Science.gov

Sample records for adsorption equilibrium kinetics

  1. Adsorption of dyes using peat: equilibrium and kinetic studies.

    PubMed

    Sepúlveda, L; Fernández, K; Contreras, E; Palma, C

    2004-09-01

    In recent years, adsorption has been accepted as one of the most appropriate processes for decolorization of wastewaters. This paper presents experimental results on application of peat for removal of structurally diverse dyes (azo, oxazine, triphenylmethane, thiazine and others) with emphasis on relevant factors such as the adsorbate-adsorbent chemical properties and chemical interaction as well as adsorption conditions. The equilibrium experimental results were fitted to Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. According to the evaluation using the Langmuir equation, the maximum sorption capacity of basic dyes at 22 degrees C was 667 (mg g(-1)) for Basic Blue 24, 526 (mg g(-1)) for Basic Green 4 and 714 (mg g(-1)) for Basic Violet 4. On the other hand for Acid Black 1 it was only 25 (mg g(-1)). Batch kinetics studies were undertaken and the data evaluated in compliance with chemical sorption mechanisms. For all of the systems studied the pseudo-second order model provided the best correlation of the kinetic experimental data. A film-pore double resistance diffusion model for mass transfer has also been used in this study to determine the effective diffusivity, Deff, for the adsorption of basic dyes in to peat.

  2. Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin.

    PubMed

    Hu, Qinhai; Meng, Yuanyuan; Sun, Tongxi; Mahmood, Qaisar; Wu, Donglei; Zhu, Jianhang; Lu, George

    2011-01-30

    The fine grained resin ZGSPC106 was used to adsorb dimethylamine (DMA) from aqueous solution in the present research. Batch experiments were performed to examine the effects of initial pH of solution and agitation time on the adsorption process. The thermodynamics and kinetics of adsorption were also analyzed. The maximum adsorption was found at natural pH of DMA solution and equilibrium could be attained within 12 min. The equilibrium adsorption data were conformed satisfactorily to the Langmuir equation. The evaluation based on Langmuir isotherm gave the maximal static saturated adsorption capacity of 138.89 mg/g at 293K. Various thermodynamic parameters such as free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) showed that the adsorption was spontaneous, endothermic and feasible. DMA adsorption on ZGSPC106 fitted well to the pseudo-second-order kinetic model. Furthermore, the adsorption mechanism was discussed by Fourier transform infrared spectroscopy (FT-IR) analysis.

  3. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  4. Equilibrium and kinetics of water adsorption in carbon molecular sieve: theory and experiment.

    PubMed

    Rutherford, S W; Coons, J E

    2004-09-28

    Measurements of water adsorption equilibrium and kinetics in Takeda carbon molecular sieve (CMS) were undertaken in an effort to characterize fundamental mechanisms of adsorption and transport. Adsorption equilibrium revealed a type III isotherm that was characterized by cooperative multimolecular sorption theory. Water adsorption was found to be reversible and did not display hysteresis upon desorption over the conditions studied. Adsorption kinetics measurements revealed that a Fickian diffusion mechanism governed the uptake of water and that the rate of adsorption decreased with increasing relative pressure. Previous investigations have attributed the observed decreasing trend in the rate of adsorption to blocking of micropores. Here, it is proposed that the decrease is attributed to the thermodynamic correction to Fick's law which is formulated on the basis of the chemical potential as the driving force for transport. The thermodynamically corrected formulation accounted for observations of transport of water and other molecules in CMS.

  5. Development of adsorbent from Teflon waste by radiation induced grafting: equilibrium and kinetic adsorption of dyes.

    PubMed

    Goel, N K; Kumar, Virendra; Pahan, S; Bhardwaj, Y K; Sabharwal, S

    2011-10-15

    Mutual radiation grafting technique was employed to graft polyacrylic acid (PAA) onto Polytetrafluoroethylene (Teflon) scrap using high energy gamma radiation. Polyacrylic acid-g-Teflon (PAA-g-Teflon) adsorbent was characterized by grafting extent measurement, FTIR spectroscopy, SEM and wet ability & surface energy analysis. The PAA-g-Teflon adsorbent was studied for dye adsorption from aqueous solution of basic dyes, namely, Basic red 29 (BR29) and Basic yellow 11 (BY11). The equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm models, whereas, adsorption kinetics was analyzed using pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models. Equilibrium adsorption of BR29 was better explained by Langmuir adsorption model, while that of BY11 by Freundlich adsorption model. The adsorption capacity for BY11 was more than for BR29. Separation factor (R(L)) was found to be in the range 0 < R(L) < 1, indicating favorable adsorption of dyes. Higher coefficient of determination (r(2) > 0.99) and better agreement between the q(e,cal) and q(e,exp) values suggested that pseudo-second order kinetic model better represents the kinetic adsorption data. The non-linearity obtained for intra-particle diffusion plot indicated, more than one process is involved in the adsorption of basic dyes. The desorption studies showed that ~95% of the adsorbed dye could be eluted in suitable eluent.

  6. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics.

    PubMed

    Azouaou, N; Sadaoui, Z; Djaafri, A; Mokaddem, H

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd(2+) adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g(-1). Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd(2+) removal.

  7. Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies.

    PubMed

    Foletto, Edson Luiz; Weber, Caroline Trevisan; Paz, Diego Silva; Mazutti, Marcio Antonio; Meili, Lucas; Bassaco, Mariana Moro; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m(2) g(-1), and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g(-1). Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution.

  8. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.

    PubMed

    Chen, Suhong; Yue, Qinyan; Gao, Baoyu; Xu, Xing

    2010-09-01

    A new adsorbent modified from wheat residue was synthesized after reaction with epichlorohydrin and triethylamine by using the modifying agents of diethylenetriamine in the presence of organic medium of N,N-dimethylformamide. The performance of the modified wheat straw (MWS) was characterized by Fourier transform infrared spectroscopy and point of zero charge analysis. The adsorption was investigated in a batch adsorption system, including both equilibrium adsorption isotherms and kinetics. Results showed that MWR had great anion-adsorbing capacity, due to the existence of a large number of introduced amino groups, and the value of pH(PZC) was around 5.0. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models and were found to be best represented by the Freundlich isotherm model. Evaluation of the adsorption process identified its endothermic nature. The maximum adsorption capacity of MWS for the removal of Cr(VI) was 322.58mg/g at 328K, indicating that MWS has high chromium removal efficiency, compared to other adsorbents reported. The kinetics of adsorption followed the pseudo-second-order kinetic equation. The mechanism of adsorption was investigated using the intraparticle diffusion model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change) revealed that the adsorption of Cr(VI) onto MWS was endothermic and spontaneous; additionally, the adsorption can be characterized as an ion-exchange process. The results suggest that MWS is an inexpensive and efficient adsorbent for removing Cr(VI) ions from aqueous solution.

  9. Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.

    PubMed

    Noroozi, B; Sorial, G A; Bahrami, H; Arami, M

    2007-01-02

    In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).

  10. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  11. Equilibrium and kinetic aspects of sodium cromoglycate adsorption on chitosan: mass uptake and surface charging considerations.

    PubMed

    de Lima, C R M; Pereira, M R; Fonseca, J L C

    2013-09-01

    Chitosan has more and more been suggested as a material for use as adsorbent in the treatment of effluents as well as in the synthesis of drug-loaded nanoparticles for controlled release. In both cases, a good understanding of the process of adsorption, both kinetically and in terms of equilibrium, has an importance of its own. In this manuscript we study the interaction between sodium cromoglycate, a drug used in asthma treatment, and chitosan. Equilibrium experiments showed that Sips (or Freundlich-Langmuir) isotherm described well the resultant data and adsorption possibly occurred as in multilayers. A model based on ordinary reaction-rate theory, compounded of two processes, each one with a correlated velocity constant, described the kinetics of sorption. Kinetic and equilibrium data suggested the possibility of surface rearrangement, favored by the increase of temperature.

  12. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  13. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    SciTech Connect

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  14. Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies.

    PubMed

    Daoud, Fatima Boukraa-Oulad; Kaddour, Samia; Sadoun, Tahar

    2010-01-01

    The adsorption kinetics of cellulase Aspergillus niger on a commercial activated carbon has been performed using a batch-adsorption technique. The effect of various experimental parameters such as initial enzyme concentration, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Langmuir model was more suitable for our data. The activation energy of adsorption was also evaluated for the adsorption of enzyme onto activated carbon. It was found 11.37 kJ mol(-1). Thermodynamic parameters Delta G(0), Delta H(0) and DeltaS(0) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found 11.12 kJ mol(-1) and 0.084 kJ mol(-1)K(-1), respectively. At 30 degrees C and at pH 4.8, 1g activated carbon adsorbed about 1565 mg of cellulase, with a retention of 70% of the native enzyme activity up to five cycles of repeated batch enzyme reactions.

  15. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA.

    PubMed

    Yi, Honghong; Deng, Hua; Tang, Xiaolong; Yu, Qiongfen; Zhou, Xuan; Liu, Haiyan

    2012-02-15

    In order to develop a single-step process for removing SO(2), NO, CO(2) in flue gas simultaneously by co-adsorption method. Pure component adsorption equilibrium and kinetics of SO(2), NO, and CO(2) on zeolite NaY, NaX, CaA were obtained respectively. Equilibrium data were analyzed by equilibrium model and Henry's law constant. The results suggest that Adsorption affinity follows the trend SO(2)>CO(2)>NO for the same adsorbent. Zeolite with stronger polar surface is a more promising adsorbent candidate. Kinetics behavior was investigated using the breakthrough curve method. The overall mass transfer coefficient and diffusivity factor were determined by a linear driving force model. The results are indicative of micropore diffusion controlling mechanism. NaY zeolite has the minimum resistance of mass transfer duo to the wide pore distribution and large pore amount. CaA zeolite exhibits the highest spatial hindered effect. Finally, co-adsorption effect of SO(2), NO, and CO(2) were investigated by multi-components breakthrough method. SO(2) and NO may form new adsorbed species, however, CO(2) presents a fast breakthrough. Chemical adsorption causes SO(2) transforms to SO(4)(2-), however, element N and C are not detected in adsorbed zeolites.

  16. Adsorption of direct dye on palm ash: kinetic and equilibrium modeling.

    PubMed

    Ahmad, A A; Hameed, B H; Aziz, N

    2007-03-06

    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.

  17. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    PubMed

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements.

  18. Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics.

    PubMed

    Günay, Ahmet; Arslankaya, Ertan; Tosun, Ismail

    2007-07-19

    Adsorption of Pb(II) ions from aqueous solution onto clinoptilolite has been investigated to evaluate the effects of contact time, initial concentration and pretreatment of clinoptilolite on the removal of Pb(II). Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Temkin and Dubinin-Radushkevich), four three-parameter (Redlich-Peterson, Sips, Toth and Khan) isotherm models, and kinetic models including the pseudo-first order, the pseudo-second order and Elovich equations using nonlinear regression technique. Of the two-parameter isotherms, Temkin isotherm was the best to describe the experimental data. Three-parameter isotherms have higher regression coefficients (>0.99) and lower relative errors (<5%) than two-parameter isotherms. The best fitting isotherm was the Sips followed by Toth and Redlich-Peterson isotherm equations. Maximum experimental adsorption capacity was found to be 80.933 and 122.400 mg/g for raw and pretreated clinoptilolite, respectively, for the initial concentration of 400 mg/L. Kinetic parameters; rate constants, equilibrium adsorption capacities and related coefficients for each kinetic model were evaluated according to relative errors and correlation coefficients. Results of the kinetic studies show that best fitted kinetic models are obtained to be in the order: the pseudo-first order, the pseudo-second order and Elovich equations. Using the thermodynamic equilibrium coefficients, Gibbs free energy of the Pb(II)-clinoptilolite system was evaluated. The negative value of change in Gibbs free energy (DeltaG degrees ) indicates that adsorption of Pb(II) on clinoptilolite is spontaneous.

  19. Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics.

    PubMed

    Kumar, Arvind; Prasad, B; Mishra, I M

    2008-04-01

    The potential of activated carbons--powdered (PAC) and granular (GAC), for the adsorption of acrylonitrile (AN) at different initial AN concentrations (50adsorption was studied. The Langmuir, Freundlich, Tempkin, and Redlich-Peterson (R-P) isotherm equations were used to test their fit with the experimental data, and the model parameters were determined for different temperatures. The Langmuir and R-P models were found to be the best to describe the equilibrium isotherm data of AN adsorption on PAC and GAC, respectively. Error analysis also confirmed the efficacy of the R-P isotherm to best fit the experimental data. The pseudo-second order kinetic model best represents the kinetics of the adsorption of AN onto PAC and GAC. Maximum adsorption capacity of PAC and GAC at optimum conditions of AN removal (adsorbent dose approximately 20 g/l of solution, and equilibrium time approximately 5 h) was found to be 51.72 and 46.63 mg/g, respectively.

  20. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies.

    PubMed

    Sabna, V; Thampi, Santosh G; Chandrakaran, S

    2016-12-01

    Synthetic dyes present in effluent from textile, paper and paint industries contain crystal violet (CV), a known carcinogenic agent. This study investigates the modification of multiwalled carbon nanotubes by acid reflux method and equilibrium and kinetic behaviour of adsorption of CV onto functionalized multi-walled carbon nanotubes (fMWNTs) in batch system. High stability of the fMWNTs suspension in water indicates the hydrophilicity of fMWNTs induced due to the formation of functional groups that make hydrogen bonds with water molecules. fMWNTs were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and the functional groups present on the fMWNTs were confirmed. Characteristic variation was observed in the FTIR spectra of fMWNTs after adsorption of crystal violet onto it. Adsorption characteristics were evaluated as a function of system variables such as contact time, dosage of fMWNTs and initial concentration and pH of the crystal violet solution. Adsorption capacity of fMWNTs and percentage removal of the dye increased with increase in contact time, adsorbent dosage and pH but declined with increase in initial concentration of the dye. fMWNTs showed higher adsorption capacity compared to that of pristine MWNTs. Data showed good fit with the Langmuir and Freundlich isotherm models and the pseudo-second order kinetic model; the maximum adsorption capacity was 90.52mg/g. Kinetic parameters such as rate constants, equilibrium adsorption capacities and regression coefficients were estimated. Results indicate that fMWNTs are an effective adsorbent for the removal of crystal violet from aqueous solution.

  1. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    PubMed

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  2. Equilibrium and kinetic modeling of adsorptive sulfur removal from gasoline by synthesized Ce-Y zeolite

    NASA Astrophysics Data System (ADS)

    Montazerolghaem, Maryam; Rahimi, Amir; Seyedeyn-Azad, Fakhry

    2010-11-01

    In this research, the adsorption of a model sulfur compound, thiophene, from a simulated gasoline onto Ce-Y zeolite in pellet and powder forms was investigated. For this purpose, zeolite Na-Y was synthesized, and Ce-Y zeolite was prepared via solid-state ion-exchanged (SSIE) method. Adsorptive desulfurization of model gasoline was conducted in a batch reactor at ambient conditions to evaluate the equilibrium and kinetics of thiophene adsorption onto Ce-Y zeolite. The equilibrium data were fitted to Langmuire and Toth models. Pseudo-n-order and modified n-order models, LDF-base model, and intra-particle diffusion model were evaluated to fit the kinetic of the adsorption process and to determine the mechanism of it. The corresponding parameters and/or correlation coefficients of each model were reported. The LDF-base model was used also to fit the mass transfer coefficient for both powder and pellet forms of the adsorbent. The best fit estimates for the mass transfer coefficient were obtained 4 × 10-11 m/s and k = 3.1 × 10-12[exp( - t/τ) + 1/(t + 10-4)], for powder and pellet form adsorbents, respectively.

  3. Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics.

    PubMed

    Sahabi, Danladi Mahuta; Takeda, Minoru; Suzuki, Ichiro; Koizumi, Jun-ichi

    2009-09-15

    Removal of arsenic from groundwater by biological adsorptive filtration depends largely on its interaction with biogenic iron and manganese oxides surfaces. In the present study we investigated the arsenic adsorption and abiotic oxidation capacities of an aged biofilter medium (BM2) collected from a long time established groundwater treatment plant for removal of iron and manganese by biological filtration. Batch oxidation/adsorption kinetic experiments indicated that BM2 can easily oxidize As(III) to As(V) with the rate of oxidation less affected by pH-variations from 4 to 8.5. The adsorption capacity of the biofilter medium for the produced or added As(V), however, depends strongly on the pH of the solution. The kinetics results have shown that As(III) sorption followed pseudo-second order kinetics, whereas the sorption of As(V) was best described by the intra-particle diffusion model, indicating that adsorptions of As(III) and As(V) onto BM2 were governed by different mechanisms. Adsorption isotherms at 25 degrees C were measured for a range of arsenite and arsenate initial concentrations of 0.67-20 micromol/L and the pH range from 4 to 9. Adsorption maxima were highest at pH 4 and decrease steadily as the pH increases. The equilibrium data for both As(III) and As(V) fitted very well to the Freundlich and Sips isotherm equations and, in most cases, the two isotherms overlapped with the same correlation coefficients, indicating sorption to be multilayer on the heterogeneous surface of BM2. The implication of the data for arsenic removal from water by biological filtration has been discussed.

  4. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel.

    PubMed

    Liu, Xiaohong; Wang, Fang; Bai, Song

    2015-01-01

    An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.

  5. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers.

    PubMed

    Maksin, Danijela D; Nastasović, Aleksandra B; Milutinović-Nikolić, Aleksandra D; Suručić, Ljiljana T; Sandić, Zvjezdana P; Hercigonja, Radmila V; Onjia, Antonije E

    2012-03-30

    Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  6. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads.

    PubMed

    Chiou, Ming Shen; Li, Hsing Ya

    2002-07-22

    The adsorption of reactive dye (Reactive Red 189) from aqueous solutions on cross-linked chitosan beads was studied in a batch system. The equilibrium isotherms at different particle sizes (2.3-2.5, 2.5-2.7 and 3.5-3.8mm) and the kinetics of adsorption with respect to the initial dye concentration (4320, 5760 and 7286 g/m(3)), temperature (30, 40 and 50 degrees C), pH (1.0, 3.0, 6.0 and 9.0), and cross-linking ratio (cross-linking agent/chitosan weight ratio: 0.2, 0.5, 0.7 and 1.0) were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well to the Langmuir model in the entire saturation concentration range (0-1800 g/m(3)). The maximum monolayer adsorption capacities obtained from the Langmuir model are very large, which are 1936, 1686 and 1642 g/kg for small, mediumand large particle sizes, respectively, at pH 3.0, 30 degrees C, and the cross-linking ratio of 0.2. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial dye concentration and the solution pH both significantly affect the adsorption capacity, but the temperature and the cross-linking ratio are relatively minor factors. An increase in initial dye concentration results in the increase of adsorption capacity, which also increases with decreasing pH. The activation energy is 43.0 kJ/mol for the adsorption of the dye on the cross-linked chitosan beads at pH 3.0 and initial dye concentration 3768 g/m(3).

  7. Adsorption equilibrium, kinetics and thermodynamics of dichloroacetic acid from aqueous solution using mesoporous carbon.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Cao, Yang; Chen, Shenglu

    2014-08-01

    The presence of disinfection by-products, such as trihalomethanes and haloacetic acids in water, is believed to be harmful to human health. In this work, mesoporous carbon was synthesized with the evaporation-induced self-assembly method and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dichloroacetic acid in batch experiments. Adsorption equilibrium was established in 480 min and the maximum adsorption (350mg/g) of dichloroacetic acid on the mesoporous carbon was observed to occur at 308 K and pH 3.0. Freundlich and Langmuir isotherms were used to analyse the equilibrium data at different temperatures; kinetic data were fitted to the pseudo-first-order and pseudo-second-order models and found that the adsorption capacity, mass transfer coefficient and diffusivity of dichloroacetic acid were directly affected by the physical and chemical parameters. In addition, the various thermodynamic parameters, such as Gibbs free energy (Delta G), enthalpy (Delta H = 54.35 kJmol-1) and entropy (Delta S = 258.36 Jmol-1 K-1) were calculated to analyse the adsorption process. The experimental results indicated that the mesoporous carbon was an excellent adsorbent for dichloroacetic acid removal from aqueous solutions.

  8. Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones.

    PubMed

    Ahmed, Muthanna J; Theydan, Samar K

    2012-10-01

    Adsorption capacity of an agricultural waste, palm-tree fruit stones (date stones), for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) at different temperatures was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m2/g and 475.88 mg/g, respectively. The effects of pH (2-12), adsorbent dose (0.6-0.8 g/L) and contact time (0-150 min) on the adsorptive removal process were studied. Maximum removal percentages of 89.95% and 92.11% were achieved for Ph and PNPh, respectively. Experimental equilibrium data for adsorption of both components were analyzed by the Langmuir, Freundlich and Tempkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm equation with maximum adsorption capacities of 132.37 and 161.44 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both components. The calculated thermodynamic parameters, namely ΔG, ΔH, and ΔS showed that adsorption of Ph and PNPh was spontaneous and endothermic under examined conditions.

  9. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  10. Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-05-01

    In this work, the potential feasibility of rice straw-derived char (RSC) for removal of C.I. Basic Green 4 (malachite green (MG)), a cationic dye from aqueous solution was investigated. The isotherm parameters were estimated by non-linear regression analysis. The equilibrium process was described well by the Langmuir isotherm model. The maximum RSC sorption capacity was found to be 148.74 mg/L at 30 degrees C. The kinetics of MG sorption on RSC followed the Lagergren's pseudo-first-order model and the overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, while intraparticle diffusion controlled the overall rate of adsorption at a later stage. The results indicated that RSC was an attractive adsorbent for removing basic dye from aqueous solutions.

  11. IgG adsorption on a new protein A adsorbent based on macroporous hydrophilic polymers. I. Adsorption equilibrium and kinetics.

    PubMed

    Perez-Almodovar, Ernie X; Carta, Giorgio

    2009-11-20

    Experimental determination and modeling of IgG binding on a new protein A adsorbent based on a macroporous resin were performed. The new adsorbent consists of polymeric beads based on hydrophilic acrylamido and vinyl monomers with a pore structure optimized to allow favorable interactions of IgG with recombinant protein A coupled to the resin. The particles have average diameter of 57 microm and a narrow particle size distribution. The IgG adsorption equilibrium capacity is 46 mg/cm(3) and the effective pore diffusivity determined from pulse response experiments for non-binding conditions is 8.0 x 10(-8) cm(2)/s. The IgG adsorption kinetics can be described with the same effective diffusivity by taking into account a heterogeneous binding mechanism with fast binding sites, for which adsorption is completely diffusion controlled, and slow binding sites for which adsorption is controlled by the binding kinetics. As a result of this mechanism, the breakthrough curve exhibits a tailing behavior, which appears to be associated with the slow binding sites. A detailed rate model taking into account intraparticle diffusion and binding kinetics is developed and is found capable of predicting both batch adsorption and breakthrough behavior over an ample range of experimental conditions. The corresponding effective diffusivity is independent of protein concentration in solution over the range 0.2-2 mg/cm(3) and of protein binding as a result of the large pore size of the support matrix. Overall, the small particle size and low diffusional hindrance allow capture of IgG with short residence times while attaining substantial dynamic binding capacities.

  12. Adsorption Properties of Tetracycline onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    PubMed Central

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π–π interaction and cation–π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742–0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin–Radushkevich (D–R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet. PMID:24302989

  13. Kinetics and equilibrium adsorption of nano-TiO 2 particles on synthetic biofilm

    NASA Astrophysics Data System (ADS)

    Sahle-Demessie, Endalkachew; Tadesse, Haregewine

    2011-07-01

    Understanding the environmental behavior of nanoparticles includes their interaction with biofilms, which is a covering on the surface of a living or nonliving substrate composed of microorganisms. This study focuses on nano-TiO2 sorption mechanism by synthetic biofilm that was prepared as superporous spherical beads from agarose, using batch stirred flasks kept at room temperature. The pH plays an important part in these phenomena, by its influence on the nanoparticles and biofilm chemistry, where the biofilm nanoTiO2 uptake at neutral pH was enhanced over acidic conditions. Hydroxylation of TiO2 nanoparticles, dependent on pH and the salinity of the solution, influences the stability of colloids, the sorption kinetics via the nature of limiting phases: diffusion through the boundary layer or intrabiofilm mass transfer and the sorption mechanism. The sorption follows pseudo first-order adsorption kinetics with estimated average rate constants of 2.2 (min- 1). Equilibrium isotherms were evaluated using Langmuir and Freundlich isotherms to obtain the maximum uptake at different solution pH and the free energy of the adsorption. The adsorption is apparently irreversible because biofilm limits diffusion of particles out of the pores and the complexation active binding sites on the surface hydrated biofilm to the hydrophilic TiO2 nanoparticles.

  14. Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge.

    PubMed

    Babatunde, A O; Zhao, Y Q

    2010-12-15

    Excess phosphorus (P) in wastewaters promotes eutrophication in receiving waterways. A cost-effective method such as use of novel low-cost adsorbents for its adsorptive removal would significantly reduce such impacts. Using batch experiments, the intrinsic dynamics of P adsorption by waste alum sludge (an inevitable by-product of drinking water treatment plants) was examined. Different models of adsorption were used to describe equilibrium and kinetic data, calculate rate constants and determine the adsorption capacity. Results indicate that the intraparticle rate constant increased from 0.0075 mg g(-1)min(-1) at 5 mg L(-1) to 0.1795 mg g(-1)min(-1) at 60 mg L(-1) indicating that more phosphate is adsorbed per g min at higher P concentration. Further analyses indicate involvement of film and particle diffusion mechanisms as rate controlling steps at lower and higher concentrations, respectively. Mass transfer coefficient obtained ranged from 1.7 × 10(-6) to 1.8 × 10(-8) indicating a rapid transportation of phosphate molecules onto the alum sludge. These results further demonstrates that alum sludge-hitherto thought of as undesirable waste, can be used as novel adsorbent for P removal from wastewater through various applications, thus offsetting a portion of the disposal costs while at the same time improving water quality in sensitive watersheds.

  15. Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies.

    PubMed

    Dizge, N; Aydiner, C; Demirbas, E; Kobya, M; Kara, S

    2008-02-11

    Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100-500 mg/l), pH (2-8), particle size (45-112.5 microm) and temperature (293-323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100mg/l initial dye concentration, 0.6g/100ml adsorbent dose, temperature of 293 K, 45 microm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135-180 and 15-34 mg/g for RB, 47-86 and 1.9-3.7 mg/g for RR and 37-61 and 3.0-3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature.

  16. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon.

    PubMed

    Saha, Dipendu; Deng, Shuguang

    2010-05-15

    Ordered mesoporous carbon was synthesized by a self-assembly technique and characterized with TEM, Raman spectroscopy, and nitrogen adsorption/desorption for its physical and pore textural properties. The high BET specific surface area (798 m(2)/g), uniform mesopore-size distribution with a median pore size of 62.6 Å, and large pore volume (0.87 cm(3)/g) make the ordered mesoporous carbon an ideal adsorbent for gas separation and purification applications. Adsorption equilibrium and kinetics of carbon dioxide, methane, nitrous oxide, and ammonia on the ordered mesoporous carbon were measured at 298 K and gas pressures up to 800 Torr. The adsorption equilibrium capacities on the ordered mesoporous carbon at 298 K and 800 Torr for ammonia, carbon dioxide, nitrous oxide, and methane were found to be 6.39, 2.39, 1.5, and 0.53 mmol/g, respectively. Higher adsorption uptakes of methane (3.26 mmol/g at 100 bar) and carbon dioxide (2.21 mmol/g at 13 bar) were also observed at 298 K and elevated pressures. Langmuir, Freundlich, and Toth adsorption equilibrium models were used to correlate all the adsorption isotherms, and a simplified gas diffusion model was applied to analyze the adsorption kinetics data collected at 298 K and four different gas pressures up to 800 Torr.

  17. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    PubMed

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-03-30

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  18. Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon.

    PubMed

    Namasivayam, C; Sangeetha, D

    2004-12-15

    Phosphate removal from aqueous solution was investigated using ZnCl(2)-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3-10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.

  19. Equilibrium models and kinetic for the adsorption of methylene blue on Co-hectorites.

    PubMed

    Ma, Jun; Jia, Yong-Zhong; Jing, Yan; Sun, Jin-He; Yao, Ying; Wang, Xiao-Hua

    2010-03-15

    The adsorption of methylene blue (MB) onto the surface of cobalt doping hectorite (Co-hectorite) was systematically studied. The physical properties of Co-hectorites were investigated, where characterizations were carried out by X-ray diffraction (XRD) and Electron Diffraction Spectrum (EDS) techniques, and morphology was examined by nitrogen adsorption. The sample with a Co content 5% (m/m) had a higher specific surface area than other Co-hectorites. The pore diameters were distributed between 2.5 and 5.0 nm. The adsorption results revealed that Co-hectorite surfaces possessed effective interactions with MB and bases, and greatest adsorption capacity achieved with Co content 5%, where the best-fit isotherm model was the Langmuir adsorption model. Kinetic studies were fitted to the pseudo-second-order kinetic model. The intraparticle diffusion was not the rate-limiting step for the whole reaction.

  20. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    NASA Astrophysics Data System (ADS)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  1. Adsorption behaviour of direct yellow 50 onto cotton fiber: equilibrium, kinetic and thermodynamic profile.

    PubMed

    Ismail, L F M; Sallam, H B; Abo Farha, S A; Gamal, A M; Mahmoud, G E A

    2014-10-15

    This study investigated the adsorption of direct yellow 50 onto cotton fiber from aqueous solution by using parameters, such as pH, temperature, contact time, initial dye concentration and the effect of sodium sulphate, tetrasodium edate and trisodium citrate. The extent of dye adsorption increased with increasing contact time, temperature and solution concentration. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. The results show that the presence of SE and SC significantly enhance the dye adsorption onto cotton fiber. In addition, the adsorption data obtained at different temperatures of DY50 onto cotton fiber were applied to pseudo first-order, pseudo second-order and intraparticle diffusion models. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation. Also, free energy of adsorption (ΔG(#)), enthalpy (ΔH(#)), and entropy (ΔS(#)) changes were determined to predict the nature of adsorption. The positive value of the enthalpy change indicated that the adsorption is endothermic process. The activation energy, Ea, is ranged between 1.9 and 3.9kJmol(-1) indicated that the adsorption process is a physisorption. This low value of Ea generally indicates diffusion controlled process.

  2. Adsorption behaviour of direct yellow 50 onto cotton fiber: Equilibrium, kinetic and thermodynamic profile

    NASA Astrophysics Data System (ADS)

    Ismail, L. F. M.; Sallam, H. B.; Abo Farha, S. A.; Gamal, A. M.; Mahmoud, G. E. A.

    2014-10-01

    This study investigated the adsorption of direct yellow 50 onto cotton fiber from aqueous solution by using parameters, such as pH, temperature, contact time, initial dye concentration and the effect of sodium sulphate, tetrasodium edate and trisodium citrate. The extent of dye adsorption increased with increasing contact time, temperature and solution concentration. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. The results show that the presence of SE and SC significantly enhance the dye adsorption onto cotton fiber. In addition, the adsorption data obtained at different temperatures of DY50 onto cotton fiber were applied to pseudo first-order, pseudo second-order and intraparticle diffusion models. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation. Also, free energy of adsorption (ΔG#), enthalpy (ΔH#), and entropy (ΔS#) changes were determined to predict the nature of adsorption. The positive value of the enthalpy change indicated that the adsorption is endothermic process. The activation energy, Ea, is ranged between 1.9 and 3.9 kJ mol-1 indicated that the adsorption process is a physisorption. This low value of Ea generally indicates diffusion controlled process.

  3. Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: Kinetic and equilibrium modeling.

    PubMed

    Hafeznezami, Saeedreza; Zimmer-Faust, Amity G; Dunne, Aislinn; Tran, Tiffany; Yang, Chao; Lam, Jacquelyn R; Reynolds, Matthew D; Davis, James A; Jay, Jennifer A

    2016-08-01

    Application of empirical models to adsorption of contaminants on natural heterogeneous sorbents is often challenging due to the uncertainty associated with fitting experimental data and determining adjustable parameters. Sediment samples from contaminated and uncontaminated portions of a study site in Maine, USA were collected and investigated for adsorption of arsenate [As(V)]. Two kinetic models were used to describe the results of single solute batch adsorption experiments. Piecewise linear regression of data linearized to fit pseudo-first order kinetic model resulted in two distinct rates and a cutoff time point of 14-19 h delineating the biphasic behavior of solute adsorption. During the initial rapid adsorption stage, an average of 60-80% of the total adsorption took place. Pseudo-second order kinetic models provided the best fit to the experimental data (R(2) > 0.99) and were capable of describing the adsorption over the entire range of experiments. Both Langmuir and Freundlich isotherms provided reasonable fits to the adsorption data at equilibrium. Langmuir-derived maximum adsorption capacity (St) of the studied sediments ranged between 29 and 97 mg/kg increasing from contaminated to uncontaminated sites. Solid phase As content of the sediments ranged from 3.8 to 10 mg/kg and the As/Fe ratios were highest in the amorphous phase. High-pH desorption experiments resulted in a greater percentage of solid phase As released into solution from experimentally-loaded sediments than from the unaltered samples suggesting that As(V) adsorption takes place on different reversible and irreversible surface sites.

  4. Adsorption kinetics and equilibrium study of nitrogen species onto radiata pine (Pinus radiata) sawdust.

    PubMed

    Harmayani, Kadek D; Faisal Anwar, A H M

    Nitrogen species (NH3-N, NO3-N, and NO2-N) are found as one of the major dissolved constituents in wastewater or stormwater runoff. In this research, laboratory experiments were conducted to remove these pollutants from the water environment using radiata pine (Pinus radiata) sawdust. A series of batch tests was conducted by varying initial concentration, dosage, particle size, pH, and contact time to check the removal performance. Test results confirmed the effectiveness of radiata pine sawdust for removing these contaminants from the aqueous phase (100% removal of NO3-N, and NO2-N; 55% removal of NH3-N). The adsorbent dosage and initial concentration showed a significantly greater effect on the removal process over pH or particle sizes. The optimum dosage for contaminant removal on a laboratory scale was found to be 12 g. Next, the adsorption kinetics were studied using intraparticle diffusion, liquid-film diffusion, and a pseudo-first order and pseudo-second order model. The adsorption of all species followed a pseudo-second order model but NO2-N adsorption followed both models. In addition, the kinetics of NO2-N adsorption showed two-step adsorption following intraparticle diffusion and liquid-film diffusion. The isotherm study showed that NO3-N and NO2-N adsorption fitted slightly better with the Freundlich model but that NH3-N adsorption followed both Freundlich and Langmuir models.

  5. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased.

  6. Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre.

    PubMed

    Li, Kunquan; Zheng, Zheng; Huang, Xingfa; Zhao, Guohua; Feng, Jingwei; Zhang, Jibiao

    2009-07-15

    Activated carbon prepared from cotton stalk fibre has been utilized as an adsorbent for the removal of 2-nitroaniline from aqueous solutions. The influence of adsorbent mass, contact time and temperature on the adsorption was investigated by conducting a series of batch adsorption experiments. The equilibrium data at different temperatures were fitted with the Langmuir, Freundlich, Tempkin, Redlich-Peterson and Langmuir-Freundlich models. The Langmuir-Freundlich isotherm was found to best describe the experimental data. The adsorption amount increased with increasing temperature. The maximum adsorption capacity of 2-nitroaniline was found to be 383 mg/g for initial 2-nitroaniline concentration of 200mg/L at 45 degrees C. The kinetic rates were modeled by using the Lagergren-first-order, pseudo-second-order and Elovich models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. It was also found that the pore diffusion played an important role in the adsorption, and intraparticle diffusion was the rate-limiting step at the first 30 min for the temperatures of 25, 35 and 45 degrees C. FTIR and (13)C NMR study revealed that the amino and isocyanate groups present on the surface of the adsorbent were involved in chemical interaction with 2-nitroaniline. The negative change in free energy (Delta G degrees) and positive change in enthalpy (Delta H degrees) indicated that the adsorption was a spontaneous and endothermic process.

  7. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.

    PubMed

    Sekar, M; Sakthi, V; Rengaraj, S

    2004-11-15

    Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.

  8. Kinetics and equilibrium of adsorption of dissolved organic matter fractions from secondary effluent by fly ash.

    PubMed

    Wei, Liangliang; Wang, Kun; Zhao, Qingliang; Xie, Chunmei; Qiu, Wei; Jia, Ting

    2011-01-01

    Fly ash was used as a low-cost adsorbent for removing dissolved organic matter (DOM) in secondary effluent. Batch experiments were conducted under various adsorbent dosages, pH, contact time, temperatures and DOM fractional characteristics. Under the optimum conditions of fly ash dosage of 15 g/L, temperature of 303 K and contact time of 180 min, a removal of 22.5% of the dissolved organic carbon (DOC), 23.7% of UV-254, 25.9% of the trihalomethanes precursors in secondary effluent was obtained. The adsorption of DOM fractions onto fly ash all followed the pseudo second-order kinetic model, and the hydrophilic fraction adsorption by fly ash also fitted the intraparticle diffusion model quite well. Freundlich and Langmuir models were applicable to the fly ash adsorption and their constants were evaluated. The maximum adsorption capacities of the adsorptions revealed that fly ash was more effective in adsorbing hydrophilic fraction than the acidic fractions. Structure changes of the DOM fractions after fly ash adsorption were also characterized via spectrum analyzing. Those mechanisms presented critical step toward improved efficiencies of fly ash adsorption via further surface-modification.

  9. Adsorption behavior of activated carbon derived from pyrolusite-modified sewage sludge: equilibrium modeling, kinetic and thermodynamic studies.

    PubMed

    Chen, Yao; Jiang, Wenju; Jiang, Li; Ji, Xiujuan

    2011-01-01

    Activated carbon was developed from sewage sludge using pyrolusite as an additive. It was demonstrated that the removal efficiency of two synthetic dyes (Tracid orange GS and Direct fast turquoise blue GL) by the produced adsorbent was up to 97.6%. The activated carbon with pyrolusite addition had 38.2% higher surface area, 43.8% larger micropore and 54.4% larger mesopore production than ordinary sludge-based activated carbons. Equilibrium adsorption isotherms and kinetics were also investigated based on dyes adsorption tests. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption, and the results fitted well to the Langmuir isotherm. The kinetic data have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equation. The experimental data fitted very well with pseudo-second-order kinetic model. Activation energies for the adsorption processes ranged between 8.7 and 19.1 kJ mol 1. Thermodynamic parameters such as standard free energy (deltaG0), standard enthalpy (deltaH0) and standard entropy (deltaS0) were evaluated. The adsorption of these two dyes on the activated carbon was found to be a spontaneous and endothermic process in nature.

  10. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: process optimization, kinetics and equilibrium.

    PubMed

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-25

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs=34.10 μM, T=50°C, pH=3.5, and CCR=160 mg/L for the congo red system, and Cs=34.10 μM, T=50°C, pH=6.1, and CDR80=110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  11. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  12. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.

    PubMed

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal; Soylak, Mustafa

    2009-12-15

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g(-1). Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R(2) > 0.99). Thermodynamic parameters including the Gibbs free energy (DeltaG degrees), enthalpy (DeltaH degrees), and entropy (DeltaS degrees) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 degrees C.

  13. Adsorption of cesium from aqueous solution using agricultural residue--walnut shell: equilibrium, kinetic and thermodynamic modeling studies.

    PubMed

    Ding, Dahu; Zhao, Yingxin; Yang, Shengjiong; Shi, Wansheng; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan

    2013-05-01

    A novel biosorbent derived from agricultural residue - walnut shell (WS) is reported to remove cesium from aqueous solution. Nickel hexacyanoferrate (NiHCF) was incorporated into this biosorbent, serving as a high selectivity trap agent for cesium. Field emission scanning electron microscope (FE-SEM) and thermogravimetric and differential thermal analysis (TG-DTA) were utilized for the evaluation of the developed biosorbent. Determination of kinetic parameters for adsorption was carried out using pseudo first-order, pseudo second-order kinetic models and intra-particle diffusion models. Adsorption equilibrium was examined using Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. A satisfactory correlation coefficient and relatively low chi-square analysis parameter χ(2) between the experimental and predicted values of the Freundlich isotherm demonstrate that cesium adsorption by NiHCF-WS is a multilayer chemical adsorption. Thermodynamic studies were conducted under different reaction temperatures and results indicate that cesium adsorption by NiHCF-WS is an endothermic (ΔH° > 0) and spontaneous (ΔG° < 0) process.

