that the inlet fluids flow through the quartz zone and bypass the lower permeability illite zone. Cr(VI) was first adsorbed on the illite-quartz interface early on and gradually diffuse into the illite zone over time. At the flow velocity of 2.93 m/day, the difference among the three columns was similar to the difference at the flow rate of 0.58 m/day. At

  5. The effect of gravel size fraction on the distribution coefficients of selected radionuclides

    NASA Astrophysics Data System (ADS)

    Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Clayton, Ray E.; Glossbrenner, Ellwood T.

    2009-06-01

    This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient ( Kd) construct can be estimated from laboratory tests on sediments less than 2 mm size fraction. However, this common assumption can lead to inaccurate estimates of the mobility and sorption affinity of many radionuclides (e.g., Tc, U, and Np) on gravel dominated sediments at the Hanford Site and other locations. Laboratory batch sorption experiments showed that the distribution coefficients measured using only sediment less than 2 mm size fraction and correcting for inert gravel fraction were not in agreement with those obtained from the bulk sediments including gravel (larger than 2 mm size fraction), depending on the radionuclide. The least reactive radionuclide, Tc had Kd values for bulk sediment with negligible deviations from the inert gravel corrected Kd values measured on less than 2 mm size fraction. However, differences between measured Kd values using sediment less than 2 mm size fraction and the Kd values on the bulk sediment were significant for intermediately and strongly reactive radionuclides such as U and Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxide coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the Kd, < 2 mm and Kd, > 2 mm values to estimate the Kd for the bulk sediment were found to best describe Kd values for radionuclides on the bulk sediment. Gravel correction factors should not be neglected to predict precisely the sorption capacity of the bulk sediments that contain more than 30% gravel. In addition, more detailed characterization of gravel surfaces should be conducted to identify whether higher reactive sorbents are present in

  6. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-01

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. PMID:27173087

  7. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    NASA Astrophysics Data System (ADS)

    Hassan, Jamal

    2012-09-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  8. Optimised method to estimate octanol water distribution coefficient (logD) in a high throughput format.

    PubMed

    Low, Ying Wei Ivan; Blasco, Francesca; Vachaspati, Prakash

    2016-09-20

    Lipophilicity is one of the molecular properties assessed in early drug discovery. Direct measurement of the octanol-water distribution coefficient (logD) requires an analytical method with a large dynamic range or multistep dilutions, as the analyte's concentrations span across several orders of magnitude. In addition, water/buffer and octanol phases which have very different polarity could lead to matrix effects and affect the LC-MS response, leading to erroneous logD values. Most compound libraries use DMSO stocks as it greatly reduces the sample requirement but the presence of DMSO has been shown to underestimate the lipophilicity of the analyte. The present work describes the development of an optimised shake flask logD method using deepwell 96 well plate that addresses the issues related to matrix effects, DMSO concentration and incubation conditions and is also amenable to high throughput. Our results indicate that the equilibrium can be achieved within 30min by flipping the plate on its side while even 0.5% of DMSO is not tolerated in the assay. This study uses the matched matrix concept to minimise the errors in analysing the two phases namely buffer and octanol in LC-MS. PMID:27373604

  9. Determination of variables in the prediction of strontium distribution coefficients for selected sediments

    USGS Publications Warehouse

    Pace, M.N.; Rosentreter, J.J.; Bartholomay, R.C.

    2001-01-01

    Idaho State University and the US Geological Survey, in cooperation with the US Department of Energy, conducted a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The Kds were determined to aid in assessing the variability of strontium Kds and their effects on chemical transport of strontium-90 in the Snake River Plain aquifer system. Data from batch experiments done to determine strontium Kds of five sediment-infill samples and six standard reference material samples were analyzed by using multiple linear regression analysis and the stepwise variable-selection method in the statistical program, Statistical Product and Service Solutions, to derive an equation of variables that can be used to predict strontium Kds of sediment-infill samples. The sediment-infill samples were from basalt vesicles and fractures from a selected core at the INEEL; strontium Kds ranged from ???201 to 356 ml g-1. The standard material samples consisted of clay minerals and calcite. The statistical analyses of the batch-experiment results showed that the amount of strontium in the initial solution, the amount of manganese oxide in the sample material, and the amount of potassium in the initial solution are the most important variables in predicting strontium Kds of sediment-infill samples.

  10. Distribution coefficients (Kd) and desorption rates of 137Cs and 241Am in Black Sea sediments.

    PubMed

    Topcuoğlu, S; Güngör, N; Kirbaşoğlu, C

    2002-12-01

    The distribution coefficients (Kd) and desorption rates of 137Cs and 241Am radionuclides in bottom sediments at different locations in the Black Sea were studied under laboratory conditions. The Kd values were found to be 500 for 137Cs and 3800 for 241Am at the steady state and described exponential curves. Rapid uptake of the radionuclides occurred during the initial period and little accumulation happened after four days. The desorption rates for 137Cs in different bottom sediments were best described by a three-component exponential model. The desorption half-times of 137Cs ranged from 26 to 50 d at the slow components. However, the desorption rate of 241Am described one component for all sediment samples and desorption half-time was found to be 75 d. In general, the results showed that the 241Am radionuclide is more effectively transferred to bottom sediment and has longer turnover time than 137Cs under Black Sea conditions. PMID:12489734

  11. INVESTIGATION OF BASALT-RADIONUCLIDE DISTRIBUTION COEFFICIENTS: FISCAL YEAR 1980 ANNUAL REPORT

    SciTech Connect

    Ames, L. L.; McGarrah, J. E.

    1980-12-01

    The Basalt Waste Isolation Project (Rockwell Hanford Operations) is conducting a safety assessment of nuclear waste storage in a repository on the Hanford Site. Pacific Northwest Laboratory, in support of the assessment effort, is generating radionuclide distribution coefficient data between simulated groundwaters and basalts and their secondary mineral products under the range of physicochemical conditions expected in a repository in basalt. Experimental radionuclide distribution coefficients were determined for crushed Pomona, Flow E, and Umtanum basalts at 23°, 60°, 150°, and 300°C at both normal oxygen partial pressure (~0.2 atm) and lower oxygen partial pressure (~10{sup -7} atm), using a static technique. Little or no changes in distribution coefficients were noted for selenium, uranium, technetium, neptunium, or plutonium over the oxygen partial pressure range noted above. Sodium dithionite and hydrazine are now under study as system additives to lower Eh to -0.3 to -0.5 V, the conditions expected to prevail in the closed repository in basalt. Radium, strontium, cesium, and americium are not expected to change oxidation states under repository conditions, while iodine remains an anion in either oxidation state. Lowering the system Eh to the -0.3 to -0.5 V expected in a repository in basalt should result in an oxidation state change and enhanced removal from solution for selenium, uranium, technetium, neptunium, and plutonium. Sorption of iodine was not affected by the Eh changes. Temperature change effects on most radionuclide distribution coefficient (Kd) values over the 23° to 300°C range were major with the exception of iodine and technetium, neither of which were appreciably sorbed at normal to ~10{sup -7} atm oxygen partial pressure. Uranium Kd values increased with an increase in temperature. In addition, uranium Kd values at 23°C decrease by an order of magnitude in response to added CO{sub 3}{sup 2-} in the solution. Cesium basalt Kd values

  12. Predicting surfactant modified soil/water distribution coefficients using micellar HPLC

    PubMed

    Paterson; Chowdhry; Leharne

    1999-01-01

    Soil water/distribution coefficients (Kd) have been measured for the partitioning of naphthalene, phenanthrene and pyrene between aqueous surfactant solutions and a clean soil. The surfactants used are ABA block copolymers constructed from ethylene oxide (the monomer used to synthesise the hydrophilic A blocks) and propylene oxide (used for the manufacture of the hydrophobic B block). Three of these surfactants comprising the same size propylene oxide block but different ethylene oxide/propylene oxide ratios were investigated. Increasing amounts of surfactant in the system result in a progressive decrease in the Kd values signifying an increasing tendency for the hydrophobic solutes to be dispersed in aqueous solution due to the action of the surfactant. More significantly for equal surfactant doses the most hydrophobic surfactant possessing the lowest ethylene oxide/propylene oxide ratio reduces Kd by the greatest amount whereas the most hydrophilic surfactant reduces Kd the least. Finally micellar HPLC using the above surfactants and hydrophobic solutes was undertaken. Interpolated capacity factors evaluated for particular surfactant doses correlated well with Kd values calculated for the same surfactant doses. The relationship between Kd and capacity was found to be log-linear and the correlation line could be fitted to the data obtained for all three surfactants. It is therefore concluded that micellar HPLC may be used for preliminary evaluations of the effectiveness of particular surfactants proposed for contaminated soils restoration schemes. PMID:10901653

  13. Strontium Distribution Coefficients of Basalt Core Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect

    J. J. Colello; J. J. Rosentreter; R. C. Bartholomay; M. J. Liszewski

    1998-12-01

    Strontium distribution coefficients (Kd's) were measured for 24 basalt core samples collected from selected sites at the Idaho National Engineering and Environmental Laboratory (INEEL). The measurements were made to help assess the variability of strontium Kd's as part of an ongoing investigation of strontium transport properties through geologic materials at the INEEL. The investigation is being conducted by the U.S. Geological Survey and Idaho State University in cooperation with the U.S. Department of Energy. Batch experiments were used to measure Kd's of basalt core samples using an aqueous solution representative of wastewater in waste-disposal ponds at the INEEL. Calculated strontium Kd's of the 24 basalt core samples ranged from 3.6{+-}1.3 to 29.4{+-}1.6 milliliters per gram. These results indicate a narrow range of variability in the strontium sorptive capacities of basalt relative to those of the sedimentary materials at the INEEL. The narrow range of the basalt Kd's can be attributed to physical and chemical properties of the basalt, and to compositional changes in the equilibrated solutions after being mixed with the basalt. The small Kd's indicate that basalt is not a major contributor in preventing the movement of strontium-90 in solution.

  14. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. PMID:26082184

  15. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 1: Fully Open Ended Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.

  16. Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions.

    PubMed

    Scott, David J; Harding, Stephen E; Winzor, Donald J

    2015-12-01

    This investigation examined the feasibility of manipulating the rotor speed in sedimentation velocity experiments to spontaneously generate an approximate steady-state condition where the extent of diffusional spreading is matched exactly by the boundary sharpening arising from negative s-c dependence. Simulated sedimentation velocity distributions based on the sedimentation characteristics for a purified mucin preparation were used to illustrate a simple procedure for determining the diffusion coefficient from such steady-state distributions in situations where the concentration dependence of the sedimentation coefficient, s = s(0)/(1 + Kc), was quantified in terms of the limiting sedimentation coefficient as c → 0 (s(0)) and the concentration coefficient (K). Those simulations established that spontaneous generation of the approximate steady state could well be a feature of sedimentation velocity distributions for many unstructured polymer systems because the requirement that Kcoω(2)s(0)/D be between 46 and 183 cm(-2) is not unduly restrictive. Although spontaneous generation of the approximate steady state is also a theoretical prediction for structured macromolecular solutes exhibiting linear concentration dependence of the sedimentation coefficient, s = s(0)(1 - kc), the required value of k is far too large for any practical advantage to be taken of this approach with globular proteins. PMID:26321223

  17. Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption.

    PubMed

    Lawniczak, Michał; Hul, Oleh; Bauch, Szymon; Seba, Petr; Sirko, Leszek

    2008-05-01

    We present the results of an experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modeled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory. PMID:18643145

  18. A generalized method of converting CT image to PET linear attenuation coefficient distribution in PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wu, Li-Wei; Wei, Le; Gao, Juan; Sun, Cui-Li; Chai, Pei; Li, Dao-Wu

    2014-02-01

    The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenuation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV-140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for converting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.

  19. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    SciTech Connect

    Muir, B. R.

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measured over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring

  20. Complexation of Arsenite with Dissolved Organic Matter: Conditional Distribution Coefficients and Apparent Stability Constants

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2010-01-01

    The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. Log KD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH = 9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. Log Ks for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1–2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, log Ks decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3− and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3. PMID:20801484

  1. Re-analysis of narcotic critical body residue data using the equilibrium distribution concept and refined partition coefficients.

    PubMed

    Endo, Satoshi

    2016-08-10

    Narcosis occurs as a result of the accumulation of chemicals in the phospholipid membrane. The toxic threshold concentration in the membrane is thought to be relatively constant across different chemicals and species. Hence, estimating chemical concentrations in the membrane is expected to reduce the variability of narcotic critical body residue (CBR) data. In this study, a high quality CBR dataset for three aquatic species reported recently in the literature was evaluated with the internal equilibrium distribution concept. The raw wet-weight-based CBR values were converted to membrane-weight-based CBR values by assuming that the chemical is distributed in storage lipids, membranes, proteins, and water according to the respective equilibrium partition coefficients. Several sets of partition coefficients were compared for this analysis. The results were consistent with the notion that the use of a structural protein instead of serum albumin as a surrogate for the body protein fraction could reduce the variability of CBRs. Partition coefficients predicted by polyparameter linear free energy relationships (PP-LFERs) reduced the variability of CBRs as much as or even more than experimental partition coefficients did. It is suggested that CBR data for chemicals with larger structural diversity and biological species with more distinct compositions are needed to evaluate further the equilibrium distribution concept and the constant membrane threshold hypothesis. PMID:27136717

  2. Exponential Stability of the Energy of the Wave Equation with Variable Coefficients and a Boundary Distributed Delay

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun

    2014-11-01

    In this paper, we consider a wave equation with space variable coefficients. Due to physical considerations, a distributed delay damping is acted on the part of the boundary. Under suitable assumptions, we prove the exponential stability of the energy based on the use of Riemannian geometry method, the perturbed energy argument, and some observability inequalities. From the applications point of view, our results may provide some qualitative analysis and intuition for the researchers in fields such as engineering, biophysics, and mechanics. And the method is rather general and can be adapted to other evolution systems with variable coefficients (e. g. elasticity plates) as well.

  3. Compact, high-Q, zero temperature coefficient, TE011 sapphire-rutile microwave distributed Bragg reflector resonators.

    PubMed

    Tobar, M E; Cros, D; Blondy, P; Ivanov, E N

    2001-05-01

    Some novel new resonator designs based on the distributed Bragg reflector are presented. The resonators implement a TE011 resonance in a cylindrical sapphire dielectric, which is confined by the addition of rutile and sapphire dielectric reflectors at the end faces. Finite element calculations are utilized to optimize the dimensions to obtain the highest Q-factors and zero frequency-temperature coefficient for a resonator operating near 0 degree C. We show that a Q-factor of 70,000 and 65,000 can be achieved with and without the condition of zero frequency-temperature coefficients, respectively. PMID:11381707

  4. Vertical distribution of near-ground aerosol backscattering coefficient measured by a CCD side-scattering lidar

    NASA Astrophysics Data System (ADS)

    Tao, Zongming; Liu, Dong; Ma, Xiaomin; Shi, Bo; Shan, Huihui; Zhao, Ming; Xie, Chenbo; Wang, Yingjian

    2015-09-01

    The near-ground aerosols have the most impact on the human beings. Its fine spatial and temporal distribution, with which the environmental and meteorological departments concern themselves most, has not been elaborated very well due to the unavailable measurement tools. We present the continuous observations of the vertical profile of near-ground aerosol backscattering coefficients by employing our self-developed side-scattering lidar system based on charge-coupled device camera. During the experimental period from April 2013 to August 2014, four catalogs of aerosol backscattering coefficient profiles are found in the near ground. The continuous measurement is revealed by the contour plots measured during the whole night. These experimental results indicate that the aerosol backscattering coefficients in near ground are inhomogeneous and vary with altitude and time, which are very useful for the model researchers to study the regional air pollution and its climate impact.

  5. Pore Scale Heterogeneity in the Mineral Distribution, Surface Area and Adsorption in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Lai, P. E. P.; Krevor, S. C.

    2014-12-01

    The impact of heterogeneity in chemical transport and reaction is not understood in continuum (Darcy/Fickian) models of reactive transport. This is manifested in well-known problems such as scale dependent dispersion and discrepancies in reaction rate observations made at laboratory and field scales [1]. Additionally, this is a source of uncertainty for carbon dioxide injection, which produces a reactive fluid-rock system particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2, 3]. We use x-ray micro tomography to describe the non-normal 3-dimensional distribution of reactive surface area within a porous medium according to distinct mineral groups. Using in-house image processing techniques, thin sections, nitrogen BET surface area, backscattered electron imaging and energy dispersive spectroscopy, we compare the surface area of each mineral phase to those obtained from x-ray CT imagery. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be characterized at multiple length scales for an accurate description of reactive transport. We combine the mineral specific surface area characterisation to dynamic tomography, imaging the flow of water and solutes, to observe flow dependent and mineral specific adsorption. The observations may contribute to the incorporation of experimentally based statistical descriptions of pore scale heterogeneity in reactive transport into upscaled models, moving it closer to predictive capabilities for field scale

  6. UNDERSTANDING VARIATION IN PARTITION COEFFICIENT KD, VALUES, VOLUME III: AMERICIUM, ARSENIC, CURIUM, IODINE, NEPTUNIUM, RADIUM, AND TECHNETIUM

    EPA Science Inventory

    This report describes the conceptualization, measurement, and use of the partition (or distribution) coefficient, Kd, parameter, and the geochemical aqueous solution and sorbent properties that are most important in controlling adsorption/retardation behavior of selected contamin...

  7. Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion.

    PubMed

    Kenvin, Jeffrey; Jagiello, Jacek; Mitchell, Sharon; Pérez-Ramírez, Javier

    2015-02-01

    A generalized approach to determine the complete distribution of macropores, mesopores, and micropores from argon adsorption and mercury porosimetry is developed and validated for advanced zeolite catalysts with hierarchically structured pore systems in powder and shaped forms. Rather than using a fragmented approach of simple overlays from individual techniques, a unified approach that utilizes a kernel constructed from model isotherms and model intrusion curves is used to calculate the complete pore size distribution and the total pore volume of the material. An added benefit of a single full-range pore size distribution is that the cumulative pore area and the area distribution are also obtained without the need for additional modeling. The resulting complete pore size distribution and the kernel accurately model both the adsorption isotherm and the mercury porosimetry. By bridging the data analysis of two primary characterization tools, this methodology fills an existing gap in the library of familiar methods for porosity assessment in the design of materials with multilevel porosity for novel technological applications. PMID:25603366

  8. Estimation of the Gini coefficient for the lognormal distribution of income using the Lorenz curve.

    PubMed

    Darkwah, Kwasi A; Nortey, Ezekiel N N; Lotsi, Anani

    2016-01-01

    The main objective of the study is to compare the Newton-Cotes methods such as the Trapezium rule, Simpson 1/3 rule and Simpson 3/8 rule to estimate the area under the Lorenz curve and Gini coefficient of income using polynomial function with degree 5. Comparing the Gini coefficients of income computed from the Polynomial function with degree 5 for the Trapezium, Simpson 1/3 and Simpson 3/8 methods using the relative errors showed that the trapezium rule, Simpson's 1/3 rule and Simpson's 3/8 rule show negative biases with the Simpson 1/3 rule yielding the lowest absolute relative true error of 4.230711 %. PMID:27516934

  9. A Performance Comparison on the Probability Plot Correlation Coefficient Test using Several Plotting Positions for GEV Distribution.

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunjun; Jung, Younghun; Om, Ju-Seong; Heo, Jun-Haeng

    2014-05-01

    It is very important to select the probability distribution in Statistical hydrology. Goodness of fit test is a statistical method that selects an appropriate probability model for a given data. The probability plot correlation coefficient (PPCC) test as one of the goodness of fit tests was originally developed for normal distribution. Since then, this test has been widely applied to other probability models. The PPCC test is known as one of the best goodness of fit test because it shows higher rejection powers among them. In this study, we focus on the PPCC tests for the GEV distribution which is widely used in the world. For the GEV model, several plotting position formulas are suggested. However, the PPCC statistics are derived only for the plotting position formulas (Goel and De, In-na and Nguyen, and Kim et al.) in which the skewness coefficient (or shape parameter) are included. And then the regression equations are derived as a function of the shape parameter and sample size for a given significance level. In addition, the rejection powers of these formulas are compared using Monte-Carlo simulation. Keywords: Goodness-of-fit test, Probability plot correlation coefficient test, Plotting position, Monte-Carlo Simulation ACKNOWLEDGEMENTS This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  10. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source

    NASA Astrophysics Data System (ADS)

    Panin, V. Y.; Aykac, M.; Casey, M. E.

    2013-06-01

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  11. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source.

    PubMed

    Panin, V Y; Aykac, M; Casey, M E

    2013-06-01

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction. PMID:23648397

  12. An analytical estimate of the coefficient for radial charged particle diffusion in Jupiter's magnetosphere using plasma radial distribution

    NASA Astrophysics Data System (ADS)

    Gubar, Yu. I.

    2015-11-01

    A radial profile of the plasma mass distribution in Jupiter's magnetosphere in the region beyond Io's orbit up to ˜15 Jupiter radii R J constructed according to the results of measurements on the Voyager 1 and Galileo spacecraft is used to determine the radial dependence and radial diffusion coefficient D LL . The initial profile is approximated by a function decreasing as L -5 ± 1. For this radial mass distribution, radial ion diffusion outside of Io's orbit caused by centrifugal forces is possible. An estimate of (1.2-6.7)10-11 L 6 ± 1 for D LL was obtained.

  13. A comparison of experimental and theoretical results for leakage, pressure distribution, and rotordynamic coefficients for annular gas seals

    NASA Technical Reports Server (NTRS)

    Nicks, C. O.; Childs, D. W.

    1984-01-01

    The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.

  14. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  15. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTIOIN COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS - 10259

    SciTech Connect

    Kaplan, D.

    2010-01-04

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.3-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide K{sub d} variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  16. Computation of spanwise distribution of circulation and lift coefficient for flapped wings of arbitrary planform

    NASA Technical Reports Server (NTRS)

    Razak, K.

    1980-01-01

    The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.

  17. Methods for Estimating Adsorbed Uranium(VI) and Distribution Coefficients of Contaminated Sediments

    USGS Publications Warehouse

    Kohler, M.; Curtis, G.P.; Meece, D.E.; Davis, J.A.

    2004-01-01

    Assessing the quantity of U(VI) that participates in sorption/desorption processes in a contaminated aquifer is an important task when investigating U migration behavior. U-contaminated aquifer sediments were obtained from 16 different locations at a former U mill tailings site at Naturita, CO (U.S.A.) and were extracted with an artificial groundwater, a high pH sodium bicarbonate solution, hydroxylamine hydrochloride solution, and concentrated nitric acid. With an isotopic exchange method, both a KD value for the specific experimental conditions as well as the total exchangeable mass of U(VI) was determined. Except for one sample, KD values determined by isotopic exchange with U-contaminated sediments that were in equilibrium with atmospheric CO2 agreed within a factor of 2 with KD values predicted from a nonelectrostatic surface complexation model (NEM) developed from U(VI) adsorption experiments with uncontaminated sediments. The labile fraction of U(VI) and U extracted by the bicarbonate solution were highly correlated (r2 = 0.997), with a slope of 0.96 ?? 0.01. The proximity of the slope to one suggests that both methods likely access the same reservoir of U(VI) associated with the sediments. The results indicate that the bicarbonate extraction method is useful for estimating the mass of labile U(VI) in sediments that do not contain U(IV). In-situ KD values calculated from the measured labile U(VI) and the dissolved U(VI) in the Naturita alluvial aquifer agreed within a factor of 3 with in-situ K D values predicted with the NEM and groundwater chemistry at each well.

  18. Infrared image filtering applied to the restoration of the convective heat transfer coefficient distribution in coiled tubes

    NASA Astrophysics Data System (ADS)

    Bozzoli, F.; Cattani, L.; Pagliarini, G.; Rainieri, S.

    2015-03-01

    This paper presents and assesses an inverse heat conduction problem (IHCP) solution procedure which was developed to determine the local convective heat transfer coefficient along the circumferential coordinate at the inner wall of a coiled pipe by applying the filtering technique approach to infrared temperature maps acquired on the outer tube's wall. The data-processing procedure filters out the unwanted noise from the raw temperature data to enable the direct calculation of its Laplacian which is embedded in the formulation of the inverse heat conduction problem. The presented technique is experimentally verified using data that were acquired in the laminar flow regime that is frequently found in coiled-tube heat-exchanger applications. The estimated convective heat transfer coefficient distributions are substantially consistent with the available numerical results in the scientific literature.

  19. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I + CF4 + Ar ternary gas mixtures

    NASA Astrophysics Data System (ADS)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-01

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF3I + CF4 + Ar in the E/N range of 100-700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF3I component is increased while the CF4 component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF3I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in the mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF3I component.

  20. The use of hard- and soft-modelling to predict radiostrontium solid-liquid distribution coefficients in soils.

    PubMed

    Gil-García, C J; Rigol, A; Vidal, M

    2011-11-01

    The solid-liquid distribution coefficient (K(d)) is the parameter that governs the incorporation of contaminants in soils. Its estimation allows the prediction of the fate of contaminants in the short- and long-term after a contamination event. Here, the K(d) of radiostrontium (K(d)(Sr)), a radionuclide of significant environmental interest, was predicted by hard models, which are based on knowledge of the mechanisms governing its sorption, and by soft models based on Partial Least Squares (PLS), using a large data set with the main soil parameters. The two approaches were tested and compared for 30 soils in Spain. Correlations between the predicted and experimental values of K(d)(Sr) obtained using hard- and soft-modelling showed slopes close to 1 and regression coefficients higher than 0.95, which confirms that both approaches are able to obtain satisfactory estimates for K(d)(Sr) from soil parameters. PMID:21890173

  1. Distribution of hospital beds in Tehran Province based on Gini coefficient and Lorenz curve from 2010 to 2012

    PubMed Central

    Asl, Iravan Masoudi; Abolhallaje, Masoud; Raadabadi, Mehdi; Nazari, Hamed; Nazari, Aslan; Salimi, Mohammad; Javani, Ali

    2015-01-01

    Introduction Fair distribution of hospital beds across various regions is a controversial subject. Resource allocation in health systems rarely has focused on those who need it most and, in addition, is often influenced by political interests. The study assesses the distribution of hospital beds in different regions in Tehran, Iran, during 2010–2012. Methods This cross-sectional study was conducted in all regions of Tehran (22 regions) during 2010 to 2012. All hospital beds in these regions are included in the study. Data regarding populations of each region were obtained from the Statistics Center of Iran. According to the data, the total number of beds (N.B) and population (P) in 2010 (N.B=19075, P= 7585000), 2011 (N.B=21632, P= 9860500), and 2012 (N.B=21808, P=12818650). The instrument was a form, including the name of the hospital, the district in which the hospital was located, the number of staffed beds, the name of each region, and its population. Data analysis was performed using DASP software version 2.3. Results The results demonstrate that the Gini coefficient of distributed beds in 22 regions of Tehran was 0.46 in all three years and specifically calculated 0.4666 in 2010, 0.4658 in 2011 and 0.4652 in 2012. The Gini coefficient of beds in 22 regions of Tehran is not fair in comparison with the population of each region during the years 2010 to 2012. Conclusion The results demonstrate that the distribution of beds in regions in Tehran is not fair in relation to the population of each region—and some regions had no hospitals. Therefore, it is essential for policymakers to frequently monitor this issue and investigate the fair distribution of hospital beds. PMID:26813480

  2. Application of the integral equation theory of polymers: Distribution function, chemical potential, and mean expansion coefficient

    NASA Astrophysics Data System (ADS)

    Gan, Hin Hark; Eu, Byung Chan

    1993-09-01

    A recursive integral equation for the intramolecular correlation function of an isolated linear polymer of N bonds is derived from the integral equations presented in the preceding paper. The derivation basically involves limiting the density of the polymer to zero so that polymers do not interact with each other, and thus taking into account the intramolecular part only. The integral equation still has the form of a generalized Percus-Yevick integral equation. The intramolecular correlation function of a polymer of N bonds is recursively generated by means of it from those of polymers of 2, 3,..., (N-1) bonds. The end-to-end distance distribution functions are computed by using the integral equation for various chain lengths, temperatures, and bond lengths in the case of a repulsive soft-sphere potential. Numerical solutions of the recursive integral equation yield universal exponents for the mean square end-to-end distance in two and three dimensions with values which are close to the Flory results: 0.77 and 0.64 vs Flory's values 0.75 and 0.6 for two and three dimensions, respectively. The intramolecular correlation functions computed can be fitted with displaced Gaussian forms. The N dependence of the internal chemical potential is found to saturate after some value of N depending on the ratio of the bond length to the bead radius.

  3. Soil-Soil Solution Distribution Coefficients for Se, Sr, Sn, Sb, And Cs in Japanese Agricultural Soils

    SciTech Connect

    Ishikawa, N.K.; Uchida, S.; Tagami, K.

    2008-07-01

    In this study, soil-soil solution distribution coefficients (K{sub d}s) for five radionuclides (Se-75, Sr-85, Sn-113, Sb-124, and Cs-137) were determined by batch sorption tests in 142 Japanese agricultural soil samples (63 paddy soil and 79 upland soil samples). The results showed that Se- and Sb-K{sub d} data did not have a normal or a log-normal distribution, but Sr-, Sn-, and Cs-K{sub d} data did have a log-normal distribution. Further, Se-, Sr-, and Cs-K{sub d} values differed between paddy and upland soil samples in t-test (p < 0.05). Spearman's rank correlation test was carried out to investigate correlations between K{sub d} values for each radionuclide and soil properties. The combination of the K{sub d} value and the soil property having the highest correlation coefficient (Rs) for each radionuclide was as follows: Se-K{sub d} - concentration of water soluble P (R{sub s} = -0.51); Sr-K{sub d} - concentration of water soluble Ca (R{sub s} = -0.57); Sn-K{sub d} - concentration of water soluble Sr (R{sub s} = 0.57); and Sb-K{sub d} - concentration of water soluble P (R{sub s} = -0.67). Although there were no soil properties which had a good correlation with Cs-K{sub d} values for all soil samples, the best correlated soil property with Cs-K{sub d} values was concentration of water soluble ammonium ion (R{sub s} = -0.48) for upland soil samples. (authors)

  4. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-05-01

    We report airborne differential optical absorption spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. Two soundings are presented, performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04±0.005 km-1 and 1.9±0.3 × 109 molec cm-3. A second extinction layer of 0.01±0.003 km-1 is found at 4 km altitude. During the second sounding, clouds prevented us to retrieve profile parts under 3 km altitude but a layer with enhanced extinction (0.025±0.005 km-1) and NO2 (1.95±0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  5. Airborne DOAS measurements in Arctic: vertical distributions of aerosol extinction coefficient and NO2 concentration

    NASA Astrophysics Data System (ADS)

    Merlaud, A.; van Roozendael, M.; Theys, N.; Fayt, C.; Hermans, C.; Quennehen, B.; Schwarzenboeck, A.; Ancellet, G.; Pommier, M.; Pelon, J.; Burkhart, J.; Stohl, A.; de Mazière, M.

    2011-09-01

    We report on airborne Differential Optical Absorption Spectroscopy (DOAS) measurements of aerosol extinction and NO2 tropospheric profiles performed off the North coast of Norway in April 2008. The DOAS instrument was installed on the Safire ATR-42 aircraft during the POLARCAT-France spring campaign and recorded scattered light spectra in near-limb geometry using a scanning telescope. We use O4 slant column measurements to derive the aerosol extinction at 360 nm. Regularization is based on the maximum a posteriori solution, for which we compare a linear and a logarithmic approach. The latter inherently constrains the solution to positive values and yields aerosol extinction profiles more consistent with independently measured size distributions. We present results from two soundings performed on 8 April 2008 above 71° N, 22° E and on 9 April 2008 above 70° N, 17.8° E. The first profile shows aerosol extinction and NO2 in the marine boundary layer with respective values of 0.04 ± 0.005 km-1 and 1.9 ± 0.3 × 109 molec cm-3. A second extinction layer of 0.01 ± 0.003 km-1 is found at 4 km altitude where the NO2 concentration is 0.32 ± 0.2 × 109 molec cm-3. During the second sounding, clouds prevent retrieval of profile parts under 3 km altitude but a layer with enhanced extinction (0.025 ± 0.005 km-1) and NO2 (1.95 ± 0.2 × 109 molec cm-3) is clearly detected at 4 km altitude. From CO and ozone in-situ measurements complemented by back-trajectories, we interpret the measurements in the free troposphere as, for the first sounding, a mix between stratospheric and polluted air from Northern Europe and for the second sounding, polluted air from Central Europe containing NO2. Considering the boundary layer measurements of the first flight, modeled source regions indicate closer sources, especially the Kola Peninsula smelters, which can explain the NO2 enhancement not correlated with a CO increase at the same altitude.

  6. Statistics of velocity fluctuations arising from a random distribution of point vortices: the speed of fluctuations and the diffusion coefficient

    PubMed

    Chavanis; Sire

    2000-07-01

    This paper is devoted to a statistical analysis of the fluctuations of velocity and acceleration produced by a random distribution of point vortices in two-dimensional turbulence. We show that the velocity probability density function PDF behaves in a manner which is intermediate between Gaussian and Levy laws, while the distribution of accelerations is governed by a Cauchy law. Our study accounts properly for a spectrum of circulations among the vortices. In the case of real vortices (with a finite core), we show analytically that the distribution of accelerations makes a smooth transition from Cauchy (for small fluctuations) to Gaussian (for large fluctuations), probably passing through an exponential tail. We introduce a function T(V) which gives the typical duration of a velocity fluctuation V; we show that T(V) behaves like V and V-1 for weak and large velocities, respectively. These results have a simple physical interpretation in the nearest neighbor approximation, and in Smoluchowski theory concerning the persistence of fluctuations. We discuss the analogies with respect to the fluctuations of the gravitational field in stellar systems. As an application of these results, we determine an approximate expression for the diffusion coefficient of point vortices. When applied to the context of freely decaying two-dimensional turbulence, the diffusion becomes anomalous and we establish a relationship nu=1+(xi/2) between the exponent of anomalous diffusion nu and the exponent xi which characterizes the decay of the vortex density. PMID:11088485

  7. Strontium Distribution Coefficients of Basalt and Sediment Infill Samples from the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect

    M. N. Pace; R. C. Bartholomay; J. J. Rosentreter

    1999-07-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose of this study is to aid in assessing the variability of strontium Kds at the INEEL as part of an ongoing investigation of chemical transport of strontium-90 in the Snake River Plain aquifer. Batch experimental techniques were used to determine Kds of six basalt core samples, five samples of sediment infill of vesicles and fractures, and six standard material samples. Analyses of data from these experiments indicate that the Kds of the sediment infill samples are significantly larger than those of the basalt samples. Quantification of such information is essential of furthering the understanding of transport processes of strontium-90 in the Snake River Plain aquifer and in similar environments.

