First-principles calculations of the OH- adsorption energy on perovskite oxide
NASA Astrophysics Data System (ADS)
Ohzuku, Hideo; Ikeno, Hidekazu; Yamada, Ikuya; Yagi, Shunsuke
2016-08-01
The oxygen evolution reaction (OER) that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal-air batteries and direct solar water splitting. ABO3 perovskite oxides have been extensively studied because of their high catalytic OER activity. In the present study, the OH- adsorption process on the perovskite surface about different B site cations was investigated by the first-principles calculations. We concluded that the adsorption energy of SrFeO3 surface is larger than that of SrTiO3.
NASA Astrophysics Data System (ADS)
Battle, Keith; Alan Salter, E.; Wesley Edmunds, R.; Wierzbicki, Andrzej
2010-04-01
Antifreeze proteins (AFPs) are a unique class of proteins that inhibit ice growth without changing the melting point of ice. In this work, we study the detailed molecular mechanism of interactions between the hydrophobic side of the winter flounder (WF) AFP and two mutants, AAAA and SSSS, in which threonine residues are substituted by serines and alanines, respectively. Umbrella sampling molecular dynamics simulations of the separation of the proteins from the (2 0 1) surface in an explicit water box is carried out to calculate the potential of mean force free energies of adsorption using AMBER10i. We estimate wild-type WF's free energy of adsorption to ice to be about -12.0 kcal/mol. Gas-phase pseudopotential plane-wave calculations of methane adsorption onto select surfaces of ice are also carried out under periodic boundary conditions to address the possible enthalpic role of WF's methyl groups in binding. The contributions of hydrophobic residues to the free energy of adsorption are discussed.
NASA Astrophysics Data System (ADS)
Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team
Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.
Band-Filling Correction Method for Accurate Adsorption Energy Calculations: A Cu/ZnO Case Study.
Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti; Broqvist, Peter
2013-11-12
We present a simple method, the "band-filling correction", to calculate accurate adsorption energies (Eads) in the low coverage limit from finite-size supercell slab calculations using DFT. We show that it is necessary to use such a correction if charge transfer takes place between the adsorbate and the substrate, resulting in the substrate bands either filling up or becoming depleted. With this correction scheme, we calculate Eads of an isolated Cu atom adsorbed on the ZnO(101̅0) surface. Without the correction, the calculated Eads is highly coverage-dependent, even for surface supercells that would typically be considered very large (in the range from 1 nm × 1 nm to 2.5 nm × 2.5 nm). The correction scheme works very well for semilocal functionals, where the corrected Eads is converged within 0.01 eV for all coverages. The correction scheme also works well for hybrid functionals if a large supercell is used and the exact exchange interaction is screened. PMID:26583386
Staemmler, Volker
2011-06-30
The method of local increments is used in connection with an embedded cluster approach and wave function based quantum chemical ab initio methods to describe the adsorption of a single CO molecule on the MgO(001) surface. The first step in this approach is a conventional Hartree-Fock calculation. The occupied orbitals are then localized by means of the Foster-Boys localization procedure, and the full system is decomposed into several "subunits" that consist of the orbitals localized at the CO molecule and at the Mg and O atoms of the MgO cluster. The correlation energy is expanded into a series of local n-body increments that are evaluated separately and independently. In this way, big savings in computer time can be achieved because (a) the treatment of a large system is replaced with a series of much faster calculations for small subsystems and (b) the big basis sets necessary for describing dispersion effects are only needed for the atoms in the respective subsystem while all other atoms can be treated by medium size Hartree-Fock type basis sets. The coupled electron pair approach, CEPA, an approximate coupled cluster method, is used to calculate the correlation energies of the various subsystems. For the vertical adsorption of CO on top a Mg atom of the MgO(001) surface with the C atom toward Mg, the individual one- and two-body increments are calculated as functions of the CO-MgO separation and a full potential energy curve is constructed from them. A very shallow minimum with an adsorption energy of 0.016 eV at a Mg-C distance of 3.04 Å is found at the Hartree-Fock level, while inclusion of correlation (dispersion) effects shortens the Mg-C distance to 2.59 Å and yields a much larger adsorption energy of 0.124 eV. This is in very good agreement with the best experimental value of 0.14 eV. The basis set superposition error, BSSE, was fully corrected for by the counterpoise method and the bonding mechanism was analyzed at the Hartree-Fock level by means of
Staemmler, Volker
2011-06-30
The method of local increments is used in connection with an embedded cluster approach and wave function based quantum chemical ab initio methods to describe the adsorption of a single CO molecule on the MgO(001) surface. The first step in this approach is a conventional Hartree-Fock calculation. The occupied orbitals are then localized by means of the Foster-Boys localization procedure, and the full system is decomposed into several "subunits" that consist of the orbitals localized at the CO molecule and at the Mg and O atoms of the MgO cluster. The correlation energy is expanded into a series of local n-body increments that are evaluated separately and independently. In this way, big savings in computer time can be achieved because (a) the treatment of a large system is replaced with a series of much faster calculations for small subsystems and (b) the big basis sets necessary for describing dispersion effects are only needed for the atoms in the respective subsystem while all other atoms can be treated by medium size Hartree-Fock type basis sets. The coupled electron pair approach, CEPA, an approximate coupled cluster method, is used to calculate the correlation energies of the various subsystems. For the vertical adsorption of CO on top a Mg atom of the MgO(001) surface with the C atom toward Mg, the individual one- and two-body increments are calculated as functions of the CO-MgO separation and a full potential energy curve is constructed from them. A very shallow minimum with an adsorption energy of 0.016 eV at a Mg-C distance of 3.04 Å is found at the Hartree-Fock level, while inclusion of correlation (dispersion) effects shortens the Mg-C distance to 2.59 Å and yields a much larger adsorption energy of 0.124 eV. This is in very good agreement with the best experimental value of 0.14 eV. The basis set superposition error, BSSE, was fully corrected for by the counterpoise method and the bonding mechanism was analyzed at the Hartree-Fock level by means of
Adsorption of Te on Ge(001): Density-functional calculations
NASA Astrophysics Data System (ADS)
Çakmak, M.; Srivastava, G. P.; Ellialtıoğlu, Ş.
2003-05-01
We present ab initio density-functional calculations for the adsorption of Te on the Ge(001) surface. Various possible adsorption geometries for the 0.5-, 0.8-, 1-, and 2-ML (monolayer) coverages of Te have been investigated. Our results for sub-monolayer coverages confirm earlier results as well as provide some new insight into the adsorption of Te. Furthermore, our results for the 2-ML coverage of Te suggest that the bonding between the overlayer and the substrate has changed significantly. This may provide useful information on possible desorption of Te in the form of strongly bonded Te2 units.
Qin, Wu; Li, Xin; Bian, Wen-Wen; Fan, Xiu-Juan; Qi, Jing-Yao
2010-02-01
There is increasing attention in the unique biological and medical properties of graphene, and it is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. Despite the importance of biomolecules-graphene interactions, a detailed understanding of the adsorption mechanism and features of biomolecules onto the surfaces of graphene is lacking. To address this, we have performed density functional theory (DFT) and molecular dynamics (MD) methods exploring the adsorption geometries, adsorption energies, electronic band structures, adsorption isotherms, and adsorption dynamics of l-leucine (model biomolecule)/graphene composite system. DFT calculations confirmed the energetic stability of adsorption model and revealed that electronic structure of graphene can be controlled by the adsorption direction of l-leucine. MD simulations further investigate the potential energy and van der Waals energy for the interaction processes of l-leucine/graphene system at different temperatures and pressures. We find that the van der Waals interaction between the l-leucine and the graphene play a dominant role in the adsorption process under a certain range of temperature and pressure, and the l-leucine molecule could be adsorbed onto graphene spontaneously in aqueous solution. PMID:19880174
Schmitt, Ilka; Fink, Karin; Staemmler, Volker
2009-12-21
The method of local increments is used in connection with the supermolecule approach and an embedded cluster model to calculate the adsorption energy of single Cu atoms at different adsorption sites at the polar surfaces of ZnO. Hartree-Fock calculations for the full system, adsorbed atom and solid surface, and for the fragments are the first step in this approach. In the present study, restricted open-shell Hartree-Fock (ROHF) calculations are performed since the Cu atom possesses a singly-occupied 4s orbital. The occupied Hartree-Fock orbitals are then localized by means of the Foster-Boys localization procedure. The correlation energies are expanded into a series of many-body increments which are evaluated separately and independently. In this way, the very time-consuming treatment of large systems is replaced with a series of much faster calculations for small subunits. In the present application, these subunits consist of the orbitals localized at the different atoms. Three adsorption situations with rather different bonding characteristics have been studied: a Cu atom atop a threefold-coordinated O atom of an embedded Zn(4)O(4) cluster, a Cu atom in an O vacancy site at the O-terminated ZnO(000-1) surface, and a Cu atom in a Zn vacancy site at the Zn-terminated ZnO(0001) surface. The following properties are analyzed in detail: convergence of the many-body expansion, contributions of the different n-body increments to the adsorption energy, treatment of the singly-occupied orbital as "localized" or "delocalized". Big savings in computer time can be achieved by this approach, particularly if only the localized orbitals in the individual increment under consideration are described by a large correlation adapted basis set, while all other orbitals are treated by a medium-size Hartree-Fock-type basis set. In this way, the method of local increments is a powerful alternative to the widely used methods like DFT or RI-MP2. PMID:20024388
Computation of Adsorption Energies of Some Interstellar Species
NASA Astrophysics Data System (ADS)
Sil, Milan; Chakrabarti, Sandip Kumar; Das, Ankan; Majumdar, Liton; Gorai, Prasanta; Etim, Emmanuel; Arunan, Elangannan
2016-07-01
Adsorption energies of surface species are most crucial for chemical complexity of interstellar grain mantle. Aim of this work is to study the variation of the adsorption energies depending upon the nature of adsorbent. We use silicate and carbonaceous grains for the absorbents. For silicate grains, we use very simple crystalline ones, namely, Enstatite (MgSiO_3)_n, Ferrosilite (FeSiO_3)_n, Forsterite (Mg_2SiO_4)_n and Fayalite (Fe_2SiO_4)_n. We use n=1, 2, 4, 8 to study the variation of adsorption energies with the increase in cluster size. For carbonaceous grain, we use Coronene (polyaromatic hydrocarbon surface). Adsorption energy of all these species are calculated by means of quantum chemical calculation using self consistent density functional theory (DFT). MPWB1K hybrid meta-functional is employed since it has been proven useful to study the systems with weak interactions such as van der Waals interactions. Optimization are also carried out with MPWB1K/6-311g(d) and MPWB1K/6311g(d,p) and a comparison of adsorption energies are discussed for these two different basis sets. We use crystalline structure of the adsorbent. The adsorbate is placed in the different site of the grain with a suitable distance. The energy of adsorption for a species on the grain surface is defined as follows: E_a_d_s = E_s_s - (E_s_u_r_f_a_c_e + E_s_p_e_c_i_e_s), where E_a_d_s is the adsorption energy, E_s_s is the optimized energy for species placed in a suitable distance from the grain surface, E_s_u_r_f_a_c_e and E_s_p_e_c_i_e_s respectively are the optimized energies of the surface and species separately.
Stability and hydrogen adsorption properties of Mg/TiMn2 interface by first principles calculation
NASA Astrophysics Data System (ADS)
Dai, J. H.; Jiang, X. W.; Song, Y.
2016-11-01
First principles calculations were carried out to study the stability and hydrogen adsorption properties of Mg/TiMn2 interface. The surface stability and hydrogen adsorption of TiMn2 were explored. The Mn terminated (001) is the most stable surface among the considered surfaces of TiMn2 and TiMn2 surface shows better hydrogen adsorption ability than the pure Mg surface. Two models coupling the Mg(0001) surface and the TiMn2(001) surface with different terminations were constructed to explore the Mg/TiMn2 interface. The Mg(0001)/Mn terminated TiMn2(001) with interface is much more stable than that of Ti terminated system. These two interfaces both show good hydrogen adsorption ability, in which the Mn terminated interface shows - 1.62 eV of hydrogen adsorption energy. The electronic structures of the considered systems are evaluated. The negative adsorption energies of hydrogen on the surface and interface systems are further explained by the analysis of the density of states.
Dissociative adsorption of water on Au/MgO/Ag(001) from first principles calculations
NASA Astrophysics Data System (ADS)
Nevalaita, J.; Häkkinen, H.; Honkala, K.
2015-10-01
The molecular and dissociative adsorption of water on a Ag-supported 1 ML, 2 ML and 3 ML-a six atomic layer-thick MgO films with a single Au adatom is investigated using density functional theory calculations. The obtained results are compared to a bulk MgO(001) surface with an Au atom. On thin films the negatively charged Au strengthens the binding of the polar water molecule due to the attractive Au-H interaction. The adsorption energy trends of OH and H with respect to the film thickness depend on an adsorption site. In the case OH or H binds atop Au on MgO/Ag(001), the adsorption becomes more exothermic with the increasing film thickness, while the reverse trend is seen when the adsorption takes place on bare MgO/Ag(001). This behavior can be explained by different bonding mechanisms identified with the Bader analysis. Interestingly, we find that the rumpling of the MgO film and the MgO-Ag interface distance correlate with the charge transfer over the thin film and the interface charge, respectively. Moreover, we employ a modified Born-Haber-cycle to analyze the effect of film thickness to the adsorption energy of isolated Au and OH species on MgO/Ag(001). The analysis shows that the attractive Coulomb interaction between the negatively charged adsorbate and the positive MgO-Ag-interface does not completely account for the weaker binding with increasing film thickness. The redox energy associated with the charge transfer from the interface to the adsorbate is more exothermic with the increasing film thickness and partly compensates the decrease in the attractive Coulomb interaction.
The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes
ERIC Educational Resources Information Center
Neumann, M. G.
1976-01-01
Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)
NASA Astrophysics Data System (ADS)
Liu, Xiaojie; Wang, C. Z.; Hupalo, M.; Yao, Y. X.; Tringides, M. C.; Lu, W. C.; Ho, K. M.
2010-12-01
Adsorption of rare-earth (RE) adatoms (Nd, Gd, Eu, and Yb) on graphene was studied by first-principles calculations based on the density-functional theory. The calculations show that the hollow site of graphene is the energetically favorable adsorption site for all the RE adatoms studied. The adsorption energies and diffusion barriers of Nd and Gd on graphene are found to be larger than those of Eu and Yb. Comparison with scanning tunneling microscopy experiments for Gd and Eu epitaxially grown on graphene confirms these calculated adsorption and barrier differences, since fractal-like islands are observed for Gd and flat-topped crystalline islands for Eu. The formation of flat Eu islands on graphene can be attributed to its low diffusion barrier and relatively larger ratio of adsorption energy to its bulk cohesive energy. The interactions between the Nd and Gd adatoms and graphene cause noticeable in-plane lattice distortions in the graphene layer. Adsorption of the RE adatoms on graphene also induces significant electric dipole and magnetic moments.
Biogas - the calculable energy
NASA Astrophysics Data System (ADS)
Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András
2015-04-01
EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of
First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes
NASA Astrophysics Data System (ADS)
Sánchez-Ochoa, F.; Cocoletzi, Gregorio H.; Canto, Gabriel I.; Takeuchi, Noboru
2014-06-01
We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m < 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital-lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.
First-principles calculations of the indigo encapsulation and adsorption by MgO nanotubes
Sánchez-Ochoa, F. Cocoletzi, Gregorio H.; Canto, Gabriel I.; Takeuchi, Noboru
2014-06-07
We have performed ab-initio calculations to investigate the structural and electronic properties of (m,m) chiral magnesium oxide nanotubes, (m,m)MgONTs, to explore the encapsulation, inclusion, and adsorption of dyes (organic molecules) such as Indigo (IND). Studies start by determining the structural parameters of the MgO nanotubes with different diameters and the IND. The indigo encapsulation into the MgONT is studied considering four (m,m) chiralities which yield 4 different NT diameters. In the endohedral functionalization, the indigo is within the NT at a tilt angle as in previous theoretical studies of organic molecules inside carbon and boron-nitride nanotubes. Results show that the encapsulation is a strong exothermic process with the m = 6 case exhibiting the largest encapsulation energy. It is also explored the indigo adsorption on the NT surface in the parallel and perpendicular configurations. The perpendicular configuration of the IND adsorption on the (8,8)MgONT exhibits the largest energy. The indigo inclusion within the NTs meets a potential barrier when m < 6, however this barrier diminishes as the index increases. Additionally, we have determined the total density of states (DOS), partial DOS, electron charge redistributions, and the highest occupied molecular orbital–lowest unoccupied molecular orbital levels for the NTs with m = 6. Very strong binding energies and electron charge transfer from the IND to NTs is present in the atomic structures.
Lithium adsorption on graphite from density functional theory calculations.
Valencia, Felipe; Romero, Aldo H; Ancilotto, Francesco; Silvestrelli, Pier Luigi
2006-08-01
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes. PMID:16869593
Lithium adsorption on graphite from density functional theory calculations.
Valencia, Felipe; Romero, Aldo H; Ancilotto, Francesco; Silvestrelli, Pier Luigi
2006-08-01
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.
Water adsorption on O(2x2)/Ru(0001) from STM experiments andfirst-principles calculations
Cabrera-Sanfelix, P.; Sanchez-Portal, D.; Mugarza, A.; Shimizu,T.K.; Salmeron, M.; Arnau, A.
2007-10-15
We present a combined theoretical and experimental study of water adsorption on Ru(0001) pre-covered with 0.25 monolayers (ML) of oxygen forming a (2 x 2) structure. Several structures were analyzed by means of Density Functional Theory calculations for which STM simulations were performed and compared with experimental data. Up to 0.25 monolayers the molecules bind to the exposed Ru atoms of the 2 x 2 unit cell via the lone pair orbitals. The molecular plane is almost parallel to the surface with its H atoms pointing towards the chemisorbed O atoms of the 2 x 2 unit cell forming hydrogen bonds. The existence of these additional hydrogen bonds increases the adsorption energy of the water molecule to approximately 616 meV, which is {approx}220 meV more stable than on the clean Ru(0001) surface with a similar configuration. The binding energy shows only a weak dependence on water coverage, with a shallow minimum for a row structure at 0.125 ML. This is consistent with the STM experiments that show a tendency of the molecules to form linear rows at intermediate coverage. Our calculations also suggest the possible formation of water dimers near 0.25 ML.
NASA Astrophysics Data System (ADS)
Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skúlason, E.; Bligaard, T.; Nørskov, J. K.
2007-07-01
Density functional theory calculations are presented for CHx, x=0,1,2,3, NHx, x=0,1,2, OHx, x=0,1, and SHx, x=0,1 adsorption on a range of close-packed and stepped transition-metal surfaces. We find that the adsorption energy of any of the molecules considered scales approximately with the adsorption energy of the central, C, N, O, or S atom, the scaling constant depending only on x. A model is proposed to understand this behavior. The scaling model is developed into a general framework for estimating the reaction energies for hydrogenation and dehydrogenation reactions.
NASA Astrophysics Data System (ADS)
McCoy, Rhonda Patrice
from the center ring was shortened because of metal-ligand coordination. These observations are correlated to the shifts in Raman frequencies; a decrease in bond length resulted in a shift to a higher vibrational energy. The surface-enhanced Raman spectrum of DAFO was obtained on silver colloids and gold nanorods. The resulting SER spectra were compared to their corresponding normal Raman spectra, there were changes in relative band intensities and there were bands shifted because of adsorption; these observations were used to probe orientation. Orientation is determined by applying surface selections rules developed by both Creighton and Moskovits. The rules indicate, when the vibrational modes assigned to out-of-plane modes are observed as enhanced in the SER spectrum, the ligand is considered parallel relative to the metal surface, and when the vibrational modes assigned to in-plane modes are observed as enhanced, the ligand is not parallel relative to the metal surface. The relative surface enhancement factors were calculated by normalizing the spectra and then by taking the ratio of ISERS/INR. Based on the enhancement factors, the bands assigned to in-plane modes exhibited the highest enhancement factors on the Au and Ag SER spectra. This observation suggests that DAFO is not parallel to the metal nano-surfaces. In the Ag SERS spectrum the bands with the highest enhancement factors were assigned to quadrant ring stretching and cyclopentone bending. Analysis of the carbonyl stretching frequency on the Ag spectrum revealed the frequency shifted to a lower vibrational energy. This shift has been ascribed to the carbonyl bond losing double bond character, which permits the interaction between the metal and the carbonyl oxygen. It was proposed the DAFO ligand is sandwiched between the silver hydrosol. The TER spectrum of DAFO was obtained; analysis of the spectrum revealed similarities to the Ag SERS spectrum. The carbonyl stretching frequency was lowered, the bands
Gas Adsorption and Selectivity in Zeolitic Imidazolate Frameworks from First Principles Calculations
NASA Astrophysics Data System (ADS)
Ray, Keith; Olmsted, David; He, Ning; Houndonougbo, Yao; Laird, Brian; Asta, Mark
2012-02-01
Zeolitic Imidazolate Framework (ZIFs) are excellent candidate materials for carbon capture and gas separation. Here we employ the van der Waals density functional (vdW-DF) [1] in an analysis of the binding energetics for CO2, CH4 and N2 molecules in a set of ZIFs featuring different chemical functionalizations. We investigate multiple low-energy binding sites, which differ in their positions relative to functional groups on the imidazole linkers. In all cases an accurate treatment of van der Waals forces appears essential to provide reasonable binding energy magnitudes. We report results obtained from different parameterizations of the vdW-DF, providing comparisons between calculations and experimental values of the heat of adsorption [2]. This research is supported by the Energy Frontier Research Center ``Molecularly Engineered Energy Materials,'' funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001342. [1] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Let. 92, 246401 (2004) [2] W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B. B. Laird, O. M. Yaghi, J. AM. CHEM. SOC. 2010, 132, 11006-11008
Comparison of energy calculation procedures
Kusuda, T.
1981-08-01
ASHRAE has developed a simplified energy-calculation procedure suitable for small calculators that applied to nonresidential buildings and includes all the essential calculation elements - climatic data, buildings construction, operational characteristics, utility system and equipment performance, and internal heat gain due to lighting, occupancy, cooking, etc. A comparison of the results predicted by the proposed method for four typical HVAC (heating, ventilation, and air conditioning) systems in an office building in Washington, DC, against the predictions of seven detailed computer-simulation programs - AXCESS, BLAST, BLDSIM, DOE-2, E-CUBE, ESAS, and TRACE - revealed that the similarity of the results depended more on which analyst employed the methods than on which methods were used.
Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces
Jones, G
2011-08-18
Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.
Han, Yong; Evans, James W.
2015-10-28
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)
Han, Yong; Evans, James W.
2015-10-27
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less
Han, Yong; Evans, James W.
2015-10-27
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).
Adsorption energies and prefactor determination for CH3OH adsorption on graphite.
Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H
2015-08-28
In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.
NASA Astrophysics Data System (ADS)
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-01
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d_{z^2 }, d_{xy}, d_{xz}, and dyz) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-28
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
NASA Astrophysics Data System (ADS)
Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.
2008-07-01
Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].
Hughes, Zak E; Wright, Louise B; Walsh, Tiffany R
2013-10-29
The molecular simulation of biomolecules adsorbed at noble metal interfaces can assist in the development of bionanotechnology applications. In line with advances in polarizable force fields for adsorption at aqueous gold interfaces, there is scope for developing a similar force field for silver. One way to accomplish this is via the generation of in vacuo adsorption energies calculated using first-principles approaches for a wide range of different but biologically relevant small molecules, including water. Here, we present such first-principles data for a comprehensive range of bio-organic molecules obtained from plane-wave density functional theory calculations using the vdW-DF functional. As reported previously for the gold force field, GolP-CHARMM (Wright, L. B.; Rodger, P. M.; Corni, S.; Walsh, T. R. GolP-CHARMM: first-principles based force-fields for the interaction of proteins with Au(111) and Au(100). J. Chem. Theory Comput. 2013, 9, 1616-1630), we have used these data to construct a a new force field, AgP-CHARMM, suitable for the simulation of biomolecules at the aqueous Ag(111) and Ag(100) interfaces. This force field is derived to be consistent with GolP-CHARMM such that adsorption on Ag and Au can be compared on an equal footing. Our force fields are used to evaluate the water overlayer stability on both silver and gold, finding good agreement with known behaviors. We also calculate and compare the structuring (spatial and orientational) of liquid water adsorbed at both silver and gold. Finally, we report the adsorption free energy of a range of amino acids at both the Au(111) and Ag(111) aqueous interfaces, calculated using metadynamics. Stronger adsorption on gold was noted in most cases, with the exception being the carboxylate group present in aspartic acid. Our findings also indicate differences in the binding free energy profile between silver and gold for some amino acids, notably for His and Arg. Our analysis suggests that the relatively
Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite
NASA Astrophysics Data System (ADS)
Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-12-01
Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi
2015-10-01
Photodegradation over titanium dioxide (TiO2) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F2Cdbnd CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of -45.6 and -41.0 kJ mol-1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.
Hung, Shih-Wei; Hsiao, Pai-Yi; Lu, Ming-Chang; Chieng, Ching-Chang
2012-10-25
Understanding protein adsorption onto solid surfaces is of critical importance in the field of bioengineering, especially for applications such as medical implants, diagnostic biosensors, drug delivery systems, and tissue engineering. This study proposed the use of molecular dynamics simulations with potential of mean force (PMF) calculations to identify and characterize the mechanisms of adsorption of a protein molecule on a designed surface. A set of model systems consisting of a cardiotoxin (CTX) protein and mixed self-assembled monolayer (SAM) surfaces were used as examples. The set of mixed SAM surfaces with varying topographies were created by mixing alkanethiol chains of different lengths. The results revealed that CTX proteins underwent similar conformal changes upon adsorption onto the various mixed SAMs but showed distinctive characteristics in free energy profiles. Enhancement of the adsorption affinity, i.e., the change in free energy of adsorption, for mixed SAMs was demonstrated by using atomic force microscopic measurements. A component analysis conducted to quantify the physical mechanisms that promoted CTX adsorption revealed contributions from both SAMs and the solvent. Further component analyses of thermodynamic properties, such as the free energy, enthalpy, and entropy, indicated that the contribution from SAMs was driven by enthalpy, and the contribution from the solvent was driven by entropy. The results indicated that CTX adsorption was an entropy-driven process, and the entropic component from the solvent, i.e., the hydrophobic interaction, was the major driving force for CTX adsorption onto SAMs. The study also concluded that the surfaces composed of mixtures of SAMs with different chain lengths promoted the adsorption of CTX protein.
Calle-Vallejo, Federico; Sautet, Philippe; Loffreda, David
2014-09-18
Platinum nanoparticle catalysts are used in a myriad of gas-phase, liquid-phase, and electrochemical reactions. Although a high catalytic activity is paramount, stability must also be guaranteed, especially when the nanoparticles are in contact with strongly bound adsorbates. Therefore, it is crucial to be able to accurately calculate adsorption-energy trends on Pt nanoparticles of multiple sizes and morphologies using ab initio methods at affordable computational expenses. Here, through an energy-decomposition analysis in which adsorption processes are regarded as the interplay between pure binding and various compensating core-shell deformations, we show that pure binding is responsible for the overall linear adsorption trends. Conversely, the energetic cost of the deformations is a site-independent, adsorbate-dependent constant value. These two observations and the description of the trends by means of generalized coordination numbers help to significantly reduce the computational expense of simulating large nanoparticles.
Adsorption and dissociation of H2O on Al(1 1 1) surface by density functional theory calculation
NASA Astrophysics Data System (ADS)
Guo, F. Y.; Long, C. G.; Zhang, J.; Zhang, Z.; Liu, C. H.; Yu, K.
2015-01-01
Using the first-principles calculations method based on the density functional theory, we systematically study the adsorption behavior of a single molecular H2O on a clean and a pre-adsorbed O atom Al(1 1 1) surface, and also its corresponding dissociation reactions. The equilibrium configuration on top, bridge, and hollow (fcc and hcp) site were determined by relaxation of the system relaxation. The adsorptions of H2O, OH and H on top sites are favorable on the Al(1 1 1) surface, while that of O on the hollow (fcc) site is preferred. The results show that the hydrogen atom dissociating from H2O needs a 248.32 kJ/mol of energy on clean Al(1 1 1) surface, while the dissociating energy decreases to 128.53 kJ/mol with the aid of the O absorption. On the other hand, these phenomena indicate that the dehydrogenated reaction energy barrier of the pre-adsorbed O on metal surface is lower than that of on a clean one, because O can promote the dehydrogenation of H2O.
NASA Astrophysics Data System (ADS)
Liu, Jiexiang; Zhang, Xiaoguang
2013-01-01
NO, N2O and NO2 adsorption in [M‧]-MAPO-5 (M = Si, Ti; M‧ = Ag, Cu) models of the modified aluminophosphate molecular sieves was investigated by density functional theory (DFT) method. The equilibrium structural parameters and adsorption energies were obtained and compared. The structural parameters of NO and NO2 in the adsorbed state had a distinct change than that of N2O compared to their free gas state. [M‧]-MAPO-5 was more effective for the activation of NOx molecule compared to [M‧]-AlMOR (M‧ = Ag, Cu) models of the modified mordenite in our previous studies. The adsorption energies data indicated that adsorption strength of NOx followed the decreasing order of NO2 > NO > N2O. And adsorption complexes in η1-N mode were much stabler than that in η1-O mode, which was similar to that in [M‧]-AlMOR. [Cu]-MAPO-5 had a much stronger adsorption for NOx than [Ag]-MAPO-5. And [M‧]-SiMOR had a little stronger adsorption for NOx than [M‧]-TiMOR. Furthermore, the resistance capabilities of [M‧]-MAPO-5 to SO2, H2O and O2 were studied and analyzed. The interaction mechanism of NOx adsorption in [M‧]-MAPO-5 was also discussed by natural bond orbital (NBO) analysis, which was in reasonable agreement with the adsorption interaction strengths.
Ghose, Sanjit K; Li, Yan; Yakovenko, Andrey; Dooryhee, Eric; Ehm, Lars; Ecker, Lynne E; Dippel, Ann-Christin; Halder, Gregory J; Strachan, Denis M; Thallapally, Praveen K
2015-05-21
Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host-guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications. PMID:26263249
Ghose, Sanjit K.; Li, Yan; Yakovenko, Andrey; Dooryhee, Eric; Ehm, Lars; Ecker, Lynne E.; Dippel, Ann-Christin; Halder, Gregory J.; Strachan, Denis M.; Thallapally, Praveen K.
2015-04-16
Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host–guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications.
Ghose, Sanjit K; Li, Yan; Yakovenko, Andrey; Dooryhee, Eric; Ehm, Lars; Ecker, Lynne E; Dippel, Ann-Christin; Halder, Gregory J; Strachan, Denis M; Thallapally, Praveen K
2015-05-21
Enhancement of adsorption capacity and separation of radioactive Xe/Kr at room temperature and above is a challenging problem. Here, we report a detailed structural refinement and analysis of the synchrotron X-ray powder diffraction data of Ni-DODBC metal organic framework with in situ Xe and Kr adsorption at room temperature and above. Our results reveal that Xe and Kr adsorb at the open metal sites, with adsorption geometries well reproduced by DFT calculations. The measured temperature-dependent adsorption capacity of Xe is substantially larger than that for Kr, indicating the selectivity of Xe over Kr and is consistent with the more negative adsorption energy (dominated by van der Waals dispersion interactions) predicted from DFT. Our results reveal critical structural and energetic information about host-guest interactions that dictate the selective adsorption mechanism of these two inert gases, providing guidance for the design and synthesis of new MOF materials for the separation of environmentally hazardous gases from nuclear reprocessing applications.
Karakashev, Stoyan I
2014-10-15
A definite way to determine the adsorption energy of the surfactant's hydrophilic head on the air water interface is presented. For this purpose, the Davies adsorption theory and the most advanced version of Helfand-Frish-Lebowitz adsorption theory were applied to the surface tension isotherms of homologous series of sodium alkyl sulfate (CnH2n+1SO4Na, n=7-12), thus deriving the equilibrium adsorption constant, the cross-sectional area of the surfactant molecule, the interaction coefficient and the cohesion constant versus the number of the carbon atoms into the alkyl sulfate molecule. Thus, the total adsorption energy of each particular homolog was calculated in line with the latest development of the adsorption theory, thus calculating the dimensionless adsorption energy of the hydrophilic head Ehead/kBT. In our particular case (SO4(-)) we calculated Ehead/kBT=-2.79, which indicates the strong propensity of the SO4(-) to be surrounded by water molecules. The procedure for calculation Ehead/kBT does not depend on the charge of the hydrophilic head. Similarly, we calculated Ehead/kBT of another six well known in the literature hydrophilic heads (COOH, OH, DMPO, DEPO, N(CH3)3(+), and NH3(+)), indicating that the adsorption energy of the CH2 group depends slightly on the type of the hydrophilic head, but it affects substantially the adsorption energy of the whole surfactant molecule. Finally, we defined and validated a parameter called adsorption capacity of surfactants with simple molecular structure, for easy estimation of their surface activity. Linear dependence between the CMC of ionic surfactants and their adsorption capacity was established.
Surface free energy analysis of adsorbents used for radioiodine adsorption
NASA Astrophysics Data System (ADS)
González-García, C. M.; Román, S.; González, J. F.; Sabio, E.; Ledesma, B.
2013-10-01
In this work, the surface free energy of biomass-based activated carbons, both fresh and impregnated with triethylenediamine, has been evaluated. The contribution of Lifshitz van der Waals components was determined by the model proposed by van Oss et al. The results obtained allowed predicting the most probable configurations of the impregnant onto the carbon surface and its influence on the subsequent adsorption of radioactive methyl iodide.
The theoretical shape of sucrose crystals from energy calculations
NASA Astrophysics Data System (ADS)
Saska, Michael; Myerson, Allan S.
1983-05-01
The surface energies of individual crystallographic faces of crystalline sucrose were calculated using two forms of the 6-exp (Buckingham) potential. Hydrogen bond energies were calculated as a sum of O-H, O…H and O…O interactions where the Lippincott-Schroeder short-range potential was used for O-H and O…H pairs and the 6-exp potential for the non-bonded O…O interactions. Assuming that the surface energy equals half of the cohesive energy of the crystal, the attachment and surface energies of most of the faces found on as sucrose crystal were calculated. A computer program was written to draw the theoretical shape of crystals given the positions (central distances) of its faces. The resulting sucrose shapes are elongated along the c-axis. It is argued that the c-axis elongated habit is an intrinsic shape for vapor grown sucrose crystals (if realizable) and it is suggested that the usual shapes of solution grown sucrose crystals can be explained in terms of solvent (water) adsorption.
NASA Astrophysics Data System (ADS)
Simic-Milosevic, Violeta; Bocquet, Marie-Laure; Morgenstern, Karina
2009-08-01
Dissociative adsorption of doubly substituted benzene molecules leads to a molecule with two missing hydrogen atoms. We use scanning tunnelling microscopy at 5 K and density functional theory to investigate these benzyne molecules on Cu(1 1 1). Benzyne is either imaged as a depression, as a ring-shaped protrusion, or as a circular protrusion at different tunnelling parameters. Submolecular resolution and ab initio calculations give information on the adsorption properties about the in-situ formed biradical species.
Accurate free energy calculation along optimized paths.
Chen, Changjun; Xiao, Yi
2010-05-01
The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.
Good Practices in Free-energy Calculations
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher
2013-01-01
As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.
Adsorption of RuSex (x =1-5) cluster on Se-doped graphene: First principle calculations
NASA Astrophysics Data System (ADS)
Üzengi Aktürk, O.; Tomak, M.
2015-08-01
We have investigated the adsorption of RuSex (x =1-5) cluster on Se-doped graphene. The change of the adsorption energy with the number of Se atoms and magnetization values are investigated. Electronic properties of adsorption of RuSex (x =1-5) cluster on Se-doped graphene are investigated. The highest adsorption energy belongs to RuSe adsorbate. The biggest magnetization value belongs to RuSe2 adsorbate. This adsorbate makes the substrate half metallic. This property is important in electronic device applications. It is observed that substitutional Se atom changes the electronic properties of graphene. This substitution makes graphene metallic. While RuSe, RuSe4,RuSe5 adsorbate make substrate metallic, RuSe3 makes it semiconducting. Generally, it is found that there is a charge transfer from the substrate to clusters within the Löwdin analysis. This is in line with the charge difference results.
Jia, Juanjuan; Kara, Abdelkader E-mail: vladimir.esaulov@u-psud.fr; Pasquali, Luca; Bendounan, Azzedine; Sirotti, Fausto; Esaulov, Vladimir A. E-mail: vladimir.esaulov@u-psud.fr
2015-09-14
Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.
Energy and mass balance calculations for incinerators
Lee, C.C.; Huffman, G.L.
1998-01-01
Calculation of energy and mass balance within an incinerator is a very important part of designing and/or evaluating the incineration process. This article describes a simple computer model used to calculate an energy and mass balance for a rotary kiln incinerator. The main purpose of the model is to assist US Environmental Protection Agency (EPA) permit writers in evaluating the adequacy of the data submitted by applicants seeking incinerator permits. The calculation is based on the assumption that a thermodynamic equilibrium condition exits within the combustion chamber. Key parameters that the model can calculate include theoretical combustion air, excess air needed for actual combustion cases, flue gas flow rate, and exit temperature.
Liu, Wei; Schuler, Bruno; Xu, Yong; Moll, Nikolaj; Meyer, Gerhard; Gross, Leo; Tkatchenko, Alexandre
2016-03-17
Reliability is one of the major concerns and challenges in designing organic/inorganic interfaces for (opto)electronic applications. Even small structural differences for molecules on substrates can result in a significant variation in the interface functionality, due to the strong correlation between geometry, stability, and electronic structure. Here, we employed state-of-the-art first-principles calculations with van der Waals interactions, in combination with atomic force microscopy experiments, to explore the interaction mechanism for three structurally related olympicene molecules adsorbed on the Cu(111) surface. The substitution of a single atom in the olympicene molecule switches the nature of adsorption from predominantly physisorptive character [olympicene on Cu(111)], to an intermediate state [olympicene-derived ketone on Cu(111)], then to chemisorptive character [olympicene radical on Cu(111)]. Despite the remarkable difference in adsorption structures (by up to 0.9 Å in adsorption height) and different nature of bonding, the olympicene, its ketone, and its radical derivatives have essentially identical binding energies and work functions upon interaction with the metal substrate. Our findings suggest that the stability and work functions of molecular adsorbates could be rendered insensitive to their adsorption structures, which could be a useful property for (opto)electronic applications. PMID:26928143
NASA Astrophysics Data System (ADS)
Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang
2016-06-01
The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.
Amiaud, L; Momeni, A; Dulieu, F; Fillion, J H; Matar, E; Lemaire, J-L
2008-02-01
Molecular hydrogen interaction on water ice surfaces is a major process taking place in interstellar dense clouds. By coupling laser detection and classical thermal desorption spectroscopy, it is possible to study the effect of rotation of D(2) on adsorption on amorphous solid water ice surfaces. The desorption profiles of ortho- and para-D(2) are different. This difference is due to a shift in the adsorption energy distribution of the two lowest rotational states. Molecules in J''=1 rotational state are on average more strongly bound to the ice surface than those in J''=0 rotational state. This energy difference is estimated to be 1.4+/-0.3 meV. This value is in agreement with previous calculation and interpretation. The nonspherical wave function J'' =1 has an interaction with the asymmetric part of the adsorption potential and contributes positively in the binding energy.
Total energy calculations and bonding at interfaces
Louie, S.G.
1984-08-01
Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs.
Calculating Free Energies Using Average Force
NASA Technical Reports Server (NTRS)
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
Monte Carlo algorithm for free energy calculation.
Bi, Sheng; Tong, Ning-Hua
2015-07-01
We propose a Monte Carlo algorithm for the free energy calculation based on configuration space sampling. An upward or downward temperature scan can be used to produce F(T). We implement this algorithm for the Ising model on a square lattice and triangular lattice. Comparison with the exact free energy shows an excellent agreement. We analyze the properties of this algorithm and compare it with the Wang-Landau algorithm, which samples in energy space. This method is applicable to general classical statistical models. The possibility of extending it to quantum systems is discussed.
Folman, M.; Fastow, M.; Kozirovski, Y.
1997-03-05
In our recent investigation of the IR spectrum of CO physically adsorbed on C{sub 60} films, two well-resolved absorption bands at 2135 and 2128 cm{sup -1} were found, suggesting that the molecule is adsorbed on two different sites. To determine the nature of these adsorption sites, calculations of adsorption potentials and spectral shifts for the CO/C{sub 60} system were performed. The calculations were done for the fcc (100), fcc (111) hcp (001), and hcp (111) surface planes. In the calculations the 6-exponential and the Lennard-Jones potentials were used. A number of adsorption sites were chosen. These included the void space between four, three, and two neighboring C{sub 60} molecules and the center of the hexagon and the pentagon on the C{sub 60} surface. The calculated potentials and spectral shifts clearly indicate that adsorption sites in the voids between the C{sub 60} molecules are energetically preferred over sites on top of single C{sub 60} molecules. Comparison is made between results obtained with the two potentials and with results obtained previously with the two other carbon allotropes: graphite and diamond. 11 refs., 4 figs., 3 tabs.