  14. Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: equilibrium, kinetic and adsorption mechanisms.

    PubMed

    Feng, Yanfang; Zhou, Hui; Liu, Guohua; Qiao, Jun; Wang, Jinhua; Lu, Haiying; Yang, Linzhang; Wu, Yonghong

    2012-12-01

    The aim of this study was to develop a promising and competitive bioadsorbent with the abundant of source, low price and environmentally friendly characters to remove cationic dye from wastewater. The swede rape straw (Brassica napus L.) modified by tartaric acid (SRSTA) was prepared, characterized and used to remove methylene blue (MB) from aqueous solution at varied operational conditions (including MB initial concentrations, adsorbent dose, etc.). Results demonstrated that the equilibrium data was well fitted by Langmuir isotherm model. The maximum MB adsorption capacity of SRSTA was 246.4 mg g(-1), which was comparable to the results of some previous studied activated carbons. The higher dye adsorption capacity could be attributed to the presence of more functional groups such as carboxyl group on the surface of SRSTA. The adsorption mechanism was also discussed. The results indicate that SRSTA is a promising and valuable absorbent to remove methylene blue from wastewater.

  15. Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies.

    PubMed

    Senthilkumaar, S; Varadarajan, P R; Porkodi, K; Subbhuraam, C V

    2005-04-01

    Jute fiber obtained from the stem of a plant was used to prepare activated carbon using phosphoric acid. Feasibility of employing this jute fiber activated carbon (JFC) for the removal of Methylene blue (MB) from aqueous solution was investigated. The adsorption of MB on JFC has found to dependent on contact time, MB concentration and pH. Experimental result follows Langmuir isotherm model and the capacity was found to be 225.64 mg/g. The optimum pH for the MB removal was found to be 5-10. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation, intraparticle diffusion and Elovich equation. Among the kinetic models studied, the intraparticle diffusion was the best applicable model to describe the adsorption of MB onto JFC.

  16. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    SciTech Connect

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-02-12

    Rates of contaminant U(VI) release from individual size fractions of a composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through batch reactors to maintain quasi-constant chemical conditions. Variability in equilibrium adsorption among the various size fractions was determined in static batch reactors and analyzed using the surface complexation modeling approach. The estimated stoichiometric coefficients of U(VI) surface complexation reactions with respect to pH and carbonate concentrations varied with size fractions. This source of variability significantly increased the uncertainty in U(VI) conditional equilibrium constants over that estimated from experimental errors alone. A minimum difference between conditional equilibrium constants was established in order to evaluate statistically significant differences between sediment adsorption properties. A set of equilibrium and kinetic expressions for cation exchange, calcite dissolution, aerobic respiration, and silica dissolution were incorporated in a reaction-rate model to describe the temporal evolution of solute concentrations observed during the flow-through batch experiments. Parameters in the reaction-rate model, calibrated using experimental data for select size fractions, predicted the changes in solute concentrations for the bulk, <2 mm, sediment sample. Kinetic U(VI) desorption was well described using a multi-rate surface complexation model with an assumed lognormal distribution for the rate constants. The estimated mean and standard deviation were the same for all < 2mm size fractions, but differed in the 2-8mm size fraction. Micropore volumes in the varied size fractions were also similar as assessed using t-plots to analyze N2 desorption data. These findings provide further support for the link between microporosity and particle-scale mass transfer rates controlling kinetic U(VI) adsorption/desorption and for the utility of N2 desorption

  17. Equilibrium, kinetic and thermodynamic studies of mercury adsorption on almond shell.

    PubMed

    Khaloo, Shokooh Sadat; Matin, Amir Hossein; Sharifi, Sahar; Fadaeinia, Masoumeh; Kazempour, Narges; Mirzadeh, Shaghayegh

    2012-01-01

    The application of almond shell as a low cost natural adsorbent to remove Hg(2+) from aqueous solution was investigated. Batch experiments were carried out to evaluate the adsorption capacity of the material. The chemical and physical parameters such as pH, sorbent amount, initial ion concentration, and contact time were optimized for the maximum uptake of mercury onto the solid surface. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models, and the experimental data were found to fit the Langmuir model rather than the Freundlich. The maximum adsorption capacity obtained from the Langmuir isotherm was 135.13 mg/g. A kinetic study was carried out with pseudo-first-order and pseudo-second-order reaction equations and it was found that the Hg(2+) uptake process followed the pseudo-second-order rate expression. The thermodynamic values, ΔG(0), ΔH(0) and ΔS(0), indicated that adsorption was an endothermic and spontaneous process. The potential of this material for mercury elimination was demonstrated by efficient Hg(2+) removal from a synthetic effluent.

  18. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    SciTech Connect

    Stout, R B

    2001-04-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  19. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  20. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents.

  1. Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study.

    PubMed

    Cataldo, Salvatore; Gianguzza, Antonio; Milea, Demetrio; Muratore, Nicola; Pettignano, Alberto

    2016-11-01

    The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL(-1). Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (qm) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., qm=15.7 and 10.5mgg(-1) at I=0.25molL(-1), for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion.

  2. Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics.

    PubMed

    Jiang, Xiangfu; Huang, Jianhan

    2016-04-01

    We employed two polar monomers, triallyl isocyanurate (TAIC) and butyl acrylate (BA), to copolymerize with divinylbenzene (DVB), and synthesized two starting copolymers labeled PDT and PDB. Then, the Friedel-Crafts alkylation reaction was performed for the two starting copolymers, and the residual pendent vinyl groups were consumed, and hence we obtained two novel polar-modified post-cross-linked resins PDTpc and PDBpc. The surface polarity greatly improved due to introduction of the polar monomers, and the Brunauer-Emmett-Teller (BET) surface area and pore volume significantly increased after the Friedel-Crafts alkylation reaction. Compared with the starting copolymers, the non-polar post-cross-linked resin PDVBpc and some other adsorbents in the references, PDTpc and PDBpc possessed a much enhanced adsorption to Rhodamine B, and the equilibrium capacity reached 578.2mg/g and 328.7mg/g, respectively, at an equilibrium concentration of 100mg/L, and the Freundlich model characterized the equilibrium data very well. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. These results confirmed that PDTpc and PDBpc had the potential superiority in adsorptive removal of Rhodamine B from aqueous solution.

  3. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study.

    PubMed

    Caliskan, Necla; Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan

    2011-10-15

    The removal of Zn(II) ions from aqueous solution was studied using natural and MnO(2) modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol(-1), indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy (ΔH(0)), Gibbs' free energy (ΔG(0)) and entropy (ΔS(0)) were calculated for natural and MnO(2) modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously.

  4. Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells.

    PubMed

    Amuda, O S; Adelowo, F E; Ologunde, M O

    2009-02-01

    A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63mgCr(VI)/g at initial pH of 3.0 at 30 degrees C for the particle size of 1.00-1.25mm with the use of 12.5, 16.5 and 2.1g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.

  5. Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash

    PubMed Central

    Zheng, Xuebo; Cui, Hongbiao; Zhu, Zhenqiu; Liang, Jiani

    2017-01-01

    Natural biomass ash of agricultural residuals was collected from a power plant and modified with hexagonal mesoporous silica and functionalized with 3-aminopropyltriethoxysilane. The physicochemical and morphological properties of the biomass ash were analyzed by ICP-OES, SEM, TEM-EDS, FTIR, and BET analysis. The adsorption behavior of the modified product for Cd2+ in aqueous solution was studied as a function of pH, initial metal concentration, equilibrium time, and temperature. Results showed that the specific surface area of the modified product was 9 times that of the natural biomass ash. The modified biomass ash exhibited high affinity for Cd2+ and its adsorption capacity increased sharply with increasing pH from 4.0 to 6.0. The maximum adsorption capacity was 23.95 mg/g in a pH 5 solution with an initial metal concentration of 50 mg/L and a contact time of 90 min. The adsorption of Cd2+ onto the modified biomass ash was well fitted to the Langmuir model and it followed pseudo-second-order kinetics. Thermodynamic analysis results showed that the adsorption of Cd2+ was spontaneous and endothermic in nature. The results suggest that the modified biomass ash is promising for use as an inexpensive and effective adsorbent for Cd2+ removal from aqueous solution. PMID:28348509

  6. Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate

    NASA Astrophysics Data System (ADS)

    Terangpi, Praisy; Chakraborty, Saswati

    2016-12-01

    Adsorption of two acid dyes named Acid orange 8 (AO8) and Acid violet 7 (AV7) by amine based polymer aniline formaldehyde condensate (AFC) was studied. Adsorption of both dyes was favored at acidic pH. Electrostatic attraction between protonated amine group (NH3 +) of AFC and anionic sulfonate group (SO3 -) of dye molecule along with hydrogen bond formation and interaction between aromatic group of dye and AFC were responsible mechanisms for dye uptake. Isotherm of AO8 was Type I and followed Langmuir isotherm model. AV7 isotherm on AFC was of Type III and followed Freundlich model. Kinetics study showed that external mass transfer was the rate limiting step followed by intraparticle diffusion. Maximum adsorption capacities of AO8 and AV7 were observed as 164 and 68 mg/g. AO8 dye being smaller in molecular size was adsorbed more due to higher diffusion rate and higher dye: AFC ratio, which enhanced the interaction between dye and polymer.

  7. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies.

    PubMed

    Gao, Jun-Jie; Qin, Ye-Bo; Zhou, Tao; Cao, Dong-Dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-Fei

    2013-07-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1530.67 mg(2)/g and 0.7826 cm(3)/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  8. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies*

    PubMed Central

    Gao, Jun-jie; Qin, Ye-bo; Zhou, Tao; Cao, Dong-dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-fei

    2013-01-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue. PMID:23825151

  9. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    PubMed

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  10. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  11. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste.

    PubMed

    Hameed, B H; Mahmoud, D K; Ahmad, A L

    2008-10-01

    In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.

  12. Equilibrium and kinetic models on the adsorption of Reactive Black 5 from aqueous solution using Eichhornia crassipes/chitosan composite.

    PubMed

    El-Zawahry, Manal M; Abdelghaffar, Fatma; Abdelghaffar, Rehab A; Hassabo, Ahmed G

    2016-01-20

    New natural biopolymer composite was prepared using extracted cellulose from an environmentally problematic water hyacinth Eichhornia crassipes (EC). The extracted cellulose was functionalized by chitosan and TiO2 nanoparticles to form EC/Chitosan (EC/Cs) composite network. Surface characterization of EC/Cs natural biopolymer composite was examined by spectrum analysis FT-IR, specific surface area, micropore volume, pore width and SEM. Furthermore, the sorption experiments were carried out as a function of pH, various initial dye concentration and contact time. Experiment results showed that the EC/Cs composite have high ability to remove C.I. Reactive Black 5 from its dye-bath effluent. The equilibrium sorption evaluation of RB5 conformed and fitted well to Langmuir adsorption isotherm models and the maximum sorption capacity was 0.606 mg/g. The kinetic adsorption models followed pseudo-second order model and the dye intra-particle diffusion may suggesting a chemical reaction mechanism. Further, it was obvious from the investigation that this composite could be applied as a promising low cost adsorbent for anionic dye removal from aqueous solutions.

  13. Equilibrium and kinetic studies of C.I. Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2 microspheres

    NASA Astrophysics Data System (ADS)

    Jiang, Yinhua; Luo, Yingying; Zhang, Fumei; Guo, Leiqun; Ni, Liang

    2013-05-01

    Three-dimensional (3D) N, F-codoped flower-like TiO2 microspheres were successfully synthesized by a hydrothermal method combined with calcination process. The as-prepared samples were characterized by XRD, FE-SEM and EDS. The adsorption abilities of prepared samples were investigated for the removal of C.I. Basic Blue 41(CB41) from aqueous solution. The FE-SEM and adsorption results showed that doping amount of NH4F affected the morphologies of samples and sample NFT-1 with the structure of 3D flower-like microsphere had the highest adsorption amount of CB41. The effects of varying parameters such as pH, contact time, initial dye concentration and temperature on the CB41 adsorption onto NFT-1 were further examined. Equilibrium data correlated with Langmuir, Freundlich and Temkin isotherms. The Langmuir isotherm showed the best fit to the equilibrium data. The kinetic experimental data were analyzed by three kinetic models including the pseudo-first-order model, the pseudo-second-order model and the intraparticle diffusion model to access the adsorption mechanism and the potential rate-controlling step. The pseudo-second-order kinetic model described best for the adsorption of CB41 on NFT-1 and the intraparticle diffusion was not the only rate-controlling step. The thermodynamics parameters as positive values of ΔH° and negative values of ΔG° showed that the adsorption process was endothermic and spontaneous in nature.

  14. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of

  15. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  16. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies.

    PubMed

    Karagozoglu, B; Tasdemir, M; Demirbas, E; Kobya, M

    2007-08-17

    In this study, sepiolite, fly ash and apricot stone activated carbon (ASAC) were used as adsorbents for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the basic dye (Astrazon Blue FGRL) from aqueous solutions at various concentrations (100-300 mg/L), adsorbent doses (3-12 g/L) and temperatures (303-323 K). The result showed that the adsorption capacity of the dye increased with increasing initial dye concentration, adsorbent dose and temperature. Three kinetic models, the pseudo-first-order, second-order, intraparticle diffusion, were used to predict the adsorption rate constants. The kinetics of adsorption of the basic dye followed pseudo-second-order kinetics. Equations were developed using the pseudo-second-order model which predicts the amount of the basic dye adsorbed at any contact time, initial dye concentration and adsorbent dose within the given range accurately. The adsorption equilibrium data obeyed Langmuir isotherm. The adsorption capacities (Q0) calculated from the Langmuir isotherm were 181.5 mg/g for ASAC, 155.5 mg/g for sepiolite and 128.2 mg/g for fly ash at 303 K. Thermodynamical parameters were also evaluated for the dye-adsorbent systems and revealed that the adsorption process was endothermic in nature.

  17. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres.

    PubMed

    Zhou, Limin; Wang, Yiping; Liu, Zhirong; Huang, Qunwu

    2009-01-30

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg(2+), Cu(2+), and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3mg/g for Hg(2+), Cu(2+), and Ni(2+) ions, respectively. TMCS displayed higher adsorption capacity for Hg(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA).

  18. Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach

    PubMed Central

    2013-01-01

    The adsorption potential of iron acetate coated activated alumina (IACAA) for removal of arsenic [As (III)] as arsenite by batch sorption technique is described. IACAA was characterized by XRD, FTIR, EDAX and SEM instruments. Percentage adsorption on IACAA was determined as a function of pH, contact time and adsorbent dose. The study revealed that the removal of As (III) was best achieved at pH =7.4. The initial As (III) concentration (0.45 mg/L) came down to less than 0.01 mg/L at contact time 90 min with adsorbent dose of 1 g/100 mL. The sorption was reasonably explained with Langmuir and Freundlich isotherms. The thermodynamic parameters such as ΔG 0 , ΔH 0 , ΔS 0 and E a were calculated in order to understand the nature of sorption process. The sorption process was found to be controlled by pseudo-second order and intraparticle diffusion models. PMID:24359995

  19. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.

    PubMed

    Qu, Yan; Zhang, Chaojie; Li, Fei; Bo, Xiaowen; Liu, Guangfu; Zhou, Qi

    2009-09-30

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  20. Kinetics, equilibrium and thermodynamics of adsorption of 2-biphenylamine and dibenzylamine from aqueous solutions by Fe3O4/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Vasheghani F., B.; Rajabi, F. H.; Omidi, M. H.; Shabanian, S.

    2015-05-01

    Magnetic Fe3O4/bentonite nanocomposite is synthesized by chemical co-precipitation method. Experimental data are modelled by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Freundlich and Langmuir isotherm model fitted the equilibrium data for the dibenzylamine (DBA) and 2-biphenylamine (BPA) respectively, compared to the other isotherm models. The calculated thermodynamic parameters, Δ G°, Δ H°, and Δ S° showed that the DBA and BPA adsorption on bentonite nanocomposite is spontaneous and endothermic under examined conditions. Experimental data were also modeled using the adsorption kinetic models. The results show that the adsorption processes of DBA and BPA followed well the pseudo-second-order kinetics. Results indicated that Fe3O4/bentonite nanocomposite could be an alternative for more costly adsorbents used for organic toxicants removal.

  1. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid.

    PubMed

    ALOthman, Zeid A; Naushad, Mu; Ali, Rahmat

    2013-05-01

    A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H₃PO₄. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb's Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.

  2. Measurement and modelling of adsorption equilibrium, adsorption kinetics and breakthrough curve of toluene at very low concentrations on to activated carbon.

    PubMed

    Réguer, Anne; Sochard, Sabine; Hort, Cécile; Platel, Vincent

    2011-01-01

    Indoor air pollution, characterized by many pollutants at very low concentrations, is nowadays known as a worrying problem for human health. Among physical treatments, adsorption is a widely used process, since porous materials offer high capacity for volatile organic chemicals. However, there are few studies in the literature that deal with adsorption as an indoor air pollution treatment. The aim of this study was to investigate the adsorption of toluene on to activated carbon at characteristic indoor air concentrations. Firstly, global kinetic parameters were determined by fitting Thomas's model to experimental data obtained with batch experiments. Then, these kinetic parameters led to the determination of Henry's coefficient, which was checked with experimental data of the adsorption isotherm. Secondly, we simulated a breakthrough curve made at an inlet concentration 10 times higher than the indoor air level. Even if the kinetic parameters in this experiment are different from those in batch experiments, it can be emphasized that the Henry coefficient stays the same.

  3. Dye adsorption onto mesoporous materials: pH influence, kinetics and equilibrium in buffered and saline media.

    PubMed

    Gómez, J M; Galán, J; Rodríguez, A; Walker, G M

    2014-12-15

    Mesoporous materials were used as adsorbents for dye removal in different media: non-ionic, buffered and saline. The mesoporous materials used were commercial (silica gel) as well as as-synthesised materials (SBA-15 and a novel mesoporous carbon). Dye adsorption onto all the materials was very fast and the equilibrium was reached before 1 h. The pH has a significant influence on the adsorption capacity for the siliceous materials since the electrostatic interactions are the driving forces. However, the influence of the pH on the adsorption capacity of the carbonaceous material was lower, since the van der Waals interactions are the driving forces. The ionic strength has a great impact on the siliceous materials adsorption capacity, being their adsorption capacity in a buffered medium six times higher than the corresponding to a non-ionic medium. Nevertheless, ionic strength does not influence on the dye adsorption on the mesoporous carbon. Overall, the as-synthesised carbon material presents a clear potential to treat dye effluents, showing high adsorption capacity (q(e) ≈ 200 mg/g) in all the pH range studied (from 3 to 11); even at low concentrations (C(e) ≈ 10 mg/L) and at short contact times (t(e) < 30 min).

  4. Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles.

    PubMed

    Konicki, Wojciech; Sibera, Daniel; Mijowska, Ewa; Lendzion-Bieluń, Zofia; Narkiewicz, Urszula

    2013-05-15

    A magnetic ZnFe2O4 (MNZnFe) was synthesized by microwave assisted hydrothermal method and was used as an adsorbent for the removal of acid dye Acid Red 88 (AR88) from aqueous solution. The effects of various parameters such as initial AR88 concentration (10-56 mg L(-1)), pH solution (3.2-10.7), and temperature (20-60°C) were investigated. Prepared magnetic ZnFe2O4 was characterized by XRD, SEM, HRTEM, ICP-AES, BET, FTIR, and measurements of the magnetic susceptibility. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. Pseudo-first-order and pseudo-second-order kinetic models and intraparticle diffusion model were used to examine the adsorption kinetic data. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. Thermodynamics parameters, ΔG°, ΔH° and ΔS°, indicate that the adsorption of AR88 onto MNZnFe was spontaneous and exothermic in nature.

  5. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    PubMed

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-03-24

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature.

  6. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  7. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies.

    PubMed

    Ijagbemi, Christianah Olakitan; Baek, Mi-Hwa; Kim, Dong-Su

    2010-02-15

    The efficacy of un-calcined sodium exchanged (Na-MMT) and acid modified montmorillonite (A-MMT) has been investigated for adsorptive removal of Ni(2+) from aqueous solution. Physico-chemical parameters such as pH, initial Ni(2+) concentration, and equilibrium contact time were studied in a series of batch adsorption experiments. The equilibrium time of contact for both adsorbents was about 230 min. The Redlich-Peterson model best described the equilibrium sorption of Ni(2+) onto Na-MMT and the Dubinin-Radushkevich model was the best model in predicting the equilibrium sorption of Ni(2+) onto A-MMT. The kinetics of Ni(2+) uptake by Na-MMT and A-MMT followed the pseudo second-order chemisorption mechanism. Sorptions of Ni(2+) onto Na-MMT and A-MMT were spontaneous and endothermic. Regeneration was tried for several cycles with a view to recover the adsorbed Ni(2+) and also to restore Na-MMT and A-MMT to their original states. The un-calcined Na-MMT and A-MMT have adsorptive potentials for removal of Ni(2+) from aqueous bodies.

  8. A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Wang, Xiaomei; Li, Guoqiang; Guo, Deping; Zhang, Yaling; Huang, Jianhan

    2016-05-15

    Improving the surface polarity is of significance for the post-cross-linked resins to enhance their adsorption to polar aromatic compounds. In the present study, we prepared a novel polar-modified post-cross-linked PDEpc_D by the Friedel-Crafts alkylation reaction and the amination reaction, the Brunauer-Emmett-Teller (BET) surface area and pore volume increased significantly after the Friedel-Crafts alkylation reaction and the surface polarity improved greatly after the amination reaction. Batch adsorption showed that PDEpc_D possessed a much enhanced adsorption to salicylic acid as compared the precursors PDE and PDEpc as well as the non-polar post-cross-linked PDVBpc. The equilibrium data was characterized by the Freundlich model, π-π stacking, hydrogen bonding and static interaction were the possible driving forces. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. Column adsorption-desorption experiments suggested that PDEpc_D was a potential candidate for adsorptive removal of salicylic acid from aqueous solution.

  9. Modeling, kinetic, and equilibrium characterization of paraquat adsorption onto polyurethane foam using the ion-pairing technique.

    PubMed

    Vinhal, Jonas O; Lage, Mateus R; Carneiro, José Walkimar M; Lima, Claudio F; Cassella, Ricardo J

    2015-06-01

    We studied the adsorption of paraquat onto polyurethane foam (PUF) when it was in a medium containing sodium dodecylsulfate (SDS). The adsorption efficiency was dependent on the concentration of SDS in solution, because the formation of an ion-associate between the cationic paraquat and the dodecylsulfate anion was found to be a fundamental step in the process. A computational study was carried out to identify the possible structure of the ion-associate in aqueous medium. The obtained data demonstrated that the structure is probably formed from four units of dodecylsulfate bonded to one paraquat moiety. The results showed that 94% of the paraquat present in 45 mL of a solution containing 3.90 × 10(-5) mol L(-1) could be retained by 300 mg of PUF, resulting in the removal of 2.20 mg of paraquat. The experimental data were reasonably adjusted to the Freundlich isotherm and to the pseudo-second-order kinetic model. Also, the application of Morris-Weber and Reichenberg models indicated that both film-diffusion and intraparticle-diffusion processes were active during the control of the adsorption kinetics.

  10. Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Fu, Zhenyu; He, Chunlian; Huang, Jianhan; Liu, You-Nian

    2015-08-01

    A novel polar modified post-cross-linked resin PDMPA was synthesized, characterized and evaluated for adsorption of salicylic acid from aqueous solution. PDMPA was prepared by a suspension polymerization of methyl acrylate (MA) and divinylbenzene (DVB), a Friedel-Crafts reaction and an amination reaction. After characterization of the chemical and pore structure of PDMPA, the adsorption behaviors of salicylic acid on PDMPA were determined in comparison with the precursor resins. The equilibrium adsorption capacity of salicylic acid on PDMPA was much larger than the precursor resins and the equilibrium data were correlated by both of the Langmuir and Freundlich models. The pseudo-second-order rate equation fitted the kinetic data better than the pseudo-first-order rate equation, and the micropore diffusion model could characterize the kinetic data very well. The dynamic experimental results showed that the breakthrough point and saturated point of salicylic acid on PDMPA were 40.3 and 92.4BV (1BV=10mL) at a feed concentration of 995.8mg/L and a flow rate of 1.4mL/min, and the resin column could be regenerated by 16.0BV of a mixture desorption solvent containing 0.01mol/L of NaOH (w/v) and 50% of ethanol (v/v).

  11. Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: Adsorption equilibrium and kinetics.

    PubMed

    Liu, Zhengang; Zhang, Fang; Liu, Tingting; Peng, Nana; Gai, Chao

    2016-11-01

    A highly graphitized and heteroatom doped porous carbon was prepared from fish waste in the present study. The morphology and chemical composition of the resultant porous carbon were characterized by SEM-EDS, TEM, BET, XRD and Raman measurement. The prepared porous carbon was employed as an adsorbent for acid orange 7, a typical azo dye, removal from aqueous solution. The results showed that the porous carbon had ultrahigh surface area of 2146 m(2)/g, a high degree of graphitization structure and naturally doped with nitrogen and phosphorous. The maximum adsorption capacity of acid orange 7 reached 285.71 mg/g due to unique property of the prepared porous carbon. In addition, acid orange 7 adsorption onto the porous carbon well followed pseudo-second-order kinetics model and acid orange 7 diffusion in micropores was the potential rate controlling step.

  12. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve.

    PubMed

    Rutherford, S W; Coons, J E

    2005-04-15

    Measurements of adsorption equilibria and transport kinetics for argon, oxygen and nitrogen at 20, 50, and 80 degrees C on commercially derived Takeda carbon molecular sieve (CMS) employed for air separation have been undertaken in an effort to elucidate fundamental mechanisms of transport. Results indicate that micropore diffusion which is modeled by a Fickian diffusion process, governs the transport of oxygen molecules and the pore mouth barrier controls argon and nitrogen transport which is characterized by a linear driving force (LDF) model. For the three temperatures studied, the pressure dependence of the diffusivity and the LDF rate constant appear to be well characterized by a formulation based on the chemical potential as the driving force for transport. Isosteric heat of adsorption at zero loading and activation energy measurements are compared with predictions made from a previously proposed molecular model for characterizing CMS.

  13. Adsorption of methylene blue dye onto activated carbons based on agricultural by-products: equilibrium and kinetic studies.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-01-01

    Mixtures of novolac resin and olive stone biomass (20/80 and 40/60 w/w) were cured, pyrolyzed up to 1,000 °C and activated with CO2 under a continuous flow operation (named N20B-cCa and N40B-cCa respectively). Commercial activated charcoal was similarly re-activated with CO2 and used for comparison reasons (AC-a). The characterization of these materials was performed by Fourier transform Infrared (FTIR) analysis and their specific surface area was determined according to DIN 66132. The materials were tested for their adsorption abilities at different temperatures (298, 333 K) and initial dye concentrations (0.01-0.35 g/L) using 1 L of methylene blue (MB) solution in 10 g of activated carbon. MB adsorption kinetic was also studied. The FTIR spectra of all activated carbons show absorption peaks which correspond to -OH, -CH, -C-O-C- groups and to aromatic ring. The presence of the absorption peak at about 1,400 cm(-1) for N20B-cCa, N40B-cCa indicates more acidic groups on them compared to the commercial AC-a. The specific surface area of N20B-cCa, N40B-cCa and AC-a has values equal to 352, 342 and 760 m(2)/g respectively. From the applied kinetic models, pseudo-second-order equation could best describe MB adsorption. Consequently, such adsorbents can be used as filters to adsorb dyes from wastewaters.

  14. Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies.

    PubMed

    Lin, Xiaoqing; Huang, Qianlin; Qi, Gaoxiang; Xiong, Lian; Huang, Chao; Chen, Xuefang; Li, Hailong; Chen, Xinde

    2017-03-01

    The recovery of levulinic acid (LA) from aqueous solution and actual biomass hydrolysate by a microporous hyper-cross-linked polymer, SY-01, was investigated for the first time under batch and fixed-bed column conditions. The results showed that the optimum pH should be in the acidic range (pH < 3.0) without adjusting the pH. In the single-component system equilibrium study, the Langmuir isotherm model fits the LA adsorption onto SY-01 resin better than the Freundlich isotherm model, indicating that LA adsorption onto SY-01 resin under the concentration range studied is a monolayer homogeneous adsorption process. The maximum adsorption capacity of LA onto SY-01 resin decreased with increasing temperature, ranging from 103.74 to 95.70 mg/g. The obtained thermodynamic parameters suggested that the adsorption of LA on SY-01 was spontaneous (ΔG(0)<-3.788 kJ/mol), and exothermic (ΔH(0) = -11.764 kJ/mol). For kinetic study, the adsorption of LA onto SY-01 resin at various operating conditions follows the pore diffusion model and the intraparticle diffusion is the rate-limiting step for the adsorption of LA onto SY-01 resin. The effective pore diffusivity was dependent upon temperature, but independent of initial LA concentration, and were 3.306 × 10(-10), 5.274 × 10(-10) and 7.707 × 10(-10) m(2)/s at 298, 318 and 338 K, respectively. In desorption process, the recovery efficiency of LA from SY-01 resin was 99.39%, and LA concentration in the eluent was raised 2.97-fold. In conclusion, our results show that the SY-01 resin has potential application in product recovery of LA from biomass hydrolysate.

  15. Bisphenol-A modified hyper-cross-linked polystyrene resin for salicylic acid removal from aqueous solution: adsorption equilibrium, kinetics and breakthrough studies.

    PubMed

    Hu, Huanxiao; Wang, Xiaomei; Li, Shengyong; Huang, Jianhan; Deng, Shuguang

    2012-04-15

    In this study, a series of bisphenol-A modified hyper-cross-linked polystyrene resins labeled as HJ-L00, HJ-L02, HJ-L04, HJ-L06 and HJ-L08 were synthesized, characterized and evaluated for adsorptive removal of salicylic acid from aqueous solutions. The structural characterization results indicated that the resins possessed predominant micropores/mesopores, moderate specific surface area and a few bisphenol-A groups on the surface. All the bisphenol-A modified hyper-cross-linked resins were effective for removing salicylic acid from aqueous solutions, and sample HJ-L02 had the largest adsorption capacity. The adsorption equilibrium data were correlated by the Freundlich isotherm model, and a positive adsorption enthalpy was obtained. The kinetic data were analyzed with two diffusion models and indicated that the intra-particle diffusion was the sole rate-controlling step in the first stage. The dynamic experimental results showed that the breakthrough point of the HJ-L02 adsorbent was at 90.2 BV (bed volume, 1 BV=10 mL) for a feed concentration of 500.0mg/L of salicylic acid, and 14.0 BV of 1% of sodium hydroxide could completely regenerate the HJ-L02 adsorbent column.

  16. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Lasheen, Mohamed R.; Ammar, Nabila S.; Ibrahim, Hanan S.

    2012-02-01

    Waste materials from industries such as food processing may act as cost effective and efficient biosorbents to remove toxic contaminants from wastewater. This study aimed to establish an optimized condition and closed loop application of processed orange peel for metals removal. A comparative study of the adsorption capacity of the chemically modified orange peel was performed against environmentally problematic metal ions, namely, Cd 2+, Cu 2+ and Pb 2+, from aqueous solutions. Chemically modified orange peel (MOP) showed a significantly higher metal uptake capacity compared to original orange peel (OP). Fourier Transform Infrared (FTIR) Spectra of peel showed that the carboxylic group peak shifted from 1637 to 1644 cm -1 after Pb (II) ions binding, indicated the involvement of carboxyl groups in Pb(II) ions binding. The metals uptake by MOP was rapid and the equilibrium time was 30 min at constant temperature and pH. Sorption kinetics followed a second-order model. The mechanism of metal sorption by MOP gave good fits for Freundlich and Langmuir models. Desorption of metals and regeneration of the biosorbent was attained simultaneously by acid elution. Even after four cycles of adsorption-elution, the adsorption capacity was regained completely and adsorption efficiency of metal was maintained at around 90%.

  17. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method.

    PubMed

    Kong, Bo; Tang, Biyu; Liu, Xiaoying; Zeng, Xiandong; Duan, Haiyan; Luo, Shenglian; Wei, Wanzhi

    2009-08-15

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd(2+) and Cu(2+) appear at -0.13 and 0.34V respectively, at the concentration range of 5-50 microM, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd(2+) and Cu(2+) was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (q(e)) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  18. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores.

  19. Removal of Bisphenol A aqueous solution using surfactant-modified natural zeolite: Taguchi's experimental design, adsorption kinetic, equilibrium and thermodynamic study.

    PubMed

    Genç, Nevim; Kılıçoğlu, Ödül; Narci, Ali Oğuzhan

    2017-02-01

    In this study, surfactant-modified natural zeolite was used to remove Bisphenol A (BPA) from aqueous solutions. Kinetics, equilibrium and thermodynamics of BPA adsorption on the adsorbent surfaces were investigated. The experimental data were described with the Temkin isotherm and the pseudo-second- order kinetic model. Taguchi's robust design approach was used to optimize adsorption of BPA. Experimentation was planned as per Taguchi's L27 orthogonal array. Tests were conducted with different adsorbate amount, pH, time, initial concentration of BPA, temperature and agitation speed. The optimum levels of control factors for maximum total organic carbon removal were defined (adsorbate amount at 0.25 g, pH at 7, time at 30 min, initial concentration of BPA at 50 mg/L, temperature at 30°C and agitation speed at 200 rpm). The ANOVA analysis shown that the most effective control factor is adsorbent dosage; its contribution is 56.4%. Contribution of pH and mixing rate are 7.5% and 7.6%, respectively. A confirmation experiment was conducted to verify the feasibility and effectiveness of the optimal combination. The observed value of S/N (ηobs = 39) ratio is compared with that of the predicted value (ηopt = 48). The prediction error, that is, ηopt - ηobs = 9, is within CI value.

  20. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics.

    PubMed

    Amin, Nevine Kamal

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R(2)>0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), and the activation energy (E(a)) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  1. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  2. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    EPA Science Inventory

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  3. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  4. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.

    PubMed

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric

    2013-03-30

    In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process.

  5. Kinetic and equilibrium measurements of coal drying

    SciTech Connect

    Heller, A.; Elliott, G.R.B.

    1980-01-01

    The retention, attachment, and release of water (sorption, adsorption, and desorption) in Fruitland subbituminous coal are shown to be very complex phenomena. The vapor pressure and thermodynamic activity of water in the coal at about 315 K vary sharply with composition. Removal of 60% of the water initially present reduces the vapor pressure by about 60%. The total moisture content of saturated coal also varies with temperature. A 10 K rise in temperature reduces the sorbed water by about 8%. There is strong hysteresis in the sorption behavior; water which is desorbed by reducing the vapor pressure over a coal sample is not fully replaced by adsorption when the vapor pressure is returned to its original level. These measurements of desorption and adsorption reflect stable and metastable equilibria. Kinetic measurements are reported for approach to a new equilibrium if the vapor pressure over the coal is reduced. The kinetic measurements reflect the shape of the pores while equilibrium vapor pressures reflect how tightly the water is bound in the pores. Both types of measurement show changes in behavior at the same compositions. Implications of these results for UCG are discussed.

  6. Enhanced adsorptive removal of Safranine T from aqueous solutions by waste sea buckthorn branch powder modified with dopamine: Kinetics, equilibrium, and thermodynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Bai, Bo; Wang, Honglun; Suo, Yourui

    2015-12-01

    Polydopamine coated sea buckthorn branch powder (PDA@SBP) was facilely synthesized via a one-pot bio-inspired dip-coating approach. The as-synthesized PDA@SBP was characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The adsorption progresses of Safranine T on the surface of PDA@SBP adsorbent were systematically investigated. More specifically, the effects of solution pH, contact time, initial concentration and temperature were evaluated, respectively. The experimental results showed the adsorption capacity of PDA@SBP at 293.15 K could reach up to 54.0 mg/g; the adsorption increased by 201.7% compared to that of native SBP (17.9 mg/g). Besides, kinetics studies showed that pseudo-second-order kinetic model adequately described the adsorption behavior. The adsorption experimental data could be fitted well a Freundlich isotherm model. Thermodynamic analyses showed that the ST adsorption was a physisorption endothermic process. Regeneration of the spent PDA@SBP adsorbent was conducted with 0.1 M HCl without significant reduction in adsorption capacity. On the basis of these investigations, it is believed that the PDA@SBP adsorbent could have potential applications in sewage disposal areas because of their considerable adsorption capacities, brilliant regeneration capability, and cost-effective and eco-friendly preparation and use.

  7. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues.

    PubMed

    Güzel, Fuat; Yakut, Hakan; Topal, Giray

    2008-05-30

    In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.

  8. Equilibrium and kinetic modeling of iron adsorption and the effect by chloride, sulfate, and hydroxyl: evaluation of PVC-U drinking pipes.

    PubMed

    Wang, Jia -Ying; Li, Shu-Ping; Xin, Kun-Lun; Tao, Tao

    2016-12-01

    The update of pipeline was quick over the last few years and the plastic pipes were widely used in the drinking water distribution systems (DWDSs), especially in the small-diameter pipes. In this study, the iron adsorptive characteristics and the affecting factors in unplasticized poly(vinyl chloride) (PVC-U) pipe were investigated. Results showed that the average amount of iron in the 10-year-old PVC-U pipe's interior surface was 2.80 wt% which was almost 187 times larger than that in a new one. Goethite (α-FeOOH) and magnetite (Fe3O4) were the major iron compounds in the scales which covered on the old pipes' interior surface and showed loose and porous images under a scanning electron microscope. Moreover, the influence of the iron concentration on the adsorption amount and rate was discussed. The adsorption amount was significantly influenced by iron concentration, but similar adsorption rate was discovered. Notably, iron was quantitatively adsorbed by PVC-U pipe during the experimental period in accordance with the pseudo second order kinetic model. Meanwhile, regression model and response surface methodology were used to analyze the regular of iron adsorption in different concentrations of chloride (Cl(-)), sulfate (SO4(2-)), and hydroxyl (OH(-)). It can be concluded that Cl(-) and OH(-) showed the strong ability of iron adsorption which were larger than SO4(2-).

  9. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  10. Surfactant adsorption kinetics in microfluidics

    NASA Astrophysics Data System (ADS)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  11. Equilibrium, kinetic and sorber design studies on the adsorption of Aniline blue dye by sodium tetraborate-modified Kaolinite clay adsorbent.

    PubMed

    Unuabonah, Emmanuel I; Adebowale, Kayode O; Dawodu, Folasegun A

    2008-09-15

    Raw Kaolinite clay obtained Ubulu-Ukwu, Delta State of Nigeria and its sodium tetraborate (NTB)-modified analogue was used to adsorb Aniline blue dye. Fourier transformed infrared spectra of NTB-modified Kaolinite suggests that modification was effective on the surface of the Kaolinite clay with the strong presence of inner -OH functional group. The modification of Kaolinite clay raised its adsorption capacity from 1666 to 2000 mg/kg. Modeling adsorption data obtained from both unmodified and NTB-modified Kaolinite clay reveals that the adsorption of Aniline blue dye on unmodified Kaolinite clay is on heterogeneous adsorption sites because it followed strongly the Freundlich isotherm equation model while adsorption data from NTB-modified Kaolinite clay followed strongly the Langmuir isotherm equation model which suggest that Aniline blue dye was adsorb homogeneous adsorption sites on the NTB-modified adsorbent surface. There was an observed increase in the amount of Aniline blue adsorbed as initial dye concentration was increased from 10 to 30 mg/L. It was observed that kinetic data obtained generally gave better robust fit to the second-order kinetic model (SOM). The initial sorption rate was found to increased with increasing initial dye concentration (from 10 to 20 mg/L) for data obtained from 909 to 1111 mg kg(-1)min(-1) for unmodified and 3325-5000 mg kg(-1) min(-1) for NTB-modified adsorbents. Thereafter there was a decrease in initial sorption rate with further increase in dye concentration. The linearity of the plots of the pseudo-second-order model with very high-correlation coefficients indicates that chemisorption is involved in the adsorption process. From the design of a single-batch adsorber it is predicted that the NTB-modified Kaolinite clay adsorbent will require 50% less of the adsorbent to treat certain volumes of wastewater containing 30 mg/L of Aniline blue dye when it is compared with the unmodified adsorbent. This will be cost effective in

  12. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study.