  8. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 2: Partially Sealed Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.

  9. Analytical spatiotemporal soliton solutions to (3+1)-dimensional cubic-quintic nonlinear Schroedinger equation with distributed coefficients

    SciTech Connect

    Kumar, Hitender; Malik, Anand; Chand, Fakir

    2012-10-15

    We obtain exact spatiotemporal periodic traveling wave solutions to the generalized (3+1)-dimensional cubic-quintic nonlinear Schroedinger equation with spatial distributed coefficients. For restrictive parameters, these periodic wave solutions acquire the form of localized spatial solitons. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and gain (or loss). We then demonstrate the nonlinear tunneling effects and controllable compression technique of three-dimensional bright and dark solitons when they pass unchanged through the potential barriers and wells affected by special choices of the diffraction and/or the nonlinearity parameters. Direct numerical simulation has been performed to show the stable propagation of bright soliton with 5% white noise perturbation.

  10. Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin

    NASA Astrophysics Data System (ADS)

    Jamil, Tarek S.; Gad-Allah, Tarek A.; Ibrahim, Hanan S.; Saleh, Tamer S.

    2011-01-01

    The adsorption behavior of Atrazine on zeolites, prepared from Egyptian kaolin, has been studied in order to consider the application of these types of zeolites in water purification. The batch mode has been employed, using atrazine solution of concentration ranging from 2 to 10 mg /l. The adsorption capacity and distribution coefficients ( Kd) were determined for the adsorption system as a function of sorbate concentration. It was found that, under the studies concentrations, the percent of adsorbed atrazine on both zeolites match to Langmuir and Freundlich adsorption models. The constants of each model were calculated to assess the adsorption behavior of atrazine on each type of zeolite. According to the equilibrium studies, adsorption of atrazine on zeolite X at lower concentrations is much better than that on zeolite A. The application of Dublin-Kaganer-Radushkevich model revealed physisorption endothermic adsorption process for both zeolites. These results show that natural zeolites hold great potential to remove hazardous materials such as atrazine from water.

  11. Adsorption, uptake and distribution of gold nanoparticles in Daphnia magna following long term exposure.

    PubMed

    Botha, Tarryn Lee; Boodhia, Kailen; Wepener, Victor

    2016-01-01

    Gold nanoparticles (nAu) have recently been studied and developed within the biological and photothermal therapeutic contexts. The major clinical interest is within the application of novel drug delivery systems. Environmental exposure to nanoparticles can occur in different stages of the lifecycle of the product; from their synthesis, applications, product weathering and their disposal. Freshwater Daphnids, specifically Daphnia magna, have been used since the 1960s as a standard species in acute and chronic aquatic toxicity testing. Visualization of the interactions and uptake of nAu by D. magna was related to reproduction and molting patterns. Exposure to nAu was done using a chronic reproduction test performed for 14 days at six concentrations (0.5mg/L, 2mg/L, 5mg/L, 10mg/L, 15mg/L and 20mg/L). Microscopy was used to determine whether there was any uptake or interaction of nAu with daphnia. However the concentration of nAu in the media and the charge of particles played a role in the uptake and surface adsorption. As exposure concentrations of nAu increased it appeared that the nAu aggregated onto the surface and in the gut of the organisms in higher concentrations. There was no evidence of nAu internalization into the body cavity of the daphnia. Aquatic exposure to nAu resulted in increased adhesion of the particles to the carapace of daphnia, ingestion and uptake into the gut of daphnia and had no significant effect on reproduction and molting patterns. PMID:26650707

  12. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    NASA Astrophysics Data System (ADS)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  13. Effect of Colloids on the Calculation of Distribution Coefficients in Studies of Metal Sorption on Organic Matter

    NASA Astrophysics Data System (ADS)

    Straka, A. M.; Schijf, J.

    2010-12-01

    For proper calculation of distribution coefficients in metal sorption studies it is essential to fully separate dissolved from particulate metal. This is typically done via membrane filtration whereby the cutoff between dissolved and particulate fractions is somewhat arbitrarily set at 0.22 μm, dictated by available pore sizes. However, the pH-dependent formation of colloid-bound metal, able to bypass this procedure, can lead to analytical artifacts by adding an unknown and variable amount of particulate metal to the mechanically defined ‘dissolved’ pool, especially for organic substrates. We investigated this phenomenon in the context of yttrium and rare earth element (YREE) sorption on the marine macroalga Ulva lactuca (sea lettuce). U. lactuca is a suitable model for marine organic matter as it has a simple morphology, is ubiquitous throughout the world’s oceans, and readily sorbs a great variety of trace metals. Solutions containing all YREEs were equilibrated for 6-12 hours with dehydrated, powdered U. lactuca tissue over a wide pH range (3.0-8.5) at three ionic strengths (0.05, 0.5 and 5.0 M NaCl), after which aliquots were filtered through 0.22 μm membranes. The resulting filtrates were further separated into >30 kDa and >3 kDa colloidal fractions by sequential centrifugation in Amicon® ultrafiltration tubes. In all three experiments, YREEs are truly dissolved (<3 kDa) at low pH but almost entirely colloidal (>30 kDa) at high pH with a sharp transition in between, suggesting pH-dependent YREE complexation with large organic ligands released by the algal cells. The fraction of small colloids (3-30 kDa) is generally negligible. The same sorption edge emerged for fresh algal tissue, implying that the release of organic ligands is not caused by pervasive cell rupture. In 0.5 and 5.0 M NaCl solutions the sorption edge is centered around pH 6-8, but in 0.05 M NaCl it occurs around pH 4-6 whence more than 80% of dissolved YREEs is actually bound to

  14. The Adsorption of Arsenic on Iron Pipes in Water Distribution Systems

    EPA Science Inventory

    In order to remain compliant with the U.S. EPA’s Lead and Copper rule, it is pivotal to understand the relationship between factors affecting lead release in drinking water distribution systems. Lead solids were synthesized in cell experiments using a pH range of 6-11 with both 1...

  15. TU-F-18C-05: Evaluation of a Method to Calculate Patient-Oriented MGD Coefficients Using Estimates of Glandular Tissue Distribution

    SciTech Connect

    Porras-Chaverri, M; Galavis, P; Bakic, P; Vetter, J

    2014-06-15

    Purpose: Evaluate mammographic mean glandular dose (MGD) coefficients for particular known tissue distributions using a novel formalism that incorporates the effect of the heterogeneous glandular tissue distribution, by comparing them with MGD coefficients derived from the corresponding anthropomorphic computer breast phantom. Methods: MGD coefficients were obtained using MCNP5 simulations with the currently used homogeneous assumption and the heterogeneously-layered breast (HLB) geometry and compared against those from the computer phantom (ground truth). The tissue distribution for the HLB geometry was estimated using glandularity map image pairs corrected for the presence of non-glandular fibrous tissue. Heterogeneity of tissue distribution was quantified using the glandular tissue distribution index, Idist. The phantom had 5 cm compressed breast thickness (MLO and CC views) and 29% whole breast glandular percentage. Results: Differences as high as 116% were found between the MGD coefficients with the homogeneous breast core assumption and those from the corresponding ground truth. Higher differences were found for cases with more heterogeneous distribution of glandular tissue. The Idist for all cases was in the [−0.8{sup −}+0.3] range. The use of the methods presented in this work results in better agreement with ground truth with an improvement as high as 105 pp. The decrease in difference across all phantom cases was in the [9{sup −}105] pp range, dependent on the distribution of glandular tissue and was larger for the cases with the highest Idist values. Conclusion: Our results suggest that the use of corrected glandularity image pairs, as well as the HLB geometry, improves the estimates of MGD conversion coefficients by accounting for the distribution of glandular tissue within the breast. The accuracy of this approach with respect to ground truth is highly dependent on the particular glandular tissue distribution studied. Predrag Bakic discloses

  16. Estimation of distribution coefficient of natural radionuclides in soil around uranium mines and its effect with ionic strength of water.

    PubMed

    Mishra, S; Maity, S; Pandit, G G

    2012-11-01

    The distribution coefficient, K(d) in soil is an important parameter to predict the migration of contaminants. In this study, uranium (U) and its decay products thorium (Th), radium (Ra), bismuth (Bi), lead (Pb) and polonium (Po), which may contaminate the soil and ground water around uranium mining areas, have been considered. Soil and ground water samples were collected from a proposed uranium mining site in India. The soil samples were characterised for different parameters affecting the K(d) values. The batch sorption method was employed to measure the K(d) of different radionuclides. The important factors affecting the batch method for K(d) estimation were identified and optimised. The variation of K(d) was observed with different ionic strength water samples. Results showed high K(d) values for Th(IV), Po(IV) and Pb(II) (log K(d) ∼4) and low K(d) (log K(d) ∼2-3) for U(VI), Ra(II) and Bi(III) in all three types of water with different ionic strength. PMID:22927651

  17. Measured pressure distributions, aerodynamic coefficients and shock shapes on blunt bodies at incidence in hypersonic air and CF4

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1982-01-01

    Pressure distributions, aerodynamic coefficients, and shock shapes were measured on blunt bodies of revolution in Mach 6 CF4 and in Mach 6 and Mach 10 air. The angle of attack was varied from 0 deg to 20 deg in 4 deg increments. Configurations tested were a hyperboloid with an asymptotic angle of 45 deg, a sonic-corner paraboloid, a paraboloid with an angle of 27.6 deg at the base, a Viking aeroshell generated in a generalized orthogonal coordinate system, and a family of cones having a 45 deg half-angle with spherical, flattened, concave, and cusp nose shapes. Real-gas effects were simulated for the hperboloid and paraboloid models at Mach 6 by testing at a normal-shock density ratio of 5.3 in air and 12 CF4. Predictions from simple theories and numerical flow field programs are compared with measurement. It is anticipated that the data presented in this report will be useful for verification of analytical methods for predicting hypersonic flow fields about blunt bodies at incidence.

  18. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  19. Distribution or adsorption: the major dilemma in reversed-phase HPLC

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.

    2008-06-01

    A method is suggested for analyzing the dependences obtained for different compositions of mobile eluent system phases, their slopes and intercepts, log k( i, B) = a + b log k ( i, A), where a is the intercept for the A and B stationary phases and b is the proportionality factor. An analysis requires parallel investigation of sorbate retention on at least three stationary phases with different lengths of grafted hydrocarbon radicals. The dependence of correlation parameters on the sorbate retention mechanism is discussed. It is shown that the hypothetical dependences coincide with the experimental dependences for surface sorption of resveratrol and volume distribution of triglycerides.

  20. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    SciTech Connect

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  1. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins.

    PubMed

    Fan, Lin; Sun, Geng; Qiu, Jiangbing; Ma, Qimin; Hess, Philipp; Li, Aifeng

    2014-12-19

    In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for 12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (<2 nm) and small mesopores (2 nmadsorption of toxins in seawater at high and low salinity but not in seawater at medium salinity, which demonstrated that the toxin molecules entered into micropores and mesopores (below 10nm in size) in seawaters of high and low salinity. More toxin or other matrix agglomerates were displayed on the surface of resin deployed in the seawater of medium salinity. Taking into consideration the pore-size distribution and surface images, it appears that intra-particle diffusion governs toxin adsorption in seawater at high salinity while film diffusion mainly controls the adsorption process in seawater at medium salinity. This is the first study to confirm that molecules of OA and DTX1 are able to enter into micropores (<2nm) and small mesopores (2-10nm) of HP20 resin in estuarine seawater with high salinity (∼27‰). PMID:25464996

  2. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Villemant, Benoît; Jaffrezic, Henri; Joron, Jean-Louis; Treuil, Michel

    1981-11-01

    Major and seventeen trace element distribution coefficients between main phenocrysts (olivine, clinopyroxene, amphibole, mica, feldspars and Fe-Ti oxides) and groundmass have been measured in the alkali basalt suite of Chaîne des Puys (Massif Central, France). The suite appears to be a well behaved crystal fractionation series. We pinpoint key elements whose behavior is closely related to the appearance or disappearance of specific crystal phases in the fractionation process. Ta, for instance, clearly indicates the role of hydrous silicates (amphiboles and micas). Distribution coefficients are shown to vary systematically along the differentiation trend. Significantly the hygromagmaphile tendency ( TREUILet al., 1979) of U, Th, Ta and La is variable along the series. The mass balance equations, D i= limit∑;x jD jii where Di and Dji are the bulk and mineral/liquid distribution coefficients respectively, and xj the weight fractions of the fractionating phases, are solved by least square resolution of the overdetermined system, taking into account the analytical errors on data. The solution applied to the Chaîne des Puys suite leads to a coherent and quantitative model of the fractional crystallization process. The suite has apparently evolved in three stages. Each stage is characterized by constant bulk distribution coefficients and a specific mineral assemblage. Amphibole fractionation plays an important role in the early stages. Some intensive parameters ( T, ƒ ƒ O 2, PH2O) as well as f (weight fraction of residual liquid) are also estimated.

  3. Radionuclide Distribution Coefficients for Sediments Collected from Borehole 299-E17-21: Final Report for Subtask 1a

    SciTech Connect

    DI Kaplan; IV Kutynakov; KE Parker

    1998-10-14

    Over 360 distribution coefficients (KJ for cesium, iodine, selenium, Strontium, technetium, and uranium were measured in fiscal year 1998 using 20 sediments collected fkom borehole 299-El 7-21 on the Hanford Site as part of the Immobilized Low-Activity Waste-Performance Assessment (ILAW-PA). Additionally, the pH and cation-exchange capacity (a measure of the total quantity of cations that a sediment can adsorb) of these sediment samples were measured. The sediment samples originated from the Hanford formation (informal name). Statistical analyses, using Student's t-test and correlation were conducted with the measured values. There were no significant differences between layers 1 and 2 for the selenium, strontium, technetium, and uranium & values (statistics could not be applied to evaluate layer 3 &values). Significant differences between the cesium and iodine&values for layem 1 and 2 were observed. However, these differences were modest and would likely not warrant the added complexity of using three distinct ®ions to represent the Hanford formation in the ILAW-PA model. Generally, the &values of layer 3 were more similar to those of layer 2 than those of layer 1. Conservative and best estimates of radionuclide & values were calculated based on the results from these measurements. The best estimate was chosen to be the calculated median value; whereas the con- servative estimate was the miniium value, except for the conservative uranium&estimate that was based on the second-to-lowest value because of the presence of an unusually low value that was not consistent with other values from this borehole or previous reported values. Overall, the estimates are consistent with values used for the ILAW-PA, with some notable excep- tions. The conservative & estimates for technetium and uranium are approximately the same as those used for the ILAW-PA. The conservative ~alues for cesium, selenium, and strontium were appreciably more conservative than necessary. The

  4. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    NASA Astrophysics Data System (ADS)

    López, R.; Lecuona, A.; Ventas, R.; Vereda, C.

    2012-11-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger [1]. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones [2] model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar [3]. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  5. Realization of high coupling coefficients in 1. 53. mu. m InGaAsP/InP first-order quarter-wave shifted distributed feedback lasers

    SciTech Connect

    Hillmer, H.; Hansmann, S.; Burkhard, H. )

    1990-08-06

    Coupling coefficients as high as 300 cm{sup {minus}1} have been achieved and investigated in the performance of distributed feedback lasers. High coupling has several important advantages like lower feedback sensitivity, and lower influence on facet reflectivity, thus easy handling for coatings without any penalty in terms of mode hopping. We obtain a side-mode suppression ratio as high as 51.2 dB. 8 Gb/s nonreturn to zero'' modulation is demonstrated.

  6. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  7. Disentangling flow and nonflow correlations via Bayesian unfolding of the event-by-event distributions of harmonic coefficients in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Jia, Jiangyong; Mohapatra, Soumya

    2013-07-01

    The performance of the Bayesian unfolding method in extracting the event-by-event (EbyE) distributions of harmonic flow coefficients vn is investigated using a toy model simulation, as well as simulations based on the HIJING model and a multiphase transport (AMPT) model. The unfolding method is shown to recover the input v2-v4 distributions for events with multiplicities similar to those observed in Pb+Pb collisions at the Large Hadron Collider. The effects of the nonflow are evaluated using the HIJING simulation with and without a flow afterburner. The probability distribution of vn from nonflow is nearly a Gaussian and can be largely suppressed with the data-driven unfolding method used by the ATLAS Collaboration. The residual nonflow effects have no appreciable impact on the v3 distributions, but affect the tails of the v2 and v4 distributions; these effects manifest as a small simultaneous change in the mean and standard deviation of the vn distributions. For the AMPT model, which contains both flow fluctuations and nonflow effects, the reduced shape of the extracted vn distributions is found to be independent of pT in the low-pT region, similar to what is observed in the ATLAS data. The prospect of using the EbyE distribution of the harmonic spectrum aided by the unfolding technique as a general tool to study azimuthal correlations in high-energy collisions is also discussed.

  8. Sensitivity Analysis on the Half-Life of Trichloroethylene and the Distribution Coefficient at the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Kopp, Joshua D

    2007-06-01

    To determine the future extent of the TCE contamination plume at PGDP, a groundwater and solute transport model has been developed by the Department of Energy (DOE). The model used to perform these calculations is MODFLOWT which is an enhanced groundwater transport model developed by the United States Geological Survey (USGS). MODFLOWT models groundwater movement as well as the transport of species that are subject to adsorption and decay by using a finite difference method (Duffield et al 2001). A significant limitation of MODFLOWT is that it requires large amounts of data. This data can be difficult and expensive to obtain. MODFLOWT also requires excessive computational time to perform one simulation. It is desirable to have a model that can predict the spatial extent of the contaminant plume without as much required data and that does not require excessive computational times. The purpose of this study is to develop and alternative model to MODFLOWT that can produce similar results for possible use in a companion management model. The alternative model used in this study is an artificial neural network (ANN).

  9. The effect of oil-water partition coefficient on the distribution and cellular uptake of liposome-encapsulated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya

    2016-10-01

    The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. PMID:27400242

  10. Distributions of the particle/gas and dust/gas partition coefficients for seventy-two semi-volatile organic compounds in indoor environment.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-06-01

    Particle/gas and dust/gas partition coefficients (Kp and Kd) are two key parameters that address the partitioning of semi-volatile organic compounds (SVOCs) between gas-phase, airborne particles, and settled dust in indoor environment. A number of empirical equations to calculate the values of Kp and Kd have been reported in the literature. Therefore, the difficulty lies in the selection of a specific empirical equation in a given situation. In this study, we retrieved from the literature 38 empirical equations for calculating Kp and Kd values from the SVOC saturation vapor pressure and octanol/air partition coefficient. These values were calculated for 72 SVOCs: 9 phthalates, 9 polybrominated diphenyl ethers (PBDEs), 11 polychlorinated biphenyls (PCBs), 22 biocides, 14 polycyclic aromatic hydrocarbons (PAHs), 3 alkylphenols, 2 synthetic musks, tributylphosphate, and bisphenol A. The mean and median values of log10Kp or log10Kd for most SVOCs were of the same order of magnitude. The distribution of log10Kp values was fitted to either a normal distribution (for 27 SVOCs) or a log-normal distribution (for 45 SVOCs). This work provides a reference distribution of the log10Kp for 72 SVOCs, and its use may reduce the bias associated with the selection of a specific value or equation. PMID:27016817

  11. The Normal-Theory and Asymptotic Distribution-Free (ADF) Covariance Matrix of Standardized Regression Coefficients: Theoretical Extensions and Finite Sample Behavior.

    PubMed

    Jones, Jeff A; Waller, Niels G

    2015-06-01

    Yuan and Chan (Psychometrika, 76, 670-690, 2011) recently showed how to compute the covariance matrix of standardized regression coefficients from covariances. In this paper, we describe a method for computing this covariance matrix from correlations. Next, we describe an asymptotic distribution-free (ADF; Browne in British Journal of Mathematical and Statistical Psychology, 37, 62-83, 1984) method for computing the covariance matrix of standardized regression coefficients. We show that the ADF method works well with nonnormal data in moderate-to-large samples using both simulated and real-data examples. R code (R Development Core Team, 2012) is available from the authors or through the Psychometrika online repository for supplementary materials. PMID:24362970

  12. Recommended Distribution Coefficients, Kd Values, for Special Analysis Risk Calculations Related to Waste Disposal and Tank Closure on the Savannah River Site

    SciTech Connect

    Kaplan, D

    2005-08-31

    The purpose of this document is to provide a technically defensible list of distribution coefficients, or Kd values, for use in performance assessment (PA) and special analysis (SA) calculations on the SRS. Only Kd values for radionuclides that have new information related to them or that have recently been recognized as being important are discussed in this report. Some 150 Kd values are provided in this report for various waste-disposal or tank-closure environments: soil, corrosion in grout, oxidizing grout waste, gravel, clay, and reducing concrete environments. Documentation and justification for the selection of each Kd value is provided.

  13. Characterization of 200-UP-1 and 200-ZP-1 Operable Unit Aquifer Sediments and Batch Adsorption Distribution Coefficients for Contaminants of Concern--Fiscal Year 2006 Progress

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey

    2006-09-25

    A total of six core samples from 200-UP/ZP-1 OUs and two additional outcrop samples were characterized during FY2006 by PNNL. One sample (C4971) was identified as slough and not used, but the five other samples identified as intact core samples were used for further analyses. The C4977 sample is gravel-sandy silt and C4990 samples are fine-sandy silt from the Ringold formation. Although the sediments from these two boreholes have similar mineralogical composition, C4990 samples show higher values of Fe oxide content, clay/silt content, and surface area compared those in C4977. The measured Tc Kd values ranged 0–0.2 mg/L for both samples, while U(VI) Kd for C4990 (4.23 mg/L) is much higher than that for C4977 (0.76 mg/L). A key finding from the Kd measurements is that detailed sediment and pore water characterization is necessary to understand the variation in Kd values seen in the empirical batch tests. Without the ancillary characterization of the sediments and pore waters, one might form misleading interpretations of the mechanisms that control the Kd values. Thus, physical, geochemical, and hydrological characterization of the sediments and pore waters should be conducted to increase our understanding of the site-specific Kd measurements. More details for methods and results will be provided in the formal technical report in FY 2007.

  14. Chemical and physical properties affecting strontium distribution coefficients of surficial-sediment samples at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Liszewski, M.J.; Rosentreter, J.J.; Miller, Karl E.; Bartholomay, R.C.

    2000-01-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (K(d)s) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine K(d)s, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The K(d)s for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium K(d)s of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium K(d)s were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and -0.6518, respectively. Sediment properties with the strongest correlations with strontium K(d)s were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and -0.6660, respectively. Effects of solution properties on strontium K(d)s were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium K(d)s were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0

  15. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model

    NASA Astrophysics Data System (ADS)

    Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Harris, Peter J. F.; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N2 and CO2 isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

  16. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N(2) and CO(2) adsorption isotherms? Simulation results for a realistic carbon model.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO(2), and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions. PMID:21828590

  17. A Microfluidic Platform for the Rapid Determination of Distribution Coefficients by Gravity-Assisted Droplet-Based Liquid-Liquid Extraction.

    PubMed

    Poulsen, Carl Esben; Wootton, Robert C R; Wolff, Anders; deMello, Andrew J; Elvira, Katherine S

    2015-06-16

    The determination of pharmacokinetic properties of drugs, such as the distribution coefficient (D) is a crucial measurement in pharmaceutical research. Surprisingly, the conventional (gold standard) technique used for D measurements, the shake-flask method, is antiquated and unsuitable for the testing of valuable and scarce drug candidates. Herein, we present a simple microfluidic platform for the determination of distribution coefficients using droplet-based liquid-liquid extraction. For simplicity, this platform makes use of gravity to enable phase separation for analysis and is 48 times faster and uses 99% less reagents than performing an equivalent measurement using the shake-flask method. Furthermore, the D measurements achieved in our platform are in good agreement with literature values measured using traditional shake-flask techniques. Since D is affected by volume ratios, we use the apparent acid dissociation constant, pK', as a proxy for intersystem comparison. Our platform determines a pK' value of 7.24 ± 0.15, compared to 7.25 ± 0.58 for the shake-flask method in our hands and 7.21 for the shake-flask method in the literature. Devices are fabricated using injection molding, the batchwise fabrication time is <2 min per device (at a cost of $1 U.S. per device), and the interdevice reproducibility is high. PMID:25984969

  18. The Use of Chemical and Physical Properties for Characterization of Strontium Distribution Coefficients at the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect

    J. J. Rosentreter; R. Nieves; J. Kalivas; J. P. Rousseau; R. C. Bartholomay

    1999-06-01

    The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (Kds) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experimental techniques were used to determine experimental Kds of 20 surficial-sediment samples from the INEEL. The Kds describe the distribution of a solute between the solution and solid phase. A best-fit model was obtained using a four-variable data set consisting of surface area, manganese oxide concentration, specific conductance, and pH. Application of the model to an independent split of the data resulted in an average relative error of prediction of 20 percent and a correlation coefficient of 0.921 between predicted and observed strontium Kds. Chemical and physical characteristics of the solution and sediment that could successfully predict the Kd values were identified. Prediction variable select ion was limited to variables which are either easily determined or have available tabulated characteristics. The selection criterion could circumvent the need for time- and labor-intensive laboratory experiments and provide an alternate faster method for estimating strontium Kds.

  19. Evaluation of distribution coefficients and concentration ratios of (90)Sr and (137)Cs in the Techa River and the Miass River.

    PubMed

    Shishkina, E A; Pryakhin, E A; Popova, I Ya; Osipov, D I; Tikhova, Yu; Andreyev, S S; Shaposhnikova, I A; Egoreichenkov, E A; Styazhkina, E V; Deryabina, L V; Tryapitsina, G A; Melnikov, V; Rudolfsen, G; Teien, H-C; Sneve, M K; Akleyev, A V

    2016-07-01

    Empirical data on the behavior of radionuclides in aquatic ecosystems are needed for radioecological modeling, which is commonly used for predicting transfer of radionuclides, estimating doses, and assessing possible adverse effects on species and communities. Preliminary studies of radioecological parameters including distribution coefficients and concentration ratios, for (90)Sr and (137)Cs were not in full agreement with the default values used in the ERICA Tool and the RESRAD BIOTA codes. The unique radiation situation in the Techa River, which was contaminated by long-lived radionuclides ((90)Sr and (137)Cs) in the middle of the last century allows improved knowledge about these parameters for river systems. Therefore, the study was focused on the evaluation of radioecological parameters (distribution coefficients and concentration ratios for (90)Sr and (137)Cs) for the Techa River and the Miass River, which is assumed as a comparison waterbody. To achieve the aim the current contamination of biotic and abiotic components of the river ecosystems was studied; distribution coefficients for (90)Sr and (137)Cs were calculated; concentration ratios of (90)Sr and (137)Cs for three fish species (roach, perch and pike), gastropods and filamentous algae were evaluated. Study results were then compared with default values available for use in the well-known computer codes ERICA Tool and RESRAD BIOTA (when site-specific data are not available). We show that the concentration ratios of (137)Cs in whole fish bodies depend on the predominant type of nutrition (carnivores and phytophagous). The results presented here are useful in the context of improving of tools for assessing concentrations of radionuclides in biota, which could rely on a wider range of ecosystem information compared with the process limited the current versions of ERICA and RESRAD codes. Further, the concentration ratios of (90)Sr are species-specific and strongly dependent on Ca(2+) concentration in

  20. Adsorption and co-adsorption of diclofenac and Cu(II) on calcareous soils.

    PubMed

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2016-02-01

    Pharmaceuticals are emerging contaminants and their presence in different compartments of the environment has been detected in many countries. In this study, laboratory batch experiments were conducted to characterize the adsorption of diclofenac, a widely used non-steroidal anti-inflammatory drug, on six calcareous soils. The adsorption of diclofenac was relatively low, which may lead to a risk of groundwater contamination and plant uptake. A correlation between the soil-water distribution coefficient Kd and soil characteristics has been highlighted. Indeed, diclofenac adsorption as a function of soil organic matter content (% OM) and Rt=% CaCO3/% OM was successfully described through a simple empirical model, indicating the importance of considering the inhibiting effect of CaCO3 on OM retention properties for a better assessment of diclofenac fate in the specific case of calcareous soils. The simultaneous co-adsorption of diclofenac and copper - a ubiquitous pollutant in the environment - at the water/soil interface, was also investigated. It appeared quite unexpectedly that copper did not have a significant influence on diclofenac retention. PMID:26599281

  1. Theoretical study of the aluminum distribution effects on the double proton transfer mechanisms upon adsorption of 4,4'-bipyridine on H-ZSM-5.

    PubMed

    Akacem, Yamina; Castellà-Ventura, Martine; Kassab, Emile

    2012-02-01

    The aluminum distribution effects on the adsorption of 4,4'-bipyridine (44BPY) in the straight channel of H-ZSM-5 simulated by two ten-membered ring clusters (2-10T) have been investigated by DFT methods. The energetic and structural properties of the complexes formed upon interaction of 44BPY with the zeolite Brønsted acid sites for six different aluminum distributions were determined by B3LYP/6-31+G* calculations. Dispersion energies were estimated by performing single point calculations at the MP2 and M06-2X levels. Interaction energies were corrected for basis set superposition error (BSSE). The minimum energy pathways of the double proton transfer from H-ZSM-5 to 44BPY were characterized. Two mechanisms are proposed: a concerted mechanism in which both protons are simultaneously transferred giving the bidentate ion pair complex (44BPYH₂²⁺/2-10T²⁻) and a consecutive mechanism in which one proton is transferred directly leading to the monodentate ion pair complex (44BPYH⁺/2-10T⁻), whereas the second proton can be transferred according to Al distribution. The formation of monodentate or bidentate complexes strongly depends on the Al distribution. PMID:22220497

  2. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  3. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database.

    PubMed

    Tetko, Igor V; Bruneau, Pierre

    2004-12-01

    The ALOGPS 2.1 was developed to predict 1-octanol/water partition coefficients, logP, and aqueous solubility of neutral compounds. An exclusive feature of this program is its ability to incorporate new user-provided data by means of self-learning properties of Associative Neural Networks. Using this feature, it calculated a similar performance, RMSE = 0.7 and mean average error 0.5, for 2569 neutral logP, and 8122 pH-dependent logD(7.4), distribution coefficients from the AstraZeneca "in-house" database. The high performance of the program for the logD(7.4) prediction looks surprising, because this property also depends on ionization constants pKa. Therefore, logD(7.4) is considered to be more difficult to predict than its neutral analog. We explain and illustrate this result and, moreover, discuss a possible application of the approach to calculate other pharmacokinetic and biological activities of chemicals important for drug development. PMID:15514985

  4. Thermodynamic investigation of trichloroethylene adsorption in water-saturated microporous adsorbents

    SciTech Connect

    Farrell, J.; Hauck, B.; Jones, M.

    1999-08-01

    Adsorption of trichloroethylene (TCE) in adsorbents containing hydrophilic and hydrophobic micropores was investigated in order to determine the mechanisms responsible for TCE adsorption on mineral solids. A high-pressure liquid chromatography method was used to measure TCE adsorption isotherms on three microporous adsorbents. Silica gel and zeolite type NaX were used as hydrophilic model adsorbents, and hexamethyldisilazane (HMDS)-treated silica gel was used as a model hydrophobic adsorbent. Batch uptake and desorption isotherms were also measured on the hydrophilic silica gel. Uptake of TCE by all three adsorbents was linear over the concentration range investigated. However, the silica gel desorption isotherm was highly nonlinear, as indicated by its Freundlich isotherm exponent of 0.58. Capillary phase separation into hydrophobic micropores was postulated as being responsible for the isotherm hysteresis. Supporting this hypothesis was the conformance of the TCE adsorption isotherm to Dubinin-Radushkevitch volume filling of micropores theory. The enthalpies for TCE adsorption on all three solids were determined by van't Hoff analysis of distribution coefficients measured over a temperature range from 5 to 90 C. The TCE adsorption enthalpies on the silica gel and HMDS silica gel were exothermic, but on the zeolite adsorption was endothermic. High exothermic adsorption enthalpies on the silica gel adsorbents indicated that TCE adsorption was occurring in hydrophobic micropores, and that adsorption on surfaces with large radii of curvature contributed only minimally to the total uptake. This indicates that the predominant mechanism for TCE adsorption on these mineral solids is not partitioning into the vicinal water layer.

  5. Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: importance of the distribution coefficient in membrane selectivity.

    PubMed

    Di Pasquale, Eric; Salmi-Smail, Chanaz; Brunel, Jean-Michel; Sanchez, Patrick; Fantini, Jacques; Maresca, Marc

    2010-02-01

    The interaction of squalamine (SQ) with eukaryotic and prokaryotic membranes was studied and compared with the interaction of two other cationic amphipathic antimicrobials (CAAs), i.e. the antibiotic polymyxin B (PMB) and the detergent hexadecyltrimethylammonium bromide (CTAB). Whole cell experiments showed that the three CAA have in common the ability to interact with lipopolysaccharide-containing membranes through a divalent cation sensitive process. Differences were found regarding their kinetics of membrane permeabilisation and their selectivity for bacteria, with a preferential permeabilisation of bacteria by PMB>SQ and no selectivity for CTAB. Experiments with lipid monolayers and bilayers showed that this selectivity did not correlate with a preferential interaction of the CAAs with lipids but rather relies on differences in their ability to penetrate lipid bilayers and to cause electrically active lesions. Incidentally, our results also suggest that the distribution coefficient of CAAs could be used to predict their selectivity for bacteria. PMID:19883637

  6. A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions.

    PubMed

    Greenwald, Michael J; Redding, Adam M; Cannon, Fred S

    2015-01-01

    The authors have developed a kinetic dye test protocol that aims to predict the competitive adsorption of 2-methylisoborneol (MIB) to granular activated carbons (GACs). The kinetic dye test takes about two hours to perform, and produces a quantitative result, fitted to a model to yield an Intraparticle Diffusion Constant (IDC) during the earlier times of dye sorption. The dye xylenol orange was probed into six coconut-based GACs and five bituminous-based GACs that hosted varied pore distributions. Correlations between xylenol orange IDCs and breakthrough of MIB at 4 ppt in rapid small-scale column tests (RSSCTs) were found with R²s of 0.85 and 0.95 for coconut carbons that processed waters with total organic carbon (TOCs) of 1.9 and 2.2 ppm, respectively, and with an R² of 0.94 for bituminous carbons that processed waters with a TOC of 2.5 ppm. The author sought to study the influence of the pore sizes, which provide the adsorption sites and the diffusion conduits that are necessary for the removal of those compounds. For coconut carbons, a linear correlation was established between the xylenol orange IDCs and the volume of pores in the range of 23.4-31.8 Å widths (R² = 0.98). For bituminous carbons, best correlation was to pores ranging from 74 to 93 Å widths (R² = 0.94). The differences in adsorption between coconut carbons and bituminous carbons have been attributed to the inherently dissimilar graphene layering resulting from the parent materials and the activation processes. When fluorescein dye was employed in the kinetic dye tests, the correlations to RSSCT-MIB performance were not as high as when xylenol orange was used. Intriguingly, it was the same pore size ranges that exhibited the strongest correlation for MIB RSSCT's, xylenol orange kinetics, and fluoroscein kinetics. When methylene blue dye was used, sorption occurred so rapidly as to be out of the scope of the IDC model. PMID:25462782

  7. Determination of concentration and size distribution of black carbon in submicron aerosol from data of nephelometric measurements of angular scattering coefficients

    NASA Astrophysics Data System (ADS)

    Kozlov, Valerii S.; Rakhimov, Rustam F.; Shmargunov, Vladimir P.