Okhrimenko, D V; Nissenbaum, J; Andersson, M P; Olsson, M H M; Stipp, S L S
2013-09-01
The adsorption behavior of calcium carbonate is an important factor in many processes in nature, industry, and biological systems. We determined and compared the adsorption energies for a series of small molecules of different sizes and polarities (i.e., water, several alcohols, and acetic acid) on three synthetic CaCO3 polymorphs (calcite, aragonite, and vaterite). We measured isosteric heats of adsorption from vapor adsorption isotherms for 273 < T < 293 K, and we used XRD and SEM to confirm that samples did not change phase during the experiments. Density functional calculations and molecular dynamics simulations complemented the experimental results and aided interpretation. Alcohols with molecular mass greater than that of methanol bind more strongly to the calcium carbonate polymorphs than water and acetic acid. The adsorption energies for the alcohols are typical of chemisorption and indicate alcohol displacement of water from calcium carbonate surfaces. This explains why organisms favor biomolecules that contain alcohol functional groups (-OH) to control which polymorph they use, the crystal face and orientation, and the particle shape and size in biomineralization processes. This new insight is also very useful in understanding organic molecule adsorption mechanisms in soils, sediments, and rocks, which is important for predicting the behavior of mineral-fluid interactions when the challenge is to remediate contaminated groundwater aquifers or to produce oil and gas from reservoirs.
Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad
2014-01-28
It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.
NASA Technical Reports Server (NTRS)
Oh, B. K.; Kim, S. K.
1974-01-01
A model of helium adsorption on an argon crystal is built up from the premise that local adsorption predominates in the first layer and nonlocal adsorption in the second. Application of the virial expansion theorem to the second layer gives a series in which the first term represents the motion of a single molecule in the external potential field and the second a two-body interaction under this field. The thermodynamic functions of the adsorbed phase are calculated ab initio, the gas-solid interaction potential being derived from lattice summation and the partition function from an appropriate choice of a site-spacing polynomial to describe the periodic potential. The mutual interaction of adsorbed molecules is calculated with a two-dimensional Lennard-Jones potential. The second virial coefficient is calculated and its dependence on temperature and choice of potential is studied. It is found that the second virial coefficient is very well approximated by a two-dimensional gas in free space. The adsorption isotherm, isosteric heat, and specific heat are obtained and compared with the results of Ross and Steele, giving excellent agreement.
Roman, Tanglaw; Groß, Axel
2013-04-12
Using periodic density-functional theory calculations, we address the work-function change induced by the adsorption of chlorine and iodine on Cu(111) which are shown to change the work function in opposite ways, contrary to what one may expect for these two electron acceptors. In contrast to previous studies, we demonstrate that substrate effects play only a minor role in work-function changes brought about by halogen adsorption on metals. Instead, polarization on the adsorbate not only explains the sign of the work-function change as a contributor to a positive surface dipole moment, but it is also the decisive factor in the dependence of adsorption-induced work-function changes on the coverage of halogens on metal surfaces.
Singh, Baljinder; Singh, Satvinder; Singh, Janpreet; Saini, G S S; Mehta, D S; Singh, Gurinder; Tripathi, S K; Kaura, Aman
2015-11-11
Zinc oxide (ZnO) nanostructures with different morphologies are prepared in the presence of surface active molecules such as sodium dodecyl sulphate (SDS), Tween 80 and Triton X-100 by a chemical method. The experimental and first principles methods are employed to understand the microscopic origin of the asymmetric growth mechanism of ZnO in the presence of various surface active molecules. Effect of increase in the amount of surface active molecules and temperature is studied on the growth morphology of ZnO. An innovative method is developed to synthesize ZnO nanowires (NWs) in the presence of SDS. Spherical nanoparticles (NPs) to spherical clusters are obtained in the presence of Triton X-100 and Tween 80. These results are then supported by first principles calculations. The adsorption of the -OH functional group on both polar and nonpolar surfaces of ZnO is modelled by using density functional theory (DFT). The calculated binding energy (BE) is almost equivalent on both the surfaces with no preference on any particular surface. The calculated value of BE shows that the -OH group is physio-adsorbed on both the surfaces. This results in the spherical morphology of nanoparticles prepared in the presence of Tween 80. Bader charge analysis shows that the charge transfer mainly takes place on top two layers of the ZnO(101[combining macron]0) surface. The absence of high values of electron localization function (ELF) reflects the lack of covalent bonding between the -OH group and the ZnO(101[combining macron]0) surface. PMID:26510134
Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; Bandura, Andrei V.; Zhang, Zhan; Wesolowski, David J.; Fenter, Paul
2015-01-29
We study adsorption of Rb+ to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb+ distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights of 1.8 ±more » 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb+ between these two conditions. At pH 7, the lowest energy structure shows that Rb+ adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb+ coverage was -0.11 C/m2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less
NASA Astrophysics Data System (ADS)
Árnadóttir, Líney; Stuve, Eric M.; Jónsson, Hannes
2010-10-01
Adsorption and rotation of water monomer, dimer, and trimer on the (111) terrace, (221) and (322) stepped, and (763) and (854) kinked surfaces of platinum were studied by density functional theory calculations using the PW91 approximation to the energy functional. On the (111) terrace, water monomer and the donor molecule of the dimer and trimer adsorb at atop sites. The per-molecule adsorption energies of the monomer, dimer, and trimer are 0.30, 0.45, and 0.48 eV, respectively. Rotation of monomers, dimers, and trimers on the terrace is facile with energy barriers of 0.02 eV or less. Adsorption on steps and kinks is stronger than on the terrace, as evidenced by monomer adsorption energies of 0.46 to 0.55 eV. On the (221) stepped surface the zigzag extended configuration is most stable with a per-molecule adsorption energy of 0.57 eV. On the (322) stepped surface the dimer, two configurations of the trimer, and the zigzag configuration have similar adsorption energies of 0.55 ± 0.02 eV. Hydrogen bonding is strongest in the dimer and trimer adsorbed on the terrace, with respective energies of 0.30 and 0.27 eV, and accounts for their increased adsorption energies relative to the monomer. Hydrogen bonding is weak to moderate for adsorption at steps, with energies of 0.04 to 0.15 eV, as the much stronger water-metal interactions inhibit adsorption geometries favorable to hydrogen bonding. Correlations of hydrogen bond angles and energies with hydrogen bond lengths are presented. On the basis of these DFT/PW91 results, a model for water cluster formation on the Pt(111) surface can be formulated where kink sites nucleate chains along the top of step edges, consistent with the experimental findings of Morgenstern et al., Phys. Rev. Lett., 77 (1996) 703.
Predicting enzyme adsorption to lignin films by calculating enzyme surface hydrophobicity.
Sammond, Deanne W; Yarbrough, John M; Mansfield, Elisabeth; Bomble, Yannick J; Hobdey, Sarah E; Decker, Stephen R; Taylor, Larry E; Resch, Michael G; Bozell, Joseph J; Himmel, Michael E; Vinzant, Todd B; Crowley, Michael F
2014-07-25
The inhibitory action of lignin on cellulase cocktails is a major challenge to the biological saccharification of plant cell wall polysaccharides. Although the mechanism remains unclear, hydrophobic interactions between enzymes and lignin are hypothesized to drive adsorption. Here we evaluate the role of hydrophobic interactions in enzyme-lignin binding. The hydrophobicity of the enzyme surface was quantified using an estimation of the clustering of nonpolar atoms, identifying potential interaction sites. The adsorption of enzymes to lignin surfaces, measured using the quartz crystal microbalance, correlates to the hydrophobic cluster scores. Further, these results suggest a minimum hydrophobic cluster size for a protein to preferentially adsorb to lignin. The impact of electrostatic contribution was ruled out by comparing the isoelectric point (pI) values to the adsorption of proteins to lignin surfaces. These results demonstrate the ability to predict enzyme-lignin adsorption and could potentially be used to design improved cellulase cocktails, thus lowering the overall cost of biofuel production. PMID:24876380
Predicting Enzyme Adsorption to Lignin Films by Calculating Enzyme Surface Hydrophobicity*
Sammond, Deanne W.; Yarbrough, John M.; Mansfield, Elisabeth; Bomble, Yannick J.; Hobdey, Sarah E.; Decker, Stephen R.; Taylor, Larry E.; Resch, Michael G.; Bozell, Joseph J.; Himmel, Michael E.; Vinzant, Todd B.; Crowley, Michael F.
2014-01-01
The inhibitory action of lignin on cellulase cocktails is a major challenge to the biological saccharification of plant cell wall polysaccharides. Although the mechanism remains unclear, hydrophobic interactions between enzymes and lignin are hypothesized to drive adsorption. Here we evaluate the role of hydrophobic interactions in enzyme-lignin binding. The hydrophobicity of the enzyme surface was quantified using an estimation of the clustering of nonpolar atoms, identifying potential interaction sites. The adsorption of enzymes to lignin surfaces, measured using the quartz crystal microbalance, correlates to the hydrophobic cluster scores. Further, these results suggest a minimum hydrophobic cluster size for a protein to preferentially adsorb to lignin. The impact of electrostatic contribution was ruled out by comparing the isoelectric point (pI) values to the adsorption of proteins to lignin surfaces. These results demonstrate the ability to predict enzyme-lignin adsorption and could potentially be used to design improved cellulase cocktails, thus lowering the overall cost of biofuel production. PMID:24876380
Bond-Energy and Surface-Energy Calculations in Metals
ERIC Educational Resources Information Center
Eberhart, James G.; Horner, Steve
2010-01-01
A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…
Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies.
De Moor, Bart A; Ghysels, An; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B
2011-04-12
An efficient procedure for normal-mode analysis of extended systems, such as zeolites, is developed and illustrated for the physisorption and chemisorption of n-octane and isobutene in H-ZSM-22 and H-FAU using periodic DFT calculations employing the Vienna Ab Initio Simulation Package. Physisorption and chemisorption entropies resulting from partial Hessian vibrational analysis (PHVA) differ at most 10 J mol(-1) K(-1) from those resulting from full Hessian vibrational analysis, even for PHVA schemes in which only a very limited number of atoms are considered free. To acquire a well-conditioned Hessian, much tighter optimization criteria than commonly used for electronic energy calculations in zeolites are required, i.e., at least an energy cutoff of 400 eV, maximum force of 0.02 eV/Å, and self-consistent field loop convergence criteria of 10(-8) eV. For loosely bonded complexes the mobile adsorbate method is applied, in which frequency contributions originating from translational or rotational motions of the adsorbate are removed from the total partition function and replaced by free translational and/or rotational contributions. The frequencies corresponding with these translational and rotational modes can be selected unambiguously based on a mobile block Hessian-PHVA calculation, allowing the prediction of physisorption entropies within an accuracy of 10-15 J mol(-1) K(-1) as compared to experimental values. The approach presented in this study is useful for studies on other extended catalytic systems.
Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies.
De Moor, Bart A; Ghysels, An; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B
2011-04-12
An efficient procedure for normal-mode analysis of extended systems, such as zeolites, is developed and illustrated for the physisorption and chemisorption of n-octane and isobutene in H-ZSM-22 and H-FAU using periodic DFT calculations employing the Vienna Ab Initio Simulation Package. Physisorption and chemisorption entropies resulting from partial Hessian vibrational analysis (PHVA) differ at most 10 J mol(-1) K(-1) from those resulting from full Hessian vibrational analysis, even for PHVA schemes in which only a very limited number of atoms are considered free. To acquire a well-conditioned Hessian, much tighter optimization criteria than commonly used for electronic energy calculations in zeolites are required, i.e., at least an energy cutoff of 400 eV, maximum force of 0.02 eV/Å, and self-consistent field loop convergence criteria of 10(-8) eV. For loosely bonded complexes the mobile adsorbate method is applied, in which frequency contributions originating from translational or rotational motions of the adsorbate are removed from the total partition function and replaced by free translational and/or rotational contributions. The frequencies corresponding with these translational and rotational modes can be selected unambiguously based on a mobile block Hessian-PHVA calculation, allowing the prediction of physisorption entropies within an accuracy of 10-15 J mol(-1) K(-1) as compared to experimental values. The approach presented in this study is useful for studies on other extended catalytic systems. PMID:26606357
Adsorption energies for a nanoporous carbon from gas-solid chromatography and molecular mechanics.
Rybolt, Thomas R; Ziegler, Katherine A; Thomas, Howard E; Boyd, Jennifer L; Ridgeway, Mark E
2006-04-01
Gas-solid chromatography was used to obtain second gas-solid virial coefficients, B2s, in the temperature range 342-613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N2 BET surface area of 995 m2/g. The temperature dependence of B2s was used to determine experimental values of the gas-solid interaction energy, E*, for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas-solid interaction energy, E*(cal), for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E*(cal), were compared and correlated to the experimental E* values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E*(cal) and E* values was provided by a 0.50 nm nanoporous model using MM2 parameters.
NASA Astrophysics Data System (ADS)
Marichev, V. A.
2005-08-01
In DFT calculation of the charge transfer (Δ N), anions pose a special problem since their electron affinities are unknown. There is no method for calculating reasonable values of the absolute electronegativity ( χA) and chemical hardness ( ηA) for ions from data of species themselves. We propose a new approach to the experimental measurement of χA at the condition: Δ N = 0 at which η values may be neglected and χA = χMe. Electrochemical parameters corresponding to this condition may be obtained by the contact electric resistance method during in situ investigation of anion adsorption in the particular system anion-metal.
Pershina, V; Borschevsky, A; Eliav, E; Kaldor, U
2008-10-14
The interaction of the inert gases Rn and element 118 with various surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of atomic properties. The calculated polarizability of element 118, 46.3 a.u., is the largest in group 18, the ionization potential is the lowest at 8.91 eV, and the estimated atomic radius is the largest, 4.55 a.u. These extreme values reflect, in addition to the general trends in the Periodic Table, the relativistic expansion and destabilization of the outer valence 7p(3/2) orbital. Van der Waals coefficients C(3) and adsorption enthalpies DeltaH(ads) of Ne through element 118 on noble metals and inert surfaces, such as quartz, ice, Teflon, and graphite, were calculated in a physisorption model using the atomic properties obtained. The C(3) coefficients were shown to steadily increase in group 18, while the increase in DeltaH(ads) from Ne to Rn does not continue to element 118: The large atomic radius of the latter element is responsible for a decrease in the interaction energy. We therefore predict that experimental distinction between Rn and 118 by adsorption on these types of surfaces will not be feasible. A possible candidate for separating the two elements is charcoal; further study is needed to test this possibility.
Kocman, Mikuláš; Jurečka, Petr; Dubecký, Matúš; Otyepka, Michal; Cho, Yeonchoo; Kim, Kwang S
2015-03-01
Hydrogen storage in carbonaceous materials and their derivatives is currently a widely investigated topic. The rational design of novel adsorptive materials is often attempted with the help of computational chemistry tools, in particular density functional theory (DFT). However, different exchange-correlation functionals provide a very wide range of hydrogen binding energies. The aim of this article is to offer high level QM reference data based on coupled-cluster singles and doubles calculations with perturbative triple excitations, CCSD(T), and a complete basis set limit estimate that can be used to assess the accuracy of various DFT-based predictions. For one complex, the CCSD(T) result is verified against diffusion quantum Monte Carlo calculations. Reference binding curves are calculated for two model compounds representing weak and strong hydrogen adsorption: coronene (-4.7 kJ mol(-1) per H2), and coronene modified with boron and lithium (-14.3 kJ mol(-1)). The reference data are compared to results obtained with widely used density functionals including pure DFT, M06, DFT-D3, PBE-TS, PBE + MBD, optB88-vdW, vdW-DF, vdW-DF2 and VV10. We find that whereas DFT-D3 shows excellent results for weak hydrogen adsorption on coronene, most of the less empirical density based dispersion functionals except VV10 overestimate this interaction. On the other hand, some of the less empirical density based dispersion functionals better describe stronger binding in the more polar coroB2Li22H2 complex which is one of realistic models for high-capacity hydrogen storage materials. Our results may serve as a guide for choosing suitable DFT methods for quickly evaluating hydrogen binding potential and as a reference for assessing the accuracy of the previously published DFT results.
Free-Energy Calculations. A Mathematical Perspective
NASA Technical Reports Server (NTRS)
Pohorille, Andrzej
2015-01-01
conductance, defined as the ratio of ionic current through the channel to applied voltage, can be calculated in MD simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. If the current is small, a voltage significantly higher than the experimental one needs to be applied to collect sufficient statistics of ion crossing events. Then, the calculated conductance has to be extrapolated to the experimental voltage using procedures of unknown accuracy. Instead, we propose an alternative approach that applies if ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. Then, it is possible to test the assumptions of the equation, recover the full voltage/current dependence, determine the reliability of the calculated conductance and reconstruct the underlying (equilibrium) free energy profile, all from MD simulations at a single voltage. We will present the underlying theory, model calculations that test this theory and simulations on ion conductance through a channel that has been extensively studied experimentally. To our knowledge this is the first case in which the complete, experimentally measured dependence of the current on applied voltage has been reconstructed from MD simulations.
Study of lysozyme mobility and binding free energy during adsorption on a graphene surface
Nakano, C. Masato; Ma, Heng; Wei, Tao
2015-04-13
Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.
Optimization of adsorption processes for climate control and thermal energy storage
Narayanan, S; Yang, S; Kim, H; Wang, EN
2014-10-01
Adsorption based heat-pumps have received significant interest owing to their promise of higher efficiencies and energy savings when coupled with waste heat and solar energy compared to conventional heating and cooling systems. While adsorption systems have been widely studied through computational analysis and experiments, general design guidelines to enhance their overall performance have not been proposed. In this work, we identified conditions suitable for the maximum utilization of the adsorbent to enhance the performance of both intermittent as well as continuously operating adsorption systems. A detailed computational model was developed based on a general framework governing adsorption dynamics in a single adsorption layer and pellet. We then validated the computational analysis using experiments with a model system of zeolite 13X-water for different operating conditions. A dimensional analysis was subsequently carried out to optimize adsorption performance for any desired operating condition, which is determined by the choice of adsorbent-vapor pair, adsorption duration, operational pressure, intercrystalline porosity, adsorbent crystal size, and intracrystalline vapor diffusivity. The scaling analysis identifies the critical dimensionless parameters and provides a simple guideline to determine the most suitable geometry for the adsorbent particles. Based on this selection criterion, the computational model was used to demonstrate maximum utilization of the adsorbent for any given operational condition. By considering a wide range of parametric variations for performance optimization, these results offer important insights for designing adsorption beds for heating and cooling systems. (C) 2014 Elsevier Ltd. All rights reserved.
Ngwenya, Bryne T; Magennis, Marisa; Olive, Valerie; Mosselmans, J Fred W; Ellam, Robert M
2010-01-15
Bacteria are abundant in many natural and engineered environments where they are thought to exert important controls on the cycling, mobility, bioavailability, and toxicity of metal contaminants. In order to probe their role in moderating the behavior of lanthanides, pH-dependent adsorption edges of 13 individual lanthanides and yttrium to the Gram-negative bacterium Pantoea agglomerans were used to generate discrete site surface complexation constants. The calculated surface complexation constants were compared with stability constants estimated using linear free energy relationships based on a number of hydroxyl-containing ligands. The experimental data suggests that lanthanide adsorption edges below pH 6.5 are consistent with adsorption to phosphate groups for the light and some of the middle lanthanides (La to Gd), whereas some of the middle and heavy lanthanides appear to favor carboxyl co-ordination (Tb to Yb), although exceptions occur in each grouping. The experimentally derived surface complexation constants for carboxyl coordination were of similar magnitude to stability constants estimated from linear free energy correlations using fulvic acid stability constants. The implication is that the adsorption of lanthanides to bacterial surfaces could be modeled reasonably well using lanthanide stability constants for natural organic matter, except perhaps at low pH where phosphate binding dominates. PMID:20000843
Alexandrov, Vitali Y.; Rosso, Kevin M.
2013-10-02
Interfacial reactivity of redox-active iron-bearing mineral surfaces plays a crucial role in many environmental processes including biogeochemical cycling of various elements and contaminants. Herein, we apply density-functional-theory (DFT) calculations to provide atomistic insights into the heterogeneous reaction between aqueous Fe(II) and the Fe-bearing clay mineral nontronite Fe2Si4O10(OH)2 by studying its adsorption mechanism and interfacial Fe(II)-Fe(III) electron transfer (ET) at edge and basal surfaces. We find that edge-bound Fe(II) adsorption complexes at different surface sites (ferrinol, silanol and mixed) may coexist on both (010) and (110) edge facets, with complexes at ferrinol FeO(H) sites being the most energetically favorable and coupled to proton transfer. Calculation of the ET activation energy suggests that interfacial ET into dioctahedral Fe(III) sheets is probable at the clay edges and occurs predominantly but not exclusively through the complexes adsorbed at ferrinol sites and might also involve mixed sites. No clear evidence is found for complexes on basal surface that are compatible with ET through the basal sheet despite this experimentally hypothesized ET interface. This study suggests a strong pH-dependence of Fe(II) surface complexation at basal versus edge facets and highlights the importance of the protonation state of bridging ligands and proton coupled electron transfer to facilitate ET into Fe-rich clay minerals.
NASA Astrophysics Data System (ADS)
Meehan, Timothy Erickson
1992-01-01
Unrestricted Hartree-Fock calculations were performed on Fe_{x}CO clusters to model the CO(alpha_1), CO(alpha_2), and CO( alpha_3) adsorptions on the Fe(100) surface. Clusters of FeCO(C_{4v}) and a multiplicity of 5, Fe_2 CO(C_{2v}) and a multiplicity of 7, and Fe_2CO(C _{s}) and a multiplicity of 7, were constructed to model, respectively, the adsorption for the on top site, bridging site, and tilted CO structure at the 4-fold site. The CO position was optimized with respect to the Fe bulk distances using gradient techniques and the partial geometry optimization. CO stretching frequencies were calculated for each optimized geometry, and we find no evidence supporting CO adsorption in the bridging site. Using a full basis set the calculated CO stretching frequencies for the FeCO(C_{4v}), Fe_2CO(C_ {2v}), and the Fe_2 CO(C_{s}) clusters are 1992, 1767, and 771 cm^{ -1}, respectively. The CSOV analysis was executed to analyze the major orbital interactions between the CO and Fe_{x} clusters. For both Fe_2CO clusters, the CO pi^* perpendicular to the Fe _2 axis had a more significant contribution involving the pi backdonation from the Fe_2 clusters. Furthermore, the spin minority d electrons are mainly responsible for the pi backdonation. Due to problems with SCF convergence incurred during the Fe_{x}CO studies, we were forced to investigate a number of different techniques to achieve SCF convergence. Therefore, techniques that generate starting guesses of the eigenvectors for the SCF procedure and techniques used to accelerate SCF convergence are reviewed. The standard guesses of H _{core} and charge build -up are examined, and we introduce a new incremental cluster method for generating starting guesses for large clusters. The standard techniques of extrapolation, DIIS, damping, level shifting, restrict, and symmetry blocking are examined, and we also developed the hacker method and partial geometry optimization as new techniques to achieve SCF convergence. Results
NASA Astrophysics Data System (ADS)
Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko
2013-02-01
Zeolites have attracted attention in the reprocessing of radioactive nuclear waste because of their high selective affinity for radioisotopes of Cs. Very recently, their useful properties have been widely utilized in decontamination after the accident at the Fukushima Daiichi Nuclear Power Plants. In this study, we study the high selectivity in the Cs adsorption of zeolites using first-principles calculations and clarify the mechanism of the cation selectivity of zeolites. We obtain energy surfaces on all capture locations for Cs/Na ions inside the micropores of a zeolite, ``mordenite'', and find three crucial conditions for the highly ion-selective exchange of Na for Cs: i) micropores with a radius of ˜3 Å, ii) a moderate Al/Si ratio, and iii) a uniform distribution of Al atoms around each micropore. These insights suggest a guideline for developing zeolites with high Cs selectivity and for enhancing the cation selectivity in more general situations.
NASA Astrophysics Data System (ADS)
Buryak, Alexey K.
2002-08-01
The current state of research on the theoretical description of adsorption in the Henry region by semiempirical molecular-statistical procedures, as applied to identification of organic compounds in complex mixtures, is considered. Various approaches to correcting the atom-atom potential parameters used to determine thermodynamic characteristics of adsorption are compared. Examples of calculations involved in the chromatographic and chromatography-mass spectrometric identification of model and real organic compounds including isomers are given. The bibliography includes 89 references.
Low-energy calculations for nuclear photodisintegration
NASA Astrophysics Data System (ADS)
Deflorian, S.; Efros, V. D.; Leidemann, W.
2016-03-01
In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind {}{Z_1}{A_1}{X_1} + {}{Z_2}{A_2}{X_2} to {}{Z_1 + {Z_2}}{A_1 + {A_2}}Y + γ , which enter the proton-proton chains. These reactions can also be studied through the inverse photodisintegration reaction. One option is to use the Lorentz Integral Transform approach, which transforms the continuum problem into a bound state-like one. A way to check the reliability of such methods is a direct calculation, for example using the Kohn Variational Principle to obtain the scattering wave function and then directly calculate the response function of the reaction.
Abramyan, Tigran M; Snyder, James A; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG-X-GTGT host-guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard-Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid-liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
Free energy calculations of gramicidin dimer dissociation.
Wanasundara, Surajith N; Krishnamurthy, Vikram; Chung, Shin-Ho
2011-11-24
Molecular dynamics simulations, combined with umbrella sampling, is used to study how gramicidin A (gA) dimers dissociate in the lipid bilayer. The potential of mean force and intermolecular potential energy are computed as functions of the distance between center of masses of the two gA monomers in two directions of separation: parallel to the bilayer surface and parallel to the membrane normal. Results from this study show that the dissociation of gA dimers occurs via lateral displacement of gA monomers followed by tilting of dimers with respect to the lipid bilayer normal. It is found that the dissociation energy of gA dimers in the dimyristoylphosphatidylcholine bilayer is 14 kcal mol(-1) (~22 kT), which is approximately equal to the energy of breaking six intermolecular hydrogen bonds that stabilize the gA channel dimer.
NASA Astrophysics Data System (ADS)
Danaee, I.; Ghasemi, O.; Rashed, G. R.; Rashvand Avei, M.; Maddahy, M. H.
2013-03-01
The corrosion inhibition and adsorption of N,N'-bis(n-hydroxybenzaldehyde)-1,3-propandiimine (n-HBP) Schiff bases has been investigated on steel electrode in 1 M HCl by using electrochemical techniques. The experimental results suggest that the highest inhibition efficiency was obtained for 3-HBP. Polarization curves reveal that all studied inhibitors are mixed type. Density functional theory (DFT) at the B3LYP/6-31G(d,p) and B3LYP/3-21G basis set levels and ab initio calculations using HF/6-31G(d,p) and HF/3-21G methods were performed on three Schiff bases. By studying the effects of hydroxyl groups in ortho-, meta-, para- positions, the best one as inhibitor was found to be meta-position of OH in Schiff base (i.e., 3-HBP). The order of inhibition efficiency obtained was corresponded with the order of most of the calculated quantum chemical parameters. Quantitative structure activity relationship (QSAR) approach has been used and a correlation of the composite index of some of the quantum chemical parameters was performed to characterize the inhibition performance of the Schiff bases studied. The results showed that %IE of the Schiff bases was closely related to some of the quantum chemical parameters but with varying degrees/order. The calculated %IE of the Schiff base studied was found to be close to their experimental corrosion inhibition efficiencies.
Calculation of energy deposition distributions for simple geometries
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.
1973-01-01
When high-energy charged particles pass through a thin detector, the ionization energy loss in that detector is subject to fluctuations or straggling which must be considered in interpreting the data. Under many conditions, which depend upon the charge and energy of the incident particle and the detector geometry, the ionization energy lost by the particle is significantly different from the energy deposited in the detector. This problem divides naturally into a calculation of the energy loss that results in excitation and low-energy secondary electrons which do not travel far from their production points, and a calculation of energy loss that results in high-energy secondary electrons which can escape from the detector. The first calculation is performed using a modification of the Vavilov energy loss distribution. A cutoff energy is introduced above which all electrons are ignored and energy transferred to low energy particles is assumed to be equivalent to the energy deposited by them. For the second calculation, the trajectory of the primary particle is considered as a source of secondary high-energy electrons. The electrons from this source are transported using Monte Carlo techniques and multiple scattering theory, and the energy deposited by them in the detector is calculated. The results of the two calculations are then combined to predict the energy deposition distribution. The results of these calculations are used to predict the charge resolution of parallel-plate pulse ionization chambers that are being designed to measure the charge spectrum of heavy nuclei in the galactic cosmic-ray flux.
Phenolic resin-based porous carbons for adsorption and energy storage applications
NASA Astrophysics Data System (ADS)
Wickramaratne, Nilantha P.
The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of
First principles calculations of oxygen adsorption on the UN(0 0 1) surface
NASA Astrophysics Data System (ADS)
Zhukovskii, Yu. F.; Bocharov, D.; Kotomin, E. A.; Evarestov, R. A.; Bandura, A. V.
2009-01-01
Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (0 0 1) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(0 0 1) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.
Zuo, Linzi; Guo, Yong; Li, Xiao; Fu, Heyun; Qu, Xiaolei; Zheng, Shourong; Gu, Cheng; Zhu, Dongqiang; Alvarez, Pedro J J
2016-01-19
A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping.
Zuo, Linzi; Guo, Yong; Li, Xiao; Fu, Heyun; Qu, Xiaolei; Zheng, Shourong; Gu, Cheng; Zhu, Dongqiang; Alvarez, Pedro J J
2016-01-19
A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping. PMID:26669961
Density functional theory for comprehensive orbital energy calculations.
Nakata, Ayako; Tsuneda, Takao
2013-08-14
This study reveals the reason core 1s orbital energies and the highest occupied molecular orbital (HOMO) energies of hydrogen and rare gas atoms are underestimated by long-range corrected (LC) density functional theory (DFT), which quantitatively reproduces the HOMO energies of other systems and the lowest unoccupied molecular orbital (LUMO) energies. Applying the pseudospectral regional (PR) self-interaction correction (SIC) drastically improved the underestimated orbital energies in LC-DFT calculations, while maintaining or improving the accuracies in the calculated valence HOMO and LUMO energies. This indicates that the self-interaction error in exchange functionals causes the underestimations of core 1s orbital energies and the HOMO energies of hydrogen and rare gas atoms in LC-DFT calculations. To clarify the reason for the improvement, the fractional occupation dependences of total electronic energies and orbital energies were examined. The calculated results clearly showed that the LC-PR functional gives almost linear dependences of total electronic energies for a slight decrease in the occupation number of core 1s orbitals, although this linear dependence disappears for significant decrease due to the shrinking of exchange self-interaction regions. It was also clarified that the PRSIC hardly affects the occupation number dependences of the total electronic energies and orbital energies for the fractional occupations of HOMOs and LUMOs. As a result, it was concluded that core orbital energies are obtained accurately by combining LC-DFT with PRSIC.
NASA Astrophysics Data System (ADS)
Veiga, R. G. A.; Miwa, R. H.; McLean, A. B.
2016-03-01
We report first-principles calculations of the energetic stability and electronic properties of metal-phthalocyanine (MPc) molecules (M = Cr, Mn, Fe, Co, Ni, Cu, and Zn) adsorbed on the δ -doped Si(111)-B (√{3 }×√{3 }) reconstructed surface. (i) It can be seen that CrPc, MnPc, FePc, and CoPc are chemically anchored to the topmost Si atom. (ii) Contrastingly, the binding of the NiPc, CuPc, and ZnPc molecules to the Si (111 ) -B (√{3 }×√{3 }) surface is exclusively ruled by van der Waals interactions, the main implication being that these molecules may diffuse and rearrange to form clusters and/or self-organized structures on this surface. The electronic structure calculations reveal that in point (i), owing to the formation of the metal-Si covalent bond, the net magnetic moment of the molecule is quenched by 1 μB , remaining unchanged in point (ii). In particular, the magnetic moment of CuPc (1 μB ) is preserved after adsorption. Finally, we verify that the formation of ZnPc, CuPc, and NiPc molecular (self-assembled) arrangements on the Si(111)-B (√{3 }×√{3 } ) surface is energetically favorable, in good agreement with recent experimental findings.
Energy deposition calculated by PHITS code in Pb spallation target
NASA Astrophysics Data System (ADS)
Yu, Quanzhi
2016-01-01
Energy deposition in a Pb spallation target irradiated by high energetic protons was calculated by PHITS2.52 code. The validation of the energy deposition and neutron production calculated by PHITS code was performed. Results show good agreements between the simulation results and the experimental data. Detailed comparison shows that for the total energy deposition, PHITS simulation result was about 15% overestimation than that of the experimental data. For the energy deposition along the length of the Pb target, the discrepancy mainly presented at the front part of the Pb target. Calculation indicates that most of the energy deposition comes from the ionizations of the primary protons and the produced secondary particles. With the event generator mode of PHITS, the deposit energy distribution for the particles and the light nulclei is presented for the first time. It indicates that the primary protons with energy more than 100 MeV are the most contributors to the total energy deposition. The energy depositions peaking at 10 MeV and 0.1 MeV, are mainly caused by the electrons, pions, d, t, 3He and also α particles during the cascade process and the evaporation process, respectively. The energy deposition density caused by different proton beam profiles are also calculated and compared. Such calculation and analyses are much helpful for better understanding the physical mechanism of energy deposition in the spallation target, and greatly useful for the thermal hydraulic design of the spallation target.
Heuristic control of kinetic energy in dynamic reaction coordinate calculations.
Hellweg, Arnim
2013-08-01
For the understanding and prediction of chemical reactions, detailed knowledge of the minimum energy path between reactants and transition state is of utmost importance. Stewart et al. (J. Comput. Chem. 1987, 8, 1117) proposed the usage of molecular trajectories calculated from Newton's equations of motion for an efficient reaction path following. Two operational modes are possible thereby: intrinsic (IRC) and dynamic reaction coordinate calculations (DRC). The technical difference between these modes is that in an IRC calculation the kinetic energy of the nuclei is quenched while the total energy is conserved in DRC calculations. In this work, a heuristic control methodology of atomic kinetic energies in DRC calculations using fuzzy logic is proposed. A diversified test set of 10 reactions has been collected to examine the performance of this approach. Fuzzy rule-based models are found to be a convenient way to make the determination of accessible paths of chemical reactions computationally efficient.
Guidelines for the analysis of free energy calculations
Klimovich, Pavel V.; Shirts, Michael R.; Mobley, David L.
2015-01-01
Free energy calculations based on molecular dynamics (MD) simulations show considerable promise for applications ranging from drug discovery to prediction of physical properties and structure-function studies. But these calculations are still difficult and tedious to analyze, and best practices for analysis are not well defined or propagated. Essentially, each group analyzing these calculations needs to decide how to conduct the analysis and, usually, develop its own analysis tools. Here, we review and recommend best practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python tool, alchemical–analysis.py, freely available on GitHub at https://github.com/choderalab/pymbar–examples, that implements the analysis practices reviewed here for several reference simulation packages, which can be adapted to handle data from other packages. Both this review and the tool covers analysis of alchemical calculations generally, including free energy estimates via both thermodynamic integration and free energy perturbation-based estimators. Our Python tool also handles output from multiple types of free energy calculations, including expanded ensemble and Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a range of statistical and graphical ways of assessing the quality of the data and free energy estimates, and provide prototypes of these in our tool. We hope these tools and discussion will serve as a foundation for more standardization of and agreement on best practices for analysis of free energy calculations. PMID:25808134
Guidelines for the analysis of free energy calculations.
Klimovich, Pavel V; Shirts, Michael R; Mobley, David L
2015-05-01
Free energy calculations based on molecular dynamics simulations show considerable promise for applications ranging from drug discovery to prediction of physical properties and structure-function studies. But these calculations are still difficult and tedious to analyze, and best practices for analysis are not well defined or propagated. Essentially, each group analyzing these calculations needs to decide how to conduct the analysis and, usually, develop its own analysis tools. Here, we review and recommend best practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python tool, alchemical-analysis.py, freely available on GitHub as part of the pymbar package (located at http://github.com/choderalab/pymbar), that implements the analysis practices reviewed here for several reference simulation packages, which can be adapted to handle data from other packages. Both this review and the tool covers analysis of alchemical calculations generally, including free energy estimates via both thermodynamic integration and free energy perturbation-based estimators. Our Python tool also handles output from multiple types of free energy calculations, including expanded ensemble and Hamiltonian replica exchange, as well as standard fixed ensemble calculations. We also survey a range of statistical and graphical ways of assessing the quality of the data and free energy estimates, and provide prototypes of these in our tool. We hope this tool and discussion will serve as a foundation for more standardization of and agreement on best practices for analysis of free energy calculations.
Spectroscopically Accurate Calculations of the Rovibrational Energies of Diatomic Hydrogen
NASA Astrophysics Data System (ADS)
Perry, Jason
2005-05-01
The Born-Oppenheimer approximation has been used to calculate the rotational and vibrational states of diatomic hydrogen. Because it is an approximation, our group now wants to use a Born-Oppenheimer potential to calculate the electronic energy that has been corrected to match closely with spectroscopic results. We are using a code that has corrections for adiabatic, relativistic, radiative, and non-adiabatic effects. The rovibrational energies have now been calculated for both bound and quasi-bound states. We also want to compute quadrupole transition probabilities for diatomic hydrogen. These calculations aspire to investigate diatomic hydrogen in astrophysical environments.
18 CFR 11.13 - Energy gains calculations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...
18 CFR 11.13 - Energy gains calculations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...
18 CFR 11.13 - Energy gains calculations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...
18 CFR 11.13 - Energy gains calculations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...
18 CFR 11.13 - Energy gains calculations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Energy gains calculations. 11.13 Section 11.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...
Kumar, K Vasanth; de Castro, M Monteiro; Martinez-Escandell, M; Molina-Sabio, M; Rodriguez-Reinoso, F
2011-04-01
A site energy distribution function based on a condensation approximation method is proposed for gas-phase adsorption systems following the Toth isotherm. The proposed model is successfully applied to estimate the site energy distribution of three pitch-based activated carbons (PA, PFeA and PBA) developed in our laboratory and also for other common adsorbent materials for different gas molecules. According to the proposed model the site energy distribution curves of the activated carbons are found to be exponential for hydrogen at 77 K. The site energy distribution of some of the activated carbon fibers, ambersorb, Dowex optipore, 13X Zeolite for different adsorbate molecules represents a quasi-Gaussian curve with a widened left hand side, indicating that most sites have adsorption energies lower than a statistical mean value.
Sorescu, D.C.
2006-04-01
A previous set of investigations related to adsorption, diffusion, and dissociation properties of CO [D. C. Sorescu, D. L. Thompson, M. M. Hurley, and C. F. Chabalowski, Phys. Rev. B 66, 035416 (2002)] and H2 [D. C. Sorescu, Catal. Today 105, 44 (2005)] on Fe(100) surface have been extended to the case of chemisorption properties of CHx (x=0,4) species on the same surface. Similar to our previous studies, the current work is based on first-principles plane-wave calculations using spin-polarized density functional theory (DFT) and the generalized gradient approximation (GGA). The calculations employ slab geometry and periodic boundary conditions. It was determined that CHx (x=0,2) species preferentially adsorb at the four-folded sites while the CH3 species prefer the binding at the bridge site. In contradistinction, the CH4 molecule is only weakly physisorbed on the surface, independent of surface site or molecular orientation. In the case of the C atom, the adsorption investigations have been extended to include both the coverage effects as well as the possibility for absorption at subsurface sites. The presence of the C atom at either hollow or subsurface sites was found to increase the stability of the other atomic (C, H, O) and molecular or radical species [CO, CHx (x=1,4)] adsorbed on the surface. Beside chemisorption properties, the activation energies for surface diffusion have been determined for all individual CHx (x=0,3)species while in the case of C atom diffusion to subsurface sites have also been considered. Finally, we have determined the minimum energy path for the elementary hydrogenation reactions of CHx (x=0,3) species. We found that for the ensemble of surface processes involving dissociation of CO and H2 on Fe(100) surface followed by hydrogenation of CHx (x=0,3) species with formation of CH4, the CO dissociation is the rate determining step with an activation energy of 24.5 kcal/mol.
An introduction to best practices in free energy calculations.
Shirts, Michael R; Mobley, David L
2013-01-01
Free energy calculations are extremely useful for investigating small-molecule biophysical properties such as protein-ligand binding affinities and partition coefficients. However, these calculations are also notoriously difficult to implement correctly. In this chapter, we review standard methods for computing free energy via simulation, discussing current best practices and examining potential pitfalls for computational researchers performing them for the first time. We include a variety of examples and tips for how to set up and conduct these calculations, including applications to relative binding affinities and small-molecule solvation free energies.