    PubMed

    Ma, Wei; Lv, Tengfei; Song, Xiaoyan; Cheng, Zihong; Duan, Shibo; Xin, Gang; Liu, Fujun; Pan, Decong

    2014-03-15

    In the study, two novel applied biocarbon-Mg/Al layered double hydroxides composites (CPLDH and CPLDH-Ca) were successfully prepared and characterized by TEM, ICP-AES, XFS, EDS, FTIR, XRD, BET and pHpzc. The fluoride removal efficiency (RF) and protein recovery ratio (RP) of the adsorbents were studied in protein systems of lysozyme (LSZ) and bovine serum albumin (BSA). The results showed that the CPLDH-Ca presented remarkable performance for selective fluoride removal from protein solution. It reached the maximum RF of 92.1% and 94.8% at the CPLDH-Ca dose of 2.0g/L in LSZ and BSA system, respectively. The RP in both systems of LSZ and BSA were more than 90%. Additionally, the RP of CPLDH-Ca increased with the increase of ionic strengths, and it almost can be 100% with more than 93% RF. Fluoride adsorption by the CPLDH-Ca with different initial fluoride concentrations was found to obey the mixed surface reaction and diffusion controlled adsorption kinetic model, and the overall reaction rate is probably controlled by intra-particle diffusion, boundary layer diffusion and reaction process. The adsorption isotherms of fluoride in BSA system fit the Langmuir-Freundlich model well. The BSA has synergistic effect on fluoride adsorption and the degree increased with the increase of the initial BSA concentration.

  13. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies.

    PubMed

    Sun, Lei; Wan, Shungang; Luo, Wensui

    2013-07-01

    Biochars prepared from anaerobic digestion residue (BC-R), palm bark (BC-PB) and eucalyptus (BC-E) were used as sorbents for removal of cationic methylene blue dye (MB). The FE-SEM images indicated that the biochars have a well-developed pore structure, and the Brunauer-Emmett-Teller surface areas of BC-R, BC-PB, and BC-E were 7.60, 2.46, and 10.35 m(2)g(-1), respectively. The efficiencies of MB removal in the samples with initial concentrations of 5 mg L(-1) at pH 7.0 and 40°C by BC-R, BC-PB, and BC-E after 2h were 99.5%, 99.3%, and 86.1%, respectively. Pseudo-second-order kinetics was the most suitable model for describing the adsorption of MB onto the biochars. The experimental data were best described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 9.50 mg g(-1) at 40°C for BC-R. The biochars produced from the three types of solid waste showed considerable potential for adsorption.

  14. Application of activated carbon derived from 'waste' bamboo culms for the adsorption of azo disperse dye: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Wang, Lianggui

    2012-07-15

    The utilization of activated carbon derived from 'waste' bamboo culms (BAC) for the removal of Disperse Red 167 (DR167), an azo disperse dye, was investigated. Studies of the properties of the adsorbent, the effect of contact time, the initial pH of the solution, the initial concentration of the dye solution and temperature indicated that a low initial pH or concentration of dye solution favors the adsorption process; temperature exerts a greater effect on the removal of azo disperse red 167 dye from aqueous solution. Kinetic and isotherm data were fitted to five non-linear kinetic and nine non-linear isotherm equations. In addition, the fits were evaluated in terms of the non-linear coefficient, Chi-square test, Marquardt's percent standard deviation error function and small-sample-corrected Akaike Information Criterion (AICc) methodology. The results showed that the AICc analysis was the best statistical tool for analyzing the data, the intra-particle diffusion and the pseudo-first-order models played important roles in the controlling rate step, and the Temkin equation best described the BAC isotherm data. Furthermore, the thermodynamic analysis indicated that the adsorption was a spontaneous, endothermic, entropy-increasing and physical process. Two types of commercial activated carbon, Filtrasorb 400 and Filtrasorb (F400 and F300), were used as contrast adsorbents. The contrast experiments revealed that BAC exhibits similar properties to F400 and F300. The utilization of bamboo wastes as carbon precursors is feasible.

  15. Grinding kinetics and equilibrium states

    NASA Technical Reports Server (NTRS)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  16. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  17. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics.

    PubMed

    Tao, Yinying; Carta, Giorgio; Ferreira, Gisela; Robbins, David

    2011-03-18

    Single and multicomponent batch adsorption kinetics were obtained for deamidated mAb variants on two commercial cation exchangers, one with an open macroporous structure--UNOsphere S--and the other with charged dextran grafts--Capto S. The adsorption kinetics for the macroporous matrix was found to be controlled largely by pore diffusion. The effective diffusivity estimated from single component data was a fraction of the mAb free solution diffusivity, and its value could be used to accurately predict the adsorption kinetics for two- and three-component systems. In this case, when two or more variants were adsorbed simultaneously, both experimental and predicted results showed a temporary overshoot of the amount adsorbed above the equilibrium value for the more deamidated variant followed by a gradual approach to equilibrium. Adsorption rates on the dextran grafted material were much faster than those observed for the macroporous matrix for both single component and simultaneous adsorption cases. In this case, no significant overshoot was observed for the more deamidated forms. The Capto S adsorption kinetics could be described well by a diffusion model with an adsorbed phase driving force for single component adsorption and for the simultaneous adsorption of multiple variants. However, this model failed to predict the adsorption kinetics when more deamidated forms pre-adsorbed on the resin were displaced by less deamidated ones. In this case, the kinetics of the displacement process was much slower indicating that the pre-adsorbed components severely hindered transport of the more strongly bound variants. Overall, the results indicate that despite the lower capacity, the macroporous resin may be more efficient in process applications where displacement of one variant by another takes place as a result of the faster and more predictable kinetics.

  18. Kinetics and isotherms of Neutral Red adsorption on peanut husk.

    PubMed

    Han, Runping; Han, Pan; Cai, Zhaohui; Zhao, Zhenhui; Tang, Mingsheng

    2008-01-01

    Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions.

  19. Adsorption equilibrium, kinetics and thermodynamics of α-amylase on poly(DVB-VIM)-Cu(+2) magnetic metal-chelate affinity sorbent.

    PubMed

    Osman, Bilgen; Kara, Ali; Demirbel, Emel; Kök, Senay; Beşirli, Necati

    2012-09-01

    Designing an immobilised metal ion affinity process on large-scale demands that a thorough understanding be developed regarding the adsorption behaviour of proteins on metal-loaded gels and the characteristic adsorption parameters to be evaluated. In view of this requirement, interaction of α-amylase as a model protein with newly synthesised magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter, 53-212 μm) was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerising of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterised by N(2) adsorption/desorption isotherms, electron spin resonance, elemental analysis, scanning electron microscope and swelling studies. Cu(2+) ions were chelated on the m-poly(DVB-VIM) beads and used in adsorption of α-amylase in a batch system. The maximum α-amylase adsorption capacity of the m-poly(DVB-VIM)-Cu(2+) beads was determined as 10.84 mg/g at pH 6.0, 25 °C. The adsorption data were analyzed using three isotherm models, which are the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order, modified Ritchie's-second-order and intraparticle diffusion models were used to test dynamic experimental data. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes.

  20. [Kinetics of adsorption of Pb2+ onto small river sediment].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Bi, Chun-Juan; Sun, Chao; Sun, Yue-Di; Xu, Shi-Yuan

    2009-06-15

    The batch experiments of adsorption of Pb2+ onto small river sediments were conducted. The kinetics of the sorption process was analyzed. The results showed that the equilibrium time of adsorption increased with the increasing of sediment mass in solution, while both adsorbed Pb2+ on per unit of sediment and Pb2+ concentration in the solution after equilibrium decreased. More than 95% of Pb2+ in solution was removed when sediment contents larger than 0.6 g x L(-1). Both pseudo-first-order and pseudo-second-order kinetics were tested and it was found that the latter gave a better explanation of the adsorption process. The equilibrium adsorption capacities calculated from the pseudo-second-order model could represent the true value. There was no significant correlation between initial adsorption rate of Pb2+ and the amount of sediment in solution. However, the pseudo-second-order rate constant increased in the solution with more adsorbent, namely chemical adsorption controlled the process. Elovich equation could explain the mechanism of sorption in the solution with higher contents of sediment; nevertheless, the process of low concentration of adsorbent adsorbing Pb2+ disagreed well with Elovich equation. In terms of adsorption rate in the sorption, intra-particle diffusion dominated in the more sediment solution. On the other hand, multi-linearity was presented for the adsorption rate in less adsorbent solution. The first, sharper portion represented adsorption on the external surface. The second portion indicated Pb2+ diffused gradually into the interior of particles and intra-particle diffusion controlled.

  1. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    PubMed

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.

  2. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-07-19

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m2/g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 degrees C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (Ea) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as DeltaG degrees, DeltaS and DeltaH degrees were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process.

  3. Adsorption kinetics of Rhodamine-B on used black tea leaves

    PubMed Central

    2012-01-01

    Rhodamine B (Rh-B) is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL) for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process. PMID:23369452

  4. Thermodynamics and Kinetics of Chemical Equilibrium in Solution.

    ERIC Educational Resources Information Center

    Leenson, I. A.

    1986-01-01

    Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)

  5. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-12-10

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C.

  6. Interactions of xanthines with activated carbon. I. Kinetics of the adsorption process

    NASA Astrophysics Data System (ADS)

    Navarrete Casas, R.; García Rodriguez, A.; Rey Bueno, F.; Espínola Lara, A.; Valenzuela Calahorro, C.; Navarrete Guijosa, A.

    2006-06-01

    Because of their pharmaceutical and industrial applications, we have studied the adsorption of xanthine derivates (caffeine and theophylline) by activated carbon. To this end, we examined kinetic, equilibrium and thermodynamic aspects of the process. This paper reports the kinetics results. The experimental results indicate that the process was first order in C and the overall process was assumed to involve a single, reversible adsorption-desorption process obeying a kinetic law postulated by us.

  7. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    PubMed

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  8. Kinetics of faceting of crystals in growth, etching, and equilibrium

    NASA Astrophysics Data System (ADS)

    Vlachos, D. G.; Schmidt, L. D.; Aris, R.

    1993-03-01

    The faceting of crystals in equilibrium with the gas phase and also during crystal growth and etching conditions is studied using the Monte Carlo method. The dynamics of the transformation of unstable crystallographic orientations into hill and valley structures and the spatial patterns that develop are examined as functions of surface temperature, crystallographic orientation, and strength of interatomic potential for two transport processes: adsorption-desorption and surface diffusion. The results are compared with the continuum theory for facet formation. Thermodynamically unstable orientations break into hill and valley structures, and faceting exhibits three time regimes: disordering, facet nucleation, and coarsening of small facets to large facets. Faceting is accelerated as temperature increases, but thermal roughening can occur at high temperatures. Surface diffusion is the dominant mechanism at short times and small facets but adsorption-desorption becomes important at long times and large facets. Growth and etching promote faceting for conditions close to equilibrium but induce kinetic roughening for conditions far from equilibrium. Simultaneous irreversible growth and etching conditions with fast surface diffusion result in enhanced faceting.

  9. Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies.

    PubMed

    Forte, Maurizio; Mita, Luigi; Perrone, Rosa; Rossi, Sergio; Argirò, Mario; Mita, Damiano Gustavo; Guida, Marco; Portaccio, Marianna; Godievargova, Tzonka; Ivanov, Yavour; Tamer, Mahmoud T; Omer, Ahmed M; Mohy Eldin, Mohamed S

    2017-01-01

    The removal of methylparaben (MP), a well-known endocrine disruptor, from aqueous solutions using polyacrylonitrile (PAN) beads has been studied under batch conditions, at room temperature and at different initial MP concentrations. The kinetic and equilibrium results have been analyzed. Kinetic modeling analysis has been carried out with three different types of adsorption models: pseudo-first-order, pseudo-second-order, and Elovich model. Kinetic data analysis indicated that the adsorption was a second-order process. The MP adsorption by PAN was also quantitatively evaluated by using the equilibrium adsorption isotherm models of Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin and the applicability of the respective isotherm equations has been compared through the correlation coefficients. Adsorption data resulted well fitted by the Freundlich isotherm model. Data of MP adsorption have also been used to test different adsorption diffusion models. The diffusion rate equations inside particulate of Dumwald-Wagner and the intraparticle diffusion model have been used to calculate the diffusion rate. The actual rate-controlling step involved in the MB adsorption process was determined. The kinetic expression by Boyd gave the right indications. All together, our results indicate that PAN beads are a useful tool to remediate water bodies polluted by endocrine disruptors.

  10. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  11. Removal of water and iodine by solid sorbents: adsorption isotherms and kinetics

    SciTech Connect

    Lin, R.; Tavlarides, L.L.

    2013-07-01

    Tritium and iodine-129 are two major radioactive elements that are present in off-gases from spent fuel reprocessing plants. Adsorption by solid sorbents is the state-of-the-art technique for removal of these species from off-gases. Modeling and simulating adsorption processes require accurate adsorption equilibrium and kinetic data to permit reasonable estimates of process parameters. We have developed a continuous flow single-pellet adsorption system to gather accurate adsorption equilibrium and kinetic data for adsorption of water by molecular sieve 3A and for adsorption of iodine by silver exchanged mordenite. In this paper, the design of the water and iodine adsorption experimental systems are briefly described and results of water adsorption experiments are presented and discussed. Water uptake curves are fitted with the linear-driving force (LDF) model and the shrinking-core model to determine kinetic parameters. It is shown that the kinetics of water adsorption on zeolite 3A under current experimental conditions is controlled by both the external film resistance and the macro-pore diffusion and can be predicted by both the LDF model and the shrinking-core model with the former one performing slightly better. Preliminary results from iodine adsorption experiments will be presented in the conference.

  12. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika

    2016-04-01

    This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.

  13. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  14. Kinetics of allophycocyanin's trimer-monomer equilibrium.

    PubMed

    Huang, C; Berns, D S; MacColl, R

    1987-01-13

    Kinetic studies of the dissociation of allophycocyanin trimers to monomers have been performed by using stopped-flow techniques. The dissociation was monitored by two techniques: by light scattering to observe the molecular weight changes directly and by 650-nm absorbance to observe the linkage of quaternary structure to spectra. The light-scattering experiments showed a simple exponential decay of trimers to monomers with a dissociation constant of 0.23 s-1. The absorption changes were complex, with two processes occurring. The faster absorption change appeared to be almost simultaneous with the molecular weight change (about 0.27 s-1) and was perhaps totally coordinated with it. The slower absorption change (0.071 s-1) was possibly a result of a conformational change in the chromophore arising during the conversion from newly dissociated monomers to equilibrium monomers.

  15. Adsorption kinetics of silicic acid on akaganeite.

    PubMed

    Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

    2013-06-01

    As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure.

  16. A comparative study of the adsorption equilibrium of progesterone by a carbon black and a commercial activated carbon

    NASA Astrophysics Data System (ADS)

    Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.

    2007-04-01

    In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.

  17. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    PubMed

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1), in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.

  18. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  19. Kinetics of Remazol Black B adsorption onto carbon prepared from sugar beet pulp.

    PubMed

    Dursun, Arzu Y; Tepe, Ozlem; Uslu, Gülşad; Dursun, Gülbeyi; Saatci, Yusuf

    2013-04-01

    Dried sugar beet pulp, an agricultural solid waste, was used for the production of carbon. Carbonised beet pulp was tested in the adsorption of Remazol Black B dye, and adsorption studies with real textile wastewater were also performed. Batch kinetic studies showed that an equilibrium time of 180 min was needed for the adsorption. The maximum dye adsorption capacity was obtained as 80.0 mg g(-1) at the temperature of 25 °C at pH = 1.0. The Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium, and it was reported that experimental data fitted very well to the Langmuir model. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intraparticle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo-second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.

  20. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  1. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  2. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  3. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models.

    PubMed

    Ocampo-Perez, Raul; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa M

    2011-12-01

    The concentration decay curves for the adsorption of phenol on organobentonite were obtained in an agitated tank batch adsorber. The experimental adsorption rate data were interpreted with diffusional models as well as first-order, second-order and Langmuir kinetic models. The surface diffusion model adjusted the data quite well, revealing that the overall rate of adsorption was controlled by surface diffusion. Furthermore, the surface diffusion coefficient increased raising the mass of phenol adsorbed at equilibrium and was independent of the particle diameter in the range 0.042-0.0126 cm. It was demonstrated that the overall rate of adsorption was essentially not affected by the external mass transfer. The second-order and the Langmuir kinetic models fitted the experimental data quite well; however, the kinetic constants of both models varied without any physical meaning while increasing the particle size and the mass of phenol adsorbed at equilibrium.

  4. Binary adsorption equilibrium of carbon dioxide and water vapor on activated alumina.

    PubMed

    Li, Gang; Xiao, Penny; Webley, Paul

    2009-09-15

    Adsorption equilibria of a CO2/H2O binary mixture on activated alumina F-200 were measured at several temperatures and over a wide range of concentrations from 4% to around 90% of the saturated water vapor pressure. In comparison with the single-component data, the loading of CO2 was not reduced in the presence of H2O, whereas at low relative humidity the adsorption of H2O was depressed. The binary system was described by a competitive/cooperative adsorption model where the readily adsorbed water layers acted as secondary sites for further CO2 adsorption via hydrogen bonding or hydration reaction. The combination of kinetic models, namely, a Langmuir isotherm for characterizing pure CO2 adsorption and a BET isotherm for H2O, was extended to derive a binary adsorption equilibrium model for the CO2/H2O mixture. Models based on the ideal adsorbed solution theory of Myers and Prausnitz failed to characterize the data over the whole composition range, and a large deviation of binary CO2/H2O equilibrium from ideal solution behavior was observed. The extended Langmuir-BET (LBET) isotherm, analogous to the extended Langmuir equation, drastically underestimated the CO2 loading. By incorporating the interactions between CO2 and H2O molecules on the adsorbent surface and taking into account the effect of nonideality, the realistic interactive LBET (R-LBET) model was found to be in very good agreement with the experimental data. The derived binary isosteric heat of adsorption showed that the heat was reduced by competitive adsorption but promoted by cooperative adsorption.

  5. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  6. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants.

  7. Kinetic modelling of cytochrome c adsorption on SBA-15.

    PubMed

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  8. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    PubMed Central

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  9. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling.

    PubMed

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor's materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents.

  10. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  11. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M

    2005-07-01

    Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.

  12. Adsorption equilibrium and dynamics of gasoline vapors onto polymeric adsorbents.

    PubMed

    Jia, Lijuan; Yu, Weihua; Long, Chao; Li, Aimin

    2014-03-01

    The emission of gasoline vapors is becoming a significant environmental problem especially for the population-dense area and also results in a significant economic loss. In this study, adsorption equilibrium and dynamics of gasoline vapors onto macroporous and hypercrosslinked polymeric resins at 308 K were investigated and compared with commercial activated carbon (NucharWV-A 1100). The results showed that the equilibrium and breakthrough adsorption capacities of virgin macroporous and hypercrosslinked polymeric resins were lower than virgin-activated carbon. Compared with origin adsorbents, however, the breakthrough adsorption capacities of the regenerated activated carbon for gasoline vapors decreased by 58.5 % and 61.3 % when the initial concentration of gasoline vapors were 700 and 1,400 mg/L, while those of macroporous and hypercrosslinked resins decreased by 17.4 % and 17.5 %, and 46.5 % and 45.5 %, respectively. Due to the specific bimodal property in the region of micropore (0.5-2.0 nm) and meso-macropore (30-70 nm), the regenerated hypercrosslinked polymeric resin exhibited the comparable breakthrough adsorption capacities with the regenerated activated carbon at the initial concentration of 700 mg/L, and even higher when the initial concentration of gasoline vapors was 1,400 mg/L. In addition, 90 % of relative humidity had ignorable effect on the adsorption of gasoline vapors on hypercrosslinked polymeric resin. Taken together, it is expected that hypercrosslinked polymeric adsorbent would be a promising adsorbent for the removal of gasoline vapors from gas streams.

  13. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    NASA Astrophysics Data System (ADS)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  14. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  15. Laser temperature jump relaxation measurements of adsorption/desorption kinetics at liquid/solid interfaces

    SciTech Connect

    Waite, S.W.; Harris, J.M.; Holzwarth, J.F.

    1995-04-15

    The iodine laser temperature jump method is used to study adsorption/desorption kinetics at a methylated silica/solution interface. A suspension of C1-derivatized fumed silica is used for the kinetic measurements. The colloidal silica does not significantly change the attenuation of near-IR radiation from the iodine laser and allows the surface site concentration to be varied so that adsorption and desorption rates can be determined. The temperature jump relaxation method was used to investigate the effect of electrolyte on adsorption of a charged solute (ANS) on a C1 silica surface. Adsorption equilibrium conditions were optimized to observe a maximum relaxation signal. Without electrolyte, the relaxation signal is biexponential, which is also reflected in a broad chromatographic peak shape and a two-site sorption isotherm. When electrolyte is added, the relaxation signal is primarily single exponential, which agrees with the linear adsorption isotherm. The adsorption rate and equilibrium constant were found to increase significantly with added electrolyte, which showed that adsorption kinetics can influence both band broadening and retention. 28 refs., 7 figs., 4 tab.

  16. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was first order with respect to both the initial Al concentration and the clay surface area. Changes in pH within this narrow range had virtually no effect on adsorption rate. This zero order reaction dependence suggested that the H/sup +/, compared to Al, has a weak affinity for the surface. The rates of adsorption decreased in the order of montmorillonite > kaolinite > vermiculite when compared on the basis of equal surface areas, but changed to kaolinite > montmorillonite > vermiculite when the clays were compared on an equal exchange capacity basis. The calculated apparent activation energies were < 32 kJ mol/sup -1/, indicating that over the temperature range of the study the adsorption process is only marginally temperature sensitive. The mechanism is governed by a simple electrostatic cation exchange involving outer sphere complexes between adsorbed Al and the clay surface. Vermiculite, may have a second reaction step governed by both electrostatic attraction and internal ion diffusion. Equilibrium constants for the formation of an adsorbed Al clay complex were also estimated and are 10/sup 5.34/, 10/sup 5.18/, and 10/sup 4.94/ for kaolinite, montmorillonite, and vermiculite, respectively, suggesting that these clays could play a significant role in controlling soil solutions Al concentrations.

  17. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    PubMed Central

    Belas, M R; Colwell, R R

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral flagella, bacterial adsorption did not follow the Langmuir adsorption isotherm; instead, proportional adsorption kinetics were observed. The adsorption of some polarly flagellated bacteria exhibited surface saturation kinetics. However, the binding index (the product of the number of binding sites and bacterial affinity to the surface) of polarly flagellated bacteria differed significantly from that of laterally flagellated bacteria, suggesting that polarly flagellated bacteria adsorb to chitin by a different mechanism from that used by the laterally flagellated bacteria. From the results of dual-label adsorption competition experiments, in which polarly flagellated V. cholerae competed with increasing concentrations of laterally flagellated V. parahaemolyticus, it was observed that laterally flagellated bacteria inhibited the adsorption of polarly flagellated bacteria. In contrast, polarly flagellated bacteria enhanced the adsorption of V. cholerae. In competition experiments, where V. parahaemolyticus competed against increasing concentrations of other bacteria, polarly flagellated bacteria enhanced V. parahaemolyticus adsorption significantly, whereas laterally flagellated bacteria only slightly enhanced the process. The direct correlation observed between surface saturation kinetics, the production of lateral flagella, and the ability of laterally flagellated bacteria to inhibit the adsorption of polarly flagellated bacteria suggests that lateral flagella represent a

  18. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid.

    PubMed

    Komy, Zanaty R; Shaker, Ali M; Heggy, Said E M; El-Sayed, Mohamed E A

    2014-03-01

    Equilibrium and kinetics of Cu(2+) adsorption onto soil minerals (kaolinite and hematite) in the absence and presence of humic acid have been investigated under various conditions. The influences of ionic strength, pH and solution cations on the rate of the adsorption have been studied. The rate and the amount of adsorbed Cu(2+) onto soil minerals in the absence or the presence of humic acid increased with decreasing ionic strength, increasing pH and in the presence of the background electrolyte K(+) rather than Ca(2+). Humic acid enhanced the rate and the amount of adsorbed Cu(2+) onto soil minerals. The adsorption equilibrium data showed that adsorption behavior of Cu(2+) could be described more reasonably by Langmiur adsorption isotherm than Freundlich isotherm in the absence or presence of humic acid. Pseudo first and pseudo second order models were used to evaluate the kinetic data and the rate constants. The results indicated that the adsorption of Cu(2+) onto hematite and kaolinite in the absence and presence of humic acid is more conforming to pseudo second order kinetics.

  19. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.

    PubMed

    Sadeek, Sadeek A; Negm, Nabel A; Hefni, Hassan H H; Wahab, Mostafa M Abdel

    2015-11-01

    Biosorption of Cu(II), Co(II) and Fe(III) ions from aqueous solutions by rice husk, palm leaf and water hyacinth was investigated as a function of initial pH, initial heavy metal ions concentration and treatment time. The adsorption process was examined by two adsorption isotherms: Langmuir and Freundlich isotherms. The experimental data of biosorption process were analyzed using pseudo-first order, pseudo-second order kinetic models. The equilibrium biosorption isotherms showed that the three studied biosorbents possess high affinity and sorption capacity for Cu(II), Co(II) and Fe(III) ions. Rice husk showed more efficiency than palm leaf and water hyacinth. Adsorption of Cu(II) and Co(II) was more efficient in alkaline medium (pH 9) than neutral medium due to the high solubility of metal ion complexes. The metal removal efficiency of each biosorbent was correlated to its chemical structure. DTA studies showed formation of metal complex between the biosorbents and the metal ions. The obtained results showed that the tested biosorbents are efficient and alternate low-cost biosorbent for removal of heavy metal ions from aqueous media.

  20. Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash.

    PubMed

    Tavlieva, Mariana P; Genieva, Svetlana D; Georgieva, Velyana G; Vlaev, Lyubomir T

    2013-11-01

    The present research was focused on the study of adsorption kinetics of brilliant green (BG) onto white rice husk ash from aqueous solutions. The research was performed in the temperature interval 290-320 K in 10° steps and in the concentration range of 3-100 mg L(-1). Batch studies were conducted in order to determine the optimal adsorbent dose, and the time required to reach the adsorption equilibrium at each temperature. The effect of the initial concentration of brilliant green was studied (pH not adjusted), as well as the effect of temperature. The maximum adsorption capacity of the WRHA for BG at 320 K was determined to be 85.56 mg g(-1). The adsorption kinetic data were analyzed employing several kinetic models: pseudo-first-order equation, pseudo-second-order equation, Elovichequation, Banghman's equation, Diffusion-chemisorption model, and Boyd kinetic expression. It was established that the adsorption process obeyed the pseudo-second-order kinetic model. Based on the rate constants obtained by this kinetic model using Arrhenius and Eyring equations, the activation parameters were determined, namely the activation energy (50.04 kJ mol(-1)), the change of entropy (-318.31 J mol(-1) K(-1)), enthalpy (-47.50 kJ mol(-1)), and Gibbs free energy (range 44.81-54.36 kJ mol(-1)) for the formation of activated complex from the reagents.

  1. Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon.

    PubMed

    Silva-Medeiros, Flávia V; Consolin-Filho, Nelson; Xavier de Lima, Mateus; Bazzo, Fernando Previato; Barros, Maria Angélica S D; Bergamasco, Rosângela; Tavares, Célia R G

    2016-12-01

    The presence of silver in the natural water environment has been of great concern because of its toxicity, especially when it is in the free ion form (Ag(+)). This paper aims to study the adsorption kinetics of silver ions from an aqueous solution onto coconut shell activated carbon using batch methods. Batch kinetic data were fitted to the first-order model and the pseudo-second-order model, and this last equation fits correctly the experimental data. Equilibrium experiments were carried out at 30°C, 40°C, and 50°C. The adsorption isotherms were reasonably fit using Langmuir model, and the adsorption process was slightly influenced by changes in temperature. Thermodynamic parameters (ΔH°, ΔG°, and ΔS°) were determined. The adsorption process seems to be non-favorable, exothermic, and have an increase in the orderness.

  2. Thermodynamic and kinetic behaviors of trinitrotoluene adsorption on powdered activated carbons

    SciTech Connect

    Lee, J.W.; Hwang, K.J.; Shim, W.G.; Moon, I.S.

    2006-07-01

    Regulations on the removal of trinitrotoluene (TNT) from wastewater have become increasingly more stringent, demanding faster, less expensive, and more efficient treatment. This study focuses on the adsorption equilibrium and kinetics of TNT on powered activated carbons (PAC). Three types of PACs (i.e., wood based, coal based, and coconut-shell based) were studied as functions of temperature and pH. Thermodynamic properties including Gibbs free energy, enthalpy, and entropy, were evaluated by applying the Van't Hoff equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption kinetic studies were carried out in batch adsorber under important conditions such as PAC types, temperature, pH, and concentration. We found that fast and efficient removal of TNT dissolved in water can be successfully achieved by PAC adsorption.

  3. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies.

    PubMed

    Guler, Ulker Asli; Sarioglu, Meltem

    2014-01-01

    In this study, pumice stone was used for the removal of tetracyline (TC) from aqueous solutions. It was characterized by XRD, FT-IR, SEM and BET analyses. Cation exchange capacity of pumice stone was found to be 9.9 meq/100 g. Effect of various parameters such as solution pH (2-11), adsorbent dosage (0.5-10 g/L), contact time (2.5-120 min), initial TC concentration (5-300 mg/L) and temperature (20-50°C) on TC adsorption onto pumice was investigated. Also the adsorption of TC on pumice stone was studied as a function of Na(+) and Cu(2+) cations changing pH from 2 to 11 using batch experiments. The best removal efficiency performance was exhibited at adsorbent dosage 10 g/L, pH 3, contact time 120 min. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models were applied to the equilibrium data. The result has shown that the adsorption was favorable, physicochemical in nature and agrees well with Langmuir and Freundlich models. The maximum Langmuir adsorption capacity was found to be 20.02 mg/g. The adsorption behavior of TC on pumices stone was fitted well in the pseudo-second order kinetics model. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was feasible, spontaneous and exothermic.

  4. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.

    PubMed

    Alberty, Robert A

    2010-12-30

    Biochemical thermodynamics is based on the chemical thermodynamics of aqueous solutions, but it is quite different because pH is used as an independent variable. A transformed Gibbs energy G' is used, and that leads to transformed enthalpies H' and transformed entropies S'. Equilibrium constants for enzyme-catalyzed reactions are referred to as apparent equilibrium constants K' to indicate that they are functions of pH in addition to temperature and ionic strength. Despite this, the most useful way to store basic thermodynamic data on enzyme-catalyzed reactions is to give standard Gibbs energies of formation, standard enthalpies of formation, electric charges, and numbers of hydrogen atoms in species of biochemical reactants like ATP. This makes it possible to calculate standard transformed Gibbs energies of formation, standard transformed enthalpies of formation of reactants (sums of species), and apparent equilibrium constants at desired temperatures, pHs, and ionic strengths. These calculations are complicated, and therefore, a mathematical application in a computer is needed. Rapid-equilibrium enzyme kinetics is based on biochemical thermodynamics because all reactions in the mechanism prior to the rate-determining reaction are at equilibrium. The expression for the equilibrium concentration of the enzyme-substrate complex that yields products can be derived by applying Solve in a computer to the expressions for the equilibrium constants in the mechanism and the conservation equation for enzymatic sites. In 1979, Duggleby pointed out that the minimum number of velocities of enzyme-catalyzed reactions required to estimate the values of the kinetic parameters is equal to the number of kinetic parameters. Solve can be used to do this with steady-state rate equations as well as rapid-equilibrium rate equations, provided that the rate equation is a polynomial. Rapid-equilibrium rate equations can be derived for complicated mechanisms that involve several reactants

  5. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-06-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  6. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.

    PubMed

    Skodras, G; Diamantopoulou, Ir; Pantoleontos, G; Sakellaropoulos, G P

    2008-10-01

    Activated carbons are suitable materials for Hg(0) adsorption in fixed bed operation or in injection process. The fixed bed tests provide good indication of activated carbons effectiveness and service lives, which depend on the rates of Hg(0) adsorption. In order to correlate fixed bed properties and operation conditions, with their adsorptive capacity and saturation time, Hg(0) adsorption tests were realized in a bench-scale unit, consisted of F400 activated carbon fixed bed reactor. Hg(0) adsorption tests were conducted at 50 degrees C, under 0.1 and 0.35 ng/cm(3) Hg(0) initial concentrations and with carbon particle sizes ranging between 75-106 and 150-250 microm. Based on the experimental breakthrough data, kinetic studies were performed to investigate the mechanism of adsorption and the rate controlling steps. Kinetic models evaluated include the Fick's intraparticle diffusion equation, the pseudo-first order model, the pseudo-second order model and Elovich kinetic equation. The obtained experimental results revealed that the increase in particle size resulted in significant decrease of breakthrough time and mercury adsorptive capacity, due to the enhanced internal diffusion limitations and smaller external mass transfer coefficients. Additionally, higher initial mercury concentrations resulted in increased breakthrough time and mercury uptake. From the kinetic studies results it was observed that all the examined models describes efficiently Hg(0) breakthrough curves, from breakpoint up to equilibrium time. The most accurate prediction of the experimental data was achieved by second order model, indicating that the chemisorption rate seems to be the controlling step in the procedure. However, the successful attempt to describe mercury uptake with Fick's diffusion model and the first order kinetic model, reveals that the adsorption mechanism studied was complex and followed both surface adsorption and particle diffusion.

  7. Equilibrium Binding and Steady-State Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Dunford, H. Brian

    1984-01-01

    Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)

  8. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    PubMed

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  9. Kinetic and steric differences in adsorption in two porous metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Lask, Kathleen; Krungleviciute, Vaiva; Bulut, Murat; Migone, Aldo; Lee, J.-Y.; Li, Jing

    2008-03-01

    Kinetic and steric differences are two of the three fundamental mechanisms underlying the use of adsorption in applications to gas mixture separations. We present experimental results on kinetics and equilibrium adsorption measurements of tetrafluoromethane and argon on two metal-organic framework (MOF) materials: RPM1-Co or [Co3(bpdc)3bpy].4DMF.H2O] (bpdc = biphenyldicarboxylate, bpy = 4,4'-bipyridine, DMF = N,N- dimethylformamide) and Cu-BTC or Cu3(BTC)2(H2O)3 (BTC = benzene-1,3,5-tricarboxylate). The adsorbates display significant differences in their kinetics on RPM1-Co (i.e., there are sizable differences in the time required for each gas to reach equilibrium after it is allowed access to the substrate). Our equilibrium measurements show that CF4 is sterically precluded from adsorbing in the small tetrahedral-shaped side pockets present in Cu-BTC. We will compare our experimental results with predictions for how adsorption kinetics depends on the size of the adsorbate and on those of the pores present in the substrate.

  10. [Adsorption kinetic and thermodynamic studies of lead onto activated carbons from cotton stalk].

    PubMed

    Li, Kun-quan; Zheng, Zheng; Jiang, Jian-chun; Zhang, Ji-biao

    2010-05-01

    Low-cost high surface area microporous carbons were prepared from cotton stalk and cotton stalk fiber by H3PO4 activation. The adsorption of lead ions on the carbons was investigated by conducting a series of batch adsorption experiments. The influence of solution pH value, contact time and temperature was investigated. The adsorption kinetics, thermodynamic behavior and mechanism were also discussed. The surface area and pore structure of the activated carbons were analyzed by BET equation, BJH method and H-K method according to the data from nitrogen adsorption at 77K. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results show that the carbons from cotton stalk and cotton stalk fiber have high surface area of 1570 and 1731 m2 x g(-1), and high content of oxygen-containing functional groups of 1.43 and 0.83 mmol x g(-1). The adsorption experiments show that the carbons have high adsorption capacity for lead, and the maximum adsorption equilibrium amount was found to be 120 mg x g(-1). The adsorption amount increased with contact time, and almost 80% of the adsorption occurred in the first 5 min. The pseudo-second-order model describes the adsorption kinetics most effectively. The Freundlich isotherm was found to the best explanation for experimental data. The negative change in free energy (delta G0) and positive change in enthalpy (delta H0) indicate that the adsorption is a spontaneous and endothermic process, and the adsorption of lead ions onto the carbons might be involved in an ion-exchange mechanism.

  11. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  12. Arsenate Adsorption On Ruthenium Oxides: A Spectroscopic And Kinetic Investigation

    EPA Science Inventory

    Arsenate adsorption on amorphous (RuO2•1.1H2O) and crystalline (RuO2) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was ...

  13. Adsorption of globular proteins on locally planar surfaces. II. Models for the effect of multiple adsorbate conformations on adsorption equilibria and kinetics.

    PubMed Central

    Minton, A P

    1999-01-01

    Equilibrium and kinetic models for nonspecific adsorption of proteins to planar surfaces are presented. These models allow for the possibility of multiple interconvertible surface conformations of adsorbed protein. Steric repulsion resulting in area exclusion by adsorbed molecules is taken into account by treating the adsorbate as a thermodynamically nonideal two-dimensional fluid. In the equilibrium model, the possibility of attractive interactions between adsorbed molecules is taken into account in a limited fashion by permitting one of the adsorbed species to self-associate. Calculated equilibrium adsorption isotherms exhibit apparent high-affinity and low-affinity binding regions, corresponding respectively to adsorption of ligand at low fractional area occupancy in an energetically favorable side-on conformation and conversion at higher fractional area occupancy of the side-on conformation to an entropically favored end-on conformation. Adsorbate self-association may lead to considerable steepening of the adsorption isotherm, compensating to a variable extent for the broadening effect of steric repulsion. Kinetic calculations suggest that in the absence of attractive interactions between adsorbate molecules, the process of adsorption may be highly "stretched" along the time axis, rendering the attainment of adsorption equilibrium in the context of conventional experiments problematic. PMID:9876132

  14. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics.

    PubMed

    Hu, Xin-jiang; Wang, Jing-song; Liu, Yun-guo; Li, Xin; Zeng, Guang-ming; Bao, Zheng-lei; Zeng, Xiao-xia; Chen, An-wei; Long, Fei

    2011-01-15

    The adsorption of chromium (VI) ions from aqueous solution by ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR) was studied in a batch adsorption system. Chromium (VI) removal is pH dependent and the optimum adsorption was observed at pH 2.0. The adsorption rate was extremely fast and the equilibrium was established within 6-10min. The adsorption data could be well interpreted by the Langmuir and Temkin model. The maximum adsorption capacities obtained from the Langmuir model are 51.813mgg(-1), 48.780mgg(-1) and 45.872mgg(-1) at 293, 303 and 313K, respectively. The adsorption process could be described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that film diffusion might be involved in the present case. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using 0.1N NaOH solutions.

  15. Equilibrium and non-equilibrium kinetics of self-assembled surfactant monolayers: a vibrational sum-frequency study of dodecanoate at the fluorite-water interface.

    PubMed

    Schrödle, Simon; Richmond, Geraldine L

    2008-04-16

    The adsorption, desorption, and equilibrium monomer exchange processes of sodium dodecanoate at the fluorite(CaF 2)-water interface have been studied. For the first time, we use in situ vibrational sum-frequency spectroscopy (VSFS) to gain insights into the mechanism and kinetics of monolayer self-assembly at the mineral-water interface. By exploiting the nonlinear optical response of the adsorbate, the temporal correlation of headgroup adsorption and alignment of the surfactant's alkyl chain was monitored. Because of the unique surface-specificity of VSFS, changes in the interfacial water structure were also tracked experimentally. The spectra clearly reveal that the structure of interfacial water molecules is severely disturbed at the start of the adsorption process. With the formation of a well-ordered adsorbate layer, it is partially reestablished; however, the molecular orientation and state of coordination is significantly altered. Even at very low surfactant concentrations, overcharging of the mineral surface (i.e., the adsorption of adsorbates past the point of electrostatic equilibrium) was observed. This points out the importance of effects other than electrostatic interactions and it is proposed that cooperative effects of both water structure and surfactant hemimicelle formation at the interface are key factors. The present study also investigates desorption kinetics of partially and fully established monolayers and a statistical model for data analysis is proposed. Additional experiments were performed in the presence of electrolytes and showed that uni- and divalent anions affect the nonequilibrium kinetics of self-assembled monolayers in strikingly different ways.

  16. Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons

    SciTech Connect

    Harding, A.W.; Foley, N.J.; Thomas, K.M.; Norman, P.R.; Francis, D.C.