    2015-11-01

    The possibility of determining the Black Carbon (BC) concentration and its size distribution in submicron aerosol from data of polarization spectronephelometric measurements of angular aerosol scattering is demonstrated for the first time. The data of simultaneous nephelometric and aethalometric measurements of BC concentration in wood smoke are compared. The inverse problem is solved from measurements of 40 polarization components of spectral coefficients of angular scattering, and aerosol filling factors and the imaginary part of the complex refractive indexes are determined for subfractions of ultrafine- (radii of 30-100 nm), fine- (100-430 nm), and coarse-disperse (430-770 nm) particles. Then the total BC concentration, its size distribution, and BC fraction are estimated in the approximation of homogeneous volume internal mixture of BC and nonabsorbing matter. The analysis shows that at the long evolution of smoke aerosol, nephelometric and aethalometric estimates of the BC concentrations are in a good agreement. The discrepancy averages about 16% for concentrations varying in a range 30-1000 μg/m3.

  8. Effect of experimental technique on the determination of strontium distribution coefficients of a surficial sediment from the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Hemming, C.H.; Bunde, R.L.; Liszewski, M.J.; Rosentreter, J.J.; Welhan, J.

    1997-01-01

    The effect of experimental technique on strontium distribution coefficients (K(d)'s) was determined as part of an investigation of strontium geochemical transport properties of surficial sediment from the Idaho National Engineering Laboratory, Idaho. The investigation was conducted by the U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy. Batch experiments were conducted to quantify the effect of different experimental techniques on experimentally derived strontium K(d)'s at a fixed pH of 8.0. Combinations of three variables were investigated: method of sample agitation (rotating-mixer and shaker table), ratio of the mass-of-sediment to the volume-of-reaction-solution (1:2 and 1:20), and method of sediment preparation (crushed and non-crushed). Strontium K(d)'s ranged from 11 to 23 mlg-1 among all three experimental variables examined. Strontium K(d)'s were bimodally grouped around 12 and 21 mlg-1. Among the three experimental variables examined, the mass-to-volume ratio appeared to be the only one that could account for this bimodal distribution. The bimodal distribution of the derived strontium K(d)'s may occur because the two different mass-to-volume ratios represent different natural systems. The high mass-to-volume ratio of 1:2 models a natural system, such as an aquifer, in which there is an abundance of favorable sorption sites relative to the amount of strontium in solution. The low mass-to-volume ratio of 1:20 models a natural system, such as a stream, in which the relative amount of strontium in solution exceeds the favorable surface sorption site concentration. Except for low mass-to-volume ratios of non-crushed sediment using a rotating mixer, the method of agitation and sediment preparation appears to have little influence on derived strontium K(d)'s.The effect of experimental technique on strontium distribution coefficients (Kd's) was determined as part of an investigation of strontium geochemical

  9. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Wang, Jinchao; Zhang, Yongjian; Guo, Zhanchen

    2010-07-15

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K(d)) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 degrees C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process. PMID:20346581

  10. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.

    PubMed

    Nagata, Takahiro; Fukushi, Keisuke; Takahashi, Yoshio

    2009-04-15

    A deficiency in environmental iodine can cause a number of health problems. Understanding how iodine is sequestered by materials is helpful for evaluating and developing methods for minimizing human health effects related to iodine. In addition, (129)I is considered to be strategically important for safety assessment of underground radioactive waste disposal. To assess the long-term stability of disposed radioactive waste, an understanding of (129)I adsorption on geologic materials is essential. Therefore, the adsorption of I(-) on naturally occurring oxides is of environmental concern. The surface charges of hydrous ferric oxide (HFO) in NaI electrolyte solutions were measured by potentiometric acid-base titration. The surface charge data were analyzed by means of an extended triple-layer model (ETLM) for surface complexation modeling to obtain the I(-) adsorption reaction and its equilibrium constant. The adsorption of I(-) was determined to be an outer-sphere process from ETLM analysis, which was consistent with independent X-ray absorption near-edge structure (XANES) observation of I(-) adsorbed on HFO. The adsorption equilibrium constants for I(-) on beta-TiO(2) and gamma-Al(2)O(3) were also evaluated by analyzing the surface charge data of these oxides in NaI solution as reported in the literature. Comparison of these adsorption equilibrium constants for HFO, beta-TiO(2), and gamma-Al(2)O(3) based on site-occupancy standard states permitted prediction of I(-) adsorption equilibrium constants for all oxides by means of the Born solvation theory. The batch adsorption data for I(-) on HFO and amorphous aluminum oxide were reasonably reproduced by ETLM with the predicted equilibrium constants, confirming the validity of the present approach. Using the predicted adsorption equilibrium constants, we calculated distribution coefficient (K(d)) values for I(-) adsorption on common soil minerals as a function of pH and ionic strength. PMID:19176225

  11. Visualization and Measurement of Adsorption/Desorption Process of Ethanol in Activated Carbon Adsorber

    NASA Astrophysics Data System (ADS)

    Asano, Hitoshi; Murata, Kenta; Takenaka, Nobuyuki; Saito, Yasushi

    Adsorption refrigerator is one of the efficient tools for waste heat recovery, because the system is driven by heat at relative low temperature. However, the coefficient of performance is low due to its batch operation and the heat capacity of the adsorber. In order to improve the performance, it is important to optimize the configuration to minimize the amount of driving heat, and to clarify adsorption/desorption phenomena in transient conditions. Neutron radiography was applied to visualize and measure the adsorption amount distribution in an adsorber. The visualization experiments had been performed at the neutron radiography facility of E-2 port of Kyoto University Research Reactor. Activated carbon and ethanol were used as the adsorbent and refrigerant. From the acquired radiographs, adsorption amount was quantitatively measured by applying the umbra method using a checkered neutron absorber with boron powder. Then, transient adsorption and desorption processes of a rectangular adsorber with 84 mm in width, 50 mm in height and 20 mm in depth were visualized. As the result, the effect of fins in the adsorbent layer on the adsorption amount distribution was clearly visualized.

  12. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  13. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  14. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations

    PubMed Central

    Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian

    2015-01-01

    Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05) for Mn (r2 = 0.0063), Cu (r2 = 0.0002, Cr (r2 = 0.021), Ni (r2 = 0.0023), Cd (r2 = 0.00001), Co (r2 = 0.096), Hg (r2 = 0.116) or Pb (r2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885

  15. Proposal for new best estimates for the soil solid-liquid distribution coefficient and soil-to-plant transfer of nickel.

    PubMed

    Vandenhove, Hildegarde; Van Hees, May; Olyslaegers, Geert; Vidal, Miquel

    2009-04-01

    The objective of this study was to compile data, based on an extensive literature survey, for the soil solid-liquid distribution coefficient (K(d)) and soil-to-plant transfer factor (TF) for nickel. The K(d) best estimates were calculated for soils grouped according to texture and organic matter content (sand, loam, clay and organic) and soil cofactors affecting soil-nickel interaction, such as pH, organic matter, and clay content. Variability in K(d) was better explained by pH than by soil texture. Nickel TF estimates were presented for major crop groups (cereals, leafy vegetables, non-leafy vegetables, root crops, tubers, fruits, herbs, pastures/grasses and fodder), and also for plant compartments within crop groups. Transfer factors were also calculated per soil group, as defined by their texture and organic matter content. Furthermore an evaluation of transfer factor dependency on specific soil characteristics was performed following regression analysis. The derived estimates were compared with parameter estimates currently in use. PMID:19223096

  16. Experimental Investigation of the Effect of Cooling Rate on Melilite/Liquid Distribution Coefficients for Sr, Ba, and TI in Type B Refractory Inclusion Melts

    NASA Astrophysics Data System (ADS)

    Simon, S. B.; Davis, A. M.; Richter, F. M.; Grossman, L.

    1996-03-01

    It is well established that Type B1 refractory inclusions were once at least partially molten. These inclusions are thought to represent closed magmatic systems, but attempts to model the trace element contents in melilite in these CAIs have not met with much success. Observed abundances of most trace elements tend to be significantly higher than those predicted using equilibrium melilite/liquid distribution coefficients. Boundary layers have been proposed as an explanation, but in the case of Sr, its D of ~0.8 is too high to give rise to boundary layers sufficiently enriched in Sr to account for the observed enrichments. We have investigated the possibility that Ds increase with increasing cooling rate. We found that Ds for Ti, Sr and Ba are virtually invariant with akermanite and with cooling rate, and the models still do not fit the observations, especially for Ba, which is off by a factor of ~20. The results indicate that a process occurred during the crystallization of melilite that we have yet to understand. _

  17. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  18. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    SciTech Connect

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-21

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S{sub 2} and S{sub 1} sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C{sub 6} and triple-dipole C{sub 9} dispersion coefficients for the interactions among them are reported.

  19. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    SciTech Connect

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme are 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.

  20. Factors affecting the adsorption of xenon on activated carbon

    SciTech Connect

    Underhill, D.W.; DiCello, D.C.; Scaglia, L.A.; Watson, J.A.

    1986-08-01

    The presence of water vapor was found to interfere strongly with the dynamic adsorption of /sup 133/Xe on coconut-base activated charcoal. The percent loss in the xenon adsorption coefficient was similar to values reported earlier for the adsorption of krypton on humidified charcoal. Attempts to increase the adsorption of xenon by (a) using a petroleum-based adsorbent with an extremely high surface area and (b) by impregnation of the adsorbent with iodine were not successful.

  1. Cesium adsorption on composite ferrocyanide-aluminosilicate adsorbents

    SciTech Connect

    Panasyugin, A.S.; Rat`ko, A.I.; Trofimenko, N.E.

    1995-11-01

    The formation of composite ferrocyanide adsorbents prepared on the basis of clinoptilolite is studied by potentiometric titration, X-ray diffraction analysis, and IR spectroscopy, and the nature of ion-exchanging complex is established. Exchange capacity, selectivity, and hydrolytic stability of the sorbents are characterized. Distribution coefficients with modified samples can be as large as 10000 for {sup 137}Cs; however, with increase of the background salt concentration above 0.17 g l{sup -1}, competing ions have noticeable effect on the adsorption properties of the aluminosilicates.

  2. 2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.

    PubMed

    Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R

    2015-02-15

    Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. PMID:25460697

  3. The Distribution Coefficients and Gasification Ratios of [1,2-{sup 14}C] Sodium Acetate for Various Paddy Soils in Japan

    SciTech Connect

    Ishii, N.; Takeda, H.; Uchida, S.

    2008-07-01

    For appropriate safety assessment of the disposal of TRU waste, distribution coefficients (K{sub d}) and gasification ratios of {sup 14}C labeled [1, 2-{sup 14}C] sodium acetate ({sup 14}C-NaOAc) were determined by batch sorption tests for 85 Japanese paddy soil samples. The soil studied were from four soil types: Andsol; Gley; Gray lowland; and Yellow. The range of K{sub d} values for all soil samples was from 7.5 to 295.2 mL g{sup -1}, and the mean value was 105.6 mL g{sup -1}. This mean value was higher than that of previous study (1). The high K{sub d} values of the present study could be a result of the properties of the paddy soils. The comparison of K{sub d} values by each soil type revealed statistically significant difference between Andsol and Gray lowland soils (P < 0.05). The soil type was one of the factors affecting partitioning of {sup 14}C-NaOAc. Gasification ratios ranged from 29.1% to 83.3%, and its mean value was 66.4% of the total {sup 14}C-NaOAc added. These results suggest that most of the radiocarbon in {sup 14}C-NaOAc will be released from soil into the air as gases. The gasification ratio between soil types was also compared, but no statistically significant difference was found. Gas production may be controlled by other than physicochemical properties of soil, for example by factors such as bacterial community. In addition, both the K{sub d} values and the gasification ratios for Gley soil were decreased according to the increase in pH although the underlaying mechanisms for this observation are not clear. (authors)

  4. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.

    PubMed

    Shaheen, Sabry M; Tsadilas, Christos D; Rinklebe, Jörg

    2013-12-01

    Knowledge about the behavior and reactions of separate soil components with trace elements (TEs) and their distribution coefficients (Kds) in soils is a key issue in assessing the mobility and retention of TEs. Thus, the fate of TEs and the toxic risk they pose depend crucially on their Kd in soil. This article reviews the Kd of TEs in soils as affected by the sorption system, element characteristics, and soil colloidal properties. The sorption mechanism, determining factors, favorable conditions, and competitive ions on the sorption and Kd of TEs are also discussed here. This review demonstrates that the Kd value of TEs does not only depend on inorganic and organic soil constituents, but also on the nature and characteristics of the elements involved as well as on their competition for sorption sites. The Kd value of TEs is mainly affected by individual or competitive sorption systems. Generally, the sorption in competitive systems is lower than in mono-metal sorption systems. More strongly sorbed elements, such as Pb and Cu, are less affected by competition than mobile elements, such as Cd, Ni, and Zn. The sorption preference exhibited by soils for elements over others may be due to: (i) the hydrolysis constant, (ii) the atomic weight, (iii) the ionic radius, and subsequently the hydrated radius, and (iv) its Misono softness value. Moreover, element concentrations in the test solution mainly affect the Kd values. Mostly, values of Kd decrease as the concentration of the included cation increases in the test solution. Additionally, the Kd of TEs is controlled by the sorption characteristics of soils, such as pH, clay minerals, soil organic matter, Fe and Mn oxides, and calcium carbonate. However, more research is required to verify the practical utilization of studying Kd of TEs in soils as a reliable indicator for assessing the remediation process of toxic metals in soils and waters. PMID:24168932

  5. Evaluating the Use of MODIS AOD for Air Quality Determination by Comparison with the Vertical Distribution of Aerosol Light Scattering Coefficient Obtained with a Balloon-Borne Nephelometer

    NASA Astrophysics Data System (ADS)

    Sumlin, B.; Arnott, W. P.; Moosmuller, H.

    2012-12-01

    The MODIS instruments aboard the Aqua and Terra satellites provide aerosol optical depth information for the entire Earth on a daily basis. Ideally, satellite measurements should correlate with ground-based measurements in order to be useful for air quality applications. Reno, Nevada, USA is a high desert city situated in the Great Basin. Its unique geography and proximity to urban and biomass burning aerosol sources make it an ideal candidate for aerosol research. In August 2011, the Reno Aerosol Characterization Experiment measured atmospheric aerosols with a ground-based Cimel CE-318 sun-photometer and in situ photoacoustic instrumentation to quantify aerosol concentrations at the surface and in the column. However, the results of these measurements indicated the existence of a more complex system of aerosol mixing above the atmospheric boundary layer than previously thought. In order to validate these measurements, an autonomous suite of instrumentation has been developed. This device is carried aloft by a weather balloon and utilizes a reciprocal nephelometer to obtain a high-resolution profile of the vertical distribution of aerosol light scattering coefficient, as well as instrumentation to record atmospheric variables such as temperature, pressure, relative humidity, and dew point. Position, course, speed, and altitude are logged with an onboard GPS module and correlated with atmospheric and aerosol measurements. Presented is the design and development of this new instrument, its comparison with proven laboratory instruments, data gathered from flights during August-November 2012, and its comparison to ground-based measurements and satellite data from the MODIS instruments.

  6. Effect of the ionic status and drying on radiocesium adsorption and desorption in organic soils

    SciTech Connect

    Rigol, A.; Vidal, M.; Rauret, G.

    1999-11-01

    Radiocesium (RCs) interaction in organic soils has been studied using adsorption and desorption experiments, and the effects of the ionic status and drying were evaluated. Four organic soils were used: three peaty podzols containing illite and a peat without illitic materials, RCs solid-liquid distribution coefficients (K{sub D}) were determined for each soil in water and in several solutions containing Ca, K, or a mixture of the two. RCs contamination was performed either with a single equilibration or after a three-step preequilibration. Whereas the ionic strength of the solution controlled RCs adsorption in the peat, the level of monovalent species was the most important factor in RCs adsorption in the peaty podzols. Reversibility of RCs adsorbed in the different conditions was assessed in the moist sample and after drying by single and consecutive extractions with either CaCl{sub 2} or CH{sub 3}COONH{sub 4}. RCs adsorption was totally reversible in the peat regardless of the ionic status and the desorption approach used. For the three peaty podzols, due to the presence of specific sites, adsorption reversibility was dependent on the scenario in which this adsorption was performed and on the cation used in desorption. Finally, although NH{sub 4} is known to desorb RCs specifically adsorbed in the soil, it was shown to induce interlayer collapse, and consecutive extractions with CaCl{sub 2} led to higher desorption yields.

  7. Effects of Cross-Sectional Shape, Solidity, and Distribution of Heat-Transfer Coefficient on the Torsional Stiffness of Thin Wings Subjected to Aerodynamic Heating

    NASA Technical Reports Server (NTRS)

    Thomson, Robert G.

    1959-01-01

    A study has been made of the effects of varying the shape, solidity, and heat-transfer coefficient of thin wings with regard to their influence on the torsional-stiffness reduction induced by aerodynamic heating. The variations in airfoil shape include blunting, flattening, and combined blunting and flattening of a solid wing of symmetrical double-wedge cross section. Hollow double-wedge wings of constant skin thickness with and without internal webs also are considered. The effects of heat-transfer coefficients appropriate for laminar and turbulent flow are investigated in addition to a step transition along the chord from a lower to a higher constant value of heat-transfer coefficient. From the results given it is concluded that the flattening of a solid double wedge decreases the reduction in torsional stiffness while slight degrees of blunting increase the loss. The influence of chordwise variations in heat-transfer coefficient due to turbulent and laminar boundary-layer flow on the torsional stiffness of solid wings is negligible. The effect of a step transition in heat-transfer coefficient along the chord of a solid wing can, however, become appreciable. The torsional-stiffness reduction of multiweb and hollow double-wedge wings is substantially less than that calculated for a solid wing subjected to the same heating conditions.

  8. Adsorption of HO(x) on aerosol surfaces - Implications for the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Leu, M.-T.; Nair, H. A.; Yung, Y. L.

    1993-01-01

    The potential impact of heterogeneous chemistry on the abundance and distribution of HO(x) in the Martian atmosphere is investigated using observational data on dust and ice aerosol distributions combined with an updated photochemical model. Critical parameters include the altitude distributions of aerosols and the surface loss coefficients of HO2 on dust and ice in the lower atmosphere and of H on ice above 40 km. Results of calculations indicate that adsorption of HO2 on dust, or ice near 30 km, can deplete OH abundances in the lower atmosphere by 10 percent or more and that the adsorption of H on ice at 50 km can result in even larger OH depletions (this effect is localized to altitudes greater than 40 km, where CO oxidation is relatively unimportant).

  9. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    initially-adsorbed protein. Interphase protein concentration CI increases as VI decreases, resulting in slow reduction in interfacial energetics. Steady-state is governed by a net partition coefficient P=(/CBCI). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This “adsorption-dehydration” step is the significant free-energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent-surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, protein adsorption monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ → 65°. Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ < 65° . For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔGadso is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein

  10. Adsorption of copper to different biogenic oyster shell structures

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Chen, Jie; Clark, Malcolm; Yu, Yan

    2014-08-01

    The removal of copper from solution by oyster shell powder was investigated for potential wastewater treatment uses. In particular, adsorption behavior differences between the prismatic (PP) and nacreous (NP) shell layers, and how this affects copper removal, were investigated. Experimental results indicated that copper adsorption was highly pH-dependent with optimal copper removal at pH 5.5, where the powdered whole raw shell (RP) removed up to 99.9% of the copper within 24 h at a 10 mg/L initial copper concentration. Langmuir and Freundlich models were used to analyze the isotherm PP, NP and RP data. These results showed a strong homogeneous Langmuir model for low initial copper concentrations (5-30 mg/L) to both RP and PP layer, while strong agreement with a heterogeneous Freundlich model for high initial copper concentrations (30-200 mg/L); nevertheless, a homogeneous Langmuir model provided the best fit for the more dense NP layer across the initial concentration range (5-200 mg/L). The distribution coefficient (Kd) value of PP layer for each initial concentration investigated was substantially higher than the NP layer and it was also found that the PP layer dominated the adsorption process with an adsorption capacity of 8.9 mg/g, while the adsorption capacity of the NP layer was 2.6 mg/g. These differences are believed to be because of the more porous structure of the PP layer, which was confirmed by scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and thermogravimetry-differential thermal analyses.

  11. Distortion of bulk-ion distribution function due to nuclear elastic scattering and its effect on T(d,n){sup 4}He reaction rate coefficient in neutral-beam-injected deuterium-tritium plasmas

    SciTech Connect

    Matsuura, H.; Nakao, Y.

    2007-05-15

    An effect of nuclear elastic scattering on the rate coefficient of fusion reaction between field deuteron and triton in the presence of neutral beam injection heating is studied. Without assuming a Maxwellian for bulk-ion distribution function, the Boltzmann-Fokker-Planck (BFP) equations for field (bulk) deuteron, field (bulk) triton, {alpha}-particle, and beam deuteron are simultaneously solved in an ITER-like deuterium-tritium thermonuclear plasma [R. Aymar, Fusion Eng. Des. 55, 107 (2001)]. The BFP calculation shows that enhancement of the reaction rate coefficient due to knock-on tail formation in fuel-ion distribution functions becomes appreciable, especially in the case of low-density operations.

  12. Adsorption of octylamine on titanium dioxide

    NASA Astrophysics Data System (ADS)

    Siwińska, Daria; Kołodziejczak-Radzimska, Agnieszka; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2009-05-01

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO 2 in the production of pharmaceuticals.

  13. Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies.

    PubMed

    Mihaly-Cozmuta, L; Mihaly-Cozmuta, A; Peter, A; Nicula, C; Tutu, H; Silipas, Dan; Indrea, Emil

    2014-05-01

    This paper summarizes the conclusions of experiments conducted on the adsorption of Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), Pb(2+) and Zn(2+) onto zeolite. The focus of the experiments was to establish the influence of the initial pH of the contact solution as well as the selectivity of zeolite on the efficiency of the adsorption process. To this end, experimental adsorption isotherms were established for the pH values ranging from 1 to 4 by using the Na-form of clinoptilolite (particle size range 0.5-1 mm) as an adsorbent. Langmuir, Freundlich and Dubinin-Raduschkevich isotherm models were used to validate the experimental data and the Gibbs free energy was calculated based on the distribution coefficient. From the Langmuir model, correlations between the maximum adsorption capacity and selected physical-chemical parameters of the cations studied were established. The results of the experiments suggest that the selectivity of zeolite is strongly influenced by the pH of the contact solution, dehydration energy of cations, diffusion coefficient and the pH at which the precipitation of hydroxides occurs. PMID:24603029

  14. Kinetic Interpretation of Water Vapor Adsorption-Desorption Behavior of a Desiccant Rotor Showing S-shaped Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Okamoto, Kumiko; Oshima, Kazunori; Takewaki, Takahiko; Kodama, Akio

    Adsorption / desorption behavior of water vapor in a desiccant rotor containing an iron aluminophosphate type zeolite FAM-Z01 (Functional Adsorbent Material Zeolite 01) was experimentally investigated for humidity swing. This rotor exhibited an S-shaped adsorption isotherm with its temperature dependence. Humidity swing, using a small piece of the rotor, could be usefully applied to interpret adsorption / desorption mechanisms by observing their rates. The most significant finding was that the adsorption / desorption rates in humidity swing could be described by the amount of adsorption, temperature and amplitude of the humidity swing, not by cycle time. Also, using the liner driving force (LDF) model, the overall mass transfer coefficient changed with the elapse of time or with the amount of adsorbed water. This implied that the LDF model, considering constant value of the overall mass transfer coefficient, was probably unable to explain the water adsorption / desorption behavior of FAM-Z01 desiccant rotor.

  15. Adsorption and excess fission xenon

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1982-01-01

    The adsorption of Xe and Kr on lunar soil 10084 was measured by a method that employs only very low fractions of monolayer coverage. Results are presented as parameters for calculation of the Henry constant for adsorption as a function of temperature. The adsorption potentials are about 3 kcal/mole for Kr and 5 kcal/mole for Xe; heating the sample in vacuum increased the Xe potential to nearly 7 kcal/mole. Henry constants at the characteristic lunar temperature are about 0.3 cu cm STP/g-atm. These data were applied to consider whether adsorption is important in producing the excess fission Xe effect characteristic of highland breccias. Sorption equilibrium with a transient lunar atmosphere vented fission Xe produces concentrations seven orders of magnitude lower than observed concentrations. Higher concentrations result because of the resistance of the regolith to upward diffusion of Xe. A diffusion coefficient of 0.26 sq cm/sec is estimated for this process.

  16. Polyethylene passive samplers to determine sediment-pore water distribution coefficients of persistent organic pollutants in five heavily contaminated dredged sediments.

    PubMed

    Charrasse, Benoit; Tixier, Céline; Hennebert, Pierre; Doumenq, Pierre

    2014-02-15

    Pore concentration and partition coefficients of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were determined in sediments from five distinct contaminated sites in France (marine harbour, rivers canals and highway sedimentation tank). The assessment of the risk caused by such micropollutants requires, in most cases, the measurement of their availability. To assess this availability, low density polyethylene (LDPE) membrane samplers were exposed to these sediments under constant and low-level agitation over a period of 46 days. Freely dissolved pore water contaminant concentrations were estimated from the concentration at equilibrium in the LDPE membrane. The depletion of contaminants in the sediments was monitored by the use of performance reference compounds (PRCs). Marked differences in freely dissolved PAH and PCB concentrations and resulting sediment-pore water partition coefficients between these five sediments were observed. Data set was tested onto different empirical and mechanistic models. As final findings, triple domain sorption (a total organic carbon, black carbon and oil phase model) could model PCB data successfully whereas the best fitting for PAH partitioning was obtained by Raoult's Law model. PMID:24360917

  17. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents. PMID:19773115

  18. Adsorption of sulfur hexafluoride onto crushed tuffs from the Yucca Mountain area, NYE County, Nevada

    SciTech Connect

    Rattray, G.W.; Striegl, R.G.; Yang, I.C.

    1995-12-31

    A laboratory batch-type testing procedure was developed that provides a simple, rapid, and reproducible method to investigate the adsorptive capabilities of crushed materials for gaseous compounds. Several batch tests were conducted to test crushed samples of tuff, clinoptilolite, and gypsum cement for their retention of sulfur hexafluoride. For each sample tested, the surface area, distribution coefficient, and retention equation were determined. The surface areas of the samples decreased in the following order: Topopah Spring Tuff, UE-25 UZ No. 5; bedded tuff, clinoptilolite; Yucca Mountain Tuff; Topopah Spring Tuff, UE-25 UZ No. 4; Pah Canyon Tuff; gypsum cement; and Tiva Canyon Tuff. The distribution coefficients show that sulfur hexafluoride is readily adsorbed onto clinoptilolite, bedded tuff, and Topopah Spring Tuff, but that it does not appreciably adsorb onto gypsum cement, Tiva Canyon Tuff, or Pah Canyon Tuff. Retention equations, which were calculated as a function of the surface area of the tuffs, were similar for all but one (Tiva Canyon Tuff) of the tuffs. The similarity of the retention equations demonstrates that the surface area of a tuff is a good indicator of the sorptive capability of the tuff. The distribution coefficients and the surface areas of the tuffs show a correlation with the amount of zeolite in the tuff, providing evidence that zeolites are the principal mineral controlling the adsorption of sulfur hexafluoride.

  19. Coupling coefficient of gain-guided lasers

    NASA Technical Reports Server (NTRS)

    Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Yariv, A.

    1984-01-01

    An analytical model is presented for the coupling coefficient for two gain-guided coupled waveguides, e.g., semiconductor laser arrays. A common parabolic gain distribution is assumed for the lasers, and the effective dielectric constant distribution is approximated in terms of the bulk refraction index, wavelength, power filling factor, and the antiguiding factor. The fundamental mode is then formulated and used in an integral for the coupling coefficient. The dependence of the coefficient of various waveguide parameters is described.

  20. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  1. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels

    NASA Astrophysics Data System (ADS)

    Flyckt, V. M. M.; Raaymakers, B. W.; Lagendijk, J. J. W.

    2006-10-01

    Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest.

  2. Tables of the coefficients A

    NASA Technical Reports Server (NTRS)

    Chandra, N.

    1974-01-01

    Numerical coefficients required to express the angular distribution for the rotationally elastic or inelastic scattering of electrons from a diatomic molecule were tabulated for the case of nitrogen and in the energy range from 0.20 eV to 10.0 eV. Five different rotational states are considered.

  3. ADSORPTION AND DESORPTION OF ZN, CU, AND CR BY SEDIMENTS FROM THE RAISIN RIVER (MICHIGAN)

    EPA Science Inventory

    Metal adsorption by Raisin River sediments in vitro depended linearly on soluble metal concentration to adsorption densities of 6,000-9,000 ug/g with 48 hr partition coefficients of approximately 50, 30, and 25 L/g for Cu, Cr, and Zn, respectively. artition coefficients computed ...

  4. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  5. Novel Logistic Regression Model of Chest CT Attenuation Coefficient Distributions for the Automated Detection of Abnormal (Emphysema or ILD) versus Normal Lung

    PubMed Central

    Chan, Kung-Sik; Jiao, Feiran; Mikulski, Marek A.; Gerke, Alicia; Guo, Junfeng; Newell, John D; Hoffman, Eric A.; Thompson, Brad; Lee, Chang Hyun; Fuortes, Laurence J.

    2015-01-01

    Rationale and Objectives We evaluated the role of automated quantitative computed tomography (CT) scan interpretation algorithm in detecting Interstitial Lung Disease (ILD) and/or emphysema in a sample of elderly subjects with mild lung disease.ypothesized that the quantification and distributions of CT attenuation values on lung CT, over a subset of Hounsfield Units (HU) range [−1000 HU, 0 HU], can differentiate early or mild disease from normal lung. Materials and Methods We compared results of quantitative spiral rapid end-exhalation (functional residual capacity; FRC) and end-inhalation (total lung capacity; TLC) CT scan analyses in 52 subjects with radiographic evidence of mild fibrotic lung disease to 17 normal subjects. Several CT value distributions were explored, including (i) that from the peripheral lung taken at TLC (with peels at 15 or 65mm), (ii) the ratio of (i) to that from the core of lung, and (iii) the ratio of (ii) to its FRC counterpart. We developed a fused-lasso logistic regression model that can automatically identify sub-intervals of [−1000 HU, 0 HU] over which a CT value distribution provides optimal discrimination between abnormal and normal scans. Results The fused-lasso logistic regression model based on (ii) with 15 mm peel identified the relative frequency of CT values over [−1000, −900] and that over [−450,−200] HU as a means of discriminating abnormal versus normal, resulting in a zero out-sample false positive rate and 15%false negative rate of that was lowered to 12% by pooling information. Conclusions We demonstrated the potential usefulness of this novel quantitative imaging analysis method in discriminating ILD and/or emphysema from normal lungs. PMID:26776294

  6. A strategy for the separation of diterpenoid isomers from the root of Aralia continentalis by countercurrent chromatography: The distribution ratio as a substitute for the partition coefficient and a three-phase solvent system.

    PubMed

    Lee, Kyoung Jin; Song, Kwang Ho; Choi, Wonmin; Kim, Yeong Shik

    2015-08-01

    Aralia continentalis (Araliaceae) is widely used as a medicinal plant in East Asia. Previous studies have indicated that diterpenoid isomers (kaurenoic acid, continentalic acid, and ent-continentalic acid) are the major bioactive compounds of this plant. A new strategy was developed to alleviate difficulties in the separation of these isomers from this plant. A three-phase solvent system was applied to separate the isomers, and furthermore, the distribution ratio (Kc) was introduced as a substitute for the partition coefficient (KD). For compounds exhibiting a single equilibrium, their distributions in two immiscible phases were only affected by the partition coefficient of each solute. However, compounds that have a dissociating functional group (e.g., -COOH) are involved in two types of equilibrium in the two-phase system. In this case, the partitioning behaviors of the solutes are greatly affected by the pH of the solution. A mathematical prediction was applied for adjusting the solutions to the proper pH values. To prevent non-used phase (medium phase) waste, both the stationary phase (upper phase) and mobile phase (lower phase) were prepared on-demand without pre-saturation with the application of (1)H NMR. Each fraction obtained was collected and dried, yielding the following diterpenoid isomers from the 50mg injected sample: kaurenoic acid (19.7mg, yield: 39%) and ent-continentalic acid (21.3mg, yield: 42%). PMID:26138601

  7. Adsorption in sparse networks. 2: Silica aerogels

    SciTech Connect

    Scherer, G.W.; Calas, S.; Sempere, R.

    1998-06-15

    The model developed in Part 1 is applied to nitrogen adsorption isotherms obtained for a series of silica aerogels whose densities are varied by partial sintering. The isotherms are adequately described by a cubic network model, with all of the pores falling in the mesopore range; the adsorption and desorption branches are fit by the same pore size distribution. For the least dense gels, a substantial portion of the pore volume is not detected by condensation. The model attributes this effect to the shape of the adsorbate/adsorptive interface, which can adopt zero curvature even in mesopores, because of the shape of the network.

  8. Coefficients for Interrater Agreement.

    ERIC Educational Resources Information Center

    Zegers, Frits E.

    1991-01-01

    The degree of agreement between two raters rating several objects for a single characteristic can be expressed through an association coefficient, such as the Pearson product-moment correlation. How to select an appropriate association coefficient, and the desirable properties and uses of a class of such coefficients--the Euclidean…

  9. Studies on the adsorption of americium on alumina from aqueous nitric acid-oxalic acid solutions

    SciTech Connect

    Subba Rao, M.; Gaikwad, A.M.; Rao, V.K.; Natarajan, P.R.

    1985-01-01

    This paper reports a study on the adsorption of Am(III) on alumina from oxalic acid-nitric acid solutions. Distribution coefficients for Am(III) on alumina at different oxalic acid-nitric acid concentrations have been determined and optimum conditions for loading and elution of Am from alumina columns have been established. Separation of Am from Pu and the effects of other ions, such as U(VI) and Fe(III), have also been studied. Am and Pu recoveries better than 99.5% were obtained. 3 references, 2 figures, 5 tables.

  10. Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods.