Terzyk, Artur P; Furmaniak, Sylwester; Harris, Peter J F; Gauden, Piotr A; Włoch, Jerzy; Kowalczyk, Piotr; Rychlicki, Gerhard
2007-11-28
A plausible model for the structure of non-graphitizing carbon is one which consists of curved, fullerene-like fragments grouped together in a random arrangement. Although this model was proposed several years ago, there have been no attempts to calculate the properties of such a structure. Here, we determine the density, pore size distribution and adsorption properties of a model porous carbon constructed from fullerene-like elements. Using the method proposed recently by Bhattacharya and Gubbins (BG), which was tested in this study for ideal and defective carbon slits, the pore size distributions (PSDs) of the initial model and two related carbon models are calculated. The obtained PSD curves show that two structures are micro-mesoporous (with different ratio of micro/mesopores) and the third is strictly microporous. Using the grand canonical Monte Carlo (GCMC) method, adsorption isotherms of Ar (87 K) are simulated for all the structures. Finally PSD curves are calculated using the Horvath-Kawazoe, non-local density functional theory (NLDFT), Nguyen and Do, and Barrett-Joyner-Halenda (BJH) approaches, and compared with those predicted by the BG method. This is the first study in which different methods of calculation of PSDs for carbons from adsorption data can be really verified, since absolute (i.e. true) PSDs are obtained using the BG method. This is also the first study reporting the results of computer simulations of adsorption on fullerene-like carbon models.
Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert; Martínez, José Ignacio; Flores, Fernando; Ortega, José
2016-01-01
The adsorption of a densely packed Zinc(II) tetraphenylporphyrin monolayer on a rutile TiO2(110)-(1×1) surface has been studied using a combination of experimental and theoretical methods, aimed at analyzing the relation between adsorption behavior and barrier height formation. The adsorption configuration of ZnTPP was determined from scanning tunnel microscopy (STM) imaging, density functional theory (DFT) calculations and STM image simulation. The corresponding energy alignment was experimentally determined from X-ray and UV-photoemission spectroscopies and inverse photoemission spectroscopy. These results were found in good agreement with an appropriately corrected DFT model, pointing to the importance of local bonding and intermolecular interactions in the establishment of barrier heights. PMID:26998188
Xu, Pengcheng; Yu, Haitao; Li, Xinxin
2016-05-01
Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.
New approach to calculating the potential energy of colliding nuclei
Kurmanov, R. S.; Kosenko, G. I.
2014-12-15
The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.
NASA Astrophysics Data System (ADS)
Biswas, Nandita; Thomas, Susy; Kapoor, Sudhir; Mishra, Amaresh; Wategaonkar, Sanjay; Mukherjee, Tulsi
2008-11-01
Structural and vibrational properties of mono- and multichromophoric hemicyanine (HC) dyes in solution and adsorbed on silver-coated films have been investigated using optical absorption and resonance Raman scattering techniques, with interpretations aided by theoretical calculations. This is the first report on the Raman spectroscopic studies of multichromophoric HC derivatives. The structure of the monomer, N-propyl-4-(p-N,N-dimethylamino styryl)pyridinium bromide (HC3), and its charged and neutral silver complexes (HC3-Ag) in the ground electronic (S0) state were optimized using density functional calculations with the B3LYP method using the 6-31G* and LANL2DZ basis sets. The ground state structure of N-hexyl-4-(p-N,N-dimethylamino styryl)pyridinium bromide (HC6) and multichromophoric HC dyes were computed using the HF /6-31G* method. The negligible shift or broadening observed in the electronic absorption and resonance Raman spectra in solution with increasing size of the HC chromophore suggests that the excitations are localized within individual monomer units in bis and tetra chromophores. However, in the tris chromophore, considerable redshift and broadening were observed, indicating a significant electronic interaction between the nonbonded electrons of the N atom and the aromatic π-system that is supported by the calculated excitation energies using the time-dependent density functional theory method. The effect of HC dye concentration on the electronic absorption spectra of the silver-coated film showed significant broadening, which was attributed to the formation of H- and J-aggregates in addition to the formation of a metal-molecule complex. A considerable redshift along various vibrations observed in the surface-enhanced resonance Raman scattering (SERRS) spectra of the HC derivatives indicates that adsorption on the silver surface leads to a considerable interaction of the electron rich moiety of HC derivatives with the silver surface. The
Calculation of Rydberg energy levels for the francium atom
NASA Astrophysics Data System (ADS)
Huang, Shi-Zhong; Chu, Jin-Min
2010-06-01
Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.
NASA Astrophysics Data System (ADS)
Thirumalai, Hari; Kitchin, John R.
2016-08-01
Adsorption, a fundamental process in heterogeneous catalysis is known to be dependent on the adsorbate-adsorbate and surface-adsorbate bonds. van der Waals (vdW) interactions are one of the types of interactions that have not been examined thoroughly as a function of adsorbate coverage. In this work we quantify the vdW interactions for atomic adsorbates on late transition metal surfaces, and determine how these long range forces affect the coverage dependent adsorption energies. We calculate the adsorption energies of carbon, nitrogen, oxygen, sulfur, fluorine, bromine and chlorine species on Pt(111) and Pd(111) at coverages ranging from 1/4 to 1 ML using the BEEF-vdW functional. We observe that adsorption energies remain coverage dependent, and this coverage dependence is shown to be statistically significant. vdW interactions are found to be coverage dependent, but more significantly, they are found to be dependent on molecular properties such as adsorbate size, and consequently, correlate with the adsorbate effective nuclear charge. We observe that these interactions account for a reduction in the binding energy of the system, due to the destabilizing attractive interactions between the adsorbates which weaken its bond with the surface.
Protein thermostability calculations using alchemical free energy simulations.
Seeliger, Daniel; de Groot, Bert L
2010-05-19
Thermal stability of proteins is crucial for both biotechnological and therapeutic applications. Rational protein engineering therefore frequently aims at increasing thermal stability by introducing stabilizing mutations. The accurate prediction of the thermodynamic consequences caused by mutations, however, is highly challenging as thermal stability changes are caused by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchemical free energy simulations, such as free energy perturbation or thermodynamic integration, to calculate free energy differences with relatively high accuracy. In this article, we present an automated protocol for setting up alchemical free energy calculations for mutations of naturally occurring amino acids (except for proline) that allows an unprecedented, automated screening of large mutant libraries. To validate the developed protocol, we calculated thermodynamic stability differences for 109 mutations in the microbial Ribonuclease Barnase. The obtained quantitative agreement with experimental data illustrates the potential of the approach in protein engineering and design. PMID:20483340
Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons
NASA Astrophysics Data System (ADS)
Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.
2011-03-01
Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.
Migliorini, Davide; Nattino, Francesco; Kroes, Geert-Jan
2016-02-28
The fundamental understanding of molecule-surface reactions is of great importance to heterogeneous catalysis, motivating many theoretical and experimental studies. Even though much attention has been dedicated to the dissociative chemisorption of N2 on tungsten surfaces, none of the existing theoretical models has been able to quantitatively reproduce experimental reaction probabilities for the sticking of N2 to W(110). In this work, the dissociative chemisorption of N2 on W(110) has been studied with both static electronic structure and ab initio molecular dynamics (AIMD) calculations including the surface temperature effects through surface atom motion. Calculations have been performed using density functional theory, testing functionals that account for the long range van der Waals (vdW) interactions, which were previously only considered in dynamical calculations within the static surface approximation. The vdW-DF2 functional improves the description of the potential energy surface for N2 on W(110), returning less deep molecular adsorption wells and a better ratio between the barriers for the indirect dissociation and the desorption, as suggested by previous theoretical work and experimental evidence. Using the vdW-DF2 functional less trapping-mediated dissociation is obtained compared to results obtained with standard semi-local functionals such as PBE and RPBE, improving agreement with experimental data at E(i) = 0.9 eV. However, at E(i) = 2.287 and off-normal incidence, the vdW-DF2 AIMD underestimates the experimental reaction probabilities, showing that also with the vdW-DF2 functional the N2 on W(110) interaction is not yet described with quantitative accuracy. PMID:26931713
Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; Bandura, Andrei V.; Zhang, Zhan; Wesolowski, David J.; Fenter, Paul
2015-01-29
We study adsorption of Rb^{+} to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb^{+} distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights of 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb^{+} between these two conditions. At pH 7, the lowest energy structure shows that Rb^{+} adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb^{+} coverage was -0.11 C/m^{2}, in good agreement with the range of the surface charge magnitudes reported in the literature.
Molecular modeling study of chiral drug crystals: lattice energy calculations.
Li, Z J; Ojala, W H; Grant, D J
2001-10-01
The lattice energies of a number of chiral drugs with known crystal structures were calculated using Dreiding II force field. The lattice energies, including van der Waals, Coulombic, and hydrogen-bonding energies, of homochiral and racemic crystals of some ephedrine derivatives and of several other chiral drugs, are compared. The calculated energies are correlated with experimental data to probe the underlying intermolecular forces responsible for the formation of racemic species, racemic conglomerates, or racemic compounds, termed chiral discrimination. Comparison of the calculated energies among ephedrine derivatives reveals that a greater Coulombic energy corresponds to a higher melting temperature, while a greater van der Waals energy corresponds to a larger enthalpy of fusion. For seven pairs of homochiral and racemic compounds, correlation of the differences between the two forms in the calculated energies and experimental enthalpy of fusion suggests that the van der Waals interactions play a key role in the chiral discrimination in the crystalline state. For salts of the chiral drugs, the counter ions diminish chiral discrimination by increasing the Coulombic interactions. This result may explain why salt forms favor the formation of racemic conglomerates, thereby facilitating the resolution of racemates.
Liu, Kai; Zhang, Siyu; Hu, Xiyue; Zhang, Kunyang; Roy, Ajay; Yu, Gang
2015-07-21
To examine the effects of different functionalization methods on adsorption behavior, anionic-exchange MIL-101(Cr) metal-organic frameworks (MOFs) were synthesized using preassembled modification (PAM) and postsynthetic modification (PSM) methods. Perfluorooctanoic acid (PFOA) adsorption results indicated that the maximum PFOA adsorption capacity was 1.19 and 1.89 mmol g(-1) for anionic-exchange MIL-101(Cr) prepared by PAM and PSM, respectively. The sorption equilibrium was rapidly reached within 60 min. Our results indicated that PSM is a better modification technique for introducing functional groups onto MOFs for adsorptive removal because PAM places functional groups onto the aperture of the nanopore, which hinders the entrance of organic contaminants. Our experimental results and the results of complementary density functional theory calculations revealed that in addition to the anion-exchange mechanism, the major PFOA adsorption mechanism is a combination of Lewis acid/base complexation between PFOA and Cr(III) and electrostatic interaction between PFOA and the protonated carboxyl groups of the bdc (terephthalic acid) linker. PMID:26066631
Liu, Kai; Zhang, Siyu; Hu, Xiyue; Zhang, Kunyang; Roy, Ajay; Yu, Gang
2015-07-21
To examine the effects of different functionalization methods on adsorption behavior, anionic-exchange MIL-101(Cr) metal-organic frameworks (MOFs) were synthesized using preassembled modification (PAM) and postsynthetic modification (PSM) methods. Perfluorooctanoic acid (PFOA) adsorption results indicated that the maximum PFOA adsorption capacity was 1.19 and 1.89 mmol g(-1) for anionic-exchange MIL-101(Cr) prepared by PAM and PSM, respectively. The sorption equilibrium was rapidly reached within 60 min. Our results indicated that PSM is a better modification technique for introducing functional groups onto MOFs for adsorptive removal because PAM places functional groups onto the aperture of the nanopore, which hinders the entrance of organic contaminants. Our experimental results and the results of complementary density functional theory calculations revealed that in addition to the anion-exchange mechanism, the major PFOA adsorption mechanism is a combination of Lewis acid/base complexation between PFOA and Cr(III) and electrostatic interaction between PFOA and the protonated carboxyl groups of the bdc (terephthalic acid) linker.
Lorenz, Marco; Civalleri, Bartolomeo; Maschio, Lorenzo; Sgroi, Mauro; Pullini, Daniele
2014-09-15
The physisorption of water on graphene is investigated with the hybrid density functional theory (DFT)-functional B3LYP combined with empirical corrections, using moderate-sized basis sets such as 6-31G(d). This setup allows to model the interaction of water with graphene going beyond the quality of classical or semiclassical simulations, while still keeping the computational costs under control. Good agreement with respect to Coupled Cluster with singles and doubles excitations and perturbative triples (CCSD(T)) results is achieved for the adsorption of a single water molecule in a benchmark with two DFT-functionals (Perdew/Burke/Ernzerhof (PBE), B3LYP) and Grimme's empirical dispersion and counterpoise corrections. We apply the same setting to graphene supported by epitaxial hexagonal boron nitride (h-BN), leading to an increased interaction energy. To further demonstrate the achievement of the empirical corrections, we model, entirely from first principles, the electronic properties of graphene and graphene supported by h-BN covered with different amounts of water (one, 10 water molecules per cell and full coverage). The effect of h-BN on these properties turns out to be negligibly small, making it a good candidate for a substrate to grow graphene on. PMID:25056422
The effect of calculated explosive energy output on blast design
Katsabanis, P.D.; Workman, L.
1996-12-31
The energy output of an explosive is typically calculated using an equation of state and computer applications. Results are reported as weight and bulk strength, either in absolute terms or relative to ANFO. The effect of the equation of state selected and the assumptions regarding the energy calculation are considered and interpreted for the purpose of blast design. It appears that variations in the heat of detonation which result from the selection of the equation of state and parameters associated with it are not sufficient to significantly affect blast patterns, explosive consumption and costs. However variations stemming from the use of available energy associated with a cut-off pressure are significant, suggesting in many cases large pattern expansions. The validity of the various approaches is discussed and blast design results based on the energy calculated by the different approaches are presented and evaluated.
Neutron absorbed dose determination by calculations of recoil energy.
Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D
2004-01-01
The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750
NASA Astrophysics Data System (ADS)
Reguera, Javier; Ponomarev, Evgeniy; Geue, Thomas; Stellacci, Francesco; Bresme, Fernando; Moglianetti, Mauro
2015-03-01
Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were
Performance calculation and simulation system of high energy laser weapon
NASA Astrophysics Data System (ADS)
Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke
2014-12-01
High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.
Phenolic resin-based porous carbons for adsorption and energy storage applications
NASA Astrophysics Data System (ADS)
Wickramaratne, Nilantha P.
The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of
Calculating fusion neutron energy spectra from arbitrary reactant distributions
NASA Astrophysics Data System (ADS)
Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.
2016-02-01
The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.
Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun
2012-06-01
Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.
Fink, Karin
2006-04-01
Oxygen vacancies at the polar O terminated (0001) surface of ZnO are of particular interest, because they are discussed as active sites in the methanol synthesis. In general, the polar ZnO surfaces are stabilized by OH groups, therefore O vacancies can be generated by removing either O atoms or OH or H2O groups from the surface. These defects differ in the number of electrons in the vacancy and the number of OH groups in the neighborhood. In the present study, the electronic structure and the adsorption properties of four different types of oxygen vacancies have been investigated by means of embedded cluster calculations. We performed ab initio calculations on F+ like surface excitations for the different defect types and found that the transition energies are above the optical band-gap, while F+ centers in bulk ZnO show a characteristic optical excitation at 3.19 eV. Furthermore, we studied the adsorption of CO2 and CO at the different defect sites by DFT calculations. We found that CO2 dissociates at electron rich vacancies into CO and an O atom which remains in the vacancy. At the OH vacancy which contains an unpaired electron CO2 adsorbed in the form of CO2-, while it adsorbed as a linear neutral molecule at the H2O defect. CO adsorbed preferentially at the H2O defect and the OH defect, both with a binding energy of 0.3 eV. PMID:16633631
Heavy-ion fission probability calculations at high excitation energy
D'Arrigo, A.; Giardina, G.; Taccone, A. Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina, Messina Istituto di Tecniche Spettroscopiche del Consiglio Nazionale delle Ricerche, Messina )
1991-12-01
In the framework of the statistical theory of nuclear reactions we calculated the fission probability {ital P}{sub {ital f}} of the {sup 153}Tb, {sup 158}Er, {sup 159}Dy, {sup 175}Hf, {sup 179}Ta, {sup 186}Os, and {sup 188}Os nuclei with a mass number {ital A}=150--200 produced by heavy-ion reactions. Starting from the spectra of the single-particle levels as determined by Nix and Moeller, and utilizing a formalism we developed, we determined the excitation energy dependence of the effective level density parameters for the fission and the neutron emission channels. The agreement between the fission probability calculations and the experimental data was reached when a nonadiabatic estimate of the collective effects was used to calculate the nuclear level density. In the fission process at high excitation energies induced by ions heavier than the {alpha} particle, an energy dependence of the effective fission barrier has to be used.
Lead Optimization Mapper: Automating free energy calculations for lead optimization
Liu, Shuai; Wu, Yujie; Lin, Teng; Abel, Robert; Redmann, Jonathan P.; Summa, Christopher M.; Jaber, Vivian R.; Lim, Nathan M.; Mobley, David L.
2013-01-01
Alchemical free energy calculations hold increasing promise as an aid to drug discovery efforts. However, applications of these techniques in discovery projects have been relatively few, partly because of the difficulty of planning and setting up calculations. Here, we introduce Lead Optimization Mapper, LOMAP, an automated algorithm to plan efficient relative free energy calculations between potential ligands within a substantial library of perhaps hundreds of compounds. In this approach, ligands are first grouped by structural similarity primarily based on the size of a (loosely defined) maximal common substructure, and then calculations are planned within and between sets of structurally related compounds. An emphasis is placed on ensuring that relative free energies can be obtained between any pair of compounds without combining the results of too many different relative free energy calculations (to avoid accumulation of error) and by providing some redundancy to allow for the possibility of error and consistency checking and provide some insight into when results can be expected to be unreliable. The algorithm is discussed in detail and a Python implementation, based on both Schrödinger's and OpenEye's APIs, has been made available freely under the BSD license. PMID:24072356
Calculation of exchange energies using algebraic perturbation theory
Burrows, B. L.; Dalgarno, A.; Cohen, M.
2010-04-15
An algebraic perturbation theory is presented for efficient calculations of localized states and hence of exchange energies, which are the differences between low-lying states of the valence electron of a molecule, formed by the collision of an ion Y{sup +} with an atom X. For the case of a homonuclear molecule these are the gerade and ungerade states and the exchange energy is an exponentially decreasing function of the internuclear distance. For such homonuclear systems the theory is used in conjunction with the Herring-Holstein technique to give accurate exchange energies for a range of intermolecular separations R. Since the perturbation parameter is essentially 1/R, this method is suitable for large R. In particular, exchange energies are calculated for X{sub 2}{sup +} systems, where X is H, Li, Na, K, Rb, or Cs.
Global versus local adsorption selectivity
NASA Astrophysics Data System (ADS)
Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves
2015-10-01
The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.
Phosphate adsorption on lanthanum loaded biochar.
Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu
2016-05-01
To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732
Calculating Ring Pucker Free Energy Surfaces From Reaction Coordinate Forces
Barnett, Christopher B.; Naidoo, Kevin J.
2009-03-09
We implemented the free energy from adaptive reaction coordinate forces (FEARCF) method and applied it to the conformational investigation of carbohydrate ring puckering. The method allows for significantly enhanced sampling of reaction coordinate space. The free energies associated with the ring pucker motion of {beta}-D-ribose (a furanose) and {beta}-D-glucose (a pyranose) were calculated. These can be used to interpret catalytic mechanisms of glycosylases.
Removing the barrier to the calculation of activation energies
NASA Astrophysics Data System (ADS)
Mesele, Oluwaseun O.; Thompson, Ward H.
2016-10-01
Approaches for directly calculating the activation energy for a chemical reaction from a simulation at a single temperature are explored with applications to both classical and quantum systems. The activation energy is obtained from a time correlation function that can be evaluated from the same molecular dynamics trajectories or quantum dynamics used to evaluate the rate constant itself and thus requires essentially no extra computational work.
de Graaf, Joost; Dijkstra, Marjolein; van Roij, René
2009-11-01
We present a numerical technique, namely, triangular tessellation, to calculate the free energy associated with the adsorption of a colloidal particle at a flat interface. The theory and numerical scheme presented here are sufficiently general to handle nonconvex patchy colloids with arbitrary surface patterns characterized by a wetting angle, e.g., amphiphilicity. We ignore interfacial deformation due to capillary, electrostatic, or gravitational forces, but the method can be extended to take such effects into account. It is verified that the numerical method presented is accurate and sufficiently stable to be applied to more general situations than presented in this paper. The merits of the tessellation method prove to outweigh those of traditionally used semianalytic approaches, especially when it comes to generality and applicability. PMID:20364983
General method for calculating derivatives of the lattice electrostatic energy.
NASA Technical Reports Server (NTRS)
Macdonald, D. E.; Eftis, J.; Arkilic, G. M.
1972-01-01
A method for calculating the derivatives of lattice electrostatic strain energy is proposed. It offers a computation procedure that is more general, concise, and systematic than any of the procedures previously used by Fuchs (1936), Cousins (1967), and Suzuki et al. (1968). The method can also easily be extended to fourth- and higher-order derivatives without undue difficulty.
On the calculation of classical vibrational energy exchange
NASA Astrophysics Data System (ADS)
Gibbons, John P.; Stettler, John D.
1982-07-01
A three-dimensional, Monte Carlo classical model for the calculation of vibrational energy relaxation and transfer rates for both diatomic—monatomic and diatomic—diatomic systems was developed, analyzed and implemented. Mediation by internal angular momentum changes was demonstrated to be important in these energy transfer processes. This mechanism was incorporated into the model in order to achieve statistically significant results within reasonable computer running times. This made possible the extension of the model calculations to much lower temperatures than had been previously investigated. This calculational procedure was applied to Ar—O 2, to He—O 2 and to the near resonant CO—N 2 process at several temperatures between room temperature and 4000 K with the use of exponential repulsive intermolecular potential. Three different sets of potential parameters obtained from three independent sources were used. The results were compared to experiment.
Accurate calculation of diffraction-limited encircled and ensquared energy.
Andersen, Torben B
2015-09-01
Mathematical properties of the encircled and ensquared energy functions for the diffraction-limited point-spread function (PSF) are presented. These include power series and a set of linear differential equations that facilitate the accurate calculation of these functions. Asymptotic expressions are derived that provide very accurate estimates for the relative amount of energy in the diffraction PSF that fall outside a square or rectangular large detector. Tables with accurate values of the encircled and ensquared energy functions are also presented. PMID:26368873
Calculation of Mg(+)-ligand relative binding energies
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.
1992-01-01
The calculated relative binding energies of 16 organic molecules to Mg(+) are compared with experimental results where available. The geometries of the ligands and the Mg(+)-ligand complexes arc optimized at the self-consistent field level using a 6-31G* basis set. The Mg(+) binding energies are evaluated using second-order perturbation theory and basis sets of triple-sigma quality augmented with two sets of polarization functions. This level of theory is calibrated against higher levels of theory for selected systems. The computed binding energies are accurate to about 2 kcal/mol.
The Calculation of Accurate Metal-Ligand Bond Energies
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)
1997-01-01
The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.
NASA Astrophysics Data System (ADS)
Bousquet, D.; Coudert, F.-X.; Boutin, A.
2012-07-01
Soft porous crystals are flexible metal-organic frameworks that respond to physical stimuli such as temperature, pressure, and gas adsorption by large changes in their structure and unit cell volume. While they have attracted a lot of interest, molecular simulation methods that directly couple adsorption and large structural deformations in an efficient manner are still lacking. We propose here a new Monte Carlo simulation method based on non-Boltzmann sampling in (guest loading, volume) space using the Wang-Landau algorithm, and show that it can be used to fully characterize the adsorption properties and the material's response to adsorption at thermodynamic equilibrium. We showcase this new method on a simple model of the MIL-53 family of breathing materials, demonstrating its potential and contrasting it with the pitfalls of direct, Boltzmann simulations. We furthermore propose an explanation for the hysteretic nature of adsorption in terms of free energy barriers between the two metastable host phases.
Three dimensional calculation of flux of low energy atmospheric neutrinos
NASA Technical Reports Server (NTRS)
Lee, H.; Bludman, S. A.
1985-01-01
Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.
Calculation of energy for lighting using EN 15193
NASA Astrophysics Data System (ADS)
Mitsopoulou, Mairi
The aim of this report is to investigate the impact of the application of the new European directive prEN 15193, concerning the Energy performance of buildings - Energy requirements for lighting on the design of artificial lighting in open plan office buildings. A study of the energy consequences of three different types of building and different types of lighting systems within the buildings was carried out. The result of the study helped understand how each type of building performs in terms of the amount of energy that is used in the lighting the study also helped to verify the calculation procedure LENI used in EN 15193 Energy Performance of Buildings - Energy Requirements for Lighting. The efficient use of energy for lighting can reduce operating costs by reducing the energy consumption for lighting. Besides direct savings, indirect energy savings can be found in buildings, with high cooling loads because of the reduced heat production and thus, the reduced energy consumption for air conditioning, a fact that in a worldwide scale will have important environmental benefits.
Composite electron propagator methods for calculating ionization energies
NASA Astrophysics Data System (ADS)
Díaz-Tinoco, Manuel; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.
2016-06-01
Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules.
Composite electron propagator methods for calculating ionization energies.
Díaz-Tinoco, Manuel; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V
2016-06-14
Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules. PMID:27305999
Binding Energy Calculations for Novel Ternary Ionic Lattices
NASA Astrophysics Data System (ADS)
Rodríguez-Mijangos, Ricardo; Vazquez-Polo, Gustavo
2002-03-01
Theoretical calculations for the binding energy between metalic ions and negative ions on a novel ternary ionic lattice is carried out for several solid solutions prepared with different concentrations and characterized recently (1). The ternary lattices that reach a good miscibility are: KCl(x)KBr(y)RbCl(z) in three different concentrations: (x=y=z=0.33), (x=0.5, y=0.25, z=0.25) and (x=0.33, y=0.07, z=0.60). The binding energy for these novel structures is calculated from the lattice constants obtained by X ray diffractometry analysis performed on the samples and the Vegard law (2). For the repulsive force exponent m, an average of the m values was considered. The energy values obtained by the Born´expression are compared with corresponding energy values from the lattice with more complex expressions, such as the Born Mayer, Born-Van der Walls. There is a good aggreement between all these calculations. (1)R. R. Mijangos, A. Cordero-Borboa, E. Alvarez, M. Cervantes, Physics Letters A 282 (2001) 195-200. (2) G. Vazquez-Polo, R. R. Mijangos et al. Revista Mexicana de Fisica, 47, Diciembre 2001. In Press.
PDB ligand conformational energies calculated quantum-mechanically.
Sitzmann, Markus; Weidlich, Iwona E; Filippov, Igor V; Liao, Chenzhong; Peach, Megan L; Ihlenfeldt, Wolf-Dietrich; Karki, Rajeshri G; Borodina, Yulia V; Cachau, Raul E; Nicklaus, Marc C
2012-03-26
We present here a greatly updated version of an earlier study on the conformational energies of protein-ligand complexes in the Protein Data Bank (PDB) [Nicklaus et al. Bioorg. Med. Chem. 1995, 3, 411-428], with the goal of improving on all possible aspects such as number and selection of ligand instances, energy calculations performed, and additional analyses conducted. Starting from about 357,000 ligand instances deposited in the 2008 version of the Ligand Expo database of the experimental 3D coordinates of all small-molecule instances in the PDB, we created a "high-quality" subset of ligand instances by various filtering steps including application of crystallographic quality criteria and structural unambiguousness. Submission of 640 Gaussian 03 jobs yielded a set of about 415 successfully concluded runs. We used a stepwise optimization of internal degrees of freedom at the DFT level of theory with the B3LYP/6-31G(d) basis set and a single-point energy calculation at B3LYP/6-311++G(3df,2p) after each round of (partial) optimization to separate energy changes due to bond length stretches vs bond angle changes vs torsion changes. Even for the most "conservative" choice of all the possible conformational energies-the energy difference between the conformation in which all internal degrees of freedom except torsions have been optimized and the fully optimized conformer-significant energy values were found. The range of 0 to ~25 kcal/mol was populated quite evenly and independently of the crystallographic resolution. A smaller number of "outliers" of yet higher energies were seen only at resolutions above 1.3 Å. The energies showed some correlation with molecular size and flexibility but not with crystallographic quality metrics such as the Cruickshank diffraction-component precision index (DPI) and R(free)-R, or with the ligand instance-specific metrics such as occupancy-weighted B-factor (OWAB), real-space R factor (RSR), and real-space correlation coefficient
Kumar, Kannuchamy Vasanth; Monteiro de Castro, Mateus Carvalho; Martinez-Escandell, Manuel; Molina-Sabio, Miguel; Rodriguez-Reinoso, Francisco
2010-08-23
Different site energy distribution functions based on the condensation approximation method are proposed for the liquid-phase or gas-phase adsorption equilibrium data following the Fritz-Schlüender isotherm. Energy distribution functions for the four limiting cases of the Fritz-Schlüender isotherm are also discussed. The proposed models are successfully applied to the experimental equilibrium data of nitrogen molecules at 77 K on a pitch-based activated carbon (PA) and a pitch-based activated carbon containing boron (PBA). An energy distribution function based on FS isotherm containing five parameters suggest a unimodal distribution of binding sites for carbon PA, the binding site energies being distributed as exponential or unimodal, depending on the pressure, in the case of carbon PBA. The advantages of the proposed models are discussed.
Perspective on Free-Energy Perturbation Calculations for Chemical Equilibria
Jorgensen, William L.; Thomas, Laura L.
2009-01-01
An overview is provided on the computation of free energy changes in solution using perturbation theory, overlap sampling, and related approximate methods. As a specific application, extensive results are provided for free energies of hydration of substituted benzenes using the OPLS-AA force field in explicit TIP4P water. For a similar amount of computer time, the double-wide sampling and overlap sampling methods yield very similar results in the free-energy perturbation calculations. With standard protocols, the average statistical uncertainty in computed differences in free energies of hydration is 0.1 – 0.2 kcal/mol. Application of the power-series expansion in the Peierls equation was also tested. Use of the first-order term is generally reliable, while inclusion of the slowly-convergent, second-order fluctuation term causes deterioration in the results for strongly hydrogen-bonded solutes. PMID:19936324
Self-consistent calculations of alpha-decay energies
Tolokonnikov, S. V.; Lutostansky, Yu. S.; Saperstein, E. E.
2013-06-15
On the basis of the self-consistent theory of finite Fermi systems, the energies of alphadecay chains were calculated for several new superheavy nuclei discovered recently in experiments of the Dubna-Livermore Collaboration headed by Yu.Ts. Oganessian. The approach in question is implemented on the basis of the generalized method of the density functional proposed by Fayans and his coauthors. The version used here relies on the functional DF3-a proposed recently for describing a wide array of nuclear data, including data on superheavy nuclei. A detailed comparison of the results obtained on this basis with the predictions of different approaches, including the self-consistent Skyrme-Hartree-Fock method, the micro-macro method in the version developed by Sobiczewski and his coauthors, and the phenomenological method of Liran and his coauthors, is performed. The resulting alpha-decay energies are used to calculate respective lifetimes with the aid of the phenomenological Parkhomenko-Sobiczewski formula.
Nitroborazines as potential high energy materials: density functional theoretical calculations.
Janning, Jay D; Ball, David W
2010-05-01
As part of a search for new high energy density materials, we used density functional theoretical calculations to determine the thermochemical properties of various nitro-substituted borazine molecules. Optimized geometries, vibrational frequencies and spectra, and enthalpies of formation and combustion were determined for nitroborazine, dinitroborazine, trinitroborazine, and methyltrinitroborazine with substituents on either the boron atoms or the nitrogen atoms of the parent borazine ring. Our results indicate that the specific enthalpy of combustion ranged from 4 to 11 kJ g(-1), with increasing substitution of nitro groups lowering the energy of combustion per unit mass.
Improved initial guess for minimum energy path calculations.
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes
2014-06-01
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Improved initial guess for minimum energy path calculations
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
2014-06-07
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Ab Initio Calculations for the Surface Energy of Silver Nanoclusters
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Vasiliev, Igor; Park, Young Ho
2007-03-01
We apply first principles computational methods to study the surface energy and the surface stress of silver nanoparticles. The structures, energies and lattice contractions of spherical Ag nanoclusters are calculated in the framework of density functional theory combined with the generalized gradient approximation. Our calculations predict the surface energies of Ag nanoclusters to be in the range of 1-2 J/m^2. These values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m^2 derived from the Kelvin equation for free Ag nanoparticles. From the lattice contraction and the nearest neighbor interatomic distance, we estimate the surface stress of the silver nanoclusters to be in the the range of 1-1.45 N/m. This result suggests that a liquid droplet model can be employed to evaluate the surface energy and the surface stress of Ag nanoparticles. K. K. Nanda et al., Phys. Rev. Lett. 91, 106102 (2003).
Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm
NASA Technical Reports Server (NTRS)
Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew
2000-01-01
One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Free energy calculations for a flexible water model.
Habershon, Scott; Manolopoulos, David E
2011-11-28
In this work, we consider the problem of calculating the classical free energies of liquids and solids for molecular models with intramolecular flexibility. We show that thermodynamic integration from the fully-interacting solid of interest to a Debye crystal reference state, with anisotropic harmonic interactions derived from the Hessian of the original crystal, provides a straightforward route to calculating the Gibbs free energy of the solid. To calculate the molecular liquid free energy, it is essential to correctly account for contributions from both intermolecular and intramolecular motion; we employ thermodynamic integration to a Lennard-Jones reference fluid, coupled with direct evaluation of the molecular ro-vibrational partition function. These approaches are used to study the low-pressure classical phase diagram of the flexible q-TIP4P/F water model. We find that, while the experimental ice-I/liquid and ice-III/liquid coexistence lines are described reasonably well by this model, the ice-II phase is predicted to be metastable. In light of this finding, we go on to examine how the coupling between intramolecular flexibility and intermolecular interactions influences the computed phase diagram by comparing our results with those of the underlying rigid-body water model. PMID:21887423
Free energy calculations for a flexible water model.
Habershon, Scott; Manolopoulos, David E
2011-11-28
In this work, we consider the problem of calculating the classical free energies of liquids and solids for molecular models with intramolecular flexibility. We show that thermodynamic integration from the fully-interacting solid of interest to a Debye crystal reference state, with anisotropic harmonic interactions derived from the Hessian of the original crystal, provides a straightforward route to calculating the Gibbs free energy of the solid. To calculate the molecular liquid free energy, it is essential to correctly account for contributions from both intermolecular and intramolecular motion; we employ thermodynamic integration to a Lennard-Jones reference fluid, coupled with direct evaluation of the molecular ro-vibrational partition function. These approaches are used to study the low-pressure classical phase diagram of the flexible q-TIP4P/F water model. We find that, while the experimental ice-I/liquid and ice-III/liquid coexistence lines are described reasonably well by this model, the ice-II phase is predicted to be metastable. In light of this finding, we go on to examine how the coupling between intramolecular flexibility and intermolecular interactions influences the computed phase diagram by comparing our results with those of the underlying rigid-body water model.
Free energy perturbation calculations on glucosidase-inhibitor complexes.
Ruiza, F M; Grigera, J Raúl
2005-09-01
Free energy perturbation studies have been performed on Glucoamylase II (471) from Aspergillus awamori var. X100 complexed with three different inhibitors: (+)lentiginosine, (+)(1S,2S,7R,8aS) 1,2,7-trihydroxyindolizidine, (+)(1S,2S,7S,8aS) 1,2,7-trihydroxyindolizidine and the inactive compound (+)(1S,7R,8aS)-1,7-dihydroxyindolizidine. Molecular dynamic simulations were carried out using a recently developed procedure for fast Free Energy Perturbation calculations. In this procedure only a sphere of 1.8 nm around the central atom of the inhibitor is considered in the calculations. Crystallographic restraints are applied over this reduced system using a generated electron density map. The obtained values for the free energy differences agree with experimental data showing the importance of fast calculations in drug design even when the crystallographic structure of the complex is not available. As the method uses only the crystallographic structure of the receptor, it is possible to test the possible efficiency of even still not synthesised ligands, making the pre-selection of compounds much easy and faster.
Complementing the adsorption energies of CO2, H2S and NO2 to h-BN sheets by doping with carbon
NASA Astrophysics Data System (ADS)
Sagynbaeva, Myskal; Hussain, Tanveer; Panigrahi, Puspamitra; Johansson, Borje; Ahuja, Rajeev
2015-03-01
We predict the adsorption proficiency of hexagonal boron nitride (h-BN) sheets to toxic gas molecules like CO2, H2S and NO2 on the basis of first-principles density functional theory calculations. The computed energies predict the pristine h-BN sheet to have very little affinity towards the mentioned gas molecules. However, while doping C at the N site of the h-BN sheet brings a significant enhancement to the estimated adsorption energies, doping C at B site of the sheet is found to be energetically not so favorable. To have a higher coverage effect, the concentration of C doping on the h-BN sheet is further increased which resulted in upsurging the adsorption energies for the mentioned gas molecules. Among the three, CO2, H2S are found to be physisorbed to the C-doped h-BN sheets, where as the C-doped sheets are found to have strong affinity towards NO2 gas molecules.
Adsorption kinetics of methyl violet onto perlite.
Doğan, Mehmet; Alkan, Mahir
2003-01-01
This study examines adsorption kinetics and activation parameters of methyl violet on perlite. The effect of process parameters like contact time, concentration of dye, temperature and pH on the extent of methyl violet adsorption from solution has been investigated. Results of the kinetic studies show that the adsorption reaction is first order with respect to dye solution concentration with activation energy of 13.2 kJ mol(-1). This low activation energy value indicates that the adsorption reaction is diffusion controlled. The activation parameters using Arrhenius and Eyring equations have been calculated. Adsorption increases with increase of variables such as contact time, initial dye concentration, temperature and pH.
Calle-Vallejo, F; Martínez, J I; García-Lastra, J M; Rossmeisl, J; Koper, M T M
2012-03-16
Despite their importance in physics and chemistry, the origin and extent of the scaling relations between the energetics of adsorbed species on surfaces remain elusive. We demonstrate here that scalability is not exclusive to adsorbed atoms and their hydrogenated species but rather a general phenomenon between any set of adsorbates bound similarly to the surface. On the example of the near-surface alloys of Pt, we show that scalability is a result of identical variations of adsorption energies with respect to the valence configuration of both the surface components and the adsorbates. PMID:22540492
Basic ingredients of free energy calculations: a review.
Christ, Clara D; Mark, Alan E; van Gunsteren, Wilfred F
2010-06-01
Methods to compute free energy differences between different states of a molecular system are reviewed with the aim of identifying their basic ingredients and their utility when applied in practice to biomolecular systems. A free energy calculation is comprised of three basic components: (i) a suitable model or Hamiltonian, (ii) a sampling protocol with which one can generate a representative ensemble of molecular configurations, and (iii) an estimator of the free energy difference itself. Alternative sampling protocols can be distinguished according to whether one or more states are to be sampled. In cases where only a single state is considered, six alternative techniques could be distinguished: (i) changing the dynamics, (ii) deforming the energy surface, (iii) extending the dimensionality, (iv) perturbing the forces, (v) reducing the number of degrees of freedom, and (vi) multi-copy approaches. In cases where multiple states are to be sampled, the three primary techniques are staging, importance sampling, and adiabatic decoupling. Estimators of the free energy can be classified as global methods that either count the number of times a given state is sampled or use energy differences. Or, they can be classified as local methods that either make use of the force or are based on transition probabilities. Finally, this overview of the available techniques and how they can be best used in a practical context is aimed at helping the reader choose the most appropriate combination of approaches for the biomolecular system, Hamiltonian and free energy difference of interest.
Free energy calculation of permeation through aquaporin-5
NASA Astrophysics Data System (ADS)
Bastien, David
The work of this paper continues upon the large area of research being done on aquaporins (AQPs). AQPs are proteins that take on the role of facilitating the transfer of substances, mainly water, across cell membranes. There are many different types of AQPs, with each of these highly selective proteins conducting only certain solutes, along with unique permeability rates. The permeation characteristics of aquaporins rely mostly on the residue hydrophobicity and steric restraints of the aromatic arginine (ar/R) region of the protein channel. The purpose of this paper is to analyze the structures of aquaporin-5 (AQP5) and aquaglycerolporin (Glpf), including a radius profile of the respective protein channels, and to compare them to permeation events using steered molecular dynamics (SMD) pulling simulations. Two in silico experiments are performed in order to achieve the free Energy landscape of a single water molecule permeating through the four channels of both Aqp5 and GlpF. The equilibrium free energy curves are calculated from the non-equilibrium, irreversible work measurements using the fluctuation-dissipation theorem (FDT) of Brownian dynamicis (BD). The free energy profiles are then compared and related to the structural profiles of AQP5 and GlpF. The change in free energy across the ar/R region in AQP5 is found to be reasonably larger than that of GlpF. The free energy profiles of AQP5 and GlpF agree with the diameter profile of the channels respectively. Furthermore, free energy calculations are computed for the permeation of Na+ and Cl- ions through the central pore of Aqp5, which provide some insight into the structural mechanisms of AQP5. The free energy barrier for ion transport through the central pore is found to be very large, peaking at around 11 Kcal/mol for chloride and 20 Kcal/mol for sodium.
Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s
NASA Astrophysics Data System (ADS)
Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc
2016-01-01
Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.