    1998-07-07

    The adsorption of water vapor on a highly microporous coconut-shell-derived carbon and a mesoporous wood-derived carbon was studied. These carbons were chosen as they had markedly different porous structures. The adsorption and desorption characteristics of water vapor on the activated carbons were investigated over the relative pressure range p/p{degree} = 0--0.9 for temperatures in the range 285--313 K in a static water vapor system. The adsorption isotherms were analyzed using the Dubinin-Serpinski equation, and this provided an assessment of the polarity of the carbons. The kinetics of water vapor adsorption and desorption were studied with different amounts of preadsorbed water for set changes in pressure relative to the saturated vapor pressure (p/p{degree}). The adsorption kinetics for each relative pressure step were compared and used to calculate the activation energies for the vapor pressure increments. The kinetic results are discussed in relation to their relative position on the equilibrium isotherm and the adsorption mechanism of water vapor on activated carbons.

  17. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber.

    PubMed

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution.

  18. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  19. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.

    PubMed

    Radhika, M; Palanivelu, K

    2006-11-02

    Adsorptive removal of parachlorophenol (PCP) and 2,4,6-trichlorophenol (TCP) from aqueous solutions by activated carbon prepared from coconut shell was studied and compared with activated carbon of commercial grade (CAC). Various chemical agents in different concentrations were used (KOH, NaOH, CaCO(3), H(3)PO(4) and ZnCl(2)) for the preparation of coconut shell activated carbon. The coconut shell activated carbon (CSAC) prepared using KOH as chemical agent showed high surface area and best adsorption capacity and was chosen for further studies. Batch adsorption studies were conducted to evaluate the effect of various parameters such as pH, adsorbent dose, contact time and initial PCP and TCP concentration. Adsorption equilibrium reached earlier for CSAC than CAC for both PCP and TCP concentrations. Under optimized conditions the prepared activated carbon showed 99.9% and 99.8% removal efficiency for PCP and TCP, respectively, where as the commercially activated carbon had 97.7% and 95.5% removal for PCP and TCP, respectively, for a solution concentration of 50mg/L. Adsorption followed pseudo-second-order kinetics. The equilibrium adsorption data were analysed by Langmuir, Freundlich, Redlich-Peterson and Sips model using non-linear regression technique. Freundlich isotherms best fitted the data for adsorption equilibrium for both the compounds (PCP and TCP). Similarly, acidic pH was favorable for the adsorption of both PCP and TCP. Studies on pH effect and desorption revealed that chemisorption was involved in the adsorption process. The efficiency of the activated carbon prepared was also tested with real pulp and paper mill effluent. The removal efficiency using both the carbons were found highly satisfactory and was about 98.7% and 96.9% as phenol removal and 97.9% and 93.5% as AOX using CSAC and CAC, respectively.

  20. Sensitivity of kinetic ballooning mode instability to tokamak equilibrium implementations

    NASA Astrophysics Data System (ADS)

    Xie, H. S.; Xiao, Y.; Holod, I.; Lin, Z.; Belli, E. A.

    2016-10-01

    Global, first-principles study of the kinetic ballooning mode (KBM) is crucial to understand tokamak edge physics in high-confinement mode (H-mode). In contrast to the ion temperature gradient mode and trapped electron mode, the KBM is found to be very sensitive to the equilibrium implementations in gyrokinetic codes. In this paper, we show that a second-order difference in Shafranov shift or geometric coordinates, or a difference between local and global profile implementations can bring a factor of two or more discrepancy in real frequency and growth rate. This suggests that an accurate global equilibrium is required for validation of gyrokinetic KBM simulations.

  1. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies.

    PubMed

    Aly, Zaynab; Graulet, Adrien; Scales, Nicholas; Hanley, Tracey

    2014-03-01

    Economic adsorbents in bead form were fabricated and utilised for the adsorption of Al(3+) from aqueous solutions. Polyacrylonitrile (PAN) beads, PAN powder and the thermally treated PAN beads (250 °C/48 h/Ar and 600 °C/48 h/Ar-H2) were characterised using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, specific surface analysis (Brunauer-Emmett-Teller), thermogravimetric analysis as well as scanning electron microscopy. Effects of pH, contact time, kinetics and adsorption isotherms at different temperatures were investigated in batch mode experiments. Aluminium kinetic data best fit the Lagergren pseudo-second-order adsorption model indicating a one-step, surface-only, adsorption process with chemisorption being the rate limiting step. Equilibrium adsorption data followed a Langmuir adsorption model with fairly low monolayer adsorption capacities suitable for freshwater clean-up only. Various constants including thermodynamic constants were evaluated from the experimental results obtained at 20, 40 and 60 °C. Positive values of ΔH° indicated that the adsorption of Al(3+) onto all three adsorbents was endothermic with less energy input required for PAN powder compared to PAN beads and low-temperature thermally treated PAN. Negative ΔG° values indicated that the aluminium adsorption process was spontaneous for all adsorbents examined.

  2. Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite

    SciTech Connect

    Petrolekas, P.D.; Maggenakis, G.

    2007-02-14

    The kinetics of batch adsorption of a commercial reactive dye onto activated lignite has been investigated at temperatures of 26, 40, and 55{sup o}C, using aqueous solutions with initial dye concentrations in the range of 15-60 mg/L. An empirical single parameter relationship of the adsorbent loading versus the square root of contact time was proposed, which was determined to provide a very good description of the batch adsorption transients up to equilibrium. The data were also examined by means of the Elovich equation. The effect of the temperature and the initial dye concentration on the adsorption kinetics was analyzed, and the results were discussed by considering that intraparticle diffusion is the dominant mechanism.

  3. Adsorption Kinetics in Micellar Solutions of Nonionic Surfactants

    NASA Astrophysics Data System (ADS)

    Colegate, Daniel M.; Bain, Colin D.

    2005-11-01

    Standard models of the adsorption kinetics of surfactants at the air-water surface assume that micelles break down into monomers in the bulk solution and that only monomers adsorb. We show here that micelles of the nonionic surfactant C14E8 adsorb to the surface of a liquid jet at a diffusion-controlled rate. Micellar adsorption can be switched off by incorporation of a small amount of ionic surfactant into the micelle and switched on again by addition of salt. More sophisticated models of adsorption processes in micellar solutions are required that permit a kinetic flux of micelles to the air-water interface.

  4. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the

  5. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.

    PubMed

    Baup, S; Wolbert, D; Laplanche, A

    2002-10-01

    Three pesticides (atrazine, bromoxynil and diuron) and two granular activated carbons are involved in equilibrium and kinetic adsorption experiments. Equilibrium is represented by Freundlich isotherm law and kinetic is described by the Homogeneous Surface Diffusion Model, based on external mass transfer and intraparticle surface diffusion. Equilibrium and long-term experiments are conducted to compare Powdered Activated Carbon and Granular Activated Carbon. These first investigations show that crushing GAC into PAC improves the accessibility of the adsorption sites without increasing the number of these sites. In a second part, kinetics experiments are carried out using a Differential Column Batch Reactor. Thanks to this experimental device, the external mass transfer coefficient k(f) is calculated from empirical correlation and the effect of external mass transfer on adsorption is likely to be minimized. In order to obtain the intraparticle surface diffusion coefficient D. for these pesticides, comparisons between experimental kinetic data and simulations are conducted and the best agreement leads to the Ds coefficient. This procedure appears to be an efficient way to acquire surface diffusion coefficients for the adsorption of pesticides onto GAC. Finally it points out the role of surface diffusivity in the adsorption rate. As a matter of fact, even if the amount of the target-compound that could be potentially adsorbed is really important, its surface diffusion coefficient may be small, so that its adsorption may not have enough contact time to be totally achieved.

  6. Non-equilibrium thermodynamics analysis of transcriptional regulation kinetics

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Tovar, Hugo; Mejía, Carmen

    2014-12-01

    Gene expression in eukaryotic cells is an extremely complex and interesting phenomenon whose dynamics are controlled by a large number of subtle physicochemical processes commonly described by means of gene regulatory networks. Such networks consist in a series of coupled chemical reactions, conformational changes, and other biomolecular processes involving the interaction of the DNA molecule itself with a number of proteins usually called transcription factors as well as enzymes and other components. The kinetics behind the functioning of such gene regulatory networks are largely unknown, though its description in terms of non-equilibrium thermodynamics has been discussed recently. In this work we will derive general kinetic equations for a gene regulatory network from a non-equilibrium thermodynamical description and discuss its use in understanding the free energy constrains imposed in the network structure. We also will discuss explicit expressions for the kinetics of a simple model of gene regulation and show that the kinetic role of mRNA decay during the RNA synthesis stage (or transcription) is somehow limited due to the comparatively low values of decay rates. At the level discussed here, this implies a decoupling of the kinetics of mRNA synthesis and degradation a fact that may become quite useful when modeling gene regulatory networks from experimental data on whole genome gene expression.

  7. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot.

    PubMed

    Onal, Yunus

    2006-10-11

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl(2). Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as DeltaG, DeltaH and DeltaS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process.

  8. Adsorption studies of molasse's wastewaters on activated carbon: modelling with a new fractal kinetic equation and evaluation of kinetic models.

    PubMed

    Figaro, S; Avril, J P; Brouers, F; Ouensanga, A; Gaspard, S

    2009-01-30

    Adsorption kinetic of molasses wastewaters after anaerobic digestion (MSWD) and melanoidin respectively on activated carbon was studied at different pH. The kinetic parameters could be determined using classical kinetic equations and a recently published fractal kinetic equation. A linear form of this equation can also be used to fit adsorption data. Even with lower correlation coefficients the fractal kinetic equation gives lower normalized standard deviation values than the pseudo-second order model generally used to fit adsorption kinetic data, indicating that the fractal kinetic model is much more accurate for describing the kinetic adsorption data than the pseudo-second order kinetic model.

  9. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

    PubMed

    Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind

    2014-08-22

    Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems.

  10. Adsorption and decolorization kinetics of methyl orange by anaerobic sludge.

    PubMed

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing

    2011-05-01

    Adsorption and decolorization kinetics of methyl orange (MO) by anaerobic sludge in anaerobic sequencing batch reactors were investigated. The anaerobic sludge was found to have a saturated adsorption capacity of 36 ± 1 mg g MLSS(-1) to MO. UV/visible spectrophotometer and high-performance liquid chromatography analytical results indicated that the MO adsorption and decolorization occurred simultaneously in this system. This process at various substrate concentrations could be well simulated using a modified two-stage model with apparent pseudo first-order kinetics. Furthermore, a noncompetitive inhibition kinetic model was also developed to describe the MO decolorization process at high NaCl concentrations, and an inhibition constant of 3.67 g NaCl l(-1) was estimated. This study offers an insight into the adsorption and decolorization processes of azo dyes by anaerobic sludge and provides a better understanding of the anaerobic dye decolorization mechanisms.

  11. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model.

  12. Adsorption of oxygen on W/100/ - Adsorption kinetics and structure

    NASA Technical Reports Server (NTRS)

    Bauer, E.; Poppa, H.; Viswanath, Y.

    1976-01-01

    The adsorption of oxygen on W(100) single-crystal surfaces is studied by Auger electron spectroscopy (AES), flash desorption, low-energy electron diffraction (LEED), and retarding-field work-function measurements. The AES results reveal stepwise changes in the sticking coefficients in the coverage range 0 to 1 and activated adsorption at higher coverages. Upon room-temperature adsorption, a series of complex LEED patterns is observed. In layers adsorbed at 1050 K and cooled to room temperature, the p(2 x 1) structure is the first ordered structure observed. This structure shows a reversible order-disorder transition between 700 and 1000 K and is characterized by a work function which is lower than that of the clean surface. Heating room-temperature adsorbates changes their structure irreversibly. At temperatures below 750 K, some new structures are observed.

  13. Bioaccumulation of PCBs by algae: Kinetics versus equilibrium

    SciTech Connect

    Swackhamer, D.L.; Skoglund, R.S. )

    1993-05-01

    The objectives of this study were to test the hypothesis that bioaccumulation of hydrophobic organic compounds (HOCs) by phytoplankton is correlated to the compound's octanol/water partition coefficient (K[sub ow]) in a predictive relationship in laboratory experiments, and to confirm these findings with field observations. In laboratory experiments the authors measured the uptake of 40 representative polychlorinated biphenyl (PCB) congeners over time under conditions that inhibited and allowed phytoplankton growth. Results indicated that the bioaccumulation process is consistent with partitioning from water into cell lipids but is slower than previously thought. The uptake of PCBs was slow relative to growth of phytoplankton, preventing the chemical from reaching thermodynamic equilibrium in algal cells under conditions promoting growth (nonwinter). Thus under non-winter field conditions, many PCB congeners never reach equilibrium concentrations. Food-chain models that assume equilibrium between HOCs and the primary trophic level could be inaccurate and may need to use a kinetic framework.

  14. Extracting equilibrium constants from kinetically limited reacting systems.

    PubMed

    Correia, John J; Stafford, Walter F

    2009-01-01

    It has been known for some time that slow kinetics will distort the shape of a reversible reaction boundary. Here we present a tutorial on direct boundary fitting of sedimentation velocity data for a monomer-dimer system that exhibits kinetic effects. Previous analysis of a monomer-dimer system suggested that rapid reaction behavior will persist until the relaxation time of the system exceeds 100 s (reviewed in Kegeles and Cann, 1978). Utilizing a kinetic integrator feature in Sedanal (Stafford and Sherwood, 2004), we can now fit for the k(off) values and measure the uncertainty at the 95% confidence interval. For the monomer-dimer system the range of well determined k(off) values is limited to 0.005 to 10(-5) s(-1) corresponding to relaxation times (at a loading concentration of the Kd) of approximately 70 to approximately 33,000 s. For shorter relaxation times the system is fast and only the equilibrium constant K but not k(off) can be uniquely determined. For longer relaxation times the system is irreversibly slow, and assuming the system was at initial equilibrium before the start of the run, only the equilibrium constant K but not k(off) can be uniquely determined.

  15. Real Time Computation of Kinetic Constraints to Support Equilibrium Reconstruction

    NASA Astrophysics Data System (ADS)

    Eggert, W. J.; Kolemen, E.; Eldon, D.

    2016-10-01

    A new method for quickly and automatically applying kinetic constraints to EFIT equilibrium reconstructions using readily available data is presented. The ultimate goal is to produce kinetic equilibrium reconstructions in real time and use them to constrain the DCON stability code as part of a disruption avoidance scheme. A first effort presented here replaces CPU-time expensive modules, such as the fast ion pressure profile calculation, with a simplified model. We show with a DIII-D database analysis that we can achieve reasonable predictions for selected applications by modeling the fast ion pressure profile and determining the fit parameters as functions of easily measured quantities including neutron rate and electron temperature on axis. Secondly, we present a strategy for treating Thomson scattering and Charge Exchange Recombination data to automatically form constraints for a kinetic equilibrium reconstruction, a process that historically was performed by hand. Work supported by US DOE DE-AC02-09CH11466 and DE-FC02-04ER54698.

  16. Lateral interactions and non-equilibrium in surface kinetics

    NASA Astrophysics Data System (ADS)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  17. Removal of mixed pesticides from aqueous solutions using organoclays: evaluation of equilibrium and kinetic model.

    PubMed

    Saha, Ajoy; Ahammed Shabeer Tp; Gajbhiye, V T; Gupta, Suman; Kumar, Rajesh

    2013-07-01

    Removal of mixed pesticides, namely alachlor, metolachlor, chlorpyriphos, fipronil, α-endosulfan, β-endosulfan, p,p'-DDT and two metabolites p,p'-DDE and endosulfan sulphate from aqueous solution by batch adsorption onto three commercial organo-modified montmorillonite clays [modified with octadecylamine (ODA-M), modified with dimethyl- dialkylamine (DMDA-M) and modified with octadecylamine and aminopropyltriethoxysilane (ODAAPS-M)] were investigated. Effect of process variables, mainly contact time and initial concentration of mixed pesticides, on adsorption phenomenon were evaluated. To understand the adsorption kinetic pseudo-first-order and pseudo-second-order models were tested. The pseudo-second-order model provided the best fit for explaining adsorption kinetics, on the basis of high correlation coefficient (r) and normalized percent deviation values. The adsorption equilibrium was explained by the Freundlich isotherm (r = 0.951-0.992). High values (0.17-0.52 mg g⁻¹) of Freundlich constant (K(f)) indicated higher affinity of pesticides towards all three organoclays, as a result of hydrophobic interaction between the adsorbent/adsorbate systems. Pesticides with high octanol-water partition coefficient (K(ow)) and low water solubility showed faster adsorption with higher K(f) values as compared to the pesticides with low K(ow) and high water solubility. The order of organoclays for removal efficiency of mixed pesticide was ODAAPS-M > DMDA-M > ODA-M. These findings may find application to decontaminate or treat mixed pesticide contaminated industrial/agricultural waste waters.

  18. Adsorption kinetics of azinphosmethyl from aqueous solution onto pyrolyzed Horseshoe sea crab shell from the Atlantic Ocean.

    PubMed

    Gulen, J; Aroguz, A Z; Dalgin, D

    2005-07-01

    The adsorption behavior of azinphosmethyl on pyrolyzed Horseshoe Crab (Limulus polyphemus) outer shell, as a residue, from the Atlantic Ocean, collected along the Maine coast, USA, has been studied with regards to its kinetic and equilibrium conditions, taking into account adsorbate concentrations of 2 x 10(-3), 4 x 10(-3), 6 x 10(-3), and 8 x 10(-3), as well as temperatures of 30 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C. The yield of adsorption of azinphosmethyl from aqueous solution ranged from 56.1% to 61% with temperature increasing. Kinetic studies showed that adsorption rate decreased as the initial azinphosmethyl concentration increased. It was found, that the adsorption reaction obeyed first-order kinetics. The overall rate constants were estimated for different temperatures. The activation energy for adsorption was about 1.52 kJmol(-1), which implies that azinphosmethyl mainly adsorbed physically onto Horseshoe Crab outer shell. Langmuir and Freundlich isotherms were applied to the experimental data and isotherm constants were calculated. The thermodynamic parameters DeltaG0, DeltaH0 and DeltaS0 for the adsorption reaction were evaluated based on equilibrium data and in connection with this result the thermodynamic aspects of adsorption reaction were discussed. The adsorption was found to be endothermic in nature. The adsorbent used in this study proved highly efficient for the removal of azinphosmethyl.

  19. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag.

    PubMed

    Oguz, Ensar

    2005-01-01

    The kinetics of adsorption of PO(3-)(4) by blast furnace slag were found to be fast, reaching equilibrium in 20 min and following a pseudo-second-order rate equation. The adsorption behavior of PO(3-)(4) on blast furnace slag has been studied as a function of the solution agitation speed, pH, and temperature. Results have been analyzed by Freundlich, Langmuir, BET, and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption, 10.31 kJ mol(-1), was calculated from the D-R adsorption isotherm. The rate constants were calculated for 293, 298, 303, and 308 K using a pseudo-second-order rate equation and the activation energy (E(a)) was derived using the Arrhenius equation. Thermodynamic parameters such as DeltaH(0), DeltaS(0), and DeltaG(0) were calculated from the slope and intercept of linear plot of lnK(D) against 1/T. The DeltaH(0) and DeltaG(0) values of PO(3-)(4) adsorption on the blast furnace slag show endothermic heat of adsorption. But there is a negative free energy value, indicating that the process of PO(3-)(4) adsorption is favored at high temperatures.

  20. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.

    PubMed

    Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M

    2004-09-15

    The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

  1. Equilibrium collapse and the kinetic 'foldability' of proteins.

    PubMed

    Millet, Ian S; Townsley, Lara E; Chiti, Fabrizio; Doniach, Sebastian; Plaxco, Kevin W

    2002-01-08

    An important element of protein folding theory has been the identification of equilibrium parameters that might uniquely distinguish rapidly folding polypeptide sequences from those that fold slowly. One such parameter, termed sigma, is a dimensionless, equilibrium measure of the coincidence of chain compaction and folding that is predicted to be an important determinant of relative folding kinetics. To test this prediction and improve our understanding of the putative relationship between nonspecific compaction of the unfolded state and protein folding kinetics, we have used small-angle X-ray scattering and circular dichroism spectroscopy to measure the sigma of five well-characterized proteins. Consistent with theoretical predictions, we find that near-perfect coincidence of the unfolded state contraction and folding (sigma approximately 0) is associated with the rapid kinetics of these naturally occurring proteins. We do not, however, observe any significant correlation between sigma and either the relative folding rates of these proteins or the presence or absence of well-populated kinetic intermediates. Thus, while sigma approximately 0 may be a necessary condition to ensure rapid folding, differences in sigma do not account for the wide range of rates and mechanisms with which naturally occurring proteins fold.

  2. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    PubMed

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  3. How Surface Heterogeneity Affects Protein Adsorption: Annealing of OTS Patterns and Albumin Adsorption Kinetics*

    PubMed Central

    Hodgkinson, Gerald N.; Hlady, Vladimir

    2009-01-01

    Fluorescence microscopy and intensity histogram analysis techniques were used to monitor spatially-resolved albumin adsorption kinetics to model heterogeneous surfaces on sub-μm scales. Several distinct protein subpopulations were resolved, each represented by a normal distribution of adsorption densities on the adsorbent surface. Histogram analyses provided dynamic information of mean adsorption density, spread in adsorption density, and surface area coverage for each distinct protein subpopulation. A simple adsorption model is proposed in which individual protein binding events are predicted by the summation of multiple protein's surface sub-site interactions with different binding energy sub-sites on adsorbent surfaces. This model is predictive of the albumin adsorption on the patterns produced by one step μ-contact printing (μCP) of octadecyltrichlorosilane (OTS) on glass but fails to describe adsorption once the same patterns are altered by a thermal annealing step. PMID:19746205

  4. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  5. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Howard, J.; Quinn, R. C.

    2000-01-01

    The adsorptive equilibration of H2O with montomorillonite has been measured. At low temperatures and pressures equilibration can require many hours, effectively preventing smectites at the martian surface from responding to diurnal pressure and temperature variations.

  6. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  7. Kinetics and thermodynamics of protein adsorption: a generalized molecular theoretical approach.

    PubMed Central

    Fang, F; Szleifer, I

    2001-01-01

    The thermodynamics and kinetics of protein adsorption are studied using a molecular theoretical approach. The cases studied include competitive adsorption from mixtures and the effect of conformational changes upon adsorption. The kinetic theory is based on a generalized diffusion equation in which the driving force for motion is the gradient of chemical potentials of the proteins. The time-dependent chemical potentials, as well as the equilibrium behavior of the system, are obtained using a molecular mean-field theory. The theory provides, within the same theoretical formulation, the diffusion and the kinetic (activated) controlled regimes. By separation of ideal and nonideal contributions to the chemical potential, the equation of motion shows a purely diffusive part and the motion of the particles in the potential of mean force resulting from the intermolecular interactions. The theory enables the calculation of the time-dependent surface coverage of proteins, the dynamic surface tension, and the structure of the adsorbed layer in contact with the approaching proteins. For the case of competitive adsorption from a solution containing a mixture of large and small proteins, a variety of different adsorption patterns are observed depending upon the bulk composition, the strength of the interaction between the particles, and the surface and size of the proteins. It is found that the experimentally observed Vroman sequence is predicted in the case that the bulk solution is at a composition with an excess of the small protein, and that the interaction between the large protein and the surface is much larger than that of the smaller protein. The effect of surface conformational changes of the adsorbed proteins in the time-dependent adsorption is studied in detail. The theory predicts regimes of constant density and dynamic surface tension that are long lived but are only intermediates before the final approach to equilibrium. The implications of the findings to the

  8. Adsorption of chromium onto activated alumina: kinetics and thermodynamics studies.

    PubMed

    Marzouk, Ikhlass; Dammak, Lassaad; Hamrouni, Béchir

    2013-02-01

    In this study, the removal of chromium (VI) by adsorption on activated alumina was investigated and the results were fitted to Langmuir, Freundlich, Dubinin-Redushkevich, and Temkin adsorption models at various temperatures. The constants of each model were evaluated depending on temperature. Thermodynamic parameters for the adsorption system were determined at 10, 25 and 40 degrees C. (deltaH degrees = -21.18 kJ x mol(-1); deltaG degrees = -8.75 to -7.43 kJ x mol(-1) and deltaS degrees = -0.043 kJ x K(-1) x mol(-1)). The obtained values showed that chromium (VI) adsorption is a spontaneous and exothermic process. The kinetic process was evaluated by first-order, second-order and Elovich kinetic models.

  9. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: kinetic and equilibrium studies.

    PubMed

    Prasad, Kumar Suranjit; Amin, Yesha; Selvaraj, Kaliaperumal

    2014-07-15

    The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV-vis absorption peak at 420nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18nm to 42nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like NH, CO, CN and CC were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R(2) value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F(-) onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water.

  10. Adsorption and desorption kinetics of carbofuran in acid soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Pateiro-Moure, Miriam; Nóvoa-Muñoz, Juan Carlos; Simal-Gándara, Jesús; Arias-Estévez, Manuel

    2011-06-15

    Carbofuran adsorption and desorption were investigated in batch and stirred flow chamber (SFC) tests. The carbofuran adsorption capacity of the soils was found to be low and strongly dependent on their clay and organic carbon contents. Carbofuran sorption was due mainly (>80%) to fast adsorption processes governed by intraparticle diffusion. The adsorption kinetic constant for the pesticide ranged from 0.047 to 0.195 min(-1) and was highly correlated with constant n in the Freundlich equation (r=0.965, P<0.05). Batch tests showed carbofuran desorption to be highly variable and negatively correlated with eCEC and the clay content. The SFC tests showed that soil organic carbon (C) plays a key role in the irreversibility of carbofuran adsorption. Carbofuran desorption increased rapidly at C contents below 4%. The desorption kinetic constant for the compound (0.086-0.195 min(-1)) was generally higher than its adsorption kinetic constant; therefore, carbofuran is more rapidly desorbed than it is adsorbed in soil.

  11. Kinetic studies of microfabricated biosensors using local adsorption strategy.

    PubMed

    Zhang, Menglun; Huang, Jingze; Cui, Weiwei; Pang, Wei; Zhang, Hao; Zhang, Daihua; Duan, Xuexin

    2015-12-15

    Micro/nano scale biosensors integrated with the local adsorption mask have been demonstrated to have a better limit of detection (LOD) and less sample consumptions. However, the molecular diffusions and binding kinetics in such confined droplet have been less studied which limited further development and application of the local adsorption method and imposed restrictions on discovery of new signal amplification strategies. In this work, we studied the kinetic issues via experimental investigations and theoretical analysis on microfabricated biosensors. Mass sensitive film bulk acoustic resonator (FBAR) sensors with hydrophobic Teflon film covering the non-sensing area as the mask were introduced. The fabricated masking sensors were characterized with physical adsorption of bovine serum albumin (BSA) and specific binding of antibody and antigen. Over an order of magnitude improvement on LOD was experimentally monitored. An analytical model was introduced to discuss the target molecule diffusion and binding kinetics in droplet environment, especially the crucial effects of incubation time, which has been less covered in previous local adsorption related literatures. An incubation time accumulated signal amplification effect was theoretically predicted, experimentally monitored and carefully explained. In addition, device optimization was explored based on the analytical model to fully utilize the merits of local adsorption. The discussions on the kinetic issues are believed to have wide implications for other types of micro/nano fabricated biosensors with potentially improved LOD.

  12. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  13. Recyclable Mg-Al layered double hydroxides for fluoride removal: Kinetic and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-12-30

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg-Al LDH) and Cl(-) (Cl · Mg-Al LDH) were found to adsorb fluoride from aqueous solutions. Fluoride is removed by anion exchange in solution with NO3(-) and Cl(-) intercalated in the LDH interlayer. In both cases, the residual F concentration is lower than the effluent standards for F in Japan (8 mg/L). The rate-determining step in the removal of F using NO3 · Mg-Al and Cl · Mg-Al LDH is chemical adsorption involving F(-) anion exchange with intercalated NO3(-) and Cl(-) ions. The removal of F is described by pseudo-second-order reaction kinetics, with Langmuir-type adsorption. The values obtained for the maximum adsorption and the equilibrium adsorption constant are respectively 3.3 mmol g(-1) and 2.8 with NO3 · Mg-Al LDH, and 3.2 mmol g(-1) and 1.5 with Cl · Mg-Al LDH. The F in the F · Mg-Al LDH produced in these reactions was found to exchange with NO3(-) and Cl(-) ions in solution. The regenerated NO3 · Mg-Al and Cl · Mg-Al LDHs thus obtained can be used once more to capture aqueous F. This suggests that NO3 · Mg-Al and Cl · Mg-Al LDHs can be recycled and used repeatedly for F removal.

  14. Batch adsorption and kinetics of chromium (VI) removal from aqueous solutions by Ocimum americanum L. seed pods.

    PubMed

    Levankumar, L; Muthukumaran, V; Gobinath, M B

    2009-01-30

    In this paper batch removal of hexavalent chromium from aqueous solutions by Ocimum americanum L. seed pods was investigated. The optimum pH and shaker speed were found to be 1.5 and 121 rpm. The equilibrium adsorption data fit well with Langmuir isotherm. The maximum chromium adsorption capacity determined from Langmuir isotherm was 83.33 mg/g dry weight of seed pods at pH 1.5 and shaker speed 121 rpm. The batch experiments were conducted to study the adsorption kinetics of chromium removal for the concentrations of 100 mg/L, 150 mg/L and 200mg/L chromium solutions. The adsorbent dosage was 8 g dry seed pods/L. The removal efficiency observed for all the three chromium concentrations was 100%. The equilibrium was achieved less than 120 min for all the three concentrations. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the chromium adsorption kinetics of O. americanum L. seed pods was well explained by second order kinetic model rather than first order model.

  15. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard C.; Howard, Jeanie; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The adsorptive equilibration of H2O a with montomorillonite, a smectite clay has been measured. At low temperatures and pressures, equilibration can require many hours, effectively preventing smectites at the martian surface from responding rapidly to diurnal pressure and temperature variations.

  16. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at

  17. Equilibrium, kinetic and thermodynamic studies of acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent.

    PubMed

    Deniz, Fatih; Saygideger, Saadet D

    2010-07-01

    The biosorption of Acid Orange 52 onto the leaf powder of Paulownia tomentosa Steud. was studied in a batch adsorption system to estimate the equilibrium, kinetic and thermodynamic parameters as a function of solution pH, biosorbent concentration, dye concentration, biosorbent size, temperature and contact time. The Langmuir, Freundlich and Temkin isotherm models were used for modeling the biosorption equilibrium. The experimental equilibrium data could be well interpreted by the Temkin and Langmuir isotherms with maximum adsorption capacity of 10.5 mg g(-1). In order to state the sorption kinetics, the fits of pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion kinetic models were investigated. It was obtained that the biosorption process followed the pseudo-second order rate kinetics. Thermodynamic studies indicated that this system was exothermic process. The results revealed that P. tomentosa leaf powder could be an efficient biosorbent for the treatment of wastewater containing Acid Orange 52.

  18. Kinetic and equilibrium lithium acidities of arenes: theory and experiment.

    PubMed

    Streitwieser, Andrew; Shah, Kamesh; Reyes, Julius R; Zhang, Xingyue; Davis, Nicole R; Wu, Eric C

    2010-08-26

    Kinetic acidities of arenes, ArH, measured some time ago by hydrogen isotope exchange kinetics with lithium cyclohexylamide (LiCHA) in cyclohexylamine (CHA) show a wide range of reactivities that involve several electronic mechanisms. These experimental reactivities give an excellent Brønsted correlation with equilibrium lithium ion pair acidities (pK(Li)) derived as shown recently from computations of ArLi.2E (E = dimethyl ether). The various electronic mechanisms are well modeled by ab initio HF calculations with modest basis sets. Additional calculations using NH(3) as a model for CHA further characterize the TS of the exchange reactions. The slopes of Brønsted correlations of ion pair systems can vary depending on the nature of the ion pairs.

  19. Investigation of molecule-adsorption kinetics by a pulsed laser desorption technique

    NASA Astrophysics Data System (ADS)

    Varakin, V. N.; Lozovskii, A. D.; Panesh, A. M.; Simonov, A. P.

    1987-02-01

    The laser thermal desorption technique is used to measure the adsorption kinetics of SO2 and CO molecules on stainless steel with the aim of investigating the initial stage of oxidation of the steel by adsorbed CO molecules. Attention is given to the dependence of the rate of establishment of the equilibrium concentration of adsorbed molecules on SO2-gas pressure; CO adsorption kinetics on stainless steel at a gas pressure of 9 x 10 to the -8th torr; and the dependence of the concentration of adsorbed CO molecules on exposure in the gas at a pressure of 9 x 10 to the -8th torr under irradiation by laser pulses with repetition periods of 1-2, 2-4, 3-6, and 4-8 min.

  20. Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: kinetics and isotherm studies.

    PubMed

    Wan Ngah, W S; Hanafiah, M A K M; Yong, S S

    2008-08-01

    The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.

  1. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  2. Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Li, Qingzhu; Chai, Liyuan; Yang, Zhihui; Wang, Qingwei

    2009-01-01

    Spent grain, a main by-product of the brewing industry, is available in large quantities, but its main application has been limited to animal feeding. Nevertheless, in this study, spent grain modified with 1 M NaCl solution as a novel adsorbent has been used for the adsorption of Pb(II) in aqueous solutions. Isotherms, kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain were studied. The equilibrium data were well fitted with Langmuir, Freundlich and Dubinin-Radushkevick (D-R) isotherm models. The kinetics of Pb(II) adsorption followed pseudo-second-order model, using the rate constants of pseudo-second-order model, the activation energy ( Ea) of Pb(II) adsorption was determined as 12.33 kJ mol -1 according to the Arrhenius equation. Various thermodynamic parameters such as Δ Gads, Δ Hads and Δ Sads were also calculated. Thermodynamic results indicate that Pb(II) adsorption onto modified spent grain is a spontaneous and endothermic process. Therefore, it can be concluded that modified spent grain as a new effective adsorbent has potential for Pb(II) removal from aqueous solutions.

  3. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.

  4. Evaluation of a predictive model for air/surface adsorption equilibrium constants and enthalpies.

    PubMed

    Arp, Hans Peter H; Goss, Kai-Uwe; Schwarzenbach, René P

    2006-01-01

    A model used to predict equilibrium adsorption to surfaces using a poly-parameter linear free-energy relationship as well as an empirical model used to predict enthalpies of adsorption of volatile compounds were evaluated with new experimental data to cover semivolatile compounds and a larger variability of compound classes. Equilibrium adsorption constants on a quartz surface ranging over seven orders of magnitude were measured for 142 compounds, and enthalpies of adsorption on a quartz surface from -33.7 to -99.8 kJ/mol were measured for 76 compounds. Agreement between experimental and predicted data was within a factor of two (82.1%) or three (100.0%) for the equilibrium adsorption constants and within 20% for the enthalpy of adsorption values. Thus, the scatter in the validation data sets reported here were practically the same as that for the calibration data sets used to derive the models. The few outliers that we identified in the prediction of equilibrium adsorption constants likely are caused by either shortcomings of the reported sorbate parameters or the occurrence of chemical speciation in the water layer on the surface of the quartz.

  5. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  6. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies.

    PubMed

    Lim, Chi Kim; Bay, Hui Han; Neoh, Chin Hong; Aris, Azmi; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-10-01

    In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer-Emmett-Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet-visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.

  7. Minimizing adsorption of histidine-tagged proteins for the study of protein-deoxyribonucleic acid interactions by kinetic capillary electrophoresis.

    PubMed

    Liyanage, Ruchi; Krylova, Svetlana M; Krylov, Sergey N

    2013-12-27

    Affinity interactions between DNA and proteins play a crucial role in many cellular processes. Kinetic Capillary Electrophoresis is a highly efficient tool for kinetic and equilibrium studies of protein-DNA interactions. Recombinant proteins, which are typically used for in vitro studies of protein-DNA interactions, are often expressed with a His tag to aid in their purification. In this work, we study how His tags affect Kinetic Capillary Electrophoresis analysis of protein-DNA interactions. We found that the addition of a His tag can increase or decrease protein adsorption to a bare-silica capillary wall, dependent on the protein. For Kinetic Capillary Electrophoresis measurements, it is essential to have as little protein adsorption as possible. We screened a number of capillary coatings to reduce adsorption of the His-tagged DNA mismatch repair protein MutS to the capillary wall and found that UltraTrol LN was the most effective coating. The effectiveness of the coating was confirmed with the prevention of adsorption of His-tagged fat mass and obesity-associated protein. Under typical conditions, the coating reduced protein adsorption to a level at which accurate Kinetic Capillary Electrophoresis analysis of protein-DNA interactions was possible. We further used Kinetic Capillary Electrophoresis to study how the His tag affected Kd of protein-DNA interactions for the MutS protein. Using UltraTrol LN, we found that the effect of the His tag was insignificant.

  8. Toxic metals biosorption by Jatropha curcas deoiled cake: equilibrium and kinetic studies.

    PubMed

    Rawat, Anand P; Rawat, Monica; Rai, J P N

    2013-08-01

    The equilibrium sorption of Cr(VI) and Cu(II) from aqueous solution using Jatropha curcas deoiled cake, has been studied with respect to adsorbent dosage, contact time, pH, and initial metal concentration in batch mode experiments. Removal of Cu(II) by deoiled cake was greater than that of Cr(VI). The adsorbent chemical characteristics, studied by Fourier transform-infrared analysis, suggested that the presence of Cr(VI) and Cu(II) in the biomass influenced the bands corresponding to hydroxyl and carboxyl groups. Desorption studies revealed that maximum metals recovery was achieved by HNO3 followed by CH3COOH and HCl. The Freundlich isotherm model showed good fit to the equilibrium adsorption data. The adsorption kinetics followed the pseudo-second-order model, which provided the best correlation for the biosorption process, and suggested that J. curcas deoiled cake can be used as an efficient biosorbent over other commonly used sorbents for decontamination of Cr(VI)- and Cu(II)-containing wastewater.

  9. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.

    PubMed

    Dickson, Dionne; Liu, Guangliang; Cai, Yong

    2017-01-15

    Iron (Fe) nanoparticles, e.g., zerovalent iron (ZVI) and iron oxide nanoparticles (IONP), have been used for remediation and environmental management of arsenic (As) contamination. These Fe nanoparticles, although originally nanosized, tend to form aggregates, in particular in the environment. The interactions of As with both nanoparticles and micron-sized aggregates should be considered when these Fe nanomaterials are used for mitigation of As issue. The objective of this study was to compare the adsorption kinetics and isotherm of arsenite (As(III)) and arsenate (As(V)) on bare hematite nanoparticles and aggregates and how this affects the fate of arsenic in the environment. The adsorption kinetic process was investigated with regards to the aggregation of the nanoparticles and the type of sorbed species. Kinetic data were best described by a pseudo second-order model. Both As species had similar rate constants, ranging from 3.82 to 6.45 × 10(-4) g/(μg·h), as rapid adsorption occurred within the first 8 h regardless of particle size. However, hematite nanoparticles and aggregates showed a higher affinity to adsorb larger amounts of As(V) (4122 ± 62.79 μg/g) than As(III) (2899 ± 71.09 μg/g) at equilibrium. We were able to show that aggregation and sedimentation of hematite nanoparticles occurs during the adsorption process and this might cause the immobilization and reduced bioavailability of arsenic. Isotherm studies were described by the Freundlich model and it confirmed that hematite nanoparticles have a significantly higher adsorption capacity for both As(V) and As(III) than hematite aggregates. This information is useful and can assist in predicting arsenic adsorption behavior and assessing the role of iron oxide nanoparticles in the biogeochemical cycling of arsenic.