    PubMed

    Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep

    2014-07-01

    Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential. PMID:24940607

  11. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  12. Proton and Cd adsorption onto natural bacterial consortia: Testing universal adsorption behavior

    NASA Astrophysics Data System (ADS)

    Borrok, David; Fein, Jeremy B.; Kulpa, Charles F.

    2004-08-01

    Bacterial surface adsorption can control metal distributions in some natural systems, yet it is unclear whether natural bacterial consortia differ in their adsorption behaviors. In this study, we conduct potentiometric titration and metal adsorption experiments to measure proton and Cd adsorption onto a range of bacterial consortia. We model the experimental data using a surface complexation approach to determine thermodynamic stability constants. Our results indicate that these consortia adsorb similar extents of protons and Cd and that the adsorption onto all of the consortia can be modeled using a single set of stability constants. Consortia of bacteria cultured from natural environments also adsorb metals to lesser extents than individual strains of laboratory-cultivated species. This study suggests that a wide range of bacterial species exhibit similar adsorption behaviors, potentially simplifying the task of modeling the distribution and speciation of metals in bacteria-bearing natural systems. Current models for bacteria-metal adsorption that rely on pure strains of laboratory-cultivated species likely overpredict the amount of bacteria-metal adsorption in natural systems.

  13. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water.

    PubMed

    Guo, Yuexin; Jia, Zhiqian

    2016-11-01

    Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles. PMID:27322899

  14. Modeling investigation of membrane biofouling phenomena by considering the adsorption of protein, polysaccharide and humic acid.

    PubMed

    Demneh, Seyedeh Marzieh Ghasemi; Nasernejad, Bahram; Modarres, Hamid

    2011-11-01

    The importance of solute adsorption in the biofouling membrane has been clearly verified for the performance of membrane bioreactor (MBR). In order to quantify the mechanism of static adsorption in biofouling during of MBR process, we characterize membrane biofouling caused by model solutions containing a protein (bovine serum albumin, BSA), a humic substance (humic acid, HA) and a polysaccharide (alginic acid, Alg) on commercial hydrophilic polyethersulfone (PES) membrane. For static adsorption experiments, membranes were immersed in well-defined model solutions in three temperatures (298, 308 and 318 K) to obtain equilibrium data. To determine the characteristic parameters for this process, 7 isotherm models were applied to the experimental data. Three error analysis methods; the coefficient of nonlinear regression (R(2)), the sum of the squared errors (SSE) and standard deviation of residuals (S(yx)), were used to evaluate the data and determine the best fit isotherm for each model solutions. The error values demonstrated that the Sips isotherm model provided the best fit to the experimental data. AFM images were used for determination of changes in membrane surface after adsorption. These images confirmed the results obtained from adsorption isotherm study. Thermodynamic parameters such as standard free energy (Δ(r)G(θ)), enthalpy (Δ(r)H(θ)) and entropy (Δ(r)S(θ)) changes were determined; these adsorption processes were found to be feasible and endothermic but not spontaneous. The distribution of the substances adsorbed on PES surface were more chaotic than that in the aqueous solutions. Parameters obtained in this study can be used to determine the "fouling potential" of a given feed stream and a membrane. PMID:21798726

  15. Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: Optimization, selectivity, and mechanism

    NASA Astrophysics Data System (ADS)

    Ji, Min; Su, Xiao; Zhao, Yingxin; Qi, Wenfang; Wang, Yue; Chen, Guanyi; Zhang, Zhenya

    2015-07-01

    A Japanese volcanic soil, Akadama clay, was functionalized with metal salts (FeCl3, AlCl3, CaCl2, MgCl2, MnCl2) and tested for Cr(VI) removal from aqueous solution. FeCl3 was selected as the most efficient activation agent. To quantitatively investigate the independent or interactive contribution of influencing factors (solution pH, contact time, adsorbent dose, and initial concentration) to Cr(VI) adsorption onto Fe-functionalized AC (FFAC), factorial experimental design was applied. Results showed initial concentration contributed most to adsorption capacity of Cr(VI) (53.17%), followed by adsorbent dosage (45.15%), contact time (1.12%) and the interaction between adsorbent dosage and contact time (0.37%). The adsorption showed little dependence on solution pH from 2 to 8. Adsorption selectivity of Cr(VI) was evaluated through analyzing distribution coefficient, electrical double layer theory, as well as the valence and Pauling's ionic radii of co-existing anions (Cl-, SO42-, and PO43-). EDX and XPS analyses demonstrated the adsorption mechanism of Cr(VI) onto FFAC included electrostatic attraction, ligant exchange, and redox reaction. Improved treatment for tannery wastewater shows a potential application of FFAC as a cost-effective adsorbent for Cr(VI) removal.

  16. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  17. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  18. ARSENIC TREATMENT BY ADSORPTIVE TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the removal of arsenic from drinking water using the adsorptive media treatment process. Fundamental information is provided on the design and operation of adsorptive media technology including the selection of the adsorptive media. The information cites...

  19. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  20. Poliovirus Adsorption by 34 Minerals and Soils

    PubMed Central

    Moore, Rebecca S.; Taylor, Dene H.; Sturman, Lawrence S.; Reddy, Michael M.; Fuhs, G. Wolfgang

    1981-01-01

    The adsorption of radiolabeled infectious poliovirus type 2 by 34 well-defined soils and mineral substrates was analyzed in a synthetic freshwater medium containing 1 mM CaCl2 and 1.25 mM NaHCO3 at pH 7. In a model system, adsorption of poliovirus by Ottawa sand was rapid and reached equilibrium within 1 h at 4°C. Near saturation, the adsorption could be described by the Langmuir equation; the apparent surface saturation was 2.5 × 106 plaque-forming units of poliovirus per mg of Ottawa sand. At low surface coverage, adsorption was described by the Freundlich equation. The soils and minerals used ranged from acidic to basic and from high in organic content to organic free. The available negative surface charge on each substrate was measured by the adsorption of a cationic polyelectrolyte, polydiallyldimethylammonium chloride. Most of the substrates adsorbed more than 95% of the virus. In general, soils, in comparison with minerals, were weak adsorbents. Among the soils, muck and Genesee silt loam were the poorest adsorbents; among the minerals, montmorillonite, glauconite, and bituminous shale were the least effective. The most effective adsorbents were magnetite sand and hematite, which are predominantly oxides of iron. Correlation coefficients for substrate properties and virus adsorption revealed that the elemental composition of the adsorbents had little effect on poliovirus uptake. Substrate surface area and pH, by themselves, were not significantly correlated with poliovirus uptake. A strong negative correlation was found between poliovirus adsorption and both the contents of organic matter and the available negative surface charge on the substrates as determined by their capacities for adsorbing the cationic polyelectrolyte, polydiallyldimethylammonium chloride. PMID:6274259

  1. Kinetic study of lead adsorption to composite biopolymer adsorbent

    SciTech Connect

    Seki, H.; Suzuki, A.

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M.G. Rao and A.K. Gupta was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for both the cases was well described and average apparent lead diffusion coefficients of about 6 {times} 10{sup {minus}6} and 7 {times} 10{sup {minus}6} cm{sup 2}/s were found for the spherical and membranous adsorbents, respectively.

  2. Kinetic Study of Lead Adsorption to Composite Biopolymer Adsorbent.

    PubMed

    Seki; Suzuki

    1999-03-15

    A kinetic study of lead adsorption to composite biopolymer adsorbents was carried out. Spherical and membranous adsorbents containing two biopolymers, humic acid and alginic acid, were used for lead adsorption in dilute acidic solutions. The shrinking core model derived by M. G. Rao and A. K. Gupta (Chem. Eng. J. 24, 181, 1982) was applied to describe the rate process of lead adsorption to spherical adsorbents (average radii of 0.12, 0.15, and 0.16 cm). Furthermore, the shrinking core model was modified and adapted for description of the rate process of lead adsorption to membranous adsorbent (average thickness of 0.0216 cm). The adsorption rate process for the both cases was well described and average apparent lead diffusion coefficients of about 6 x 10(-6) and 7 x 10(-6) cm2 s-1 were found for the spherical and membranous adsorbents, respectively. Copyright 1999 Academic Press. PMID:10049553

  3. Kinetic studies of the sucrose adsorption onto an alumina interface

    NASA Astrophysics Data System (ADS)

    Singh, Kaman; Mohan, Sudhanshu

    2004-01-01

    An account is given of an experimental kinetic study of adsorption of analar reagent sucrose (ARS) onto an alumina interface spectrometrically ( λmax=570 nm) at pH 8.0 and at room temperature. The adsorption isotherm is a typical Langmuirian isotherm (S-type) and adsorption parameters have been deduced according to the Langmuir's model. The adsorption coefficient evaluated from the Langmuir's equation was found to be 2.52×10 2 l mol -1. Adsorption mechanism has been interpreted on the basis of metal-saccharide interaction as found in organometallic compounds and interaction due to negatively charged ends on the disaccharide molecules and positively charge groups on the surface on alumina which depends on the pH value. The effects of variation in experimental conditions of the adsorption system have also been investigated. The adsorption exhibited a typical response to the pH effect and on going towards the PZC the net charge decreases and any reaction making dependence on charge and maximum adsorption (amount) was found near the isoelectric point of alumina (pH 9.0). The presence of ions like Cl -, SO 42- and PO 43- affect the adsorbed amount quantitatively and it seems that these anions compete with sucrose for the positively charged surface sites. The addition of similar concentration of cations was found to reduce the adsorbed amount. The temperature was found to have an inverse effect on adsorption. The additions of catonic and anionic detergents influence both the adsorbed amount and the adsorption rate. The thermodynamics of the titled adsorption model indicates the spontaneous and exothermic nature. The negative value of entropy is an indication of probability of favorable and complex nature of the adsorption.

  4. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  5. Reactive sticking coefficients of silane on silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1988-09-15

    Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition rate measurements using molecular beam scattering and a very low pressure cold wall reactor. The RSCs have non-Arrhenius temperature dependences and decreases with increasing flux at low (710/sup 0/) temperatures. A simple model involving dissociative adsorption of silane is consistent with these results. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction.

  6. Analysis of the use of adsorption processes in trigeneration systems

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur

    2013-12-01

    The trigeneration systems for production of cold use sorption refrigeration machines: absorption and adsorption types. Absorption systems are characterized namely by better cooling coefficient of performance, while the adsorptive systems are characterized by the ability to operate at lower temperatures. The driving heat source temperature can be as low as 60-70 °C. Such temperature of the driving heat source allows to use them in district heating systems. The article focuses on the presentation of the research results on the adsorption devices designed to work in trigeneration systems.

  7. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    PubMed Central

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, Kow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller Kow was replaced by the one with larger Kow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  8. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to sediments and soils is an important process that affects a chemical's distribution in the.... “Adsorption, desorption of parathion as affected by soil organic matter,” Journal of Agricultural and Food... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Sediment and soil adsorption...

  9. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to sediments and soils is an important process that affects a chemical's distribution in the.... “Adsorption, desorption of parathion as affected by soil organic matter,” Journal of Agricultural and Food... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Sediment and soil adsorption...

  10. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to sediments and soils is an important process that affects a chemical's distribution in the.... “Adsorption, desorption of parathion as affected by soil organic matter,” Journal of Agricultural and Food... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Sediment and soil adsorption...

  11. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  12. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  13. Water Vapor Adsorption - Desorption Behavior of a Small Piece of Desiccant Rotor in Temperature Swing

    NASA Astrophysics Data System (ADS)

    Washio, Yasuko; Kodama, Akio

    This study aims to clarify the adsorption / desorption behavior of water vapor onto / from a desiccant rotor in temperature swing. A magnetic suspension balance followed time variations of the weight of a small piece of desiccant rotor at various desorption temperature, adsorption / desorption time and their duration time ratio. Adsorption-desorption swing in steady state settled down at certain amplitude of the amount adsorbed keeping the balance of the adsorption and desorption rates averaged over each period. At low regeneration temperature around 40-50 oC, adsorption and desorption rates were affected considerably by the change of driving force of adsorption q*-q rather than the temperature dependence of the mass transfer coefficient. At constant adsorption and desorption air conditions, the adsorption /desorption rates could be summarized by the amount of adsorption and temperature, independently of the length of cycle time. Also, region of the amount of adsorption at which adsorption - desorption swing occurred was predicted considering the adsorption / desorption rates - amount adsorbed relationship and the adsorption / desorption duration ratio.

  14. The effects of Concentration and Salinity on Polymer Adsorption Isotherm at Sandstone Rock Surface

    NASA Astrophysics Data System (ADS)

    Ali, M.; Ben Mahmud, H.

    2015-04-01

    Adsorption of hydrolyzed polyacrylamide (HPAM) polymers on sandstone rock surface was studied by static adsorption experiments. Total of 10 Runs of static experiments were conducted in test tubes by mixing the desired solution with crushed rock sample, at temperature of 25 °C, and salinity range from 0-4 wt%. The results are in conformity with Langmuir's isotherm. Ten different isotherms were generated at each Run. The initial polymer concentration was varied from 0.3-2.1 g/l. The effects of salinity have been studied by observation on Langmuir adsorption coefficients (Y and K). The results show that the adsorption coefficient (Y) was found to have linear relationship with salinity. The adsorption coefficient (K) was found to be related to salinity by a quadratic relationship.

  15. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2).

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-07-30

    The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330mg/g (1.05mmol/g) at pH 6-7. The adsorption kinetics was fast, almost reaching equilibrium in 2h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d001 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater. PMID:24373983

  16. Adsorption of lead onto smectite from aqueous solution.

    PubMed

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals. PMID

  17. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves

    NASA Astrophysics Data System (ADS)

    Hu, Yun; He, Yinyun; Wang, Xiaowen; Wei, Chaohai

    2014-08-01

    Hydrophobic molecular sieve MCM-41 including surfactant template was synthesized by a simple method. The adsorption properties of this material toward phenanthrene were studied. The effects of adsorbent dose and pH value on the adsorption process as well as the adsorption mechanism and reuse performance were investigated. The template-containing MCM-41 showed a significant adsorption for phenanthrene, due to its hydrophobicity created by the surfactant template in MCM-41. The solution pH had little effect on the adsorption capacity. The adsorption kinetic could be fitted well with pseudo-second-order kinetic model. The adsorption equilibrium was fitted well by the linear model, and the adsorption process followed the liquid/solid phase distribution mechanism. The thermodynamic results indicated that the adsorption was a spontaneous and exothermic process.

  20. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  1. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  2. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  3. Adsorption of polyampholytes on charged surfaces.

    PubMed

    Ozon, F; di Meglio, J-M; Joanny, J-F

    2002-06-01

    We have studied the adsorption of neutral polyampholytes on model charged surfaces that have been characterized by contact angle and streaming current measurements. The loop size distributions of adsorbed polymer chains have been obtained using atomic-force microscopy (AFM) and compared to recent theoretical predictions. We find a qualitative agreement with theory; the higher the surface charge, the smaller the number of monomers in the adsorbed layer. We propose an original scenario for the adsorption of polyampholytes on surfaces covered with both neutral long-chain and charged short-chain thiols. PMID:15010954

  4. Adsorption and desorption kinetics of (60)Co and (137)Cs in fresh water rivers.

    PubMed

    Fiengo Pérez, Fabricio; Sweeck, Lieve; Bauwens, Willy; Van Hees, May; Elskens, Marc

    2015-11-01

    Radionuclides released in water systems--as well as heavy metals and organic toxicants--sorb to both the suspended solid particles and the bed sediments. Sorption is usually represented mathematically by the distribution coefficient. This approach implies equilibrium between phases and instantaneous fixation (release) of the pollutant onto (from) the surface of the soil particle. However, empirical evidence suggests that for some radionuclides the fixation is not achieved instantaneously and that the reversibility of the process can be slow. Here the adsorption/desorption kinetics of (60)Co and (137)Cs in fresh water environments were simulated experimentally and later on modelled mathematically, while the influence of the most relevant factors affecting the sorption were taken into account. The experimental results suggest that for adsorption and the desorption more than 24 h are needed to reach equilibrium, moreover, It was observed that the desorption rate constants for (60)Co and (137)Cs lie within ranges which are of two to three orders of magnitude lower than the adsorption rate constants. PMID:26218323

  5. Relationship between adsorption of arsenic(III) and boron by soil and soil properties

    SciTech Connect

    Sakata, M.

    1987-11-01

    The distribution coefficients (K/sub d/) for arsenic(III) and boron in a linear adsorption isotherm were determined for 15 subsurface soils collected from different sites in Japan, and the relationship between those K/sub d/ values and soil properties was examined. The soils differed greatly in their chemical and physical properties. The K/sub d/ value for arsenic(III) was significantly correlated with the dithionite-extractable Fe content in the soils (r = 0.90), whereas a high positive correlation was also found between the K/sub d/ value for boron and the oxalate-extractable Al content in the soils (r = 0.98). These relationships imply that the adsorption of arsenic(III) and boron by soil is controlled mainly by levels of amorphous iron oxides and hydroxides for arsenic(III) and by levels of allophane for boron and are very useful for assessing the adsorption of arsenic(III) and boron released in the underlying soil layer at coal ash disposal sites. 22 references, 6 figures, 3 tables.

  6. Kinetic models for the adsorption of lead ions by steel slag.

    PubMed

    Liu, Sheng-Yu; Gao, Jin; Qu, Bin; Yang, Yi-Jin; Xin, Xin

    2010-08-01

    Batch experiments were carried out to investigate the kinetics of adsorption of lead ions by steel slag on the basis of the external diffusion, intraparticle diffusion and adsorption reaction model (pseudo-first-order, pseudo-second-order). The results showed that the controlling step for the adsorption kinetics changed with experimental parameters varied. When the particle size of steel slag was larger than 120 mesh, intraparticle diffusion of Pb(2+) was the controlling step; when the initial concentration of Pb(2+) was less than 150 mg L(-1) or the shaking rate was lower than 150 rpm, external diffusion of Pb(2+) was promoted. Contrary to the former experimental conditions, the adsorption reaction was the controlling step, and the adsorption followed second-order kinetics, with an adsorption rate constant of 13.26 g mg(-1) min(- 1). The adsorption isotherm of Pb(2+) with steel slag followed the Langmuir model, with a correlation coefficient of 0.99. PMID:19808736

  7. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also

  8. Dynamic surface tension and adsorption kinetics of a siloxane dicephalic surfactant

    NASA Astrophysics Data System (ADS)

    Zhang, Dianlong; Qu, Wenshan; Li, Zhe

    2015-02-01

    The dynamic surface tension (DST) of a siloxane dicephalic surfactant was measured by using the maximum bubble pressure method. By using the classical Ward and Tordai equation, the diffusion coefficient for each bulk surfactant concentration was calculated. The results show that at the initial adsorption stage and at the end of the adsorption process, the dynamic surface tension data were all consistent with this diffusion-controlled mechanism. Their diffusion coefficient was slightly lower than that for conventional hydrocarbon surfactants.

  9. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption. PMID:22508113

  10. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    PubMed

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. PMID:27262123

  11. Bounding the Bogoliubov coefficients

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2008-11-15

    While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric amplification and the related quantum phenomenon of particle production (as encoded in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999) 427-438, (arXiv:quant-ph/9901030)], we investigate this question by developing a formal but exact solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of 2x2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.

  12. Adsorption on Highly Ordered Porous Alumina

    NASA Astrophysics Data System (ADS)

    Mistura, Giampaolo; Bruschi, Lorenzo; Lee, Woo

    2016-04-01

    Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

  13. Characterization of micro- and mesoporous materials using accelerated dynamics adsorption.

    PubMed

    Qajar, Ali; Peer, Maryam; Rajagopalan, Ramakrishnan; Foley, Henry C

    2013-10-01

    Porosimetry is a fundamental characterization technique used in development of new porous materials for catalysis, membrane separation, and adsorptive gas storage. Conventional methods like nitrogen and argon adsorption at cryogenic temperatures suffer from slow adsorption dynamics especially for microporous materials. In addition, CO2, the other common probe, is only useful for micropore characterization unless being compressed to exceedingly high pressures to cover all required adsorption pressures. Here, we investigated the effect of adsorption temperature, pressure, and type of probe molecule on the adsorption dynamics. Methyl chloride (MeCl) was used as the probe molecule, and measurements were conducted near room temperature under nonisothermal condition and subatmospheric pressure. A pressure control algorithm was proposed to accelerate adsorption dynamics by manipulating the chemical potential of the gas. Collected adsorption data are transformed into pore size distribution profiles using the Horvath-Kavazoe (HK), Saito-Foley (SF), and modified Kelvin methods revised for MeCl. Our study shows that the proposed algorithm significantly speeds up the rate of data collection without compromising the accuracy of the measurements. On average, the adsorption rates on carbonaceous and aluminosilicate samples were accelerated by at least a factor of 4-5. PMID:23919893

  14. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    PubMed

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location. PMID:21648458

  15. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    NASA Astrophysics Data System (ADS)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  16. Adsorption / Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    Adsorption / desorption behavior of water vapor onto desiccant rotor has been investigated to improve the desiccant cooling system by means of computer simulation. In this paper, we paid attention to the relationship between the equilibrium amount of water adsorbed onto the desiccant material and the relative humidity, that is adsorption isotherm as a principal characteristic feature of adsorbent. Considering actual adsorbents, five types of adsorption isotherms were assumed to clarify the influence of adsorption isotherm on the dehumidifying performance. After the investigation on the influences of some operating conditions on the dehumidifying performance at each selected adsorption isotherm, it was found that higher dehumidifying performance and reduction of length of desiccant rotor could be achieved by selecting appropriate adsorption isotherm. It was also predicted that S-shaped adsorption isotherm which is raised sharply at relative humidity around 15 % could produce the lowest air humidity at regeneration air temperature 80 °C. Moreover influence of the intraparticle diffusion coefficient which significantly influence on the adsorption / desorption rate was discussed choosing two adsorption isotherm from the above five isotherms. It seems that effective range of the intraparticle diffusion coefficient for the significant improvement of the dehumidifying performance was strongly influenced by the shape of adsorption isotherm.

  17. Adsorption and desorption of Zn, Cu, and Cr by sediments from the Raisi River (Michigan)

    SciTech Connect

    Young, T.C.; DePinto, J.V.; Kipp, T.W.

    1987-01-01

    Metal adsorption by Raisin River sediments in vitro depended linearly on soluble metal concentration to adsorption densities of 6,000-9,000 microg/g with 48 hr partition coefficients of approximately 50, 30, and 25 L/g for Cu, Cr, and Zn, respectively. Partition coefficients computed from field data spanned a comparatively wider range of values in a manner consistent with the often reported adsorbent concentration effect, but other factors likely contributed, too. Desorption of Zn was complete and rapid (24-48 hr) in contrast to Cr, which was incomplete and much slower; Cu desorption was intermediate to Zn and Cr. A reversible-resistant equilibrium model (DiToro et al. 1986) could not describe the observations as Cu and Cr had not reached metastable desorption equilibria after 24 days. Metal desorption, however, could be described kinetically by distributing sorbed cations between either of two classes; rapidly desorbing and slowly desorbing cations. Sequential and simultaneous desorption models gave similar predictions. Aqueous chemical considerations suggested precipitated as well as adsorbed species could give rise to the observations, but available data did not permit adequate tests of this hypothesis. The extent to which kinetic constraints rather than irreversible reactions account for the desorption-resistant binding signifies a potentially greater metal mobility or bioavailability than would otherwise be assumed.

  18. Rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium distribution coefficients of a surficial sediment at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.

    1998-01-01

    The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (K(d)s) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. K(d)s were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. K(d)s ranged from 56 ?? 2 to 62 ?? 3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. K(d)s hinged from 4.7 ?? 0.2 to 19 ?? 1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (Kds) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26

  19. Adsorption of gases on carbon molecular sieves

    SciTech Connect

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. . Dept. of Chemical Engineering); Ganesh, K.S. )

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  20. Adsorption in sparse networks. 1: Cylinder model

    SciTech Connect

    Scherer, G.W.

    1998-06-15

    Materials with very low density, such as aerogels, are networks with polymers or chains of particles joined at nodes, where the spacing of the nodes is large compared to the thickness of the chains. In such a material, most of the solid surface has positive curvature, so condensation of an adsorbate is more difficult than condensation in a body containing cavities whose surfaces have negative curvature. A model is presented in which the network is represented by straight cylinders joined at nodes with coordination numbers 4, 6, or 12. The shape of the adsorbate/adsorptive interface is obtained for each network by minimizing its surface area. The adsorption behavior is found to depend on the ratio of the node separation, l, to the radius of the cylinders, a: if l/a exceeds a critical value (which depends on the coordination of the node), then the curvature of the adsorbate/adsorptive interface approaches zero while the adsorbate occupies a small fraction of the pore volume; if l/a is less than the critical value, then condensation occurs. Even in the latter case, interpretation of the adsorption isotherm in terms of cylindrical pores (as in the BJH model) yields apparent pore sizes much greater than the actual spacing of the nodes. In a companion paper, this model is applied to silica aerogels and found to give a good fit to both the adsorption and desorption curves with a single distribution of node spacings.

  1. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  2. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  3. Adsorption of cadmium(II) on waste biomaterial.

    PubMed

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively. PMID:26005798

  4. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  5. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  6. Adsorption of enrofloxacin in presence of Zn(II) on a calcareous soil.

    PubMed

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2015-12-01

    As a result of their consumption, excretion, disposal and persistence, antibiotics enter the soil environment and may be transported to surface and ground waters. During their transfer through soils, retention processes play a key role in their mobility. Antibiotics often coexist with heavy metals in soils due to agricultural practices and other sources of inputs. In this context, this study deals with the co-adsorption of Zn(II) and enrofloxacin (ENR), a widely-used veterinary antibiotic, on a calcareous soil using batch retention experiments and X-ray Absorption Near Edge Structure (XANES) spectroscopy. To improve our understanding of the interaction of this emerging organic contaminant with metal cations at the water-soil interface, the ternary system containing ENR, Zn(II) and a selected calcareous soil was investigated over a pH range between 7 and 10, at different solid-solution contact times and ENR concentrations. The presence of Zn(II) slightly influenced the retention of the antibiotic, leading to an increase of the adsorbed ENR amounts. The distribution coefficient Kd value increased from 0.66 Lg(-1) for single ENR adsorption to 1.04 Lg(-1) in presence of Zn(II) at a 1/2 ENR/Zn(II) ratio. The combination of adsorption isotherm data, solution speciation diagrams and XANES spectra evidenced a small proportion of Zn(II)-ENR complexes at soil pH leading to the slight increase of ENR adsorption in presence of zinc. These results suggest that it is necessary to consider the interaction between ENR and metal cations when assessing the mobility of ENR in soils. PMID:26408826

  7. Adsorption and hysteresis of bisphenol A and 17alpha-ethinyl estradiol on carbon nanomaterials.

    PubMed

    Pan, Bo; Lin, Daohui; Mashayekhi, Hamid; Xing, Baoshan

    2008-08-01

    Adsorption of 17alpha-ethinyl estradiol (EE2) and bisphenol A (BPA) on carbon nanomaterials (CNMs) was investigated. Single point adsorption coefficients (K) showed significant relationship with specific surface areas of CNMs for both chemicals, indicating surface area is a major factor for EDC adsorption on CNMs. BPA adsorption capacity is higher than EE2 on fullerene and single-walled carbon nanotubes (SWCNT). Our molecular conformation simulation indicated that BPA has a unique ability to adsorb on the curvature surface of CNMs because of its "butterfly" structure of two benzene rings. The higher adsorption capacity of BPA over EE2 is well explained by considering helical (diagonal) coverage of BPA on the CNMs surface and wedging of BPA into the groove and interstitial region of CNM bundles or aggregates. The comparison of K(HW) (hexadecane-water partition coefficient) normalized adsorption coefficients between EDCs and several polyaromatic hydrocarbons indicates that pi-pi electron donor--acceptor system is an important mechanism forthe adsorption of benzene-containing chemicals on CNMs. The high adsorption capacity and strong desorption hysteresis of both chemicals on SWCNT indicate that SWCNT is a potential adsorbent for water treatment. PMID:18754464

  8. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  9. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of

  10. Evaluation of Adsorption Properties for Cs and Sr Selective Adsorbents-13171

    SciTech Connect

    Nakai, Tomonori; Wakabayashi, Syunya; Mimura, Hitoshi; Niibori, Yuichi; Kurosaki, Fumio; Matsukura, Minoru; Tanigawa, Hiroshi; Ishizaki, Eiji

    2013-07-01

    The development of effective treatment and disposal methods is very urgent and important subject. Tohoku University and UNION SHOWA have developed various selective adsorbents (zeolites, zeolite sheets and composites loaded with insoluble ferrocyanides) for the effective decontamination of radioactive Cs{sup +} and Sr{sup 2+} As for Cs{sup +} adsorption, CST, chabazite and insoluble ferrocyanides composites had relatively large distribution coefficients (K{sub d}) above 10{sup 3} cm{sup 3}/g and excellent adsorption kinetics in seawater. Even after high temperature calcination at 1,100 deg. C, cesium was still immobilized in the calcined products of Cs{sup +}-zeolites, suggesting high immobilization ability of zeolites for Cs{sup +}. As for Sr{sup 2+} adsorption, A and X zeolites had relatively large K{sub d} values around 10{sup 2} cm{sup 3}/g, and zeolite sheet (A zeolite) exhibited excellent adsorption kinetics in seawater. Considering the decontamination of radioactive Sr{sup 2+} in groundwater, the effects of Ca{sup 2+} and Mg{sup 2+} ions on the K{sub d} value of Sr{sup 2+} were further examined by batch method. The K{sub d} value of Sr{sup 2+} was almost independent of Mg{sup 2+} concentration up to 2,500 ppm, while gradually lowered in the presence of Ca{sup 2+} above 200 ppm, due to the differences in the ionic radius of hydrated ion. The Cs{sup +} and Sr{sup 2+} adsorption ability for KNiFC-A (composite of A zeolite loaded with insoluble ferrocyanides) was examined by batch method. Here the matrix of composite (A zeolite) and loaded ferrocyanides (KNiFC) have high selectivity towards Sr{sup 2+} and Cs{sup +}, respectively. The K{sub d} values of Sr{sup 2+} and Cs{sup +} in seawater were estimated to be above 10{sup 2} and 10{sup 3} cm{sup 3}/g, respectively, indicating the effectiveness for the decontamination of both Sr{sup 2+} and Cs{sup +}. The basic data on the Cs{sup +} and Sr{sup 2+} adsorption properties for selective adsorbents are effective for

  11. Correlations for Adsorption of Oxygenates onto Zeolites from Aqueous Solutions

    SciTech Connect

    Mallon, Elizabeth E.; Babineau, Ian J.; Kranz, Joshua I.; Guefrachi, Yasmine; Siepmann, J. Ilja; Bhan, Aditya; Tsapatsis, Michael

    2011-10-06

    Henry’s constants (K{sub ads}) for adsorption of C₃ polyfunctional molecules onto zeolites from aqueous solutions at 278 K were obtained and compared with the octanol–water partition coefficients, K{sub ow}, which were calculated using the prevalent ClogP group contribution method. K{sub ads} increases linearly with K{sub ow} for these adsorbates on H–ZSM-5 (MFI), FAU, BEA, and ITQ-1 (MWW). K{sub ads} values for C₂–C₆ diol adsorption at 278 K are also linearly correlated with K{sub ow} regardless of interactions in the bulk phase as measured by the solution activity coefficient. Exceptions to the correlation established between K{sub ads} and K{sub ow} are the adsorption of 1,2,ω-triols with carbon number greater than three on H–ZSM-5 and adsorption of all oxygenates studied on FER, which we postulate to be due to the effect of changing adsorption configuration with adsorbate/zeolite structure which cannot be captured by K{sub ow} alone. These results enable the prediction of separation selectivities of biomass-derived compounds on zeolite adsorbents.

  12. Understanding mechanisms of asphaltene adsorption from organic solvent on mica.

    PubMed

    Natarajan, Anand; Kuznicki, Natalie; Harbottle, David; Masliyah, Jacob; Zeng, Hongbo; Xu, Zhenghe

    2014-08-12

    The adsorption process of asphaltene onto molecularly smooth mica surfaces from toluene solutions of various concentrations (0.01-1 wt %) was studied using a surface forces apparatus (SFA). Adsorption of asphaltenes onto mica was found to be highly dependent on adsorption time and asphaltene concentration of the solution. The adsorption of asphaltenes led to an attractive bridging force between the mica surfaces in asphaltene solution. The adsorption process was identified as being controlled by the diffusion of asphaltenes from the bulk solution to the mica surface with a diffusion coefficient on the order of 10(-10) m(2)/s at room temperature, depending on the asphaltene bulk concentration. This diffusion coefficient corresponds to a hydrodynamic molecular radius of approximately 0.5 nm, indicating that asphaltene diffuses to mica surfaces as individual molecules at very low concentration (e.g., 0.01 wt %). Atomic force microscopy images of the adsorbed asphaltenes on mica support the results of the SFA force measurements. The results from the SFA force measurements provide valuable insights into the molecular interactions (e.g., steric repulsion and bridging attraction as a function of distance) of asphaltenes in organic media and hence their roles in crude oil and bitumen production. PMID:24978299

  13. Modeling diffusion and adsorption in compacted bentonite: a critical review.

    PubMed

    Bourg, Ian C; Bourg, Alain C M; Sposito, Garrison

    2003-03-01

    The current way of describing diffusive transport through compacted clays is a simple diffusion model coupled to a linear adsorption coefficient (K(d)). To fit the observed results of cation diffusion, this model is usually extended with an adjustable "surface diffusion" coefficient. Description of the negative adsorption of anions calls for a further adjustment through the use of an "effective porosity". The final model thus includes many fitting parameters. This is inconvenient where predictive modeling is called for (e.g., for waste confinement using compacted clay liners). The diffusion/adsorption models in current use have been derived from the common hydrogeological equation of advection/dispersion/adsorption. However, certain simplifications were also borrowed without questioning their applicability to the case of compacted clays. Among these simplifications, the assumption that the volume of the adsorbed phase is negligible should be discussed. We propose a modified diffusion/adsorption model that accounts for the volume of the adsorbed phase. It suggests that diffusion through highly compacted clay takes place through the interlayers (i.e., in the adsorbed phase). Quantitative prediction of the diffusive flux will necessitate more detailed descriptions of surface reactivity and of the mobility of interlayer species. PMID:12598111

  14. Adsorption of sugar beet herbicides to Finnish soils.

    PubMed

    Autio, Sari; Siimes, Katri; Laitinen, Pirkko; Rämö, Sari; Oinonen, Seija; Eronen, Liisa

    2004-04-01

    Three sugar beet herbicides, ethofumesate, phenmedipham and metamitron, are currently used on conventional sugar beet cultivation, while new varieties of herbicide resistant (HR) sugar beet, tolerant of glyphosate or glufosinate-ammonium, are under field testing in Finland. Little knowledge has so far been available on the adsorption of these herbicides to Finnish soils. The adsorption of these five herbicides was studied using the batch equilibrium method in 21 soil samples collected from different depths. Soil properties like organic carbon content, texture, pH and partly the phosphorus and oxide content of the soils were tested against the adsorption coefficients of the herbicides. In general, the herbicides studied could be arranged according to their adsorption coefficients as follows: glyphosate>phenmedipham>ethofumesate approximately glufosinate-ammonium>metamitron, metamitron meaning the highest risk of leaching. None of the measured soil parameters could alone explain the adsorption mechanism of these five herbicides. The results can be used in model assessments of risk for leaching to ground water resulting from weed control of sugar beet in Finland. PMID:14761694

  15. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1997-01-01

    The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.