Quantum calculations for rotational energy transfer in nitrogen molecule collisions
NASA Astrophysics Data System (ADS)
Huo, Winifred M.; Green, Sheldon
1996-05-01
Rotational energy transfer in collisions of nitrogen molecules has been studied theoretically, using the N2-N2 rigid-rotor potential of van der Avoird et al. [J. Chem. Phys. 84, 1629 (1986)]. For benchmarking purposes, converged close coupling (CC) calculations have been carried out to a total energy of about 200 cm-1. Coupled states (CS) approximation calculations have been carried out to a total energy of 680 cm-1, and infinite order sudden (IOS) approximation calculations have also been carried out. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well: between 113-219 cm-1 the average deviation is 14%, with accuracy improving at higher energy. Comparison between the CS and IOS cross sections at the high energy end of the CS calculations, 500-680 cm-1, shows that IOS is sensitive to the amount of inelasticity and the results for large ΔJ transitions are subject to larger errors. State-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation of the interference terms between even and odd exchange symmetries on summing over partial waves. In order to compare with experimental data for rotational excitation rates of N2 in the n=1 excited vibrational level colliding with ground vibrational level (n=0) bath N2 molecules, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of n so that distinguishable molecule rigid rotor rates may be used. With these assumptions good agreement is obtained. Although
NASA Astrophysics Data System (ADS)
Khaled, K. F.
2010-09-01
The effects of thiourea derivatives, namely N-methyl thiourea (MTU), N-propyl thiourea (PTU) and N-allyl thiourea (ATU) on the corrosion behaviour of iron in 1.0 M solution of HNO 3 have been investigated in relation to the concentration of thiourea derivatives. The experimental data obtained using the techniques of weight loss, Tafel polarization and electrochemical impedance spectroscopy, EIS. The results showed that these compounds revealed a good corrosion inhibition, (ATU) being the most efficient and (MTU) the least. Computational studies have been used to find the most stable adsorption sites for thiourea derivatives. This information help to gain further insight about corrosion system, such as the most likely point of attack for corrosion on iron (1 1 0), the most stable site for thiourea derivatives adsorption and the binding energy of the adsorbed layer. The efficiency order of the inhibitors obtained by experimental results was verified by theoretical analysis.
NASA Astrophysics Data System (ADS)
Chen, Lanli; Wang, Xiaofang; Shi, Siqi; Cui, Yuanyuan; Luo, Hongjie; Gao, Yanfeng
2016-03-01
VO2 is an attractive material for application to thermochromic optoelectronic devices such as smart windows, and Ag/VO2 double-layered structure can effectively decrease the phase transition temperature (Tc) of VO2 thin film, which is very important for practical application of VO2. Previous works has shown that the decrease in phase transition temperature (Tc) seems to be relevant with the work function of VO2 in Ag/VO2 double-layered thin film, although the underlying mechanism of tuning its Tc by Ag incorporation and adsorption on the VO2(1 0 0) surface has been rarely investigated. Our first-principles calculations reveal that the adsorption of Ag atoms on the VO2(1 0 0) surface rather than incorporation of Ag exhibits a lower work function, which is ascribed to an integrated effect of charge transfer from Ag to VO2(1 0 0) surface and enhanced surface dipole moment. The results suggest that the decrease in work function of VO2 with Ag adsorption favors the reduction in Tc. The current findings are helpful to understand the fundamental mechanism for yielding high-efficiency VO2-based optoelectronic devices.
Dirac Calculations for Proton Inelastic Scattering at Intermediate Energies
NASA Astrophysics Data System (ADS)
El-Nohy, N. A.; El-Hammamy, M. N.; Aly, N. E.; Abdel-Moneim, A. M.; Hamza, A. F.
2016-09-01
Relativistic proton inelastic scattering from different targets (16O, 24Mg, 28Si, 40Ca, 54Fe, 58Ni, 90Zr, 154Sm, 176Yb, and 208Pb) at intermediate energies is analyzed in the framework of phenomenological optical potentials based on the Dirac formalism. Parameters of the Dirac phenomenological potential with Woods Saxon (WS) shape are obtained. The first order vibrational collective model with one phonon is used to calculate the transition optical potentials to the first low-lying excited state (2+) of the investigated target nuclei. Also, the variation of deformation length (δ) with energy and mass number is studied. It is noticed that the deformation length increases slightly with energy at intermediate range.
Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.
Hoja, Johannes; Maurer, Reinhard J; Sax, Alexander F
2014-07-31
Reliable simulation of molecular adsorption onto cellulose surfaces is essential for the design of new cellulose nanocomposite materials. However, the applicability of classical force field methods to such systems remains relatively unexplored. In this study, we present the adsorption of glucose, cellobiose, and cellotetraose on model surfaces of crystalline cellulose Iα and Iβ. The adsorption of the two large carbohydrates was simulated with the GLYCAM06 force field. To validate this approach, quantum theoretical calculations for the adsorption of glucose were performed: Equilibrium geometries were studied with density functional theory (DFT) and dispersion-corrected DFT, whereas the adsorption energies were calculated with two standard density functional approximations and five dispersion-containing DFT approaches. We find that GLYCAM06 gives a good account of geometries and, in most cases, accurate adsorption energies when compared to dispersion-corrected DFT energies. Adsorption onto the (100) surface of cellulose Iα is, in general, stronger than onto the (100) surface of cellulose Iβ. Contrary to intuition, the adsorption energy is not directly correlated with the number of hydrogen bonds; rather, it is dominated by dispersion interactions. Especially for bigger adsorbates, a neglect of these interactions leads to a dramatic underestimation of adsorption energies.
Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.
Hoja, Johannes; Maurer, Reinhard J; Sax, Alexander F
2014-07-31
Reliable simulation of molecular adsorption onto cellulose surfaces is essential for the design of new cellulose nanocomposite materials. However, the applicability of classical force field methods to such systems remains relatively unexplored. In this study, we present the adsorption of glucose, cellobiose, and cellotetraose on model surfaces of crystalline cellulose Iα and Iβ. The adsorption of the two large carbohydrates was simulated with the GLYCAM06 force field. To validate this approach, quantum theoretical calculations for the adsorption of glucose were performed: Equilibrium geometries were studied with density functional theory (DFT) and dispersion-corrected DFT, whereas the adsorption energies were calculated with two standard density functional approximations and five dispersion-containing DFT approaches. We find that GLYCAM06 gives a good account of geometries and, in most cases, accurate adsorption energies when compared to dispersion-corrected DFT energies. Adsorption onto the (100) surface of cellulose Iα is, in general, stronger than onto the (100) surface of cellulose Iβ. Contrary to intuition, the adsorption energy is not directly correlated with the number of hydrogen bonds; rather, it is dominated by dispersion interactions. Especially for bigger adsorbates, a neglect of these interactions leads to a dramatic underestimation of adsorption energies. PMID:25036217
Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy
Massimi, Lorenzo Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia; Montoro, Silvia; Mariani, Carlo
2014-06-28
Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.
SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.
2016-02-25
Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less
Exploiting the Properties of Aquaporin to Calculate Free Energy
NASA Astrophysics Data System (ADS)
Espejel, Hugo; Chen, Liao
2010-03-01
Aquaporins' (AQPs) main purpose is to facilitate the transfer of water molecules through a molecular membrane. We can calculate the free energy of the AQP system when water permeates through it. This is performed using the Visual Molecular Dynamics (VMD) and the Nanoscale Molecular Dynamics (NAMD) programs. In our first set of experiments, AQP is submerged in a body of water, in which case a water molecule near AQP is pulled through the protein. The data is then used to calculate the free energy using two different equations: the Jarzynski equality and the fluctuation-dissipation theorem. The values from both equations are then compared to examine their accuracy. The second set of experiments has the same set up, but now AQP is embedded in a lipid bilayer. We found that both equations give values that are much smaller than kT. This verifies that AQP is a channel for water molecules because the pulling of water gives constant values of free energy. We also found that the water molecules' negative poles were all pointing towards the center of the AQP channel. This means that the process of proton transport in AQP is overwhelmingly difficult.
High-energy photoelectron diffraction: model calculations and future possibilities
NASA Astrophysics Data System (ADS)
Winkelmann, Aimo; Fadley, Charles S.; Garcia de Abajo, F. Javier
2008-11-01
We discuss the theoretical modeling of x-ray photoelectron diffraction (XPD) with hard x-ray excitation at up to 20 keV, using the dynamical theory of electron diffraction to illustrate the characteristic aspects of the diffraction patterns resulting from such localized emission sources in a multilayer crystal. We show via dynamical calculations for diamond, Si and Fe that the dynamical theory predicts well the available current data for lower energies around 1 keV, and that the patterns for energies above about 1 keV are dominated by Kikuchi bands, which are created by the dynamical scattering of electrons from lattice planes. The origin of the fine structure in such bands is discussed from the point of view of atomic positions in the unit cell. The profiles and positions of the element-specific photoelectron Kikuchi bands are found to be sensitive to lattice distortions (e.g. a 1% tetragonal distortion) and the position of impurities or dopants with respect to lattice sites. We also compare the dynamical calculations with results from a cluster model that is more often used to describe lower energy XPD. We conclude that hard XPD (HXPD) should be capable of providing unique bulk-sensitive structural information for a wide variety of complex materials in future experiments.
Shimizu, I. . E-mail: ichiko@eps.s.u-tiokyo.ac.jp; Takei, Y.
2005-02-01
The solid-liquid interfacial energy (or interfacial tension) was investigated by the lattice-liquid statistical calculation and by the Cahn-Hilliard theory of interface. Interfacial energies in binary metallic systems were estimated from a few bulk thermodynamic properties, i.e., melting temperature, entropy of fusion, and the critical temperature of the liquid phase. In eutectic systems, interfacial energy gradually increases with decreasing concentration of the solid species in the liquid. In monotectic systems, interfacial thickening occurs and interfacial energy is reduced around the liquid immiscibility gap. The results of calculation explain the experimental data of dihedral angles fairly well.
Parquet decomposition calculations of the electronic self-energy
NASA Astrophysics Data System (ADS)
Gunnarsson, O.; Schäfer, T.; LeBlanc, J. P. F.; Merino, J.; Sangiovanni, G.; Rohringer, G.; Toschi, A.
2016-06-01
The parquet decomposition of the self-energy into classes of diagrams, those associated with specific scattering processes, can be exploited for different scopes. In this work, the parquet decomposition is used to unravel the underlying physics of nonperturbative numerical calculations. We show the specific example of dynamical mean field theory and its cluster extensions [dynamical cluster approximation (DCA)] applied to the Hubbard model at half-filling and with hole doping: These techniques allow for a simultaneous determination of two-particle vertex functions and self-energies and, hence, for an essentially "exact" parquet decomposition at the single-site or at the cluster level. Our calculations show that the self-energies in the underdoped regime are dominated by spin-scattering processes, consistent with the conclusions obtained by means of the fluctuation diagnostics approach [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402]. However, differently from the latter approach, the parquet procedure displays important changes with increasing interaction: Even for relatively moderate couplings, well before the Mott transition, singularities appear in different terms, with the notable exception of the predominant spin channel. We explain precisely how these singularities, which partly limit the utility of the parquet decomposition and, more generally, of parquet-based algorithms, are never found in the fluctuation diagnostics procedure. Finally, by a more refined analysis, we link the occurrence of the parquet singularities in our calculations to a progressive suppression of charge fluctuations and the formation of a resonance valence bond state, which are typical hallmarks of a pseudogap state in DCA.
Empirically corrected HEAT method for calculating atomization energies
Brand, Holmann V
2008-01-01
We describe how to increase the accuracy ofthe most recent variants ofthe HEAT method for calculating atomization energies of molecules by means ofextremely simple empirical corrections that depend on stoichiometry and the number ofunpaired electrons in the molecule. Our corrections reduce the deviation from experiment for all the HEAT variants. In particular, our corrections reduce the average absolute deviation and the root-mean-square deviation ofthe 456-QP variant to 0.18 and 0.23 kJoule/mol (i.e., 0.04 and 0.05 kcallmol), respectively.
NASA Astrophysics Data System (ADS)
Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Harris, Peter J. F.; Kowalczyk, Piotr
2009-08-01
Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N2 and CO2 isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.
Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F; Kowalczyk, Piotr
2009-08-01
Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO(2), and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions. PMID:21828590
Lu, Zhijiang; MacFarlane, John K; Gschwend, Philip M
2016-01-01
Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs' mobilities and bioavailabilities. However, we do not have data for diverse HOCs' sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (KsootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: logKsootC = (3.74 ± 0.11)V + ((-0.35 ± 0.02)log ai)E + (-0.62 ± 0.10)A + (-3.35 ± 0.11)B + (-1.45 ± 0.09); (N = 102, R(2) = 0.96, SE = 0.18), where V, E, A, and B are the sorbate's McGowan's characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and ai is the sorbate's aqueous activity reflecting the system's approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot-water and sediment-water or soil-water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature. PMID:26587648
Ab initio calculations of free-energy reaction barriers.
Bucko, T
2008-02-13
The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction-the nucleophilic substitution of methyl chloride by a chlorine anion.
Ab initio calculations of free-energy reaction barriers
NASA Astrophysics Data System (ADS)
Bucko, T.
2008-02-01
The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction—the nucleophilic substitution of methyl chloride by a chlorine anion.
Parhi, Purnendu; Golas, Avantika; Barnthip, Naris; Noh, Hyeran; Vogler, Erwin A.
2009-01-01
Silanized-glass-particle adsorbent capacities are extracted from adsorption isotherms of human serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa) for adsorbent surface energies sampling the observable range of water wettability. Adsorbent capacity expressed as either mass-or-moles per-unit-adsorbent-area increases with protein molecular weight (MW) in a manner that is quantitatively inconsistent with the idea that proteins adsorb as a monolayer at the solution-material interface in any physically-realizable configuration or state of denaturation. Capacity decreases monotonically with increasing adsorbent hydrophilicity to the limit-of-detection (LOD) near τo = 30 dyne/cm (θ~65o) for all protein/surface combinations studied (where τo≡γlvocosθ is the water adhesion tension, γlvo is the interfacial tension of pure-buffer solution, and θ is the buffer advancing contact angle). Experimental evidence thus shows that adsorbent capacity depends on both adsorbent surface energy and adsorbate size. Comparison of theory to experiment implies that proteins do not adsorb onto a two-dimensional (2D) interfacial plane as frequently depicted in the literature but rather partition from solution into a three-dimensional (3D) interphase region that separates the physical surface from bulk solution. This interphase has a finite volume related to the dimensions of hydrated protein in the adsorbed state (defining “layer” thickness). The interphase can be comprised of a number of adsorbed-protein layers depending on the solution concentration in which adsorbent is immersed, molecular volume of the adsorbing protein (proportional to MW), and adsorbent hydrophilicity. Multilayer adsorption accounts for adsorbent capacity over-and-above monolayer and is inconsistent with the idea that protein adsorbs to surfaces primarily through protein/surface interactions because proteins within second (or higher
INDIVIDUALISED CALCULATION OF TISSUE IMPARTED ENERGY IN BREAST TOMOSYNTHESIS.
Geeraert, N; Klausz, R; Muller, S; Bloch, I; Bosmans, H
2016-06-01
The imparted energy to the glandular tissue in the breast (glandular imparted energy, GIE) is proposed for an improved assessment of the individual radiation-induced risk resulting from X-ray breast imaging. GIE is computed from an estimation of the quantity and localisation of glandular tissue in the breast. After a digital breast tomosynthesis (DBT) acquisition, the volumetric glandular content (volumetric breast density, VBD) is computed from the central X-ray projection. The glandular tissue distribution is determined by labelling the DBT voxels to ensure the conservation of the VBD. Finally, the GIE is calculated by Monte Carlo computation on the resulting tissue-labelled DBT volume. For verification, the method was applied to 10 breast-shaped digital phantoms made of different glandular spheres in an adipose background, and to a digital anthropomorphic phantom. Results were compared to direct GIE computations on the phantoms considered as 'ground-truth'. The major limitations in accuracy are those of DBT, in particular the limited z-resolution. However, for most phantoms, the results can be considered as acceptable.
Zhen, Wenlong; Gao, Haibo; Tian, Bin; Ma, Jiantai; Lu, Gongxuan
2016-05-01
An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni-Mo alloy (458 kJ·mol(-1)) is found to be lower than that of Ni itself (537 kJ·mol(-1)). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h(-1) for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (-0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni-Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER.
Zhen, Wenlong; Gao, Haibo; Tian, Bin; Ma, Jiantai; Lu, Gongxuan
2016-05-01
An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni-Mo alloy (458 kJ·mol(-1)) is found to be lower than that of Ni itself (537 kJ·mol(-1)). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h(-1) for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (-0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni-Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER. PMID:27070204
Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye
2016-02-01
In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D. PMID:26731197
Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye
2016-02-01
In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D.
NASA Astrophysics Data System (ADS)
Lipponer, M. A.; Reutzel, M.; Dürr, M.; Höfer, U.
2016-11-01
The adsorption dynamics of the datively bonded trimethylamine (TMA) on Si(001) was investigated by means of molecular beam techniques. The initial sticking probability s0 of TMA on Si(001) was measured as a function of kinetic energy at two different surface temperatures (230 and 550 K). At given surface temperature, s0 was found to decrease with increasing kinetic energy (0.1 to 0.6 eV) indicating a non-activated reaction channel. At increased surface temperature, s0 is reduced due to the onset of desorption into the gas phase. The energy dependence of s0 is compared to the results for the adsorption of tetrahydrofuran (THF) on Si(001), which reacts via a datively bonded intermediate into a covalently bound final state. As s0 follows the same energy dependence both for TMA and THF, the datively bonded intermediate state is concluded to dominate the reaction dynamics in the latter case as well.
5 CFR 591.220 - How does OPM calculate energy utility cost indexes?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...
Identification of HIV Inhibitors Guided by Free Energy Perturbation Calculations
Acevedo, Orlando; Ambrose, Zandrea; Flaherty, Patrick T.; Aamer, Hadega; Jain, Prashi; Sambasivarao, Somisetti V.
2013-01-01
Free energy perturbation (FEP) theory coupled to molecular dynamics (MD) or Monte Carlo (MC) statistical mechanics offers a theoretically precise method for determining the free energy differences of related biological inhibitors. Traditionally requiring extensive computational resources and expertise, it is only recently that its impact is being felt in drug discovery. A review of computer-aided anti-HIV efforts employing FEP calculations is provided here that describes early and recent successes in the design of human immunodeficiency virus type 1 (HIV-1) protease and non-nucleoside reverse transcriptase inhibitors. In addition, our ongoing work developing and optimizing leads for small molecule inhibitors of cyclophilin A (CypA) is highlighted as an update on the current capabilities of the field. CypA has been shown to aid HIV-1 replication by catalyzing the cis/trans isomerization of a conserved Gly-Pro motif in the N-terminal domain of HIV-1 capsid (CA) protein. In the absence of a functional CypA, e.g., by the addition of an inhibitor such as cyclosporine A (CsA), HIV-1 has reduced infectivity. Our simulations of acylurea-based and 1-indanylketone-based CypA inhibitors have determined that their nanomolar and micromolar binding affinities, respectively, are tied to their ability to stabilize Arg55 and Asn102. A structurally novel 1-(2,6-dichlorobenzamido) indole core was proposed to maximize these interactions. FEP-guided optimization, experimental synthesis, and biological testing of lead compounds for toxicity and inhibition of wild-type HIV-1 and CA mutants have demonstrated a dose-dependent inhibition of HIV-1 infection in two cell lines. While the inhibition is modest compared to CsA, the results are encouraging. PMID:22316150
Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M
2014-01-14
The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T. PMID:24328531
Calculating activation energies for temperature compensation in circadian rhythms
NASA Astrophysics Data System (ADS)
Bodenstein, C.; Heiland, I.; Schuster, S.
2011-10-01
Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.
NASA Astrophysics Data System (ADS)
Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.
2008-12-01
Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.
Caveat Emptor: Calculating All the Costs of Energy.
ERIC Educational Resources Information Center
Zinberg, Dorothy S.
This paper examines the energy problem. Specific topics discussed include the recent history of oil and gas consumption in the United States, conservation, coal, solar energy, and nuclear energy. While solutions to the energy problem differ, there is an urgent need for broad, public debate. Ultimately, the decisions made regarding energy will be…
Pershina, V; Borschevsky, A; Eliav, E; Kaldor, U
2008-01-14
The interaction of elements 112 and 114 with inert surfaces has been studied on the basis of fully relativistic ab initio Dirac-Coulomb CCSD(T) calculations of their atomic properties. The calculated polarizabilities of elements 112 and 114 are significantly lower than corresponding Hg and Pb values due to the relativistic contraction of the valence ns and np(12) orbitals, respectively, in the heavier elements. Due to the same reason, the estimated van der Waals radius of element 114 is smaller than that of Pb. The enthalpies of adsorption of Hg, Pb, and elements 112 and 114 on inert surfaces such as quartz, ice, and Teflon were predicted on the basis of these atomic calculations using a physisorption model. At the present level of accuracy, -DeltaH(ads) of element 112 on these surfaces is slightly (about 2 kJ/mol) larger than -DeltaH(ads)(Hg). The calculated -DeltaH(ads) of element 114 on quartz is about 7 kJ/mol and on Teflon is about 3 kJ/mol smaller than the respective values of -DeltaH(ads)(Pb). The trend of increasing -DeltaH(ads) in group 14 from C to Sn is thus reversed, giving decreasing values from Sn to Pb to element 114 due to the relativistic stabilization and contraction of the np(12) atomic orbitals. This is similar to trends shown by other atomic properties of these elements. The small difference in DeltaH(ads) of Pb and element 114 on inert surfaces obtained within a picture of physisorption contrasts with the large difference (more than 100 kJ/mol) in the chemical reactivity between these elements.
Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai
2015-01-01
Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734
CALCULATION OF GAMMA SPECTRA IN A PLASTIC SCINTILLATOR FOR ENERGY CALIBRATIONAND DOSE COMPUTATION.
Kim, Chankyu; Yoo, Hyunjun; Kim, Yewon; Moon, Myungkook; Kim, Jong Yul; Kang, Dong Uk; Lee, Daehee; Kim, Myung Soo; Cho, Minsik; Lee, Eunjoong; Cho, Gyuseong
2016-09-01
Plastic scintillation detectors have practical advantages in the field of dosimetry. Energy calibration of measured gamma spectra is important for dose computation, but it is not simple in the plastic scintillators because of their different characteristics and a finite resolution. In this study, the gamma spectra in a polystyrene scintillator were calculated for the energy calibration and dose computation. Based on the relationship between the energy resolution and estimated energy broadening effect in the calculated spectra, the gamma spectra were simply calculated without many iterations. The calculated spectra were in agreement with the calculation by an existing method and measurements. PMID:27127208
Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.; Stack, Andrew G.; Navrotsky, Alexandra; Riman, Richard; Anderko, Andre; Bryantsev, Vyacheslav S.
2016-07-11
Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themore » structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m2 in vacuum and 0.45 J/m2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m2, in good agreement with a value of 1.11 J/m2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing
Adsorption Refrigeration System
Wang, Kai; Vineyard, Edward Allan
2011-01-01
Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.
Multiscale modeling approach for calculating grain-boundary energies from first principles
Shenderova, O.A.; Brenner, D.W.; Nazarov, A.A.; Romanov, A.E.; Yang, L.H.
1998-02-01
A multiscale modeling approach is proposed for calculating energies of tilt-grain boundaries in covalent materials from first principles over an entire misorientation range for given tilt axes. The method uses energies from density-functional calculations for a few key structures as input into a disclination structural-units model. This approach is demonstrated by calculating energies of {l_angle}001{r_angle}-symmetrical tilt-grain boundaries in diamond. {copyright} {ital 1998} {ital The American Physical Society}
Ovchinnikov, Victor; Cecchini, Marco; Karplus, Martin
2013-01-01
A simple and robust formulation of the path-independent confinement method for the calculation of free energies is presented. The simplified confinement method (SCM) does not require matrix diagonalization or switching off the molecular force field, and has a simple convergence criterion. The method can be readily implemented in molecular dynamics programs with minimal or no code modifications. Because the confinement method is a special case of thermodynamic integration, it is trivially parallel over the integration variable. The accuracy of the method is demonstrated using a model diatomic molecule, for which exact results can be computed analytically. The method is then applied to the alanine dipeptide in vacuum, and to the α-helix ↔ β-sheet transition in a sixteen-residue peptide modeled in implicit solvent. The SCM requires less effort for the calculation of free energy differences than previous formulations because it does not require computing normal modes. The SCM has a diminished advantage for determining absolute free energy values, because it requires decreasing the MD integration step to obtain accurate results. An approximate confinement procedure is introduced, which can be used to estimate directly the configurational entropy difference between two macrostates, without the need for additional computation of the difference in the free energy or enthalpy. The approximation has similar convergence properties as the standard confinement method for the calculation of free energies. The use of the approximation requires about five times less wall-clock simulation time than that needed to compute enthalpy differences to similar precision from an MD trajectory. For the biomolecular systems considered in this study, the errors in the entropy approximation are under 10%. The approximation will therefore be most useful for cases in which the dominant source of error is insufficient sampling in the estimation of enthalpies, as arises in simulations of large
Berland, Kristian; Cooper, Valentino R; Langreth, David C.; Schroder, Prof. Elsebeth; Chakarova-Kack, Svetla
2011-01-01
The adsorption of an adenine molecule on graphene is studied using a first-principles van der Waals functional (vdW-DF) [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)]. The cohesive energy of an ordered adenine overlayer is also estimated. For the adsorption of a single molecule, we determine the optimal binding configuration and adsorption energy by translating and rotating the molecule. The adsorption energy for a single molecule of adenine is found to be 711 meV, which is close to the calculated adsorption energy of the similar-sized naphthalene. Based on the single molecular binding configuration, we estimate the cohesive energy of a two-dimensional ordered overlayer. We find a significantly stronger binding energy for the ordered overlayer than for single-molecule adsorption.
From single molecules to water networks: Dynamics of water adsorption on Pt(111)
NASA Astrophysics Data System (ADS)
Naderian, Maryam; Groß, Axel
2016-09-01
The adsorption dynamics of water on Pt(111) was studied using ab initio molecular dynamics simulations based on density functional theory calculations including dispersion corrections. Sticking probabilities were derived as a function of initial kinetic energy and water coverage. In addition, the energy distribution upon adsorption was monitored in order to analyze the energy dissipation process. We find that on the water pre-covered surface the sticking probability is enhanced because of the attractive water-water interaction and the additional effective energy dissipation channels to the adsorbed water molecules. The water structures forming directly after the adsorption on the pre-covered surfaces do not necessarily correspond to energy minimum structures.
Hydrogen adsorption on sulphur-doped SiC nanotubes
NASA Astrophysics Data System (ADS)
Sevak Singh, Ram
2016-07-01
Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole-dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.
Hydrogen adsorption on sulphur-doped SiC nanotubes
NASA Astrophysics Data System (ADS)
Sevak Singh, Ram
2016-07-01
Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole–dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.
Menezes, Elizabete Wenzel de; Grande, Fernanda; Giuntini, Eliana Bistriche; Lopes, Tássia do Vale Cardoso; Dan, Milana Cara Tanasov; Prado, Samira Bernardino Ramos do; Franco, Bernadette Dora Gombossy de Melo; Charrondière, U Ruth; Lajolo, Franco Maria
2016-02-15
Dietary fiber (DF) contributes to the energy value of foods and including it in the calculation of total food energy has been recommended for food composition databases. The present study aimed to investigate the impact of including energy provided by the DF fermentation in the calculation of food energy. Total energy values of 1753 foods from the Brazilian Food Composition Database were calculated with or without the inclusion of DF energy. The energy values were compared, through the use of percentage difference (D%), in individual foods and in daily menus. Appreciable energy D% (⩾10) was observed in 321 foods, mainly in the group of vegetables, legumes and fruits. However, in the Brazilian typical menus containing foods from all groups, only D%<3 was observed. In mixed diets, the DF energy may cause slight variations in total energy; on the other hand, there is appreciable energy D% for certain foods, when individually considered.
Sensitivity of methods for calculating energy expenditure by use of doubly labeled water
Seale, J.; Miles, C.; Bodwell, C.E.
1989-02-01
Attempts to estimate human energy expenditure by use of doubly labeled water have produced three methods currently used for calculating carbon dioxide production from isotope disappearance data: (1) the two-point method, (2) the regression method, and (3) the integration method. An ideal data set was used to determine the error produced in the calculated energy expenditure for each method when specific variables were perturbed. The analysis indicates that some of the calculation methods are more susceptible to perturbations in certain variables than others. Results from an experiment on one adult human subject are used to illustrate the potential for error in actual data. Samples of second void urine, 24-h urine, and breath collected every other day for 21 days are used to calculate the average daily energy expenditure by three calculation methods. The difference between calculated energy expenditure and metabolizable energy on a weight-maintenance diet is used to estimate the error associated with the doubly labeled water method.
Horn, Paul R; Head-Gordon, Martin
2016-02-28
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
NASA Astrophysics Data System (ADS)
Horn, Paul R.; Head-Gordon, Martin
2016-02-01
In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.
Energy levels of isoelectronic impurities by large scale LDA calculations
Li, Jingbo; Wang, Lin-Wang
2002-11-22
Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.
Coat thickness dependent adsorption of hydrophobic molecules at polymer brushes
NASA Astrophysics Data System (ADS)
Smiatek, Jens; Heuer, Andreas; Wagner, Hendrik; Studer, Armido; Hentschel, Carsten; Chi, Lifeng
2013-01-01
We study the adsorption properties of hydrophobic test particles at polymer brushes with different coat thicknesses via mesoscopic dissipative particle dynamics simulations. Our findings indicate stronger free energies of adsorption at thin polymer brushes. The reason for this difference is mainly given by entropic contributions due to different elastic deformations of the coatings. The numerical findings are supported by analytical calculations and are in good qualitative agreement to experimental fluorescence intensity results.
Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Kowalczyk, Piotr; Harris, Peter J F
2011-10-01
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.
Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi
2012-02-01
We perform a comparative theoretical analysis of adsorption of dyes NK1 (2E,4E-2-cyano-5-(4-dimethylaminophenyl)penta-2,4-dienoic acid) and NK7 (2E,4E-2-cyano-5-(4-diphenylaminophenyl)penta-2,4-dienoic acid) on clean and water-covered anatase (101) surfaces of TiO(2). Ligand substitution away from the anchoring group changes the energy level matching between the dye's LUMO and the oxide's conduction band. Monodentate binding and bidentate binding configurations of the dyes to TiO(2) are found to have similar adsorption energies even though the injection from the bidentate mode is found to dominate. Water has a strong effect on adsorption, inducing deprotonation and affecting strongly and differently between the dyes the energy level matching, leading to a shut-off of the injection from NK7 of bidentate adsorption configuration. Ab initio molecular dynamics simulations show a strong effect of nuclear motion on energy levels, specifically, increasing the driving force for injection in the monodentate regime.
A Variational Approach to Enhanced Sampling and Free Energy Calculations
NASA Astrophysics Data System (ADS)
Parrinello, Michele
2015-03-01
The presence of kinetic bottlenecks severely hampers the ability of widely used sampling methods like molecular dynamics or Monte Carlo to explore complex free energy landscapes. One of the most popular methods for addressing this problem is umbrella sampling which is based on the addition of an external bias which helps overcoming the kinetic barriers. The bias potential is usually taken to be a function of a restricted number of collective variables. However constructing the bias is not simple, especially when the number of collective variables increases. Here we introduce a functional of the bias which, when minimized, allows us to recover the free energy. We demonstrate the usefulness and the flexibility of this approach on a number of examples which include the determination of a six dimensional free energy surface. Besides the practical advantages, the existence of such a variational principle allows us to look at the enhanced sampling problem from a rather convenient vantage point.
Variational Approach to Enhanced Sampling and Free Energy Calculations
NASA Astrophysics Data System (ADS)
Valsson, Omar; Parrinello, Michele
2014-08-01
The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations, to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A large number of solutions have been proposed to alleviate this problem. Many are based on the introduction of a bias potential which is a function of a small number of collective variables. However constructing such a bias is not simple. Here we introduce a functional of the bias potential and an associated variational principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This variational principle can be turned into a practical, efficient, and flexible sampling method. A number of numerical examples are presented which include the determination of a three-dimensional free energy surface. We argue that, beside being numerically advantageous, our variational approach provides a convenient and novel standpoint for looking at the sampling problem.
Turbulent energy exchange: Calculation and relevance for profile prediction
Candy, J.
2013-08-15
The anomalous heat production due to turbulence is neither routinely calculated in nonlinear gyrokinetic simulations nor routinely retained in profile prediction studies. In this work, we develop a symmetrized method to compute the exchange which dramatically reduces the intermittency in the time-dependent moment, thereby improving the accuracy of the time-average. We also examine the practical impact on transport-timescale simulations, and show that the exchange has only a minor impact on profile evolution for a well-studied DIII-D discharge.
Advancing QCD-based calculations of energy loss
NASA Astrophysics Data System (ADS)
Tywoniuk, Konrad
2013-08-01
We give a brief overview of the basics and current developments of QCD-based calculations of radiative processes in medium. We put an emphasis on the underlying physics concepts and discuss the theoretical uncertainties inherently associated with the fundamental parameters to be extracted from data. An important area of development is the study of the single-gluon emission in medium. Moreover, establishing the correct physical picture of multi-gluon emissions is imperative for comparison with data. We will report on progress made in both directions and discuss perspectives for the future.
Potential Energy Calculations for Collinear Cluster Tripartition Fission Events
NASA Astrophysics Data System (ADS)
Unzhakova, A. V.; Pashkevich, V. V.; Pyatkov, Y. V.
2014-09-01
Strutinsky shell correction calculations were performed to describe the recent experimental results on collinear ternary fission. Collinear Cluster Tripartion fission events were studied experimentally in neutron induced fission of 235U, where the missing mass in the detected binary decay was suggested to characterize fission event as a collinear tripartition; and in spontaneous fission of 252Cf, where the direct detection of the three fission fragments has been used to confirm the existence of the Collinear Cluster Tripartition channel with a probability of 4.7×10-3 relative to the binary fission events.
Adsorption energy of small molecules on core-shell Fe@Au nanoparticles: tuning by shell thickness.
Benoit, Magali; Tarrat, Nathalie; Morillo, Joseph
2016-04-01
The adsorption of several small molecules on different gold surfaces, Au(001), strained Au(001) and Au(001) epitaxied on Fe(001), has been characterized using density functional theory. The surface strain leads to a less energetically favourable adsorption for all studied molecules. Moreover, the presence of the iron substrate induces an additional decrease of the binding energy, for 1 and 2 Au monolayers. For carbon monoxide (CO), the structural and energetic variations with the number of Au monolayers deposited on Fe have been analyzed and correlated with the distance between the carbon atom and the gold surface. The effect of the subsurface layer has been evidenced for 1 and 2 monolayers. The other molecules show different quantitative behavior depending on the type of their interaction with the gold surface. However, the iron substrate weakens the interaction, either for the chemisorbed species or for the physisorbed species. 2 Au monolayers seem to be the best compromise to decrease the reactivity of the gold surface towards adsorption while preventing the Fe oxidation. PMID:26971708
Ding, H; Chen, C; Zhang, X
2016-01-01
The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly. PMID:26854726
Scholes, Colin A; Millar, David P; Gee, Michelle L; Smith, Trevor A
2011-05-19
Time-resolved evanescent wave-induced fluorescence studies have been carried out on a series of fluorescently labeled oligonucleotide sequences adsorbed to a silica surface from solution. The fluorescence decay profiles of a fluorescent energy donor group undergoing resonance energy transfer to a nonemissive energy-acceptor molecule have been analyzed in terms of a distribution of donor-acceptor distances to reveal the conformational changes that occur in these oligonucleotides upon adsorption. Evanescent wave-induced time-resolved Förster resonance energy-transfer (EW-TRFRET) measurements indicate that at a high electrolyte concentration, there is localized separation of the oligonucleotide strands, and the helical structure adopts an "unraveled" conformation as a result of adsorption. This is attributed to the flexibility within the oligonucleotide at high electrolyte concentration allowing multiple segments of the oligonucleotide to have direct surface interaction. In contrast, the EW-TRFRET measurements at a lower electrolyte concentration reveal that the oligonucleotide retains its helical conformation in a localized extended state. This behavior implies that the rigidity of the oligonucleotide at this electrolyte concentration restricts direct interaction with the silica to a few segments, which correspondingly introduces kinks in the double helix conformation and results in significant oligonucleotide segmental extension into solution.
Initial heats of H{sub 2}S adsorption on activated carbons: Effect of surface features
Bagreev, A.; Adib, F.; Bandosz, T.J.
1999-11-15
The sorption of hydrogen sulfide was studied on activated carbons of various origins by means of inverse gas chromatography at infinite dilution. The conditions of the experiment were dry and anaerobic. Prior to the experiments the surface of some carbon samples was oxidized using either nitric acid or ammonium persulfate. Then the structural parameters of carbons were evaluated from the sorption of nitrogen. From the IGC experiments at various temperatures, heats of adsorption were calculated. The results showed that the heat of H{sub 2}S adsorption under dry anaerobic conditions does not depend on surface chemistry. The dependence of the heat of adsorption on the characteristic energy of nitrogen adsorption calculated from the Dubinin-Raduskevich equation was found. This correlation can be used to predict the heat of H{sub 2}S adsorption based on the results obtained from nitrogen adsorption.
The Suppression of Energy Discretization Errors in Multigroup Transport Calculations
Larsen, Edward
2013-06-17
The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to "coarsen" the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.
Computational efficiences for calculating rare earth f^n energies
NASA Astrophysics Data System (ADS)
Beck, Donald R.
2009-05-01
RecentlyootnotetextD. R. Beck and E. J. Domeier, Can. J. Phys. Walter Johnson issue, Jan. 2009., we have used new computational strategies to obtain wavefunctions and energies for Gd IV 4f^7 and 4f^65d levels. Here we extend one of these techniques to allow efficent inclusion of 4f^2 pair correlation effects using radial pair energies obtained from much simpler calculationsootnotetexte.g. K. Jankowski et al., Int. J. Quant. Chem. XXVII, 665 (1985). and angular factors which can be simply computedootnotetextD. R. Beck and C. A. Nicolaides, Excited States in Quantum Chemistry, C. A. Nicolaides and D. R. Beck (editors), D. Reidel (1978), p. 105ff.. This is a re-vitalization of an older ideaootnotetextI. Oksuz and O. Sinanoglu, Phys. Rev. 181, 54 (1969).. We display relationships between angular factors involving the exchange of holes and electrons (e.g. f^6 vs f^8, f^13d vs fd^9). We apply the results to Tb IV and Gd IV, whose spectra is largely unknown, but which may play a role in MRI medicine as endohedral metallofullerenes (e.g. Gd3N-C80ootnotetextM. C. Qian and S. N. Khanna, J. Appl. Phys. 101, 09E105 (2007).). Pr III results are in good agreement (910 cm-1) with experiment. Pu I 5f^2 radial pair energies are also presented.
Ab initio molecular dynamics calculations of ion hydration free energies
Leung, Kevin; Rempe, Susan B.; Lilienfeld, O. Anatole von
2009-05-28
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or '{lambda}-path' technique to compute the intrinsic hydration free energies of Li{sup +}, Cl{sup -}, and Ag{sup +} ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential ({phi}) contributions, we obtain absolute AIMD hydration free energies ({Delta}G{sub hyd}) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model {phi} predictions. The sums of Li{sup +}/Cl{sup -} and Ag{sup +}/Cl{sup -} AIMD {Delta}G{sub hyd}, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag{sup +}+Ni{sup +}{yields}Ag+Ni{sup 2+} in water. The predictions for this reaction suggest that existing estimates of {Delta}G{sub hyd} for unstable radiolysis intermediates such as Ni{sup +} may need to be extensively revised.
Calculations of energy levels and lifetimes of low-lying states of barium and radium
Dzuba, V. A.; Ginges, J. S. M.
2006-03-15
We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhang, Li Mei; Kong, Chun Cai; Yang, Zhi Mao; Chen, Yong Mei
2016-08-01
The NO adsorption and dissociation on neutral, charged and Ni-doped Pd13 clusters were studied by using density functional calculations. Our results revealed that NO always prefers to adsorb on the hollow site rather than the top or bridge sites. However, the charge state and Ni doping remarkably influence NO adsorption energy, dissociation barrier and reaction energy. The reaction on Pd13- has the lowest energy barrier and largest reaction energy. The Hirshfeld charge analysis discloses that the origin of the catalytic activity difference is the charge transfer from clusters to NO in the metastable NO adsorption state.
Free-energy calculation methods for collective phenomena in membranes
NASA Astrophysics Data System (ADS)
Smirnova, Yuliya G.; Fuhrmans, Marc; Barragan Vidal, Israel A.; Müller, Marcus
2015-09-01
Collective phenomena in membranes are those which involve the co-operative reorganization of many molecules. Examples of these are membrane fusion, pore formation, bending, adhesion or fission. The time and length scales, on which these processes occur, pose a challenge for atomistic simulations. Therefore, in order to solve the length scale problem it is popular to introduce a coarse-grained representation. To facilitate sampling of the relevant states additional computational techniques, which encourage the system to explore the free-energy landscape far from equilibrium and visit transition states, are needed. These computational techniques provide insights about the free-energy changes involved in collective transformations of membranes, yielding information about the rate limiting states, the transformation mechanism and the influence of architectural, compositional and interaction parameters. A common approach is to identify an order parameter (or reaction coordinate), which characterizes the pathway of membrane reorganization. However, no general strategy exists to define such an order parameter that can properly describe cooperative reorganizations in membranes. Recently developed methods can overcome this problem of the order-parameter choice and allow us to study collective phenomena in membranes. We will discuss such methods as thermodynamic integration, umbrella sampling, and the string method and results provided by their applications to particle-based simulations, particularly focusing on membrane fusion and pore formation.