  10. Effects of excluded surface area and adsorbate clustering on surface adsorption of proteins. II. Kinetic models.

    PubMed Central

    Minton, A P

    2001-01-01

    Models for equilibrium surface adsorption of proteins have been recently proposed (Minton, A. P., 2000. Biophys. Chem. 86:239-247) in which negative cooperativity due to area exclusion by adsorbate molecules is compensated to a variable extent by the formation of a heterogeneous population of monolayer surface clusters of adsorbed protein molecules. In the present work this concept is extended to treat the kinetics of protein adsorption. It is postulated that clusters may grow via two distinct kinetic pathways. The first pathway is the diffusion of adsorbed monomer to the edge of a preexisting cluster and subsequent accretion. The second pathway consists of direct deposition of a monomer in solution onto the upper (solution-facing) surface of a preexisting cluster ("piggyback" deposition) and subsequent incorporation into the cluster. Results of calculations of the time course of adsorption, carried out for two different limiting models of cluster structure and energetics, show that in the absence of piggyback deposition, enhancement of the tendency of adsorbate to cluster can reduce, but not eliminate, the negative kinetic cooperativity due to surface area exclusion by adsorbate. Apparently noncooperative (Langmuir-like) and positively cooperative adsorption progress curves, qualitatively similar to those reported in several published experimental studies, require a significant fraction of total adsorption flux through the piggyback deposition pathway. According to the model developed here and in the above-mentioned reference, the formation of surface clusters should be a common concomitant of non-site-specific surface adsorption of proteins, and may provide an important mechanism for assembly of organized "protein machines" in vivo. PMID:11259279

  11. Thermodynamic modeling of solute adsorption equilibrium from near-critical carbon dioxide.

    PubMed

    Yang, Xiaoning

    2004-05-15

    Modeling of adsorption equilibrium for supercritical fluid mixtures, with as few parameters as possible, is important in applications of the technology of supercritical fluid adsorption. In this paper, a correlative model has been developed to represent the adsorption equilibria of solutes from the near-critical CO(2) fluid. A two-dimensional van der Waals equation of state and the three-dimensional P - R equation of state were used to describe the adsorbed and bulk phases, respectively. This model contains five parameters for adsorption equilibrium isotherms at finite concentrations and two parameters for adsorption equilibrium constants at infinite dilution. All the parameters are independent of temperature and pressure. By applying the model to the experimental data from the literature, it was shown that this model is capable of describing the adsorption behavior of solutes from supercritical carbon dioxide over relatively wide temperature and pressure ranges. In addition, the adsorption behavior of supercritical fluid mixtures was investigated at finite and infinite dilution conditions.

  12. From surfactant adsorption kinetics to asymmetric nanomembrane mechanics: pendant drop experiments with subphase exchange.

    PubMed

    Ferri, James K; Kotsmar, Csaba; Miller, Reinhard

    2010-12-15

    Adsorption equilibrium is the state in which the chemical potential of each species in the interface and bulk is the same. Dynamic phenomena at fluid-fluid interfaces in the presence of surface active species are often probed by perturbing an interface or adjoining bulk phase from the equilibrium state. Many methods designed for studying kinetics at fluid-fluid interfaces focus on removing the system from equilibrium through dilation or compression of the interface. This modifies the surface excess concentration Γ(i) and allows the species distribution in the bulk C(i) to respond. There are only a few methods available for studying fluid-fluid interfaces which seek to control C(i) and allow the interface to respond with changes to Γ(i). Subphase exchange in pendant drops can be achieved by the injection and withdrawal of liquid into a drop at constant volumetric flow rate R(E) during which the interfacial area and drop volume V(D) are controlled to be approximately constant. This can be accomplished by forming a pendant drop at the tip of two coaxial capillary tubes. Although evolution of the subphase concentration C(i)(t) is dictated by extrinsic factors such as R(E) and V(D), complete subphase exchange can always be attained when a sufficient amount of liquid is used. This provides a means to tailor driving forces for adsorption and desorption in fluid-fluid systems and in some cases, fabricate interfacial materials of well-defined composition templated at these interfaces. The coaxial capillary pendant drop (CCPD) method opens a wide variety of experimental possibilities. Experiments and theoretical frameworks are reviewed for the study of surfactant exchange kinetics, macromolecular adsorption equilibrium and dynamics, as well as the fabrication of a wide range of soft surface materials and the characterization of their mechanics. Future directions for new experiments are also discussed.

  13. A general model for kinetics of heavy metal adsorption and desorption on soils.

    PubMed

    Shi, Zhenqing; Di Toro, Dominic M; Allen, Herbert E; Sparks, Donald L

    2013-04-16

    In this study, we propose a general kinetics model for heavy metal adsorption and desorption reactions in soils when soil organic matter (SOM) is the dominant adsorbent. The kinetics model, integrated with the equilibrium speciation model WHAM VI, specifically considers metal reactions with SOM and dissolved organic matter (DOM) and accounts for the variations of solution chemistry. Metal reactions with SOM are associated with two groups of sites, one from the monodentate sites and another one from the bidentate and tridentate sites. There are three model parameters, desorption rate coefficients of the two groups of SOM sites for each metal and reactive organic carbon (ROC) for each soil. The applicability of the kinetics model was mainly examined with three elements, Cu, Pb, and Zn, which demonstrate different binding ability with organic matter. The kinetic data were collected with a stirred-flow reactor covering a wide range of experimental conditions, including varying SOM, DOM, Ca, and metal concentrations, reaction pHs, and different flow rates. The kinetics model has been successfully applied to describe heavy metal adsorption and desorption on soils under various reaction conditions.

  14. Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations

    NASA Astrophysics Data System (ADS)

    Xu, Kun; He, Xin; Cai, Chunpei

    2008-07-01

    It is well known that for increasingly rarefied flowfields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. For the high speed diatomic molecular flow in the transitional regime, the inaccuracies are partially attributed to the single temperature approximations in the Navier-Stokes equations. Here, we propose a continuum multiple temperature model based on the Bhatnagar-Gross-Krook (BGK) equation for the non-equilibrium flow computation. In the current model, the Landau-Teller-Jeans relaxation model for the rotational energy is used to evaluate the energy exchange between the translational and rotational modes. Due to the multiple temperature approximation, the second viscosity coefficient in the Navier-Stokes equations is replaced by the temperature relaxation term. In order to solve the multiple temperature kinetic model, a multiscale gas-kinetic finite volume scheme is proposed, where the gas-kinetic equation is numerically solved for the fluxes to update the macroscopic flow variables inside each control volume. Since the gas-kinetic scheme uses a continuous gas distribution function at a cell interface for the fluxes evaluation, the moments of a gas distribution function can be explicitly obtained for the multiple temperature model. Therefore, the kinetic scheme is much more efficient than the DSMC method, especially in the near continuum flow regime. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate, the computational results are validated in comparison with experimental measurements and DSMC solutions.

  15. Equilibrium studies of copper ion adsorption onto palm kernel fibre.

    PubMed

    Ofomaja, Augustine E

    2010-07-01

    The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r(2), and the non-linear Chi-square, chi(2) error analysis. The results revealed that sorption was pH dependent and increased with increasing solution pH above the pH(PZC) of the palm kernel fibre with an optimum dose of 10g/dm(3). The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 x 10(-4)mol/g at 339K. The sorption equilibrium constant, K(a), increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B(1), with increasing temperature. The Dubinin-Radushkevich (D-R) isotherm parameter, free energy, E, was in the range of 15.7-16.7kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO(3) and CH(3)COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic.

  16. Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Jia, Ruijan

    2010-05-01

    Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm

  17. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste.

    PubMed

    Hameed, B H

    2008-06-15

    In this work, sunflower (Helianthus annuus L.) seed hull (SSH), an agricultural waste, was evaluated for its ability to remove methyl violet (MV) from aqueous solutions. Sorption isotherm of MV onto the SSH was determined at 30 degrees C with the initial concentrations of MV in the range of 25-300 mg/L. The equilibrium data were analyzed using the Langmuir, Freundlich and Temkin isotherm models. The equilibrium process was described well by the Freundlich isotherm model. The maximum SSH sorption capacity was found to be 92.59 mg/L at 30 degrees C. The kinetic data were studied in terms of the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The pseudo-second-order model best described the sorption process. A single-stage batch-adsorber design of the adsorption of MV onto SSH was studied based on the Freundlich isotherm equation. The results indicated that sunflower seed hull was an attractive candidate for removing methyl violet from aqueous solution.

  18. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements.

    PubMed

    Luengo, Carina; Brigante, Maximiliano; Antelo, Juan; Avena, Marcelo

    2006-08-15

    The adsorption kinetics of phosphate on goethite has been studied by batch adsorption experiments and by in situ ATR-IR spectroscopy at different pH, initial phosphate concentrations and stirring rates. Batch adsorption results are very similar to those reported by several authors, and show a rather fast initial adsorption taking place in a few minutes followed by a slower process taking place in days or weeks. The adsorption kinetics could be also monitored by integrating the phosphate signals obtained in ATR-IR experiments, and a very good agreement between both techniques was found. At pH 4.5 two surface complexes, the bidentate nonprotonated (FeO)(2)PO(2) and the bidentate protonated (FeO)(2)(OH)PO complexes, are formed at the surface. There are small changes in the relative concentrations of these species as the reaction proceeds, and they seem to evolve in time rather independently. At pH 7.5 and 9 the dominating surface species is (FeO)(2)PO(2), which is accompanied by an extra unidentified species at low concentration. They also seem to evolve independently as the reaction proceeds. The results are consistent with a mechanism that involve a fast adsorption followed by a slow diffusion into pores, and are not consistent with surface precipitation of iron phosphate.

  19. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics.

    PubMed

    Vilvanathan, Sowmya; Shanthakumar, S

    2016-10-02

    The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g(-1), respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.

  20. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk.

    PubMed

    Vadivelan, V; Kumar, K Vasanth

    2005-06-01

    Batch experiments were carried out for the sorption of methylene blue onto rice husk particles. The operating variables studied were initial solution pH, initial dye concentration, adsorbent concentration, and contact time. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Langmuir isotherm equation. The monolayer sorption capacity of rice husks for methylene blue sorption was found to be 40.5833 mg/g at room temperature (32 degrees C). The sorption was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the sorption kinetics was found to follow a pseudo-second-order kinetic model. Also the applicability of pseudo second order in modeling the kinetic data was also discussed. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. The average external mass transfer coefficient and intraparticle diffusion coefficient was found to be 0.01133 min(-1) and 0.695358 mg/g min0.5. Analysis of sorption data using a Boyd plot confirms that external mass transfer is the rate limiting step in the sorption process. The effective diffusion coefficient, Di was calculated using the Boyd constant and was found to be 5.05 x 10(-04) cm2/s for an initial dye concentration of 50 mg/L. A single-stage batch-adsorber design of the adsorption of methylene blue onto rice husk has been studied based on the Langmuir isotherm equation.

  1. Parametric and adsorption kinetic studies of methylene blue removal from simulated textile water using durian (Durio zibethinus murray) skin.

    PubMed

    Anisuzzaman, S M; Joseph, Collin G; Krishnaiah, D; Bono, A; Ooi, L C

    2015-01-01

    In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2-10 mg/L), biosorbent dosages (0.3-0.7 g) and pH solution (4-9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R(2) < 0.9918.

  2. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes.

    PubMed

    Ahmad, Mahtab; Lee, Sang Soo; Oh, Sang-Eun; Mohan, Dinesh; Moon, Deok Hyun; Lee, Young Han; Ok, Yong Sik

    2013-12-01

    Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8-10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars.

  3. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon.

    PubMed

    Demirbas, E; Kobya, M; Sulak, M T

    2008-09-01

    The preparation of activated carbon from apricot stone with H(2)SO(4) activation and its ability to remove a basic dye, astrazon yellow 7 GL, from aqueous solutions were reported in this study. The adsorbent was characterized by FTIR, BET and SEM, respectively. The effects of various experimental parameters, such as initial dye concentration, pH, adsorbent dosage and temperature were investigated in a batch-adsorption technique. The optimum conditions for removal of the basic dye were found to be pH 10, 6g/l of adsorbent dosage and equilibrium time of 35 min, respectively. A comparison of three kinetic models, the pseudo first-order, second-order and diffusion controlled kinetic models, on the basic dye-adsorbent system showed that the removal rate was heavily dependent on diffusion controlled kinetic models. The adsorption isotherm data were fitted well to Langmuir and Freundlich isotherms. The adsorption capacity was calculated as 221.23 mg/g at 50 degrees C. Thermodynamics parameters were also evaluated. The values of enthalpy and entropy were 49.87 kJ/mol and 31.93 J/mol K, respectively, indicating that this process was spontaneous and endothermic. The experimental studies were indicated that ASC had the potential to act as an alternative adsorbent to remove the basic dye from aqueous solutions.

  4. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone.

    PubMed

    Asgari, Ghorban; Roshani, Babak; Ghanizadeh, Ghader

    2012-05-30

    In this research work, pumice that is functionalized by the cationic surfactant, hexadecyltrimethyl ammonium (HDTMA), is used as an adsorbent for the removal of fluoride from drinking water. This work was carried out in two parts. The effects of HDTMA loading, pH (3-10), reaction time (5-60 min) and the adsorbent dosage (0.15-2.5 g L(-1)) were investigated on the removal of fluoride as a target contaminate from water through the design of different experimental sets in the first part. The results from this first part revealed that surfactant-modified pumice (SMP) exhibited the best performance at dose 0.5 g L(-1), pH 6, and it adsorbs over 96% of fluoride from a solution containing 10 mg L(-1) fluoride after 30 min of mixing time. The four linear forms of the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms model were applied to determine the best fit of equilibrium expressions. Apart from the regression coefficient (R(2)), four error functions were used to validate the isotherm and kinetics data. The experimental adsorption isotherm complies with Langmuir equation model type 1. The maximum amount of adsorption (Q(max)) was 41 mg g(-1). The kinetic studies indicated that the adsorption of fluoride best fitted with the pseudo-second-order kinetic type 1. Thermodynamic parameters evaluation of fluoride adsorption on SMP showed that the adsorption process under the selected conditions was spontaneous and endothermic. The suitability of SMP in defluoridation at field condition was investigated with natural groundwater samples collected from a nearby fluoride endemic area in the second part of this study. Based on this study's results, SMP was shown to be an affordable and a promising option for the removal of fluoride in drinking water.

  5. Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis.

    PubMed

    Chen, Zhonghui; Zhang, Jianan; Fu, Jianwei; Wang, Minghuan; Wang, Xuzhe; Han, Runping; Xu, Qun

    2014-05-30

    Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) nanotubes, an excellent adsorbent, were successfully synthesized by an in situ template method and used for the removal of methylene blue (MB) from aqueous solution. The morphology and structures of as-synthesized PZS nanotubes were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy and N2 adsorption/desorption isotherms. The effects of temperature, concentration, pH and contact time on MB adsorption were studied. It was favorable for adsorption under the condition of basic and high temperature. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics were more accurately described by the pseudo-second-order model. The equilibrium isotherms were conducted using Freundlich and Langmuir models. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.9933, equilibrium absorption capacity of 69.16mg/g and the corresponding contact time of 15min. Thermodynamic analyses showed that MB adsorption onto the PZS nanotubes was endothermic and spontaneous and it was also a physisorption process.

  6. Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD)

    NASA Astrophysics Data System (ADS)

    Salvage, Karen M.; Yeh, Gour-Tsyh

    1998-08-01

    This paper presents the conceptual and mathematical development of the numerical model titled BIOKEMOD, and verification simulations performed using the model. BIOKEMOD is a general computer model for simulation of geochemical and microbiological reactions in batch aqueous solutions. BIOKEMOD may be coupled with hydrologic transport codes for simulation of chemically and biologically reactive transport. The chemical systems simulated may include any mixture of kinetic and equilibrium reactions. The pH, pe, and ionic strength may be specified or simulated. Chemical processes included are aqueous complexation, adsorption, ion-exchange and precipitation/dissolution. Microbiological reactions address growth of biomass and degradation of chemicals by microbial metabolism of substrates, nutrients, and electron acceptors. Inhibition or facilitation of growth due to the presence of specific chemicals and a lag period for microbial acclimation to new substrates may be simulated if significant in the system of interest. Chemical reactions controlled by equilibrium are solved using the law of mass action relating the thermodynamic equilibrium constant to the activities of the products and reactants. Kinetic chemical reactions are solved using reaction rate equations based on collision theory. Microbiologically mediated reactions for substrate removal and biomass growth are assumed to follow Monod kinetics modified for the potentially limiting effects of substrate, nutrient, and electron acceptor availability. BIOKEMOD solves the ordinary differential and algebraic equations of mixed geochemical and biogeochemical reactions using the Newton-Raphson method with full matrix pivoting. Simulations may be either steady state or transient. Input to the program includes the stoichiometry and parameters describing the relevant chemical and microbiological reactions, initial conditions, and sources/sinks for each chemical species. Output includes the chemical and biomass concentrations

  7. Competitive adsorption of metal cations onto two gram positive bacteria: testing the chemical equilibrium model

    NASA Astrophysics Data System (ADS)

    Fowle, David A.; Fein, Jeremy B.

    1999-10-01

    In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems. Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex

  8. Kinetic Batch Soil Adsorption Studies of 2, 4-dinitroanisole (DNAN)

    NASA Astrophysics Data System (ADS)

    Arthur, J.; Mark, N. W.; Taylor, S.; Brusseau, M. L.; Dontsova, K.

    2014-12-01

    Currently the explosive 2, 4, 6- trinitrotoluene (TNT) is used as a main ingredient in munitions; however the compound has failed to meet sensitivity requirements. The replacement compound being tested is 2, 4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and exposure potential. DNAN has been shown to have some human and environmental toxicity. The objective of this study was to investigate the environmental fate of DNAN in soil, with a specific focus on sorption processes. Batch experiments were conducted using 11 soils collected from military installations located across the United States. The soils were characterized for pH, specific surface area, electrical conductivity, cation exchange capacity, and organic carbon content. Adsorption kinetic data determined at room temperature were fitted using the first order kinetic equation. Adsorption isotherms were fitted with linear and Freundlich isotherm equations. The magnitudes of the linear adsorption coefficients ranged from 0.6 to 6 cm3/g. Results indicated that the adsorption of DNAN is strongly dependent on the amount of organic carbon present in the soil.

  9. Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth.

    PubMed

    El-Khaiary, Mohammad I

    2007-08-17

    Kinetics adsorption experiments were conducted to evaluate the adsorption characteristics of a cationic dye (methylene blue, MB) onto nitric-acid treated water-hyacinth (N-WH). Results showed that N-WH can remove MB effectively from aqueous solution. The loading of MB onto N-WH was found to increase significantly with increasing the initial MB concentration, but the residual concentration of MB in solution also increased. A complete removal of MB from solution was only achieved at the lower range of initial MB concentration (less than 286 mg/L). Temperature had a slight effect on the amount adsorbed at equilibrium. The adsorption rate was fast and more than half of the adsorbed-MB was removed in the first 15 min at room temperature, which makes the process practical for industrial application. The adsorption kinetics at room temperature could be expressed by the pseudo second order model, while at higher temperatures (45-80 degrees C) and low MB concentration (97 mg/L) both Lagergren's model and the pseudo second order model can be used to predict the kinetics of adsorption. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then gradually changed to intraparticle diffusion control at a later stage. The initial period where external mass transfer is the rate controlling step was found to increase with increasing initial MB concentration and decrease with increasing temperature. The increase in temperature was also found to increase the rate of adsorption and reduce the time required to reach equilibrium. The initial rate of adsorption, h(o), was calculated, it was found to increase with increasing temperature, while the increase in MB concentration decreased h(o) at the lower concentration range then increased h(o) again at high concentration. The value of the activation coefficient, E, was found to be 8.207 kJ/mol, which indicates a diffusion controlled process.

  10. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  11. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies

    PubMed Central

    Girish, C. R.; Ramachandra Murty, V.

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions. PMID:27350997

  12. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies.

    PubMed

    Girish, C R; Ramachandra Murty, V

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298-328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions.

  13. Adsorption and desorption kinetics of (60)Co and (137)Cs in fresh water rivers.

    PubMed

    Fiengo Pérez, Fabricio; Sweeck, Lieve; Bauwens, Willy; Van Hees, May; Elskens, Marc

    2015-11-01

    Radionuclides released in water systems--as well as heavy metals and organic toxicants--sorb to both the suspended solid particles and the bed sediments. Sorption is usually represented mathematically by the distribution coefficient. This approach implies equilibrium between phases and instantaneous fixation (release) of the pollutant onto (from) the surface of the soil particle. However, empirical evidence suggests that for some radionuclides the fixation is not achieved instantaneously and that the reversibility of the process can be slow. Here the adsorption/desorption kinetics of (60)Co and (137)Cs in fresh water environments were simulated experimentally and later on modelled mathematically, while the influence of the most relevant factors affecting the sorption were taken into account. The experimental results suggest that for adsorption and the desorption more than 24 h are needed to reach equilibrium, moreover, It was observed that the desorption rate constants for (60)Co and (137)Cs lie within ranges which are of two to three orders of magnitude lower than the adsorption rate constants.

  14. Arsenate adsorption on ruthenium oxides: A spectroscopic and kinetic investigation

    SciTech Connect

    Luxton, Todd P.; Eick, Matthew J.; Scheckel, Kirk G.

    2008-12-08

    Arsenate adsorption on amorphous (RuO{sub 2} {center_dot} 1.1H{sub 2}O) and crystalline (RuO{sub 2}) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was used to determine the local coordination environment of adsorbed arsenate. Additionally, pressure-jump (p-jump) relaxation spectroscopy was used to investigate the kinetics of arsenate adsorption/desorption on ruthenium oxides. Chemical relaxations resulting from the induced pressure change were monitored via electrical conductivity detection. EXAFS data were collected for two initial arsenate solution concentrations, 3 and 33 mM at pH 5. The collected spectra indicated a similar coordination environment for arsenate adsorbed to RuO{sub 2} {center_dot} 1.1H{sub 2}O for both arsenate concentrations. In contrast the EXAFS spectra of RuO{sub 2} indicated differences in the local coordination environments for the crystalline material with increasing arsenate concentration. Data analysis indicated that both mono- and bidentate surfaces complexes were present on both RuO{sub 2} {center_dot} 1.1H{sub 2}O and RuO{sub 2}. Relaxation spectra from the pressure-jump experiments of both ruthenium oxides resulted in a double relaxation event. Based on the relaxation spectra, a two step reaction mechanism for arsenate adsorption is proposed resulting in the formation of a bidentate surface complex. Analysis of the kinetic and spectroscopic data suggested that while there were two relaxation events, arsenate adsorbed to ruthenium oxide surfaces through both mono- and bidentate surface complexes.

  15. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples

    NASA Astrophysics Data System (ADS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions.

  16. Comparing the removal of perchlorate when using single-walled carbon nanotubes (SWCNTs) or granular activated carbon: adsorption kinetics and thermodynamics.

    PubMed

    Lou, Jie C; Hsu, Yung S; Hsu, Kai L; Chou, Ming S; Han, Jia Y

    2014-01-01

    This study aims to remove perchlorate using single-walled carbon nanotubes (SWCNTs) or granular activated carbon (GAC). Dynamic and equilibrium adsorption experiments were performed to evaluate the thermodynamic behavior of perchlorate on SWCNTs and GAC. Key parameters affecting the adsorption, such as pH, ionic strength, and temperature were studied. The experimental results showed that the dynamic adsorption experiment achieved equilibrium in approximately eight hours. The adsorption capacity increased as the concentration of perchlorate increased or as the ionic strength decreased. The selected adsorption models were the modified Freundlich, the pseudo-1st-order, and the pseudo-2nd-order equations. The results showed that the modified Freundlich equation best described the kinetic adsorption processes. The maximal adsorption capacities of GAC and SWCNTs were 33.87-28.21 mg/g and 13.64 - 10.03 mg/g, respectively, at a constant temperature between 5°C and 45°C. The thermodynamic parameters, such as the equilibrium constant (K0 ), the standard free energy changes (ΔG°), the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°), were obtained. The results of the isothermal equilibrium adsorption experiment showed that low pH levels, low ionic strength, and low-temperature conditions facilitated the perchlorate adsorption, indicating that GAC and SWCNTs are potential absorbents for water treatment.

  17. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon.

    PubMed

    Kavitha, D; Namasivayam, C

    2007-01-01

    Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon.

  18. Equilibrium and heat of adsorption for organic vapors and activated carbons

    SciTech Connect

    David Ramirez; Shaoying Qi; Mark J. Rood; K. James Hay

    2005-08-01

    Determination of the adsorption properties of novel activated carbons is important to develop new air quality control technologies that can solve air quality problems in a more environmentally sustainable manner. Equilibrium adsorption capacities and heats of adsorption are important parameters for process analysis and design. Experimental adsorption isotherms were thus obtained for relevant organic vapors with activated carbon fiber cloth (ACFC) and coal-derived activated carbon adsorbents (CDAC). The Dubinin-Astakhov (DA) equation was used to describe the adsorption isotherms. The DA parameters were analytically and experimentally shown to be temperature independent. The resulting DA equations were used with the Clausius-Clapeyron equation to analytically determine the isosteric heat of adsorption ({Delta}H{sub s}) of the adsorbate-adsorbent systems studied here. ACFC showed higher adsorption capacities for organic vapors than CDAC. {Delta}H{sub s} values for the adsorbates were independent of the temperature for the conditions evaluated. {Delta}H{sub s} values for acetone and benzene obtained in this study are comparable with values reported in the literature. This is the first time that {Delta}H{sub s} values for organic vapors and these adsorbents are evaluated with an expression based on the Polanyi adsorption potential and the Clausius-Clapeyron equation. 28 refs., 5 figs., 5 tabs., 3 appends.

  19. Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon.

    PubMed

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2015-01-08

    In this work, the results of equilibrium and dynamic adsorption tests of hexavalent chromium, Cr (VI), on activated carbon are presented. Adsorption isotherms were determined at different levels of pH and temperature. Dynamic tests were carried out in terms of breakthrough curves of lab-scale fixed bed column at different pH, inlet concentration and flow rate. Both the adsorption isotherms and the breakthrough curves showed non-linear and unconventional trends. The experimental results revealed that chromium speciation played a key role in the adsorption process, also for the occurrence of Cr(VI)-to-Cr(III) reduction reactions. Equilibrium tests were interpreted in light of a multi-component Langmuir model supported by ion speciation analysis. For the interpretation of the adsorption dynamic tests, a mass transfer model was proposed. Dynamic tests at pH 11 were well described considering the external mass transfer as the rate controlling step. Differently, for dynamic tests at pH 6 the same model provided a satisfying description of the experimental breakthrough curves only until a sorbent coverage around 1.6mgg(-1). Above this level, a marked reduction of the breakthrough curve slope was observed in response to a transition to an inter-particle adsorption mechanism.

  20. An eco-friendly dyeing of woolen yarn by Terminalia chebula extract with evaluations of kinetic and adsorption characteristics

    PubMed Central

    Shabbir, Mohd; Rather, Luqman Jameel; Shahid-ul-Islam; Bukhari, Mohd Nadeem; Shahid, Mohd; Ali Khan, Mohd; Mohammad, Faqeer

    2016-01-01

    In the present study Terminalia chebula was used as an eco-friendly natural colorant for sustainable textile coloration of woolen yarn with primary emphasis on thermodynamic and kinetic adsorption aspects of dyeing processes. Polyphenols and ellagitannins are the main coloring components of the dye extract. Assessment of the effect of pH on dye adsorption showed an increase in adsorption capacity with decreasing pH. Effect of temperature on dye adsorption showed 80 °C as optimum temperature for wool dyeing with T. chebula dye extract. Two kinetic equations, namely pseudo first-order and pseudo second-order equations, were employed to investigate the adsorption rates. Pseudo second-order model provided the best fit (R2 = 0.9908) to the experimental data. The equilibrium adsorption data were fitted by Freundlich and Langmuir isotherm models. The adsorption behavior accorded well (R2 = 0.9937) with Langmuir isotherm model. Variety of eco-friendly and sustainable shades were developed in combination with small amount of metallic mordants and assessed in terms of colorimetric (CIEL∗a∗b∗ and K/S) properties measured using spectrophotometer under D65 illuminant (10° standard observer). The fastness properties of dyed woolen yarn against light, washing, dry and wet rubbing were also evaluated. PMID:27222752

  1. Kinetic, equilibrium and thermodynamic studies for the removal of lead (II) and copper (II) ions from aqueous solutions by nanocrystalline TiO

    NASA Astrophysics Data System (ADS)

    Rashidi, Fatemeh; Sarabi, Reza Sadeghi; Ghasemi, Zinab; Seif, Ahmad

    2010-12-01

    Titanium dioxide nanocrystallites were synthesized as adsorbents through the hydrolysis of titanium tetrachloride as the precursor in hydrochloric acid. The product was analyzed by XRD, BET and SEM-EDX; analysis indicated that the particles were a mixture of 86.8% rutile and 13.2% anatase TiO 2 with spherical shapes. The adsorption of Pb (II) and Cu (II) metal ions from aqueous solution onto nano- TiO 2 were investigated with variations in pH, contact time, initial metal ion concentration and temperature. The kinetics, adsorption isotherm and adsorption thermodynamics of the heavy metals were studied. The kinetics data were analyzed by the pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models; the best correlation coefficients were obtained for the pseudo-second order kinetic model. The adsorption results obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms with the Freundlich isotherm giving the best fitting isotherm to the equilibrium data. The thermodynamic parameters ( ΔG°, ΔH° and ΔS°) were calculated and it was found that the adsorption process is spontaneous and endothermic and is favored at higher temperature.

  2. Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange.

    PubMed

    Fan, Jimin; Zhao, Zhihuan; Liu, Wenhui; Xue, Yongqiang; Yin, Shu

    2016-05-15

    The different crystal forms of nitrogen doped-titanium oxide (N-TiO2) with different particle sizes were produced by precipitation-solvothermal method and their adsorption mechanism were also investigated. The adsorption kinetics showed that rutile N-TiO2 displayed higher adsorption capacity than anatase for methyl orange (MO) and its adsorption behavior followed the pseudo-second-order kinetics. The equilibrium adsorption rate of N-TiO2 for MO was well fitted by the Langmuir isotherm model and the adsorption process was monolayer adsorption. The adsorption capacity decreased with increasing temperature. The average correlation coefficient was beyond 97%. The thermodynamic parameters (ΔaGm(ө), ΔaHm(ө), and ΔaSm(ө)) were calculated. It was found that anatase and rutile N-TiO2 had different adsorption enthalpy and entropy. The smaller the particle size, the greater the surface area and surface energy was, then ΔaGm(ө) decreased and the standard equilibrium constant increased at the same time. The adsorption process onto different crystalline phase N-TiO2 was exothermic and non-spontaneous.

  3. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.

    PubMed

    Arunarani, A; Chandran, Preethy; Ranganathan, B V; Vasanthi, N S; Sudheer Khan, S

    2013-02-01

    Basic Violet 3 and Acid Blue 93 are the most important group of synthetic colourants extensively used in textile industries for dyeing cotton, wool, silk and nylon. Release of these dye pollutants in to the environment adversely affects the human health and aquatic organisms. The present study we used Pseudomonas putida MTCC 4910 for the adsorptive removal of Basic Violet 3 and Acid Blue 93 from the aqueous solutions. The pH (4-9) and NaCl concentrations (1mM-1M) did not influence the adsorption process. The equilibrium adsorption process fitted well to Freundlich model than Langmuir model. The kinetics of adsorption fitted well by pseudo-second-order. Thus in the present study an attempt has been made to exploit the dye removal capability of P. putida MTCC 4910, and it was found to be an efficient microbe that could be used for bio removal of dyes from textile effluents.

  4. Kinetics of Copper Adsorption from Effluent Stream by ZeoliteNaX

    NASA Astrophysics Data System (ADS)

    Singh, Surinder; Sambi, S. S.; Sharma, S. K.; Pandey, Pankaj Kumar

    2010-06-01

    The batch experiments were conducted to study the copper (II) removal by ZeoliteNaX at temperature of 288+1 K, adsorbent dose of 2 g/L and contact time of 24 hour. Effects of pH, temperature, contact time and Cu (II) ion concentration by the adsorbent were investigated. The data were analyzed using the Langmuir, Freundlich and Temkin isotherms. Freundlich isotherm was found to correlate the adsorption of Cu (II) better and the mono-layer adsorption capacity for Cu (II) removal was 41.6 mg/g. The adsorbed amounts of Cu (II) reached equilibrium within 150 minutes. The four adsorption kinetic models namely, the first order equation, second order equations, pseudo-first order equation and pseudo second-order equations were also tested to fit the data. The pseudo-first-order equation was found to fit best for the experimental data. Thermodynamic analysis indicated the spontaneous and endothermic nature of the adsorption of Cu (II) by ZeoliteNaX.

  5. An Equilibrium and Kinetic Investigation of Salt-Cycloamylose Complexes

    DTIC Science & Technology

    1976-12-08

    Coneinut on reverse aide It necessary and identify by blo * number) Equilibrium constants inorganic anions Rate constants Ultrasonic relaxation Inclusion...The equilibrium constants and rate constants for the formation of inclusion complexes of cycloheptaamylose with small inorganic anions were measured by...of cyclo- amylose chemistry. Recently, equilibrium constants for cyclohexaamylose, sometimes denoted by a-CD, with various Tnorganic salts were

  6. Kinetic modeling of the adsorption of basic dyes by kudzu.

    PubMed

    Allen, Stephen J; Gan, Quan; Matthews, Ronan; Johnson, Pauline A

    2005-06-01

    The use of kudzu, a rapidly growing, high-climbing perennial leguminous vine, for the adsorption of basic dyes from aqueous solution has been investigated at various initial dye concentrations, masses of kudzu, and agitation rates. The extent and rate of adsorption of the three basic dyes (Basic Red 22, Basic Yellow 21, and Basic Blue 3) were analyzed using a pseudo-first-order and a pseudo-second-order kinetic model. While both rate mechanisms provided an acceptable degree of correlation with the experimental sorption rate data, the pseudo-second-order model gave a much higher degree of correlation, suggesting that this model could be used in design and simulation applications.

  7. The influence of protein aggregation on adsorption kinetics

    NASA Astrophysics Data System (ADS)

    Rovner, Joel; Roberts, Christopher; Furst, Eric; Hudson, Steven

    2015-03-01

    When proteins adsorb to an air-water interface they lower the surface tension and may form an age-dependent viscoelastic film. Protein adsorption to surfaces is relevant to both commercial uses and biological function. The rate at which the surface tension decreases depends strongly on temperature, solution pH, and protein structure. These kinetics also depend on the degree to which the protein is aggregated in solution. Here we explore these differences using Chymotrypsinogen as a model protein whose degree of aggregation is adjusted through controlled heat treatment and measured by chromatography. To study these effects we have used a micropipette tensiometer to produce a spherical-cap bubble whose interfacial pressure was controlled - either steady or oscillating. Short heat treatment produced small soluble aggregates, and these adsorbed faster than the original protein monomer. Longer heat treatment produced somewhat larger soluble aggregates which adsorbed more slowly. These results point to complex interactions during protein adsorption.

  8. Kinetics of a reactive dye adsorption onto dolomitic sorbents.

    PubMed

    Walker, G M; Hansen, L; Hanna, J-A; Allen, S J

    2003-05-01

    A novel wastewater treatment technique has been investigated, for reactive dye removal, in batch kinetic systems. These experimental studies have indicated that charred dolomite has the potential to act as an adsorbent for the removal of Brilliant Red reactive dye from aqueous solution. The effect of initial dye concentration, adsorbent mass:liquid volume ratio, and agitation speed on dye removal have been determined with the experimental data mathematically described using empirical external mass transfer and intra-particle diffusion models. The experimental data show conformity with an adsorption process, with the removal rate heavily dependent on both external mass transfer and intra-particle diffusion.

  9. Biosorption of Cu(II) by immobilized microalgae using silica: kinetic, equilibrium, and thermodynamic study.

    PubMed

    Lee, Hongkyun; Shim, Eunjung; Yun, Hyun-Shik; Park, Young-Tae; Kim, Dohyeong; Ji, Min-Kyu; Kim, Chi-Kyung; Shin, Won-Sik; Choi, Jaeyoung

    2016-01-01

    Immobilized microalgae using silica (IMS) from Micractinium reisseri KGE33 was synthesized through a sol-gel reaction. Green algal waste biomass, the residue of M. reisseri KGE33 after oil extraction, was used as the biomaterial. The adsorption of Cu(II) on IMS was tested in batch experiments with varying algal doses, pH, contact times, initial Cu(II) concentrations, and temperatures. Three types of IMSs (IMS 14, 70, and 100) were synthesized according to different algal doses. The removal efficiency of Cu(II) in the aqueous phase was in the following order: IMS 14 (77.0%) < IMS 70 (83.3%) < IMS 100 (87.1%) at pH 5. The point of zero charge (PZC) value of IMS100 was 4.5, and the optimum pH for Cu(II) adsorption was 5. Equilibrium data were described using a Langmuir isotherm model. The Langmuir model maximum Cu(II) adsorption capacity (q m) increased with the algal dose in the following order: IMS 100 (1.710 mg g(-1)) > IMS 70 (1.548 mg g(-1)) > IMS 14 (1.282 mg g(-1)). The pseudo-second-order equation fitted the kinetics data well, and the value of the second-order rate constant increased with increasing algal dose. Gibbs free energies (ΔG°) were negative within the temperature range studied, which indicates that the adsorption process was spontaneous. The negative value of enthalpy (ΔH°) again indicates the exothermic nature of the adsorption process. In addition, SEM-energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses of the IMS surface reveal that the algal biomass on IMS is the main site for Cu(II) binding. This study shows that immobilized microalgae using silica, a synthesized biosorbent, can be used as a cost-effective sorbent for Cu(II) removal from the aqueous phase.

  10. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  11. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    NASA Astrophysics Data System (ADS)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  12. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  13. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  14. Students' Systematic Errors When Solving Kinetic and Chemical Equilibrium Problems.

    ERIC Educational Resources Information Center

    BouJaoude, Saouma

    Although students' misconceptions about the concept of chemical equilibrium has been the focus of numerous investigations, few have investigated students' systematic errors when solving equilibrium problems at the college level. Students (n=189) enrolled in the second semester of a first year chemistry course for science and engineering majors at…

  15. Arsenic(V) removal using an amine-doped acrylic ion exchange fiber: Kinetic, equilibrium, and regeneration studies.

    PubMed

    Lee, Chang-Gu; Alvarez, Pedro J J; Nam, Aram; Park, Seong-Jik; Do, Taegu; Choi, Ung-Su; Lee, Sang-Hyup

    2017-03-05

    This study investigates As(V) removal from aqueous solutions using a novel amine-doped acrylic ion exchange fiber. The amine doping reaction was confirmed using FT-IR, and the surface of the fiber was characterized using FEG-SEM. The synthesis process was completed within 60min using an AlCl3·6H2O catalyst at 100°C, and the resulting in a fiber with an ion exchange capacity of 7.5meq/g. The removal efficiency of the A-60 fiber was affected by the solution pH, and the efficiency was optimum at pH 3.04. As(V) adsorption on the fiber was rapid in the first 20min and reached equilibrium in 60min. As(V) removal followed pseudo-first-order kinetics, and the Redlich-Peterson adsorption isotherm model provided the best fit of the equilibrium data. The fiber has an As(V) adsorption capacity (qe) of 205.32±3.57mg/g, which is considerably higher than literature values and commercial adsorbents. The removal efficiency of the fiber was above 83% of the initial value after nine regeneration cycles.

  16. Chemical Cycle Kinetics: Removing the Limitation of Linearity of a Non-equilibrium Thermodynamic Description

    NASA Astrophysics Data System (ADS)

    Rubi, J. M.; Bedeaux, D.; Kjelstrup, S.; Pagonabarraga, I.

    2013-07-01

    Chemical cycle kinetics is customarily analyzed by means of the law of mass action which describes how the concentrations of the substances vary with time. The connection of this approach with non-equilibrium thermodynamics (NET) has traditionally been restricted to the linear domain close to equilibrium in which the reaction rates are linear functions of the affinities. We show, by a pertinent formulation of the concept of local equilibrium in the mesoscopic description along the reaction coordinates, that the connection between kinetic and thermodynamic approaches is deeper than thought and holds in the nonlinear domain far from equilibrium, for higher values of the affinity. This new perspective indicates how to overcome the inherent limitation of classical NET in treating cyclic reactions, providing a description of closed and open cycles operating far from equilibrium, in accordance with thermodynamic principles. We propose that the new set of equations are tested and used for data reduction in chemical reaction kinetics.

  17. Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Yin, Dulin; Sillanpää, Mika E T

    2013-11-01

    In this study, a novel adsorbent was synthesized by functionalizing chitosan with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) ligands. The adsorption capability of EGTA-modified chitosan was investigated by the removal of Cd(II) and Pb(II) from aqueous solutions. The adsorption and regeneration studies were performed by batch techniques. The effects of pH, contact time, and initial metal concentration were studied. Metal uptake by EGTA-chitosan was 0.74 mmol g(-1) for Cd(II) and 0.50 mmol g(-1) for Pb(II). The adsorption mechanism, that the adsorbent formed octahedral chelate structures with bivalent metal ions, was proposed tentatively based on the experimental results of FTIR and the theoretically calculated data of point charges. The kinetics of Cd(II) and Pb(II) on EGTA-chitosan complied with the pseudo-second-order model and the adsorption rate was also influenced by intra-particle diffusion. BiLangmuir isotherm model was well fitted to the experimental data of one-component adsorption suggesting the surface heterogeneity of the novel adsorbent. The extended form of the BiLangmuir model was tested for the modeling of two-component adsorption equilibrium of Cd(II) and Pb(II) on EGTA-chitosan. In the two-component solution, both competitive adsorption and positive synergy of chelation between metal ions occurred and the novel adsorbent showed higher affinity toward Cd(II).