  16. A thermodynamic model for gas adsorption isotherms

    SciTech Connect

    Riazi, M.R.; Khan, A.R.

    1999-02-15

    In this paper based on the principle of solution thermodynamics for gas-solid equilibrium, a relation is developed to express gas adsorption isotherms. An activity coefficient model based on weight fraction of sorbate in the solid phase has been derived that well describes the behavior of various gases on different types of adsorbents. The proposed model has been evaluated and compared with four other models commonly used for gas adsorption isotherms in the literature. For 12 different systems at various isotherms for the temperature range {minus}128 to 100 C and the pressure range 0.02 to 1219 kPa for 689 data points, the proposed model predicts equilibrium pressure with an average deviation of 5.3%, which is about half of the error obtained from other methods. The proposed model clearly outperforms other available methods such as the vacancy solution theory, the ideal adsorption solution model, and other various modified forms of the Langmuir isotherm. Unique features of the proposed model are its simplicity, generality, and accuracy over the entire pressure and temperature ranges.

  17. Fundamentals of high pressure adsorption

    SciTech Connect

    Zhou, Y.P.; Zhou, L.

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  18. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  19. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-01-01

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C. PMID:26690392

  20. Adsorption and leaching behaviour of bispyribac-sodium in soils.

    PubMed

    Singh, Neera; Singh, S B

    2015-01-01

    Adsorption-desorption of the herbicide bispyribac-sodium was studied in four Indian soil types. Bispyribac-sodium was poorly adsorbed in the four soils and adsorption decreased with an increase in the herbicide concentration in solution. Freundlich adsorption coefficient (Kf) values for bispyribac-sodium ranged between 0.37 and 0.87. Slope (1/n) values varied from 0.2 to 0.31 suggesting that bispyribac-sodium adsorption was highly dependent on its initial concentration in solution. Bispyribac-sodium adsorption showed a positive correlation with soil pH (r = 0.809) and clay content (r = 0.699) while no correlation was observed with the organic carbon (r = 0.063) content. Sorbed herbicide was completely desorbed during a single desorption step suggesting that the herbicide was bound by weak adsorptive forces. Leaching studies of herbicide in soil 1 packed column indicated complete loss of soil applied herbicide under a simulated rainfall equivalent to 162 mm. PMID:25381585

  1. Extracorporeal adsorption of endotoxin.

    PubMed

    Staubach, K H; Rosenfeldt, J A; Veit, O; Bruch, H P

    1997-02-01

    In a porcine endotoxin shock model using a continuous intravenous endotoxin infusion of 250 ng/kg body weight per hour, the cardiorespiratory and hematologic parameters were studied while applying a new on-line polymyxin B immobilized adsorption system. This preliminary report shows that the new adsorbent can remove endotoxin selectively from the circulation and confers a good amount of protection from endotoxin-induced cardiopulmonary decompensation as well as hematologic alterations. Survival time could be extended from 216 min to 313 min. Whereas cardiac output and mean arterial pressure declined critically after 3 h in the controls, the treated group remained stable for another 3 h. These data show that endotoxin adsorption by polymyxin B coupled covalently to acrylic spheres as an adjunctive on-line measure in the septic syndrome seems feasible. PMID:10225785

  2. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  3. Adsorption and desorption of chlorpyrifos to soils and sediments.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W; Yonge, David R; Flury, Markus; Harsh, James B

    2012-01-01

    Chlorpyrifos, one of the most widely used insecticides, has been detected in air, rain, marine sediments, surface waters, drinking water wells, and solid and liquid dietary samples collected from urban and rural areas. Its metabolite, TCP, has also been widely detected in urinary samples collected from people of various age groups. With a goal of elucidating the factors that control the environmental contamination, impact, persistence, and ecotoxicity of chlorpyrifos, we examine, in this review, the peer-reviewed literature relating to chlorpyrifos adsorption and desorption behavior in various solid-phase matrices. Adsorption tends to reduce chlorpyrifos mobility, but adsorption to erodible particulates, dissolved organic matter, or mobile inorganic colloids enhances its mobility. Adsorption to suspended sediments and particulates constitutes a major off-site migration route for chlorpyrifos to surface waters, wherein it poses a potential danger to aquatic organisms. Adsorption increases the persistence of chlorpyrifos in the environment by reducing its avail- ability to a wide range of dissipative and degradative forces, whereas the effect of adsorption on its ecotoxicity is dependent upon the route of exposure. Chlorpyrifos adsorbs to soils, aquatic sediments, organic matter, and clay minerals to differing degrees. Its adsorption strongly correlates with organic carbon con- tent of the soils and sediments. A comprehensive review of studies that relied on the batch equilibrium technique yields mean and median Kd values for chlorpyrifos of 271 and 116 L/kg for soils, and 385 and 403 L/kg for aquatic sediments. Chlorpyrifos adsorption coefficients spanned two orders of magnitude in soils. Normalizing the partition coefficient to organic content failed to substantially reduce variability to commonly acceptable level of variation. Mean and median values for chlorpyrifos partition coefficients normalized to organic carbon, K, were 8,163 and 7,227 L/kg for soils and 13

  4. Transport coefficients for electrons in Hg vapor

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa; White, Ron; Petrovic, Zoran

    2012-06-01

    Transport coefficients and distribution functions are calculated for electrons in Hg vapor under swarm conditions using a multi term theory for solving the Boltzmann equation, over a range of E/N values and temperatures relevant to lamp discharges. It is shown that for higher E/N the electron distribution is non-thermal for all Hg vapor temperatures considered, and that the speed distribution function significantly deviates from a Maxwellian under these conditions. Our work has been motivated, in part, by recent suggestions that highly accurate data for transport coefficients required as input in fluid models of Hg vapor lamp discharges may significantly improve the existing models. Current models of such lamps require a knowledge of the plasma electrical conductivity, which can be calculated from the cross sections for electron scattering in Hg vapor and mobility coefficients presented in this work. The effect of metastable atoms on the swarm parameters is also discussed. The influence of a magnetic field on electron transport coefficients in Hg vapor is investigated over a range of B/N values and angles between the fields.

  5. Shear viscosity coefficient of liquid lanthanides

    SciTech Connect

    Patel, H. P. Thakor, P. B. Prajapati, A. V.; Sonvane, Y. A.

    2015-05-15

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides.

  6. Removal of radium from acidic solutions containing same by adsorption on coal fly ash

    DOEpatents

    Scheitlin, Frank M.

    1984-01-01

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of .sup.226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  7. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    PubMed Central

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-01-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3–8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3–8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs. PMID:24937315

  8. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-06-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3-8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3-8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs.

  9. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  10. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  11. Estimating biokinetic coefficients in the PACT™ system.

    PubMed

    Shen, Zhiyao; Arbuckle, Wm Brian

    2016-02-01

    When powdered activated carbon (PAC) is continuously added to the aeration tank of an activated sludge reactor, the modification is called a PACT™ process (for powdered activated carbon treatment). The PAC provides many benefits, but complicates the determination of biological phenomena. Determination of bio-oxidation kinetics in a PACT system is a key to fully understanding enhanced biological mechanisms resulting from PAC addition. A model is developed to account for the main mechanisms involved in the PACT system -- adsorption, air stripping and bio-oxidation. The model enables the investigation of biokinetic information, including possible synergistic effects. Six parallel reactors were used to treat a synthetic waste; three activated sludge and three PACT. The PACT reactors provided significantly reduced effluent TOC (total organic carbon). Biokinetic coefficients were obtained from steady-state data using averaged reactor data and by using all data (22 points for each reactor). As expected, the PACT reactors resulted in a substantial reduction in the effluent concentration of non-biodegradable total organic carbon. The Monod equation's half-saturation coefficient (Ks) was reduced significantly in the PACT reactors, resulting in higher growth rates at lower concentrations. The maximum specific substrate utilization (qm) rate was also reduced about 25% using the averaged data and remained unchanged using all the data. The substrate utilization values are affected by errors in biomass determination and more research is needed to accurately determine biomass. PMID:26613352

  12. Carbonate adsorption onto goethite as a function of pH and ionic strength. [Yucca Mountain Project:a1

    SciTech Connect

    Rundberg, R.S. ); Albinsson, Y. . Dept. of Nuclear Chemistry)

    1991-01-01

    The adsorption of carbonate onto geothite was studied as a function of both pH and ionic strength (NaClO{sub 4} electrolyte) using {sup 14}C tracer. The pH ranged from 2.5 to 11.6. The ionic strength was controlled by varying the NaClO{sub 4} concentration and ranged from 0.01 to 0.1 molar. The results indicate that carbonate is adsorbed on goethite as primarily an inner-sphere complex at pH values above the point of zero charge. This is inferred from the lack of dependence on ionic strength in the adsorption of carbonate. Below the point of zero charge carbonate is adsorbed by an additional outer-sphere mechanism. An adsorption isotherm was measured at pH 7.0 with an electrolyte concentration of 0.01M. Deconvolution of the isotherm proved that at least two sorption mechanisms exist. These mechanisms lead to large distribution coefficients at low pH. Thereby making the complete removal and exclusion of carbonate from an aqueous goethite system difficult, for the purpose of characterizing a clean'' goethite surface.

  13. Synthesis of Ordered Mesoporous Silica for Energy-efficient Adsorption Systems

    NASA Astrophysics Data System (ADS)

    Endo, Akira; Komori, Kou; Inagi, Yuki; Fujisaki, Satoko; Yamamoto, Takuji

    Energy-efficient adsorption systems, such as adsorption heat pump, desiccant cooling, humidity control system, and so on, are expected as a energy exchange process because they are able to utilize low temperature exhaust heat. As an adsorbent for such systems, materials with large adsorption capacity in the pressure range of practical operation are preferable. To enable the design and synthesis of materials with large heat storage capacity, the pore structure of adsorbents should be optimized for each systems. In this paper, we synthesized ordered mesoporous silica (MPS) with an arrow pore size distribution of around 2nm by a solvent evaporation method and evaluated their water adsorption properties. The adsorption isotherms for MPSs showed steep increase at a relative humidity corresponding to their pore size. Since MPSs have a large adsorption capacity than conventional materials in the relative humidity region of practical operation, they are expected for new adsorbents for energy-efficient adsorption systems.

  14. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  15. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  16. Adsorption-driven translocation of polymer chain into nanopores

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Neimark, Alexander V.

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation.

  17. Adsorption-driven translocation of polymer chain into nanopores.

    PubMed

    Yang, Shuang; Neimark, Alexander V

    2012-06-01

    The polymer translocation into nanopores is generally facilitated by external driving forces, such as electric or hydrodynamic fields, to compensate for entropic restrictions imposed by the confinement. We investigate the dynamics of translocation driven by polymer adsorption to the confining walls that is relevant to chromatographic separation of macromolecules. By using the self-consistent field theory, we study the passage of a chain trough a small opening from cis to trans compartments of spherical shape with adsorption potential applied in the trans compartment. The chain transfer is modeled as the Fokker-Plank diffusion along the free energy landscape of the translocation pass represented as a sum of the free energies of cis and trans parts of the chain tethered to the pore opening. We investigate how the chain length, the size of trans compartment, the magnitude of adsorption potential, and the extent of excluded volume interactions affect the translocation time and its distribution. Interplay of these factors brings about a variety of different translocation regimes. We show that excluded volume interactions within a certain range of adsorption potentials can cause a local minimum on the free energy landscape, which is absent for ideal chains. The adsorption potential always leads to the decrease of the free energy barrier, increasing the probability of successful translocation. However, the translocation time depends non-monotonically of the magnitude of adsorption potential. Our calculations predict the existence of the critical magnitude of adsorption potential, which separates favorable and unfavorable regimes of translocation. PMID:22697566

  18. Continuous water treatment by adsorption and electrochemical regeneration.

    PubMed

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement. PMID:21511325

  19. Multisite adsorption of cadmium on goethite

    SciTech Connect

    Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van

    1996-11-10

    Recently a new general ion adsorption model has been developed for ion binding to mineral surfaces (Hiemstra and van Riemsdijk, 1996). The model uses the Pauling concept of charge distribution (CD) and is an extension of the multi-site complexation (MUSIC) approach. In the CD-MUSIC model the charge of an adsorbing ion that forms an inner sphere complex is distributed over its ligands, which are present in two different electrostatic planes. In this paper the authors have applied the CD-MUSIC model to the adsorption of metal cations, using an extended data set for cadmium adsorbing on goethite. The adsorption of cadmium and the cadmium-proton exchange ratio were measured as function of metal ion concentration, pH, and ionic strength. The data could be described well, taking into account the surface heterogeneity resulting from the presence of two different crystal planes (the dominant 110 face and the minor 021 face). The surface species used in the model are consistent with recent EXAFS data. In accordance with the EXAFS results, high-affinity complexes at the 021 face were used in the model.

  20. Aqueous mercury adsorption by activated carbons.

    PubMed

    Hadi, Pejman; To, Ming-Ho; Hui, Chi-Wai; Lin, Carol Sze Ki; McKay, Gordon

    2015-04-15

    Due to serious public health threats resulting from mercury pollution and its rapid distribution in our food chain through the contamination of water bodies, stringent regulations have been enacted on mercury-laden wastewater discharge. Activated carbons have been widely used in the removal of mercuric ions from aqueous effluents. The surface and textural characteristics of activated carbons are the two decisive factors in their efficiency in mercury removal from wastewater. Herein, the structural properties and binding affinity of mercuric ions from effluents have been presented. Also, specific attention has been directed to the effect of sulfur-containing functional moieties on enhancing the mercury adsorption. It has been demonstrated that surface area, pore size, pore size distribution and surface functional groups should collectively be taken into consideration in designing the optimal mercury removal process. Moreover, the mercury adsorption mechanism has been addressed using equilibrium adsorption isotherm, thermodynamic and kinetic studies. Further recommendations have been proposed with the aim of increasing the mercury removal efficiency using carbon activation processes with lower energy input, while achieving similar or even higher efficiencies. PMID:25644627

  1. Random sequential adsorption of tetramers

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał

    2013-07-01

    Adsorption of a tetramer built of four identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Tetramers were adsorbed on a two-dimensional, flat and homogeneous surface. Two different models of the adsorbate were investigated: a rhomboid and a square one; monomer centres were put on vertices of rhomboids and squares, respectively. Numerical simulations allow us to establish the maximal random coverage ratio as well as the available surface function (ASF), which is crucial for determining kinetics of the adsorption process. These results were compared with data obtained experimentally for KfrA plasmid adsorption. Additionally, the density autocorrelation function was measured.

  2. Estimation of soil sorption coefficients using QSARs

    SciTech Connect

    Doucette, W.J.

    1994-12-31

    Sorption coefficients quantitatively describe the extent to which an organic chemical distributes itself between an environmental solid and the aqueous phase that it is contact with at equilibrium. Because of the difficulty and expense associated with measuring sorption coefficients, estimated values are often used in place of site specific, experimental values for fate modeling. Most reported methods for estimating the sorption of organic chemicals onto environmental solids are based on observation that for many organic chemicals, and in particular neutral hydrophobic organics, sorption is directly proportional to the quantity of organic matter associated with the solid. Normalizing soil or sediment specific sorption coefficients to the organic carbon content of the sorbent yields a new ``constant``, Koc, that is considered unique property of the organic chemical being sorbed. Values of Koc are then typically estimated from correlations between Koc and various descriptors of hydrophobicity such as octanol/water partition coefficients (Kow), aqueous solubility (S), molecular connectivity indices (MCIs) and retention times or capacity factors generated by reverse phase high performance liquid chromatography (RP-HPLC). Group contribution methods have also been described. While the so-called ``Koc approach`` for estimating sorption coefficients is most appropriate for neutral, hydrophobic organic chemicals on environmental solids containing a significant amount of organic matter, it has been applied to a wide variety of chemical and soil types. This presentation will focus on a discussion of the Koc approach, its applicability and limitations. A comparison of several widely used methods for estimating Koc will be presented.

  3. Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2016-08-01

    The model that considers the nonideality of aqueous solutions of electrolytes with allowance for independent contributions of hydration of ions of various types and electrostatic interactions was substantiated using the cluster ion model. The empirical parameters in the model equations were found to be the hydrophilic and hydrophobic hydration numbers of ions in the standard state and the dispersion of their distribution over the stoichiometric coefficients. A mathematically adequate description of the concentration dependences of the osmotic coefficients and average ion activity coefficients of electrolytes was given for several systems. The difference in the rate of the decrease in the hydrophilic and hydrophobic hydration numbers of ions leads to extremum concentration dependences of the osmotic coefficients, which were determined by other authors from isopiestic data for many electrolytes and did not find explanation.

  4. [Degradation and adsorption behavior of napropamide in soils].

    PubMed

    Guo, Hua; Zhu, Hong-mei; Yang, Hong

    2008-06-01

    Chromatography (HPLC and GC-MS) and spectroscopy (UV and FT-IR) methods were conducted to study the degradation and adsorption behavior of napropamide in soils. Influence factors of degradation, degradation products and adsorption mechanism were analyzed. The results showed that degradation rate of napropamide increased with enhancing temperature (15-35 degrees C) and organic matter content in soil was the most important factor which influenced the degradation half-life of napropamide in soil, and their relative coefficient (r) reached 0.9794. The degradation half-life of napropamide in sterilized soil was almost 3-fold of that in non-sterilized soil, and soil microorganisms were contributed to the degradation of napropamide. The probable degradation products were N-methyl-2-(1-naphthoxy)-propionamide and N-ethyl-2-(1-naphthoxy)-propionamide. The possible degradation pathways were dealkylation. Adsorption isoterms of napropamide on three soils such as Yellow-brown soil, Latersol and Black Soil could be described by Freundlich equation with the corresponding adsorption coefficient (Kf) of 1.29, 3.43 and 13.36, and the adsorption free energy (delta G) of napropamide on the three soils was less than 40 kJ x mol(-1) which largely resulted from the physical adsorption involving in hydrogen-bonding, hydrophobic bonding, coordination and van der waal force. Comparison to the FT-IR spectra of the three soils, the results certificated that the sorption capacity of three soils was Black Soil > Latersol > Yellow-brown Soil. PMID:18763531

  5. Adsorption mechanism of copper and cadmium onto defatted waste biomass.

    PubMed

    Ogata, Fumihiko; Tominaga, Hisato; Yabutani, Hitoshi; Kawasaki, Naohito

    2011-01-01

    In this study, the amount of copper or cadmium adsorbed using waste biomass (i.e., coffee grounds (CG) and rice bran (RB)) was investigated. The amount of crude protein in defatted CG (D-CG) or RB (D-RB) was greater than that in CG or RB, respectively. The amount of copper or cadmium adsorbed using CG was greater than that using RB. Additionally, the amount of copper or cadmium adsorbed was not affected by the presence of fat in CG. Adsorption data was fitted to the Freundlich equation, and the correlation coefficients were in the range of 0.794-0.991. The main adsorption mechanism was thought to be monolayer adsorption onto the surface of the waste biomass. The adsorption rate data was fitted to the pseudo-second-order model, and the correlation coefficient average was in the range of 0.891-0.945. This result showed that the rate-limiting step may be chemisorption. Moreover, the amount of copper or cadmium desorbed from CG or RB using 0.01 mol/L or 1.00 mol/L HNO(3) was investigated. Desorption with 0.01 mol/L HNO(3) resulted in the recovery of 86-97% of the copper and cadmium, indicating that copper or cadmium that was adsorbed using waste biomass was recoverable. PMID:21701100

  6. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    PubMed Central

    Rafique, Uzaira; Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue. PMID:24689059

  7. Synthesis, characterization and cation adsorption of p-aminobenzoic acid intercalated on calcium phosphate

    SciTech Connect

    Silva, Camila F.N.; Lazarin, Angélica M.; Sernaglia, Rosana L.; Andreotti, Elza I.S.

    2012-06-15

    Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to the inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.

  8. Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water.

    PubMed

    Peterson, Jonathan W; Burkhart, Rachel S; Shaw, Drew C; Schuiling, Amanda B; Haserodt, Megan J; Seymour, Michael D

    2010-09-01

    Transport of antibiotics in soil-water systems is controlled in part by adsorption to nanometer-size (10(-9)m) particles. Batch adsorption experiments were performed with ampicillin, a common amphoteric antibiotic, and 50 nm-Al(2)O(3) (alpha-alumina) at different pH conditions. Sorption to Al(2)O(3) can be described by linear isotherms for 2.9 microM-2.9 mM ampicillin concentrations. Distribution coefficients (K(d)) are 11.1 (+/-0.32)L kg(-1) at pH 2, 0.55 (+/-.04) L kg(-1) at pH 4, 21.9 (+/-0.9) L kg(-1) at pH 6, and 39.5 (+/-2.2) L kg(-1) at pH 8. At pH 2, approximately 47% of the initially adsorbed drug was removable by rinsing, at pH 4-56% was removed. Only 7% of the drug could be removed by rinsing at pH 6, and 3% at pH 8. Weak electrostatic forces dominate at pH<4, and stronger attachment mechanisms at higher pH. Low yields in rinsing (desorption) experiments at pH6 indicate strong attachment mechanisms, either electrostatic or possibly surface complexation. PMID:20638098

  9. Rethinking Critical Adsorption

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Peach, Sarah; Polak, Robert D.

    1996-03-01

    Recent reflectivity experiments on near-critical mixtures of carbon disulfide and nitromethane contained in glass cells footnote Niraj S. Desai, Sarah Peach, and Carl Franck, Phys. Rev. E 52, 4129 (1995) have shown that preferential adsorption of one liquid component onto the wall can be controlled by chemical modification of the glass. The glass was treated with varying amounts of hexamethyldisilazane to decrease surface polarity and therefore enhance the adsorption of carbon disulfide in a surprisingly continuous way. The effect of the glass wall on the local liquid composition can be described by two different scaling hypotheses: using a short range field on the liquid closest to the wall, or pinning the amplitude of the order parameter at the surface. We have found that only the second approach is consistent with the experimental data, although this is difficult to reconcile with observed wetting critical phenomena. We also have reexamined the issue of substrate inhomogeneity and conclude that the substrates were indeed homogeneous on relevant length scales. Supported by the NSF under DMR-9320910 and the central facilities of the Materials Science Center at Cornell University.

  10. Adsorption behaviour of bulgur.

    PubMed

    Erbaş, Mustafa; Aykın, Elif; Arslan, Sultan; Durak, Atike N

    2016-03-15

    The aim of this research was to determine the adsorption behaviour of bulgur. Three different particle sizes (2adsorption, because of %E values lower than 10%. Bulgur must be stored below 70% relative humidity and with less than 10 g water per 100 g of dry mater. PMID:26575716

  11. Adsorption of Carbon Tetrachloride to Sediments from the UP-1 Operable Unit

    SciTech Connect

    Wellman, Dawn M.; Riley, Robert G.; Parker, Kent E.; Mitroshkov, Alexandre V.

    2006-09-01

    In 2004, Fluor Hanford, Inc. (FHI) drilled several groundwater wells within the 200-UP-1 operable unit to monitor plumes that have been the focus of past remediation activities. Thirteen cores taken from three wells (C4298, C4299, and C4300) were sent to Pacific Northwest National Laboratory for characterization and quantification of contaminant retardation. These cores were 4-inches in diameter by 6-inches in length and were taken from depths near the unconfined aquifer surface (water table) to locations approximately 150 to 180 ft below the water table. Prior to this work, no 200-UP-1 site-specific adsorption data (i.e., values of distribution coefficient [Kd ]) were available for the sediments or key contaminants present in the 200-UP-1 operable unit groundwater plume. Site-specific sorption data for carbon tetrachloride (CCl4) was obtained with the <2 mm size fractions of uncontaminated 200-UP-1 sediments taken from two of these boreholes (C4299 and C4300) and distribution coefficients determined. Each fraction exhibited bimodal CCl4 adsorption isotherms over the concentration range (15 – 2500 μg L-1) for total CCl4 in solution. Sorption of CCl4 was linear over the concentration ranges of 15 to 400 μg L-1 and 400 to 2500 μg L-1. The Kd values measured for the three 200-UP-1 sediments exhibited bimodal sorption with initial Kd values ranging from 0.0002 to 0.0005, and phase 2 values approximately 0.003 for all sediments. The measure Kd values are lower than the range calculated for CCl4 in a Hanford soil (0.016 to 0.83 L/Kg) containing an average organic carbon content of 0.2% (Truex et al., 2001). The best estimate value of Truex et al. (2001) is 0.06 L/Kg based on a 0.1% sediment organic carbon content. However, this estimate is based on an organic carbon content up to an order of magnitude greater than the organic carbon content of the sediments tested herein. Prolonged contact may increase

  12. Quadrature formulas for Fourier coefficients

    NASA Astrophysics Data System (ADS)

    Bojanov, Borislav; Petrova, Guergana

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.

  13. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  14. Adsorption dynamics of trichlorofluoromethane in activated carbon fiber beds.

    PubMed

    Zhang, Xiaoping; Zhao, Xin; Hu, Jiaqi; Wei, Chaohai; Bi, Hsiaotao T

    2011-02-28

    Adsorption on carbon fixed-beds is considered as an inexpensive and highly effective way for controlling chlorofluorocarbons (CFCs) emissions. In the present work, a dynamic model under constant-pattern wave conditions has been developed to predict the breakthrough behavior of trichlorofluoromethane (CFC-11) adsorption in a fixed bed packed with activated carbon fibers (ACFs). The adsorption of CFC-11 vapor onto viscose-based ACFs was performed in a fixed bed at different test conditions. The results showed that, in a deep bed (>120 mm), the analytical model based on the external mass transfer with the Langmuir isotherm could describe the adsorption dynamics well. The model parameters, the characteristic breakthrough time and the film mass-transfer coefficients are related to such operating parameters as the superficial gas velocity, feed concentration and bed height. It was found from the breakthrough dynamics that the mass transfer from the fluid phase to the fiber surface dominated the CFC-11 adsorption onto ACFs in fixed beds. PMID:21216098

  15. Global versus local adsorption selectivity

    NASA Astrophysics Data System (ADS)

    Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves

    2015-10-01

    The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

  16. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  17. ADSORPTION MEDIA FOR ARSENIC REMOVAL

    EPA Science Inventory

    Presentation will discuss the use of adsorptive media for the removal of arsenic from drinking water. Presentation is a fundamental discussion on the use of adsorptive media for arsenic removal and includes information from several EPA field studies on removal of arsenic from dr...

  18. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite.

    PubMed

    Bulut, Emrah; Ozacar, Mahmut; Sengil, I Ayhan

    2008-06-15

    The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm. PMID:18055111

  19. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater. PMID:26209151

  20. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical

  1. Physical Adsorption of Gases on Heterogeneous Solids and Equilibrium Studies of the Pressure Swing Adsorption Process.

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun

    1990-01-01

    Adsorption isotherms of ethane, propane, and n -butane on two polystyrene adsorbents and two activated carbons were measured at 0, 25, and 40^ circC. A dynamic chromatographic experimental system was used to measure the transmission curves of gases through a packed bed. The transmission is defined as the ratio of the adsorbate concentration at the bed outlet to that at the bed inlet. A mass-balance equation was used to calculate the solid-phase concentration and the dimensionless adsorption capacity. The structural and energetic heterogeneities of microporous adsorbents were explored by means of Dubinin's Theory of Volume Filling of Micropores (TVFM) and by a modified TVFM. The structural heterogeneity of a microporous adsorbent refers to the non-uniformity of the pore sizes and pore shapes. In polystyrene adsorbents, these non -uniform pores were formed by different copolymerization of monomers; while in activated carbons, these non-uniform pores were formed in the processes of carbonization and activation. The energetic heterogeneities of a microporous adsorbent comes from the structural heterogeneity as well as from the various atoms and functional groups exposed at the pore surface, the impurities strongly bound to the surface, and the irregularities in the crystallographical structure of the surface. Dubinin's original TVFM applies well in structurally homogeneous or weakly-heterogeneous microporous activated carbons; however, fits of experimental isotherms to the Dubinin-Radushkevich equation reveal deviations for structurally -heterogeneous adsorbents. We extended Dubinin's TVFM to the case of structurally-heterogeneous adsorbents by using an overall integral isotherm equation. A gamma-function type micropore-size distribution was used and a three-parameter isotherm equation was obtained. The experimental isotherms on activated carbons were fitted well by this isotherm equation. We characterized eight different activated carbons with the three

  2. Modeling the adsorption of Cr(III) from aqueous solution onto Agave lechuguilla biomass: study of the advective and dispersive transport.

    PubMed

    Romero-González, J; Walton, J C; Peralta-Videa, J R; Rodríguez, E; Romero, J; Gardea-Torresdey, J L

    2009-01-15

    The biosorption of Cr(III) onto packed columns of Agave lechuguilla was analyzed using an advective-dispersive (AD) model and its analytical solution. Characteristic parameters such as axial dispersion coefficients, retardation factors, and distribution coefficients were predicted as functions of inlet ion metal concentration, time, flow rate, bed density, cross-sectional column area, and bed length. The root-mean-square-error (RMSE) values 0.122, 0.232, and 0.285 corresponding to the flow rates of 1, 2, and 3 (10(-3))dm3min(-1), respectively, indicated that the AD model provides an excellent approximation of the simulation of lumped breakthrough curves for the adsorption of Cr(III) by lechuguilla biomass. Therefore, the model can be used for design purposes to predict the effect of varying operational conditions. PMID:18462882

  3. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  4. Standardized Discriminant Coefficients: A Rejoinder.

    ERIC Educational Resources Information Center

    Mueller, Ralph O.; Cozad, James B.

    1993-01-01

    Although comments of D.J. Nordlund and R. Nagel are welcomed, their arguments are not sufficient to accept the recommendation of using total variance estimates to standardize canonical discriminant function coefficients. If standardized coefficients are used to help interpret a discriminant analysis, pooled within-group variance estimates should…

  5. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  6. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  7. Chromium adsorption by lignin

    SciTech Connect

    Lalvani, S.B.; Huebner, A.; Wiltowski, T.S.

    2000-01-01

    Hexavalent chromium is a known carcinogen, and its maximum contamination level in drinking water is determined by the US Environmental Protection Agency (EPA). Chromium in the wastewaters from plating and metal finishing, tanning, and photographic industries poses environmental problems. A commercially available lignin was used for the removal of hexavalent as well as trivalent chromium from aqueous solution. It is known that hexavalent chromium is present as an anionic species in the solution. It was found that lignin can remove up to 63% hexavalent and 100% trivalent chromium from aqueous solutions. The removal of chromium ions was also investigated using a commercially available activated carbon. This absorbent facilitated very little hexavalent and almost complete trivalent chromium removal. Adsorption isotherms and kinetics data on the metal removal by lignin and activated carbon are presented and discussed.

  8. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  9. The effect of mass recovery adsorption cooling cycle to optimize the collector number and time allocation

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Alam, K. C. Amanul; Rouf, Rifat A.; Sarker, M. M. A.

    2016-07-01

    The performance of mass recovery for solar adsorption cooling system has been investigated numerically. Solar adsorption cooling appears to have a prospect in tropical region. Though it has a huge installation cost, its long term payback could be a considerable fact. Mass recovery scheme increases Average Cooling Capacity (ACC) and Coefficient of Performance (COP) values of the adsorption cooling system. In intension to reduce cost and maximize system performance, a two bed solar driven conventional cooling system run by silica gel and water along with mass recovery process has been investigated mathematically.

  10. [Characteristics of Adsorption Leaching and Influencing Factors of Dimethyl Phthalate in Purple Soil].

    PubMed

    Wang, Qiang; Song, Jiao-yan; Zeng, Wei; Wang, Fa

    2016-02-15

    The typical soil-purple soil in Three Gorges Reservoir was the tested soil, the characteristics of adsorption leaching of dimethyl phthalate (DMP) in contaminated water by the soil, and the influencing factors in the process were conducted using soil column leaching experiment. The results showed that the parabolic equation was the best equation describing adsorption kinetics of DMP by soils. The concentration of DMP in the leaching solution had significant effect on the adsorption amounts of DMP. With the increasing concentration of DMP in the leaching solution, the adsorption capacities of DMP by purple soil increased linearly. The ionic strength and pH in leaching solution had significant effects on adsorption of DMP. On the whole, increasing of the ionic strength restrained the adsorption. The adsorption amounts at pH 5.0-7.0 were more than those under other pH condition. The addition of exogenous organic matter (OM) in purple soil increased the adsorption amount of DMP by purple soil. However, the adsorption amount was less than those with other addition amounts of exogenous OM when the addition of exogenous OM was too high (> or = 30 g x kg(-1)). The addition of surfactant sodium dodecylbenzene sulfonic acid (SDBS) in purple soil increased the adsorption amount of DMP by purple soil. The adsorption amount was maximal when the addition amount of SDBS was 50 mg x kg(-1). However, the adsorption amounts decreased with increasing addition amounts of SDBS although the adsorption amounts were still more than that of the control group, and the adsorption amount was almost equal to that of the control group when the addition amount of SDBS was 800 mg x kg(-1). Continuous leaching time affected the vertical distribution of DMP in the soil column. When the leaching time was shorter, the upper soil column adsorbed more DMP, while the DMP concentrations in upper and lower soil columns became similar with the extension of leaching time. PMID:27363166

  11. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    EPA Science Inventory

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  12. Random sequential adsorption of starlike particles.

    PubMed

    Cieśla, Michał; Karbowniczek, Paweł

    2015-04-01

    Random packing of surfaceless starlike particles built of 3 to 50 line segments was studied using random sequential adsorption algorithm. Numerical simulations allow us to determine saturated packing densities as well as the first two virial expansion coefficients for such objects. Measured kinetics of the packing growth supports the power law known to be valid for particles with a finite surface; however, the dependence of the exponent in this law on the number of star arms is unexpected. The density autocorrelation function shows fast superexponential decay as for disks, but the typical distance between closest stars is much smaller than between disks of the similar size, especially for a small number of arms. PMID:25974505

  13. TCE adsorption by GAC preloaded with humic substances

    SciTech Connect

    Kilduff, J.E.; Karanfil, T.; Weber, W.J. Jr.