Parallel implementation of electronic structure energy, gradient, and Hessian calculations.
Lotrich, V; Flocke, N; Ponton, M; Yau, A D; Perera, A; Deumens, E; Bartlett, R J
2008-05-21
ACES III is a newly written program in which the computationally demanding components of the computational chemistry code ACES II [J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 (1992); [ACES II program system, University of Florida, 1994] have been redesigned and implemented in parallel. The high-level algorithms include Hartree-Fock (HF) self-consistent field (SCF), second-order many-body perturbation theory [MBPT(2)] energy, gradient, and Hessian, and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] energy and gradient. For SCF, MBPT(2), and CCSD(T), both restricted HF and unrestricted HF reference wave functions are available. For MBPT(2) gradients and Hessians, a restricted open-shell HF reference is also supported. The methods are programed in a special language designed for the parallelization project. The language is called super instruction assembly language (SIAL). The design uses an extreme form of object-oriented programing. All compute intensive operations, such as tensor contractions and diagonalizations, all communication operations, and all input-output operations are handled by a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction processor (SIP), interprets and executes the SIAL program. By separating the algorithmic complexity (in SIAL) from the complexities of execution on computer hardware (in SIP), a software system is created that allows for very effective optimization and tuning on different hardware architectures with quite manageable effort. PMID:18500853
Calculation of resonance energy transfer in crowded biological membranes.
Zimet, D B; Thevenin, B J; Verkman, A S; Shohet, S B; Abney, J R
1995-04-01
Analytical and numerical models were developed to describe fluorescence resonance energy transfer (RET) in crowded biological membranes. It was assumed that fluorescent donors were linked to membrane proteins and that acceptors were linked to membrane lipids. No restrictions were placed on the location of the donor within the protein or the partitioning of acceptors between the two leaflets of the bilayer; however, acceptors were excluded from the area occupied by proteins. Analytical equations were derived that give the average quantum yield of a donor at low protein concentrations. Monte Carlo simulations were used to generate protein and lipid distributions that were linked numerically with RET equations to determine the average quantum yield and the distribution of donor fluorescence lifetimes at high protein concentrations, up to 50% area fraction. The Monte Carlo results show such crowding always reduces the quantum yield, probably because crowding increases acceptor concentrations near donor-bearing proteins; the magnitude of the reduction increases monotonically with protein concentration. The Monte Carlo results also show that the distribution of fluorescence lifetimes can differ markedly, even for systems possessing the same average lifetime. The dependence of energy transfer on acceptor concentration, protein radius, donor position within the protein, and the fraction of acceptors in each leaflet was also examined. The model and results are directly applicable to the analysis of RET data obtained from biological membranes; their application should result in a more complete and accurate determination of the structures of membrane components. PMID:7787045
Parallel implementation of electronic structure energy, gradient, and Hessian calculations
NASA Astrophysics Data System (ADS)
Lotrich, V.; Flocke, N.; Ponton, M.; Yau, A. D.; Perera, A.; Deumens, E.; Bartlett, R. J.
2008-05-01
ACES III is a newly written program in which the computationally demanding components of the computational chemistry code ACES II [J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 (1992); [ACES II program system, University of Florida, 1994] have been redesigned and implemented in parallel. The high-level algorithms include Hartree-Fock (HF) self-consistent field (SCF), second-order many-body perturbation theory [MBPT(2)] energy, gradient, and Hessian, and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] energy and gradient. For SCF, MBPT(2), and CCSD(T), both restricted HF and unrestricted HF reference wave functions are available. For MBPT(2) gradients and Hessians, a restricted open-shell HF reference is also supported. The methods are programed in a special language designed for the parallelization project. The language is called super instruction assembly language (SIAL). The design uses an extreme form of object-oriented programing. All compute intensive operations, such as tensor contractions and diagonalizations, all communication operations, and all input-output operations are handled by a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction processor (SIP), interprets and executes the SIAL program. By separating the algorithmic complexity (in SIAL) from the complexities of execution on computer hardware (in SIP), a software system is created that allows for very effective optimization and tuning on different hardware architectures with quite manageable effort.
Geweke, Jan; Shirhatti, Pranav R; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M
2016-08-01
In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed-presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]-50 times smaller than those reported here-were influenced by erroneous assignment of spectroscopic lines used in the data analysis. PMID:27497574
NASA Astrophysics Data System (ADS)
Geweke, Jan; Shirhatti, Pranav R.; Rahinov, Igor; Bartels, Christof; Wodtke, Alec M.
2016-08-01
In this work we seek to examine the nature of collisional energy transfer between HCl and Au(111) for nonreactive scattering events that sample geometries near the transition state for dissociative adsorption by varying both the vibrational and translational energy of the incident HCl molecules in the range near the dissociation barrier. Specifically, we report absolute vibrational excitation probabilities for HCl(v = 0 → 1) and HCl(v = 1 → 2) scattering from clean Au(111) as a function of surface temperature and incidence translational energy. The HCl(v = 2 → 3) channel could not be observed—presumably due to the onset of dissociation. The excitation probabilities can be decomposed into adiabatic and nonadiabatic contributions. We find that both contributions strongly increase with incidence vibrational state by a factor of 24 and 9, respectively. This suggests that V-T as well as V-EHP coupling can be enhanced near the transition state for dissociative adsorption at a metal surface. We also show that previously reported HCl(v = 0 → 1) excitation probabilities [Q. Ran et al., Phys. Rev. Lett. 98, 237601 (2007)]—50 times smaller than those reported here—were influenced by erroneous assignment of spectroscopic lines used in the data analysis.
Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study
Alyoshina, Nonna A.; Parfenyuk, Elena V.
2013-09-15
A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.
Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton
2013-08-15
Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.
Adsorption of small organic molecules on graphene.
Lazar, Petr; Karlický, František; Jurečka, Petr; Kocman, Mikuláš; Otyepková, Eva; Šafářová, Klára; Otyepka, Michal
2013-04-24
We present a combined experimental and theoretical quantification of the adsorption enthalpies of seven organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate, hexane, and toluene) on graphene. Adsorption enthalpies were measured by inverse gas chromatography and ranged from -5.9 kcal/mol for dichloromethane to -13.5 kcal/mol for toluene. The strength of interaction between graphene and the organic molecules was estimated by density functional theory (PBE, B97D, M06-2X, and optB88-vdW), wave function theory (MP2, SCS(MI)-MP2, MP2.5, MP2.X, and CCSD(T)), and empirical calculations (OPLS-AA) using two graphene models: coronene and infinite graphene. Symmetry-adapted perturbation theory calculations indicated that the interactions were governed by London dispersive forces (amounting to ∼60% of attractive interactions), even for the polar molecules. The results also showed that the adsorption enthalpies were largely controlled by the interaction energy. Adsorption enthalpies obtained from ab initio molecular dynamics employing non-local optB88-vdW functional were in excellent agreement with the experimental data, indicating that the functional can cover physical phenomena behind adsorption of organic molecules on graphene sufficiently well.
Sun, X.; Pratt, A.; Li, Z. Y.; Ohtomo, M.; Sakai, S.; Yamauchi, Y.
2014-05-07
The geometric and spin-resolved electronic structure of a h-BN adsorbed Ni(111) surface has been investigated by density functional theory calculations. Two energy minima (physisorption and chemisorption) are obtained when the dispersive van der Waals correction is included. The geometry of N atom on top site and B atom on fcc site is the most energetically favorable. Strong hybridization with the ferromagnetic Ni substrate induces considerable gap states in the h-BN monolayer. The induced π* states are spin-polarized.
Adsorption and desorption kinetics of n-octane and n-nonane vapors on activated carbon
Fletcher, A.J.; Thomas, K.M.
1999-09-28
This investigation has involved the study of the adsorption and desorption kinetics of two n-alkanes on a wood-based active carbon (BAX950). The adsorption and desorption characteristics of n-octane vapor on the activated carbon were investigated over the relative pressure (p/p{sup o}) range 0--0.97 for temperatures in the range 288--313 K in a static vapor system. The adsorption characteristics of n-nonane were studied over the relative pressure range 0--0.977 and temperature range 303--323 K. The adsorption and desorption kinetics were studied with different amounts of preadsorbed n-octane for set changes in relative vapor pressure (p/p{sup o}). The desorption kinetics were much slower than the corresponding adsorption kinetics for the same pressure step. The rate constants for adsorption increased with increasing relative pressure and surface coverage. The kinetic data for adsorption were used to calculate the activation energies for each increase in relative pressure. The activation energy was highest at low p/p{sup o} and decreased with increasing p/p{sup o} until a maximum was reached at p/p{sup o}{approximately}0.075. n-Nonane adsorption showed similar trends in adsorption kinetics and activation energies to the n-octane adsorption isotherm and mechanism.
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes
NASA Astrophysics Data System (ADS)
Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.
2014-10-01
Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.
The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes
Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.
2014-10-21
Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.
High coverage hydrogen adsorption on the Fe3O4(1 1 0) surface
NASA Astrophysics Data System (ADS)
Yu, Xiaohu; Zhang, Xuemei; Wang, Shengguang
2015-10-01
Hydrogen adsorption on the A and B termination layers of the Fe3O4(1 1 0) surface at different coverage has been systematically studied by density functional theory calculations including an on-site Hubbard term (GGA + U). The adsorption of hydrogen prefers surface oxygen atoms on both layers. The more stable A layer has stronger adsorption energy than the less stable B layer. The saturation coverage has two dissociatively adsorbed H2 on the A layer, and one dissociatively adsorbed H2 on the B layer. The adsorption mechanism has been analyzed on the basis of projected density of states (PDOS).
Isosteric heats of adsorption for activated carbons made from corn cob
NASA Astrophysics Data System (ADS)
Beckner, M.; Olsen, R.; Romanos, J.; Burress, J.; Dohnke, E.; Carter, S.; Casteel, G.; Wexler, C.; Pfeifer, P.
2010-03-01
Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will present experimentally measured isosteric heats of adsorption for various activated carbons calculated using the Clausius-Clayperon equation and hydrogen isotherms at temperatures of 80 and 90K and pressures up to 100 bar measured on a volumetric instrument. We discuss differences observed between isosteric heats determined from Gibbs excess adsorption vs. absolute adsorption curves.
Solid-liquid phase equilibria from free-energy perturbation calculations
NASA Astrophysics Data System (ADS)
Angioletti-Uberti, Stefano; Asta, Mark; Finnis, Mike W.; Lee, P. D.
2008-10-01
A method for calculating free-energy differences based on a free-energy perturbation (FEP) formalism in an alloy system described by two different Hamiltonians is reported. The intended application is the calculation of solid-liquid phase equilibria in alloys with the accuracy of first-principles electronic density-functional theory (DFT). For this purpose free energies are derived with a classical interatomic potential, and FEP calculations are used to compute corrections to these reference values. For practical applications of this approach, due to the relatively high computational cost of DFT calculations, it is critical that the FEP calculations converge rapidly in terms of the number of samples used to estimate relevant ensemble averages. This issue is investigated in the current study employing two classical interatomic-potential models for Ni-Cu. These models yield differences in predicted phase-boundary temperatures of approximately 100 K, comparable to those that might be expected between a DFT Hamiltonian and a well-fit classical potential. We show that for pure elements the FEP calculations converge rapidly with the number of samples, yielding free-energy differences converged to within a fraction of a meV/atom in a few dozen energy calculations. For a concentrated equiatomic alloy similar precision requires roughly a hundred samples. The results suggest that the proposed methodology could provide a computationally tractable framework for calculating solid-liquid phase equilibria in concentrated alloys with DFT accuracy.
Sillar, Kaido; Sauer, Joachim
2012-11-01
A hybrid method that combines density functional theory for periodic structures with wave function-based electron correlation methods for finite-size models of adsorption sites is employed to calculate energies for adsorption of CH(4) onto different sites in the metal-organic framework (MOF) CPO-27-Mg (Mg-MOF-74) with chemical accuracy. The adsorption energies for the Mg(2+), linker, second layer sites are -27.8, -18.3, and -15.1 kJ/mol. Adsorbate-adsorbate interactions increase the average CH(4) adsorption energy by about 10% (2.4 kJ/mol). The free rotor-harmonic oscillator-ideal gas model is applied to calculate free energies/equilibrium constants for adsorption on the individual sites. This information is used in a multisite Langmuir model, augmented with a Bragg-Williams model for lateral interactions, to calculate adsorption isotherms. This ab initio approach yields the contributions of the individual sites to the final isotherms and also of the lateral interactions that contribute about 15% to the maximum excess adsorption capacity. Isotherms are calculated for both absolute amounts, for calculation of isosteric heats of adsorption as function of coverage, and excess amounts, for comparison with measured isotherms. Agreement with observed excess isotherms is reached if the experimentally determined limited accessibility of adsorption sites (78%) is taken into account.
A Python tool to set up relative free energy calculations in GROMACS.
Klimovich, Pavel V; Mobley, David L
2015-11-01
Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations. PMID:26487189
A Python tool to set up relative free energy calculations in GROMACS.
Klimovich, Pavel V; Mobley, David L
2015-11-01
Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations.
Simoncini, David; Nakata, Hiroya; Ogata, Koji; Nakamura, Shinichiro; Zhang, Kam Yj
2015-02-01
Protein structure prediction directly from sequences is a very challenging problem in computational biology. One of the most successful approaches employs stochastic conformational sampling to search an empirically derived energy function landscape for the global energy minimum state. Due to the errors in the empirically derived energy function, the lowest energy conformation may not be the best model. We have evaluated the use of energy calculated by the fragment molecular orbital method (FMO energy) to assess the quality of predicted models and its ability to identify the best model among an ensemble of predicted models. The fragment molecular orbital method implemented in GAMESS was used to calculate the FMO energy of predicted models. When tested on eight protein targets, we found that the model ranking based on FMO energies is better than that based on empirically derived energies when there is sufficient diversity among these models. This model diversity can be estimated prior to the FMO energy calculations. Our result demonstrates that the FMO energy calculated by the fragment molecular orbital method is a practical and promising measure for the assessment of protein model quality and the selection of the best protein model among many generated.
Calculations of the C2 fragmentation energies of higher fullerenes C80 and C82.
Dolgonos, Grygoriy A; Peslherbe, Gilles H
2007-09-01
The C2 fragmentation energies of the most stable isolated-pentagon-rule (IPR) isomers of the C80 and C82 fullerenes were evaluated with second-order Møller-Plesset (MP2) theory, density-functional theory (DFT) and the semiempirical self-consistent charge density-functional tight-binding (SCC-DFTB) method. Zero-point energy, ionization energy and empirical C2 corrections were included in the calculation of fragmentation energies for comparison with experimental C2 fragmentation energies of the fullerene cations. In the case of the most probable Stone-Wales pathway of C2 fragmentation of C80, the calculated [Formula: see text] agree well with experimental data, whereas in the case of C(82) fragmentation, the calculated [Formula: see text] exceed by up to 1.2 eV the experimental ones, which suggests that other IPR isomers may be present in sufficient amounts in experimental samples. Computer-intensive MP2 calculations and DFT calculations with larger basis sets do not yield much improved C2 fragmentation energies, compared to those reported earlier with B3LYP/3-21G. On the other hand, semiempirical approaches such as SCC-DFTB, which are orders of magnitude less intensive, yield satisfactory fragmentation energies for higher fullerenes and may become a method of choice for routine calculations of fullerenes and carbon nanotubes.
Periodic Density Functional Theory Study of Water Adsorption on the a-Quartz (101) Surface.
Bandura, Andrei V.; Kubicki, James D.; Sofo, Jorge O.
2011-01-01
Plane wave density functional theory (DFT) calculations have been performed to study the atomic structure, preferred H2O adsorption sites, adsorption energies, and vibrational frequencies for water adsorption on the R-quartz (101) surface. Surface energies and atomic displacements on the vacuum-reconstructed, hydrolyzed, and solvated surfaces have been calculated and compared with available experimental and theoretical data. By considering different initial positions of H2O molecules, the most stable structures of water adsorption at different coverages have been determined. Calculated H2O adsorption energies are in the range -55 to -65 kJ/mol, consistent with experimental data. The lowest and the highest O-H stretching vibrational bands may be attributed to different states of silanol groups on the watercovered surface. The dissociation energy of the silanol group on the surface covered by the adsorption monolayer is estimated to be 80 kJ/mol. The metastable states for the protonated surface bridging O atoms (Obr), which may lead to hydrolysis of siloxane bonds, have been investigated. The calculated formation energy of a Q2 center from a Q3 center on the (101) surface with 2/3 dense monolayer coverage is equal to 70 kJ/mol which is in the range of experimental activation energies for quartz dissolution.
[Adsorption of Congo red from aqueous solution on hydroxyapatite].
Zhan, Yan-Hui; Lin, Jian-Wei
2013-08-01
The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.
[Adsorption of Congo red from aqueous solution on hydroxyapatite].
Zhan, Yan-Hui; Lin, Jian-Wei
2013-08-01
The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution. PMID:24191561
Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide
NASA Astrophysics Data System (ADS)
Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar
2016-06-01
Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.
NASA Astrophysics Data System (ADS)
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.
2013-02-01
Orientational restraints can improve the efficiency of alchemical free energy calculations, but they are not typically applied in relative binding calculations, which compute the affinity difference been two ligands. Here, we describe a new "separated topologies" method, which computes relative binding free energies using orientational restraints and which has several advantages over existing methods. While standard approaches maintain the initial and final ligand in a shared orientation, the separated topologies approach allows the initial and final ligands to have distinct orientations. This avoids a slowly converging reorientation step in the calculation. The separated topologies approach can also be applied to determine the relative free energies of multiple orientations of the same ligand. We illustrate the approach by calculating the relative binding free energies of two compounds to an engineered site in Cytochrome C Peroxidase.
Muller, R P; Warshel, A
1996-01-01
This paper describes a hybrid ab initio quantum mechanical/molecular mechanics (QM/MM) method for calculating activation free energies of chemical reactions in solution, using molecular mechanics force fields for the solvent and an ab initio technique that incorporates the potential from the solvent in its Hamiltonian for the solute. The empirical valence bond (EVB) method is used as a reference potential for the ab initio free energy calculation, and drives the reaction along the proper coordinate, thus overcoming problems encountered by direct attempts to use molecular orbital methods in calculations of activation free energies. The utility of our method is illustrated by calculating the activation free energy for proton transfer between fluoride ions in the [FHF]-system, in both polar and nonpolar solution.
Ghosh, Soumya; Hammes-Schiffer, Sharon
2015-01-01
Electrochemical electron transfer reactions play an important role in energy conversion processes with many technological applications. Electrodes modified by self-assembled monolayers (SAMs) exhibit reduced double layer effects and are used in molecular electronics. An important quantity for calculating the electron transfer rate constant is the reorganization energy, which is associated with changes in the solute geometry and the environment. In this Letter, an approach for calculating the electrochemical reorganization energy for a redox molecule attached to or near a SAM modified electrode is presented. This integral equations formalism polarizable continuum model (IEF-PCM) approach accounts for the detailed electronic structure of the molecule, as well as the contributions from the electrode, SAM, and electronic and inertial solvent responses. The calculated total reorganization energies are in good agreement with experimental data for a series of metal complexes in aqueous solution. This approach will be useful for calculating electron transfer rate constants for molecular electrocatalysts. PMID:26263083
Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects
Not Available
2004-02-01
This brochure provides an overview of Wind Energy Finance (WEF), a free online cost of energy calculator developed by the National Renewable Energy Laboratory that provides quick, detailed economic evaluation of potential utility-scale wind energy projects. The brochure lists the features of the tool, the inputs and outputs that a user can expect, visuals of the screens and a Cash Flow Results table, and contact information.
Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers
Mangun, C.L.; DeBarr, J.A.; Economy, J.
2001-01-01
A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.
T. Downar
2009-03-31
The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.
Kadmensky, S. G. Titova, L. V.; Pen'kov, N. V.
2006-08-15
In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.
METHODOLOGICAL NOTES: Energy density calculations for ball-lightning-like luminous silicon balls
NASA Astrophysics Data System (ADS)
Paiva, Gerson S.; Ferreira, Joacy V.; Bastos, Cristiano C.; dos Santos, Marcus V.; Pavão, Antonio C.
2010-05-01
The energy density of a luminous silicon ball [Phys. Rev. Lett. 98 048501 (2007)] is calculated for a model with a metal core surrounded by an atmosphere of silicon oxides. Experimental data combined with the molecular orbital calculations of the oxidation enthalpy lead to a mean energy density of 3.9 MJ m-3, which is within the range of estimates from other ball lightning models. This result provides good evidence to support the silicon-based model.
Quantum Monte Carlo calculation of the binding energy of the beryllium dimer
Deible, Michael J.; Kessler, Melody; Gasperich, Kevin E.; Jordan, Kenneth D.
2015-08-28
The accurate calculation of the binding energy of the beryllium dimer is a challenging theoretical problem. In this study, the binding energy of Be{sub 2} is calculated using the diffusion Monte Carlo (DMC) method, using single Slater determinant and multiconfigurational trial functions. DMC calculations using single-determinant trial wave functions of orbitals obtained from density functional theory calculations overestimate the binding energy, while DMC calculations using Hartree-Fock or CAS(4,8), complete active space trial functions significantly underestimate the binding energy. In order to obtain an accurate value of the binding energy of Be{sub 2} from DMC calculations, it is necessary to employ trial functions that include excitations outside the valence space. Our best estimate DMC result for the binding energy of Be{sub 2}, obtained by using configuration interaction trial functions and extrapolating in the threshold for the configurations retained in the trial function, is 908 cm{sup −1}, only slightly below the 935 cm{sup −1} value derived from experiment.
Accuracy assessment and automation of free energy calculations for drug design.
Christ, Clara D; Fox, Thomas
2014-01-27
As the free energy of binding of a ligand to its target is one of the crucial optimization parameters in drug design, its accurate prediction is highly desirable. In the present study we have assessed the average accuracy of free energy calculations for a total of 92 ligands binding to five different targets. To make this study and future larger scale applications possible we automated the setup procedure. Starting from user defined binding modes, the procedure decides which ligands to connect via a perturbation based on maximum common substructure criteria and produces all necessary parameter files for free energy calculations in AMBER 11. For the systems investigated, errors due to insufficient sampling were found to be substantial in some cases whereas differences in estimators (thermodynamic integration (TI) versus multistate Bennett acceptance ratio (MBAR)) were found to be negligible. Analytical uncertainty estimates calculated from a single free energy calculation were found to be much smaller than the sample standard deviation obtained from two independent free energy calculations. Agreement with experiment was found to be system dependent ranging from excellent to mediocre (RMSE = [0.9, 8.2, 4.7, 5.7, 8.7] kJ/mol). When restricting analyses to free energy calculations with sample standard deviations below 1 kJ/mol agreement with experiment improved (RMSE = [0.8, 6.9, 1.8, 3.9, 5.6] kJ/mol).
George, K.; Schweizer, T.
2008-01-01
This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.
Nuclear data processing for energy release and deposition calculations in the MC21 Monte Carlo code
Trumbull, T. H.
2013-07-01
With the recent emphasis in performing multiphysics calculations using Monte Carlo transport codes such as MC21, the need for accurate estimates of the energy deposition-and the subsequent heating - has increased. However, the availability and quality of data necessary to enable accurate neutron and photon energy deposition calculations can be an issue. A comprehensive method for handling the nuclear data required for energy deposition calculations in MC21 has been developed using the NDEX nuclear data processing system and leveraging the capabilities of NJOY. The method provides a collection of data to the MC21 Monte Carlo code supporting the computation of a wide variety of energy release and deposition tallies while also allowing calculations with different levels of fidelity to be performed. Detailed discussions on the usage of the various components of the energy release data are provided to demonstrate novel methods in borrowing photon production data, correcting for negative energy release quantities, and adjusting Q values when necessary to preserve energy balance. Since energy deposition within a reactor is a result of both neutron and photon interactions with materials, a discussion on the photon energy deposition data processing is also provided. (authors)
Site-Specific Scaling Relations for Hydrocarbon Adsorption on Hexagonal Transition Metal Surfaces
Montemore, Matthew M.; Medlin, James W.
2013-10-03
Screening a large number of surfaces for their catalytic performance remains a challenge, leading to the need for simple models to predict adsorption properties. To facilitate rapid prediction of hydrocarbon adsorption energies, scaling relations that allow for calculation of the adsorption energy of any intermediate attached to any symmetric site on any hexagonal metal surface through a carbon atom were developed. For input, these relations require only simple electronic properties of the surface and of the gas-phase reactant molecules. Determining adsorption energies consists of up to four steps: (i) calculating the adsorption energy of methyl in the top site using density functional theory or by simple relations based on the electronic structure of the surface; (ii) using modified versions of classical scaling relations to scale between methyl in the top site and C₁ species with more metal-surface bonds (i.e., C, CH, CH₂) in sites that complete adsorbate tetravalency; (iii) using gas-phase bond energies to predict adsorption energies of longer hydrocarbons (i.e., CR, CR₂, CR₃); and (iv) expressing energetic changes upon translation of hydrocarbons to various sites in terms of the number of agostic interactions and the change in the number of carbon-metal bonds. Combining all of these relations allows accurate scaling over a wide range of adsorbates and surfaces, resulting in efficient screening of catalytic surfaces and a clear elucidation of adsorption trends. The relations are used to explain trends in methane reforming, hydrocarbon chain growth, and propane dehydrogenation.
On the consequences of the energy imbalance for calculating surface conductance to water vapour.
Wohlfahrt, Georg; Haslwanter, Alois; Hörtnagl, Lukas; Jasoni, Richard L; Fenstermaker, Lynn F; Arnone, John A; Hammerle, Albin
2009-09-01
The Penman-Monteith combination equation, which is most frequently used to derive the surface conductance to water vapour (Gs), implicitly assumes the energy balance to be closed. Any energy imbalance (positive or negative) will thus affect the calculated Gs. Using eddy covariance energy flux data from a temperate grassland and a desert shrub ecosystem we explored five possible approaches of closing the energy imbalance and show that calculated Gs may differ considerably between these five approaches depending on the relative magnitudes of sensible and latent heat fluxes, and the magnitude and sign of the energy imbalance. Based on our limited understanding of the nature of the energy imbalance, we tend to favour an approach which preserves the Bowen-ratio and closes the energy balance on a larger time scale.
Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.
Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Gille, P; Dubois, J-M; Gaudry, E
2013-09-01
Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111). PMID:23883551
Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.
Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Gille, P; Dubois, J-M; Gaudry, E
2013-09-01
Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111).
Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
NASA Astrophysics Data System (ADS)
Perfetti, Christopher M.; Rearden, Bradley T.
2014-06-01
Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.
Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
Perfetti, Christopher M; Rearden, Bradley T
2013-01-01
Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.
Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D
Perfetti, C. M.; Rearden, B. T.
2013-07-01
Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)
Gamma-point lattice free energy estimates from O1 force calculations.
Voss, Johannes; Vegge, Tejs
2008-05-14
We present a new method for estimating the vibrational free energy of crystal (and molecular) structures employing only a single force calculation, for a particularly displaced configuration, in addition to the calculation of the ground state configuration. This displacement vector is the sum of the phonon eigenvectors obtained from a fast-relative to, e.g., density-functional theory (DFT)-Hessian calculation using interatomic potentials. These potentials are based here on effective charges obtained from a DFT calculation of the ground state electronic charge density but could also be based on other, e.g., empiric approaches.
NASA Astrophysics Data System (ADS)
Zhang, C.-L.; Zhao, F.; Wang, Y.
2012-04-01
Batch adsorption experiments were carried out for the removal of ofloxacin from aqueous solution using modified coal fly ash as adsorbent. The effects of various parameters such as contact time, initial solution concentration and temperature on the adsorption system were investigated. The optimum contact time was found to be 150 min. The adsorption isotherm data fit well with the Langmuir model, and the kinetic data fit well with the pseudo-second order and the intra-particle diffusion model. Intra-particle diffusion analysis demonstrates that ofloxacin diffuses quickly among the particles at the beginning of the adsorption process, and then the diffusion slows down and stabilizes. Thermodynamic parameters such as Δ G, Δ H, and Δ S were also calculated. The negative Gibbs free energy change and the positive enthalpy change indicated the spontaneous and endothermic nature of the adsorption, and the positive entropy change indicated that the adsorption process was aided by increased randomness.
NASA Astrophysics Data System (ADS)
Montgomery, Jason
2007-12-01
Scattering resonances play a key role in many chemical processes, including unimolecular and bimolecular reactions and photodissociation. A significant theoretical emphasis over the past several decades has been placed on accurate resonance calculations for polyatomic systems. In spite of such efforts, a quantum treatment of molecular systems which exhibit a high density of states and strong coordinate coupling near dissociation remains a formidable task. The research described herein employs improved quantum mechanical methods to calculate a representation of nuclear motion, both bound and unbound, which is used subsequently to calculate accurate resonance energies and lifetimes for two triatomic systems: the neon trimer and ozone. Specifically, theory and results are given regarding the construction of an optimal, L2 eigenbasis using techniques such as the discrete variable representation, the energy selected basis (ESB) method, and iterative diagonalization methods. A new energy selection method is also developed and implemented for the neon trimer. Subsequent resonance calculations are described which make use of the artificial boundary inhomogeneity (ABI) method, adapted to work with the above mentioned ESB and hyperspherical coordinates. The ABI method is used to calculate a set of linearly independent wavefunctions (LIWs) at a given energy for the representation of the scattering wavefunction. Resonance parameters are obtained by imposing scattering boundary conditions on a linear combination of LIWs and solving for the S-matrix, S, its energy derivative, dS/dE, and the Smith lifetime matrix, Q. When available, comparisons are made with previously reported calculations.
Sensitivity of methods for calculating energy expenditure by use of doubly labeled water.
Seale, J; Miles, C; Bodwell, C E
1989-02-01
Attempts to estimate human energy expenditure by use of doubly labeled water have produced three methods currently used for calculating carbon dioxide production from isotope disappearance data: 1) the two-point method, 2) the regression method, and 3) the integration method. An ideal data set was used to determine the error produced in the calculated energy expenditure for each method when specific variables were perturbed. The analysis indicates that some of the calculation methods are more susceptible to perturbations in certain variables than others. Results from an experiment on one adult human subject are used to illustrate the potential for error in actual data. Samples of second void urine, 24-h urine, and breath collected every other day for 21 days are used to calculate the average daily energy expenditure by three calculation methods. The difference between calculated energy expenditure and metabolizable energy on a weight-maintenance diet is used to estimate the error associated with the doubly labeled water method. PMID:2496076
Simple energy-calculation method for solar industrial-process-heat steam systems
Gee, R.
1983-01-01
Designing a solar industrial-process heat (IPH) system, sizing its components and predicting its annual energy delivery requires a method for calculating solar system performance. A calculation method that is accurate, easy to use, accounts for the impact of all important system parameters, and does not require use of a computer is described. Only simple graphs and a hand calculator are required to predict annual collector field performance and annual system losses. The energy-calculation method is applicable to a variety of solar-system configurations. The calculation method applied only to parabolic-trough steam-generation systems that do not employ thermal storage is described. Both flash tank and unfired-boiler steam systems are covered.
Application of adjusted data in calculating fission-product decay energies and spectra
NASA Astrophysics Data System (ADS)
George, D. C.; Labauve, R. J.; England, T. R.
1982-06-01
The code ADENA, which approximately calculates fussion-product beta and gamma decay energies and spectra in 19 or fewer energy groups from a mixture of U235 and Pu239 fuels, is described. The calculation uses aggregate, adjusted data derived from a combination of several experiments and summation results based on the ENDF/B-V fission product file. The method used to obtain these adjusted data and the method used by ADENA to calculate fission-product decay energy with an absorption correction are described, and an estimate of the uncertainty of the ADENA results is given. Comparisons of this approximate method are made to experimental measurements, to the ANSI/ANS 5.1-1979 standard, and to other calculational methods. A listing of the complete computer code (ADENA) is contained in an appendix. Included in the listing are data statements containing the adjusted data in the form of parameters to be used in simple analytic functions.
QED calculation of the ground-state energy of berylliumlike ions
NASA Astrophysics Data System (ADS)
Malyshev, A. V.; Volotka, A. V.; Glazov, D. A.; Tupitsyn, I. I.; Shabaev, V. M.; Plunien, G.
2014-12-01
Ab initio QED calculations of the ground-state binding energies of berylliumlike ions are performed for the wide range of the nuclear charge number: Z =18 -96 . The calculations are carried out in the framework of the extended Furry picture starting with three different types of the screening potential. The rigorous QED calculations up to the second order of the perturbation theory are combined with the third- and higher-order electron-correlation contributions obtained within the Breit approximation by the use of the large-scale configuration-interaction Dirac-Fock-Sturm method. The effects of nuclear recoil and nuclear polarization are taken into account. The ionization potentials are obtained by subtracting the binding energies of the corresponding lithiumlike ions. In comparison with the previous calculations the accuracy of the binding energies and the ionization potentials is significantly improved.
Augustine, R.L.; Lahanas, K.M.; Cole, F.
1992-11-01
An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.
Augustine, R.L.; Lahanas, K.M.; Cole, F.
1992-01-01
An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.
ERIC Educational Resources Information Center
Barbiric, Dora; Tribe, Lorena; Soriano, Rosario
2015-01-01
In this laboratory, students calculated the nutritional value of common foods to assess the energy content needed to answer an everyday life application; for example, how many kilometers can an average person run with the energy provided by 100 g (3.5 oz) of beef? The optimized geometries and the formation enthalpies of the nutritional components…
Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...
Meson self-energies calculated by the relativistic particle-hole-antiparticle representation
Nakano, M.; Noda, N.; Mitsumori, T.; Koide, K.; Kouno, H.; Hasegawa, A.; Liu, L.
1997-12-01
A new formulation of meson self-energies is introduced for {sigma},{omega},{pi},{rho},{delta}, and {eta} mesons on the basis of the particle-hole-antiparticle representation. We have studied the difference between the meson self-energy (MSE) of this representation and the MSE of the traditional density-Feynman (DF) representation. It is shown that the new formulation describes exactly the physical processes such as particle-hole excitations or particle-antiparticle excitations, and that, on the other hand, the meson self-energy based on the DF representation includes unphysical components. By numerical calculations, the meson self-energies describing the particle-hole excitations are shown to be close to each other for most of the meson self-energy in low momentum (R{lt}500 MeV) and low energy (R{sub 0}{lt}200 MeV). This fact implies that former calculations using the low momentum and low-energy part do not change greatly. The density part of the density-Feynman representation has been shown to have a resonant structure around the energy of particle-antiparticle excitation, which causes a large difference between the two representations in the meson spectrum calculations. Our investigation concludes that the former calculations based on the density-Feynman representation are not invalidated in many cases, but the particle-hole-antiparticle representation is more appropriate to treat exactly the physical processes. {copyright} {ital 1997} {ital The American Physical Society}
Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations
NASA Astrophysics Data System (ADS)
Rad, Ali Shokuhi; Shabestari, Sahand Sadeghi; Mohseni, Soheil; Aghouzi, Samaneh Alijantabar
2016-05-01
We investigated the structure, adsorption, electronic states, and charge transfer of O3, SO2 and SO3 molecules on the surface of a B-doped graphene using density functional theory (DFT). We found weak physisorption of SO2 (-10.9 kJ/mole, using B3LYP-D) and SO3 (-15.7 kJ/mole, using B3LYP-D) on the surface of B-doped graphene while there is strong chemisorption for O3 (-96.3 kJ/mole, using B3LYP-D) on this surface. Our results suggest the potential of B-doped graphene as a selective sensor/adsorbent for O3 molecule. We noticed some change in hybridizing of boron from sp2 to sp3 upon adsorption of O3 which cases transformation of the adsorbent from 2D to 3D.
DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V).
Kulkarni, Ambarish R; Sholl, David S
2015-08-01
Generic force fields such as UFF and DREIDING are widely used for predicting molecular adsorption and diffusion in metal-organic frameworks (MOFs), but the accuracy of these force fields is unclear. We describe a general framework for developing transferable force fields for modeling the adsorption of alkanes in a nonflexible MIL-47(V) MOF using periodic density functional theory (DFT) calculations. By calculating the interaction energies for a large number of energetically favorable adsorbate configurations using DFT, we obtain a force field that gives good predictions of adsorption isotherms, heats of adsorption, and diffusion properties for a wide range of alkanes and alkenes in MIL-47(V). The force field is shown to be transferable to related materials such as MIL-53(Cr) and is used to calculate the free-energy differences for the experimentally observed phases of MIL-53(Fe).
NASA Astrophysics Data System (ADS)
Deshpande, Rahul Shrikant
The gas adsorption properties and porosity of cyanide-bridged transition metal-based gels are investigated in the first part of this dissertation. The cyanide bridges, connecting two transition metal centers, are characteristic of these gels; hence, these gels are termed cyanogels. Aerogel versus xerogel structures have a profound effect, both, on the thermodynamics and kinetics of gas adsorption on these cyanogels. Carbon dioxide is selectively adsorbed on palladium-cobalt-based cyanogels; the adsorption is fully reversible on both types of gels discussed. The thermodynamics and kinetics of the gas adsorption processes on these gels are analyzed here. From the ease and reproducibility of the CO2 desorption and the associated enthalpy values, it is concluded that CO2 is physisorbed on these gels. Both the adsorption and desorption processes are first-order in the gels. Adsorption of carbon monoxide on the palladium-cobalt cyanogels is also investigated. Unlike CO 2 physisorption, carbon monoxide is chemisorbed on these gels. An uptake of CO brings about a profound change in the xerogel morphology. The palladium-cobalt-based aerogels possess both micro- and mesoporosity; the xerogels are predominantly microporous with a narrow microporosity. The aerogel surfaces are found to be fractal as analyzed by gas adsorption. Unlike the aerogels, the xerogels do not possess surface fractality. The mechanism of adsorption of different gases on these gels is analyzed based on the gel morphologies. These transition metal-based gels are promising for a variety of applications such as heterogeneous catalysts, gas filters and magnetic materials. The porosity of these gels can be exploited to make gel-embedded filters to separate mixtures of gases based on the their differential adsorption propensities. The reversible adsorption of CO2 can be harnessed practically by using these gels as CO2 storage reservoirs. In the second part of this dissertation, the first, balanced, white
CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals
NASA Astrophysics Data System (ADS)
Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav
2016-02-01
A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol-1 on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.
CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals.
Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav
2016-02-14
A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol(-1) on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems. PMID:26874495
Adsorption of V on a Hematite (0001) Surface and its Oxidation: Submonolayer Coverage
Jin, J.; Ma, X.; Kim, C.-Y.; Ellis, D.E.; Bedzyk, M.J.
2008-10-06
The adsorption of submonolayer V on an idealized model hematite (0 0 0 1) surface and subsequent oxidation under atomic O adsorption are studied by density functional theory. The preferred adsorption sites, adsorption energy and configuration changes due to V and O adsorption are investigated. It is found that in most cases V forms threefold bonds with surface O atoms, inducing a large geometry change at the hematite surface and near surface region and a bond stretch between surface Fe and O. The adsorption energy is mainly decided by interplay between adsorbed metal-surface oxygen bonding and adsorbed metal - subsurface metal interaction. The relative energy of subsequent O adsorption and geometry depends on the reformed V/hematite structure. Electronic properties such as projected densities of states and chemical state change upon V adsorption are studied through both periodic slab and embedded cluster localized orbital calculations; both strong vanadium-oxygen and vanadium-iron interactions are found. While V generally donates electrons to a hematite surface, causing nearby Fe to be partially reduced, the Fe and V oxidization state depends very much on the coverage and detailed adsorption configuration. When the V/hematite system is exposed to atomic O, V is further oxidized and surface/near surface Fe is re-oxidized. Our theoretical results are compared with X-ray surface standing wave and X-ray photoelectron spectroscopic measurements. The influence of d-electron correlation on the predicted structures is briefly discussed, making use of the DFT + U scheme.
ERIC Educational Resources Information Center
Wai, C. M.; Hutchinson, S. G.
1989-01-01
Discusses the calculation of free energy in reactions between silicon dioxide and carbon. Describes several computer programs for calculating the free energy minimization and their uses in chemistry classrooms. Lists 16 references. (YP)
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
McKechnie, Scott; Booth, George H; Cohen, Aron J; Cole, Jacqueline M
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi
2013-01-01
The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.