  18. Adsorption and kinetic studies of the intercalation of some organic compounds onto Na+-montmorillonite.

    PubMed

    Gemeay, A H; El-Sherbiny, A S; Zaki, A B

    2002-01-01

    The adsorption and the kinetics of the intercalation of metanil yellow dye, p-aminodiphenylamine (p-NH(2)-DPA), and benzidine by colloidally dispersed Na(+)-montmorillonte (Na(+)-MMT) have been studied. The adsorption isotherm parameters confirmed the occurrence of chemical adsorption that is based on the cation-exchange process. The selectivity of these compounds toward Na(+)-MMT follows the order metanil yellowequilibrium and the diffusion coefficient follows the order metanil yellow>p-NH(2)-DPA>benzidine. The rate of oxidation has been quantitatively measured using a stopped-flow spectrophotometer. The rate constant follows the order benzidine

  19. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.

    PubMed

    Dawood, Sara; Sen, Tushar Kanti

    2012-04-15

    Pine cone a natural, low-cost agricultural by-product in Australia has been studied for its potential application as an adsorbent in its raw and hydrochloric acid modified form. Surface study of pine cone and treated pine cone was investigated using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The modification process leads to increases in the specific surface area and decreases mean particle sizes of acid-treated pine cone when compared to raw pine cone biomass. Batch adsorption experiments were performed to remove anionic dye Congo red from aqueous solution. It was found that the extent of Congo red adsorption by both raw pine cone biomass and acid-treated biomass increased with initial dye concentration, contact time, temperature but decreased with increasing solution pH and amount of adsorbent of the system. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on pseudo-first-order and intra-particle diffusion models. The different kinetic parameters including rate constant, half-adsorption time, and diffusion coefficient were determined at different physico-chemical conditions. Equilibrium data were best represented by Freundlich isotherm model among Langmuir and Freundlich adsorption isotherm models. It was observed that the adsorption was pH dependent and the maximum adsorption of 32.65 mg/g occurred at pH of 3.55 for an initial dye concentration of 20 ppm by raw pine cone, whereas for acid-treated pine cone the maximum adsorption of 40.19 mg/g for the same experimental conditions. Freundlich constant 'n' also indicated favourable adsorption. Thermodynamic parameters such as ∆G(0), ∆H(0), and ∆S(0) were calculated. A single-stage batch absorber design for the Congo red adsorption onto pine cone biomass also presented based on the Freundlich isotherm model equation.

  20. Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic.

    PubMed

    Suksabye, Parinda; Nakajima, Akira; Thiravetyan, Paitip; Baba, Yoshinari; Nakbanpote, Woranan

    2009-01-30

    The oxidation state of chromium in coir pith after Cr(VI) adsorption from aqueous solution was investigated using electron spin resonance (ESR). To elucidate the mechanism of chromium adsorption on coir pith, the adsorption studies of Cr(VI) onto lignin, alpha-cellulose and holocellulose extracted from coir pith were also studied. ESR signals of Cr(V) and Cr(III) were observed in coir pith adsorbed Cr(VI) at solution pH 2, while ESR spectra of lignin extracted from coir pith revealed only the Cr(III) signal. In addition, ESR signal of Cr(V) was observed in alpha-cellulose and holocellulose extracted from coir pith adsorbed Cr(VI). These results confirmed that lignin in coir pith reduced Cr(VI) to Cr(III) while alpha-cellulose and holocellulose extracted from coir pith reduced Cr(VI) to Cr(V). The Cr(V) signal exhibited in ESR of alpha-cellulose and holocellulose might be bound with glucose in cellulose part of coir pith. In addition, xylose which is main in pentosan part of coir pith, indicated that it is involved in form complex with Cr(V) on coir pith. The adsorption kinetic of Cr(VI) from aqueous solution on coir pith was also investigated and described well with pseudo second order model. ESR and desorption experiments confirmed that Cr(VI), Cr(V) and Cr(III), exist in coir pith after Cr(VI) adsorption. The desorption data indicated that the percentage of Cr(VI), Cr(V) and Cr(III) in coir pith were 15.63%, 12.89% and 71.48%, respectively.

  1. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  2. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies.

    PubMed

    Ma, Xiaoming; Li, Liping; Yang, Lin; Su, Caiyun; Wang, Kui; Yuan, Shibao; Zhou, Jianguo

    2012-03-30

    Highly ordered hierarchical calcium carbonate is an important phase and has technological interest in the development of functional materials. The work describes hierarchical CaCO(3)-maltose meso/macroporous hybrid materials were synthesized using a simple gas-diffusion method. The uniform hexagonal-shaped CaCO(3)-maltose hybrid materials are formed by the hierarchical assembly of nanoparticles. The pore structure analysis indicates that the sample possesses the macroporous structure of mesoporous framework. The distinguishing features of the hierarchical CaCO(3)-maltose materials in water treatment involve not only high removal capacities, but also decontamination of trace metal ions. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum removal capacity of the CaCO(3)-maltose hybrid materials for Pb(2+), Cd(2+), Cu(2+), Co(2+), Mn(2+) and Ni(2+) ions was 3242.48, 487.80, 628.93, 393.70, 558.66 and 769.23 mg/g, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The adsorption and precipitation transformation mechanism can be considered due to hierarchical meso/macroporous structure, rich organic ligands of the CaCO(3)-maltose hybrid materials and the larger solubility product of CaCO(3).

  3. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...

  4. From Non-equilibrium to Equilibrium: Micellar Kinetics seen by Time-resolved Small-angle Scattering

    NASA Astrophysics Data System (ADS)

    Lund, Reidar

    The kinetic pathways of self-assembled nanostructures are not fully understood. Time-resolved small-angle X-ray/neutron scattering (TR-SAXS/SANS) is powerful technique1 that allows kinetics processes such as nucleation processes2,3 and morphological transitions4,5 to be followed with structural resolution over time scales starting from milliseconds. Neutrons offer the additional advantage of facile contrast variation through H/D substitution schemes, which also allow equilibrium processes such as molecular exchange and diffusion to be studied1 , 6 , 7. Here we will highlight the current capabilities of TR-SAS and show results on the kinetics of polymeric micelles. We will address how the understanding of kinetic pathways can be used control the nanostructure.

  5. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes.

    PubMed

    Chen, Guang-Cai; Shan, Xiao-Quan; Zhou, Yi-Quan; Shen, Xiu-e; Huang, Hong-Lin; Khan, Shahamat U

    2009-09-30

    The adsorption kinetics, isotherms and thermodynamic of atrazine on multiwalled carbon nanotubes (MWCNTs) containing 0.85%, 2.16%, and 7.07% oxygen was studied. Kinetic analyses were performed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The regression results showed that the pseudo-second-order law fit the adsorption kinetics. The calculated thermodynamic parameters indicated that adsorption of atrazine on MWCNTs was spontaneous and exothermic. Standard free energy (DeltaG(0)) became less negative when the oxygen content of MWCNTs increased from 0.85% to 7.07% which is consistent with the low adsorption affinity of MWCNTs for atrazine.

  6. Dependence of single-walled carbon nanotube adsorption kinetics on temperature and binding energy.

    PubMed

    Rawat, D S; Krungleviciute, V; Heroux, L; Bulut, M; Calbi, M M; Migone, A D

    2008-12-02

    We present results for the isothermal adsorption kinetics of methane, hydrogen, and tetrafluoromethane on closed-ended single-walled carbon nanotubes. In these experiments, we monitor the pressure decrease as a function of time as equilibrium is approached, after a dose of gas is added to the cell containing the nanotubes. The measurements were performed at different fractional coverages limited to the first layer. The results indicate that, for a given coverage and temperature, the equilibration time is an increasing function of E/(k(B)T), where E is the binding energy of the adsorbate and k(B)T is the thermal energy. These findings are consistent with recent theoretical predictions and computer simulations results that we use to interpret the experimental measurements.

  7. Adsorption and Exchange Kinetics of Hydrophilic and Hydrophobic Phosphorus Ligands on Gold Surface

    NASA Astrophysics Data System (ADS)

    Zhuge, X. Q.; Bian, Z. C.; Luo, Z. H.; Mu, Y. Y.; Luo, K.

    2017-02-01

    The adsorption kinetics process of hydrophobic ligand (triphenylphosphine, PPh3) and hydrophilic ligand (tris(hydroxymethyl)phosphine oxide, THPO) on the surface of gold electrode were estimated by using electrical double layer capacitance (EDLC). Results showed that the adsorption process of both ligands included fast and slow adsorption processes, and the fast adsorption process could fit the first order kinetic equation of Langmuir adsorption isotherm. During the slow adsorption process, the surface coverage (θ) of PPh3 was higher than that of THPO due to the larger adsorption kinetic constant of PPh3 than that of THPO, which implied that PPh3 could replace THPO on the gold electrode. The exchange process of both ligands on the surface of gold electrode proved that PPh3 take the place of THPO by testing the variation of EDLC which promote the preparation of Janus gold, and the theoretic simulation explained the reason of ligands exchange from the respect of energy..

  8. Effect of coke in the equilibrium and kinetics of sorption on 5A molecular sieve zeolites

    SciTech Connect

    Silva, J.A.C.; Mata, V.G.; Dias, M.M.; Lopes, J.C.B.; Rodrigues, A.E.

    2000-04-01

    Porosimetric, gravimetric, zero length column (ZLC), and fixed-bed studies on coked pellets of 5A molecular sieve zeolites were performed. From porosimetric studies it seems that the coke is located in the microporous structure of 5A zeolite or any layers covering all crystals. The gravimetric studies between 473 and 573 K using n-pentane as a probe molecule show that Henry's constants in coked pellets are much smaller than those in fresh ones. The kinetics of sorption measured by the ZLC technique is also significantly modified. The results show that the system changes from a macropore control resistance with the reciprocal of time constant D{sub p}/R{sub p}{sup 2}(1 + K) on the order of 0.002--0.02 x{sup {minus}1} in fresh pellets to a micropore control resistance system with reciprocal time constant D{sub c}/r{sub c}{sup 2} 1 order of magnitude lower in coked pellets. The effect of temperature on the behavior of a fixed bed is also shown. A simple mathematical model with equilibrium and diffusivity parameters obtained from independent experiments predicts with good accuracy all fixed-bed adsorption and desorption runs.

  9. Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics.

    PubMed

    Arroyave, Jeison Manuel; Waiman, Carolina C; Zanini, Graciela P; Avena, Marcelo J

    2016-02-01

    The effects of humic acid (HA) on the adsorption/desorption of glyphosate (Gly) on goethite were investigated under pseudo equilibrium conditions by adsorption isotherms and under kinetic conditions by ATR-FTIR spectroscopy. Isotherms reveal that the attachment of Gly is almost completely inhibited by HA molecules. The opposite effect is not observed: HA adsorption is not affected by the presence of Gly. ATR-FTIR allowed the simultaneous detection of adsorbed HA and Gly during kinetic runs, revealing that HA at the surface decreases markedly the adsorption rate of Gly likely as a result of a decreased availability of sites for Gly adsorption and because of electrostatic repulsion. In addition, HA in solution increases the desorption rate of Gly. The rate law for Gly desorption could be determined giving important insights on the desorption mechanism. The herbicide is desorbed by two parallel processes: i) a direct detachment from the surface, which is first order in adsorbed Gly; and ii) a ligand exchange with HA molecules, which is first order in adsorbed Gly and first order in dissolved HA. Rate constants for both processes were quantified, leading to half-lives of 3.7 h for the first process, and 1.4 h for the second process in a 400 mg L(-1) HA solution. These data are important for modeling the dynamics of glyphosate in environmentally relevant systems, such as soils and surface waters.

  10. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers.

    PubMed

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (DeltaG degrees), change in enthalpy (DeltaH degrees) and change in entropy (DeltaS degrees) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  11. Kinetics and isothermal modeling of liquid phase adsorption of rhodamine B onto urea modified Raphia hookerie epicarp

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-09-01

    Epicarp of Raphia hookerie, a bioresource material, was modified with urea (UMRH) to adsorb Rhodamine B (RhB) from aqueous solution. Adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) surface area determination, Fourier transform infrared spectroscopic (FTIR) analysis, scanning electron microscopy (SEM), as well as the pH point of zero charge (pHpzc) determination. Prepared material was subsequently utilized for the uptake of Rhodamine B (RhB). Operational parameters, such as adsorbent dosage, concentration, time, and temperature, were investigated. Evidence of effective urea modification was confirmed by vivid absorption bands at 1670 and 1472 cm-1 corresponding to C=O and C-N stretching vibrations, respectively. Optimum adsorption was obtained at pH 3. Freundlich adsorption isotherm best fits the equilibrium adsorption data, while evidence of adsorbate-adsorbate interaction was revealed by Temkin isotherm model. The maximum monolayer adsorption capacity (q max) was 434.78 mg/g. Kinetics of the adsorption process was best described by the pseudo-second-order kinetics model. Desorption efficiency was less than or equal to 25 % for all the eluents, and it follows the order HCl > H2O > CH3COOH.

  12. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  13. Biosorption equilibrium, kinetic and thermodynamic modelling of naphthalene removal from aqueous solution onto modified spent tea leaves.

    PubMed

    Agarry, S E; Ogunleye, O O; Aworanti, O A

    2013-01-01

    The object of this study was to investigate the feasibility of using modified spent tea leaves to remove naphthalene from its aqueous solution under batch mode. The effects on the removal process of physical factors, such as initial naphthalene concentration, contact time, biosorbent dosage, pH and temperature, have been evaluated. The equilibrium biosorption data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) adsorption isotherm models. These models provided a good fit to the experimental data, but the Langmuir isotherm model provided the best correlation (R2 = 0.993) to the experimental data. The biosorption kinetic data of naphthalene were analyzed by pseudo-first-order, pseudo-second-order and intra-particle diffusion and surface mass transfer kinetic models. These four kinetic models fitted the biosorption kinetic data well, but the pseudo-first-order kinetic model gave the best fit. The activation energy (E(a)) was found to be 15.89 kJ per mole and the thermodynamic properties of the biosorption process, such as the Gibbs free energy, enthalpy and the entropic change of biosorption, were also evaluated. It was established that the biosorption process was spontaneous, feasible and endothermic in nature.

  14. Contact time optimization of two-stage batch adsorber design using second-order kinetic model for the adsorption of phosphate onto alunite.

    PubMed

    Ozacar, Mahmut

    2006-09-01

    The adsorption of phosphate onto alunite in a batch adsorber has been studied. Four kinetic models including pseudo first- and second-order equation, intraparticle diffusion equation and the Elovich equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of phosphate onto alunite could be described by the pseudo second-order equation. Adsorption of phosphate onto alunite followed the Langmuir isotherm. A model has been used for the design of a two-stage batch adsorber based on pseudo second-order adsorption kinetics. The model has been optimized with respect to operating time in order to minimize total operating time to achieve a specified amount of phosphate removal using a fixed mass of adsorbent. The results of two-stage batch adsorber design studies showed that the required times for specified amounts of phosphate removal significantly decreased. It is particularly suitable for low-cost adsorbents/adsorption systems when minimising operating time is a major operational and design criterion, such as, for highly congested industrial sites in which significant volume of effluent need to be treated in the minimum amount of time.

  15. Kinetic theory of plasma equilibrium in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Gorbunov, L. M.; Gradov, O. M.; Ziunder, D.; Ramazashvili, R. R.

    1981-04-01

    The present study examines the equilibrium of a direct-current-carrying plasma in an electromagnetic field under the assumption that the particles escaping from the plasma have a Maxwellian distribution. It is shown that an equilibrium state is possible only in the case of a definite relationship between the amplitude of the incident wave and the concentration of escaping particles. Attention is given to spatial variations of the electromagnetic field, and of the plasma density and flow velocity. The application of these effects in microwave devices is discussed.

  16. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field.

    PubMed

    Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-12-15

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC.

  17. Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance.

    PubMed

    Alcantara, Gustavo B; Paterno, Leonardo G; Afonso, André S; Faria, Ronaldo C; Pereira-da-Silva, Marcelo A; Morais, Paulo C; Soler, Maria A G

    2011-12-28

    The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film

  18. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [S]T of v with respect to the total substrate concentration

  19. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation.

  20. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  1. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  2. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays

    NASA Astrophysics Data System (ADS)

    Garshasbi, Vahid; Jahangiri, Mansour; Anbia, Mansoor

    2017-01-01

    Zeolite 13X was successfully synthesized by hydrothermal treatment using natural clays extracted from Iranian resources. The preliminary natural materials and the final zeolite 13X samples were characterized by X-ray Diffraction (XRD), Fourier-Transfer Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and N2 adsorption-desorption isotherm. The effects of various factors such as NaOH addition amount and aging time on the crystalline products were studied during the synthesis process. The optimum conditions related to the synthesis of zeolite 13X were set. Accordingly, NaOH concentration was equal to 4 M. It was further crystallized at 65 °C for 72 h after its homogenization by agitation at room temperature for 120 h. In this study, the zeolite 13X prepared from natural kaolin (13X-K) showed a high BET surface area of 591 m2/g with higher micropore volume (0.250 cm3/g) than other materials. Adsorption equilibrium isotherms of CO2 were investigated using a static, volumetric method. In addition, pressures for the pure component data extended up to 20 bar. The adsorption equilibrium data of CO2 was fitted to Langmuir, Freundlich, Lamgmuir-Freundlich, Toth and BET isotherm models. It was found that the Langmuir-Freundlich model was more suitable than other models for CO2 description. The results showed that the synthetic zeolite has higher equilibrium selectivity for CO2. Also, the CO2 uptake by zeolite 13X-K was equal to 6.9 mmol/g.

  3. A model for predicting contaminant removal by adsorption within the International Space Station water processor: 1. Multicomponent equilibrium modeling.

    PubMed

    Bulloch, J L; Hand, D W; Crittenden, J C

    1998-01-01

    A thermodynamic model is developed to predict adsorption equilibrium in the International Space Station water processor's multifiltration beds. The model predicts multicomponent adsorption equilibrium behavior using single-component isotherm parameters and fictitious components representing the background matrix. The fictitious components are determined by fitting total organic carbon and tracer isotherms with the ideal adsorbed solution theory. Multicomponent isotherms using a wastewater with high surfactant and organic compound concentrations are used to validate the equilibrium description on a coconut-shell-based granular activated carbon (GAC), coal-based GAC, and a polymeric adsorbent.

  4. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  5. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: Research updated.

    PubMed

    Chang, Yingju; Lai, Juin-Yih; Lee, Duu-Jong

    2016-12-01

    The standard Gibbs free energy, enthalpy and entropy change data for adsorption equilibrium reported in biosorption literature during January 2013-May2016 were listed. Since the studied biosorption systems are all near-equilibrium processes, the enthalpy and entropy change data evaluated by fitting temperature-dependent free energy data using van Hoff's equation reveal a compensation artifact. Additional confusion is introduced with arbitrarily chosen adsorbate concentration unit in bulk solution that added free energy change of mixing into the reported free energy and enthalpy change data. Different standard states may be chosen for properly describing biosorption processes; however, this makes the general comparison between data from different systems inappropriate. No conclusion should be drawn based on unjustified thermodynamic parameters reported in biosorption studies.

  6. Chemical zonation in garnet: kinetics or chemical equilibrium?

    NASA Astrophysics Data System (ADS)

    Ague, Jay; Chu, Xu; Axler, Jennifer

    2015-04-01

    Chemical zonation in garnet is widely used to reconstruct the pressure (P), temperature (T), time (t), and fluid (f) histories of mountain belts. Zonation is thought to result largely from changing P - T - t - f conditions during growth as well as post-growth intracrystalline diffusion. Chemical zonation is conventionally interpreted to mean that at least some of the garnet interior was out of chemical equilibrium with the matrix during metamorphism. In this case, thermally-activated diffusion in garnet is too slow to equalize chemical potentials. However, in their groundbreaking paper, Tajčmanová et al. (2014) postulate that in high-grade rocks, chemical zonation may actually reflect attainment of equilibrium. In this scenario, diffusion is fast but viscous relaxation is slow such that the zonation patterns directly mirror internal pressure gradients within garnet. Such zoning would likely be very different than typical concentric growth zonation. Furthermore, Baumgartner et al. (2010) hypothesize that given significant variations in the molar volumes of garnet endmembers, diffusional relaxation may produce internal pressure gradients if the garnet behaves as a near constant-volume system. Consequently, growth zoning could be preserved by pressure variations within the garnet that equalize chemical potentials and slow or stop diffusion (i.e., the garnet is chemically heterogeneous but maintains internal chemical equilibrium due to the pressure variations). This mechanism predicts that areas of garnet with small compositional contrasts would undergo more diffusional relaxation than areas with large contrasts. Moreover, generation of large internal pressure gradients approaching 1 GPa would be expected to induce deformation (e.g., fracturing) in regions of large compositional gradients. Strongly growth-zoned amphibolite facies garnet from the Barrovian zones, Scotland (Ague and Baxter, 2007) shows neither of these features. The sharp compositional gradients are

  7. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces.

    PubMed

    Boulos, Stefano P; Davis, Tyler A; Yang, Jie An; Lohse, Samuel E; Alkilany, Alaaldin M; Holland, Lisa A; Murphy, Catherine J

    2013-12-03

    Investigating the adsorption process of proteins on nanoparticle surfaces is essential to understand how to control the biological interactions of functionalized nanoparticles. In this work, a library of spherical and rod-shaped gold nanoparticles (GNPs) was used to evaluate the process of protein adsorption to their surfaces. The binding of a model protein (bovine serum albumin, BSA) to GNPs as a function of particle shape, size, and surface charge was investigated. Two independent comparative analytical methods were used to evaluate the adsorption process: steady-state fluorescence quenching titration and affinity capillary electrophoresis (ACE). Although under favorable electrostatic conditions kinetic analysis showed a faster adsorption of BSA to the surface of cationic GNPs, equilibrium binding constant determinations indicated that BSA has a comparable binding affinity to all of the GNPs tested, regardless of surface charge. BSA was even found to adsorb strongly to GNPs with a pegylated/neutral surface. However, these fluorescence titrations suffer from significant interference from the strong light absorption of the GNPs. The BSA-GNP equilibrium binding constants, as determined by the ACE method, were 10(5) times lower than values determined using spectroscopic titrations. While both analytical methods could be suitable to determine the binding constants for protein adsorption to NP surfaces, both methods have limitations that complicate the determination of protein-GNP binding constants. The optical properties of GNPs interfere with Ka determinations by static fluorescence quenching analysis. ACE, in contrast, suffers from material compatibility issues, as positively charged GNPs adhere to the walls of the capillary during analysis. Researchers seeking to determine equilibrium binding constants for protein-GNP interactions should therefore utilize as many orthogonal techniques as possible to study a protein-GNP system.

  8. Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions

    USGS Publications Warehouse

    Friedly, John C.; Rubin, Jacob

    1992-01-01

    A new approach is applied to the problem of modeling solute transport accompanied by many chemical reactions. The approach, based on concepts of the concentration space and its stoichiometric subspaces, uses elements of the subspaces as primary dependent variables. It is shown that the resulting model equations are compact in form, isolate the chemical reaction expressions from flow expressions, and can be used for either equilibrium or kinetically controlled reactions. The implications of the results on numerical algorithms for solving the equations are discussed. The application of the theory is illustrated throughout with examples involving a simple but broadly representative set of reactions previously considered in the literature. Numerical results are presented for four interconnected reactions: a homogeneous complexation reaction, two sorption reactions, and a dissolution/precipitation reaction. Three cases are considered: (1) four kinetically controlled reactions, (2) four equilibrium-controlled reactions, and (3) a system with two kinetically controlled reactions and two equilibrium-controlled reactions.

  9. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Pashai Gatabi, Maliheh; Milani Moghaddam, Hossain; Ghorbani, Mohsen

    2016-07-01

    Adsorptive potential of maghemite decorated multiwalled carbon nanotubes (MWCNTs) for the removal of cadmium ions from aqueous solution was investigated. The magnetic nanoadsorbent was synthesized using a versatile and cost effective chemical route. Structural, magnetic and surface charge properties of the adsorbent were characterized using FTIR, XRD, TEM, VSM analysis and pHPZC determination. Batch adsorption experiments were performed under varied system parameters such as pH, contact time, initial cadmium concentration and temperature. Highest cadmium adsorption was obtained at pH 8.0 and contact time of 30 min. Adsorption behavior was kinetically studied using pseudo first-order, pseudo second-order, and Weber-Morris intra particle diffusion models among which data were mostly correlated to pseudo second-order model. Adsorbate-adsorbent interactions as a function of temperature was assessed by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models from which Freundlich model had the highest consistency with the data. The adsorption capacity increased with increasing temperature and maximum Langmuir's adsorption capacity was found to be 78.81 mg g-1 at 298 K. Thermodynamic parameters and activation energy value suggest that the process of cadmium removal was spontaneous and physical in nature, which lead to fast kinetics and high regeneration capability of the nanoadsorbent. Results of this work are of great significance for environmental applications of magnetic MWCNTs as promising adsorbent for heavy metals removal from aqueous solutions.

  10. Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics

    SciTech Connect

    Calvo, F.

    2015-12-31

    Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.

  11. Removal of lead from aqueous solution using Syzygium cumini L.: equilibrium and kinetic studies.

    PubMed

    King, P; Rakesh, N; Beenalahari, S; Prasanna Kumar, Y; Prasad, V S R K

    2007-04-02

    The biosorption of lead ions from aqueous solution by Syzygium cumini L. was studied in a batch adsorption system as a function of pH, contact time, lead ion concentration, adsorbent concentration and adsorbent size. The biosorption capacities and rates of lead ions onto S. cumini L. were evaluated. The Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data could be well interpreted by the Langmuir model followed by Temkin model with maximum adsorption capacity of 32.47 mg/g of lead ion on S. cumini L. leaves biomass. The kinetic experimental data were properly correlated with the second-order kinetic model.

  12. Equilibrium properties of a one-dimensional kinetic system.

    NASA Technical Reports Server (NTRS)

    Williams, J. H.; Joyce, G.

    1973-01-01

    One-dimensional systems of N = 500 and 250 particles in equilibrium are numerically simulated utilizing the method of molecular dynamics. Periodic boundary conditions are imposed. The classical two-body interaction potential is short range, repulsive and has a corresponding finite force. The equations of state are determined for densities both less and greater than one. Corresponding theoretical isochores are determined from models based on nearest-neighbor interactions and on a truncated virial expansion, and a comparison is made with the experimental isochores. Time independent radial distributions are constructed numerically and discussed. A change of state from a solidlike state to a fluid-gas state based on the penetrability of the particles is predicted. The transition temperatures are estimated from the radial distribution functions and the nearest-neighbor model. Self-diffusion is observed and the corresponding constants are determined from the velocity autocorrelation functions.

  13. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon.

    PubMed

    Tan, I A W; Ahmad, A L; Hameed, B H

    2009-05-30

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  14. Kinetics of random sequential adsorption on disordered substrates

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo

    1996-01-01

    The kinetics of the random sequential adsorption of line segments has been studied on a disordered substrate occupied with point impurities. The coverage of the surface and the jamming limits are calculated by a Monte Carlo method. The coverage 0305-4470/29/1/007/img1 has an asymptotically exponential behaviour at low concentration of the impurities. The jamming limits depend on the concentration of the impurities p. At 0305-4470/29/1/007/img2 the jamming limits decrease as p increases. At 0305-4470/29/1/007/img3 the jamming limits increase as p increases. The one-dimensional results are in good agreement with Ben-Naim and Krapivsky's analytic results. The coverage and the jamming limits on a two-dimensional disordered lattice are similar to the one-dimensional cases. The jamming limits decrease monotonically as the length of line segments increases. The minimum locations of the jamming limits for both one and two dimensions are on the same values for a given length of the k-mer.

  15. Kinetics adsorption study of the ethidium bromide by graphene oxide as adsorbent from aqueous matrices

    NASA Astrophysics Data System (ADS)

    Rajabi, M.; Moradi, O.; Zare, K.

    2017-01-01

    In this study of ethidium bromide, adsorption from aqueous matrices by graphene oxide as adsorbent was investigated. Influencing parameters in the adsorption study included contact time, temperature, and pH. The optimum time was selected 17 min, and the best value of pH was determined at 8. All adsorption experiments were performed at 298 K temperature. The maximum wavelength of ethidium bromide was 475 nm. The Elovich, four types of the pseudo-second-order, the pseudo-first-order, and intra-particle diffusion kinetic adsorption models were used for kinetic study, and the results show that adsorption of ethidium bromide on graphene oxide surface best complied with type (I) of the pseudo-second-order kinetic model.

  16. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    PubMed

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature.

  17. Phase diagram and adsorption-desorption kinetics of CO on Ru(0001) from first principles.

    PubMed

    McEwen, J-S; Eichler, A

    2007-03-07

    A kinetic lattice gas model is used to study the equilibrium properties and the desorption kinetics of CO on Ru(0001). The authors compute all relevant on-site binding and interaction energies of CO molecules within density functional theory and import them in two different models. The first model allows the CO molecules to adsorb upright on top and hollow sites. The authors calculate the phase diagram, coverage isobars, and temperature programed desorption spectra. Up to a coverage of 1/3 ML, very good agreement is obtained between theory and experiment when considering top sites only. For coverages beyond 1/3 ML, hollow sites are included and disagreement between theory and experiment occurs. The second model allows adsorption on top sites only but allows them to tilt and shift from their upright positions. The authors show that this model resolves many of the deficiencies of their first one. Furthermore, the authors demonstrate that this model is more consistent with experiment since it is the only model that is able to explain the results from IR-spectroscopy experiments.

  18. First demonstration of an asymmetric kinetic equilibrium for a thin current sheet

    SciTech Connect

    Aunai, Nicolas; Belmont, Gerard; Smets, Roch

    2013-11-15

    The modeling of steady state collisionless asymmetric tangential current layers is a challenging and poorly understood problem. For decades now, this difficulty has been limiting numerical models to approximate equilibria built with locally Maxwellian current layers and theoretical analyses to the very restricted Harris equilibrium. We show how the use of any distribution functions depending only on local macroscopic quantities results in a strong alteration of the current layer internal structure, which converges toward an unpredictable quasi-steady state with emission of ion scale perturbations. This transient can be explained in terms of ion kinetic and electron fluid physics. We demonstrate, for the first time, the validity of an asymmetric kinetic equilibrium model as well as its usability as an initial condition of hybrid kinetic simulations. This offers broad perspectives for the current sheet modeling, for which the early phase of instabilities can be studied within the kinetic formalism.

  19. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    PubMed

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution.

  20. Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.

    PubMed

    Chen, J Paul; Wang, Lin

    2004-01-01

    Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.

  1. Kinetic Study of Adsorption Processes in Solution: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Casado, Julio; And Others

    1985-01-01

    Background information, apparatus needed, procedures used, and results obtained are provided for a simple kinetic method for the monitoring of adsorption processes. The method, which involved adsorption of crystal violet onto activated carbon, is suitable for classroom and/or research purposes. (JN)

  2. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    PubMed Central

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976

  3. Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport.

    PubMed

    Rudzinski, Wladyslaw; Plazinski, Wojciech

    2006-08-24

    For practical applications of solid/solution adsorption processes, the kinetics of these processes is at least as much essential as their features at equilibrium. Meanwhile, the general understanding of this kinetics and its corresponding theoretical description are far behind the understanding and the level of theoretical interpretation of adsorption equilibria in these systems. The Lagergren empirical equation proposed at the end of 19th century to describe the kinetics of solute sorption at the solid/solution interfaces has been the most widely used kinetic equation until now. This equation has also been called the pseudo-first order kinetic equation because it was intuitively associated with the model of one-site occupancy adsorption kinetics governed by the rate of surface reaction. More recently, its generalization for the two-sites-occupancy adsorption was proposed and called the pseudo-second-order kinetic equation. However, the general use and the wide applicability of these empirical equations during more than one century have not resulted in a corresponding fundamental search for their theoretical origin. Here the first theoretical development of these equations is proposed, based on applying the new fundamental approach to kinetics of interfacial transport called the Statistical Rate Theory. It is shown that these empirical equations are simplified forms of a more general equation developed here, for the case when the adsorption kinetics is governed by the rate of surface reactions. The features of that general equation are shown by presenting exhaustive model investigations, and the applicability of that equation is tested by presenting a quantitative analysis of some experimental data reported in the literature.

  4. Equilibrium and Redox Kinetics of Copper(II)-Thiourea Complexes.

    PubMed

    Doona, Christopher J.; Stanbury, David M.

    1996-05-22

    Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.

  5. Modeling two-rate adsorption kinetics: Two-site, two-species, bilayer and rearrangement adsorption processes.

    PubMed

    Tripathi, Sumit; Tabor, Rico F

    2016-08-15

    The adsorption kinetics of many systems show apparent two-rate processes, where there appears to be resolved fast and slow adsorption steps. Such non-standard adsorption processes cannot be accounted for by conventional modeling methods, motivating new approaches. In this work, we present four different models that can account for two-rate adsorption and are based upon physically realistic processes - two adsorbing species, two surface sites having different energies, bilayer formation and molecular rearrangement modes. Each model is tested using a range of conditions, and the characteristic behavior is explored and compared. In these models, the effects of mass transport and bulk concentration are also accounted for, making them applicable in systems which are transport-limited or attachment-limited, or intermediate between the two. The applicability of these models is demonstrated by fitting exemplar experimental data for each of the four models, selecting the model on the basis of the known physical behavior of the adsorption kinetics. These models can be applied in a wide range of systems, from stagnant adsorption in large volume water treatment to highly dynamic flow conditions relevant to printing, coating and processing applications.

  6. The Fizz Keeper, a Case Study in Chemical Education, Equilibrium, and Kinetics.

    ERIC Educational Resources Information Center

    Howald, Reed A.

    1999-01-01

    The loss of carbon dioxide from carbonated beverages provides an interesting case of the combination of equilibrium and kinetic principles. Adding air with a commercial device (the Fizz Keeper) has a negligible effect on various equilibria present but will slow diffusion in the gas space of a resealed bottle, decreasing the rate at which…

  7. Tested Demonstrations: Thermodynamic Changes, Kinetics, Equilibrium, and LeChatelier's Principle.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Procedures for demonstrating thermodynamic changes, kinetics and reaction mechanisms, equilibrium, and LeChatelier's principle are presented. The only materials needed for these demonstrations are beakers, water, assorted wooden blocks of varying thickness, assorted rubber tubing, and a sponge. The concepts illustrated in each demonstration are…

  8. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  9. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms.

    PubMed

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability.

  10. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    PubMed Central

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  11. Adsorption Neutralization Model and Floc Growth Kinetics Properties of Aluminum Coagulants Based on Sips and Boltzmann Equations.

    PubMed

    Wu, Zhen; Zhang, Xian; Zhou, Chunjiao; Pang, Jing-Lin; Zhang, Panyue

    2017-02-22

    Single-molecule aluminum salt AlCl3, medium polymerized polyaluminum chloride (PAC), and high polymerized polyaluminum chloride (HPAC) were prepared in a laboratory. The characteristics and coagulation properties of these prepared aluminum salts were investigated. The Langmuir, Freundlich, and Sips adsorption isotherms were first used to describe the adsorption neutralization process in coagulation, and the Boltzmann equation was used to fit the reaction kinetics of floc growth in flocculation. It was novel to find that the experimental data fitted well with the Sips and Boltzmann equation, and the significance of parameters in the equations was discussed simultaneously. Through the Sips equation, the adsorption neutralization reaction was proved to be spontaneous and the adsorption neutralization capacity was HPAC > PAC > AlCl3. Sips equation also indicated that the zeta potential of water samples would reach a limit with the increase of coagulant dosage, and the equilibrium zeta potential values were 30.25, 30.23, and 27.25 mV for AlCl3, PAC, and HPAC, respectively. The lower equilibrium zeta potential value of HPAC might be the reason why the water sample was not easy to achieve restabilization at a high coagulant dosage. Through the Boltzmann equation modeling, the maximum average floc size formed by AlCl3, PAC, and HPAC were 196.0, 188.0, and 203.6 μm, respectively, and the halfway time of reactions were 31.23, 17.08, and 9.55 min, respectively. The HPAC showed the strongest floc formation ability and the fastest floc growth rate in the flocculation process, which might be caused by the stronger adsorption and bridging functions of Alb and Alc contained in HPAC.

  12. Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment.

    PubMed

    Wang, Guan; Ren, Wei; Tan, Hui Ru; Liu, Ye

    2017-02-24

    Carbon nanoparticle-modified multi-wall carbon nanotubes were prepared using a dehydration of carbohydrate compound method. The structural change was characterized by transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett and Teller measurement. Fast adsorption kinetics was observed for multi-wall carbon nanotubes with modification, as demonstrated by the adsorption of the model compound methylene blue. This work provides a novel facile engineering strategy to equip multi-wall carbon nanotubes with fast adsorption kinetics, which is promising for efficient water purification.

  13. Carbon nanoparticle-modified multi-wall carbon nanotubes with fast adsorption kinetics for water treatment

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Ren, Wei; Tan, Hui Ru; Liu, Ye

    2017-02-01

    Carbon nanoparticle-modified multi-wall carbon nanotubes were prepared using a dehydration of carbohydrate compound method. The structural change was characterized by transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett and Teller measurement. Fast adsorption kinetics was observed for multi-wall carbon nanotubes with modification, as demonstrated by the adsorption of the model compound methylene blue. This work provides a novel facile engineering strategy to equip multi-wall carbon nanotubes with fast adsorption kinetics, which is promising for efficient water purification.

  14. Comparison of kinetic and equilibrium reaction models insimulating the behavior of porous media

    SciTech Connect

    Kowalsky, Michael B.; Moridis, George J.

    2006-11-29

    In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. Assuming validity of the mostaccurate kinetic reaction model that is currently available, the use ofthe equilibrium reaction model often appears to be justified andpreferred for simulating the behavior of gas hydrates, given that thecomputational demands for the kinetic reaction model far exceed those forthe equilibrium reaction model.

  15. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  16. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  17. Equilibrium model for biodegradation and adsorption of mixtures in GAC columns

    SciTech Connect

    Erlanson, B.C.; Dvorak, B.I.; Speitel, G.E. Jr.; Lawler, D.F.

    1997-05-01

    Microbial activity in granular activated carbon (GAC) columns has received much attention over the last 15 years because biodegradation of one or more chemicals might increase the GAC service life, thereby decreasing costs. An equilibrium model for simultaneous biodegradation and adsorption was developed and verified with existing data. For simplicity the model was restricted to only two components: one biodegradable and one not. The results from modeling over 300 hypothetical situations identified conditions where biodegradation significantly extends the service life of granular activated carbon (GAC) columns. When the nonbiodegradable chemical controls the service life, the only significant gains in service life occurred when the biodegradable and nonbiodegradable chemical had similar adsorbabilities. When the biodegradable chemical controls the service life, the service life was 1.2--7 times that with adsorption alone, depending on the relative adsorbability of the two chemicals. The increase in service life can be maximized by ensuring that biodegradation begins as soon as possible after start-up. The model provides a good screening tool for initial assessments of process feasibility, preliminary economic analyses, and planning of detailed experimental and computer modeling studies. Examples are presented using benzene and TCE to illustrate how the general trends presented apply to specific cases.

  18. Mechanism and kinetics of Pb(II) adsorption on ultrathin nanocrystalline titania coatings.

    PubMed

    Yang, Zheng-peng; Zhang, Chun-jing

    2009-12-30

    Pb(II) is a highly toxic substance, exposure to which can cause various diseases. To better understand the application of titania as an adsorbent for removing Pb(II) from wastewater, quartz crystal microbalance (QCM) technique was employed to investigate the adsorption behavior of Pb(II) on ultrathin nanocrystalline titania coatings. The present study focused on the mechanism and kinetics of Pb(II) adsorption. The obtained results show that the driving force of Pb(II) adsorption on titania coatings is electrostatic interaction, and that Pb(II) is adsorbed onto titania coatings by Pb(II) ions coordinating with hydroxyl groups of titania surface. In terms of the in situ frequency measurements of QCM, the adsorption kinetic parameter is estimated to be 4.12x10(5)L/mol. QCM measurement provides a useful method for monitoring the adsorption process of Pb(II) on titania coatings.