    1998-05-01

    Adsorption of trichloroethylene (TCE) by activated carbon preloaded with humic and fulvic acids was studied under several conditions in completely mixed batch systems. The authors investigated how molecular weight and molecular-weight distribution of preloaded humic substances affected subsequent adsorption of TCE. The capacity of carbon to adsorb TCE was most greatly reduced in carbon that was preloaded with humic acid components having molecular weights less than about 1,400 g/mol as polystyrene sulfonate. The adsorption capacity was greatly reduced in carbon that was preloaded with whole humic mixtures in which lower molecular weights predominated. The energy distributions of adsorbent indicate that preloaded compounds preferentially occupy high-energy sites, making them inaccessible to subsequently encountered TCE.

  14. Adsorption of nanoparticles at the solid-liquid interface.

    PubMed

    Brenner, Thorsten; Paulus, Michael; Schroer, Martin A; Tiemeyer, Sebastian; Sternemann, Christian; Möller, Johannes; Tolan, Metin; Degen, Patrick; Rehage, Heinz

    2012-05-15

    The adsorption of differently charged nanoparticles at liquid-solid interfaces was investigated by in situ X-ray reflectivity measurements. The layer formation of positively charged maghemite (γ-Fe(2)O(3)) nanoparticles at the aqueous solution-SiO(2) interface was observed while negatively charged gold nanoparticles show no adsorption at this interface. Thus, the electrostatic interaction between the particles and the charged surface was determined as the driving force for the adsorption process. The data analysis shows that a logarithmic particle size distribution describes the density profile of the thin adsorbed maghemite layer. The size distribution in the nanoparticle solution determined by small angle X-ray scattering shows an average particle size which is similar to that found for the adsorbed film. The formed magehemite film exhibits a rather high stability. PMID:22386203

  15. CO2 adsorption on chemically modified activated carbon.

    PubMed

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  16. Probing the Adsorption Behavior of 4,5-Diazafluoren-9-one and Its Schiff Base Derivatives on SIlver and Gold Nanosurfaces Using Raman Spectroscopy, Density Functional Theory and Potential Energy Distribution Calculations

    NASA Astrophysics Data System (ADS)

    McCoy, Rhonda Patrice

    4,5-Diazafluoren-9-one (DAFO) is an aromatic ketone synthesized by oxidizing 1,10-phenanthroline with potassium permanganate. In this present study, the Raman spectra of DAFO in the solid and solution states were recorded in the 100-2000 cm-1 spectral region using 1064, 633, 532, and 514 nm excitation sources. A normal mode analysis of DAFO was performed using density functional theory; the BLYP and B3LYP functionals, each with the 6-31G(d) and 6-311(d) basis sets were employed. The fundamental modes on the Raman spectrum of DAFO were assigned with the appropriate symmetry element using the BLYP functional and 6-31G(d) basis set. The vibrational modes were described and quantified by potential energy distribution calculations. The Raman frequencies for the solid and solution spectra were compared; the observed frequency shifts are attributed to hydrogen bonding or dipole-dipole interactions occurring between the solvent and DAFO ligand. To further assess solute-solvent interactions the UV-vis spectra of DAFO was obtained in hydrogen bonding, polar aprotic, and non-polar solvents. The fine structure of the band observed at lambda max becomes more resolved as solvent polarity decreases, therefore confirming solute-solvent interactions in polar solvents. A silver complex of DAFO was synthesized with the intent of understanding how coordination affected the Raman frequencies. The bands assigned to pyridine ring bending, nu(C=N), and nu(C=O) were shifted because of coordination. These shifts have been attributed to the molecule being perturbed because of coordination. Therefore, the Ag-DAFO complex was analyzed by X-Ray diffraction and the molecular geometries of the free and coordinated ligand were compared. The resolved crystalline structure revealed the silver ion coordinated DAFO using the lone pairs of electrons from the nitrogens in the pyridine ring. Analysis of the molecular geometry revealed the C=O bond increases in double bond character and the C5-C14 bond

  17. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  18. Adsorption of polymeric brushes: Bridging

    NASA Astrophysics Data System (ADS)

    Johner, Albert; Joanny, Jean-François

    1992-04-01

    We study the adsorption of grafted polymer layers on a planar surface parallel to the grafting surface. The layer consists of two types of chains: nonadsorbed chains with a free end and adsorbed chains forming bridges between the two plates. In the limit of strong adsorption a dead zone exists in the vicinity of the adsorbing plate; its size increases with the adsorption strength. Two adsorption mechanisms are possible: adsorption of the last monomer only and adsorption of all the monomers. In both cases the adsorption regimes at equilibrium (when no external force acts on the plates) are discussed within the framework of the self-consistent mean-field theory. We also give scaling laws taking into account excluded volume correlations. Finally, we consider situations where a finite external force, either tangential or normal to the plates, is applied on the adsorbing plate. Pulling and tangential forces both reduce the fraction of bridges and eventually lead to rupture, whereas compressional forces favor bridging. For normal forces, force vs distance profiles between planes and crossed cylinders are given.

  19. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    SciTech Connect

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

  20. Random sequential adsorption on fractals

    NASA Astrophysics Data System (ADS)

    Ciesla, Michal; Barbasz, Jakub

    2012-07-01

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  1. Random sequential adsorption on fractals.

    PubMed

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions. PMID:22852643

  2. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    SciTech Connect

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L.

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  3. Reactive sticking coefficients of silane on silicon

    SciTech Connect

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1987-01-01

    We have investigated the reaction of room-temperature silane and disilane on a hot polycrystalline silicon surface using both a collision-free molecular beam and a very low pressure CVD cell. Reactive sticking coefficients were obtained from deposition rate data over a wide range of temperatures and silane (disilane) fluxes. The RSCs are substantially less than one, ranging from 6 x 10/sup -5/ to 4 x 10/sup -2/. For silane we observed curved Arrhenius plots with slopes decreasing from approx.60 kcal mol/sup -1/ at low temperatures to approx.2 kcal mol/sup -1/ at higher temperatures. The RSCs are independent of flux (pressure) at 1040/sup 0/C, but vary as flux to the approx.-1/2 power at 710/sup 0/C. A model comprised of a dissociative adsorption mechanism with competing associative desorption and reaction was found to give reasonable agreement. For disilane, we observed RSCs that were roughly ten times higher than those for silane. We also observed a curved Arrhenius plot and a flux dependence at 710/sup 0/C for disilane. 22 refs., 5 figs.

  4. Physical adsorption analysis of intact supported MFI zeolite membranes.

    PubMed

    Hammond, Karl D; Tompsett, Geoffrey A; Auerbach, Scott M; Conner, W Curtis

    2007-07-31

    We compare the adsorption properties of intact supported silicalite membranes with those of silicalite powder and of alumina supports using nitrogen and argon as adsorbates at 77 K. We disentangle contributions from the membrane and support and find that the support contributes significantly to the total quantity adsorbed due to its relative thickness. The micropore-filling regions of the adsorption isotherms of the powder and the supported membrane are nearly identical for the membranes studied, but the isotherms differ at higher pressures--the supported membranes exhibit a much higher quantity adsorbed than the powders. Despite this difference, no hysteresis is observed in the membrane isotherms, indicating a lack of mesoporosity (pores in the 2-50 nm range) in either membrane or support for this preparation. We estimate argon transport fluxes at steady state by assuming surface diffusion with both a constant and concentration-dependent Maxwell-Stefan diffusion coefficient in the zeolite and the support. Further, we use the respective adsorption isotherms to determine the thermodynamic correction factors--that is, the ratios of the Fick and Maxwell-Stefan diffusion coefficients--required to solve the diffusion equation. The estimated argon flux is virtually the same using adsorption data from powders and membranes. For the relatively thick supports used in our study (approximately 2 mm), we find that the support exerts a much greater influence on the predicted fluxes for a wide range of values of the ratio of the support to zeolite diffusion coefficients. We emphasize that the results are specific to the architecture of the supported membranes studied, and thus, the results should be interpreted accordingly. PMID:17602679

  5. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  6. Bromide Adsorption by Reference Minerals and Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bromide, Br-, adsorption behavior was investigated on amorphous Al and Fe oxide, montmorillonite, kaolinite, and temperate and tropical soils. Bromide adsorption decreased with increasing solution pH with minimal adsorption occurring above pH 7. Bromide adsorption was higher for amorphous oxides t...

  7. Adsorption and desorption of Zn, Cu, and Cr by sediments from the Raisin River (Michigan)

    SciTech Connect

    Young, T.C.; DePinto, J.V.; Kipp, T.W.

    1987-01-01

    Metal absorption by Raisin River sediments in vitro depended linearly on soluble metal concentration to adsorption densities of 6000-9000 ..mu..g/g with 48 hr partition coefficients of approximately 50, 30, and 25 L/g for Cu, Cr, and Zn, respectively. Partition coefficient computed from field data spanned a comparatively wider range of values in a manner consistent with the often reported adsorbent concentration effect, but other factors likely contributed, too. Desorption of Zn was complete and rapid in contrast to Cr, which was incomplete and much slower; Cu desorption was intermediate to Zn and Cr. A reversible-resistant equilibrium model could not describe the observations as Cu and Cr had not reached metastable desorption equilibria after 24 days. Metal desorption, however, could be described kinetically by distributing sorbed cations between either of two classes; rapidly desorbing and slowly desorbing cations. Sequential and simultaneous desorption models gave similar predictions. Aqueous chemical considerations suggested precipitated as well as adsorbed species could give rise to the observations, but available data did not permit adequate tests of this hypothesis. The extent to which kinetic constraints rather than irreversible reactions account for the desorption-resistant binding signifies a potentially greater metal mobility of bioavailability than would otherwise be assumed. 27 references, 5 figures, 4 tables.

  8. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  9. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  10. Molecular adsorption on graphene

    NASA Astrophysics Data System (ADS)

    Kong, Lingmei; Enders, Axel; Rahman, Talat S.; Dowben, Peter A.

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH2, An-CH3, An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene’s electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.

  11. Molecular adsorption on graphene.

    PubMed

    Kong, Lingmei; Enders, Axel; Rahman, Talat S; Dowben, Peter A

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H(2)O, H(2), O(2), CO, NO(2), NO, and NH(3)), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH(2), An-CH(3), An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene's electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity. PMID:25287516

  12. Adsorption on molecularly imprinted polymers of structural analogues of a template. Single-component adsorption isotherm data

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-10-01

    The equilibrium adsorption isotherms on two otherwise identical polymers, one imprinted with Fmoc-L-tryptophan (Fmoc-L-Trp) (MIP), the other nonimprinted (NIP), of compounds that are structural analogues of the template were acquired by frontal analysis (FA) in an acetonitrile/acetic acid (99/1 v/v) mobile phase, over a wide concentration range (from 0.005 to 50 mM). These analogues were Fmoc-L-tyrosine, Fmoc-L-serine, Fmoc-L-phenyalanine, Fmoc-glycine (Fmoc-Gly), Fmoc-L-tryptophan pentafluorophenyl ester (Fmoc-L-Trp(OPfp)), and their antipodes. These substrates have different numbers of functional groups able to interact with the 4-vinylpyridine groups of the polymer. For a given number of the functional groups, these substrates have different hydrophobicities of their side groups (as indicated by their partition coefficients (log P{sub ow}) in the octanol-water system (e.g., from 4.74 for Fmoc-Trp to 2.53 for Fmoc-Gly)). Statistical results from the fitting of the FA data to Langmuirian isotherm models, the calculation of the affinity energy distribution, and the comparison of calculated and experimental band profiles show that all these sets of FA data are best accounted for by a tri-Langmuir isotherm model, except for the data of Fmoc-L-Trp(OPfp) that are best modeled by a simple Langmuir isotherm. So, all compounds but Fmoc-L-Trp(OPfp) find three different types of adsorption sites on both the MIP and the NIP. The properties of these different types of sites were studied systematically. The results show that the affinity of the structural analogues for the NIP is controlled mostly by the number of the functional groups on the substrates and somewhat by the hydrophobicity of their side groups. These two factors control also the MIP affinity toward the enantiomers of the structural analogues that have a stereochemistry different from that of the template. In contrast, the affinity of the highest affinity sites of the MIP toward the enantiomers of these

  13. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  14. Random sequential adsorption of polydisperse mixtures on lattices

    NASA Astrophysics Data System (ADS)

    Hart, R. C.; Aarão Reis, F. D. A.

    2016-08-01

    Random sequential adsorption of linear and square particles with excluded volume interaction is studied numerically on planar lattices considering Gaussian distributions of lateral sizes of the incident particles, with several values of the average μ and of the width-to-average ratio w . When the coverage θ is plotted as function of the logarithm of time t , the maximum slope is attained at a time tM of the same order of the time τ of incidence of one monolayer, which is related to the molecular flux and/or sticking coefficients. For various μ and w , we obtain 1.5 τ distributions. The adsorbed particle-size distributions are close to the incident ones up to long times for small w , but appreciably change in time for larger w , acquiring a monotonically decreasing shape for w =1 /2 at times of order 100 τ . At tM, incident and adsorbed distributions are approximately the same for w ≤1 /8 and show significant differences for w ≥1 /2 ; this result may be used as a consistency test in applications of the model. The pair correlation function g (r ,t ) for w ≤1 /8 has a well defined oscillatory structure at 10 tM , with a minimum at r ≈μ and maximum at r ≈1.5 μ , but this structure is not observed for w ≥1 /4 .

  15. Statistical process control for AR(1) or non-Gaussian processes using wavelets coefficients

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Tiplica, T.; Kobi, A.

    2015-11-01

    Autocorrelation and non-normality of process characteristic variables are two main difficulties that industrial engineers must face when they should implement control charting techniques. This paper presents new issues regarding the probability distribution of wavelets coefficients. Firstly, we highlight that wavelets coefficients have capacities to strongly decrease autocorrelation degree of original data and are normally-like distributed, especially in the case of Haar wavelet. We used AR(1) model with positive autoregressive parameters to simulate autocorrelated data. Illustrative examples are presented to show wavelets coefficients properties. Secondly, the distributional parameters of wavelets coefficients are derived, it shows that wavelets coefficients reflect an interesting statistical properties for SPC purposes.

  16. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-01

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  17. Rotordynamic coefficients for stepped labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1989-01-01

    The basic equations are derived for compressible flow in a stepped labyrinth gas seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are presented in the form of a parametric study, since there are no known experimental data for the rotordynamic coefficients of stepped labyrinth gas seals. The parametric study investigates the relative rotordynamic stability of convergent, straight and divergent stepped labyrinth gas seals. The results show that, generally, the divergent seal is more stable, rotordynamically, than the straight or convergent seals. The results also show that the teeth-on-stator seals are not always more stable, rotordynamically, then the teeth-on-rotor seals as was shown by experiment by Childs and Scharrer (1986b) for a 15 tooth seal.

  18. Reversible adsorption of hydrogen chloride to ice surfaces

    NASA Astrophysics Data System (ADS)

    Zimmermann, Stefan; Kippenberger, Matthias; Crowley, John

    2015-04-01

    Hydrogen chloride is the most important reservoir of gaseous, reactive chlorine in the atmosphere. Although several laboratory investigations of the interaction of HCl with ice surfaces have been conducted, there is still great uncertainty associated with the adsorption isotherms of HCl on ice, which is largely a consequence of most previous studies being unable to work at concentrations relevant for the atmosphere and to explore the non-saturated part of the isotherm at sub-monolayer coverage. We have conducted experiments on HCl uptake on ice surfaces at temperatures between 190 and 220 K, using a coated wall flow tube. HCl at concentrations as low as 2 × 109 molecule cm3 (~10-8 Torr) was detected using a chemical-ionization, quadrupole mass spectrometer. The equilibrium surface coverage of HCl on ice could be interpreted using the Langmuir-model to derive partition coefficients (KLang). We find that the dissociative Langmuir isotherm describes our data significantly better than the non-dissociative type. Surprisingly, and in contrast to the behavior of the majority of traces-gases which adsorb reversibly on ice surfaces, the partition-coefficients we derive for HCl do not show a systematic dependence on temperature, precluding the simple derivation of an adsorption enthalpy and indicating the presence of more complex adsorption and desorption mechanisms for strong acids ionizing on the surface compared to H-bonded trace gases.

  19. Arsenate Uptake by Calcite: Macroscopic and Spectroscopic Characterization of Adsorption and Incorporation Mechanisms

    SciTech Connect

    Alexandratos,V.; Elzinga, E.; Reeder, R.

    2007-01-01

    Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO{sub 2} = 10{sup -3.5} atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 {mu}M. Maximum distribution coefficient values (K{sub d}), derived from a best fit to a Langmuir model, are {approx}190 L kg{sup -1}. Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on (10{bar 1}4) surfaces at low As(V) concentrations ({<=}5 {mu}M), but habit modification is evident at As(V) concentrations {>=}30 {mu}M in the form of macrostep development preferentially on the - vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of (10{bar 1}4) surfaces shows preferential incorporation of As in the - vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.

  20. Modeling canopy reflectance and microwave backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Goel, N. S.

    1985-01-01

    Various approaches to model canopy reflectance (CR) in the visible/infrared region and backscattering coefficient (BSC) in the microwave region are compared and contrasted. It is noted that BSC can be related to CR in the source direction (the 'hot spot' direction). By assuming a frequency dependent leaf reflectance and transmittance it is shown that the observed dependence of BSC on leaf area index, leaf angle distribution, angle of incidence, soil moisture content, and frequency can be simulated by a CR model. Thus both BSC and CR can, in principle, be calculated using a single model which has essentially the same parameters as many CR models do.

  1. Kinetic Batch Soil Adsorption Studies of 2, 4-dinitroanisole (DNAN)

    NASA Astrophysics Data System (ADS)

    Arthur, J.; Mark, N. W.; Taylor, S.; Brusseau, M. L.; Dontsova, K.

    2014-12-01

    Currently the explosive 2, 4, 6- trinitrotoluene (TNT) is used as a main ingredient in munitions; however the compound has failed to meet sensitivity requirements. The replacement compound being tested is 2, 4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and exposure potential. DNAN has been shown to have some human and environmental toxicity. The objective of this study was to investigate the environmental fate of DNAN in soil, with a specific focus on sorption processes. Batch experiments were conducted using 11 soils collected from military installations located across the United States. The soils were characterized for pH, specific surface area, electrical conductivity, cation exchange capacity, and organic carbon content. Adsorption kinetic data determined at room temperature were fitted using the first order kinetic equation. Adsorption isotherms were fitted with linear and Freundlich isotherm equations. The magnitudes of the linear adsorption coefficients ranged from 0.6 to 6 cm3/g. Results indicated that the adsorption of DNAN is strongly dependent on the amount of organic carbon present in the soil.

  2. Transport coefficients of heavy baryons

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.

  3. Adsorption-induced fracture of branched macromolecules.

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Sun, Frank; Shirvanyants, David; Rubinstein, Michael; Lee, Hyung-Il; Matyjaszewski, Krzysztof

    2006-03-01

    Recently, we have discovered the remarkable phenomenon that brush-like macromolecules with long side chains undergo scission of the backbone bonds as a result of adsorption onto a substrate. The macromolecule's self-destruction occurs because its side chains stretch the polymer backbone as the macromolecule struggles to reconfigure and maximize the number of contacts with the substrate. We show that the tension imposed by the surface attraction is unevenly distributed over the covalent bonds of the molecular skeleton. Along the brush axis, a major fraction of the tensile force is carried by the backbone, while in the perpendicular direction the tension is distributed over many side chains. Using molecular visualization and computer simulation, we confirmed the first order kinetics and measured the corresponding rate constant, which revealed strong dependence on the attraction to the substrate.

  4. Adsorption in gas mass spectrometry. I. Effects on the measurement of individual isotopic species

    NASA Astrophysics Data System (ADS)

    Gonfiantini, Roberto; Valkiers, Staf; Taylor, Philip D. P.; de Bièvre, Paul

    1997-05-01

    The adsorption-desorption process of gas molecules on the walls of the mass spectrometer inlet system was studied in order to assess quantitatively its influence on measurement results. The effects on individual isotopic species in SiF4 measurements required for the re-determination of the Avogadro constant are discussed in this paper, while the effects on isotope amount ratio determinations will be discussed in a companion paper. A model based on the Langmuir adsorption isotherm is developed, which fits well the experimental observations and provides the means to investigate adsorption and desorption kinetics in the inlet system. A parameter called the [`]apparent leak-rate coefficient' is introduced; this represents the relative variation with time of any isotopic species in the inlet system. All the adsorption parameters appearing in the balance equations are derived from the apparent leak-rate coefficient. Application of the model to long mass-spectrometric measurements of SiF4 yields a rate constant of 6.5 × 10-5 s-1 for SiF4 effusion through the molecular leak of the inlet system. Adsorption and desorption rate-constants are equal to 20-25% of the leak rate-constant, and the adsorption sites are about two orders of magnitude lower than the number of Ni and Cu atoms present on the inlet system walls.

  5. Effect of ferrihydrite crystallite size on phosphate adsorption reactivity.

    PubMed

    Wang, Xiaoming; Li, Wei; Harrington, Richard; Liu, Fan; Parise, John B; Feng, Xionghan; Sparks, Donald L

    2013-09-17

    The influence of crystallite size on the adsorption reactivity of phosphate on 2-line to 6-line ferrihydrites was investigated by combining adsorption experiments, structure and surface analysis, and spectroscopic analysis. X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that the ferrihydrite samples possessed a similar fundamental structure with a crystallite size varying from 1.6 to 4.4 nm. N2 adsorption on freeze-dried samples revealed that the specific surface area (SSABET) decreased from 427 to 234 m(2) g(-1) with increasing crystallite size and micropore volume (Vmicro) from 0.137 to 0.079 cm(3) g(-1). Proton adsorption (QH) at pH 4.5 and 0.01 M KCl ranged from 0.73 to 0.55 mmol g(-1). Phosphate adsorption capacity at pH 4.5 and 0.01 M KCl for the ferrihydrites decreased from 1690 to 980 μmol g(-1) as crystallite size increased, while the adsorption density normalized to SSABET was similar. Phosphate adsorption on the ferrihydrites exhibited similar behavior with respect to both kinetics and the adsorption mechanism. The kinetics could be divided into three successive first-order stages: relatively fast adsorption, slow adsorption, and a very slow stage. With decreasing crystallite size, ferrihydrites exhibited increasing rate constants per mass for all stages. Analysis of OH(-) release and attenuated total reflectance infrared spectroscopy (ATR-IR) and differential pair distribution function (d-PDF) results indicated that initially phosphate preferentially bound to two Fe-OH2(1/2+) groups to form a binuclear bidentate surface complex without OH(-) release, with smaller size ferrihydrites exchanging more Fe-OH2(1/2+) per mass. Subsequently, phosphate exchanged with both Fe-OH2(1/2+) and Fe-OH(1/2-) with a constant amount of OH(-) released per phosphate adsorbed. Also in this stage binuclear bidentate surface complexes were formed with a P-Fe atomic pair distance of ~3.25 Å. PMID:23992548

  6. Irreversibility and Polymer Adsorption

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2003-02-01

    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the resultant nonequilibrium layers. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f)˜f-4/5, in rather close agreement with strong physisorption experiments [

    H. M. Schneider et al., LangmuirLANGD50743-7463 12, 994 (1996)
    ].

  7. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    PubMed

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal. PMID:25872710

  8. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  9. Features of the adsorption of naproxen enantiomers on weak chiral anion-exchangers in nonlinear chromatography

    SciTech Connect

    Asnin, Leonid; Kaczmarski, Krzysztof; Guiochon, Georges A

    2008-01-01

    The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the binding energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.

  10. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon.

    PubMed

    Yu, Jing; Lv, Lu; Lan, Pei; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming

    2012-07-30

    Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (<1kDa) were found to be the major contributors to the significant reduction in PFC adsorption capacity, while large-molecular-weight compounds (>30kDa) had much less effect on PFC adsorption capacity. PMID:22609392

  11. Investigation of the problems with using gas adsorption to probe catalyst pore structure evolution during coking.

    PubMed

    Gopinathan, Navin; Greaves, Malcolm; Wood, Joseph; Rigby, Sean P

    2013-03-01

    A common approach to try to understand the mechanism of coking in heterogeneous catalysts is to monitor the evolution of the pore structure using gas adsorption analysis of discharged pellets. However, the standard methods of analysis of gas adsorption data, to obtain pore-size distributions, make the key assumption of thermodynamically-independent pores. This assumption neglects the possibility of co-operative adsorption phenomena, which will shown to be a critical problem when looking at coking catalysts. In this work the serial adsorption technique has been used to detect and assess the extent of co-operative effects in adsorption within coking catalysts. The reaction of decane over a hydroprocessing catalyst was used as a case study. It has been shown that the conventional analysis method would lead to a flawed picture of the pore structure changes during the coking process. For the case-study considered in this work, it was found that co-operative adsorption effects meant that 26% of the measured adsorption was occurring in pores up to three times larger than the size conventional analysis would presume. The serial adsorption technique was thus shown to provide important additional information on pore structure evolution during coking. A study of the kinetics of adsorption has been used to infer information about the general spatial location of the coking process within a pellet. PMID:23141698

  12. Seebeck coefficient of one electron

    SciTech Connect

    Durrani, Zahid A. K.

    2014-03-07

    The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.

  13. Partition coefficients of organic compounds in new imidazolium based ionic liquids using inverse gas chromatography.

    PubMed

    Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noël

    2009-06-01

    Partition coefficients of organic compounds in four ionic liquids: 1-ethanol-3-methylimidazolium tetrafluoroborate, 1-ethanol-3-methylimidazolium hexafluorophosphate, 1,3-dimethylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate were measured using inverse gas chromatography from 303.3 to 332.55K. The influence of gas-liquid and gas-solid interfacial adsorption of different solutes on ionic liquids was also studied. Most of the polar solutes were retained largely by partition while light hydrocarbons were retained predominantly by interfacial adsorption on the ionic liquids studied in this work. The solvation characteristics of the ionic liquids were evaluated using the Abraham solvation parameter model. PMID:19414174

  14. Wavelength dependence of aerosol extinction coefficient for stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.

    1986-01-01

    A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. Good agreement is found between the extinction coefficients calculated from the proposed formula and that calculated from Mie theory. The proposed expression is shown to be better than the Angstroem formula commonly used by atmospheric scientists.

  15. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  16. Adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA

    SciTech Connect

    Satik, Cengiz; Walters, Mark; Horne, Roland N.

    1996-01-24

    This paper reports on a continuing experimental effort to characterize the adsorption behavior of rocks from The Geysers steam field in California. We show adsorption results obtained for 36 rock samples. All of the adsorption isotherms plotted on the same graph exhibit an envelope of isotherms. The minimum and the maximum values of the slope (or rate of adsorption) and of the magnitude within this envelope of isotherms belonged to the UOC-1 (felsite) and NCPA B-5 (serpentine) samples. The values of surface area and porosity, and pore size distribution for 19 of the samples indicated a very weak correlation with adsorption. An interpretation of the pore size distributions and the liquid saturation isotherms suggests that the change in the slope and the magnitude of the adsorption isotherms within the envelope is controlled primarily by the physical adsorption mechanism instead of capillary condensation. Grain-size and framework grain to matrix ratio are found to be insufficient to characterize this adsorption behavior. An accurate identification of the mineralogy of the samples will be essential to complete this analysis.

  17. High temperature water adsorption on The Geysers rocks

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1997-08-01

    In order to measure water retention by geothermal reservoir rocks at the actual reservoir temperature, the ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quality of water retained by rock samples taken from three different wells of The Geysers geothermal reservoir was measured at 150{sup degree}C, 200{sup degree}C, and 250{sup degree}C as a function of pressure in the range 0.00 {<=}p/p{sub degree} {<=} 0.98, where p{sub degree} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A correlation is sought between water adsorption, the surface properties, and the mineralogical and petrological characteristics of the solids.

  18. Fractional diffusions with time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Garra, Roberto; Orsingher, Enzo; Polito, Federico

    2015-09-01

    This paper is concerned with the fractionalized diffusion equations governing the law of the fractional Brownian motion BH(t). We obtain solutions of these equations which are probability laws extending that of BH(t). Our analysis is based on McBride fractional operators generalizing the hyper-Bessel operators L and converting their fractional power Lα into Erdélyi-Kober fractional integrals. We study also probabilistic properties of the random variables whose distributions satisfy space-time fractional equations involving Caputo and Riesz fractional derivatives. Some results emerging from the analysis of fractional equations with time-varying coefficients have the form of distributions of time-changed random variables.

  19. Experimental investigation of an advanced adsorption refrigeration cycle

    SciTech Connect

    Saha, B.B.; Kashiwagi, Takao

    1997-12-31

    Experimental measurements are made for a silica gel-water advanced absorption refrigeration chiller (1.2-kW [4,095-Btu/h] cooling capacity) to evaluate its performance under different temperature and adsorption/desorption cycle time conditions. This paper describes the operating principle of the chiller, outlines the experimental hardware, and discusses results obtained by varying the cooling and hot water inlet temperatures and adsorption/desorption cycle times, as well as their agreement with the simulated results given by a lumped parameter model. The chiller performance is analyzed in terms of cooling capacity and coefficient of performance (COP). Excellent qualitative agreement was obtained between the experimental data and simulated results. The results showed the advanced three-stage cycle to be particularly well suited for operation with low-grade-temperature waste heat as the driving source, since it worked with small regenerating temperature lifts (heat source-heat sink temperature) of 10 to 30 K.

  20. Determination of secnidazole in urine by adsorptive stripping voltammetry.

    PubMed

    Radi, A E; Hassanein, A

    2000-05-01

    Cyclic voltammetry was used to explore the adsorption behavior of secnidazole on a hanging mercury drop electrode (HMDE). The effects of various operational parameters on the accumulation behavior of the adsorbed species were tested. Thus, a sensitive stripping voltammetry procedure for the determination of secnidazole with an adsorptive accumulation on the surface of HMDE has been developed. Measurements were taken by differential-pulse voltammetry after determination of the optimum conditions. The linear concentration range was 1 x 10(-8)-1 x 10(-7) s when using a 120 s preconcentration at -0.1 V vs. Ag/AgCl in acetate buffer of pH 4.0. The detection limit of secnidazole was 5 x 10(-9) M. The precision, expressed by the coefficient of variation, was 2.5% (n = 10) at a concentration of 1 x 10(-7) m. The method was successfully applied to the analysis of secnidazole in urine. PMID:10823692

  1. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficientsl

  2. Adsorption and recognition characteristics of surface molecularly imprinted polymethacrylic acid/silica toward genistein.

    PubMed

    Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting

    2014-09-12

    In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. PMID:25085816

  3. Mercapto functionalized silica entrapped polyacrylamide hydrogel: Arsenic adsorption behaviour from aqueous solution.

    PubMed

    Kumar, Rajesh; Jain, S K; Verma, S; Malodia, P

    2015-10-15

    In this article, 3-mercaptopropyl functionalized silica entrapped polyacrylamide hydrogel (MPFS-PAA) was prepared and characterized by FT-IR, scanning electron microscopy (SEM) and energy dispersion X-ray spectroscopy (EDS). Synthesized hydrogel was evaluated for removal of arsenic(III) from aqueous solution. Adsorption studies were carried out by batch method as function of contact time, initial concentration of arsenic and pH. As(III) adsorption data fitted well with Langmuir and Freundlich isotherm models. Adsorption capacity of arsenic 92.5 μg/g was obtained at initial concentration of 100 μg/L by Langmuir isotherm. Adsorption kinetics was tested for pseudo-second order reaction at different contact time. The rate constants of pseudo second order reaction were calculated and good correlation coefficient R(2) 99.67 obtained. The results indicates that MPFS-PAA is an effective adsorbent for removal of As(III) from aqueous solution. PMID:26151463

  4. Adsorption of Ti atoms on zigzag silicene nanoribbons: influence on electric, magnetic, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Xu, Long; Wang, Xue-Feng; Zhou, Liping; Yang, Zhi-Yong

    2015-06-01

    We study the adsorption effects of Ti atoms on the physical properties of zigzag silicene nanoribbons using the density functional theory combined with the nonequilibrium Green’s function methods. The adsorption geometries, conductance spectra, current voltage curves, spin polarizations, magnetoresistance, and Seebeck coefficients are evaluated in different adsorption samples. Ti adatoms prefer sites inside the nanoribbons instead of on the edges. Two neighboring adatoms are attractively coupled and prefer being adsorbed on the same side. The giant magnetoresistance in nanoribbons of even width is usually greatly reduced, except in symmetric adsorption cases. Strong spin negative differential resistance phenomena can be observed and pure spin current can be produced by temperature gradient in specific cases.

  5. Characterizing the effect of temperature fluctuation on the incidence of malaria: an epidemiological study in south-west China using the varying coefficient distributed lag non-linear model

    PubMed Central

    2014-01-01

    Background Malaria transmission is strongly determined by the environmental temperature and the environment is rarely constant. Therefore, mosquitoes and parasites are not only exposed to the mean temperature, but also to daily temperature variation. Recently, both theoretical and laboratory work has shown, in addition to mean temperatures, daily fluctuations in temperature can affect essential mosquito and parasite traits that determine malaria transmission intensity. However, so far there is no epidemiological evidence at the population level to this problem. Methods Thirty counties in southwest China were selected, and corresponding weekly malaria cases and weekly meteorological variables were collected from 2004 to 2009. Particularly, maximum, mean and minimum temperatures were collected. The daily temperature fluctuation was measured by the diurnal temperature range (DTR), the difference between the maximum and minimum temperature. The distributed lag non-linear model (MDLNM) was used to study the correlation between weekly malaria incidences and weekly mean temperatures, and the correlation pattern was allowed to vary over different levels of daily temperature fluctuations. Results The overall non-linear patterns for mean temperatures are distinct across different levels of DTR. When under cooler temperature conditions, the larger mean temperature effect on malaria incidences is found in the groups of higher DTR, suggesting that large daily temperature fluctuations act to speed up the malaria incidence in cooler environmental conditions. In contrast, high daily fluctuations under warmer conditions will lead to slow down the mean temperature effect. Furthermore, in the group of highest DTR, 24-25°C or 21-23°C are detected as the optimal temperature for the malaria transmission. Conclusion The environment is rarely constant, and the result highlights the need to consider temperature fluctuations as well as mean temperatures, when trying to understand or

  6. Integer Solutions of Binomial Coefficients

    ERIC Educational Resources Information Center

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  7. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  8. Estimating the Polyserial Correlation Coefficient.

    ERIC Educational Resources Information Center

    Bedrick, Edward J.; Breslin, Frederick C.

    1996-01-01

    Simple noniterative estimators of the polyserial correlation coefficient are developed by exploiting a general relationship between the polyserial correlation and the point polyserial correlation to give extensions of the biserial estimators of K. Pearson (1909), H. E. Brogden (1949), and F. M. Lord (1963) to the multicategory setting. (SLD)

  9. Host receptors for bacteriophage adsorption.

    PubMed

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  10. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-01

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases. PMID:20712330

  11. Adsorptive behavior of polycyclic aromatic hydrocarbons in coal-conversion wastewaters. Six months progress report

    SciTech Connect

    Walters, R.W.; Luthy, R.G.