Podeszwa, Rafał; Cencek, Wojciech; Szalewicz, Krzysztof
2012-06-12
Dispersion energies computed from coupled Kohn-Sham (CKS) dynamic density-density response functions are known to be highly accurate. At the same time, the computational algorithm is of only modest complexity compared to other accurate methods of dispersion energy calculation. We present a new implementation of this algorithm that removes several computational barriers present in current implementations and enables calculations of dispersion energies for systems with more than 200 atoms using more than 5000 basis functions. The improvements were mainly achieved by reorganizing the algorithm to minimize memory and disk usage. We present applications to two systems: the buckycatcher complex with fullerene and the vancomycin complex with a diacetyl-Lys-d-Ala-d-Ala bacterial wall precursor, both calculations performed with triple-ζ-quality basis sets. Our implementation makes it possible to use ab initio computed dispersion energies in popular "density functional theory plus dispersion" approaches.
Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations
NASA Technical Reports Server (NTRS)
Good, Brian S.
2003-01-01
We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.
NASA Astrophysics Data System (ADS)
Li, Ming; Kapusta, Joseph I.
2016-08-01
We generalize calculations of the energy-momentum tensor for classical gluon fields in the boost-invariant McLerran-Venugopalan model using the small-τ power series expansion method. Results to all orders for the energy density and pressures are given in the leading Q2 approximation and with the inclusion of estimated running coupling effects. The energy density and transverse pressure decrease monotonically with time while the longitudinal pressure starts from a negative value and increases towards zero.
Jia, Xiangyu; Wang, Xianwei; Liu, Jinfeng; Zhang, John Z H; Mei, Ye; He, Xiao
2013-12-01
An efficient approach that combines the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method with conductor-like polarizable continuum model (CPCM), termed EE-GMFCC-CPCM, is developed for ab initio calculation of the electrostatic solvation energy of proteins. Compared with the previous MFCC-CPCM study [Y. Mei, C. G. Ji, and J. Z. H. Zhang, J. Chem. Phys. 125, 094906 (2006)], quantum mechanical (QM) calculation is applied to deal with short-range non-neighboring interactions replacing the classical treatment. Numerical studies are carried out for proteins up to 3837 atoms at the HF/6-31G* level. As compared to standard full system CPCM calculations, EE-GMFCC-CPCM shows clear improvement over the MFCC-CPCM method for both the total electrostatic solvation energy and its components (the polarized solute-solvent reaction field energy and wavefunction distortion energy of the solute). For large proteins with 1000-4000 atoms, where the standard full system ab initio CPCM calculations are not affordable, the EE-GMFCC-CPCM gives larger relative wavefunction distortion energies and weaker relative electrostatic solvation energies for proteins, as compared to the corresponding energies calculated by the Divide-and-Conquer Poisson-Boltzmann (D&C-PB) method. Notwithstanding, a high correlation between EE-GMFCC-CPCM and D&C-PB is observed. This study demonstrates that the linear-scaling EE-GMFCC-CPCM approach is an accurate and also efficient method for the calculation of electrostatic solvation energy of proteins.
Ghosh, Soumya; Hammes-Schiffer, Sharon
2015-01-02
Electrochemical electron transfer reactions play an important role in energy conversion processes with many technological applications. Electrodes modified by self-assembled monolayers (SAMs) are useful because the double layer effects are reduced. An important quantity for calculating the electron transfer rate constant is the reorganization energy, which is associated with changes in solute geometry and solvent configuration. In this Letter, an approach for calculating the electrochemical solvent reorganization energy for a redox molecule attached to or near a SAM modified electrode is presented. This integral equations formalism polarizable continuum model (IEF-PCM) approach accounts for the detailed electronic structure of the molecule, as well as the contributions from the electrode, SAM, and electronic and inertial solvent responses. The calculated total reorganization energies are in good agreement with experimental data for a series of metal complex in aqueous solution. This approach will be useful for calculating electron transfer rate constants for molecular electrocatalysts. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.
Self-consistent van der Waals density functional study of benzene adsorption on Si(100)
NASA Astrophysics Data System (ADS)
Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Morikawa, Yoshitada
2016-06-01
The adsorption of benzene on the Si(100) surface is studied theoretically using the self-consistent van der Waals density functional (vdW-DF) method. The adsorption energies of two competing adsorption structures, butterfly (BF) and tight-bridge (TB) structures, are calculated with several vdW-DFs at saturation coverage. Our results show that recently proposed vdW-DFs with high accuracy all prefer TB to BF, in accord with more accurate calculations based on exact exchange and correlation within the random-phase approximation. Detailed analyses reveal the important roles played by the molecule-surface interaction and molecular deformation upon adsorption, and we suggest that their precise description is a prerequisite for accurate prediction of the most stable adsorption structure of organic molecules on semiconductor surfaces.
AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.
Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe
2016-06-27
Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.
NASA Astrophysics Data System (ADS)
Szatanik-Kloc, Alicja
2016-07-01
The plant reactions on Al-stress include i.a. change of the surface area of the roots, which in the physicochemistry of plants characterizes the transport of water and ions through the root. The object of this study is the specific surface area of the roots of plants which are tolerant to aluminium, such as rye. Plants of rye were grown in a nutrient solution for 14 days at pH 4.5 in the presence of Al3+ ions of concentration 10, 20, and 40 mg dm-3. The control plants were grown continuously at pH 7 or pH 4.5 without Al3+. The apparent surface area and adsorption energy of the plants roots were determined from water vapour adsorption - desorption data. The apparent surface area of roots growing in the aluminium was (with respect to control) statistically significantly lower. There were no statistically significant differences in the apparent surface area of the roots which grew in pH 7, pH 4.5 without Al3+. The average water vapour adsorption energy of the root surface, under stress conditions decreased. In the roots grown in the presence of Al+3, there was a slight decrease in high energy adsorption centres and an increase in the amount of low-energy centres.
Noro, Shin-ichiro; Hijikata, Yuh; Inukai, Munehiro; Fukushima, Tomohiro; Horike, Satoshi; Higuchi, Masakazu; Kitagawa, Susumu; Akutagawa, Tomoyuki; Nakamura, Takayoshi
2013-01-01
High selectivity and low-energy regeneration for adsorption of CO(2) gas were achieved concurrently in a two-dimensional Cu(II) porous coordination polymer, [Cu(PF(6))(2)(4,4'-bpy)(2)](n) (4,4'-bpy = 4,4'-bipyridine), containing inorganic fluorinated PF(6)(-) anions that can act as moderate interaction sites for CO(2) molecules.
Adsorption of silver dimer on graphene - A DFT study
Kaur, Gagandeep; Gupta, Shuchi; Rani, Pooja; Dharamvir, Keya
2014-04-24
We performed a systematic density functional theory (DFT) study of the adsorption of silver dimer (Ag{sub 2}) on graphene using SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, and charge transfer of Ag2-graphene system are calculated. The minimum energy configuration for a silver dimer is parallel to the graphene sheet with its two atoms directly above the centre of carbon-carbon bond. The negligible charge transfer between the dimer and the surface is also indicative of a weak bond. The methodology demonstrated in this paper may be applied to larger silver clusters on graphene sheet.
A DFT study of formaldehyde adsorption on functionalized graphene nanoribbons
NASA Astrophysics Data System (ADS)
Maaghoul, Zohreh; Fazileh, Farhad; Kakemam, Jamal
2015-02-01
Density functional theory (DFT) based ab initio calculations were done to monitor the formaldehyde (CHOH) adsorptive behavior on pristine and Ni-decorated graphene sheet. Structural optimization indicates that the formaldehyde molecule is physisorbed on the pristine sheet via partly weak van der Waals attraction having the adsorption energy of about -15.7 kcal/mol. Metal decorated sheet is able to interact with the CHOH molecule, so that single Ni atoms prefer to bind strongly at the bridge site of graphene and each metal atom bound on sheet may adsorb up to four CHOH. The findings also show that the Ni decoration on graphene surface results in some changes in electronic properties of the sheet and its Eg is remained unchanged after adsorption of CHOH molecules. It is noteworthy to say that no bond cleavage was observed for the adsorption of CHOH on Ni-decorated graphene.
Adsorption and strain: The CO 2-induced swelling of coal
NASA Astrophysics Data System (ADS)
Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O.
2010-10-01
Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal bed methane reservoirs in order to facilitate the recovery of the methane. The injected carbon dioxide gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling in confined conditions leads to a closure of the coal reservoir cleat system, which hinders further injection. In this work we provide a comprehensive framework to calculate the macroscopic strains induced by adsorption in a porous medium from the molecular level. Using a thermodynamic approach we extend the realm of poromechanics to surface energy and surface stress. We then focus on how the surface stress is modified by adsorption and on how to estimate adsorption behavior with molecular simulations. The developed framework is here applied to the specific case of the swelling of CO 2-injected coal, although it is relevant to any problem in which adsorption in a porous medium causes strains.
NASA Astrophysics Data System (ADS)
Li, Yongxiu; Zhang, Saiqun; Zhang, John Z. H.; He, Xiao
2016-05-01
Accurate description of the conformational energies of the amino acids is essential for molecular dynamics simulation of protein structures. In this study, we compute the relative energies at 51 conformations for a trialanine tetrapeptide at different levels of theory. The computed energies at various theoretical levels, including the semiempirical DFTB method, HF, DFT, MP2 and CCSD(T), are compared with each other. The calculated energies from density-fitting local CCSD(T)/CBS (complete basis set) calculations are taken as the benchmark. The accuracy of the theoretical methods is highly dependent on the electronic correlation and dispersion corrections as well as the size of the basis sets. The involvement of the empirical dispersion energies in HF and DFT methods consistently improves their performance. Considering both the accuracy and computational efficiency, the Minnesota density functional M06-L-D and M06-2X-D are efficient and accurate for modeling of trialanine structures.
Measurements and Monte Carlo calculations of photon energy distributions in MAYAK PA workplaces.
Smetanin, M; Vasilenko, E; Semenov, M; Xanthos, S; Takoudis, G; Clouvas, A; Silva, J; Potiriadis, C
2008-01-01
Photon energy distributions were measured in different workplaces of the Mayak Production Association (MPA), which was the first plutonium production plant in the former Soviet Union. In situ gamma spectrometry measurements were performed with a portable germanium detector. The spectral stripping method is used for the conversion of the in situ gamma-ray spectra to photon fluence rate energy distribution. This method requires the simulation of the portable germanium detector, which has been performed based on the MCNP code of Los Alamos. Measured photon fluence rate energy distributions were compared with calculated photon energy distributions (with the MCNP code) in two different workplaces: in the first workplace the geometry exposure was known. On the contrary, in the second workplace, as in most workplaces of MPA, the exposure geometry was unknown. The results obtained from the comparison between the experimental and calculated photon fluence rate energy distributions are presented and discussed. PMID:18682405
Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.
Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S
2016-03-01
We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm.
Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.
Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S
2016-03-01
We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. PMID:26958888
Chen, Changjun
2016-03-31
The free energy landscape is the most important information in the study of the reaction mechanisms of the molecules. However, it is difficult to calculate. In a large collective variable space, a molecule must take a long time to obtain the sufficient sampling during the simulation. To save the calculation quantity, decreasing the sampling region and constructing the local free energy landscape is required in practice. However, the restricted region in the collective variable space may have an irregular shape. Simply restricting one or more collective variables of the molecule cannot satisfy the requirement. In this paper, we propose a modified tomographic method to perform the simulation. First, it divides the restricted region by some hyperplanes and connects the centers of hyperplanes together by a curve. Second, it forces the molecule to sample on the curve and the hyperplanes in the simulation and calculates the free energy data on them. Finally, all the free energy data are combined together to form the local free energy landscape. Without consideration of the area outside the restricted region, this free energy calculation can be more efficient. By this method, one can further optimize the path quickly in the collective variable space.
The frozen orbital approximation for calculating ionization energies with application to propane
NASA Astrophysics Data System (ADS)
Müller, Wolfgang; Nager, Christoph; Rosmus, Pavel
1980-09-01
In the frozen orbital approximation (FOA), the influence of reorganization on correlation contributions to ionization energies is neglected. It is particularly useful in calculations for large molecules because of the advantage that only one integral transformation is required for the calculation of all ionic states. In connection with the concept of independent orbital correlation contributions, the dimensions of the CI matrices can be drastically reduced. The method is applied to the calculation of the valence ionization energies of propane, and compared to more rigorous ab initio results and a recent calculation in which inner valence shell contributions to electron correlation are neglected. The ordering of the first three ionizations in the photoelectron spectrum of propane, which has not been definitively assigned, is shown to be 2B1(2b1),2A1(6a1) and 2B2(4b2), in agreement with Koopmans' theorem.
Calculation of intensity of high energy muon groups observed deep underground
NASA Technical Reports Server (NTRS)
Vavilov, Y. N.; Dedenko, L. G.
1985-01-01
The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.
Perfetti, Christopher M; Martin, William R; Rearden, Bradley T; Williams, Mark L
2012-01-01
Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.
New method for calculating binding energies in quantum mechanics and quantum field theories
Gat, G.; Rosenstein, B. Institute of Physics, Academia Sinica, Taipei, 11529 )
1993-01-04
We propose a systematic perturbative method for calculating the binding energy of threshold bound states---states which exist for arbitrary small coupling. The starting point is a (regularized) free theory. Explicit calculations are performed for quantum mechanics with arbitrary short-range potential in 1D and various (1+1)-dimensional quantum field theories. We check the method by comparing the results with exact formulas available in solvable models.
Lettieri, Steven; Mamonov, Artem B; Zuckerman, Daniel M
2011-04-30
Pre-calculated libraries of molecular fragment configurations have previously been used as a basis for both equilibrium sampling (via library-based Monte Carlo) and for obtaining absolute free energies using a polymer-growth formalism. Here, we combine the two approaches to extend the size of systems for which free energies can be calculated. We study a series of all-atom poly-alanine systems in a simple dielectric solvent and find that precise free energies can be obtained rapidly. For instance, for 12 residues, less than an hour of single-processor time is required. The combined approach is formally equivalent to the annealed importance sampling algorithm; instead of annealing by decreasing temperature, however, interactions among fragments are gradually added as the molecule is grown. We discuss implications for future binding affinity calculations in which a ligand is grown into a binding site.
Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.
1980-08-01
Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Alsmiller, R. G., Jr.; Chandler, K. C.
1972-01-01
Results obtained using a recently developed calculational method for determining the nucleon-meson cascade induced in thick materials by high-energy nucleons and charged pions are presented. The calculational method uses the intranuclear-cascade-evaporation model to treat nonelastic collisions by particles with energies approximately or smaller than GeV and an extrapolation model at higher energies. The following configurations are considered: (1) 19.2-GeV/c protons incident on iron; (2) 30.3-GeV/c protons incident on iron; (3) solar and galactic protons incident on the moon, and (4) galactic protons incident on tissue. For the first three configurations, experimental results are available and comparisons between the experimental and calculated results are given.
NASA Astrophysics Data System (ADS)
Derfel, Grzegorz; Buczkowska, Mariola
2011-07-01
The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.
NASA Technical Reports Server (NTRS)
Brown, R. L.; Laufer, A. H.
1981-01-01
Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.
Ab initio calculations on collisions of low energy electrons with polyatomic molecules
Rescigno, T.N.
1991-08-01
The Kohn variational method is one of simplest, and oldest, techniques for performing scattering calculations. Nevertheless, a number of formal problems, as well as practical difficulties associated with the computation of certain required matrix elements, delayed its application to electron--molecule scattering problems for many years. This paper will describe the recent theoretical and computational developments that have made the complex'' Kohn variational method a practical tool for carrying out calculations of low energy electron--molecule scattering. Recent calculations on a number of target molecules will also be summarized. 41 refs., 7 figs.
Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.
Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa
2007-09-01
The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.
NASA Astrophysics Data System (ADS)
Tossell, J. A.
2006-10-01
Boric acid, B(OH) 3, forms complexes in aqueous solution with a number of bidentate O-containing ligands, HL -, where H 2L is C 2O 4H 2 (oxalic acid), C 3O 4H 4 (malonic acid), C 2H 6O 2 (ethylene glycol), C 6H 6O 2 (catechol), C 10H 8O 2 (dioxynaphthalene) and C 2O 3H 4 (glycolic acid). McElligott and Byrne [McElligott, S., Byrne, R.H., 1998. Interaction of B(OH)30 and HCO3- in seawater: Formation of B(OH)CO3-. Aquat. Geochem.3, 345-356.] have also found B(OH) 3 to form an aqueous complex with HCO3-1. Recently Lemarchand et al. [Lemarchand, E., Schott, J., Gaillardeet, J., 2005. Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochim. Cosmochim. Acta69, 3519-3533] have studied the formation of surface complexes of B(OH) 3 on humic acid, determining 11B NMR shifts and fitted values of formation constants, and 11B, 10B isotope fractionations for a number of surface complexation models. Their work helps to clarify both the nature of the interaction of boric acid with the functional groups in humic acid and the nature of some of these coordinating sites on the humic acid. The determination of isotope fractionations may be seen as a form of vibrational spectroscopy, using the fractionating element as a local probe of the vibrational spectrum. We have calculated quantum mechanically the structures, stabilities, vibrational spectra, 11B NMR spectra and 11B, 10B isotope fractionations of a number of complexes B(OH) 2L - formed by reactions of the type: B(OH)3+HL-⇒B(OH)2L+HO using a 6-311G(d,p) basis set and the B3LYP method for determination of structures, vibrational frequencies and isotopic fractionations, the highly accurate Complete Basis Set-QB3 method for calculating the free energies and the GIAO HF method with a 6-311+G(2d,p) basis for the NMR shieldings. The calculations indicate that oxalic acid, malonic acid, catechol and glycolic acid all form stable complexes (Δ G < 0 for Reaction (1
Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.
Tan, Zhenyu; Liu, Wei
2014-05-01
The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.
Hydrogen adsorption in metal-decorated silicon carbide nanotubes
NASA Astrophysics Data System (ADS)
Singh, Ram Sevak; Solanki, Ankit
2016-09-01
Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.
Using Density Functional Theory (DFT) for the Calculation of Atomization Energies
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.
Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces
NASA Astrophysics Data System (ADS)
Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob
2009-01-01
We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong.
Esque, Jeremy; Cecchini, Marco
2015-04-23
The calculation of the free energy of conformation is key to understanding the function of biomolecules and has attracted significant interest in recent years. Here, we present an improvement of the confinement method that was designed for use in the context of explicit solvent MD simulations. The development involves an additional step in which the solvation free energy of the harmonically restrained conformers is accurately determined by multistage free energy perturbation simulations. As a test-case application, the newly introduced confinement/solvation free energy (CSF) approach was used to compute differences in free energy between conformers of the alanine dipeptide in explicit water. The results are in excellent agreement with reference calculations based on both converged molecular dynamics and umbrella sampling. To illustrate the general applicability of the method, conformational equilibria of met-enkephalin (5 aa) and deca-alanine (10 aa) in solution were also analyzed. In both cases, smoothly converged free-energy results were obtained in agreement with equilibrium sampling or literature calculations. These results demonstrate that the CSF method may provide conformational free-energy differences of biomolecules with small statistical errors (below 0.5 kcal/mol) and at a moderate computational cost even with a full representation of the solvent.
Wang, Jiyao; Deng, Yuqing; Roux, Benoît
2006-01-01
The absolute (standard) binding free energy of eight FK506-related ligands to FKBP12 is calculated using free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent. A number of features are implemented to improve the accuracy and enhance the convergence of the calculations. First, the absolute binding free energy is decomposed into sequential steps during which the ligand-surrounding interactions as well as various biasing potentials restraining the translation, orientation, and conformation of the ligand are turned “on” and “off.” Second, sampling of the ligand conformation is enforced by a restraining potential based on the root mean-square deviation relative to the bound state conformation. The effect of all the restraining potentials is rigorously unbiased, and it is shown explicitly that the final results are independent of all artificial restraints. Third, the repulsive and dispersive free energy contribution arising from the Lennard-Jones interactions of the ligand with its surrounding (protein and solvent) is calculated using the Weeks-Chandler-Andersen separation. This separation also improves convergence of the FEP/MD calculations. Fourth, to decrease the computational cost, only a small number of atoms in the vicinity of the binding site are simulated explicitly, while all the influence of the remaining atoms is incorporated implicitly using the generalized solvent boundary potential (GSBP) method. With GSBP, the size of the simulated FKBP12/ligand systems is significantly reduced, from ∼25,000 to 2500. The computations are very efficient and the statistical error is small (∼1 kcal/mol). The calculated binding free energies are generally in good agreement with available experimental data and previous calculations (within ∼2 kcal/mol). The present results indicate that a strategy based on FEP/MD simulations of a reduced GSBP atomic model sampled with conformational, translational, and orientational restraining
Methods of Calculating Ionization Energies of Multielectron (Five or More) Isoelectronic Atomic Ions
Lang, Peter F.; Smith, Barry C.
2013-01-01
We have previously used simple empirical equations to reproduce the literature values of the ionization energies of isoelectronic sequences of up to four electrons which gave very good agreement. We reproduce here a kinetic energy expression with corrections for relativity and Lamb shift effects which give excellent agreement with the literature values. These equations become more complex as the number of electrons in the system increases. Alternative simple quadratic expressions for calculating ionization energies of multielectron ions are discussed. A set of coefficients when substituted into a simple expression produces very good agreement with the literature values. Our work shows that Slater's rules are not appropriate for predicting trends or screening constants. This work provides very strong evidence that ionization energies are not functions of complete squares, and when calculating ionization energies electron transition/relaxation has to be taken into account. We demonstrate clearly that for particular isoelectronic sequences, the ionizing electrons may occupy different orbitals and in such cases more than one set of constants are needed to calculate the ionization energies. PMID:23766674
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.
2007-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
Efficient calculation of relative binding free energies by umbrella sampling perturbation.
Zeller, Fabian; Zacharias, Martin
2014-12-01
An important task of biomolecular simulation is the calculation of relative binding free energies upon chemical modification of partner molecules in a biomolecular complex. The potential of mean force (PMF) along a reaction coordinate for association or dissociation of the complex can be used to estimate binding affinities. A free energy perturbation approach, termed umbrella sampling (US) perturbation, has been designed that allows an efficient calculation of the change of the PMF upon modification of a binding partner based on the trajectories obtained for the wild type reference complex. The approach was tested on the interaction of modified water molecules in aqueous solution and applied to in silico alanine scanning of a peptide-protein complex. For the water interaction test case, excellent agreement with an explicit PMF calculation for each modification was obtained as long as no long range electrostatic perturbations were considered. For the alanine scanning, the experimentally determined ranking and binding affinity changes upon alanine substitutions could be reproduced within 0.1-2.0 kcal/mol. In addition, good agreement with explicitly calculated PMFs was obtained mostly within the sampling uncertainty. The combined US and perturbation approach yields, under the condition of sufficiently small system modifications, rigorously derived changes in free energy and is applicable to any PMF calculation.
Hong, Tianzhen; Buhl, Fred; Haves, Philip
2008-03-28
California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and
NASA Astrophysics Data System (ADS)
Zhong, Zhaopeng
In the past twenty 20 years considerable progress has been made in developing new methods for solving the multi-dimensional transport problem. However the effort devoted to the resonance self-shielding calculation has lagged, and much less progress has been made in enhancing resonance-shielding techniques for generating problem-dependent multi-group cross sections (XS) for the multi-dimensional transport calculations. In several applications, the error introduced by self-shielding methods exceeds that due to uncertainties in the basic nuclear data, and often they can be the limiting factor on the accuracy of the final results. This work is to improve the accuracy of the resonance self-shielding calculation by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. A new method has been developed, it can calculate the continuous-energy neutron fluxes for the whole two-dimensional domain, which can be utilized as weighting function to process the self-shielded multi-group cross sections for reactor analysis and criticality calculations, and during this process, the two-dimensional heterogeneous effect in the resonance self-shielding calculation can be fully included. A new code, GEMINEWTRN (Group and Energy-Pointwise Methodology Implemented in NEWT for Resonance Neutronics) has been developed in the developing version of SCALE [1], it combines the energy pointwise (PW) capability of the CENTRM [2] with the two-dimensional discrete ordinates transport capability of lattice physics code NEWT [14]. Considering the large number of energy points in the resonance region (typically more than 30,000), the computational burden and memory requirement for GEMINEWTRN is tremendously large, some efforts have been performed to improve the computational efficiency, parallel computation has been implemented into GEMINEWTRN, which can save the computation and memory requirement a lot; some energy points reducing
Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars
Gandolfi, S.
2015-02-01
We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.
NASA Astrophysics Data System (ADS)
Endo, Kazunaka
2016-02-01
In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.
On the calculation of the gauge volume size for energy-dispersive X-ray diffraction.
Rowles, Matthew R
2011-11-01
Equations for the calculation of the dimensions of a gauge volume, also known as the active volume or diffraction lozenge, in an energy-dispersive diffraction experiment where the detector is collimated by two ideal slits have been developed. Equations are given for equatorially divergent and parallel incident X-ray beams, assuming negligible axial divergence. PMID:21997921
A Method for Calculating Fermi Energy and Carrier Concentrations in Semiconducts
ERIC Educational Resources Information Center
Gaylord, T. K.; Linxwiler, J. N., Jr.
1976-01-01
An efficient numerical method for calculating the Fermi energy, the free electron and free hole concentrations, and the ionized impurity conductors in a semiconductor material is described. The method allows freedom with respect to type of material, temperature, and amount and type of donor and acceptor impurities. (Author/CP)
ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
Metals on graphene: correlation between adatom adsorption behavior and growth morphology
Liu, Xiaojie; Wang, Cai-Zhuang; Hupalo, Myron; Lu, Wencai; Tringides, Michael C.; Yao, Yongxin; Ho, Kai-Ming
2012-05-19
We present a systematic study of metal adatom adsorption on graphene by ab initio calculations. The calculations cover alkali metals, sp-simple metals, 3d and group 10 transition metals, noble metals, as well as rare earth metals. The correlation between the adatom adsorption properties and the growth morphology of the metals on graphene is also investigated. We show that the growth morphology is related to the ratio of the metal adsorption energy to its bulk cohesive energy (E(a)/E(c)) and the diffusion barrier (ΔE) of the metal adatom on graphene. Charge transfer, electric dipole and magnetic moments, and graphene lattice distortion induced by metal adsorption would also affect the growth morphologies of the metal islands. We also show that most of the metal nanostructures on graphene would be thermally stable against coarsening.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Peng, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai; Lu, Benzhuo
2015-05-01
We present PAFMPB, an updated and parallel version of the AFMPB software package for fast calculation of molecular solvation-free energy. The new version has the following new features: (1) The adaptive fast multipole method and the boundary element methods are parallelized; (2) A tool is embedded for automatic molecular VDW/SAS surface mesh generation, leaving the requirement for a mesh file at input optional; (3) The package provides fast calculation of the total solvation-free energy, including the PB electrostatic and nonpolar interaction contributions. PAFMPB is implemented in C and Fortran programming languages, with the Cilk Plus extension to harness the computing power of both multicore and vector processing. Computational experiments demonstrate the successful application of PAFMPB to the calculation of the PB potential on a dengue virus system with more than one million atoms and a mesh with approximately 20 million triangles.
Calculation of energy levels and transition amplitudes for barium and radium.
Dzuba, V. A.; Flambaum, V. V.; Physics; Univ. of New South Wales
2007-01-01
The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium are insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s, 7p and 6d single-electron states as well as the states of the 7s8s, 7s8p and 7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d{sup 2}, 7s8s, 7p{sup 2} and 6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.
Automated calculation of surface energy fluxes with high-frequency lake buoy data
Woolway, R Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.
2015-01-01
Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.
The importance of geospatial data to calculate the optimal distribution of renewable energies
NASA Astrophysics Data System (ADS)
Díaz, Paula; Masó, Joan
2013-04-01
Specially during last three years, the renewable energies are revolutionizing the international trade while they are geographically diversifying markets. Renewables are experiencing a rapid growth in power generation. According to REN21 (2012), during last six years, the total renewables capacity installed grew at record rates. In 2011, the EU raised its share of global new renewables capacity till 44%. The BRICS nations (Brazil, Russia, India and China) accounted for about 26% of the total global. Moreover, almost twenty countries in the Middle East, North Africa, and sub-Saharan Africa have currently active markets in renewables. The energy return ratios are commonly used to calculate the efficiency of the traditional energy sources. The Energy Return On Investment (EROI) compares the energy returned for a certain source and the energy used to get it (explore, find, develop, produce, extract, transform, harvest, grow, process, etc.). These energy return ratios have demonstrated a general decrease of efficiency of the fossil fuels and gas. When considering the limitations of the quantity of energy produced by some sources, the energy invested to obtain them and the difficulties of finding optimal locations for the establishment of renewables farms (e.g. due to an ever increasing scarce of appropriate land) the EROI becomes relevant in renewables. A spatialized EROI, which uses variables with spatial distribution, enables the optimal position in terms of both energy production and associated costs. It is important to note that the spatialized EROI can be mathematically formalized and calculated the same way for different locations in a reproducible way. This means that having established a concrete EROI methodology it is possible to generate a continuous map that will highlight the best productive zones for renewable energies in terms of maximum energy return at minimum cost. Relevant variables to calculate the real energy invested are the grid connections between
Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.
2015-03-07
A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB{sub 4} molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q){sup −2} type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH{sub 4} molecule is demonstrated.
Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser
Mezhenin, A V; Azyazov, V N
2012-12-31
The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio {Pi}. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at {tau}{sub d} {<=} 7. Efficient energy extraction from the OIL active medium is achieved in the case of {tau}{sub d} = 5 - 7, {Pi} = 4 - 8. (lasers)
A method for calculating strain energy release rate based on beam theory
NASA Technical Reports Server (NTRS)
Sun, C. T.; Pandey, R. K.
1993-01-01
The Timoshenko beam theory was used to model cracked beams and to calculate the total strain energy release rate. The root rotation of the beam segments at the crack tip were estimated based on an approximate 2D elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain energy release rate obtained using beam theory agrees very well with the 2D finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.
Improved method for calculating strain energy release rate based on beam theory
NASA Technical Reports Server (NTRS)
Sun, C. T.; Pandey, R. K.
1994-01-01
The Timoshenko beam theory was used to model cracked beams and to calculate the total strain-energy release rate. The root rotations of the beam segments at the crack tip were estimated based on an approximate two-dimensional elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain-energy release rate obtained using beam theory agrees very well with the two-dimensional finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.
Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V
2016-11-01
Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical
Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V
2016-11-01
Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical
NASA Astrophysics Data System (ADS)
Joanny, Jean-Francois
2008-03-01
The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.
Atomic and molecular adsorption on Au(111)
Santiago-Rodríguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, María C.; Mavrikakis, Manos
2014-09-01
Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH_{3} < NO < CO < CH_{3} < HCO < NH_{2} < COOH < OH < HCOO < CNH_{2} < H < N < NH < NOH < COH < Cl,< HCO_{3} < CH_{2} < CN b HNO < O < F < S < C < CH. Although the atomic species preferred to bind at the three-fold fcc site, no tendency was observed in site preference for the molecular species and fragments. The intramolecular and adsorbate-surface vibrational frequencies were calculated for all the adsorbates on their most energetically stable adsorption site. Most of the theoretical binding energies and frequencies agreed with experimental values reported in the literature. In general, the values obtained with the PW91 functional are more accurate than RPBE in reproducing these experimental binding energies. The energies of the adsorbed species were used to calculate the thermochemical potential energy surfaces for decomposition of CO, NO, N_{2}, NH_{3} and CH_{4}, oxidation of CO, and hydrogenation of CO, CO_{2} and NO, giving insight into the thermochemistry of these reactions on gold nanoparticles. These potential energy surfaces demonstrated that: the decomposition of species is not energetically favorable on Au(111); the desorption of NH_{3}, NO and CO are more favorable than their decomposition; the oxidation of CO and hydrogenation of CO and NO on Au(111) to form HCO and HNO, respectively, are also thermodynamically favorable.
Constrained LDA ab-initio calculation of screening of charging energy in C60
NASA Astrophysics Data System (ADS)
Sau, Jay; Neaton, Jeffrey; Khoo, K. H.; Choi, Hyoung; Louie, Steven; Cohen, Marvin
2006-03-01
Recent measurements and theoretical calculations of the electronic properties of C60 on metal substrates have shown that the electron-electron repulsion parameter U, which determines the coulomb blockade transport properties, is strongly screened in the presence of a metal susbtrate. Since standard Density Functional Theory calculations treat this charging energy in a mean field sense, it ignores the discreteness of the charge on the C60 that is critical to coulomb blockade. To account for the effect of the screened U in transport experiments we calculate the charging energy of C60 in a few environments using a constrained LDA approach and explore the implications for coulomb blockade transport phenomena. This work was supported by National Science Foundation Grant No. DMR04-39768 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, U. S Department of Energy under Contract No. DE-AC03-76SF00098. Computational resources have been provided by DOE at the National Energy Research Scientific Computing Center(NERSC)
Calculations of heat deposition in a target system bombarded by high energy charged particles
NASA Astrophysics Data System (ADS)
Nishida, Takahiko; Nakahara, Yasuaki
1984-09-01
At the Japan Atomic Energy Research Institute (JAERI), with the use of the Monte Carlo code NMTC/JAERI and the analysis code NMTA, studies have been performed of the feasibility of an emerging new technology such as an accelerator nuclear fuel producer or a radioactive waste transmuter, which utilizes abundant neutrons emitted by the spallation and fission reactions in a proton accelerator target. New subroutines were added to the NMTA code calculating the total heat deposition and the spatial distribution of heat deposition density in a target. A new subroutine is provided also for estimating the mean excitation energy of recoiling residual nuclei after the particle evaporation ceased to occur. The NMTC/JAERI flow for a fission event was also modified. The processes that account for the heat producing energy in the range greater than 15 MeV are mainly (a) ionization loss by charged particles through transport and (b) the kinetic energy of recoil nuclei after intranuclear cascades and fissions. Preliminary calculations of the heat deposition are carried out for small bare targets of Pb, Nat. U and molten salts for some combinations of incident particle energy, beam radius, target material and size. The new computational routines are explained in detail and discussions are done on the calculated results.
Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
Boulougouris, Georgios C
2014-05-15
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be
Long-range correlation energy calculated from coupled atomic response functions
Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.
2014-05-14
An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.
Learning Approach on the Ground State Energy Calculation of Helium Atom
Shah, Syed Naseem Hussain
2010-07-28
This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.
Learning Approach on the Ground State Energy Calculation of Helium Atom
NASA Astrophysics Data System (ADS)
Shah, Syed Naseem Hussain
2010-07-01
This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function. The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.
A highly efficient hybrid method for calculating the hydration free energy of a protein.
Oshima, Hiraku; Kinoshita, Masahiro
2016-03-30
We develop a new method for calculating the hydration free energy (HFE) of a protein with any net charge. The polar part of the energetic component in the HFE is expressed as a linear combination of four geometric measures (GMs) of the protein structure and the generalized Born (GB) energy plus a constant. The other constituents in the HFE are expressed as linear combinations of the four GMs. The coefficients (including the constant) in the linear combinations are determined using the three-dimensional reference interaction site model (3D-RISM) theory applied to sufficiently many protein structures. Once the coefficients are determined, the HFE and its constituents of any other protein structure are obtained simply by calculating the four GMs and GB energy. Our method and the 3D-RISM theory give perfectly correlated results. Nevertheless, the computation time required in our method is over four orders of magnitude shorter.
Water and Carbon Dioxide Adsorption at Olivine Surfaces
Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.
2013-11-14
Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.
Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.
Chaemchuen, Somboon; Kabir, Nawsad Alam; Zhou, Kui; Verpoort, Francis
2013-12-21
In the midst of the global climate change phenomenon, mainly caused by fossil fuel burning to provide energy for our daily life and discharge of CO2 into the atmosphere, biogas is one of the important renewable energy sources that can be upgraded and applied as a fuel source for energy in daily life. The advantages of the production of hybrid materials, metal-organic framework (MOF) adsorbents, expected for the biogas upgrading, rely on the bulk separation of CO2 under near-ambient conditions. This review highlights the challenges for MOF adsorbents, which have the greatest upgrading abilities for biogas via selective passage of methane. The key factors improving the ideal MOF materials for these high CO2 capture and selectivity uses for biogas upgrading to produce bio-methane and reduce fossil-fuel CO2 emission will be discussed.
Adsorption behavior of methylene blue on carbon nanotubes.
Yao, Yunjin; Xu, Feifei; Chen, Ming; Xu, Zhongxiao; Zhu, Zhiwen
2010-05-01
The effect of temperature on the equilibrium adsorption of methylene blue dye from aqueous solution using carbon nanotubes was investigated. The equilibrium adsorption data were analyzed using two widely applied isotherms: Langmuir and Freundlich. The results revealed that Langmuir isotherm fit the experimental results well. Kinetic analyses were conducted using pseudo-first and second-order models and the intraparticle diffusion model. The regression results showed that the adsorption kinetics were more accurately represented by pseudo-second-order model. The activation energy of system (Ea) was calculated as 18.54 kJ/mol. Standard free energy changes (DeltaG(0)), standard enthalpy change (DeltaH(0)), and standard entropy change (DeltaS(0)) were calculated using adsorption equilibrium constants obtained from the Langmuir isotherm at different temperatures. All DeltaG(0) values were negative; the DeltaH(0) values and DeltaS(0) values of CNTs were 7.29 kJ/mol and 64.6 J/mol K, respectively. Results suggested that the methylene blue adsorption on CNTs was a spontaneous and endothermic process.
Adsorption and Desorption of Nitrogen and Water Vapor by clay
NASA Astrophysics Data System (ADS)
Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei
2015-04-01
Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.
Lin, Bin; Wong, Ka-Yiu; Hu, Char Y.; Kokubo, Hironori; Pettitt, Bernard M.
2011-07-07
Although detailed atomic models may be applied for a full description of solvation, simpler phenomenologicalmodels are particularly useful to interpret the results for scanning many large, complex systems, where a full atomic model is too computationally expensive to use. Among the most costly are solvation free-energy evaluations by simulation. Here we develop a fast way to calculate electrostatic solvation free energy while retaining much of the accuracy of explicit solvent free-energy simulation. The basis of our method is to treat the solvent not as a structureless dielectric continuum but as a structured medium by making use of universal proximal radial distribution functions. Using a deca-alanine peptide as a test case, we compare the use of our theory with free-energy simulations and traditional continuum estimates of the electrostatic solvation free energy.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.
2006-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
Strain and Cohesive Energy of TiN Deposit on Al(001) Surface: Density Functional Calculation
NASA Astrophysics Data System (ADS)
Ren, Yuan; Liu, Xuejie
2016-07-01
To apply the high hardness of TiN film to soft and hard multilayer composite sheets, we constructed a new type of composite structural material with ultra-high strength. The strain of crystal and cohesive energy between the atoms in the eight structures of N atom, Ti atom, 2N2Ti island and TiN rock salt deposited on the Al(001) surface were calculated with the first-principle ultra-soft pseudopotential approach of the plane wave based on the density functional theory. The calculations of the cohesive energy showed that N atoms could be deposited in the face-centered-cubic vacancy position of the Al(001) surface and results in a cubic structure AlN surface. The TiN film could be deposited on the interface of β-AlN. The calculations of the strains showed that the strain in the TiN film deposited on the Al(001) surface was less than that in the 2N2Ti island deposited on the Al(001) surface. The diffusion behavior of interface atom N was investigated by a nudged elastic band method. Diffusion energy calculation showed that the N atom hardly diffused to the substrate Al layer.
Fractional Statistical Theory of Adsorption of Polyatomics
NASA Astrophysics Data System (ADS)
Riccardo, J. L.; Ramirez-Pastor, A. J.; Romá, F.
2004-10-01
A new theoretical description of fractional statistical theory of adsorption (FSTA) phenomena is presented based on Haldane’s statistics. Thermodynamic functions for adsorption of polyatomics are analytically developed. The entropy is characterized by an exclusion parameter g, which relates to the configuration of the admolecules and surface geometry. FSTA provides a simple framework to address a large class of complex adsorption systems. Comparisons of theoretical adsorption isotherms with experiments and simulations indicate that adsorption configuration and adsorption energy can accurately be assessed from this theory.
Fractional statistical theory of adsorption of polyatomics.
Riccardo, J L; Ramirez-Pastor, A J; Romá, F
2004-10-29
A new theoretical description of fractional statistical theory of adsorption (FSTA) phenomena is presented based on Haldane's statistics. Thermodynamic functions for adsorption of polyatomics are analytically developed. The entropy is characterized by an exclusion parameter g, which relates to the configuration of the admolecules and surface geometry. FSTA provides a simple framework to address a large class of complex adsorption systems. Comparisons of theoretical adsorption isotherms with experiments and simulations indicate that adsorption configuration and adsorption energy can accurately be assessed from this theory. PMID:15525184
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.
2014-03-01
Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The
Kerisit, Sebastien N.; Zarzycki, Piotr P.; Rosso, Kevin M.