  19. Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes.

    PubMed

    Su, Fengsheng; Lu, Chungsying

    2007-09-01

    Multiwalled carbon nanotubes (CNTs) were thermally treated and were employed as adsorbents to study their adsorption kinetics and thermodynamics of natural dissolved organic matter (NDOM) from aqueous solutions. The adsorption kinetics follows the first-order rate law while the adsorption thermodynamics indicates the exothermic and spontaneous nature. A comparative study on the adsorption/desorption properties of NDOM between CNTs and granular activated carbon (GAC) was also conducted and revealed that the CNTs possess more NDOM adsorption capacities and show less weight loss through 10 cycles of water treatment and reactivation than the GAC. This suggests that the CNTs are promising NDOM adsorbents for preventing the microbiological degradation of drinking water quality as well as the formation of disinfection by products in water treatment.

  20. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Sasaki, Hiroshi; Matsushita, Taku; Ohno, Koichi

    2009-07-01

    Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1microm, but further particle size reduction produced little improvement.

  1. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae.

    PubMed

    Chen, Hao; Zhao, Jie; Wu, Junyong; Dai, Guoliang

    2011-08-15

    This paper reports on the development of organo-modified silkworm exuviae (MSE) adsorbent prepared by using hexadecyltrimethylammonium bromide (HDTMAB) for removing methyl orange (MO), a model anionic dye, from aqueous solution. The natural and modified samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FT-IR). Batch adsorption experiments were carried out to remove MO from its aqueous solutions using SE and MSE. It was observed that the adsorption capacity of MSE is 5-6 times of SE. The different parameters effecting on the adsorption capacity such as pH of the solution, initial dye concentration, temperature and contact time have been investigated. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on the MSE can be described perfectly with Langmuir isotherm model compared with Freundlich and Dubinin-Radushkevich (D-R) isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. The adsorption process has been found exothermic in nature and thermodynamic parameters have been calculated. The adsorption kinetic followed the pseudo-second order kinetic model. The results of FT-IR, EDS and desorption studies all suggest that methyl orange adsorption onto the MSE should be mainly controlled by the hydrophobic interaction mechanism, along with a considerable contribution of the anionic exchange mechanism. The results indicate that HDTMAB-modified silkworm exuviae could be employed as low-cost material for the removal of methyl orange anionic dye from wastewater.

  2. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.

    PubMed

    Mushtaq, Mehwish; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2016-07-01

    Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite.

  3. Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyong; Zhang, Zebiao; Fernández, Y.; Menéndez, J. A.; Niu, Hao; Peng, Jinhui; Zhang, Libo; Guo, Shenghui

    2010-02-01

    A regenerated activated carbon used as catalyst support in the synthesis of vinyl acetate has been tested as a low-cost adsorbent for the removal of dyes. After a thorough textural characterization of the regenerated activated carbon, its adsorption isotherms and kinetics were determined using methylene blue as model compound at different initial concentrations. Both Langmuir and Freundlich isotherm models were developed and then compared. It was found that the equilibrium data were best represented by the Langmuir isotherm model. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and it was found that the best fitting corresponded to the pseudo-second-order kinetic model. The results showed that this novel adsorbent had a high adsorption capacity, making it suitable for use in the treatment of methylene blue enriched wastewater.

  4. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study

    PubMed Central

    2013-01-01

    The phenolic compounds are known by their carcinogenicity and high toxicity as well as creating unpleasant taste and odor in water resources. The present study develops a cost-effective technology for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-chlorophenol (2-CP), and 4-chlorophenol (4-CP). So, two sorbents, rice bran ash (RBA) and biomass of brown algae, Cystoseiraindica, were used and results were compared with the commercially granular activated carbon (GAC). The phenolic compounds were determined using a high performance liquid chromatography (HPLC) under batch equilibrium conditions. The effects of contact time, pH, initial adsorbate concentration, and adsorbent dosages on the removal efficiency were studied. The adsorption data were simulated by isotherm and kinetic models. Results indicated that RBA and GAC had the lowest efficiency for the removal of 2-CP, while the order of removal efficiency for C. indica biomass was as follows: 2-CP > 4-CP > phenol. The efficiency of GAC was higher than those of other adsorbents for all of the phenolic compounds. Furthermore, the adsorption capacity of RBA was found to be higher than that of C. indica biomass. The optimal initial pH for the removal of phenol, 2-CP and 4-CP was determined to be 5, 7, and 7 for RBA, GAC, and algal biomass, respectively. Kinetic studies suggested that the pseudo-second order best fitted the kinetic data. PMID:24355013

  5. Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae.

    PubMed

    Khani, M H; Keshtkar, A R; Ghannadi, M; Pahlavanzadeh, H

    2008-02-11

    Biosorption equilibrium, kinetics and thermodynamics of binding of uranium ions to Cystoseria indica were studied in a batch system with respect to temperature and initial metal ion concentration. Algae biomass exhibited the highest uranium uptake capacity at 15 degrees C at an initial uranium ion concentration of 500 mg l(-1) and an initial pH of 4. Biosorption capacity increased from 198 to 233 mg g(-1) with an decrease in temperature from 45 to 15 degrees C at this initial uranium concentration. The Langmuir isotherm model were applied to experimental equilibrium data of uranium biosorption depending on temperature. Equilibrium data fitted very well to the Langmuir model C. indica algae in the studied concentration range of Uranium ions at all the temperatures studied. The saturation type kinetic model was applied to experimental data at different temperatures changing from 15 to 45 degrees C to describe the batch biosorption kinetics assuming that the external mass transfer limitations in the system can be neglected and biosorption is chemical sorption controlled. The activation energy of biosorption (E(A)) was determined as -6.15 using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the thermodynamic constants of biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also evaluated.

  6. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-01-01

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  7. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    PubMed

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.

  8. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    SciTech Connect

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-09-16

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 hours although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A non-electrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  9. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous.

  10. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  11. Avidity of influenza virus: model-based identification of adsorption kinetics from surface plasmon resonance experiments.

    PubMed

    Wang, Wenjing; Wolff, Michael W; Reichl, Udo; Sundmacher, Kai

    2014-01-24

    Affinity chromatography and membrane adsorption are highly promising methods for the downstream processing of cell culture-derived influenza virus. For the optimization of this separation process, it is desirable to quantify the kinetics of virus adsorption. For this reason, the adsorption kinetics of the influenza A virus (Puerto Rico/8/34 (H1N1)) on a surface with the immobilized ligand Euronymus europaeus lectin (EEL) was investigated. The adsorption kinetics was experimentally monitored in a microfluidic flow cell by surface plasmon resonance (SPR) spectroscopy. The boundary layer theory was applied to analyze the convective and diffusive mass transport of the virus particles in the SPR flow cell. A multi-site kinetic adsorption model was found to describe the experimentally recorded adsorption curves adequately. According to the proposed model, under the applied experimental conditions, the number of sites (galactose residuals) binding one single virus particle to the EEL surface is in the range of 300 to 460, which is in average about 4% of the total number of sites available on the virus surface. The avidity of individual virus particles to the EEL surface was estimated to be in the order of magnitude of 10(6)M(-1)s(-1).

  12. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.

    PubMed

    Simanaviciute, Deimante; Klimaviciute, Rima; Rutkaite, Ramune

    2017-02-01

    In the present study, the equilibrium adsorption of caffeic acid (CA) and its derivatives, namely, chlorogenic (CGA) and rosmarinic (RA) acids on cationic cross-linked starch (CCS) with degree of substitution of quaternary ammonium groups of 0.42 have been investigated in relation to the structure and acidity of phenolic acids. The Langmuir, Freundlich and Dubinin-Radushkevich adsorption models have been used to describe the equilibrium adsorption of CA, CGA and RA from their initial solutions and solutions having the equimolar amount of NaOH at different temperatures. In the case of adsorption from the initial solutions of acids the values of adsorption parameters were closely related to the dissociation constants of investigated acids. According to the increasing effectiveness of adsorption, phenolic acids could be arranged in the following order: CA

  13. Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies.

    PubMed

    Singha, Biswajit; Das, Sudip Kumar

    2011-05-01

    Cr(VI) is a major water pollutant from industrial effluent whose concentration is to be reduced within the permissible limit. Present study reports a systematic evaluation of six different natural adsorbents for the removal of Cr(VI) from aqueous solutions in batch process. The adsorption kinetic data were best described by pseudo-second order model. The values of mass transfer coefficient for Cr(VI) adsorption indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast. The effective diffusivity of Cr(VI) removal for all the adsorbents were of the order of 10(-10) m(2)/s which suggested chemisorption of the process. The adsorption process was jointly controlled by film diffusion and intraparticle diffusion. Maximum monolayer adsorption capacities onto the natural adsorbents used were comparable to the other natural adsorbents used by other researchers. The thermodynamic studies and sorption energy calculation using Dubinin-Radushkevich isotherm model indicated that the adsorption processes were endothermic and chemical in nature. FT-IR studies were carried out to understand the type of functional groups responsible for Cr(VI) binding process. Desorption study was carried out with different concentration of NaOH solutions. Application study was carried out using electroplating industrial wastewater.

  14. Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons

    NASA Astrophysics Data System (ADS)

    Cherifi, Hakima; Fatiha, Bentahar; Salah, Hanini

    2013-10-01

    The vegetable sponge of cylindrical loofa (CL), a natural product which grows in the north of Algeria, was used to prepare activated carbons. Two activated carbons, AC1 and AC2, by two physiochemical activation methods to be used for methylene blue removal from wastewater. The surface structure of AC1, AC2 and CL were analyzed by scanning electron microscopy. Adsorption isotherm of methylene blue onto the prepared activated carbons was determined by batch tests. The effects of various parameters such as contact time, initial concentration, pH, temperature, adsorbent dose and granulometry were investigated, at agitation rate 150 rpm. The results showed that the equilibrium uptake increased with increasing initial MB concentration. The maximum % removal of MB obtained was 99% at 50 °C for AC1 and 82% at 30 °C for AC2. The increase in initial pH in the ranges of 2-10 increases the yields removal of MB on AC2. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  15. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.

    PubMed

    Asnaoui, H; Laaziri, A; Khalis, M

    2015-01-01

    Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.

  16. Adsorption intrinsic kinetics and isotherms of lead ions on steel slag.

    PubMed

    Liu, Sheng-Yu; Gao, Jin; Yang, Yi-Jin; Yang, Ying-Chun; Ye, Zhi-Xiang

    2010-01-15

    Batch experiments were carried out to investigate the kinetics of adsorption of lead ions by steel slag on the basis of the external diffusion, intra-particle diffusion and adsorption reaction model (pseudo-first-order, pseudo-second-order). The results showed that the controlling step for the adsorption kinetics changed with the varying experimental parameters. When the particle size of steel slag was larger than 120 mesh, intra-particle diffusion of Pb(2+) was the controlling step, and when the initial concentration of Pb(2+) was less than 150 m gL(-1) or the shaking rate was lower than 150 rpm, external diffusion of Pb(2+) was promoted. Contrary to the former experimental conditions the adsorption reaction was the controlling step, and the adsorption followed second-order kinetics, with an adsorption rate constant of 13.26 g mg(-1)min(-1). The adsorption isotherm of Pb(2+) with steel slag followed the Langmuir model, with a correlation coefficient of 0.99.

  17. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.

    PubMed

    Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian

    2013-11-01

    In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater.

  18. Use of Mg-Al oxide for boron removal from an aqueous solution in rotation: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2016-01-01

    Mg-Al oxide prepared through the thermal treatment of [Formula: see text] intercalated Mg-Al layered double hydroxides (CO3·Mg-Al LDH) was found to remove boron (B) from an aqueous solution. B was removed by the rehydration of Mg-Al oxide accompanied by combination with [Formula: see text] . When using twice the stoichiometric quantity of Mg-Al oxide for Mg/Al = 4, the residual concentration of B dropped from 100 to 2.8 mg/L in 480 min, and for Mg/Al = 2, it decreased from 100 to 2.5 mg/L in 240 min. In both cases, the residual concentration of B was highlighted to be lower than the current Japanese effluent standards (10 mg/L). The removal of B can be explained by way of pseudo-first-order reaction kinetics. The apparent activation energy of 63.5 kJ mol(-1), calculated from the Arrhenius plot indicating that a chemical reaction dominates the removal of B by Mg-Al oxide (Mg/Al = 2). The adsorption of B acts upon a Langmuir-type phenomena. The maximum adsorption (qm) and equilibrium adsorption constants (KL) were 7.4 mmol g(-1) and 1.9 × 10(3), respectively, for Mg-Al oxide (Mg/Al = 2). [Formula: see text] in B(OH)4·Mg-Al LDH produced by the removal of B was observed to undergo anion exchange with [Formula: see text] in solution. Following regeneration, the Mg-Al oxide maintained the ability to remove B from an aqueous solution. This study has clarified the possibility of recycling Mg-Al oxide for B removal.

  19. ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption.

    PubMed

    Ghaedi, Mehrorang; Ansari, Amin; Sahraei, Reza

    2013-10-01

    The objective of this work is the study of adsorption of Reactive Orange 12 (RO-12) and Direct yellow 12 (DY 12) by zinc sulfide:copper (ZnS-Cu-NP-AC) nanoparticles loaded on activated carbon. This new material with high efficiency in a routine manner was synthesized in our laboratory and its surface properties viz surface area, pore volume and functional groups was characterized with different techniques such FT-IR, SEM, and BET analysis. Generally, in batch adsorption procedure variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order, and intra-particle diffusion kinetic models. The equilibrium data the removal strongly follow Langmuir monolayer adsorption with high adsorption capacity in short time. This novel adsorbent by small amount (0.08 g) really is applicable for removal of high amount of both dyes (RO 12 and DY 12) in short time (<20 min). Based on the calculated thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), activation energy (Ea), sticking probability (S*) and Gibb's free energy changes (ΔG), it is noticeable that the sorption of both dyes onto ZnS:Cu-AC was spontaneous and endothermic process. At optimum values all variables the effect of contact time on adsorption was investigated and the dependency of adsorption data to different kinetic model such as pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion was assessed and it was found that the removal processes follow pseudo second order kinetics and interparticle diffusion mechanism.

  20. Application of Glycyrrhiza glabra root as a novel adsorbent in the removal of toluene vapors: equilibrium, kinetic, and thermodynamic study.

    PubMed

    Mohammadi-Moghadam, Fazel; Amin, Mohammad Mehdi; Khiadani Hajian, Mehdi; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Hatamipour, Mohammad Sadegh

    2013-01-01

    The aim of this paper is to investigate the removal of toluene from gaseous solution through Glycyrrhiza glabra root (GGR) as a waste material. The batch adsorption experiments were conducted at various conditions including contact time, adsorbate concentration, humidity, and temperature. The adsorption capacity was increased by raising the sorbent humidity up to 50 percent. The adsorption of toluene was also increased over contact time by 12 h when the sorbent was saturated. The pseudo-second-order kinetic model and Freundlich model fitted the adsorption data better than other kinetic and isotherm models, respectively. The Dubinin-Radushkevich (D-R) isotherm also showed that the sorption by GGR was physical in nature. The results of the thermodynamic analysis illustrated that the adsorption process is exothermic. GGR as a novel adsorbent has not previously been used for the adsorption of pollutants.

  1. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal.

  2. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  3. Kinetic Theory of Equilibrium Axisymmetric Collisionless Plasmas in Off-equatorial Tori around Compact Objects

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  4. Adsorption and removal kinetics of phosphonate from water using natural adsorbents.

    PubMed

    Kumar, R Anil; Velayudhan, K T; Ramachandran, V; Bhai, R Susheela; Unnikrishnan, G; Vasu, K

    2010-01-01

    The removal of phosphonate from water was studied using some natural adsorbents. Potassium phosphonate is a fungicide used for the control of Phytophthora capsici, which is prevalent in black pepper (Piper nigrum L.). Batch adsorption kinetic experiments were conducted on the adsorption of phosphonate onto the adsorbents. The concentration of phosphonate was measured on a high-performance liquid chromatograph fitted with a conductivity detector. The percentage removal of phosphonate by powdered laterite stone (PLS) from water was 40.4%, within a residence time of 15 minutes. The mechanisms of the rate of adsorption were analyzed and compared using the pseudo-second-order, Elovich, and intraparticle diffusion models. The experimental data was found to correlate well with the pseudo-second-order kinetic model, indicating adsorption as a chemisorption process. A possible reaction in the phosphonate-PLS system also has been proposed. The PLS can be used as a low-cost natural adsorbent for phosphonate removal from water.

  5. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.

    PubMed

    Subbaiah, Munagapati Venkata; Kim, Dong-Su

    2016-06-01

    Present research discussed the utilization of aminated pumpkin seed powder (APSP) as an adsorbent for methyl orange (MO) removal from aqueous solution. Batch sorption experiments were carried to evaluate the influence of pH, initial dye concentration, contact time, and temperature. The APSP was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The experimental equilibrium adsorption data were fitted using two two-parameter models (Langmuir and Freundlich) and two three-parameter models (Sips and Toth). Langmuir and Sips isotherms provided the best model for MO adsorption data. The maximum monolayer sorption capacity was found to be 200.3mg/g based on the Langmuir isotherm model. The pseudo-first-order and pseudo-second-order model equations were used to analyze the kinetic data of the adsorption process and the data was fitted well with the pseudo-second-order kinetic model (R(2)>0.97). The calculated thermodynamic parameters such as ΔG(0), ΔH(0) and ΔS(0) from experimental data showed that the sorption of MO onto APSP was feasible, spontaneous and endothermic in the temperature range 298-318 K. The FTIR results revealed that amine and carboxyl functional groups present on the surface of APSP. The SEM results show that APSP has an irregular and porous surface which is adequate morphology for dye adsorption. Desorption experiments were carried to explore the feasibility of adsorbent regeneration and the adsorbed MO from APSP was desorbed using 0.1M NaOH with an efficiency of 93.5%. Findings of the present study indicated that APSP can be successfully used for removal of MO from aqueous solution.

  6. Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: Kinetic, equilibrium and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    El-Bindary, Ashraf A.; El-Sonbati, Adel Z.; Al-Sarawy, Ahmad A.; Mohamed, Khaled S.; Farid, Mansour A.

    2015-02-01

    In this research, activated carbonmade from rice straw (ACRS) was synthesized simply by a low cost and nontoxic procedure and used for the adsorption of hazardous azopyrazole dye. The effect of different variables in the batch method as a function of solution pH, contact time, concentration of adsorbate, adsorbent dosage and temperature were investigated and optimal experimental conditions were ascertaine. Surface modification of ACRS using scanning electron microscopy (SEM) was obtained. More than 75% removal efficiency was obtained within 75 min at adsorbent dose of 0.5 g for initial dye concentration of 30-100 mg L-1 at pH 3. The experimental equilibrium data were tested by the isotherm models namely, Langmuir and Freundlich adsorption and the isotherm constants were determined. The kinetic data obtained with different initial concentration and temperature were analyzed using a pseudo-first-order and pseudo-second-order equations. The activation energy of adsorption was also evaluated and found to be +13.25 kJ mol-1 indicating that the adsorption is physisorption. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that ACRS could be employed as low-cost material for the removal of acid dyes from aqueous solution.

  7. [Kinetics and equilibrium of reactions between nucleotides and methylol derivatives of beta-alanine].

    PubMed

    Khulordava, K G; Kosaganov, Iu N; Lazurkin, Iu S

    1978-01-01

    The rate constants of forward and reverse reactions between methylol derivatives of beta-alanine and deoxycytidine 5'-phosphate, deoxyadenosine 5'phosphate and deoxyguanosine 5'phosphate and the equilibrium constants of these reactions were determined by the spectrophotometric method at 39,5 degrees C and pH 6,95. Besides, the equilibrium constant of the reaction between beta-alanine and formaldehyde was determined. Unlike deoxycytidine and deoxyadenosine 5'-phosphates, interaction of deoxyguanosine 5'phosphate with methylol derivatives is more complicated. A model proposed for the interaction of deoxyguanosine 5'phosphate with methylol derivatives explains the behavior of this nucleotide in the reaction. The kinetic and equilibrium constants of the interaction of methylol derivatives with nucleotides investigated exceed by two or three orders of magnitude the corresponding constants of the interaction of formaldehyde with these nucleotides.

  8. Computational methods for multiphase equilibrium and kinetics calculations for geochemical and reactive transport applications

    NASA Astrophysics Data System (ADS)

    Leal, Allan; Saar, Martin

    2016-04-01

    Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.

  9. Interaction of Pseudomonas putida with kaolinite and montmorillonite: a combination study by equilibrium adsorption, ITC, SEM and FTIR.

    PubMed

    Rong, Xingmin; Huang, Qiaoyun; He, Xiaomin; Chen, Hao; Cai, Peng; Liang, Wei

    2008-06-15

    Equilibrium adsorption along with isothermal titration calorimetry (ITC), Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM) techniques were employed to investigate the adsorption of Pseudomonas putida on kaolinite and montmorillonite. A higher affinity as well as larger amounts of adsorption of P. putida was found on kaolinite. The majority of sorbed bacterial cells (88.7%) could be released by water from montmorillonite, while only a small proportion (9.3%) of bacteria desorbed from kaolinite surface. More bacterial cells were observed to form aggregates with kaolinite, while fewer cells were within the larger bacteria-montmorillonite particles. The sorption of bacteria on kaolinite was enthalpically more favorable than that on montmorillonite. Based on our findings, it is proposed that the non-electrostatic forces other than electrostatic force play a more important role in bacterial adsorption by kaolinite and montmorillonite. Adsorption of bacteria on clay minerals resulted in obvious shifts of infrared absorption bands of water molecules, showing the importance of hydrogen bonding in bacteria-clay mineral adsorption. The enthalpies of -4.1+/-2.1 x 10(-8) and -2.5+/-1.4 x 10(-8)mJ cell(-1) for the adsorption of bacteria on kaolinite and montmorillonite, respectively, at 25 degrees C and pH 7.0 were firstly reported in this paper. The enthalpy of bacteria-mineral adsorption was higher than that reported previously for bacteria-biomolecule interaction but lower than that of bacterial coaggregation. The bacteria-mineral adsorption enthalpies increased at higher temperature, suggesting that the enthalpy-entropy compensation mechanism could be involved in the adsorption of P. putida on clay minerals. Data obtained in this study would provide valuable information for a better understanding of the mechanisms of mineral-microorganism interactions in soil and associated environments.

  10. Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions.

    PubMed

    Khan, Moonis Ali; Kim, Seong-wook; Rao, Rifaqat Ali Khan; Abou-Shanab, R A I; Bhatnagar, Amit; Song, Hocheol; Jeon, Byong-Hun

    2010-06-15

    The objective of this work was to compare the effectiveness of four commercially available granular activated carbons (GACs); coconut (CGAC), wood (WGAC), lignite (LGAC) and bituminous (BGAC) for the removal of dichloromethane (DCM) from aqueous solution by batch process. Various parameters such as thermodynamics, kinetics, pH, concentration of adsorbate, dosages of adsorbent and competitive ions effect on DCM adsorption were investigated. Maximum adsorption capacity (45.5mg/g for CGAC) was observed at pH 6.0-8.0. The kinetics data indicate better applicability of pseudo-second-order kinetics model at 25 and 35 degrees C. Freundlich model was better obeyed on CGAC, WGAC, and BGAC, while LGAC followed Langmuir model. The adsorption process for 100mg/L initial DCM concentration on CGAC was exothermic in nature. The adsorption of DCM on various adsorbents involves physical adsorption process. The adsorption of DCM over a large range of initial concentration on CGAC and LGAC is effective even in presence of ionic salts.

  11. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    PubMed

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  12. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  13. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    NASA Astrophysics Data System (ADS)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  14. New Direction in Hydrogeochemical Transport Modeling: Incorporating Multiple Kinetic and Equilibrium Reaction Pathways

    SciTech Connect

    Steefel, C.I.

    2000-02-02

    At least two distinct kinds of hydrogeochemical models have evolved historically for use in analyzing contaminant transport, but each has important limitations. One kind, focusing on organic contaminants, treats biodegradation reactions as parts of relatively simple kinetic reaction networks with no or limited coupling to aqueous and surface complexation and mineral dissolution/precipitation reactions. A second kind, evolving out of the speciation and reaction path codes, is capable of handling a comprehensive suite of multicomponent complexation (aqueous and surface) and mineral precipitation and dissolution reactions, but has not been able to treat reaction networks characterized by partial redox disequilibrium and multiple kinetic pathways. More recently, various investigators have begun to consider biodegradation reactions in the context of comprehensive equilibrium and kinetic reaction networks (e.g. Hunter et al. 1998, Mayer 1999). Here we explore two examples of multiple equilibrium and kinetic reaction pathways using the reactive transport code GIMRT98 (Steefel, in prep.): (1) a computational example involving the generation of acid mine drainage due to oxidation of pyrite, and (2) a computational/field example where the rates of chlorinated VOC degradation are linked to the rates of major redox processes occurring in organic-rich wetland sediments overlying a contaminated aerobic aquifer.

  15. Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media

    SciTech Connect

    Kowalsky, Michael B.; Moridis, George J.

    2006-11-29

    In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.

  16. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica

    SciTech Connect

    Monazam, E., Shadle, L., Pennline, H., Miller, D., Fauth, D., Hoffman, J., Gray, M.

    2012-01-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  17. Equilibrium and Absorption Kinetics of Carbon Dioxide by solid Supported Amine Sorbent

    SciTech Connect

    Monazam, Esmail R.; Shadle, Lawrence J.; Siriwardane, Ranjani

    2011-11-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  18. Removal of methylene blue from aqueous solution by Artist's Bracket fungi: kinetic and equilibrium studies.

    PubMed

    Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad

    2016-01-01

    In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.

  19. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass.

    PubMed

    Bulgariu, Dumitru; Bulgariu, Laura

    2012-01-01

    The biosorption of Pb(II), Cd(II), and Co(II), respectively, from aqueous solution on green algae waste biomass was investigated. The green algae waste biomass was obtained from marine green algae after extraction of oil, and was used as low-cost biosorbent. Batch shaking experiments were performed to examine the effects of initial solution pH, contact time and temperature. The equilibrium biosorption data were analyzed using two isotherm models (Langmuir and Freundlich) and two kinetics models (pseudo-first order and pseudo-second order). The results indicate that Langmuir model provide best correlation of experimental data, and the pseudo-second order kinetic equation could best describe the biosorption kinetics of considered heavy metals.

  20. Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution.

    PubMed

    Al-Johani, Hind; Abdel Salam, Mohamed

    2011-08-15

    Multi-walled carbon nanotubes (MWCNTs) were used in the adsorptive removal of aniline, an organic pollutant, from an aqueous solution. It was found that carbon nanotubes with a higher specific surface area adsorbed and removed more aniline from an aqueous solution. The adsorption was dependent on factors, such as MWCNTs dosage, contact time, aniline concentration, solution pH and temperature. The adsorption study was analyzed kinetically, and the results revealed that the adsorption followed pseudo-second order kinetics with good correlation coefficients. In addition, it was found that the adsorption of aniline occurred in two consecutive steps, including the slow intra-particle diffusion of aniline molecules through the nanotubes. Various thermodynamic parameters, including the Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°), were calculated. The results indicated that the spontaneity of the adsorption, exothermic nature of the adsorption and the decrease in the randomness reported as ΔG°, ΔH° and ΔS°, respectively, were all negative.

  1. Time evolution analysis of a 2D solid gas equilibrium: a model system for molecular adsorption and diffusion

    NASA Astrophysics Data System (ADS)

    Berner, S.; Brunner, M.; Ramoino, L.; Suzuki, H.; Güntherodt, H.-J.; Jung, T. A.

    2001-11-01

    The adsorption of sub-phthalocyanine molecules on Ag(1 1 1) has been studied by means of scanning tunneling microscopy (STM). The molecules are observed in different two-dimensional (2D) phases of adsorption which coexist in thermodynamic equilibrium. In the condensed phase the molecules form well-ordered islands with a honeycomb pattern. In the gas phase single molecules can be discriminated in single scan lines by characteristic tip excursions which occur randomly. The energy barrier for surface diffusion as well as the condensation energy to form 2D islands is estimated and discussed.

  2. [New relations for steady-state enzyme kinetics and their application to rapid equilibrium assumption].

    PubMed

    Vrzheshch, P V

    2013-01-01

    With the use of a graph theory new relations for steady-state enzyme kinetics are derived and strictly proved for the arbitrary mechanism of an enzyme-catalysed reaction containing a reversible segment. Using these relations, a general principle for rapid equilibrium assumption is formulated and proved: the reversible bound segment can be considered as an equilibrium segment only when the values of the base trees that are not proper to this segment can be neglected (within a prescribed accuracy) in relation to the values of the base trees that belong to this segment. In contrast with the foreign base trees the base trees that are proper to the segment have the following properties: the tree that is directed to the base within this segment does not contain the edges leaving this segment; and the tree that is directed to the base outside the segment contains only one edge leaving this segment. Equilibrium variations are assessed for steady-state intermediates concentrations of the equilibrium segment, numerical expressions are obtained for the accuracy of determination of the intermediates concentrations as well as for the accuracy of determination of the rate of enzyme-catalysed reaction in case of using rapid equilibrium assumption.

  3. Kinetic bottleneck to the self-organization of bidisperse hard disk monolayers formed by random sequential adsorption.

    PubMed

    Doty, R Christopher; Bonnecaze, Roger T; Korgel, Brian A

    2002-06-01

    We study the self-organization of bidisperse mixtures of hard spheres in two dimensions by simulating random sequential adsorption (RSA) of tethered hard disks that undergo limited Monte Carlo surface diffusion. The tethers place a control on the local entropy of the disks by constraining their movement within a specified distance from their original adsorption positions. By tuning the tether length, from zero (the pure RSA process) to infinity (near-equilibrium conditions), the kinetic pathway to monolayer formation can be varied. Previously [J. J. Gray et al., Phys. Rev. Lett. 85, 4430 (2000); Langmuir 17, 2317 (2001)], we generated nonequilibrium phase diagrams for size-monodisperse and size-polydisperse hard disks as a function of surface coverage, size distribution, and tether length to reveal the occurrence of hexagonal close-packed, hexatic, and disordered phases. Bidisperse hard disks potentially offer increasingly diverse phase diagrams, with the possible occurrence of spatially and compositionally organized superlattices. Geometric packing calculations anticipate the formation of close-packed lattices in two dimensions for particle size ratios sigma=R(S)/R(L)=0.53, 0.414, and 0.155. The simulations of these systems presented here, however, reveal that RSA kinetics frustrate superlattice ordering, even for infinite tethers. The calculated jamming limits fall well below the minimum surface coverages necessary for stable ordering, as determined by melting simulations.

  4. Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: Kinetics, thermodynamic and electrochemical studies.

    PubMed

    Arshadi, M; Mousavinia, F; Amiri, M J; Faraji, A R

    2016-12-01

    In this work synthesis of Mn-nanoparticles (MnNPs) supported on the Schiff base modified nano-sized SiO2Al2O3 mixed-oxides (Si/Al) and its implementation as an adsorbent for the removal of organic pollutions such as methyl orange (MO) and salicylic acid (SA) was investigated. Si/Al were functionalized by grafting Schiff base ligand and in the next step, MnNPs were prepared over the modified nano sol-gel Si/Al. Structures and adsorption characteristics of the obtained organometallic-modified SiO2/Al2O3 mixed oxide were studied by several methods such as elemental analysis, diffuse reflectance UV-vis spectroscopy, FT-IR spectroscopy, nitrogen adsorption/desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX), inductively coupled plasma (ICP-AES), Electron Paramagnetic Resonance (EPR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). EPR data of the immobilized manganese ions resulted that the transition state of active sites in the nano-adsorbent are in the form of Mn(II) ions at the surface. The adsorption properties of heterogeneous Mn(II) ions showed that this nano-adsorbent has very good potential to remove MO and SA ions from aqueous solution. The removal efficiency of the SAPAS@MnNPs towards MO reached out to 89.3 and 29.1% and for SA approached to 54.6 and 18.9% at 150 and 500mg/dm(3) initial organic pollution concentrations, respectively. To investigate the adsorption kinetic of Mn(II) ions onto the nano-sized support, pseudo first and pseudo second order kinetics, and the Freundlich, Langmuir and Langmuir-Freundlich isotherm models have also been applied to the equilibrium adsorption data. The contact time to obtain equilibrium for maximum adsorption capacity was 45min. The adsorption process was spontaneous and endothermic in nature and it was well explained with pseudo-second-order kinetic model. No remarkable loss of removal capacity even after 8th times regeneration

  5. Equilibrium and Kinetic Models for Colloid Release Under Transient Solution Chemistry Conditions

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Torkzaban, S.; Leij, F. J.; Simunek, J.

    2014-12-01

    Colloid retention and release is well known to depend on a wide variety of physical, chemical, and microbiological factors that may vary temporally in the subsurface environment. We present equilibrium, kinetic, combined equilibrium and kinetic, and two-site kinetic models of colloid release during transient physicochemical conditions. Our mathematical modeling approach relates colloid release under transient conditions to changes in the fraction of the solid surface area that contributes to retention. The developed models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of E. coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity, respectively. The retention and release of 20 nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca2+ than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2 mM CaCl2 solution, and release of NPs only occurred after exchange of Ca2+ by Na+ and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider Born repulsion and nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque. Collectively, experimental and modeling results indicate that episodic colloid transport in the

  6. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies.

    PubMed

    Calvete, Tatiana; Lima, Eder C; Cardoso, Natali F; Vaghetti, Júlio C P; Dias, Silvio L P; Pavan, Flavio A

    2010-08-01

    Activated (AC-PW) and non-activated (C-PW) carbonaceous materials were prepared from the Brazilian-pine fruit shell (Araucaria angustifolia) and tested as adsorbents for the removal of reactive orange 16 dye (RO-16) from aqueous effluents. The effects of shaking time, adsorbent dosage and pH on the adsorption capacity were studied. RO-16 uptake was favorable at pH values ranging from 2.0 to 3.0 and from 2.0 to 7.0 for C-PW and AC-PW, respectively. The contact time required to obtain the equilibrium using C-PW and AC-PW as adsorbents was 5 and 4h at 298 K, respectively. The fractionary-order kinetic model provided the best fit to experimental data compared with other models. Equilibrium data were better fit to the Sips isotherm model using C-PW and AC-PW as adsorbents. The enthalpy and entropy of adsorption of RO-16 were obtained from adsorption experiments ranging from 298 to 323 K.

  7. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon

    SciTech Connect

    Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch

    2007-09-15

    The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

  8. Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy

    NASA Astrophysics Data System (ADS)

    Semboshi, Satoshi; Amano, Shintaro; Fu, Jie; Iwase, Akihiro; Takasugi, Takayuki

    2017-01-01

    Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β'-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β'-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time-temperature-transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.

  9. Equilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions

    NASA Astrophysics Data System (ADS)

    Honorato Rios, Camila; Kuhnhold, Anja; Bruckner, Johanna; Dannert, Rick; Schilling, Tanja; Lagerwall, Jan

    2016-05-01

    The cholesteric liquid crystal self-assembly of water-suspended cellulose nanocrystal (CNC) into a helical arrangement was observed already more than 20 years ago and the phenomenon was used to produce iridescent solid films by evaporating the solvent or via sol-gel processing. Yet it remains challenging to produce optically uniform films and to control the pitch reproducibly, reflecting the complexity of the three-stage drying process that is followed in preparing the films. An equilibrium liquid crystal phase formation stage is followed by a non-equilibrium kinetic arrest, which in turn is followed by structural collapse as the remaining solvent is evaporated. Here we focus on the first of these stages, combining a set of systematic rheology and polarizing optics experiments with computer simulations to establish a detailed phase diagram of aqueous CNC suspensions with two different values of the surface charge, up to the concentration where kinetic arrest sets in. We also study the effect of varying ionic strength of the solvent. Within the cholesteric phase regime, we measure the equilibrium helical pitch as a function of the same parameters. We report a hitherto unnoticed change in character of the isotropic-cholesteric transition at increasing ionic strength, with a continuous weakening of the first-order character up to the point where phase coexistence is difficult to detect macroscopically due to substantial critical fluctuations.

  10. Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy

    NASA Astrophysics Data System (ADS)

    Semboshi, Satoshi; Amano, Shintaro; Fu, Jie; Iwase, Akihiro; Takasugi, Takayuki

    2017-03-01

    Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β'-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β'-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time-temperature-transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.

  11. Influence of alternative cations distribution in AgxLi96-x-LSX on dehydration kinetics and its selective adsorption performance for N2 and O2

    NASA Astrophysics Data System (ADS)

    Panezai, Hamida; Sun, Jihong; Jin, Xiaoqi

    2016-12-01

    Adsorption characteristics of pure gases N2 and O2 on various silver exchanged low silica X-type (AgxLi96-x-LSX) zeolites were investigated. The equilibrium adsorption isotherms of N2 and O2 were measured at 273 and 298 K. Textual and structural properties of parent and resultant AgxLi96-x-LSX were characterized by XRD, BET surface area, and SEM techniques. Kinetics of their thermal dehydration were studied by exploiting thermogravimetric and differential data (TG-DTG) obtained at three heating rates (5, 10 and 15 K) using two model-free (Kissinger and Flynn-Wall-Ozawa) and one model fitting (Coats-Redfern) methods. Forty one mechanism functions were used to evaluate kinetic triplet (activation energy, frequency factor, and most probable mechanism/model) for different stages of dehydration. Results revealed that the impact of very small content of silver on the adsorption of N2 is pronounced and attributed to weak chemical bonds formed between N2 and Ag+ clusters due to strong adsorption of N2 at low pressure, whereas O2 adsorption is affected to a negligible extent. In addition, the N2/O2 adsorption selectivity shows unexpected low values for Ag87.08Li7.94Na0.98-LSX with higher Ag+ content (91.00 %), which might be due to low crystalline water content as well as Ag+ clusters located at SIII sites. N2 adsorption strongly depends on temperature as higher adsorption occurs at low temperature 273 K as compared to 298 K.

  12. Transition state kinetics of Hg(II) adsorption at gibbsite-water interface.

    PubMed

    Weerasooriya, Rohan; Tobschall, Heinz J; Seneviratne, Wasana; Bandara, Atula

    2007-08-25

    Kinetics of adsorption plays a pivotal factor in determining the bio-availability and mobility of Hg(II) in the environment. The kinetics of Hg(II) adsorption on gibbsite was examined as a function of pH, temperature and electrolyte type. Adsorption of Hg(II) was highly non-linear where the rate of Hg(II) retention was rapid initially and was followed by gradual or somewhat slow retention behavior with increasing contact time. The respective rate constants designated as k(1) (S-1: fast step) and k(2) (S-2: slow step). Always k(1) follows the order: k(1)(CIO)(4) >/= k(1)(NO3)(4) > k(1)(Cl). Such a relationship was not observed for the S-2 route. A two-step reaction model with pseudo-first order kinetics successfully described the adsorption rates of Hg(II) on gibbsite. Arrhenius and Erying models determined the thermodynamic parameters at activation states, which correspond to S-1 and S-2 routes. In a given system, always the activation energies showed a decrease with the pH. Gibbs free energy (DeltaG(#)), enthalpy (DeltaH(#)), and entropy (DeltaS(#)) values of activation states were almost similar both in NaClO(4) and NaNO(3) which signal a similar Hg(II) adsorptive mechanism on gibbsite. The configurations of different Hg(II)-surface complexes were elucidated by transmission vibration spectroscopy.

  13. Determination of a Setup Correction Function to Obtain Adsorption Kinetic Data at Stagnation Point Flow Conditions

    PubMed Central

    Mora, Maria F.; Nejadnik, M. Reza; Baylon-Cardiel, Javier L.; Giacomelli, Carla E.; Garcia, Carlos D.