    1981-01-01

    A coupled column system was designed and assembled for use in solubility and adsorption testing. This system consists of a saturated solution generation column and an adsorption column. The generation column has been employed successfully to determine the solubility behavior of naphthalene; for nine determinations at 25 /sup 0/C the aqueous solubility is 32.9 +- 1.2 milligrams per liter. However, adsorption isotherm data obtained from the coupled column system involved techniques which are limited by time constraints and accuracy. Batch adsorption shake testing using the generation column to prepare solutions offers an acceptable alternative to this sytem. This procedure has been employed to obtain adsorption isotherm data for naphthalene. Thirty-one data points were obtained for equilibrium concentrations from 0.00689 to 18.8 milligrams per liter. These data can be fitted to the Freundlich equation with constant values of 263 for the coefficient and 0.39 for the exponent. Adsorption and adsorption isotherm models which are more appropriate than the Freundlich equation for purposes of detailed modelling are reviewed.

  12. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils.

    PubMed

    Wang, Yu-Jun; Zhou, Dong-mei; Sun, Rui-juan

    2005-01-01

    Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients (0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil(RS, Udic Ferrisol) and Wushan paddy soil (WS soil, Anthrosol), respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil > GPS-P-soil = GPS-soil-P > P-soil-GPS, meaning a complex interaction occurred among glyphosate, phosphate and the soils. PMID:16312989

  13. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    PubMed

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%). PMID:26540549

  14. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. PMID:24619924

  15. Multiple element airfoils optimized for maximum lift coefficient.

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Chen, A. W.

    1972-01-01

    Optimum airfoils in the sense of maximum lift coefficient are obtained for incompressible fluid flow at large Reynolds number. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the airfoil upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution is a function of Reynolds number and the trailing edge velocity. Geometries of those airfoils which will generate these optimum pressure distributions are obtained using a direct-iterative method which is developed in this study. This method can be used to design airfoils consisting of any number of elements. Numerical examples of one- and two-element airfoils are given. The maximum lift coefficients obtained range from 2 to 2.5.

  16. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

    PubMed

    Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind

    2014-08-22

    Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems. PMID:25022481

  17. Adsorption on a stepped substrate

    NASA Astrophysics Data System (ADS)

    Merikoski, J.; Timonen, J.; Kaski, K.

    1994-09-01

    The effect of substrate steps on the adsorption of particles is considered. The problem is formulated as a lattice-gas model with nearest neighbor interactions and it is studied by a numerical transfer-matrix method. In particular, the influence of the substrate-induced row potential on adsorbed monolayers is discussed. It is found that strong row-transition-like features appear in the presence of a row potential and it is suggested that these may be seen in adsorption on vicinal faces.

  18. Liquid-Phase Adsorption of Phenol onto Activated Carbons Prepared with Different Activation Levels.

    PubMed

    Hsieh; Teng

    2000-10-01

    The influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions was explored. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons, determined according to the Dubinin-Stoeckli equation, were found to vary with the burn-off level. By incorporating the distribution with the Dubinin-Radushkevich equation using an inverse proportionality between the micropore size and the adsorption energy, the isotherms for the adsorption of phenol onto these carbons can be well predicted. The present study has demonstrated that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores. Copyright 2000 Academic Press. PMID:10998301

  19. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    SciTech Connect

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-02-12

    Rates of contaminant U(VI) release from individual size fractions of a composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through batch reactors to maintain quasi-constant chemical conditions. Variability in equilibrium adsorption among the various size fractions was determined in static batch reactors and analyzed using the surface complexation modeling approach. The estimated stoichiometric coefficients of U(VI) surface complexation reactions with respect to pH and carbonate concentrations varied with size fractions. This source of variability significantly increased the uncertainty in U(VI) conditional equilibrium constants over that estimated from experimental errors alone. A minimum difference between conditional equilibrium constants was established in order to evaluate statistically significant differences between sediment adsorption properties. A set of equilibrium and kinetic expressions for cation exchange, calcite dissolution, aerobic respiration, and silica dissolution were incorporated in a reaction-rate model to describe the temporal evolution of solute concentrations observed during the flow-through batch experiments. Parameters in the reaction-rate model, calibrated using experimental data for select size fractions, predicted the changes in solute concentrations for the bulk, <2 mm, sediment sample. Kinetic U(VI) desorption was well described using a multi-rate surface complexation model with an assumed lognormal distribution for the rate constants. The estimated mean and standard deviation were the same for all < 2mm size fractions, but differed in the 2-8mm size fraction. Micropore volumes in the varied size fractions were also similar as assessed using t-plots to analyze N2 desorption data. These findings provide further support for the link between microporosity and particle-scale mass transfer rates controlling kinetic U(VI) adsorption/desorption and for the utility of N2 desorption

  20. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-19

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  1. CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models

    PubMed Central

    Vargas, Diana P.; Giraldo, Liliana; Moreno-Piraján, Juan C.

    2012-01-01

    Activated carbon honeycomb-monoliths with different textural properties were prepared by chemical activation of African palm shells with H3PO4, ZnCl2 and CaCl2 aqueous solutions of various concentrations. The adsorbents obtained were characterized by N2 adsorption at 77 K, and their carbon dioxide adsorption capacities were measured at 273 K and 1 Bar in volumetric adsorption equipment. The experimental adsorption isotherms were fitted to Langmuir and Tóth models, and a better fit was observed to Tóth equation with a correlation coefficient of 0.999. The maximum experimental values for adsorption capacity at the highest pressure (2.627–5.756 mmol·g−1) are between the calculated data in the two models. PMID:22942710

  2. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  3. Adsorption of Organics from Domestic Water Supplies.

    ERIC Educational Resources Information Center

    McGuire, Michael J.; Suffet, Irwin H.

    1978-01-01

    This article discusses the current state of the art of organics removal by adsorption. Various theoretical explanations of the adsorption process are given, along with practical results from laboratory, pilot-scale, and full-scale applications. (CS)

  4. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  5. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  6. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  7. Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th: implications for uncertainty analysis of models simulating the transport of radionuclides in rivers.

    PubMed

    Ciffroy, P; Durrieu, G; Garnier, J-M

    2009-09-01

    The objective of this study was to provide operational probability density functions (PDFs) for distribution coefficients (K(d)s) in freshwater, representing the partition of radionuclides between the particulate and the dissolved phases respectively. Accordingly, the K(d) variability should be considered in uncertainty analysis of transport and risk assessment models. The construction of PDFs for 8 elements (Ag, Am, Co, Cs, I, Mn, Pu and Sr) was established according to the procedure already tested in Durrieu et al. [2006. A weighted bootstrap method for the determination of probability density functions of freshwater distribution coefficients (K(d)s) of Co, Cs, Sr and I radioisotopes. Chemosphere 65 (8), 1308-1320]: (i) construction of a comprehensive database where K(d)s values obtained under various environments and parametric conditions were collected; (ii) scoring procedure to account for the 'quality' of each datapoint (according to several criteria such as the presentation of data (e.g. raw data vs mean with or without replicates), contact time, pH, solid-to-liquid ratio, expert judgement) in the construction of the PDF; (iii) weighted bootstrapping procedure to build the PDFs, in order to give more importance to the most relevant datapoints. Two types of PDFs were constructed: (i) non-conditional, usable when no knowledge about the site of concern is available; (ii) conditional PDFs corresponding to a limited range of parameters such as pH or contact time; conditional PDFs can thus be used when some parametric information is known on the site under study. For 7 other radionuclides (Ba, Be, Ce, Ra, Ru, Sb and Th), a simplified procedure was adopted because of the scarcity of data: only non-conditional PDFs were built, without incorporating a scoring procedure. PMID:19114288

  8. Surface-adsorption-induced polymer translocation through a nanopore: Effects of the adsorption strength and the surface corrugation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyu; Yu, Wancheng; Luo, Kaifu

    2015-08-01

    The surface corrugation plays an important role in single polymer diffusion on attractive surfaces. However, its effect on dynamics of surface adsorption-induced polymer translocation through a nanopore is not clear. Using three-dimensional Langevin dynamics simulations, we investigate the dynamics of a flexible polymer chain translocation through a nanopore induced by the selective adsorption of translocated segments onto the trans side of the membrane. The translocation probability Pt r a n s increases monotonically, while the mean translocation time τ has a minimum as a function of the adsorption strength ɛ , which are explained from the perspective of the effective driving force for the translocation. With the surface being smoother, τ as well as the scaling exponent α of τ with the chain length N decreases. Finally, we show that the distributions of the translocation time are non-Gaussian even for strong adsorption at a moderate surface corrugation. A nearly Gaussian distribution of the translocation time is observed only for the smoothest surface we studied.

  9. NO Adsorption on Pd(111)

    NASA Astrophysics Data System (ADS)

    Garda, Graciela R.; Ferullo, Ricardo M.; Castellani, Norberto J.

    The reactive behavior of NO on Pd(111) has been studied using a semiempirical theoretical method. The adsorption sites and the related electronic structure have been considered. In particular, the dissociation process has been studied and compared with CO. Different dissociation mechanisms have been proposed and the formation of NCO species has been considered. The results follow the trends reported in the experimental literature.

  10. ADSORPTIVE MEDIA TECHNOLOGIES: MEDIA SELECTION

    EPA Science Inventory

    The presentation provides information on six items to be considered when selecting an adsorptive media for removing arsenic from drinking water; performance, EBCT, pre-treatment, regeneration, residuals, and cost. Each item is discussed in general and data and photographs from th...

  11. Protein Adsorption in Microengraving Immunoassays

    PubMed Central

    Song, Qing

    2015-01-01

    Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282

  12. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  13. ARSENIC REMOVAL USING ADSORPTION TECHNOLOGIES

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  14. ADSORPTION TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  15. Column studies for the adsorption of cationic surfactant onto an organic polymer resin and a granular activated carbon.

    PubMed

    Vergili, Ilda; Kaya, Yasemin; Gönder, Zeren Beril; Barlas, Hulusi

    2010-03-01

    Adsorption beds containing granular activated carbon and organic polymer resin are used widely to remove organic pollutants from wastewaters and water streams. Adsorption polymers are becoming alternatives to activated carbon for removal of surfactants by adsorption techniques. This study investigated the adsorption characteristics of cetyl trimethylammonium bromide (CTAB) as a cationic surfactant for selected concentrations below and above critical micelle concentration (CMC). A series of column tests were performed to determine the breakthrough curves by using two different adsorbents: (1) Hydraffin CC 8 x 30 as a commercial granular activated carbon (GAC) and (2) Lewatit VPOC 1064 MD PH as a commercial organic polymer resin. In the experiments, the volumetric flow rate was maintained at 10.5 mL/min (approximately 2 m3/ m2 x h). Loading of adsorbents was continued until breakthrough was 10% of the feed concentration. The breakthrough took place at 488 bed volume (BV) below CMC (C0 = 40 mg/L) and 39 BV above CMC (C0 = 400 mg/ L) onto GAC. The organic polymer resin, however, showed a higher adsorption capacity than GAC (1412 BV below CMC and 287 BV above CMC). From the Logit method, the value of adsorption rate coefficient (K) and adsorption capacity coefficient (N) were obtained. PMID:20369564

  16. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased. PMID:18022316

  17. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  18. [Influences of cation species on adsorption and desorption of oxytetracycline in two typical soils of China].

    PubMed

    Bao, Yan-Yu; Zhou, Qi-Xing; Zhang, Hao

    2009-02-15

    On the basis of the OECD Guideline 106, batch sorption methods were employed to reveal the effect of different cations (0.01 mol x L(-1) Ca2+, K+ and Na+) on oxytetracycline (OTC) adsorption and desorption process in two tested soils (cinnamon soil and red soil). Results show that the Freundlich model is the best isotherm to describe the experimental data of adsorption and desorption, and the average fitting correlation coefficient is 0.989. Except for the adsorption isotherm of cinnamon soil on OTC in 0.01 mol x L(-1) KCl, the other isotherms resemble the L-type curves. To the same cation, OTC adsorption capacity (lgKf) in the red soil (ranging from 2.907 to 3.173) is always higher than in the cinnamon soil (ranging from 2.577 to 2.885), and the adsorption strength (1/n) in the red soil (ranging from 0.672 to 0.825) is always lower than the cinnamon (ranging from 0.713 to 1.005). The dominant mechanism is physical adsorption in two soils. To the same soil, cation species don't affect OTC adsorption capacity (lgKf) (p > 0.05). And Ca2+ can reduce significantly the adsorption strength (p < 0.05), comparing with K+ and Na+. The apparent adsorption-desorption hysteresis is found, and the average hysteresis index (HI) in all soils are from 0.015 to 0.053. To the same cation, OTC HI is significantly higher than that of red soil (p < 0.05). In cinnamon soil, there is significantly HI difference (p < 0.01) between K+ and Ca2+, Na+. However, three cations have no significantly difference effect on HI in red soil. PMID:19402514

  19. Adsorption of fulvic acid on goethite

    SciTech Connect

    Filius, J.D.; Lumsdon, D.G.; Meeussen, J.C.L.; Hiemstra, T.; Riemsduk, W.H. van

    2000-01-01

    The adsorption of fulvic acid by goethite was determined experimentally as a function of concentration, pH, and ionic strength. The data were described with the CD-MUSIC model of Hiemstra and Van Riemsdijk (1996), which allows the distribution of charge of the bound fulvate molecule over a surface region. Simultaneously, the concentration, pH, and salt dependency of the binding of fulvic acid can be described. Using the same parameters, the basic charging behavior of the goethite in the absence of fulvic acid could be described well. The surface species used in the model indicate that inner sphere coordination of carboxylic groups of the fulvate molecule is important at low pH, whereas at high pH the outer sphere coordination with reactive groups of the fulvate molecule with high proton affinity is important.

  20. Modeling the adsorption of PAH mixture in silica nanopores by molecular dynamic simulation combined with machine learning.

    PubMed

    Sui, Hong; Li, Lin; Zhu, Xinzhe; Chen, Daoyi; Wu, Guozhong

    2016-02-01

    The persistence of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils is largely controlled by their molecular fate in soil pores. The adsorption and diffusion of 16 PAHs mixture in silica nanopore with diameter of 2.0, 2.5, 3.0 and 3.5 nm, respectively, were characterized by adsorption energy, mean square displacement, free surface area and free volume fraction using molecular dynamic (MD) simulation. Results suggested that PAHs adsorption in silica nanopores was associated with diffusion process while competitive sorption was not the dominant mechanism in context of this study. The partial least squares (PLS) regression and machine learning (ML) methods (i.e. support vector regression, M5 decision tree and multilayer perceptrons) were used to correlate the adsorption energy with the pore diameter and PAH properties (number of carbon atoms, aromatic ring number, boiling point, molecular weight, octanol-water partition coefficient, octanol-organic carbon partition coefficient, solvent accessible area, solvent accessible volume and polarization). Results indicated that the PAH adsorption could not be predicted by linear regression as the R(2)Y and Q(2)Y coefficients of PLS analysis was 0.375 and 0.199, respectively. The nonlinearity was well recognized by ML with correlation coefficient up to 0.9. Overall, the combination of MD simulation and ML approaches can assist in interpreting the sequestration of organic contaminants in the soil nanopores. PMID:26547031

  1. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, J.A.; Lizzio, A.A.; Daley, M.A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700-925 ??C to remove carbon-oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  2. Determination of thermal diffusion coefficient of nanofluid: Fullerene-toluene

    NASA Astrophysics Data System (ADS)

    Martin, Alain; Bou-Ali, M. Mounir

    2011-05-01

    Thermodiffusion coefficient at fullerene mass concentrations of 0.05%, 0.1%, 0.15%, and 0.2% was established for pure fullerene (C 60) diluted in toluene solutions. For this, the thermogravitational technique has been used in planar configuration with 4 extraction points. The determination of the concentration distribution along the column in steady state is determined by the method of analysis based on density measurements. In order to determine the thermal diffusion coefficient all thermophysical properties such as density, viscosity, thermal expansion coefficient and mass expansion coefficients were determined. All these studies coincide with the importance of the knowledge of the thermophysics and transport properties of the nanofluids to develop new applications and to optimize the existing ones.

  3. An instrumental variable random-coefficients model for binary outcomes

    PubMed Central

    Chesher, Andrew; Rosen, Adam M

    2014-01-01

    In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048

  4. Using two coefficients modeling of nonsubsampled Shearlet transform for despeckling

    NASA Astrophysics Data System (ADS)

    Jafari, Saeed; Ghofrani, Sedigheh

    2016-01-01

    Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. Two approaches based on modeling the nonsubsampled Shearlet transform (NSST) coefficients are presented. Two-sided generalized Gamma distribution and normal inverse Gaussian probability density function have been used to model the statistics of NSST coefficients. Bayesian maximum a posteriori estimator is applied to the corrupted NSST coefficients in order to estimate the noise-free NSST coefficients. Finally, experimental results, according to objective and subjective criteria, carried out on both artificially speckled images and the true SAR images, demonstrate that the proposed methods outperform other state of art references via two points of view, speckle noise reduction and image quality preservation.

  5. Arsenic removal from real-life groundwater by adsorption on laterite soil.

    PubMed

    Maji, Sanjoy Kumar; Pal, Anjali; Pal, Tarasankar

    2008-03-01

    The adsorption characteristics of arsenic on laterite soil, a low-cost natural adsorbent, were studied in the laboratory scale using real-life sample. The studies were conducted by both batch and continuous mode. Laterite soil was found to be an efficient adsorbent for arsenic removal from the groundwater collected from arsenic affected area. The initial concentration of arsenic in the sample was 0.33 ppm. Under optimized conditions the laterite soil could remove up to 98% of total arsenic. The optimum adsorbent dose was 20 g/l and the equilibrium time was 30 min. Isotherm studies showed that the process is favorable and spontaneous. The kinetics showed that the removal of arsenic by laterite soil is a pseudo-second-order reaction. In the column study the flow rate was maintained at 1.49 m3/(m2 h). Using 10 cm column depth, the breakthrough and exhaust time found were 6.75 h and 19.0 h, respectively. Height of adsorption zone was 9.85 cm, the rate at which the adsorption zone was moving through the bed was 0.80 cm/h, and the percentage of the total column saturated at breakthrough was 47.12%. The value of adsorption rate coefficient (K) and the adsorption capacity coefficient (N) were 1.21 l/(mgh) and 69.22 mg/l, respectively. Aqueous NaOH (1 M) could regenerate the adsorbent, and the regenerated adsorbent showed higher efficiency. PMID:17658682

  6. Equilibrium and Kinetic Adsorption of Bacteria on Alluvial Sand and Surface Thermodynamic Interpretation

    SciTech Connect

    Chen, Gang; Rockhold, Mark L.; Strevett, Keith A.

    2003-05-15

    Equilibrium and kinetic adsorption of Escherichia coli HB 101, E. coli JM 109, Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas sp. on alluvial sand from the Canadian River alluvium (Norman, OK) was investigated through column experiments. Equilibrium adsorption of these five bacterial strains followed the Freundlich expression and was a function of zero energy points, an indication of the zero energy buffer zone. Among the microorganisms studied, P. putida had the greatest equilibrium adsorption (162.4 x 108 cell/g sediment with a microbial injectate concentration of 108 cell/mL), followed by Pseudomonas sp. (127.9 x 108 cell/g sediment), E. coli HB 101 (62.8 x 108 cell/g sediment), E. coli JM 109 (58.4 x 108 cell/g sediment), and P. fluorescens (42.6 x 108 cell/g sediment). The first-order kinetic adsorption rate coefficient was an exponential function of the total interaction free energy between bacteria and sediment evaluated at the primary minimum, (PM). E. coli HB 101 had the greatest kinetic adsorption rate coefficient on the sediment (5.10 h-1), followed by E. coli JM 109 (4.52 h-1), P. fluorescens (2.12 h-1), P. putida (2.04 h-1), and Pseudomonas sp. (1.34 h-1).

  7. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    PubMed

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties. PMID:27011990

  8. Hierarchical coefficient of a multifractal based network

    NASA Astrophysics Data System (ADS)

    Moreira, Darlan A.; Lucena, Liacir dos Santos; Corso, Gilberto

    2014-02-01

    The hierarchical property for a general class of networks stands for a power-law relation between clustering coefficient, CC and connectivity k: CC∝kβ. This relation is empirically verified in several biologic and social networks, as well as in random and deterministic network models, in special for hierarchical networks. In this work we show that the hierarchical property is also present in a Lucena network. To create a Lucena network we use the dual of a multifractal lattice ML, the vertices are the sites of the ML and links are established between neighbouring lattices, therefore this network is space filling and planar. Besides a Lucena network shows a scale-free distribution of connectivity. We deduce a relation for the maximal local clustering coefficient CCimax of a vertex i in a planar graph. This condition expresses that the number of links among neighbour, N△, of a vertex i is equal to its connectivity ki, that means: N△=ki. The Lucena network fulfils the condition N△≃ki independent of ki and the anisotropy of ML. In addition, CCmax implies the threshold β=1 for the hierarchical property for any scale-free planar network.

  9. Coefficient adaptive triangulation for strongly anisotropic problems

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  10. On Learning Cluster Coefficient of Private Networks

    PubMed Central

    Wang, Yue; Wu, Xintao; Zhu, Jun; Xiang, Yang

    2013-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as clustering coefficient or modularity often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer approach to enforce differential privacy. The basic procedure of this approach is to first decompose the target computation f into several less complex unit computations f1, …, fm connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed output of computation f. We examine how various operations affect the accuracy of complex computations. When unit computations have large global sensitivity values, we enforce the differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We illustrate our approach by using clustering coefficient, which is a popular statistics used in social network analysis. Empirical evaluations on five real social networks and various synthetic graphs generated from three random graph models show the developed divide and conquer approach outperforms the direct approach. PMID:24429843

  11. Strontium Batch Distribution Coefficients with Envelope C (AN-107) Simulant

    SciTech Connect

    Hassan, N.M.

    2001-03-16

    The pretreatment process for the Hanford River Protection Project is to treat Hanford underground storage tank waste and provide decontaminated salt solution and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium.

  12. Structure and hydrogen adsorption properties in low density nanoporous carbons from simulations

    SciTech Connect

    Peng, L.; Morris, James R

    2012-01-01

    We systematically model the hydrogen adsorption in nanoporous carbons over a wide range of carbon bulk densities (0.6 - 2.4 g/cm3) by using tight binding molecular dynamics simulations for the carbon structures and thermodynamics calculations of the hydrogen adsorption. The resulting structures are in good agreement with the experimental data of ultra-microporous carbon (UMC), a wood-based activated carbon, as indicated by comparisons of the microstructure at atomic level, pair distribution function, and pore size distribution. The hydrogen adsorption calculations in carbon structures demonstrate both a promising hydrogen storage capacity (excess uptake of 1.33 wt% at 298K and 5 MPa, for carbon structures at the lower range of densities) and a reasonable heat of adsorption (12-22 kJ/mol). This work demonstrates that increasing the heat of adsorption does not necessarily increase the hydrogen uptake. In fact, the available adsorption volume is as important as the isosteric heat of adsorption for hydrogen storage in nanoporous carbons.

  13. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column

    SciTech Connect

    Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)

    1995-02-01

    Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.

  14. Dye adsorption behavior of Luffa cylindrica fibers.

    PubMed

    Demir, H; Top, A; Balköse, D; Ulkü, S

    2008-05-01

    Using natural Luffa cylindrica fibers as adsorbent removal of methylene blue dye from aqueous solutions at different temperatures and dye concentrations was investigated in this study. Thermodynamics and kinetics of adsorption were also investigated. The adsorption isotherms could be well defined with Langmuir model instead of Freundlich model. The thermodynamic parameters of methylene blue (MB) adsorption indicated that the adsorption is exothermic and spontaneous. The average MB adsorption capacity was found out as 49 mg/g and average BET surface area of fibers was calculated as 123 m(2)/g. PMID:17919814

  15. Gas adsorption on microporous carbon thin films

    SciTech Connect

    O'Shea, S.; Pailthorpe, B.A.; Collins, R.E.; Furlong, D.N. )

    1992-05-01

    A gas adsorption study was performed on amorphous hydrogenated carbon thin films which are deposited by reactive magnetron sputtering using acetylene gas. It is found that the films are highly microporous. Annealing significantly increases the adsorption capacity of the films and decreases the effects of low-pressure hysteresis in the adsorption isotherms. The general gas adsorption behavior closely resembles that of powdered activated carbons. The Dubinin-Radushkevich equation can be used to model the submonolayer adsorption isotherm for a variety of gases. 38 refs., 9 figs., 3 tabs.

  16. Adsorption characteristics of metal ions on chitosan chemically modified by D-galactose

    SciTech Connect

    Kondo, Kazuo; Sumi, Hisaharu; Matsumoto, Michiaki

    1996-07-01

    The adsorption characteristics of metal ions on chitosan chemically modified by D-galactose were examined. The pH dependency on the distribution ratio was found to be affected by the valency of the metal ion, and the apparent adsorption equilibrium constants of the metal ions were determined. The order of adsorption of the metal ions is Ga > In > Nd > Eu for the trivalent metal ions and Cu > Ni > Co for the divalent metal ions. It is believed that amino and hydroxyl groups in the chitosan act as a chelating ligand.

  17. Deformation of Microporous Carbons during N2, Ar, and CO2 Adsorption: Insight from the Density Functional Theory.

    PubMed

    Balzer, Christian; Cimino, Richard T; Gor, Gennady Y; Neimark, Alexander V; Reichenauer, Gudrun

    2016-08-16

    Using the nonlocal density functional theory, we investigate adsorption of N2 (77 K), Ar (77 K), and CO2 (273 K) and respective adsorption-induced deformation of microporous carbons. We show that the smallest micropores comparable in size and even smaller than the nominal molecular diameter of the adsorbate contribute significantly to the development of the adsorption stress. While pores of approximately the nominal adsorbate diameter exhibit no adsorption stress regardless of their filling level, the smaller pores cause expansive adsorption stresses up to almost 4 GPa. Accounting for this effect, we determined the pore-size distribution of a synthetic microporous carbon by simultaneously fitting its experimental CO2 adsorption isotherm (273 K) and corresponding adsorption-induced strain measured by in situ dilatometry. Based on the pore-size distribution and the elastic modulus fitted from CO2 data, we predicted the sample's strain isotherms during N2 and Ar adsorption (77 K), which were found to be in reasonable agreement with respective experimental data. The comparison of calculations and experimental results suggests that adsorption-induced deformation caused by micropores is not limited to the low relative pressures typically associated with the micropore filling, but is effective over the whole relative pressure range up to saturation pressure. PMID:27420036

  18. Adsorption Behavior of Nonplanar Phthalocyanines: Competition of Different Adsorption Conformations

    PubMed Central

    2016-01-01

    Using density functional theory augmented with state-of-the-art van der Waals corrections, we studied the geometric and electronic properties of nonplanar chlorogallium-phthalocyanine GaClPc molecules adsorbed on Cu(111). Comparing these results with published experimental data for adsorption heights, we found indications for breaking of the metal–halogen bond when the molecule is heated during or after the deposition process. Interestingly, the work-function change induced by this dissociated geometry is the same as that computed for an intact adsorbate layer in the “Cl-down” configuration, with both agreeing well with the experimental photoemission data. This is unexpected, as the chemical natures of the adsorbates and the adsorption distances are markedly different in the two cases. The observation is explained as a consequence of Fermi-level pinning due to fractional charge transfer at the interface. Our results show that rationalizing the adsorption configurations on the basis of electronic interface properties alone can be ambiguous and that additional insight from dispersion-corrected DFT simulations is desirable. PMID:27066160

  19. Adsorption of lipase on polypropylene powder.

    PubMed

    Gitlesen, T; Bauer, M; Adlercreutz, P

    1997-04-01

    Adsorption of different lipases by EP-100 polypropylene powder from crude and pure lipase preparations was studied. Langmuir isotherms described the adsorption equilibria well both for protein and lipase activity adsorption. Adsorption isotherms for five different proteins all gave a similar saturation level of 220 mg protein per g carrier. Twelve commercial lipase preparations were tested for selectivity in the adsorption of lipase. For all preparations the selectivity factor was larger than one. In a crude lipase preparation from Pseudomonas fluorescence, the specific activity in solution decreased by two orders of magnitude after adsorption. The adsorption was not significantly influenced by pH changes in the adsorption buffer, indicating that hydrophobic and not electrostatic interactions are the dominating adsorption forces. Adsorption of a crude lipase from Candida rugosa (Sigma) was fast and equilibrium was reached in 30 and 100 min for protein and lipase activity adsorption respectively. Desorption in aqueous solution was negligible. Investigations with seven different lipases showed no correlation between the specific lipolytic activity of dissolved enzyme in aqueous solution and the specific activity of adsorbed enzyme in an esterification reaction in organic solvent. PMID:9106498

  20. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  1. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.

    PubMed

    Wu, Zhibin; Zhong, Hua; Yuan, Xingzhong; Wang, Hou; Wang, Lele; Chen, Xiaohong; Zeng, Guangming; Wu, Yan

    2014-12-15

    In this article, a rhamnolipid-functionalized graphene oxide (RL-GO) hybrid was prepared by one-step ultrasonication and adsorptive removal of methylene blue (MB) from both artificial and real wastewater by the RL-GO was investigated. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) area and Zeta potential analysis were used to characterize the adsorbent. The results showed that RL-GO had abundant functional groups and a mesopores feature. MB adsorption by the RL-GO increased with increase in adsorbent dose, pH, temperature and initial MB concentration, while it was insensitive to ionic strength variation. The adsorption kinetics fitted well to the pseudo-second-order model with correlation coefficients greater than 0.999. The Intra-particle diffusion and Boyd's film-diffusion models showed that the rate-controlled step was dominated by film-diffusion in the beginning and then followed by intra-particle diffusion. The adsorption isotherm was fitted by adsorption models with the suitability in order of BET > Freundlich > Langmuir > Temkin, based on comparison between correlation coefficients. Thermodynamic analysis of equilibriums suggested that the adsorption MB on RL-GO was spontaneous and endothermic. The adsorption mechanism was also proposed to be electrostatic attraction, π-π interaction and hydrogen bond. In addition, the real wastewater experiment, the regeneration study and the comparative cost analysis showed that the RL-GO composites could be a cost-effective and promising sorbent for MB wastewater treatment owing to its high efficiency and excellent reusability. PMID:25314573

  2. Adsorption studies of chromium (VI) removal from water by lanthanum diethanolamine hybrid material.

    PubMed

    Mandal, Sandip; Sahu, Manoj Kumar; Giri, Anil Kumar; Patel, Raj Kishore

    2014-01-01

    In the present research work, lanthanum diethanolamine hybrid material is synthesized by co-precipitation method and used for the removal of Cr(VI) from synthetic dichromate solution and hand pump water sample. The sorption experiments were carried out in batch mode to optimize various influencing parameters such as adsorbent dose, contact time, pH, competitive anions and temperature. The characterization of the material and mechanism of Cr(VI) adsorption on the material was studied by using scanning electron microscope, Fourier transform infrared, X-ray diffraction, Brunauer-Emmett-Teller and thermogravimetric analysis-differential thermal analysis. Adsorption kinetics studies reveal that the adsorption process followed first-order kinetics and intraparticle diffusion model with correlation coefficients (R2) of 0.96 and 0.97, respectively. The adsorption data were best fitted to linearly transformed Langmuir isotherm with correlation coefficient (R2) of 0.997. The maximum removal of Cr(VI) is found to be 99.31% at optimal condition: pH = 5.6 of the solution, adsorbent dose of 8 g L(-1) with initial concentration of 10mgL(-1) of Cr(VI) solution and an equilibrium time of 50 min. The maximum adsorption capacity of the material is 357.1 mg g(-1). Thermodynamic parameters were evaluated to study the effect of temperature on the removal process. The study shows that the adsorption process is feasible and endothermic in nature. The value of E (260.6 kJ mol(-1)) indicates the chemisorption nature of the adsorption process. The material is difficult to be regenerated. The above studies indicate that the hybrid material is capable of removing Cr(VI) from water. PMID:24645464

  3. Evaluation of the vertical turbulent diffusion coefficient of industrial emissions

    NASA Astrophysics Data System (ADS)

    Ryzhakova, N. K.; Pokrovskaya, E. A.; Babicheva, V. O.

    2015-07-01

    A method for determining the vertical turbulent diffusion coefficients of industrial emissions in complex terrain and with long exposure times has been considered. The method is based on the usage of the distribution of the polluting impurity measured along a certain direction from a point source. The measurements are carried out with moss-biomonitors for a CHP in Novosibirsk.

  4. Measurements of thermal accommodation coefficients.

    SciTech Connect

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  5. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems. PMID:27176384

  6. Effects of composition and structure of alginates on adsorption of divalent metals

    NASA Astrophysics Data System (ADS)

    Nai-Yu, Zheng; Yan-Xia, Zhang; Xiao, Fan; Li-Jun, Han

    1994-03-01

    Results of a series of experiments (on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of the M/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu2+ ion decrease with the increase of the G-block or the average length of the G-block(bar N_G ) and the total adsorption capacity of alginic acid is found to vary in the same order as the F MM(diad frequency) in alginate in the mixed solution of Sr2+, Ba2+ and Cd2+.

  7. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  8. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  9. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    PubMed

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. PMID:24572271

  10. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges.

    PubMed

    Ahmed, Mohammad Boshir; Zhou, John L; Ngo, Huu Hao; Guo, Wenshan

    2015-11-01

    Antibiotics as emerging contaminants are of global concern due to the development of antibiotic resistant genes potentially causing superbugs. Current wastewater treatment technology cannot sufficiently remove antibiotics from sewage, hence new and low-cost technology is needed. Adsorptive materials have been extensively used for the conditioning, remediation and removal of inorganic and organic hazardous materials, although their application for removing antibiotics has been reported for ~30 out of 250 antibiotics so far. The literature on the adsorptive removal of antibiotics using different adsorptive materials is summarized and critically reviewed, by comparing different adsorbents with varying physicochemical characteristics. The efficiency for removing antibiotics from water and wastewater by different adsorbents has been evaluated by examining their adsorption coefficient (Kd) values. For sulfamethoxazole the different adsorbents followed the trend: biochar (BC)> multi-walled carbon nanotubes (MWCNTs)>graphite = clay minerals, and for tetracycline the adsorptive materials followed the trend: SWCNT > graphite > MWCNT = activated carbon (AC) > bentonite = humic substance = clay minerals. The underlying controlling parameters for the adsorption technology have been examined. In addition, the cost of preparing adsorbents has been estimated, which followed the order of BCs < ACs < ion exchange resins < MWCNTs < SWCNTs. The future research challenges on process integration, production and modification of low-cost adsorbents are elaborated. PMID:26057999

  11. Adsorption processing - Optimization through understanding

    SciTech Connect

    Not Available

    1986-01-01

    Adsorption processes used in the natural gas industry for dehydration, sweetening and liquids recovery are batch systems, very similar to laboratory chromatographs. For continuous processing a plant must contain multiple adsorbers, so that while one column adsorbs, another or others can be desorbed and prepared for their next turn at adsorption. Variations in the cycle, the number of adsorbers and the way multiple towers may be sequenced; in series, in parallel, etc. are so numerous that an entire presentation could be devoted to the reasons and results of the various arrangements. For a consideration of the process fundamentals and the way they can be manipulated, this discussion concentrates on a simple two tower system typical of what is frequently used to dehydrate gas ahead of a cryogenic plant; a turboexpander unit or a peak shaving LNG facility.