2015-04-30
The interaction of Fe(II) with ferric oxide/oxyhydroxide phases is central to the biogeochemical redox chemistry of iron. Molecular simulation techniques were employed to determine the mechanisms and quantify the rates of Fe(II) oxidative adsorption at the hematite (001)-water interface. Molecular dynamics potential of mean force calculations of Fe(II) adsorbing on the hematite surface revealed the presence of three free energy minima corresponding to Fe(II) adsorbed in an outersphere complex, a monodentate innersphere complex, and a tridentate innersphere complex. The free energy barrier for adsorption from the outersphere position to the monodentate innersphere site was calculated to be similar to the activation enthalpy for water exchange around aqueous Fe(II). Adsorption at both innersphere sites was predicted to be unfavorable unless accompanied by release of protons. Molecular dynamics umbrella sampling simulations and ab initio cluster calculations were performed to determine the rates of electron transfer from Fe(II) adsorbed as an innersphere and outersphere complex. The electron transfer rates were calculated to range from 10^-4 to 10^2 s-1, depending on the adsorption site and the potential parameter set, and were generally slower than those obtained in the bulk hematite lattice. The most reliable estimate of the rate of electron transfer from Fe(II) adsorbed as an outersphere complex to lattice Fe(III) was commensurate with the rate of adsorption as an innersphere complex suggesting that adsorption does not necessarily need to precede oxidation.
Investigation of the adsorption of amino acids on Pd(1 1 1): A density functional theory study
NASA Astrophysics Data System (ADS)
James, Joanna N.; Han, Jeong Woo; Sholl, David S.
2014-05-01
Density functional theory calculations have been used to study the adsorption of glycine, alanine, norvaline, valine, proline, cysteine, and serine on Pd(1 1 1). Most amino acids except cysteine adsorb onto the surface in a tridentate fashion through a nitrogen atom and both oxygen atoms. For cysteine, an additional bond is formed with the surface due to the strong affinity of the sulfur atom, resulting in a significantly larger adsorption energy. The adsorption patterns of amino acids we examined are supported by the shifts in vibrational frequencies associated with NHH and COO. The adsorption strength of amino acids depends on how much the molecules deform during the adsorption process. Understanding the adsorption of amino acids on Pd(1 1 1) provides fundamental information for future consideration of the interactions between their derivatives or more complicated biomolecules and metal surfaces.
Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber
Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao
2015-01-01
The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265
An Exact Calculation of Electron-Ion Energy Splitting in a Hot Plasma
Singleton, Robert L
2012-09-10
In this brief report, I summarize the rather involved recent work of Brown, Preston, and Singleton (BPS). In Refs. [2] and [3], BPS calculate the energy partition into ions and electrons as a charged particle traverses a non-equilibrium two-temperature plasma. These results are exact to leading and next-to-leading order in the plasma coupling g, and are therefore extremely accurate in a weakly coupled plasma. The new BPS calculations are compared with the more standard work of Fraley et al. [12]. The results differ substantially at higher temperature when T{sub I} {ne} T{sub e}.
First-principles calculations of free energies of unstable phases: the case of fcc W.
Ozolins, V
2009-02-13
Ab initio molecular dynamics simulations are used to solve the long-standing problem of calculating the free energies of unstable phases, such as fcc W. We find that fcc W is mechanically unstable with respect to long-wavelength shear at all temperatures considered (T>2500 K), while the short-wavelength phonon modes are anharmonically stabilized. The calculated fcc-bcc enthalpy and entropy differences at T=3500 K (308 meV and 0.74k_{B} per atom, respectively) agree well with the recent values derived from analysis of experimental data.
Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram; Berger, Robert
2014-05-14
A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.
Rashev, Svetoslav; Moule, David C
2015-04-01
In this work we present a full 6D quartic potential energy surface (PES) for S0 thiophosgene in curvilinear symmetrized bond-angle coordinates. The PES was refined starting from an ab initio field derived from acc-pVTZ basis set with CCSD(T) corrections for electron correlation. In the present calculations we used our variational method that was recently tested on formaldehyde and some of its isotopomers, along with additional improvements. The lower experimentally known vibrational levels for 35Cl2CS were reproduced quite well in the calculations, which can be regarded as a test for the feasibility of the obtained quartic PES. PMID:25615683
Calculation of quasiparticle energy spectrum of silicon using the correlated Hartree-Fock method
NASA Astrophysics Data System (ADS)
Ishihara, Takamitsu; Yamagami, Hiroshi; Matsuzawa, Kazuya; Yasuhara, Hiroshi
1999-06-01
We present quasiparticle energy spectrum calculations of silicon using the correlated Hartree-Fock method proposed by Yasuhara and Takada [Phys. Rev. B 43, 7200 (1991)], in which the information on the effective mass of an electron liquid is included in the form of a nonlocal spin-parallel potential in addition to a local potential. The calculated band gaps of silicon are much improved, compared with the local density approximation values. The minimum indirect band gap is evaluated to be 1.37 eV.
Perfetti, C.; Martin, W.; Rearden, B.; Williams, M.
2012-07-01
Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the Shift Monte Carlo code within the SCALE code package. The methods were used for two small-scale test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods. (authors)
Mayer sampling: calculation of cluster integrals using free-energy perturbation methods.
Singh, Jayant K; Kofke, David A
2004-06-01
Free-energy simulation methods are applied toward the calculation of cluster integrals that appear in diagrammatic methods of statistical mechanics. In this approach, Monte Carlo sampling is performed on a number of molecules equal to the order of the integral, and configurations are weighted according to the absolute value of the integrand. An umbrella-sampling average yields the value of the cluster integral in reference to a known integral. Virial coefficients, up to the sixth for the Lennard-Jones model and the fifth for the SPCE model of water, are calculated as a demonstration.
Computational scheme for pH-dependent binding free energy calculation with explicit solvent.
Lee, Juyong; Miller, Benjamin T; Brooks, Bernard R
2016-01-01
We present a computational scheme to compute the pH-dependence of binding free energy with explicit solvent. Despite the importance of pH, the effect of pH has been generally neglected in binding free energy calculations because of a lack of accurate methods to model it. To address this limitation, we use a constant-pH methodology to obtain a true ensemble of multiple protonation states of a titratable system at a given pH and analyze the ensemble using the Bennett acceptance ratio (BAR) method. The constant pH method is based on the combination of enveloping distribution sampling (EDS) with the Hamiltonian replica exchange method (HREM), which yields an accurate semi-grand canonical ensemble of a titratable system. By considering the free energy change of constraining multiple protonation states to a single state or releasing a single protonation state to multiple states, the pH dependent binding free energy profile can be obtained. We perform benchmark simulations of a host-guest system: cucurbit[7]uril (CB[7]) and benzimidazole (BZ). BZ experiences a large pKa shift upon complex formation. The pH-dependent binding free energy profiles of the benchmark system are obtained with three different long-range interaction calculation schemes: a cutoff, the particle mesh Ewald (PME), and the isotropic periodic sum (IPS) method. Our scheme captures the pH-dependent behavior of binding free energy successfully. Absolute binding free energy values obtained with the PME and IPS methods are consistent, while cutoff method results are off by 2 kcal mol(-1) . We also discuss the characteristics of three long-range interaction calculation methods for constant-pH simulations.
Poehlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen; Olsen, Lars
2012-02-27
The binding affinity of a drug-like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, then the molecule is unlikely to bind to its target. Determination of the global minimum energy conformation and calculation of conformational penalties of binding is a prerequisite for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse molecules, including polar and charged compounds. Identifying global energy minimum conformations of such compounds with force field methods is problematic due to the exaggeration of intramolecular electrostatic interactions. We demonstrate that the global energy minimum conformations of zwitterionic compounds generated by conformational analysis with modified electrostatics are good approximations of the conformational distributions predicted by experimental data and with molecular dynamics performed in explicit solvent. Finally the method is used to calculate conformational penalties for zwitterionic GluA2 agonists and to filter false positives from a docking study. PMID:21985436
Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics
NASA Astrophysics Data System (ADS)
Hošek, Petr; Spiwok, Vojtěch
2016-01-01
Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.
Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian
2016-06-13
Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.
Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas.
Russo, Christopher J; Passmore, Lori A
2014-06-01
Despite its many favorable properties as a sample support for biological electron microscopy, graphene is not widely used because its hydrophobicity precludes reliable protein deposition. We describe a method to modify graphene with a low-energy hydrogen plasma, which reduces hydrophobicity without degrading the graphene lattice. Use of plasma-treated graphene enables better control of protein distribution in ice for electron cryo-microscopy and improves image quality by reducing radiation-induced sample motion.
Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas.
Russo, Christopher J; Passmore, Lori A
2014-06-01
Despite its many favorable properties as a sample support for biological electron microscopy, graphene is not widely used because its hydrophobicity precludes reliable protein deposition. We describe a method to modify graphene with a low-energy hydrogen plasma, which reduces hydrophobicity without degrading the graphene lattice. Use of plasma-treated graphene enables better control of protein distribution in ice for electron cryo-microscopy and improves image quality by reducing radiation-induced sample motion. PMID:24747813
NASA Astrophysics Data System (ADS)
Freeman, Fillmore; Tsegai, Zufan M.; Kasner, Marc L.; Hehre, Warren J.
2000-05-01
Ab initio 6-31G(d) and MP2/6-31G(d)//6-31G(d) methods were used to calculate the energies of the rotamers of the chair conformers of alkylcyclohexanes and trimethylsilylcyclohexane. The MP2/6-31G(d)//6-31G(d) calculated conformational energies ( ? or A values, in kcal/mol) of the alkylcyclohexanes (Me = 1.96; Et = 1.80; Pr = 1.73 iso-Pr = 1.60; t-Bu = 5.45; neo-pent = 1.32) and trimethylsilylcyclohexane (SiMe3 = 2.69) are similar to the experimental values. Plots of the calculated conformational energies for the alkylcyclohexanes and trimethylsilylcyclohexane versus their experimental values are linear (slope = 1.253 and r = .993 for 6-31G(d) and slope = 1.114 and r = .982 for MP2/6-31G(d)//6-31G(d)). The conformational energies are determined primarily by steric effects which include gauche (synclinal) interactions and repulsive nonbonded interactions in both the axial and equatorial conformers.
A review on minimum energy calculations for ideal and nonideal distillations
Koehler, J.; Poellmann, P.; Blass, E.
1995-04-01
The minimum energy requirement of a distillation sets a lower, thermodynamically defined operating limit, which is increasingly important in practice due to growing interest in saving energy. During the conceptual design phase this energy information can also be used to quickly compare distillation configurations. This paper gives a summary of the most important methods published to date for the calculation of the minimum energy requirement. Firstly, the occurrence of so-called pinch zones will be systematically described. These are sections of the column in which at minimum reflux an infinite number of separation stages would be necessary. Then exact and approximating solutions of the problems both for ideal and for nonideal mixtures will be discussed. For ideal mixtures a rapid calculation is possible using the well-known Underwood equations, which can also be applied to complex columns (e.g., several feeds and side products, side stream strippers and enrichers). However, strongly nonideal multicomponent mixtures still require time-consuming simulations of columns having large numbers of plates. In such cases serious convergence problems must often be reckoned with. Recent developments aim at avoiding column simulations and at calculating pinch points directly.
Theoretical calculations and vibrational potential energy surface of 4-silaspiro(3,3)heptane
Ocola, Esther J.; Medders, Cross; Laane, Jaan; Meinander, Niklas
2014-04-28
Theoretical computations have been carried out on 4-silaspiro(3,3)heptane (SSH) in order to calculate its molecular structure and conformational energies. The molecule has two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. Energy calculations were carried out for different conformations of SSH. These results allowed the generation of a two-dimensional ring-puckering potential energy surface (PES) of the form V = a(x{sub 1}{sup 4} + x{sub 2}{sup 4}) – b(x{sub 1}{sup 2} + x{sub 2}{sup 2}) + cx{sub 1}{sup 2}x{sub 2}{sup 2}, where x{sub 1} and x{sub 2} are the ring-puckering coordinates for the two rings. The presence of sufficiently high potential energy barriers prevents the molecule from undergoing pseudorotation. The quantum states, wave functions, and predicted spectra resulting from the PESs were calculated.
DFT study of adsorption of CO2 on palladium cluster doped by transition metal
NASA Astrophysics Data System (ADS)
Saputro, A. G.; Agusta, M. K.; Wungu, T. D. K.; Suprijadi; Rusydi, F.; Dipojono, H. K.
2016-08-01
We report on a theoretical study of CO2 adsorption on Pd6-M (M: Ni, Cu, Pt, Rh) cluster using first-principles density functional theory (DFT) calculations. We find that CO2 molecule is adsorbed with a bidendate configuration on Pd7 and on most of Pd6M clusters. The bidendate adsorption configuration is formed due to the filling of the unoccupied n* orbital of CO2 molecule upon its interaction with d-orbitals of the cluster. We find that transition metal doping could modify the adsorption energy, adsorption site and adsorption configuration of CO2 molecule on Pd7 cluster. We also predict that the usage of Pd6M clusters as CO2 hydrogenation catalysts might facilitate the formations of HCOO/COOH.
Gu, G.D.; Gann, R.D.; Cao, J.X.; Wu, R.Q.; Wen, J.; Xu, Z.; Gu, G.D.; Yarmoff, J.A.
2010-01-01
The adsorption of K and I on the surface of the high-T{sub c} cuprate BSCCO-2212 is investigated with low-energy (0.8 to 2 keV) Na{sup +} ion scattering and density functional theory (DFT). Samples were cleaved in ultrahigh vacuum and charge-resolved spectra of the scattered ions were collected with time-of-flight. The spectra contain a single peak representing Na scattered from Bi, as the clean surfaces are terminated by BiO. The neutralization of scattered Na depends on the local potential above the target site, and the angular dependence indicates that the clean surface has an inhomogeneous potential. Neutralization is dependent on the coverage of I, but independent of K adsorption. DFT suggests high-symmetry sites for the adsorption of both I and K, and that the potential above the Bi sites is altered by I by an amount consistent with the experimental findings, while the potential is not affected by K adsorption. DFT also enables an experimental determination of the 'freezing distance,' which is the effective point beyond which charge exchange does not occur, to be 1.6 {+-} 0.1 {angstrom} from the outermost Bi layer.
Methods for calculating dietary energy density in a nationally representative sample.
Vernarelli, Jacqueline A; Mitchell, Diane C; Rolls, Barbara J; Hartman, Terryl J
2013-01-01
There has been a growing interest in examining dietary energy density (ED, kcal/g) as it relates to various health outcomes. Consuming a diet low in ED has been recommended in the 2010 Dietary Guidelines, as well as by other agencies, as a dietary approach for disease prevention. Translating this recommendation into practice; however, is difficult. Currently there is no standardized method for calculating dietary ED; as dietary ED can be calculated with foods alone, or with a combination of foods and beverages. Certain items may be defined as either a food or a beverage (e.g., meal replacement shakes) and require special attention. National survey data are an excellent resource for evaluating factors that are important to dietary ED calculation. The National Health and Nutrition Examination Survey (NHANES) nutrient and food database does not include an ED variable, thus researchers must independently calculate ED. The objective of this study was to provide information that will inform the selection of a standardized ED calculation method by comparing and contrasting methods for ED calculation. The present study evaluates all consumed items and defines foods and beverages based on both USDA food codes and how the item was consumed. Results are presented as mean EDs for the different calculation methods stratified by population demographics (e.g. age, sex). Using United State Department of Agriculture (USDA) food codes in the 2005-2008 NHANES, a standardized method for calculating dietary ED can be derived. This method can then be adapted by other researchers for consistency across studies.
Methods for calculating dietary energy density in a nationally representative sample
Vernarelli, Jacqueline A.; Mitchell, Diane C.; Rolls, Barbara J.; Hartman, Terryl J.
2013-01-01
There has been a growing interest in examining dietary energy density (ED, kcal/g) as it relates to various health outcomes. Consuming a diet low in ED has been recommended in the 2010 Dietary Guidelines, as well as by other agencies, as a dietary approach for disease prevention. Translating this recommendation into practice; however, is difficult. Currently there is no standardized method for calculating dietary ED; as dietary ED can be calculated with foods alone, or with a combination of foods and beverages. Certain items may be defined as either a food or a beverage (e.g., meal replacement shakes) and require special attention. National survey data are an excellent resource for evaluating factors that are important to dietary ED calculation. The National Health and Nutrition Examination Survey (NHANES) nutrient and food database does not include an ED variable, thus researchers must independently calculate ED. The objective of this study was to provide information that will inform the selection of a standardized ED calculation method by comparing and contrasting methods for ED calculation. The present study evaluates all consumed items and defines foods and beverages based on both USDA food codes and how the item was consumed. Results are presented as mean EDs for the different calculation methods stratified by population demographics (e.g. age, sex). Using United State Department of Agriculture (USDA) food codes in the 2005–2008 NHANES, a standardized method for calculating dietary ED can be derived. This method can then be adapted by other researchers for consistency across studies. PMID:24432201
Kostov, M K; Cheng, H; Cooper, A C; Pez, G P
2002-09-30
A general force field methodology is developed for description of molecular interactions in carbon-based materials. The method makes use of existing parameters of potential functions developed for sp(2) and sp(3) carbons and allows accurate representation of molecular forces in curved carbon environment. The potential parameters are explicitly curvature and site dependent. The proposed force field approach was used in molecular dynamics (MD) simulations for hydrogen adsorption in single-walled carbon nanotubes (SWNTs). The results reveal significant nanotube deformations and the calculated energies of adsorption are comparable to the reported experimental heat of adsorption for H2 in SWNTs. PMID:12366059
NASA Astrophysics Data System (ADS)
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Yang, Weitao
2009-04-01
A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids "on-the-fly" QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.
Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao
2009-04-28
A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.
Ceriotti, Michele; Manolopoulos, David E
2012-09-01
Light nuclei at room temperature and below exhibit a kinetic energy which significantly deviates from the predictions of classical statistical mechanics. This quantum kinetic energy is responsible for a wide variety of isotope effects of interest in fields ranging from chemistry to climatology. It also furnishes the second moment of the nuclear momentum distribution, which contains subtle information about the chemical environment and has recently become accessible to deep inelastic neutron scattering experiments. Here, we show how, by combining imaginary time path integral dynamics with a carefully designed generalized Langevin equation, it is possible to dramatically reduce the expense of computing the quantum kinetic energy. We also introduce a transient anisotropic Gaussian approximation to the nuclear momentum distribution which can be calculated with negligible additional effort. As an example, we evaluate the structural properties, the quantum kinetic energy, and the nuclear momentum distribution for a first-principles simulation of liquid water.
Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.
Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A
2015-10-26
Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange.
Ceriotti, Michele; Manolopoulos, David E
2012-09-01
Light nuclei at room temperature and below exhibit a kinetic energy which significantly deviates from the predictions of classical statistical mechanics. This quantum kinetic energy is responsible for a wide variety of isotope effects of interest in fields ranging from chemistry to climatology. It also furnishes the second moment of the nuclear momentum distribution, which contains subtle information about the chemical environment and has recently become accessible to deep inelastic neutron scattering experiments. Here, we show how, by combining imaginary time path integral dynamics with a carefully designed generalized Langevin equation, it is possible to dramatically reduce the expense of computing the quantum kinetic energy. We also introduce a transient anisotropic Gaussian approximation to the nuclear momentum distribution which can be calculated with negligible additional effort. As an example, we evaluate the structural properties, the quantum kinetic energy, and the nuclear momentum distribution for a first-principles simulation of liquid water. PMID:23005275
Buryak, Ilya; Vigasin, Andrey A.
2015-12-21
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.
NASA Astrophysics Data System (ADS)
Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
GPU-based acceleration of free energy calculations in solid state physics
NASA Astrophysics Data System (ADS)
Januszewski, Michał; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartłomiej
2015-07-01
Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19×speedup compared to the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects.
NASA Astrophysics Data System (ADS)
Buryak, Ilya; Vigasin, Andrey A.
2015-12-01
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.
Buryak, Ilya; Vigasin, Andrey A
2015-12-21
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.
First Principles Study of HCN Adsorption on Graphene Doped with 5d Transition Metal
NASA Astrophysics Data System (ADS)
Dong, Hai-Kuan; Wang, Yong-Ping; Shi, Li Bin
2016-11-01
Hydrogen cyanide (HCN) adsorption on graphene doped with 5d transition metal (TM) is investigated by the first principles based on density functional theory. It is observed that Hg atom cannot be doped into graphene due to saturated valence electron configurations of 5d106s2. Three kinds of HCN adsorption configurations are investigated, in which H, C and N in HCN are close to the adsorption site, respectively. The most stable adsorption configuration is obtained by total energy optimization. HCN adsorption can be studied by adsorption energy and electron density difference. HCN can only be physisorbed on Ir, Pt and Au-doped graphenes, while chemisorption is observed for Lu, Hf, Ta, W, Re and Os-doped graphenes. The band structure is calculated by B3LYP and Generalized gradient approximation (GGA) functionals. It is observed from B3LYP method that the conductivity of Lu, Hf, Re and Os-doped graphenes does not obviously change before and after HCN adsorption. Ta and W-doped graphenes change from semiconductor to metal after adsorption of HCN molecule. The results indicate that Ta and W-doped graphenes may be a promising sensor for detecting HCN. This study provides a useful basis for understanding of a wide variety of physical properties on graphene.
Methane adsorption in nanoporous carbon: the numerical estimation of optimal storage conditions
NASA Astrophysics Data System (ADS)
Ortiz, L.; Kuchta, B.; Firlej, L.; Roth, M. W.; Wexler, C.
2016-05-01
The efficient storage and transportation of natural gas is one of the most important enabling technologies for use in energy applications. Adsorption in porous systems, which will allow the transportation of high-density fuel under low pressure, is one of the possible solutions. We present and discuss extensive grand canonical Monte Carlo (GCMC) simulation results of the adsorption of methane into slit-shaped graphitic pores of various widths (between 7 Å and 50 Å), and at pressures P between 0 bar and 360 bar. Our results shed light on the dependence of film structure on pore width and pressure. For large widths, we observe multi-layer adsorption at supercritical conditions, with excess amounts even at large distances from the pore walls originating from the attractive interaction exerted by a very high-density film in the first layer. We are also able to successfully model the experimental adsorption isotherms of heterogeneous activated carbon samples by means of an ensemble average of the pore widths, based exclusively on the pore-size distributions (PSD) calculated from subcritical nitrogen adsorption isotherms. Finally, we propose a new formula, based on the PSD ensemble averages, to calculate the isosteric heat of adsorption of heterogeneous systems from single-pore-width calculations. The methods proposed here will contribute to the rational design and optimization of future adsorption-based storage tanks.
Calculation of positron binding energies using the generalized any particle propagator theory
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Calculation of positron binding energies using the generalized any particle propagator theory.
Romero, Jonathan; Charry, Jorge A; Flores-Moreno, Roberto; Varella, Márcio T do N; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ~0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Calculation of positron binding energies using the generalized any particle propagator theory
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-01
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ˜0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
NASA Astrophysics Data System (ADS)
Hill, J. Grant; Platts, James A.
2008-10-01
The results of density fitting and local approximations applied to the calculation of transition metal-ligand binding energies using second order Møller-Plesset perturbation theory are reported. This procedure accurately reproduces counterpoise corrected binding energies from the canonical method for a range of test complexes. While counterpoise corrections for basis set superposition error are generally small, this procedure can be time consuming, and in some cases gives rise to unphysical dissociation of complexes. In circumventing this correction, a local treatment of electron correlation offers major efficiency savings with little loss of accuracy. The use of density fitting for the underlying Hartree-Fock calculations is also tested for sample Ru complexes, leading to further efficiency gains but essentially no loss in accuracy.
Calculating alpha Eigenvalues in a Continuous-Energy Infinite Medium with Monte Carlo
Betzler, Benjamin R.; Kiedrowski, Brian C.; Brown, Forrest B.; Martin, William R.
2012-09-04
The {alpha} eigenvalue has implications for time-dependent problems where the system is sub- or supercritical. We present methods and results from calculating the {alpha}-eigenvalue spectrum for a continuous-energy infinite medium with a simplified Monte Carlo transport code. We formulate the {alpha}-eigenvalue problem, detail the Monte Carlo code physics, and provide verification and results. We have a method for calculating the {alpha}-eigenvalue spectrum in a continuous-energy infinite-medium. The continuous-time Markov process described by the transition rate matrix provides a way of obtaining the {alpha}-eigenvalue spectrum and kinetic modes. These are useful for the approximation of the time dependence of the system.
Calculated dipole moment and energy in collision of a hydrogen molecule and a hydrogen atom
NASA Technical Reports Server (NTRS)
Patch, R. W.
1973-01-01
Calculations were carried out using three Slater-type 1s orbitals in the orthogonalized valencebond theory of McWeeny. Each orbital exponent was optimized, the H2 internuclear distance was varied from 7.416 x 10 to the -11th power to 7.673 x 10 to the -11th power m (1.401 to 1.450 bohrs). The intermolecular distance was varied from 1 to 4 bohrs (0.5292 to 2.117 x 10 to the 10th power). Linear, scalene, and isosceles configurations were used. A weighted average of the interaction energies was taken for each intermolecular distance. Although energies are tabulated, the principal purpose was to calculate the electric dipole moment and its derivative with respect to H2 internuclear distance.
S-matrix Calculations of Energy Levels of the Lithium Isoelectronic Sequence
sapirstein, J; Cheng, K T
2010-11-02
A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p{sub 1/2} and 2p{sub 3/2} energy levels as well as the 2s - 2p{sub 1/2} and 2s - 2p{sub 3/2} transition energies for Z = 10 - 100 is presented.
S-matrix calculations of energy levels of the lithium isoelectronic sequence
NASA Astrophysics Data System (ADS)
Sapirstein, J.; Cheng, K. T.
2012-06-01
A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p1/2 and 2p3/2 energy levels as well as the 2s-2p1/2 and 2s-2p3/2 transition energies for Z=10-100 is presented.
S-matrix calculations of energy levels of the lithium isoelectronic sequence
NASA Astrophysics Data System (ADS)
Sapirstein, J.; Cheng, K. T.
2011-01-01
A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections, a comprehensive tabulation of the 2s, 2p1/2, and 2p3/2 energy levels as well as the 2s-2p1/2 and 2s-2p3/2 transition energies for Z=10-100 is presented.
NASA Astrophysics Data System (ADS)
Imamura, Yutaka; Suzuki, Kensei; Iizuka, Takeshi; Nakai, Hiromi
2015-01-01
A new scheme is proposed for constructing an orbital-specific (OS) exchange-correlation functional that satisfies multiple linearity conditions for orbital energies (LCOEs). The Hartree-Fock exchange portions in the OS exchange-correlation functional, based on a multiply range-separated functional, are set so as to satisfy the multiple LCOEs. The current scheme has also been extended to calculations of core, valence, and Rydberg excitations. Numerical assessments on ionization potentials, electron affinities and excitation energies have confirmed accurate descriptions of core, valence, and Rydberg orbitals by the OS hybrid functional.
Microscopic calculation of interacting boson model parameters by potential-energy surface mapping
Bentley, I.; Frauendorf, S.
2011-06-15
A coherent state technique is used to generate an interacting boson model (IBM) Hamiltonian energy surface which is adjusted to match a mean-field energy surface. This technique allows the calculation of IBM Hamiltonian parameters, prediction of properties of low-lying collective states, as well as the generation of probability distributions of various shapes in the ground state of transitional nuclei, the last two of which are of astrophysical interest. The results for krypton, molybdenum, palladium, cadmium, gadolinium, dysprosium, and erbium nuclei are compared with experiment.
Calculations of the response of shielded detectors to gamma rays at MeV-range energies
R. C. Byrd
2000-03-01
Nuclear instruments designed to detect gamma rays at energies from 0.1 to 10 MeV respond primarily to the electrons produced by gamma-ray scattering and absorption in either the instrument itself or in the surrounding materials. Although tabulated attenuation coefficients are very useful for estimating macroscopic quantities such as bulk energy depositions, such quantities are averages over several different phenomena at the microscopic level. For detectors with active elements that are thin compared with an electron range, the competing effects of inscattering and outscattering result in complicated responses, as evidenced by the strong energy dependence of the resulting pulse-height spectra. Thus, for some applications the macroscopic averages are entirely sufficient, but for others a full microscopic analysis is needed. The author first reviews the literature on the responses of several types of detectors to gamma rays at energies below 10 MeV, and then they use a series of simple Monte Carlo calculations to illustrate the important physics issues. These simple calculations are followed by thorough studies of the energy and angle responses of two proposed instruments, including their responses to instantaneous pulses of large numbers of simultaneous incident photons.
USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS
Makhmalbaf, Atefe; Augenbroe , Godfried
2015-12-09
Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the power performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the
Larriba, Carlos Hogan, Christopher J.
2013-10-15
The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission is largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas
Nitrogen Adsorption on Graphite: Defying Physisorption
NASA Astrophysics Data System (ADS)
Tkatchenko, Alexandre; Scheffler, Matthias
2010-03-01
The adsorption of a nitrogen molecule at the graphite surface can be considered a paradigm of molecular physisorption [1]. The binding of N2 can be phenomenologically described in terms of a competition between quadrupole--quadrupole and van der Waals dispersion energies. Of particular interest is the relative stability of the so-called ``in-plane'', ``out-of-plane'' and ``pin-wheel'' monolayer structures, in which the nitrogen molecules alternate between parallel and perpendicular configurations on the surface. By combining state-of-the-art electronic structure methods, such as dispersion-corrected density-functional theory and Møller-Plesset second-order perturbation theory along with high-level coupled cluster [CCSD(T)] calculations, we are able to gain quantitative insight into the adsorption mechanism of N2@graphite and achieve very good agreement with experimental desorption enthalpy. We challenge the commonly held view of a closed-shell adsorbed N2 molecule, finding a noticeable charge-density polarization for nitrogen in a perpendicular configuration on the surface. We map out the N2@graphite potential energy surface as a function of sliding and orientation and discuss the influence of quantum zero-point energy for different adsorption sites. [1] D. Marx and H. Wiechert, Adv. Chem. Phys. 95, 213 (1996).
Tung, Wei-Cheng; Adamowicz, Ludwik
2014-03-28
Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.
DFT calculations on nitrodiborane compounds as new potential high energy materials.
Abdelmalik, John; Ball, David W
2010-05-01
We have used DFT methods to determine the structures and thermochemistry of several nitro-substituted diborane molecules in an attempt to rate their potential as high energy materials. The properties of nitrodiborane, three isomers of dinitrodiborane, trinitrodiborane, and tetranitrodiborane were calculated using the B3LYP density functional method. Our results indicate that the absolute enthalpy of combustion decreases with increasing nitro content, in contrast with other nitro-substituted systems that have been studied previously.
New algorithms for the Vavilov distribution calculation and the corresponding energy loss sampling
Chibani, O. |
1998-10-01
Two new algorithms for the fast calculation of the Vavilov distribution within the interval 0.01 {le} {kappa} {le} 10, where neither the Gaussian approximation nor the Landau distribution may be used, are presented. These algorithms are particularly convenient for the sampling of the corresponding random energy loss. A comparison with the exact Vavilov distribution for the case of protons traversing Al slabs is given.
Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations
Perfetti, Christopher M; Rearden, Bradley T
2013-01-01
The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.
Lundborg, Magnus; Lindahl, Erik
2015-01-22
Free energy calculation has long been an important goal for molecular dynamics simulation and force field development, but historically it has been challenged by limited performance, accuracy, and creation of topologies for arbitrary small molecules. This has made it difficult to systematically compare different sets of parameters to improve existing force fields, but in the past few years several authors have developed increasingly automated procedures to generate parameters for force fields such as Amber, CHARMM, and OPLS. Here, we present a new framework that enables fully automated generation of GROMACS topologies for any of these force fields and an automated setup for parallel adaptive optimization of high-throughput free energy calculation by adjusting lambda point placement on the fly. As a small example of this automated pipeline, we have calculated solvation free energies of 50 different small molecules using the GAFF, OPLS-AA, and CGenFF force fields and four different water models, and by including the often neglected polarization costs, we show that the common charge models are somewhat underpolarized.
Weather data for simplified energy calculation methods. Volume IV. United States: WYEC data
Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.
1984-08-01
The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 23 cities using Weather Year for Energy Calculations (WYEC) source weather data. Considerable overlap is present in cities (21) covered by both the TRY and WYEC data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.
NASA Astrophysics Data System (ADS)
Legnoverde, María S.; Simonetti, Sandra; Basaldella, Elena I.
2014-05-01
Cephalexin adsorption from aqueous solutions using SBA-15 mesoporous silica as adsorbent and the influence of pH solution on drug adsorption were studied. In order to have a better knowledge about the way the drug molecules interact with the inorganic matrix, the adsorption process was estimated by applying the computational chemistry software YAeHMOP (Yet Another extended Hückel Molecular Orbital Package). A strong correlation between the theoretical calculations and the experimental results was established, showing that the adsorbate-adsorbent interaction is pH dependent. Calculated cephalexin horizontal adsorption energy was almost 9 eV more stable than the one corresponding to vertical adsorption, and also the lowest enthalpy of contact and the maximum adsorption percent were found for the cationic cephalexin-silica system. Cephalexin adsorption through the NH3+ group is 8 eV stronger than the molecule adsorption through the COO- group. In agreement with these theoretical predictions, experimental results indicate that the electrostatic attraction between CPX ions and the surface of mesoporous silica is favored at pH values between 2 and 2.56, the maximum being for cephalexin adsorption obtained at pH 2.3.
Garate, Jose Antonio; Perez-Acle, Tomas; Oostenbrink, Chris
2014-03-21
Single-file water chains confined in carbon nanotubes have been extensively studied using molecular dynamics simulations. Specifically, the pore loading process of periodic (6,6) and (5,5) single-walled carbon nanotubes was thermodynamically characterized by means of free-energy calculations at every loading state and compared to bulk water employing thermodynamic cycles. Long simulations of each end-state allowed for the partitioning of the free energy into its energetic and entropic components. The calculations revealed that the initial loading states are dominated by entropic (both translational and rotational) components, whereas the latter stages are energetically driven by strong dipolar interactions among the water molecules in the file.
NASA Astrophysics Data System (ADS)
Sanchez-Parcerisa, D.; Cortés-Giraldo, M. A.; Dolney, D.; Kondrla, M.; Fager, M.; Carabe, A.
2016-02-01
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm-1) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
Sanchez-Parcerisa, D; Cortés-Giraldo, M A; Dolney, D; Kondrla, M; Fager, M; Carabe, A
2016-02-21
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm(-1)) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
Biasing Potential Replica Exchange Multi-Site λ-Dynamics for Efficient Free Energy Calculations
Armacost, Kira A.; Goh, Garrett B.; Brooks, Charles L.
2016-01-01
Traditional free energy calculation methods are well known for their drawbacks in scalability and speed in converging results particularly for calculations with large perturbations. In the present work, we report on the development of biasing potential replica exchange multi-site λ-dynamics (BP-REX MSλD), which is a free energy method that is capable of performing simultaneous alchemical free energy transformations, including perturbations between flexible moieties. BP-REX MSλD and the original MSλD are applied to a series of symmetrical 2,5-benzoquinone derivatives covering a diverse chemical space and range of conformational flexibility. Improved λ-space sampling is observed for the BP-REX MSλD simulations, yielding a 2–5-fold increase in the number of transitions between substituents compared to traditional MSλD. We also demonstrate the efficacy of varying the value of c, the parameter that controls the ruggedness of the landscape mediating the sampling of λ-states, based on the flexibility of the fragment. Finally, we developed a protocol for maximizing the transition frequency between fragments. This protocol reduces the “kinetic barrier” for alchemically transforming fragments by grouping and ordering based on volume. These findings are applied to a challenging test set involving a series of geldanamycin-based inhibitors of heat shock protein 90 (Hsp90). Even though the perturbations span volume changes by as large as 60 Å3, the values for the free energy change achieve an average unsigned error (AUE) of 1.5 kcal/mol relative to experimental Kd measurements with a reasonable correlation (R = 0.56). Our results suggest that the BP-REX MSλD algorithm is a highly efficient and scalable free energy method, which when utilized will enable routine calculations on the order of hundreds of compounds using only a few simulations. PMID:26579773
Pak, Alireza; Lesage, Denis; Gimbert, Yves; Vékey, Károly; Tabet, Jean-Claude
2008-04-01
The internal energy of ions and the timescale play fundamental roles in mass spectrometry. The main objective of this study is to estimate and compare the internal energy distributions of different ions (different nature, degree of freedom 'DOF' and fragmentations) produced in an electrospray source (ESI) of a triple-quadrupole instrument (Quattro I Micromass). These measurements were performed using both the Survival Yield method (as proposed by De Pauw) and the MassKinetics software (kinetic model introduced by Vékey). The internal energy calibration is the preliminary step for ESI and collision-induced dissociation (CID) spectra calculation. meta-Methyl-benzylpyridinium ion and four protonated peptides (YGGFL, LDIFSDF, LDIFSDFR and RLDIFSDF) were produced using an electrospray source. These ions were used as thermometer probe compounds. Cone voltages (V(c)) were linearly correlated with the mean internal energy values (
Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
Boulougouris, Georgios C
2014-05-15
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be
Adsorption of molecular oxygen on VIIIB transition metal-doped graphene: A DFT study
NASA Astrophysics Data System (ADS)
Nasehnia, F.; Seifi, M.
2014-12-01
Adsorption of molecular oxygen with a triplet ground state on Fe-, Co-, Ni-, Ru-, Rh-, Pd-, OS-, Ir- and Pt-doped graphene is studied using density functional theory (DFT) calculations. The calculations show that O2 molecule is chemisorbed on the doped graphene sheets with large adsorption energies ranging from -0.653 eV to -1.851 eV and the adsorption process is irreversible. Mulliken atomic charge analysis of the structure shows that charge transfer from doped graphene sheets to O2 molecule. The amounts of transferred charge are between 0.375e- to 0.650e-, indicating a considerable change in the structures conductance. These results imply that the effect of O2 adsorption on transition metal-doped graphene structures can alter the possibility of using these materials as a toxic-gas (carbon monoxide, hydrogen fluoride, etc.) sensor.
Free-energy calculations for semi-flexible macromolecules: Applications to DNA knotting and looping
Giovan, Stefan M.; Scharein, Robert G.; Hanke, Andreas; Levene, Stephen D.
2014-11-07
We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.
Zheng, D.C.; Berdichevsky, D.; Zamick, L.
1988-07-01
In deformed Hartree-Fock calculations with Skyrme interactions we observe a near degeneracy of the mean energies of many-particle--many-hole deformed intrinsic states. For example, in /sup 40/Ca the np-nh states with n = 2, 3, 4, 5, 6, 7, and 8 are nearly degenerate. The deformation parameter ..beta.. increases steadily from n = 2 to 8. The intrinsic state energy of the 8p-8h state is lower than that of the 4p-4h state for the interactions used here: SK III, SK IV, and SK VI. The calculations are also performed with the Skyrme III interaction for the even-even calcium and titanium isotopes. For /sup 44/Ti there is a near degeneracy of 6p-2h and 8p-4h. For the N>Z isotopes above, the two protons excitation lies lowest. Whereas the intrinsic state energies are much higher than the observed energies of the lowest-lying deformed states, the results when projection of J = 0/sup +/ states is carried out and pairing effects are taken into account, are encouraging.
NASA Astrophysics Data System (ADS)
Zheng, D. C.; Berdichevsky, D.; Zamick, L.
1988-07-01
In deformed Hartree-Fock calculations with Skyrme interactions we observe a near degeneracy of the mean energies of many-particle-many-hole deformed intrinsic states. For example, in 40Ca the np-nh states with n=2, 3, 4, 5, 6, 7, and 8 are nearly degenerate. The deformation parameter β increases steadily from n=2 to 8. The intrinsic state energy of the 8p-8h state is lower than that of the 4p-4h state for the interactions used here-SK III, SK IV, and SK VI. The calculations are also performed with the Skyrme III interaction for the even-even calcium and titanium isotopes. For 44Ti there is a near degeneracy of 6p-2h and 8p-4h. For the N>Z isotopes above, the two protons excitation lies lowest. Whereas the intrinsic state energies are much higher than the observed energies of the lowest-lying deformed states, the results when projection of J=0+ states is carried out and pairing effects are taken into account, are encouraging.
Adsorption of two sodium atoms on graphene -- A first principles study
Kaur, Gagandeep; Rani, Babita; Gupta, Shuchi; Dharamvir, Keya
2015-08-28
We perform a systematic density functional theory (DFT) study of the adsorption of two sodium atoms on graphene using the SIESTA package, in the generalized gradient approximation (GGA). The adsorption energy, geometry, magnetic moment and charge transfer of the Na{sub n}-graphene (n=1, 2) system are calculated. Three initial horizontal orientations of the pair of sodium atoms on graphene are studied. Our calculations reveal that sodium atoms bind weakly to the graphene surface which is in agreement with previous results. We also notice a charge transfer of 0.288e from a sodium adatom to the graphene sheet altering its magnetic moment (−0.318 µ{sub B}) that is reduced from the gas phase value of the isolated atom (1 µ{sub B}). The calculated adsorption energies suggest that clustering of Na atoms on graphene is energetically favorable.
Mielke, Steven L. E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu
2015-01-28
We present an improved version of our “path-by-path” enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P{sup −6}) to O(P{sup −12}), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational–rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan–Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300–3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.
Mielke, Steven L; Truhlar, Donald G
2015-01-28
We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P(-6)) to O(P(-12)), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.
Mielke, Steven L; Truhlar, Donald G
2015-01-28
We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P(-6)) to O(P(-12)), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities. PMID:25637967
Gough, C.A.