  12. Adsorption kinetics of diatomic molecules.

    PubMed

    Burde, Jared T; Calbi, M Mercedes

    2014-05-01

    The adsorption dynamics of diatomic molecules on solid surfaces is examined by using a Kinetic Monte Carlo algorithm. Equilibration times at increasing loadings are obtained, and explained based on the elementary processes that lead to the formation of the adsorbed film. The ability of the molecules to change their orientation accelerates the overall uptake and leads to competitive kinetic behaviour between the different orientations. The dependence of the equilibration time on coverage follows the same decreasing trend obtained experimentally for ethane adsorption on closed-end carbon nanotube bundles. The exploration of molecule-molecule interaction effects on this trend provides relevant insights to understand the kinetic behaviour of other species, from simpler molecules to larger polyatomic molecules, adsorbing on surfaces with different binding strength. PMID:24654004

  13. An adsorption model of the heterogeneous nucleation of solidification

    SciTech Connect

    Kim, W.T.; Cantor, B. . Oxford Centre for Advanced Materials and Composites)

    1994-09-01

    An adsorption model has been developed to describe the heterogeneous nucleation of solidification in an A-B eutectic or monotectic alloy system. The interface between A-rich [alpha] solid and B-rich liquid is treated as a mixture of A solid, B solid, A liquid and B liquid atoms, randomly distributed as a monolayer between the two phases. The interfacial energy is calculated by summing pairwise bonding energies, and is then minimized to determine the equilibrium interface solid fraction and composition. With decreasing temperature, the interface monolayer changes sharply from liquid to solid, with a composition close to pure B. This sharp onset of interface adsorption of solid B atoms corresponds to [alpha] acting as a catalyst for the heterogeneous nucleation of B-rich [beta] solid. Adsorption close to the eutectic temperature and therefore efficient nucleation catalysis is promoted by a large difference between the melting points of A and B, and a small difference between the solid and liquid immiscibilities of A and B. Predicted undercoolings for the onset of adsorption and nucleation catalysis can be obtained directly from simple phase diagram data, and give good agreement with previous measurements in the Ag-Pb and Al-Sn alloy systems.

  14. CO₂ adsorption on amine-functionalized periodic mesoporous benzenesilicas.

    PubMed

    Sim, Kyohyun; Lee, Nakwon; Kim, Joonseok; Cho, Eun-Bum; Gunathilake, Chamila; Jaroniec, Mietek

    2015-04-01

    CO2 adsorption was investigated on amine-functionalized mesoporous silica (SBA-15) and periodic mesoporous organosilica (PMO) samples. Hexagonally (p6mm) ordered mesoporous SBA-15 and benzene-PMO (BPMO) samples were prepared in the presence of Pluronic P123 block copolymer template under acidic conditions. Three kinds of amine-containing organosilanes and polyethylenimine were used to functionalize SBA-15 and BPMO. Small-angle X-ray scattering and nitrogen adsorption isotherms showed that these samples featured ordered mesostructure, high surface area, and narrow pore size distributions. Solid-state (13)C- and (29)Si cross-polarization magic-angle spinning NMR spectra showed chemical linkage between amine-containing modifiers and the surface of mesoporous materials. The chemically linked amine-containing modifiers were found to be on both the inner and outer surfaces. N-[3-(trimethoxysilyl)propyl]ethylenediamine-modified BPMO (A2-BPMO) sample exhibited the highest CO2 uptake (i.e., ∼3.03 mmol/g measured on a volumetric adsorption analyzer) and the fastest adsorption rate (i.e., ∼13 min to attain 90% of the maximum amount) among all the samples studied. Selectivity and reproducibility measurements for the A2-BPMO sample showed quite good performance in flowing N2 gas at 40 mL/min and CO2 gas of 60 mL/min at 25 °C. PMID:25742049

  15. Adsorption of comb copolymers on weakly attractive solid surfaces.

    PubMed

    Striolo, A; Jayaraman, A; Genzer, J; Hall, C K

    2005-08-01

    In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces. PMID:16122338

  16. The adsorption of copper in a packed-bed of chitosan beads: modeling, multiple adsorption and regeneration.

    PubMed

    Osifo, Peter O; Neomagus, Hein W J P; Everson, Raymond C; Webster, Athena; vd Gun, Marius A

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead. PMID:19321260

  17. Studies on Vapor Adsorption Systems

    NASA Technical Reports Server (NTRS)

    Shamsundar, N.; Ramotowski, M.

    1998-01-01

    The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling. The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.

  18. Optimum conditions for adsorptive storage.

    PubMed

    Bhatia, Suresh K; Myers, Alan L

    2006-02-14

    The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the "Holy Grail" adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane. PMID:16460092

  19. Adsorption and desorption studies of cesium on sapphire surfaces

    SciTech Connect

    Zavadil, K.R.; Ing, J.L.

    1993-12-01

    Adsorption/desorption were studied using combined surface analytical techniques. An approximate initial sticking coefficient for Cs on sapphire was measured using reflection mass spectrometry and found to be 0.9. Thermal Desorption Mass Spectrometry (TDMS) and Auger Electron Spectroscopy (AES) were used to verify that a significant decrease in sticking coefficient occurs as the Cs coverage reaches a critical submonolayer value. TDMS analysis demonstrates that Cs is stabilized on a clean sapphire surface at temperatures (1200 K) in excess of the temperatures experienced by sapphire in a TOPAZ-2 thermionic fuel element (TFE). Surface contaminants on sapphire can enhance Cs adsorption relative to the clean surface. C contamination eliminates the high temperature state of Cs desorption found on clean sapphire but shifts the bulk of the C desorption from 400 to 620 K. Surface C is a difficult contaminant to remove from sapphire, requiring annealing above 1400 K. Whether Cs is stabilized on sapphire in a TFE environment will most likely depend on relation between surface contamination and surface structure.

  20. Approaches to mitigate the impact of dissolved organic matter on the adsorption of synthetic organic contaminants by porous carbonaceous sorbents

    SciTech Connect

    Yanping Guo; Abhishek Yadav; Tanju Karanfil

    2007-11-15

    Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensions of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.

  1. Adsorptive properties of flyash carbon

    SciTech Connect

    Graham, U.M.; Rathbone, R.F.; Robl, T.L.

    1996-10-01

    Flyash carbon constitutes the char particles that are left in flyash after the incomplete combustion of coal in the furnace, rendering flyash above spec for ASTM C618 applications for cement. A beneficiation process allows the selective separation of unburned carbon from flyash to be used for upgrading into a higher value product. Flyash carton is composed of several microscopically distinguishable types; inertinite is relatively unreactive in the thermal processing of coal and occurs essentially unaltered in the flyash while {open_quotes}coke{close_quotes} is produced from the melting, devolatilization, swelling and resolidification of the reactive macerals vitrinite and liptinite. The porosity, surface area, and surface chemistry of flyash carbons are characterized using mercury porosimetry, BET analysis, and vapor- and liquid-phase adsorption of various organic compounds. Results suggest that different carbon forms in flyash affect the degree of adsorption of phenols as will as other hydrocarbon pollutants onto the flyash carbon. A comparison of adsorptability of the flyash carbon compared to commercially available active carbons are discussed.

  2. Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons

    SciTech Connect

    Ihm, Yungok; Cooper, Valentino R; Gallego, Nidia C; Contescu, Cristian I; Morris, James R

    2014-01-01

    We demonstrate a successful, efficient framework for predicting gas adsorption properties in real materials based on first-principles calculations, with a specific comparison of experiment and theory for methane adsorption in activated carbons. These carbon materials have different pore size distributions, leading to a variety of uptake characteristics. Utilizing these distributions, we accurately predict experimental uptakes and heats of adsorption without empirical potentials or lengthy simulations. We demonstrate that materials with smaller pores have higher heats of adsorption, leading to a higher gas density in these pores. This pore-size dependence must be accounted for, in order to predict and understand the adsorption behavior. The theoretical approach combines: (1) ab initio calculations with a van der Waals density functional to determine adsorbent-adsorbate interactions, and (2) a thermodynamic method that predicts equilibrium adsorption densities by directly incorporating the calculated potential energy surface in a slit pore model. The predicted uptake at P=20 bar and T=298 K is in excellent agreement for all five activated carbon materials used. This approach uses only the pore-size distribution as an input, with no fitting parameters or empirical adsorbent-adsorbate interactions, and thus can be easily applied to other adsorbent-adsorbate combinations.

  3. Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange.

    PubMed

    Fan, Jimin; Zhao, Zhihuan; Liu, Wenhui; Xue, Yongqiang; Yin, Shu

    2016-05-15

    The different crystal forms of nitrogen doped-titanium oxide (N-TiO2) with different particle sizes were produced by precipitation-solvothermal method and their adsorption mechanism were also investigated. The adsorption kinetics showed that rutile N-TiO2 displayed higher adsorption capacity than anatase for methyl orange (MO) and its adsorption behavior followed the pseudo-second-order kinetics. The equilibrium adsorption rate of N-TiO2 for MO was well fitted by the Langmuir isotherm model and the adsorption process was monolayer adsorption. The adsorption capacity decreased with increasing temperature. The average correlation coefficient was beyond 97%. The thermodynamic parameters (ΔaGm(ө), ΔaHm(ө), and ΔaSm(ө)) were calculated. It was found that anatase and rutile N-TiO2 had different adsorption enthalpy and entropy. The smaller the particle size, the greater the surface area and surface energy was, then ΔaGm(ө) decreased and the standard equilibrium constant increased at the same time. The adsorption process onto different crystalline phase N-TiO2 was exothermic and non-spontaneous. PMID:26945716

  4. Higher Order Macro Coefficients in Periodic Homogenization

    NASA Astrophysics Data System (ADS)

    Conca, Carlos; San Martin, Jorge; Smaranda, Loredana; Vanninathan, Muthusamy

    2011-09-01

    A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.

  5. Controls on radium transport by adsorption to iron minerals

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A

  6. The Role of Lactic Acid Adsorption by Ion Exchange Chromatography

    PubMed Central

    Zhang, Tongcun; Zhang, Jian; Jia, Shiru; Yu, Changyan; Jiang, Kunyu; Gao, Nianfa

    2010-01-01

    Background The polyacrylic resin Amberlite IRA-67 is a promising adsorbent for lactic acid extraction from aqueous solution, but little systematic research has been devoted to the separation efficiency of lactic acid under different operating conditions. Methodology/Principal Findings In this paper, we investigated the effects of temperature, resin dose and lactic acid loading concentration on the adsorption of lactic acid by Amberlite IRA-67 in batch kinetic experiments. The obtained kinetic data followed the pseudo-second order model well and both the equilibrium and ultimate adsorption slightly decreased with the increase of the temperature at 293–323K and 42.5 g/liter lactic acid loading concentration. The adsorption was a chemically heterogeneous process with a mean free energy value of 12.18 kJ/mol. According to the Boyd_plot, the lactic acid uptake process was primarily found to be an intraparticle diffusion at a lower concentration (<50 g/liter) but a film diffusion at a higher concentration (>70 g/liter). The values of effective diffusion coefficient Di increased with temperature. By using our Equation (21), the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. Moreover, the negative value of ΔS° reflected the decrease of solid-liquid interface randomness at the solid-liquid interface when adsorbing lactic acid on IRA-67. Conclusions/Significance With the weakly basic resin IRA-67, in situ product removal of lactic acid can be accomplished especially from an open and thermophilic fermentation system without sterilization. PMID:21085600

  7. Ratios of internal conversion coefficients

    SciTech Connect

    Raman, S.; Ertugrul, M.; Nestor, C.W. . E-mail: CNestorjr@aol.com; Trzhaskovskaya, M.B.

    2006-03-15

    We present here a database of available experimental ratios of internal conversion coefficients for different atomic subshells measured with an accuracy of 10% or better for a number of elements in the range 26 {<=} Z {<=} 100. The experimental set involves 414 ratios for pure and 1096 ratios for mixed-multipolarity nuclear transitions in the transition energy range from 2 to 2300 keV. We give relevant theoretical ratios calculated in the framework of the Dirac-Fock method with and without regard for the hole in the atomic subshell after conversion. For comparison, the ratios obtained within the relativistic Hartree-Fock-Slater approximation are also presented. In cases where several ratios were measured for the same transition in a given isotope in which two multipolarities were involved, we present the mixing ratio {delta} {sup 2} obtained by a least squares fit.

  8. Generalized transport coefficients for inelastic Maxwell mixtures under shear flow.

    PubMed

    Garzó, Vicente; Trizac, Emmanuel

    2015-11-01

    The Boltzmann equation framework for inelastic Maxwell models is considered to determine the transport coefficients associated with the mass, momentum, and heat fluxes of a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. The Boltzmann equation is solved by means of a Chapman-Enskog-type expansion around the (local) shear flow distributions f(r)(0) for each species that retain all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the transport processes instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled equations, which can be analytically solved as functions of the shear rate a, the coefficients of restitution α(rs), and the parameters of the mixture (masses, diameters, and composition). Since the reference distribution functions f(r)(0) apply for arbitrary values of the shear rate and are not restricted to weak dissipation, the corresponding generalized coefficients turn out to be nonlinear functions of both a and α(rs). The dependence of the relevant elements of the three diffusion tensors on both the shear rate and dissipation is illustrated in the tracer limit case, the results showing that the deviation of the generalized transport coefficients from their forms for vanishing shear rates is in general significant. A comparison with the previous results obtained analytically for inelastic hard spheres by using Grad's moment method is carried out, showing a good agreement over a wide range of values for the coefficients of restitution. Finally, as an application of the theoretical expressions derived here for the transport coefficients, thermal diffusion segregation of an intruder immersed in a granular gas is also studied. PMID:26651684

  9. Generalized transport coefficients for inelastic Maxwell mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2015-11-01

    The Boltzmann equation framework for inelastic Maxwell models is considered to determine the transport coefficients associated with the mass, momentum, and heat fluxes of a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. The Boltzmann equation is solved by means of a Chapman-Enskog-type expansion around the (local) shear flow distributions fr(0 ) for each species that retain all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the transport processes instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled equations, which can be analytically solved as functions of the shear rate a , the coefficients of restitution αr s, and the parameters of the mixture (masses, diameters, and composition). Since the reference distribution functions fr(0 ) apply for arbitrary values of the shear rate and are not restricted to weak dissipation, the corresponding generalized coefficients turn out to be nonlinear functions of both a and αr s. The dependence of the relevant elements of the three diffusion tensors on both the shear rate and dissipation is illustrated in the tracer limit case, the results showing that the deviation of the generalized transport coefficients from their forms for vanishing shear rates is in general significant. A comparison with the previous results obtained analytically for inelastic hard spheres by using Grad's moment method is carried out, showing a good agreement over a wide range of values for the coefficients of restitution. Finally, as an application of the theoretical expressions derived here for the transport coefficients, thermal diffusion segregation of an intruder immersed in a granular gas is also studied.

  10. Effect of pH and Electrolytes on Adsorption of 2,4-D onto Kaolinite

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    The fate and transport of pesticides in soil can be greatly influenced by adsorption onto clay minerals such as kaolinite. The ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) is one of the most commonly used herbicides. The purpose of this study is to investigate the effect of electrolytes and pH on the adsorption of 2,4- D onto kaolinite. The adsorption coefficient (Kd) of 2,4-D on two types of kaolinite was measured in batch experiments using water and 4 different electrolytes (0.005M CaSO4, 0.005M CaCl2, 0.01M KCl, and 0.01M NaCl). The experiments were carried out with 0.5 g kaolinite at a solid:liquid ratio of 1:20 and at different pH (1.9-6.3). The pH of the solution was controlled by addition of 0.2N of HCl. X-ray diffraction analysis of both kaolinite with and without adsorbed 2,4-D was also done to understand the location of 2,4-D adsorption. The effects of pH and electrolytes on Kd were compared and possible adsorption mechanisms were revealed for 2,4-D adsorption onto the two different types of kaolinite. The results implied that 2,4-D adsorption was higher for an electrolyte solution with monovalent cation than with divalent cation for one type of kaolinite, while no such trend was observed for the other kaolinite. The adsorption of 2,4-D increased significantly with decreasing pH for both types of kaolinite.

  11. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  12. Measuring the Soret coefficient of nanoparticles in a dilute suspension

    PubMed Central

    Zhao, Chao; Fu, Jinxin; Oztekin, Alparslan; Cheng, Xuanhong

    2014-01-01

    Thermophoresis is an efficient process for the manipulation of molecules and nanoparticles due to the strong force it generates on the nanoscale. Thermophoresis is characterized by the Soret coefficient. Conventionally, the Soret coefficient of nanosized species is obtained by fitting the concentration profile under a temperature gradient at the steady state to a continuous phase model. However, when the number density of the target is ultralow and the dispersed species cannot be treated as a continuous phase, the bulk concentration fluctuates spatially, preventing extraction of temperature-gradient induced concentration profile. The present work demonstrates a strategy to tackle this problem by superimposing snapshots of nanoparticle distribution. The resulting image is suitable for the extraction of the Soret coefficient through the conventional data fitting method. The strategy is first tested through a discrete phase model that illustrates the spatial fluctuation of the nanoparticle concentration in a dilute suspension in response to the temperature gradient. By superimposing snapshots of the stochastic distribution, a thermophoretic depletion profile with low standard error is constructed, indicative of the Soret coefficient. Next, confocal analysis of nanoparticle distribution in response to a temperature gradient is performed using polystyrene nanobeads down to 1e-5% (v/v). The experimental results also reveal that superimposing enhances the accuracy of extracted Soret coefficient. The critical particle number density in the superimposed image for predicting the Soret coefficient is hypothesized to depend on the spatial resolution of the image. This study also demonstrates that the discrete phase model is an effective tool to study particle migration under thermophoresis in the liquid phase. PMID:25221433

  13. Measuring the Soret coefficient of nanoparticles in a dilute suspension.

    PubMed

    Zhao, Chao; Fu, Jinxin; Oztekin, Alparslan; Cheng, Xuanhong

    2014-10-01

    Thermophoresis is an efficient process for the manipulation of molecules and nanoparticles due to the strong force it generates on the nanoscale. Thermophoresis is characterized by the Soret coefficient. Conventionally, the Soret coefficient of nanosized species is obtained by fitting the concentration profile under a temperature gradient at the steady state to a continuous phase model. However, when the number density of the target is ultralow and the dispersed species cannot be treated as a continuous phase, the bulk concentration fluctuates spatially, preventing extraction of temperature-gradient induced concentration profile. The present work demonstrates a strategy to tackle this problem by superimposing snapshots of nanoparticle distribution. The resulting image is suitable for the extraction of the Soret coefficient through the conventional data fitting method. The strategy is first tested through a discrete phase model that illustrates the spatial fluctuation of the nanoparticle concentration in a dilute suspension in response to the temperature gradient. By superimposing snapshots of the stochastic distribution, a thermophoretic depletion profile with low standard error is constructed, indicative of the Soret coefficient. Next, confocal analysis of nanoparticle distribution in response to a temperature gradient is performed using polystyrene nanobeads down to 1e-5% (v/v). The experimental results also reveal that superimposing enhances the accuracy of extracted Soret coefficient. The critical particle number density in the superimposed image for predicting the Soret coefficient is hypothesized to depend on the spatial resolution of the image. This study also demonstrates that the discrete phase model is an effective tool to study particle migration under thermophoresis in the liquid phase. PMID:25221433

  14. Genesis of ion-adsorption type REE ores in Thailand

    NASA Astrophysics Data System (ADS)

    Sanematsu, K.; Yoshiaki, K.; Watanabe, Y.

    2012-04-01

    Ion-adsorption type REE deposits, which have been economically mined only in southern China, are predominant supply sources for HREE in the world. The ore bodies consist of weathered granites called ion-adsorption ores. The majority of REE (>50 %) are electrostatically adsorbed onto weathering products in the ores and they can be extracted by ion exchange using an electrolyte solution (e.g., ammonium sulfate solution). Recently the occurrences of ion-adsorption ores have been reported in Indochina, SE Asia. In this study, we discuss geochemical and mineralogical characteristics of parent granites and weathered granites in Thailand in order to reveal the genesis of ion-adsorption ores. Permo-Triassic and Cretaceous-Paleogene granite plutons are distributed from northern Thailand to western Indonesia through eastern Myanmar and Peninsular Malaysia. They are mostly ilmenite-series calcalkaline biotite or hornblende-biotite granites. REE contents of the granites range from 60 to 600 ppm and they are relatively high in Peninsula Thailand. REE-bearing minerals consist mainly of apatite, zircon, allanite, titanite, monazite and xenotime. Some I-type granites contain REE fluorocarbonate (probably synchysite-(Ce)) in cavities and cracks in feldspars and it is the dominant source of REE for ion-adsorption ores because the fluorocarbonate is easily soluble during weathering. In contrast, insoluble monazite and xenotime are not preferable for ion-adsorption ores although they are common ore minerals of placer REE deposits. Weathered granites show REE contents ranging from 60 to 1100 ppm in Thailand because REE are relatively immobile compared with mobile elements (e.g., Na, K, Ca). In the weathered granites, REE are contained in residual minerals and secondary minerals and are adsorbed onto the surface of weathering products. A weathering profile of granite with ion-adsorption type mineralization can be divided into upper and lower parts based on REE enrichment and Ce

  15. Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex

    NASA Astrophysics Data System (ADS)

    Ibragimova, P. I.; Grebennikov, S. F.; Gur'yanov, V. V.; Fedyukevich, V. A.; Vorob'ev-Desyatovskii, N. V.

    2014-06-01

    The effect the porous structure of activated carbons obtained from furfural and coconut shells has on the kinetics of [Au(CN)2]- ion adsorption is studied. Effective diffusion coefficients for [Au(CN)2]- anions in transport and adsorbing pores and mass transfer coefficients in a transport system of the pores and in microporous zones are calculated using the statistical moments of the kinetic curve.

  16. The emission coefficient of uranium plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.

  17. Conversion coefficients of the isomeric state in {sup 72}Br

    SciTech Connect

    Briz, J. A.; Borge, M. J. G.; Maira, A.; Perea, A.; Tengblad, O.; Agramunt, J.; Algora, A.; Estevez, E.; Nacher, E.; Rubio, B.; Fraile, L. M.; Deo, A.; Farrelly, G.; Gelletly, W.; Podolyak, Z.

    2010-04-26

    In order to determine the Gamow-Teller strength distribution for the N Z nucleus {sup 72}Kr an experiment was performed with a Total Absorption Gamma Spectrometer. To fully accomplish this task it is crucial to determine the multipolarity of the low energy transitions as the spin-parity of the daughter ground state has been debated. This is done by experimental determination of the conversion coefficients. Preliminary results for the multipolarity and conversion coefficients of the transition connecting the isomeric state at 101 keV with the {sup 72}Br ground state are presented.

  18. Optical attenuation coefficient in individual ZnO nanowires.

    PubMed

    Little, Anree; Hoffman, Abigail; Haegel, Nancy M

    2013-03-11

    Attenuation coefficient measurements for the propagation of bandedge luminescence are made on individual ZnO nanowires by combining the localized excitation capability of a scanning electron microscope (SEM) with near-field scanning optical microscopy (NSOM) to record the distribution and intensity of wave-guided emission. Measurements were made for individual nanostructures with triangular cross-sections ranging in diameter from 680 to 2300 nm. The effective attenuation coefficient shows an inverse dependence on nanowire diameter (d(-1)), indicating scattering losses due to non-ideal waveguiding behavior. PMID:23482201

  19. Interfacial adsorption of antifreeze proteins: a neutron reflection study.

    PubMed

    Xu, Hai; Perumal, Shiamalee; Zhao, Xiubo; Du, Ning; Liu, Xiang-Yang; Jia, Zongchao; Lu, Jian R

    2008-06-01

    Interfacial adsorption from two antifreeze proteins (AFP) from ocean pout (Macrozoarces americanus, type III AFP, AFP III, or maAFP) and spruce budworm (Choristoneura fumiferana, isoform 501, or cfAFP) were studied by neutron reflection. Hydrophilic silicon oxide was used as model substrate to facilitate the solid/liquid interfacial measurement so that the structural features from AFP adsorption can be examined. All adsorbed layers from AFP III could be modeled into uniform layer distribution assuming that the protein molecules were adsorbed with their ice-binding surface in direct contact with the SiO(2) substrate. The layer thickness of 32 A was consistent with the height of the molecule in its crystalline form. With the concentration decreasing from 2 mg/ml to 0.01 mg/ml, the volume fraction of the protein packed in the monolayer decreased steadily from 0.4 to 0.1, consistent with the concentration-dependent inhibition of ice growth observed over the range. In comparison, insect cfAFP showed stronger adsorption over the same concentration range. Below 0.1 mg/ml, uniform layers were formed. But above 1 mg/ml, the adsorbed layers were characterized by a dense middle layer and two outer diffuse layers, with a total thickness around 100 A. The structural transition indicated the responsive changes of conformational orientation to increasing surface packing density. As the higher interfacial adsorption of cfAFP was strongly correlated with the greater thermal hysteresis of spruce budworm, our results indicated the important relation between protein adsorption and antifreeze activity. PMID:18234809

  20. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    PubMed

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do. PMID:25732332

  1. Adsorption of goethite onto quartz and kaolinite

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  2. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS. PMID:25365738

  3. Methane adsorption in nanoporous carbon: the numerical estimation of optimal storage conditions

    NASA Astrophysics Data System (ADS)

    Ortiz, L.; Kuchta, B.; Firlej, L.; Roth, M. W.; Wexler, C.

    2016-05-01

    The efficient storage and transportation of natural gas is one of the most important enabling technologies for use in energy applications. Adsorption in porous systems, which will allow the transportation of high-density fuel under low pressure, is one of the possible solutions. We present and discuss extensive grand canonical Monte Carlo (GCMC) simulation results of the adsorption of methane into slit-shaped graphitic pores of various widths (between 7 Å and 50 Å), and at pressures P between 0 bar and 360 bar. Our results shed light on the dependence of film structure on pore width and pressure. For large widths, we observe multi-layer adsorption at supercritical conditions, with excess amounts even at large distances from the pore walls originating from the attractive interaction exerted by a very high-density film in the first layer. We are also able to successfully model the experimental adsorption isotherms of heterogeneous activated carbon samples by means of an ensemble average of the pore widths, based exclusively on the pore-size distributions (PSD) calculated from subcritical nitrogen adsorption isotherms. Finally, we propose a new formula, based on the PSD ensemble averages, to calculate the isosteric heat of adsorption of heterogeneous systems from single-pore-width calculations. The methods proposed here will contribute to the rational design and optimization of future adsorption-based storage tanks.

  4. M-Bonomial Coefficients and Their Identities

    ERIC Educational Resources Information Center

    Asiru, Muniru A.

    2010-01-01

    In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.

  5. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  6. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  7. Adsorption of organic molecules on silica surface.

    PubMed

    Parida, Sudam K; Dash, Sukalyan; Patel, Sabita; Mishra, B K

    2006-09-13

    The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review

  8. Volumetric interpretation of protein adsorption kinetics

    NASA Astrophysics Data System (ADS)

    Barnthip, Naris

    Protein adsorption is believed to be a very important factor ultimately leading to a predictive basis for biomaterials design and improving biocompatibility. Standard adsorption theories are modified to accommodate experimental observations. Adsorption from single-protein solutions and competitive adsorption from binary solutions are mainly considered. The standard solution-depletion method of measuring protein adsorption is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure protein adsorption to hydrophobic octyl sepharose (OS) adsorbent particles. Standard radiometric methods have also been used as a further check on the electrophoresis method mentioned above for purified-protein cases. Experimental results are interpreted in terms of an alternative kinetic model called volumetric interpretation of protein adsorption. A partitioning process between bulk solution and a three-dimensional interphase region that separates bulk solution from the physical adsorbent surface is the concept of the model. Protein molecules rapidly diffuse into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface, then follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible. An important role of water in protein adsorption is emphasized and supported by this model. The fundamental aspects including the reversibility/irreversibility of protein adsorption, the multilayer adsorption, the applicability of thermodynamic/computational models, the capacity of protein adsorption, and the mechanism of so called Vroman effect are discussed and compared to the conventional theories. Superhydrophobic effect on the adsorption of human serum albumin is also examined.

  9. Study of Solar Driven Silica gel-Water based Adsorption Chiller

    NASA Astrophysics Data System (ADS)

    Habib, K.; Assadi, M. K.; Zainudin, M. H. B.

    2015-09-01

    In this study, a dynamic behaviour of a solar powered single stage four bed adsorption chiller has been analysed designed for Malaysian climate. Silica gel and water have been used as adsorbent-refrigerant pair. A simulation program has been developed for modeling and performance evaluation of the chiller using the meteorological data of Kuala Lumpur. The optimum cooling capacity and coefficient of performance (COP) are calculated in terms of adsorption/desorption cycle time and regeneration temperature. Results indicate that the chiller is feasible even when low temperature heat source is available. Results also show that the adsorption cycle can achieve a cooling capacity of 14 kW when the heat source temperature is about 85°C.

  10. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water. PMID:26803100

  11. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber. PMID:18284136

  12. Kinetic studies of competitive adsorption processes related to automobile catalytic converters

    SciTech Connect

    Zaera, F.; Paffett, M.T.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to study the microscopic details for the adsorption of CO, NO, and O{sub 2} on transition metal surfaces under conditions resembling those present in automobile catalytic converters. Initial sticking coefficients were measured as a function of temperature on transition metal single crystals by using a method originally developed by King and Wells. These measurements were performed under conditions emulating those typical of competitive adsorption, namely, where the substrate is exposed to a mixture of two or more gases simultaneously, or where one molecule is adsorbed on the surface prior to exposure to the second gas. The experimental results were then analyzed by using Monte Carlo computer simulation algorithm in an attempt to better understand the relevant aspects of the adsorption process.

  13. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content. PMID:27337897

  14. Analyzing adsorption characteristics of CO2, N2 and H2O in MCM-41 silica by molecular simulation

    NASA Astrophysics Data System (ADS)

    Chang, Shing-Cheng; Chien, Shih-Yao; Chen, Chieh-Li; Chen, Cha'o.-Kuang

    2015-03-01

    The adsorption characteristics of carbon dioxide, nitrogen and water molecules in MCM-41 mesoporous molecular sieve have been investigated by the molecular simulation. We evaluate the pressure-adsorption isotherms and adsorption density profiles under variant gas pressure, operating temperature and mesopore radius of MCM-41 by the grand canonical Monte Carlo simulation. According to the calculated adsorption energy distributions, the adsorption mechanisms of gas in MCM-41 are mainly divided into three types, namely "surface adsorption" on the pore wall, "multilayer adsorption" on the adsorbed gas molecules and "molecular self-aggregation" near the pore center. In addition, the adsorption characteristics of water molecules in MCM-41 are found to be quite different from those of carbon dioxide and nitrogen due to the hydrogen bonds effect. The results indicate that the MCM-41 is practicable in engineering application for the capture, storage, and re-use of water molecules, since it is temperature-sensitive and can achieve significant adsorption loadings within a small range of pressure values via the capillary condensation phenomena.

  15. Adsorption of phenol on wood surfaces

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-03-01

    Adsorption of phenol on aspen and pine wood is investigated. It is shown that adsorption isotherms are described by the Langmuir model. The woods' specific surface areas and adsorption interaction constants are determined. It is found that the sorption of phenol on surfaces of aspen and pine is due to Van der Waals interactions ( S sp = 45 m2/godw for aspen and 85 m2/godw for pine). The difference between the adsorption characteristics is explained by properties of the wood samples' microstructures.

  16. Adsorption of water vapor on reservoir rocks

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  17. Adsorption interactions of humic acids with biocides

    NASA Astrophysics Data System (ADS)

    Mal'Tseva, E. V.; Ivanov, A. A.; Yudina, N. V.

    2009-11-01

    The chemical composition of humic acids from brown coal (Aldrich) was determined by element analysis, 13C NMR spectroscopy, and potentiometric titration. The adsorption ability of humic acids with different biocides (cyproconasol, propiconasol, tebuconasol, irgarol 1051, and DCOIT) was studied. The adsorption ability of a mixture of biocides in aqueous solutions was higher than that of the individual components. The limiting concentration of humic acids at which adsorption of biocides was maximum was determined. Adsorption constants were calculated by the Freundlich equation for each biocide in aqueous solution.

  18. Adsorption and isotopic fractionation of Xe

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.

    1986-01-01

    A theoretical description of the mechanisms of isotopic fractionation arising during adsorption of noble gases in a Henry's Law pressure regime is given. Experimental data on the isotopic composition of Xe adsorbed on activated charcoal in the temperature range 220 K to 350 K are presented. Both theoretical considerations and the experimental data indicate that equilibrium adsorption does not significantly alter the isotopic structure of adsorbed structure of adsorbed noble gases. Therefore, if adsorption is responsible for the elemental noble gas pattern in meteorites and the earth, the heavy noble gas isotopic fractionation between them must have been produced prior to and by a different process than equilibrium adsorption.

  19. Moisture adsorption in optical coatings

    NASA Technical Reports Server (NTRS)

    Macleod, H. Angus

    1988-01-01

    The thin film filter is a very large aperture component which is exceedingly useful because of its small size, flexibility and ease of mounting. Thin film components, however, do have defects of performance and especially of stability which can cause problems in systems, particularly where long-term measurements are being made. Of all of the problems, those associated with moisture absorption are the most serious. Moisture absorption occurs in the pore-shaped voids inherent in the columnar structure of the layers. Ion-assisted deposition is a promising technique for substantially reducing moisture adsorption effects in thin film structures.

  20. Charcoal/Nitrogen Adsorption Cryocooler

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1987-01-01

    Refrigerator with no wear-related moving parts produces 0.5 W of cooling at 118 K. When fully developed, refrigerator needs no electrical power, and life expectancy of more than 10 yr, operates unattended to cool sensitive infrared detectors for long periods. Only moving parts in adsorption cryocooler are check valves. As charcoal is cooled in canister, gas pressure drops, allowing inlet check valve to open and admit more nitrogen. When canister is heated, pressure rises, closing inlet valve and eventually opening outlet valve.