1992-01-01
Molecular dynamics (MD) simulations of pure tetrafluoromethane and trifluoromethane were performed to determine the van der Waals parameters R[sup *] and [epsilon] for fluorine and for the hydrogen of trifluoromethane. The best values of R[sup *] and [epsilon] for fluorine were determined to be 1.75 [angstrom] and 0.061 kcal/mole. For the hydrogen, the optimal R[sup *] and [epsilon] were determined to be 1.21 [angstrom] and 0.015 kcal/mole. The relative free energies of aqueous solvation of several fluorinated derivatives of methane were calculated using the FEP method. The calculations duplicated the experimental free energies relatively well, but the calculation of the bond-potential of mean force (bond-PMF) contribution was necessary in order to get the most satisfactory agreement with experiment. In addition, results of an ethanol-to-ethane perturbation in aqueous solution show that the bond-PMF contribution is important even for FEP calculations not involving large changes in size if the length of a bond is changed during the perturbation. MD simulations were run to determine the structure of the waters solvating fluoromethane, trifluoromethane, and tetrafluoromethane. The calculated radical distribution functions and water orientations suggest that, on average, there is one water-fluorine hydrogen bond in the case of fluoromethane. In contrast, there is no evidence of water-flourine hydrogen-bonding in the cases of trifluoromethane or tetrafluoromethane. These results suggest that the greater aqueous solubility of fluromethane relative to trifluoromethane is largely due to the poorer quality of the water-fluorine electrostatic interactions in trifluoromethane.
Recent advances in QM/MM free energy calculations using reference potentials☆
Duarte, Fernanda; Amrein, Beat A.; Blaha-Nelson, David; Kamerlin, Shina C.L.
2015-01-01
Background Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Scope of review Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. Major conclusions The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. General significance As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. PMID:25038480
NASA Astrophysics Data System (ADS)
Tian, Yu; Pan, Xiao-fan; Liu, Yue-jie; Zhao, Jing-xiang
2014-03-01
It is well known that pristine hexagonal boron nitride sheet (h-BN sheet) exhibits large insulating band gap, thus hindering its application to some extent. In this regard, surface chemisorption of certain groups on h-BN sheet is shown to be the most popular method to tune its band gap and thus modify its electronic properties. In the present work, we performed density functional theory (DFT) calculations to study the adsorption of CHO radicals with different coverages on h-BN sheet. Particular attention is paid to explore the effects of CHO adsorption on the geometrical structures and electronic properties of h-BN sheet. The results indicate that the adsorption of a single CHO radical on pristine h-BN sheet is very weak with a negligible adsorption energy (-0.09 eV). In contrast, upon adsorption of more CHO radicals on h-BN sheet, these adsorbates prefer to adsorb in pairs on the B and the nearest N atoms from both sides of h-BN sheet. An energy diagram of the average adsorption energy of CHO radicals on h-BN sheet as a function of its coverage indicates that up to 20 CHO radicals (40%) can be attached to h-BN sheet with the adsorption energy of -0.29 eV. More importantly, the adsorption of CHO radicals can induce certain impurity states within the band gap of h-BN sheet, thus reducing the band gap and enhancing its electrical conductivity.
Adsorption kinetics and dynamics in Si(100) epitaxial growth and oxidation
NASA Astrophysics Data System (ADS)
Ferguson, Bradley Alan
Molecular beam surface science techniques have been employed to probe the adsorption kinetics and dynamics of disilane and oxygen on Si(100)-2 x 1. In particular, the beam reflectivity method of King and Wells was used to measure reaction probabilities over a wide range of incident translational energies, incident angles, and surface temperatures. Oxygen is shown to chemisorb on Si(100) via two distinct adsorption mechanisms: trapping-mediated and direct chemisorption. In the low kinetic energy range, the adsorption probability is found to decrease strongly with increasing surface temperature and kinetic energy, which are trends consistent with a trapping-mediated mechanism. A simple mathematical model for trapping-mediated chemisorption fits the data in this range quite well. Trapping probabilities can be estimated from the data using the model, and decrease with increasing kinetic energy, as would be expected. In the high kinetic energy range, the chemisorption probability increases strongly with increasing kinetic energy, which is a defining characteristic of direct chemisorption. The molecular beam adsorption probability measurements are convoluted with a Maxwell-Boltzmann distribution of incident kinetic energies and angles to predict the average adsorption probability of a thermalized gas. From these calculations, the trapping-mediated mechanism dominates adsorption at low temperatures, while the direct mechanism takes over as the temperature is raised. The adsorption probability of disilane was measured over a wide range of conditions as well. The trapping-mediated and direct chemisorption mechanisms are also shown to be active in this system. However, the trapping probability in this system is much higher over a wider range of kinetic energies, primarily due to an increased physical adsorption binding energy. Also, the effect of surface hydrogen coverage on the chemisorption probability was investigated, and was found to obey a simple second order kinetic
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces
Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.
2014-10-21
A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces
Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.
2014-10-21
A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.
Free Energies of Redox Half-Reactions from First-Principles Calculations.
Tazhigulov, Ruslan N; Bravaya, Ksenia B
2016-07-01
Quantitative prediction of the energetics of redox half-reactions is still a challenge for modern computational chemistry. Here, we propose a simple scheme for reliable calculations of vertical ionization and attachment energies, as well as of redox potentials of solvated molecules. The approach exploits linear response approximation in the context of explicit solvent simulations with spherical boundary conditions. It is shown that both vertical ionization energies and vertical electron affinities, and, consequently redox potentials, exhibit linear dependence on the inverse radius of the solvation sphere. The explanation of the linear dependence is provided, and an extrapolation scheme is suggested. The proposed approach accounts for the specific short-range interactions within hybrid DFT and effective fragment potential approach as well as for the asymptotic system-size effects. The computed vertical ionization energies and redox potentials are in excellent agreement with the experimental values.
S-model calculations for high-energy-electron-impact double ionization of helium
NASA Astrophysics Data System (ADS)
Gasaneo, G.; Mitnik, D. M.; Randazzo, J. M.; Ancarani, L. U.; Colavecchia, F. D.
2013-04-01
In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first-order solution is shown to be equivalent to the familiar first Born approximation. The first-order driven equation is solved within a generalized Sturmian approach for an S-wave (e,3e) model process with high incident energy and small momentum transfer corresponding to published measurements. Two independent numerical implementations, one using spherical and the other hyperspherical coordinates, yield mutual agreement. From our ab initio solution, the transition amplitude is extracted, and single differential cross sections are calculated and could be taken as benchmark values to test other numerical methods in a previously unexplored energy domain.
Hansen, L.F.
1985-05-01
Neutron elastic and inelastic differential cross sections for targets between /sup 9/Be and /sup 239/Pu at energies, E > 14 MeV have been measured using the Livermore and Ohio University neutron time-of-flight facilities. We review here the data and the analyses based on two local microscopic optical potentials: that of Jeukenne, Lejeune and Mahaux, and that of Brieva and Rook. The results are also compared with calculations using global potentials. Coupled channel formalism has been used in the analysis of targets with strong deformations, such as Be, C, Ta, and actinides. The value of the microscopic optical potentials as a tool to predict elastic and inelastic neutron cross sections over a wide mass and energy range is discussed. The need for neutron measurements up to higher energies and their analysis in conjunction with (p,p) and charge exchange (p,n) data is addressed. 17 refs.
Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed
2014-12-16
The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.
Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon
NASA Astrophysics Data System (ADS)
Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon
2016-02-01
Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.
Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H
2006-11-30
Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.
Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes.
Miranda, Williams E; Noskov, Sergei Yu; Valiente, Pedro A
2015-09-28
In this work, we introduced an improved linear interaction energy (LIE) method parameterization for computations of protein–ligand binding free energies. The protocol, coined LIE-D, builds on the linear relationship between the empirical coefficient γ in the standard LIE scheme and the D parameter, introduced in our work. The D-parameter encompasses the balance (difference) between electrostatic (polar) and van der Waals (nonpolar) energies in protein–ligand complexes. Leave-one-out cross-validation showed that LIE-D reproduced accurately the absolute binding free energies for our training set of protein–ligand complexes (<|error|> = 0.92 kcal/mol, SDerror = 0.66 kcal/mol, R(2) = 0.90, QLOO(2) = 0.89, and sPRESS(LOO) = 1.28 kcal/mol). We also demonstrated LIE-D robustness by predicting accurately the binding free energies for three different protein–ligand systems outside the training data set, where the electrostatic and van der Waals interaction energies were calculated with different force fields. PMID:26180998
NASA Astrophysics Data System (ADS)
Sharaf, J. M.; Saleh, H.
2015-05-01
The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.
Calculation of electron trajectory and energy deposition in no screening region
NASA Astrophysics Data System (ADS)
Kia, Mohammad Reza; Noshad, Houshyar
2016-01-01
The probability density function (PDF) of energy for inelastic collision is obtained by solving the integro-differential form of the quantity equation with the Bhabha differential cross section for particles with spin 1/2. Hence, the total PDF in no screening region is determined by folding theory with the following two assumptions: (1) the electron loses energy by collision and radiation and (2) the electron velocity does not change with a thin absorber. Therefore, a set of coupled stochastic differential equations based on the deviation and energy loss PDFs for electron is presented to obtain the electron trajectory inside the target. The energy PDFs for an electron beam with incident energy of 15.7 MeV inside aluminum and copper are calculated. Besides, the dose distributions for an electron beam with incident energies of 20, 10.2, 6, and 0.5 MeV in water are obtained. The results are in excellent agreement with the experimental data reported in the literature.
Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes.
Miranda, Williams E; Noskov, Sergei Yu; Valiente, Pedro A
2015-09-28
In this work, we introduced an improved linear interaction energy (LIE) method parameterization for computations of protein–ligand binding free energies. The protocol, coined LIE-D, builds on the linear relationship between the empirical coefficient γ in the standard LIE scheme and the D parameter, introduced in our work. The D-parameter encompasses the balance (difference) between electrostatic (polar) and van der Waals (nonpolar) energies in protein–ligand complexes. Leave-one-out cross-validation showed that LIE-D reproduced accurately the absolute binding free energies for our training set of protein–ligand complexes (<|error|> = 0.92 kcal/mol, SDerror = 0.66 kcal/mol, R(2) = 0.90, QLOO(2) = 0.89, and sPRESS(LOO) = 1.28 kcal/mol). We also demonstrated LIE-D robustness by predicting accurately the binding free energies for three different protein–ligand systems outside the training data set, where the electrostatic and van der Waals interaction energies were calculated with different force fields.
Quantum chemical calculations of the reorganization energy of blue-copper proteins.
Olsson, M. H.; Ryde, U.; Roos, B. O.
1998-01-01
The inner-sphere reorganization energy for several copper complexes related to the active site in blue-copper protein has been calculated with the density functional B3LYP method. The best model of the blue-copper proteins, Cu(Im)2(SCH3)(S(CH3)2)(0/+), has a self-exchange inner-sphere reorganization energy of 62 kJ/mol, which is at least 120 kJ/mol lower than for Cu(H2O)4(+/2+). This lowering of the reorganization energy is caused by the soft ligands in the blue-copper site, especially the cysteine thiolate and the methionine thioether groups. Soft ligands both make the potential surfaces of the complexes flatter and give rise to oxidized structures that are quite close to a tetrahedron (rather than tetragonal). Approximately half of the reorganization energy originates from changes in the copper-ligand bond lengths and half of this contribution comes from the Cu-S(Cys) bond. A tetragonal site, which is present in the rhombic type 1 blue-copper proteins, has a slightly higher (16 kJ/mol) inner-sphere reorganization energy than a trigonal site, present in the axial type 1 copper proteins. A site with the methionine ligand replaced by an amide group, as in stellacyanin, has an even higher reorganization energy, about 90 kJ/mol. PMID:9865961
Calculation of energy levels, {ital E}1 transition amplitudes, and parity violation in francium
Dzuba, V.A.; Flambaum, V.V.; Sushkov, O.P.
1995-05-01
Many-body perturbation theory in the screened Coulomb interaction was used to calculate energy levels, {ital E}1 trransition amplitudes, and the parity-nonconserving (PNC) {ital E}1 amplitude of the 7{ital s}-8{ital s} transition in francium. The method takes into account the core-polarization effect, the second-order correlations, and the three dominating sequences of higher-order correlation diagrams: screening of the electron-electron interaction, particle-hole interaction, and the iterations of the self-energy operator. The result for the PNC amplitude for {sup 223}Fr is {ital E}1(7{ital s}-8{ital s})=(1.59{plus_minus}{similar_to}1%){times}10{sup {minus}10}{ital iea}{sub {ital B}}({minus}{ital Q}{sub {ital W}}/{ital N}), where {ital Q}{sub {ital W}} is the weak charge of the nucleus, {ital N}=136 is the number of neutrons, {ital e}={vert_bar}{ital e}{vert_bar} is the elementary charge, and {ital a}{sub {ital B}} is the Bohr radius. Our prediction for the position of the 8{ital s} energy level of Fr, which has not been measured yet, is 13 110 cm{sup {minus}1} below the limit of the continuous spectrum. The accuracy of the calculations was controlled by comparison with available experimental data and analogous calculations for cesium. It is estimated to be {similar_to}0.1% for the energy levels and {similar_to}1% for the transition amplitudes.
On the importance of full-dimensionality in low-energy molecular scattering calculations.
Faure, Alexandre; Jankowski, Piotr; Stoecklin, Thierry; Szalewicz, Krzysztof
2016-01-01
Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm(-1) in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible. PMID:27333870
NASA Astrophysics Data System (ADS)
Kalyanaraman, S.; Shajinshinu, P. M.; . Vijayalakshmi, S.
2015-11-01
Single crystal of Ethylenediaminium Tetrachlorozincate has been grown by slow evaporation method. The single crystal XRD study confirms the orthorhombic structure of the crystal. The presence of functional group vibrations are ascertained through FTIR and Raman studies. In optical studies, the insulating behaviour of the material is established by Tauc plot. The refractive index and the real dielectric constant of the crystal are calculated. The electronic polarizability in the high frequency optical region is also calculated from the dielectric constant values by using the Clausius-Mossotti equation. The large value of dielectric constant is identified through dielectric studies and it points to the ferroelectric behaviour of the material. Further an experimental study confirms the ferroelectric behaviour of the material. The total polarizability of the crystal owing to the space charge, dipole, ionic and electronic polarizability contributions is obtained experimentally, and it matches well with the theoretically obtained value from Penn analysis. Further, Plasmon energy and Fermi energy of the material are also calculated using Penn analysis.
Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition
Baudin, Pablo; Marín, José Sánchez; Cuesta, Inmaculada García; Sánchez de Merás, Alfredo M. J.
2014-03-14
A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.
On the importance of full-dimensionality in low-energy molecular scattering calculations
Faure, Alexandre; Jankowski, Piotr; Stoecklin, Thierry; Szalewicz, Krzysztof
2016-01-01
Scattering of H2 on CO is of great importance in astrophysics and also is a benchmark system for comparing theory to experiment. We present here a new 6-dimensional potential energy surface for the ground electronic state of H2-CO with an estimated uncertainty of about 0.6 cm−1 in the global minimum region, several times smaller than achieved earlier. This potential has been used in nearly exact 6-dimensional quantum scattering calculations to compute state-to-state cross-sections measured in low-energy crossed-beam experiments. Excellent agreement between theory and experiment has been achieved in all cases. We also show that the fully 6-dimensional approach is not needed with the current accuracy of experimental data since an equally good agreement with experiment was obtained using only a 4-dimensional treatment, which validates the rigid-rotor approach widely used in scattering calculations. This finding, which disagrees with some literature statements, is important since for larger systems full-dimensional scattering calculations are currently not possible. PMID:27333870
Al(fcc):Al{sub 3}Sc(L1{sub 2}) interphase boundary energy calculations
Hyland, R.W. Jr.; Rohrer, C.L.; Asta, M.; Foiles, S.M.
1998-06-12
These calculations assess the applicability of classical nucleation theory to the reaction f.c.c. {r_arrow} L1{sub 2} occurring in dilute Al-Sc alloys. The orientation and temperature dependence of the energies of coherent Al(f.c.c.):Al{sub 3}Sc(L1{sub 2}) interphase boundaries were studied using atomistic simulation and a low temperature expansion (LTE) of the grand potential. Embedded atom method potentials were developed for both sets of calculations. Atomistic 0 K results for the anisotropy of the interphase boundary enthalpy gave {gamma}{sub (100)} < {gamma}{sub (110)} < {gamma}{sub (111)} with values of 32.5, 51.3, and 66.3 mJ/m{sup 2}, respectively. LTE calculations of the excess grand potential of the (100) interface predicted a nearly temperature independent interfacial energy below 400 K that decreased modestly above 400 K. Monte Carlo (MC) simulations produced a compositional diffuseness of about 4 atomic layers separating the two bulk phases. Because the spatial extent of this region is very similar to the classically determined critical nucleus dimensions extracted from nucleation rate data, it is concluded that critical nuclei of Al{sub 3}Sc are most likely of nonclassical design at high undercooling.
NASA Astrophysics Data System (ADS)
Johnson, K.; Sauerhammer, B.; Titmuss, S.; King, D. A.
2001-06-01
In order to increase understanding of the structure and bonding of aromatic molecules and their fragments on transition metal surfaces, a low-energy electron diffraction (LEED) study of benzene adsorption on Ir{100} has been carried out. Following benzene adsorption at 465 K, a c(2×4) LEED pattern is observed. Its formation is accompanied by the loss of two hydrogen atoms as H2, indicating that benzyne (C6H4) is formed. This is the first time an ordered overlayer of benzyne has been observed on a transition metal surface. It makes the structure accessible to LEED I-V analysis, providing the most reliable structural information for benzyne adsorbed on a transition metal surface to date. The benzyne species was found to be di-σ bonded to the bridge site with a 47° tilt angle to the surface normal.
Pushpa, Raghani; Gironcoli, Stefano de; Narasimhan, Shobhana
2009-04-15
We have studied the adsorption of NO, and the coadsorption of N and O, on four physical and hypothetical systems: unstrained and strained Rh(100) surfaces and monolayers of Rh atoms on strained and unstrained MgO(100) surfaces. We find that as we go from Rh(100) to Rh/Mg0(100), via the other two hypothetical systems, the effective coordination progressively decreases, the d band narrows and its center shifts closer to the Fermi level, and the strength of adsorption and coadsorption increases. Both the strain and the presence of the oxide substrate contribute significantly to this. However, charge transfer is found to play a negligible role due to a canceling out between donation and back-donation processes. Our results suggest that lowering the effective coordination of Rh catalysts by strain, roughening, or the use of inert substrates might lower activation energies for the dissociation of NO.
Kirby, B.; King, J.; Milligan, M.
2012-06-01
The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.
TASK 2.5.4 DEVELOPMENT OF AN ENERGY SAVINGS CALCULATOR
Miller, William A; New, Joshua Ryan; Desjarlais, Andre Omer; Huang, Joe; Erdem, Ender; Ronnen, Levinson
2010-03-01
California s major energy utilities and the California Energy Commission (CEC) are seeking to allocate capital that yields the greatest return on investment for energy infrastructure that meets any part of the need for reliable supplies of energy. The utilities are keenly interested in knowing the amount of electrical energy savings that would occur if cool roof color materials are adopted in the building market. To meet this need the Oak Ridge National Laboratory and the Lawrence Berkeley National Laboratory (LBNL) have been collaborating on a Public Interest Energy Research (PIER) project to develop an industry-consensus energy-savings calculator. The task was coordinated with an ongoing effort supported by the DOE to develop one calculator to achieve both the DOE and the EPA objectives for deployment of cool roof products. Recent emphasis on domestic building energy use has made the work a top priority by the Department of Energy s (DOE) Building Technologies Program. The Roof Savings Calculator (RSC) tool is designed to help building owners, manufacturers, distributors, contractors and practitioners easily run complex simulations. The latest web technologies and usability design were employed to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on the best available statistical evidence and can provide energy and cost savings after the user selects nothing more than the building location. A key goal for the tool is to promote the energy benefits of cool color tile, metal and asphalt shingle roof products and other energy saving systems. The RSC tool focuses on applications for the roof and attic; however, the code conducts a whole building simulation that puts the energy and heat flows of the roof and attic into the perspective of the whole house. An annual simulation runs in about 30 sec. In addition to cool
Zhang, Haiyang; Tan, Tianwei; van der Spoel, David
2015-11-10
Evaluation of solvation (binding) free energies with implicit solvent models in different dielectric environments for biological simulations as well as high throughput ligand screening remain challenging endeavors. In order to address how well implicit solvent models approximate explicit ones we examined four generalized Born models (GB(Still), GB(HCT), GB(OBC)I, and GB(OBC)II) for determining the dimerization free energy (ΔG(0)) of β-cyclodextrin monomers in 17 implicit solvents with dielectric constants (D) ranging from 5 to 80 and compared the results to previous free energy calculations with explicit solvents ( Zhang et al. J. Phys. Chem. B 2012 , 116 , 12684 - 12693 ). The comparison indicates that neglecting the environmental dependence of Born radii appears acceptable for such calculations involving cyclodextrin and that the GB(Still) and GB(OBC)I models yield a reasonable estimation of ΔG(0), although the details of binding are quite different from explicit solvents. Large discrepancies between implicit and explicit solvent models occur in high-dielectric media with strong hydrogen bond (HB) interruption properties. ΔG(0) with the GB models is shown to correlate strongly to 2(D-1)/(2D+1) (R(2) ∼ 0.90) in line with the Onsager reaction field ( Onsager J. Am. Chem. Soc. 1936 , 58 , 1486 - 1493 ) but to be very sensitive to D (D < 10) as well. Both high-dielectric environments where hydrogen bonds are of interest and low-dielectric media such as protein binding pockets and membrane interiors therefore need to be considered with caution in GB-based calculations. Finally, a literature analysis of Gibbs energy of solvation of small molecules in organic liquids shows that the Onsager relation does not hold for real molecules since the correlation between ΔG(0) and 2(D-1)/(2D+1) is low for most solutes. Interestingly, explicit solvent calculations of the solvation free energy ( Zhang et al. J. Chem. Inf. Model . 2015 , 55 , 1192 - 1201 ) reproduce the weak
Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe
2013-09-21
The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.
Naberejnev, D. G.; Palmiotti, G.; Yang, W. S.
2004-06-11
Resonance data play a significant role in the calculations of systems considered for criticality safety applications. K{sub eff}, the major parameter of interest in such a type of calculations, can be heavily dependent both on the quality of the resonance data as well as on the accuracy achieved in the processing of these data. If reasonable uncertainty values are available, in conjunction with their correlation in energy and among type of resonance parameters, one can exploit existing methodologies, based on perturbation theory, in order to evaluate their impact on the integral parameter of interest, i.e., K{sub eff} in our case, in practical applications. In this way, one could be able to judge if the uncertainty on specific quantities, e.g., covariances on resonance data, have a significant impact and, therefore, deserve a careful evaluation. This report, first, will recall the basic principles that lie behind an uncertainty evaluation and review the current situation in the field of covariance data. Then an attempt is made for defining a methodology that allows calculating covariances values for resolved resonance parameters. Finally, practical applications, of interest for criticality safety calculations, illustrate the impact of different assumptions on correlations among resolved resonance parameters.
NASA Astrophysics Data System (ADS)
Cui, Yuanyuan; Liu, Bin; Chen, Lanli; Luo, Hongjie; Gao, Yanfeng
2016-10-01
VO2 is an attractive candidate for intelligent windows and thermal sensors. There are challenges for developing VO2-based devices, since the properties of monoclinic VO2 are very sensitive to its intrinsic point defects. In this work, the formation energies of the intrinsic point defects in monoclinic VO2 were studied through the first-principles calculations. Vacancies, interstitials, as well as antisites at various charge states were taken into consideration, and the finite-size supercell correction scheme was adopted as the charge correction scheme. Our calculation results show that the oxygen interstitial and oxygen vacancy are the most abundant intrinsic defects in the oxygen rich and oxygen deficient condition, respectively, indicating a consistency with the experimental results. The calculation results suggest that the oxygen interstitial or oxygen vacancy is correlated with the charge localization, which can introduce holes or electrons as free carriers and subsequently narrow the band gap of monoclinic VO2. These calculations and interpretations concerning the intrinsic point defects would be helpful for developing VO2-based devices through defect modifications.
NASA Astrophysics Data System (ADS)
Srivastava, Amit; Granek, Rony
2015-02-01
Motivated by single molecule experiments, we study thermal unfolding pathways of four proteins, chymotrypsin inhibitor, barnase, ubiquitin, and adenylate kinase, using bond network models that combine bond energies and elasticity. The protein elasticity is described by the Gaussian network model (GNM), to which we add prescribed bond binding energies that are assigned to all (nonbackbone) connecting bonds in the GNM of native state and assumed identical for simplicity. Using exact calculation of the Helmholtz free energy for this model, we consider bond rupture single events. The bond designated for rupture is chosen by minimizing the free-energy difference for the process, over all (nonbackbone) bonds in the network. Plotting the free-energy profile along this pathway at different temperatures, we observe a few major partial unfolding, metastable or stable, states, that are separated by free-energy barriers and change role as the temperature is raised. In particular, for adenylate kinase we find three major partial unfolding states, which is consistent with single molecule FRET experiments [Pirchi et al., Nat. Commun. 2, 493 (2011), 10.1038/ncomms1504] for which hidden Markov analysis reveals between three and five such states. Such states can play a major role in enzymatic activity.
NASA Astrophysics Data System (ADS)
Pham, Tri T.; Shirts, Michael R.
2011-07-01
Improving the efficiency of free energy calculations is important for many biological and materials design applications, such as protein-ligand binding affinities in drug design, partitioning between immiscible liquids, and determining molecular association in soft materials. We show that for any pair potential, moderately accurate estimation of the radial distribution function for a solute molecule is sufficient to accurately estimate the statistical variance of a sampling along a free energy pathway. This allows inexpensive analytical identification of low statistical error free energy pathways. We employ a variety of methods to estimate the radial distribution function (RDF) and find that the computationally cheap two-body "dilute gas" limit performs as well or better than 3D-RISM theory and other approximations for identifying low variance free energy pathways. With a RDF estimate in hand, we can search for pairwise interaction potentials that produce low variance. We give an example of a search minimizing statistical variance of solvation free energy over the entire parameter space of a generalized "soft core" potential. The free energy pathway arising from this optimization procedure has lower curvature in the variance and reduces the total variance by at least 50% compared to the traditional soft core solvation pathway. We also demonstrate that this optimized pathway allows free energies to be estimated with fewer intermediate states due to its low curvature. This free energy variance optimization technique is generalizable to solvation in any homogeneous fluid and for any type of pairwise potential and can be performed in minutes to hours, depending on the method used to estimate g(r).
Singh, Nidhi; Warshel, Arieh
2010-01-01
Calculating the absolute binding free energies is a challenging task. Reliable estimates of binding free energies should provide a guide for rational drug design. It should also provide us with deeper understanding of the correlation between protein structure and its function. Further applications may include identifying novel molecular scaffolds and optimizing lead compounds in computer-aided drug design. Available options to evaluate the absolute binding free energies range from the rigorous but expensive free energy perturbation to the microscopic Linear Response Approximation (LRA/β version) and its variants including the Linear Interaction Energy (LIE) to the more approximated and considerably faster scaled Protein Dipoles Langevin Dipoles (PDLD/S-LRA version), as well as the less rigorous Molecular Mechanics Poisson–Boltzmann/Surface Area (MM/PBSA) and Generalized Born/Surface Area (MM/GBSA) to the less accurate scoring functions. There is a need for an assessment of the performance of different approaches in terms of computer time and reliability. We present a comparative study of the LRA/β, the LIE, the PDLD/S-LRA/β and the more widely used MM/PBSA and assess their abilities to estimate the absolute binding energies. The LRA and LIE methods perform reasonably well but require specialized parameterization for the non-electrostatic term. On the average, the PDLD/S-LRA/β performs effectively. Our assessment of the MM/PBSA is less optimistic. This approach appears to provide erroneous estimates of the absolute binding energies due to its incorrect entropies and the problematic treatment of electrostatic energies. Overall, the PDLD/S-LRA/β appears to offer an appealing option for the final stages of massive screening approaches. PMID:20186976
Thermodynamic and kinetic behaviors of trinitrotoluene adsorption on powdered activated carbons
Lee, J.W.; Hwang, K.J.; Shim, W.G.; Moon, I.S.
2006-07-01
Regulations on the removal of trinitrotoluene (TNT) from wastewater have become increasingly more stringent, demanding faster, less expensive, and more efficient treatment. This study focuses on the adsorption equilibrium and kinetics of TNT on powered activated carbons (PAC). Three types of PACs (i.e., wood based, coal based, and coconut-shell based) were studied as functions of temperature and pH. Thermodynamic properties including Gibbs free energy, enthalpy, and entropy, were evaluated by applying the Van't Hoff equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption kinetic studies were carried out in batch adsorber under important conditions such as PAC types, temperature, pH, and concentration. We found that fast and efficient removal of TNT dissolved in water can be successfully achieved by PAC adsorption.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg
2016-02-01
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.
CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112
Tarr, Lucas; Longcope, Dana
2012-04-10
The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.
Configurational space discretization and free energy calculation in complex molecular systems
NASA Astrophysics Data System (ADS)
Wang, Kai; Long, Shiyang; Tian, Pu
2016-03-01
We sought to design a free energy calculation scheme with the hope of saving cost for generating dynamical information that is inherent in trajectories. We demonstrated that snapshots in a converged trajectory set are associated with implicit conformers that have invariant statistical weight distribution (ISWD). Since infinite number of sets of implicit conformers with ISWD may be created through independent converged trajectory sets, we hypothesized that explicit conformers with ISWD may be constructed for complex molecular systems through systematic increase of conformer fineness, and tested the hypothesis in lipid molecule palmitoyloleoylphosphatidylcholine (POPC). Furthermore, when explicit conformers with ISWD were utilized as basic states to define conformational entropy, change of which between two given macrostates was found to be equivalent to change of free energy except a mere difference of a negative temperature factor, and change of enthalpy essentially cancels corresponding change of average intra-conformer entropy. By implicitly taking advantage of entropy enthalpy compensation and forgoing all dynamical information, constructing explicit conformers with ISWD and counting thermally accessible number of which for interested end macrostates is likely to be an efficient and reliable alternative end point free energy calculation strategy.
Configurational space discretization and free energy calculation in complex molecular systems.
Wang, Kai; Long, Shiyang; Tian, Pu
2016-01-01
We sought to design a free energy calculation scheme with the hope of saving cost for generating dynamical information that is inherent in trajectories. We demonstrated that snapshots in a converged trajectory set are associated with implicit conformers that have invariant statistical weight distribution (ISWD). Since infinite number of sets of implicit conformers with ISWD may be created through independent converged trajectory sets, we hypothesized that explicit conformers with ISWD may be constructed for complex molecular systems through systematic increase of conformer fineness, and tested the hypothesis in lipid molecule palmitoyloleoylphosphatidylcholine (POPC). Furthermore, when explicit conformers with ISWD were utilized as basic states to define conformational entropy, change of which between two given macrostates was found to be equivalent to change of free energy except a mere difference of a negative temperature factor, and change of enthalpy essentially cancels corresponding change of average intra-conformer entropy. By implicitly taking advantage of entropy enthalpy compensation and forgoing all dynamical information, constructing explicit conformers with ISWD and counting thermally accessible number of which for interested end macrostates is likely to be an efficient and reliable alternative end point free energy calculation strategy. PMID:26974524
Configurational space discretization and free energy calculation in complex molecular systems
Wang, Kai; Long, Shiyang; Tian, Pu
2016-01-01
We sought to design a free energy calculation scheme with the hope of saving cost for generating dynamical information that is inherent in trajectories. We demonstrated that snapshots in a converged trajectory set are associated with implicit conformers that have invariant statistical weight distribution (ISWD). Since infinite number of sets of implicit conformers with ISWD may be created through independent converged trajectory sets, we hypothesized that explicit conformers with ISWD may be constructed for complex molecular systems through systematic increase of conformer fineness, and tested the hypothesis in lipid molecule palmitoyloleoylphosphatidylcholine (POPC). Furthermore, when explicit conformers with ISWD were utilized as basic states to define conformational entropy, change of which between two given macrostates was found to be equivalent to change of free energy except a mere difference of a negative temperature factor, and change of enthalpy essentially cancels corresponding change of average intra-conformer entropy. By implicitly taking advantage of entropy enthalpy compensation and forgoing all dynamical information, constructing explicit conformers with ISWD and counting thermally accessible number of which for interested end macrostates is likely to be an efficient and reliable alternative end point free energy calculation strategy. PMID:26974524
Free Energy Calculations for DNA Near Surfaces Using an Ellipsoidal Geometry
Ambia-Garrido, J.; Pettitt, B. Montgomery
2009-01-01
The change in some thermodynamic quantities such as Gibbs' free energy, entropy and enthalpy of the binding of two DNA strands (forming a double helix), while one is tethered to a surface and are analytically calculated. These particles are submerged in an electrolytic solution; the ionic strength of the media allows the linearized version of the Poisson-Boltzmann equation (from the theory of the double layer interaction) to properly describe the interactions [13]. There is experimental and computational evidence that an ion penetrable ellipsoid is an adequate model for the single strand and the double helix [22–25]. The analytic solution provides simple calculations useful for DNA chip design. The predicted electrostatic effects suggest the feasibility of electronic control and detection of DNA hybridization in the fast growing area of DNA recognition. PMID:20011625
Density functional theory calculations of magnetocrystalline anisotropy energies for (Fe1-xCox)2B
Daene, Markus; Kim, Soo Kyung; Surh, Michael P.; Aberg, Daniel; Benedict, Lorin X.
2015-06-15
We present and discuss density functional theory calculations of magnetic properties of the family of ferromagnetic compounds, (Fe1-xCox)2B, focusing specifically on the magnetocrystalline anisotropy energy (MAE). Using periodic supercells of various sizes (up to 96 atoms), it is shown that the general qualitative features of the composition dependence of the MAE is in agreement with experimental findings, while our predicted magnitudes are larger than those of experiment. We find that the use of small supercells (6 and 12-atom) favors larger MAE values relative to a statistical sample of configurations constructed with 96-atom supercells. As a result, the effect of latticemore » relaxations is shown to be small. Calculations of the Curie temperature for this alloy are also presented.« less
H2 adsorption in Li-decorated porous graphene
NASA Astrophysics Data System (ADS)
Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh; Munieswaran, P.; Saranya, C.; Mahendran, M.
2015-06-01
Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H2) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H2 molecules get adsorbed on each Li atom. The maximum H2 storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE's revised target for the on-board vehicles. The average H2 adsorption binding energy is 0.535 eV/H2, which lies between 0.2-0.6 eV/H2 that is required for achieving adsorption and desorption at near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.
Humidity adsorption kinetics of a trypsin gel film.
Okur, Salih; Ceylan, Cagatay; Culcular, Evren
2012-02-15
This study focuses on the humidity adsorption kinetics of an isopropanol-induced and pH-triggered bovine pancreatic trypsin gel (BPTG). The BPTG was adsorbed on a gold coated Quartz Crystal Microbalance (QCM) substrate with a thickness of 376 nm. The morphology of the film was characterized using Atomic Force Microscopy (AFM). QCM was used to investigate the humidity sensing properties of the BPTG film. The response of the humidity sensor was explained using the Langmuir model. The average values of adsorption and desorption rates between 11% RH (relative humidity) and 97% RH were calculated as 2482.5 M(-1) s(-1) and 0.02 s(-1), respectively. The equilibrium constant and average Gibbs Free Energy of humidity adsorption and desorption cycles were obtained as 133,000 and -11.8 kJ/mol, respectively.
From single molecules to water networks: Dynamics of water adsorption on Pt(111).
Naderian, Maryam; Groß, Axel
2016-09-01
The adsorption dynamics of water on Pt(111) was studied using ab initio molecular dynamics simulations based on density functional theory calculations including dispersion corrections. Sticking probabilities were derived as a function of initial kinetic energy and water coverage. In addition, the energy distribution upon adsorption was monitored in order to analyze the energy dissipation process. We find that on the water pre-covered surface the sticking probability is enhanced because of the attractive water-water interaction and the additional effective energy dissipation channels to the adsorbed water molecules. The water structures forming directly after the adsorption on the pre-covered surfaces do not necessarily correspond to energy minimum structures. PMID:27609006
NASA Astrophysics Data System (ADS)
Çakır, Bekir; Atav, Ülfet; Yakar, Yusuf; Özmen, Ayhan
2016-08-01
In this study we report a detailed theoretical investigation of the effect of an external magnetic field on the 1s-, 2p-, 3d- and 4f-energy states of a spherical quantum dot. We treat the contribution of the diamagnetic term as a perturbation and discuss the effect of the diamagnetic term on the 1s-, 2p-, 3d- and 4f-energy states. We also have calculated the Zeeman transition energies between 2p → 1s and 3d → 2p states with m = 0, ±1 and 0, ±1, ±2 as a function of dot radius and the magnetic field strength. The results show that the magnetic field, impurity charge and dot radius have a strong influence on the energy states and the Zeeman transitions. It is found that the energies of the electronic states with m < 0 addition of the diamagnetic term firstly decrease toward a minimum, and then increase with the increasing magnetic field strength. We have seen that as magnetic field intensity is adjusted, frequency of the emitted light can be changed for Zeeman transitions.
Adsorption of Te on the Si(001) Surface
NASA Astrophysics Data System (ADS)
Sen, Prasenjit; Batra, Inder P.; Grein, C. H.; Fong, C. Y.; Ciraci, S.
2001-03-01
To understand the interface between CdTe and Si and to reveal the atomistic mechanism for the surfactant behavior of adsorbed Te we have investigated the adsorption of Te on the Si(001) surface. This interface is also of crucial importance in developing CdTe/Si as a composite substance for the growth of HgCdTe. We carried out first-principles plane wave calculations within density-functional theory. The adsorption sites and corresponding binding energies are calculated on fully relaxed geometries by using the conjugate gradient method. We found that, at monolayer coverage, Te adatoms do not dimerize. At very low coverage, the top site above the Si-Si surface dimer bond is energetically favorable relative to cave, hollow and bridge sites. Finally, the atomistic mechanism of the surfactant role of Te has been investigated by finite temperature ab-initio molecular dynamics calculations.
NASA Astrophysics Data System (ADS)
Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko
2013-03-01
The present first-principles study based on density-functional theory confirms that frayed edge sites (FESs) formed in micaceous clays have a crucial role in the long-term stability of radioisotopes of Cs on the topsoil surface. An FES is modeled according to the weathering scenario of muscovite, and the substitution of originally occupied K with Cs is virtually simulated. The calculation results clearly demonstrate that such a replacement is strongly promoted only when the stack structure is loosely expanded at the clay edges. This is the first atomic-scale confirmation of the strong affinity of FESs to Cs, which may shed new light on the decontamination engineering of soil materials.
Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment.
Aroguz, Ayse Z; Gulen, J; Evers, R H
2008-04-01
The adsorption kinetics of methylene blue on pyrolyzed petrified sediment (PPS) has been performed using a batch-adsorption technique. The effects of various experimental parameters, such as initial dye concentration, contact time, and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The best correlation coefficient was obtained using the pseudo first-order kinetic model, which shows that the adsorption of methylene blue followed the pseudo-first-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. It was found that the data fitted well to Langmuir and Freundlich models. The activation energy of adsorption was also evaluated for the adsorption of methylene blue onto pyrolyzed sediment. It was found about 8.5 kJ mol(-1). Thermodynamics parameters DeltaG(o), DeltaH(o), DeltaS(o) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found as 14-18.5 kJ mol(-1) and 52.8-67 J mol(-1) K(-1), respectively. The results obtained from the adsorption process using PPS as adsorbent was subjected to student's t-test.
Do, D D; Nicholson, D; Fan, Chunyan
2011-12-01
We present equations to calculate the differential and integral enthalpy changes of adsorption for their use in Monte Carlo simulation. Adsorption of a system of N molecules, subject to an external potential energy, is viewed as one of transferring these molecules from a reference gas phase (state 1) to the adsorption system (state 2) at the same temperature and equilibrium pressure (same chemical potential). The excess amount adsorbed is the difference between N and the hypothetical amount of gas occupying the accessible volume of the system at the same density as the reference gas. The enthalpy change is a state function, which is defined as the difference between the enthalpies of state 2 and state 1, and the isosteric heat is defined as the negative of the derivative of this enthalpy change with respect to the excess amount of adsorption. It is suitable to determine how the system behaves for a differential increment in the excess phase adsorbed under subcritical conditions. For supercritical conditions, use of the integral enthalpy of adsorption per particle is recommended since the isosteric heat becomes infinite at the maximum excess concentration. With these unambiguous definitions we derive equations which are applicable for a general case of adsorption and demonstrate how they can be used in a Monte Carlo simulation. We apply the new equations to argon adsorption at various temperatures on a graphite surface to illustrate the need to use the correct equation to describe isosteric heat of adsorption.
Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang
2016-07-01
Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process. PMID:27372133
Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang
2016-07-01
Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.
Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.
Ghassabzadeh, Hamid; Mohadespour, Ahmad; Torab-Mostaedi, Meisam; Zaheri, Parisa; Maragheh, Mohammad Ghannadi; Taheri, Hossein
2010-05-15
The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 degrees C.
Protein Adsorption in Three Dimensions
Vogler, Erwin A.
2011-01-01
Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and