    2010-01-01

    This paper is the first report on the characterization of the hydrodynamic conditions in a flow cell designed to study adsorption processes by spectroscopic ellipsometry. The resulting cell enables combining the advantages of in-situ spectroscopic ellipsometry with stagnation point flow conditions. An additional advantage is that the proposed cell features a fixed position of the “inlet tube” with respect to the substrate, thus facilitating the alignment of multiple substrates. Theoretical calculations were performed by computational fluid dynamics and compared with experimental data (adsorption kinetics) obtained for the adsorption of polyethylene glycol to silica under a variety of experimental conditions. Additionally, a simple methodology to correct experimental data for errors associated with the size of the measured spot and for variations of mass transfer in the vicinity of the stagnation point is herein introduced. The proposed correction method would allow researchers to reasonably estimate the adsorption kinetics at the stagnation point and quantitatively compare their results, even when using different experimental setups. The applicability of the proposed correction function was verified by evaluating the kinetics of protein adsorption under different experimental conditions. PMID:20219204

  14. Determination of a setup correction function to obtain adsorption kinetic data at stagnation point flow conditions.

    PubMed

    Mora, Maria F; Nejadnik, M Reza; Baylon-Cardiel, Javier L; Giacomelli, Carla E; Garcia, Carlos D

    2010-06-01

    This paper is the first report on the characterization of the hydrodynamic conditions in a flow cell designed to study adsorption processes by spectroscopic ellipsometry. The resulting cell enables combining the advantages of in situ spectroscopic ellipsometry with stagnation point flow conditions. An additional advantage is that the proposed cell features a fixed position of the "inlet tube" with respect to the substrate, thus facilitating the alignment of multiple substrates. Theoretical calculations were performed by computational fluid dynamics and compared with experimental data (adsorption kinetics) obtained for the adsorption of polyethylene glycol to silica under a variety of experimental conditions. Additionally, a simple methodology to correct experimental data for errors associated with the size of the measured spot and for variations of mass transfer in the vicinity of the stagnation point is herein introduced. The proposed correction method would allow researchers to reasonably estimate the adsorption kinetics at the stagnation point and quantitatively compare their results, even when using different experimental setups. The applicability of the proposed correction function was verified by evaluating the kinetics of protein adsorption under different experimental conditions.

  15. [Kinetics of serum albumin adsorption on the macroporous glass MPS-250 GKH].

    PubMed

    Naumova, L V; El'Kin, G E; Dmitrenko, L V

    1996-01-01

    Intrinsic diffusion (defined as diffusion within micropores or microgranules) was shown to be a major factor that determines the kinetics of bovine serum albumin adsorption to macroporous silica MPS-250 GKh. The effective coefficient of intrinsic diffusion (within the silica phase) was calculated (Def = 7 x 10(-7) cm2/s).

  16. Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua

    2003-10-15

    This study examines the influences of adsorbent porosity and surface chemistry and of carbon dosage on dodecanoic acid adsorption kinetics from aqueous and 2 M NaOH solutions as batch adsorption processes. Both adsorbents are steam-activated carbons prepared from either coconut or coal precursors. Prior to use the adsorbents were washed in deionized water or 2 M NaOH. Mass transfer coefficients and effective overall diffusion coefficients indicate a minor contribution from adsorbent porosity. In contrast, high surface oxygen content impedes transport to and into the adsorbent structure. Carbon dosage shows a proportional increase in transport coefficients with increasing mass; these coefficients are constant when normalized per unit mass. Neither water nor NaOH treatment of the adsorbents has a significant influence on dodecanoic acid adsorption kinetics. Molecular and Knudsen diffusion coefficients are defined to demonstrate that the overall effective diffusion coefficient values and the diffusion process are controlled by surface diffusion.

  17. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  18. Application of novel, low-cost, laterite-based adsorbent for removal of lead from water: Equilibrium, kinetic and thermodynamic studies.

    PubMed

    Chatterjee, Somak; De, Sirshendu

    2016-01-01

    Contamination of groundwater by carcinogenic heavy metal, e.g., lead is an important issue and possibility of using a natural rock, laterite, is explored in this work to mitigate this problem. Treated laterite (TL- prepared using hydrochloric acid and sodium hydroxide) was successfully utilized for this purpose. The adsorbent was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and Fourier Transform Infrared Spectroscopy (FTIR) to highlight its physical and chemical properties. Optimized equilibrium conditions were 1 g L(-1) adsorbent concentration, 0.26 mm size and a pH of 7 ± 0.2. Monolayer adsorption capacity of lead on treated laterite was 15 mg/g, 14.5 and 13 mg g(-1) at temperatures of 303 K, 313 K and 323 K, respectively. The adsorption was exothermic and physical in nature. At 303 K, value of effective diffusivity of (De) and mass transfer co-efficient (Kf) of lead onto TL were 6.5 × 10(-10) m(2)/s and 3.3 × 10(-4) m/s, respectively (solved from shrinking core model of adsorption kinetics). Magnesium and sulphate show highest interference effect on the adsorption of lead by TL. Efficacy of the adsorbent has been verified using real-life contaminated groundwater. Thus, this work demonstrates performance of a cost-effective media for lead removal.

  19. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies

    PubMed Central

    2013-01-01

    In this study, powder activated carbon (PAC) and magnetic nanoparticles of iron (III) oxide were used for synthesis of Fe3O4-activated carbon magnetic nanoparticles (AC-Fe3O4 MNPs) as an adsorbent for the removal of aniline. The characteristics of adsorbent were evaluated by SEM, TEM, XRD and BET. Also, the impact of different parameters such as pH, contact time, adsorbent dosage, aniline initials concentration and solution temperature were studied. The experimental data investigated by Langmuir and Freundlich adsorption isotherms and two models kinetically of pseudo first-order and pseudo second-order. The results indicated that the adsorption followed Langmuir and pseudo second-order models with correlation r2 > 0.98 and r2 > 0.99, respectively. The equilibrium time was obtained after 5 h. According to Langmuir model, the maximum adsorption capacity was 90.91 mg/g at pH = 6, and 20°C. The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous. This synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as aniline from water and wastewater. PMID:23414171

  20. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    PubMed

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  1. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies.

    PubMed

    Kakavandi, Babak; Jonidi, Ahmad; Rezaei, Roshanak; Nasseri, Simin; Ameri, Ahmad; Esrafily, Ali

    2013-01-01

    In this study, powder activated carbon (PAC) and magnetic nanoparticles of iron (III) oxide were used for synthesis of Fe3O4-activated carbon magnetic nanoparticles (AC-Fe3O4 MNPs) as an adsorbent for the removal of aniline. The characteristics of adsorbent were evaluated by SEM, TEM, XRD and BET. Also, the impact of different parameters such as pH, contact time, adsorbent dosage, aniline initials concentration and solution temperature were studied. The experimental data investigated by Langmuir and Freundlich adsorption isotherms and two models kinetically of pseudo first-order and pseudo second-order. The results indicated that the adsorption followed Langmuir and pseudo second-order models with correlation r(2) > 0.98 and r(2) > 0.99, respectively. The equilibrium time was obtained after 5 h. According to Langmuir model, the maximum adsorption capacity was 90.91 mg/g at pH = 6, and 20°C. The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous. This synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as aniline from water and wastewater.

  2. Adsorption-desorption of oxytetracycline on marine sediments: Kinetics and influencing factors.

    PubMed

    Li, Jia; Zhang, Hua

    2016-12-01

    To reveal the kinetics and mechanisms of antibiotic adsorption/desorption processes, batch and stirred flow chamber (SFC) experiments were carried out with oxytetracycline (OTC) on two marine sediments. The OTC adsorption capacities of the marine sediments were relatively weak and related to their organic carbon (OC) and contents of fine particles. Sorption isotherms of OTC on marine sediment can be well described by both the Langmuir and Freundlich models. Langmuir adsorption maxima (qmax) and Freundlich distribution coefficients (Kf) increased with the decrease of salinity and pH, which indicated the importance of variable charged sites on sediment surfaces. A second order kinetic model successfully described adsorption and desorption kinetics of OTC and well reproduced the concentration change during stop-flow. The adsorption kinetic rates (ka) for OTC under different experimental conditions ranged from 2.00 × 10(-4) to 1.97 × 10(-3) L (mg min)(-1). Results of SFC experiments indicated that diffusive mass transfer was the dominant mechanism of the time-dependent adsorption of OTC and its release from marine sediment was mildly hysteretic. The high desorption percentage (43-75% for LZB and 58-75% for BHB) implied that binding strength of OTC on two marine sediments was weak. In conclusion, marine sediment characteristics and environmental factors such as salinity, pH, and flow rate are critical factors determine extent of OTC sorption on marine sediment and need to be incorporated in modeling fate and transport of OTC in marine environment.

  3. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    SciTech Connect

    Yu, Z.; Peldszus, S.; Huck, P.M.

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  4. Kinetics of adsorption with granular, powdered, and fibrous activated carbon

    SciTech Connect

    Shmidt, J.L.; Pimenov, A.V.; Lieberman, A.I.; Cheh, H.Y.

    1997-08-01

    The properties of three different types of activated carbon, fibrous, powdered, and granular, were investigated theoretically and experimentally. The adsorption rate of the activated carbon fiber was found to be two orders of magnitude higher than that of the granular activated carbon, and one order of magnitude higher than that of the powdered activated carbon. Diffusion coefficients of methylene blue in the fibrous, powdered, and granular activated carbons were determined experimentally. A new method for estimating the meso- and macropore surface areas in these carbons was proposed.

  5. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes.

    PubMed

    Lu, Chungsying; Chung, Yao-Lei; Chang, Kuan-Foo

    2006-11-16

    Multiwalled carbon nanotubes (MWCNTs) were purified by mixed HNO3/H2SO4 solution and were employed as adsorbents to study adsorption kinetics and thermodynamics of trihalomethanes (THMs) from chlorinated drinking water. The amount of THMs adsorbed onto CNTs decreased with a rise in temperature and high adsorption capacities were found at 5 and 15 degrees C. Under the same conditions, the purified CNTs possess two to three times more adsorption capacities of CHCl3, which accounts for a major portion of THMs in the chlorinated drinking water, than the commercially available PAC suggesting that CNTs are efficient adsorbents. The thermodynamic analysis revealed that the adsorption of THMs onto CNTs is exothermic and spontaneous.

  6. A Low Beta and Exact Kinetic Equilibrium for a 1D Nonlinear Force-Free field

    NASA Astrophysics Data System (ADS)

    Allanson, O.; Neukirch, T.; Wilson, F.; Troscheit, S.

    2015-12-01

    We present results regarding 1D nonlinear force-free Vlasov-Maxell (VM) equilibria, in particular for the force-free Harris sheet (FFHS). All the known equilibria of this type - including those for the FFHS - have plasma-beta values greater than one, due to the specific way in which they have been constructed. Using transformation techniques we construct VM equilibria for the FFHS that can have plasma-beta values smaller than one. Some properties of the newly found equilibrium distribution functions will be discussed. Possible applications would be studies of collisionless magnetic reconnection, kinetic instabilities and other phenomena in space and astrophysical plasma.

  7. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  8. The effects of surface chemistry of mesoporous silica materials and solution pH on kinetics of molsidomine adsorption

    SciTech Connect

    Dolinina, E.S.; Parfenyuk, E.V.

    2014-01-15

    Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbed molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.

  9. Kinetic and equilibrium studies on biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis.

    PubMed

    Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2007-04-01

    Dynamic batch experiments were carried out for the biosorption of basic blue dye on to the green macro algae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye, pH of the solution, the adsorbent dosage and the time of contact were studied. It has been observed that the sorption process was significantly affected by the pH of the initial dye solution. The sorption kinetics was found to follow the second-order kinetic model. The Boyd's plot confirmed the external mass transfer as the rate-limiting step. The average effective diffusion coefficient was found to be 1.652 x 10(- 5) cm(2)/s. Sorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Optimized parameters were used to treat the commercial effluent containing the dye. Complete color removal was observed in two stages of treatment with the seaweed.

  10. Ionic adsorption of catalase on bioskin: kinetic and ultrastructural studies.

    PubMed

    Solas, M T; Vicente, C; Xavier, L; Legaz, M E

    1994-03-15

    Bioskin is a natural polymer produced by Acetobacter xylinum and several yeasts in culture. It contains glucosamine and N-acetyl galactosamine which promote ionic adsorption of catalase at the adequate pH value. High values of ionic strength are required to enzyme desorption. Adsorption of catalase on bioskin fibers has been visualized by scanning electron microscopy associated to a dispersion X-ray analyzer. At low enzyme density, the affinity of the immobilized catalase for hydrogen peroxide was 30% lower than that of the free enzyme. This affinity decreased dramatically at higher density of immobilized enzyme and could not be increased by agitation of the enzyme reaction mixture. Immobilized catalase retains about 70% of its initial activity after 16 d storage, whereas soluble enzyme is completely inactivated after 3 d at room temperature. The haeme group of catalase is not protected after immobilization since it is accessible to both EDTA and phloroglucinol, chelating agents which inactivate catalase by removing the iron atom from the haeme group.

  11. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.

    PubMed

    Pavagadhi, Shruti; Tang, Ai Ling Lena; Sathishkumar, Muthuswamy; Loh, Kian Ping; Balasubramanian, Rajasekhar

    2013-09-01

    Graphene oxide (GO) was employed in the present study for removal of two commonly occurring algal toxins, microcystin-LR (MC-LR) and microcystin-RR (MC-RR), from water. The adsorption performance of GO was compared to that of commercially available activated carbon. Further, adsorption experiments were conducted in the presence of other environmental pollutants to understand the matrix effects of contaminated water on the selective adsorption of MC-LR and MC-RR onto GO. The environmental pollutants addressed in this study included different anions (nitrate NO3-, nitrite NO2-, sulphate SO4(2-), chloride (Cl(-)), phosphate PO4(3-) and fluoride (F(-))) and cations (sodium (Na(+)), potassium (K(+)), magnesium (Mg(2+)) and calcium (Ca(2+))). GO showed very a high adsorption capacity of 1700 μg/g for removal of MC-LR and 1878 μg/g for MC-RR while the maximum adsorption capacity obtained with the commercial activated carbon was 1481.7 μg/g and 1034.1 μg/g for MC-LR and MC-RR, respectively. The sorption kinetic experiments revealed that more than 90% removal of both MC-LR/RR was achieved within 5 min for all the doses studied (500, 700 and 900 μg/L). GO could be reused as an adsorbent following ten cycles of adsorption/desorption with no significant loss in its adsorption capacity.

  12. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    PubMed

    Zheng, Xiliang; Wang, Jin

    2015-04-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.

  13. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration.

    PubMed

    Fleming, R M T; Thiele, I

    2012-12-07

    Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. With expository biochemical examples we show how reversible, mass balanced perpetual reaction(s), with thermodynamically infeasible kinetic parameters, can be used to perpetually force various kinetic models in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models.

  14. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    PubMed Central

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  15. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  16. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    SciTech Connect

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  17. Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies

    SciTech Connect

    Guibal, E.; Milot, C.; Tobin, J.M.

    1998-04-01

    Chitosan is a well-known biopolymer, whose high nitrogen content confers remarkable ability for the sorption of metal ions from dilute effluents. However, its sorption performance in both equilibrium and kinetic terms is controlled by diffusion processes. Gel bead formation allows an expansion of the polymer network, which improves access to the internal sorption sites and enhances diffusion mechanisms. Molybdate and vanadate recovery using glutaraldehyde cross-linked chitosan beads reaches uptake capacities as high as 7--8 mmol/g, depending on the pH. The optimum pH (3--3.5) corresponded to the predominance range of hydrolyzed polynuclear metal forms and optimum electrostatic attraction. While for beads, particle size does not influence equilibrium, for flakes, increasing sorbent radius significantly decreases uptake capacities to 1.5 mmol/g. Sorption kinetics are mainly controlled by intraparticle diffusion for beads, while for flakes the controlling mechanisms are both external and intraparticle diffusion. The gel conditioning increases the intraparticle diffusivity by 3 orders of magnitude: intraparticle diffusivities range between 10{sup {minus}13} and 10{sup {minus}10} m{sup 2}/min, depending on the sorbent size and the conditioning.

  18. Analysis of the equilibrium and kinetics of the ankyrin repeat protein myotrophin

    NASA Astrophysics Data System (ADS)

    Faccin, Mauro; Bruscolini, Pierpaolo; Pelizzola, Alessandro

    2011-02-01

    We apply the Wako-Saito-Muñoz-Eaton model to the study of myotrophin, a small ankyrin repeat protein, whose folding equilibrium and kinetics have been recently characterized experimentally. The model, which is a native-centric with binary variables, provides a finer microscopic detail than the Ising model that has been recently applied to some different repeat proteins, while being still amenable for an exact solution. In partial agreement with the experiments, our results reveal a weakly three-state equilibrium and a two-state-like kinetics of the wild-type protein despite the presence of a nontrivial free-energy profile. These features appear to be related to a careful "design" of the free-energy landscape, so that mutations can alter this picture, stabilizing some intermediates and changing the position of the rate-limiting step. Also, the experimental findings of two alternative pathways, an N-terminal and a C-terminal one, are qualitatively confirmed, even if the variations in the rates upon the experimental mutations cannot be quantitatively reproduced. Interestingly, the folding and unfolding pathways appear to be different, even if closely related: a property that is not generally considered in the phenomenological interpretation of the experimental data.

  19. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  20. Development, Construction, and Operation of a Multisample Volumetric Apparatus for the Study of Gas Adsorption Equilibrium

    ERIC Educational Resources Information Center

    Ribeiro, Rui P. P. L.; Silva, Ricardo J. S.; Esteves, Isabel A. A. C.; Mota, Jose´ P. B.

    2015-01-01

    The construction of a simple volumetric adsorption apparatus is highlighted. The setup is inexpensive and provides a clear demonstration of gas phase adsorption concepts. The topic is suitable for undergraduate chemistry and chemical engineering students. Moreover, this unit can also provide quantitative data that can be used by young researchers…

  1. Equilibrium and kinetics of color removal from dye solutions with bentonite and polyaluminum hydroxide.

    PubMed

    Kacha, S; Derriche, Z; Elmaleh, S

    2003-01-01

    Wastewater from the textile industry contains soluble dyes that are toxic and particularly difficult to remove. A promising low-cost treatment, however, is use of polyaluminum hydroxide associated with bentonite. At suitable conditions, this process is able to efficiently remove color from solutions containing mixtures of soluble acid azo dyes and produce easily settleable sludge. The removal mechanism, which is believed to involve adsorption or precipitation and weak pH variations, is not well understood. With the overall reaction being second order, two elementary first-order reactions could be assumed. The equilibrium removal is a decreasing function of the temperature. However, this effect is weak and decreases when the dye concentration increases. At usual values of concentration in textile wastewater, this effect can be neglected. The resulting solid compound is particularly resistant to mechanical stress. Moreover, color was significantly released at pH greater than 8. Sodium ions have no influence on the compound stability, which reinforces the assumption of the involvement of an adsorption process.

  2. Pure SF6 and SF6-N2 mixture gas hydrates equilibrium and kinetic characteristics.

    PubMed

    Lee, Eun Kyung; Lee, Ju Dong; Lee, Hyun Ju; Lee, Bo Ram; Lee, Yoon Seok; Kim, Soo Min; Park, Hye Ok; Kim, Young Seok; Park, Yeong-Do; Kim, Yang Do

    2009-10-15

    Sulfur hexafluoride (SF6), whether pure or mixed with inexpensive inert gas, has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate and/or collect it from waste gas streams. In this study, we investigated the pure SF6 and SF6-N2 mixture gas hydrates formation equilibrium aswell asthe gas separation efficiency in the hydrate process. The equilibrium pressure of SF6-N2 mixture gas was higher than that of pure SF6 gas. Phase equilibrium data of SF6-N2 mixture gas was similar to SF6 rather than N2. The kinetics of SF6-N2 mixture gas was controlled by the amount of SF6 at the initial gas composition as well as N2 gas incorporation into the S-cage of structure-II hydrate preformed by the SF6 gas. Raman analysis confirmed the N2 gas incorporation into the S-cage of structure-II hydrate. The compositions in the hydrate phase were found to be 71, 79, 80, and 81% of SF6 when the feed gas compositions were 40, 65, 70, and 73% of SF6, respectively. The present study provides basic information for the separation and purification of SF6 from mixed SF6 gas containing inert gases.

  3. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

    PubMed

    Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri

    2015-10-01

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts

  4. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms.

    PubMed

    Malamis, S; Katsou, E

    2013-05-15

    Adsorption and ion exchange can be effectively employed for the treatment of metal-contaminated wastewater streams. The use of low-cost materials as sorbents increases the competitive advantage of the process. Natural and modified minerals have been extensively employed for the removal of nickel and zinc from water and wastewater. This work critically reviews existing knowledge and research on the uptake of nickel and zinc by natural and modified zeolite, bentonite and vermiculite. It focuses on the examination of different parameters affecting the process, system kinetics and equilibrium conditions. The process parameters under investigation are the initial metal concentration, ionic strength, solution pH, adsorbent type, grain size and concentration, temperature, agitation speed, presence of competing ions in the solution and type of adsorbate. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. Furthermore, research works comparing the process kinetics with existing reaction kinetic and diffusion models are reviewed as well as works examining the performance of isotherm models against the experimental equilibrium data.

  5. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    NASA Astrophysics Data System (ADS)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  6. Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets.

    PubMed

    Nam, Go-Un; Bonifacio, Riza Gabriela; Kwon, Jung-Hwan; Hong, Yongseok

    2016-09-01

    Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6-2.8 for PDMS and 2.1-3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water.

  7. Adsorption kinetics of organophosphonic acids on plasma-modified oxide-covered aluminum surfaces.

    PubMed

    Giza, M; Thissen, P; Grundmeier, G

    2008-08-19

    Tailoring of oxide chemistry on aluminum by means of low-pressure water and argon plasma surface modification was performed to influence the kinetics of the self-assembly process of octadecylphosphonic acid monolayers. The plasma-induced surface chemistry was studied by in situ FTIR reflection-absorption spectroscopy (IRRAS). Ex situ IRRAS and X-ray photoelectron spectroscopy were applied for the analysis of the adsorbed self-assembled monolayers. The plasma-induced variation of the hydroxide to oxide ratio led to different adsorption kinetics of the phosphonic acid from dilute ethanol solutions as measured by means of a quartz crystal microbalance. Water plasma treatment caused a significant increase in the density of surface hydroxyl groups in comparison to that of the argon-plasma-treated surface. The hydroxyl-rich surface led to significantly accelerated adsorption kinetics of the phosphonic acid with a time of monolayer formation of less than 1 min. On the contrary, decreasing the surface hydroxyl density slowed the adsorption kinetics.

  8. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants

    USGS Publications Warehouse

    Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

    2005-01-01

    Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

  9. Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2007-07-15

    The principal aim of this work is to investigate the mechanism of basic dye (methylene blue (MB) and basic red (BR)) adsorption onto activated carbons produced from steam-activated bituminous coal. The rate of adsorption onto various activated carbons, produced in small laboratory-scale and pilot-industrial-scale processes, was investigated under a variety of conditions. The kinetic data from these investigations were correlated to a number of adsorption models in an attempt to elucidate the mechanism of the adsorption processes. The adsorption mechanism was found to follow pseudo-second-order and intraparticle-diffusion models, with external mass transfer predominating in the first 5 min of the experiment. Filtrasorb 400 (Chemviron Carbon) exhibited the highest adsorption rate for the removal of basic dyes followed by activated carbons produced by our research group: PAC1 (activated carbon produced from Venezuelan bituminous coal in small laboratory scale using physical activation technique) and PAC2 (activated carbon produced by the steam activation of New Zealand bituminous coal on a pilot-industrial scale).

  10. TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes.

    PubMed

    Farley, Kevin J; Carbonaro, Richard F; Fanelli, Christopher J; Costanzo, Robert; Rader, Kevin J; Di Toro, Dominic M

    2011-06-01

    The tableau input coupled kinetic equilibrium transport-unit world model (TICKET-UWM) has been developed as a screening model for assessing potential environmental risks associated with the release of metals into lakes. The model is based on a fully implicit, one-step solution algorithm that allows for simultaneous consideration of dissolved and particulate phase transport; metal complexation to organic matter and inorganic ligands; precipitation of metal hydroxides, carbonates, and sulfides; competitive interactions of metals and major cations with biotic ligands; a simplified description of biogeochemical cycling of organic carbon and sulfur; and dissolution kinetics for metal powders, massives, and other solid forms. Application of TICKET-UWM to a generalized lake in the Sudbury area of the Canadian Shield is presented to demonstrate the overall cycling of metals in lakes and the nonlinear effects of chemical speciation on metal responses. In addition, the model is used to calculate critical loads for metals, with acute toxicity of Daphnia magna as the final endpoint. Model results show that the critical loads for Cu, Ni, Pb, and Zn varied from 2.5 to 39.0 g metal/m(2) -year and were found to be one or more orders of magnitude higher than comparable loads for pesticides (lindane, 4,4'-DDT) and several polyaromatic hydrocarbon (PAH) compounds. In sensitivity calculations, critical metal-loading rates were found to vary significantly as a function of the hydraulic detention time, water hardness, and metal dissolution kinetic rates.

  11. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA)

    PubMed Central

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-01-01

    Due to the importance of adsorption kinetics and redox transformation of arsenic (As) during the adsorption process, the present study elucidated natural organic matter (NOM) effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA) as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA), as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions. PMID:25325357

  12. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures

    SciTech Connect

    Khan, A.R.; Ataullah, R.; Al-Haddad, A.

    1997-10-01

    Aqueous solutions of phenol, p-chlorophenol, and p-nitrophenol have been used to determine the adsorption isotherm for single solute systems on activated carbon at different temperatures. The experimental program has been conducted to investigate the influence of concentration and temperature. All the reported equilibrium isotherm equations have been tried on present and published experimental data. A generalized isotherm equation which was proposed by Khan et al. and tested for bi-solute adsorption data has been modified for single-solute system. The temperature dependency has also been incorporated into a generalized equation. It has been noticed that the Radke and Prausnitz and generalized isotherm equations could represent the entire data with a minimum average percentage error. The influence of different adsorbents, sorbate concentrations, and pH of aqueous solutions has also been discussed in detail. The temperature dependency has been investigated using both the Dubinin-Astakov and the modified generalized equation. The generalized equation describes the experimental and published data adequately and provides a single value of differential molar heat of adsorption, {Delta}H{sub ads}, for a single solute adsorption system. The Dubinin-Astakov isotherm equation has shown an increasing trend of {Delta}H{sub ads} as the loading of adsorbent has increased.

  13. Nanoalginate based biosorbent for the removal of lead ions from aqueous solutions: Equilibrium and kinetic studies.

    PubMed

    Geetha, P; Latha, M S; Pillai, Saumya S; Koshy, Mathew

    2015-12-01

    Population explosion, depletion of water resources and prolonged droughts and floods due to climatic change lead to scarcity of pure and hygienic drinking water in most of the developing countries. Recently nanomaterials attained considerable attention as biosorbent for water purification purpose. However difficulties in removing polymeric surfactants and organic solvents used for nanoproduction and instability of the generated nanoparticles limit the scope of this approach in water cleanup. Here, we describe a novel green method for synthesizing polysaccharide nanoparticles in aqueous medium using honey as the capping agent. The highly stable alginate nanoparticles, characterized by various microscopic and spectroscopic techniques, exhibited a maximum uptake capacity of 333 mg g (-1)of Pb(II) ions from aqueous solution. The effect of various parameters such as initial metal concentration, pH, contact time, temperature and adsorbent dose on sorption process was investigated in batch mode technique. The maximum removal percentage was 94.81 at 45 °C and at pH 4.5 in 60 min contact time. The biosorption followed Freundlich model indicating multilayer adsorption and pseudo second order kinetics. The mechanism involves both surface adsorption and pore diffusion. The positive values of ΔH°, ∆S° and the negative value of ΔG°, confirmed the endothermic nature, randomness and spontaneity of biosorption process.

  14. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  15. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Adsorption energies of mercury-containing species on CaO and temperature effects on equilibrium constants predicted by density functional theory calculations.

    PubMed

    Kim, Bo Gyeong; Li, Xinxin; Blowers, Paul

    2009-03-03

    The adsorption of Hg, HgCl, and HgCl2 on the CaO surface was investigated theoretically so the fundamental interactions between Hg species and this potential sorbent can be explored. Surface models of a 4 x 4 x 2 cluster, a 5 x 5 x 2 cluster, and a periodic structure using density functional theory calculations with LDA/PWC and GGA/BLYP functionals, as employed in the present work, offer a useful description for the thermodynamic properties of adsorption on metal oxides. The effect of temperature on the equilibrium constant for the adsorption of mercury-containing species on the CaO (0 0 1) surface was investigated with GGA/BLYP calculations in the temperature range of 250-600 K. Results show that, at low coverage of elemental mercury, adsorption on the surface is physisorption while the two forms of oxidized mercury adsorption undergo stronger adsorption. The adsorption energies decrease with increasing coverage for elemental mercury on the surfaces. The chlorine atom enhances the adsorption capacity and adsorbs mercury to the CaO surface more strongly. The adsorption energy is changed as the oxidation state varies, and the equilibrium constant decreases as the temperature increases, in good agreement with data for exothermic adsorption systems.

  17. Kinetic and Isotherm Modelling of the Adsorption of
Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    PubMed Central

    Casazza, Alessandro A.; Perego, Patrizia

    2015-01-01

    Summary The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL), the maximum sorption capacity of activated carbon expressed as mg of caffeic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to better describe the sorption system. The results confirmed the efficiency of activated carbon to remove almost all phenolic compound fractions from olive mill effluent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries. PMID:27904350

  18. Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells.

    PubMed

    Thinakaran, N; Panneerselvam, P; Baskaralingam, P; Elango, D; Sivanesan, S

    2008-10-01

    The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This paper deals with the removal of Acid Red 114 (AR 114) from aqueous solutions using activated carbons prepared from agricultural waste materials such as gingelly (sesame) (Sp), cotton (Cp) and pongam (Pp) seed shells. Optimum conditions for AR 114 removal were found to be pH 3, adsorbent dosage=3g/L of solution and equilibrium time=4h. Higher removal percentages were observed at lower concentrations of AR 114. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the adsorption capacity of the studied adsorbents was in the order Sp>Cp>Pp. Kinetic studies showed that the adsorption followed both pseudo-second-order and Elovich equation. The thermodynamics parameters such as DeltaG degrees, DeltaH degrees, DeltaS degrees were also evaluated. The activated carbons prepared were characterized by FT-IR, SEM and BET analysis.

  19. Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+ -doped Mg-Al layered double hydroxides.

    PubMed

    Kameda, Tomohito; Kondo, Eisuke; Yoshioka, Toshiaki

    2015-03-15

    Mg-Al layered double hydroxides (Mg-Al LDHs) doped with Fe(2+) adsorbed As(V) [Formula: see text] and Sb(V) [Formula: see text] from an aqueous solution through anion exchange with Cl(-) intercalated in the LDH interlayer. Fe(2+)-doped Mg-Al LDH exhibited superior As(V) removal compared with Mg-Al LDH. The oxidation of Fe(2+) doped in the Mg-Al LDH host layer to Fe(3+) increased the positive layer charge of the LDH, thus increasing the anion-uptake capacity owing to stronger electrostatic attractive force between the positively charged layer and the anion. However, Fe(2+)-doped Mg-Al LDH was not superior to Mg-Al LDH in terms of Sb(V) removal. This was attributed to the preferential intercalation of OH(-) over [Formula: see text] . The As(V) and Sb(V) removal by LDH followed Langmuir-type adsorption, which proceeded via a pseudo-first-order reaction. The equilibrium and kinetics studies confirm that the adsorption of As(V) and Sb(V) by Fe(2+)-doped Mg-Al LDH was the result of chemical adsorption, involving the anion exchange of [Formula: see text] and [Formula: see text] with the intercalated Cl(-).

  20. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun

    2016-06-01

    Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.

  1. Kinetics of the water adsorption driven structural transformationof ZnS nanoparticles

    SciTech Connect

    Goodell, C.M.; Gilbert, B.; Weigand, S.J.; Banfield, J.F.

    2007-08-01

    Nanoparticles of certain materials can respond structurally to changes in their surface environments. We have previously shown that methanol, water adsorption, and aggregation-disaggregation can change the structure of 3 nm diameter zinc sulfide (ZnS). However, in prior observations of water-driven structure change, aggregation may also have taken place. Therefore, we investigated the structural consequences of water adsorption alone on anhydrous nanoparticles that were dried to minimize changes in aggregation. Using simultaneously collected small- and wide-angle x-ray scattering (SAXS/WAXS) data, we show that water vapor adsorption alone drives a structural transformation in ZnS nanoparticles in the temperature range 22-40 C. The transition kinetics are strongly temperature dependent, with an activation energy of 58.1 {+-} 9.8 kJ/mol, consistent with atom displacement rather than bond breaking. At 50 C, aggregate restructuring occurred, increasing the transition kinetics beyond the rate expected for water adsorption alone. The observation of isosbestic points in the WAXS data suggests that the particles do not transform continuously between the initial and final structural state but rather undergo an abrupt change from a less ordered to a more ordered state.

  2. Generalized random sequential adsorption

    NASA Astrophysics Data System (ADS)

    Tarjus, G.; Schaaf, P.; Talbot, J.

    1990-12-01

    Adsorption of hard spherical particles onto a flat uniform surface is analyzed by using generalized random sequential adsorption (RSA) models. These models are defined by releasing the condition of immobility present in the usual RSA rules to allow for desorption or surface diffusion. Contrary to the simple RSA case, generalized RSA processes are no longer irreversible and the system formed by the adsorbed particles on the surface may reach an equilibrium state. We show by using a distribution function approach that the kinetics of such processes can be described by means of an exact infinite hierarchy of equations reminiscent of the Kirkwood-Salsburg hierarchy for systems at equilibrium. We illustrate the way in which the systems produced by adsorption/desorption and by adsorption/diffusion evolve between the two limits represented by ``simple RSA'' and ``equilibrium'' by considering approximate solutions in terms of truncated density expansions.

  3. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions.

    PubMed

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique

    2017-04-28

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the

  4. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    PubMed

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium.

  5. Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite

    NASA Astrophysics Data System (ADS)

    Sadeghalvad, Bahareh; Khosravi, Sara; Azadmehr, Amir Reza

    2016-11-01

    Bentonite is one of the most significant of clay minerals that has been studied extensively due to its potential applications in removal of various environmental pollutants. This ability is related to its high ionic exchange capacity and high specific surface area. Copper is one of the important elements of non-ferrous metals found in industrial waste waters. In the present work, the removal of copper from aqueous solutions with Iranian bentonite (from Birjand area, southeastern Iran) used without any chemical pretreatment, was studied. The experimental results were fitted by adsorption isotherms equations with two or three parameters, which include Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Redlich-Peterson, Khan, and Toth models. The best correlation coefficient ( r 2) is 0.9879 observed for Langmuir model, maximum adsorption capacity of bentonite was 55.71 mg/g. The first-order and pseudo-second-order kinetic equations were used to describe the kinetics of adsorption. The experimental data were well fitted by the pseudo-second-order kinetics.

  6. Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size

    NASA Astrophysics Data System (ADS)

    Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K.

    2015-10-01

    The spontaneous protein adsorption on nanomaterial surfaces and the formation of a protein corona around nanoparticles are poorly understood physical phenomena, with high biological relevance. The complexity arises mainly due to the poor knowledge of the structural orientation of the adsorbed proteins onto the nanoparticle surface and difficulties in correlating the protein nanoparticle interaction to the protein corona in real time scale. Here, we provide quantitative insights into the kinetics, number, and binding orientation of a few common blood proteins when they interact with citrate and cetyltriethylammoniumbromide stabilized spherical gold nanoparticles with variable sizes. The kinetics of the protein adsorption was studied experimentally by monitoring the change in hydrodynamic diameter and zeta potential of the nanoparticle-protein complex. To understand the competitive binding of human serum albumin and hemoglobin, time dependent fluorescence quenching was studied using dual fluorophore tags. We have performed molecular docking of three different proteins—human serum albumin, bovine serum albumin, and hemoglobin—on different nanoparticle surfaces to elucidate the possible structural orientation of the adsorbed protein. Our data show that the growth kinetics of a protein corona is exclusively dependent on both protein structure and surface chemistry of the nanoparticles. The study quantitatively suggests that a general physical law of protein adsorption is unlikely to exist as the interaction is unique and specific for a given pair.

  7. Experimental and theoretical study of anion-exchange preparative chromatography for neptunium: the first application to thorium(IV) and its equilibrium and kinetics.

    PubMed

    Yamamura, Tomoo; Miyakoshi, Takeshi; Shiokawa, Yoshinobu; Mitsugashira, Toshiaki

    2007-10-26

    In order to study equilibrium and kinetic parameters in anion-exchange chromatography for preparatory purpose, a quantitative model for nonlinear anion-exchange chromatography in porous media was constructed, by paying special attention to interstitial length along void structure (cm) distinguished from apparent length (cm*). Langmuir-type adsorption isotherm for thorium(IV), as a natural substitution for neptunium(IV), in 6 mol dm(-3) nitric acid to anion-exchanger MSA-1 (200-400 mesh) was investigated in batch-wise and chromatographic experiments. The equilibrium parameters determined by batch-wise experiments determined as k=2.4x10(2) mol(-1) dm3 s(-1) and s0=0.5 mol dm(-3) agrees very well with the values of k=222 mol(-1) dm3 s(-1) and s0=0.5 mol dm(-3) derived from fitting by the numerical calculation. Kinetic parameters of ks and D affect band profile similarly, thereby maximum value of each parameter was evaluated as ks=1.3 mol(-1) dm3 s(-1) and D=9x10(-4) cm2 s(-1) by the numerical calculations.

  8. Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes

    SciTech Connect

    Li, Zhi-Peng; Tok, Engsoon; Foo, Yonglim

    2013-09-01

    Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the same epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.

  9. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    PubMed

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  10. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Wang, Peifang; Cao, Muhan; Wang, Chao; Ao, Yanhui; Hou, Jun; Qian, Jin

    2014-01-01

    A solvothermal method was employed to prepare a novel magnetic composite adsorbent composed of graphene, multi-walled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles. The prepared adsorbents were characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectrometry and Fourier transform infrared spectroscopy. Fourier transform infrared spectroscopy and the particle size distribution of the samples before and after adsorption was also carried out. The performance of as-prepared composites was investigated by the adsorption of dye methylene blue. Results showed that the maximum adsorption capacity of the samples was up to 65.79 mg g-1, which was almost equal to the sum of magnetic graphene and magnetic MWCNTs. The effect of pH and temperature on the adsorption performance of methylene blue onto the magnetic adsorbents was investigated. The kinetic was well-described by pseudo-second-order and intraparticle diffusion model, while the isotherm obeyed the Langmuir isotherm. Furthermore, the as-prepared composites were found to be regenerative and reusable. The application in the treatment of an artificial dye wastewater and its cost estimation were also discussed. Therefore, the as-prepared magnetic composites can be severed as a potential adsorbent for removal of dye pollutant, owing to its high adsorption performance, magnetic separability and efficient recyclable property.

  11. A semipermanent coating for preventing protein adsorption at physiological pH in kinetic capillary electrophoresis.

    PubMed

    de Jong, Stephanie; Epelbaum, Nicolas; Liyanage, Ruchi; Krylov, Sergey N

    2012-08-01

    Protein adsorption to the inner capillary wall hinders the use of kinetic capillary electrophoresis (KCE) when studying noncovalent protein-ligand interactions. Permanent and dynamic capillary coatings have been previously reported to alleviate much of the problems associated with protein adsorption. The characteristic limitations associated with permanent and dynamic coatings motivated us to look at a third type of coating - semipermanent. Here, we demonstrate that a semipermanent capillary coating, designed by Lucy and co-workers, comprised of dioctadecyldimethylammonium bromide (DODAB) and polyoxyethylene (POE) stearate, greatly reduces protein adsorption at physiological pH - a necessary requirement for KCE. The coating (i) does not inhibit protein-DNA complex formation, (ii) prevents the adsorption of the analytes, and (iii) supports an electoosmotic flow required for many applications of KCE. The coating was tested in three physiological buffers using a well-known DNA aptamer and four proteins that severely bind to bare silica capillaries as standards. For every protein, a condition was found under which the semipermanent coating effectively suppresses protein adhesion. While no coating can completely prevent the adsorption of all proteins, our findings suggest that the DODAB/POE stearate coating can have a broad impact on CE at large, as it prevents the absorption of several well studied, highly adhesive proteins at physiological pH.

  12. Azo dye Acid Red 27 decomposition kinetics during ozone oxidation and adsorption processes.

    PubMed

    Beak, Mi H; Ijagbemi, Christianah O; Kim, Dong S

    2009-05-01

    To elucidate the effects of ozone dosage, catalysts, and temperature on azo dye decomposition rate in treatment processes, the decomposition kinetics of Acid Red 27 by ozone was investigated. Acid Red 27 decomposition rate followed the first-order reaction with complete dye discoloration in 20 min of ozone reaction. The dye decay rate increases as ozone dosage increases. Using Mn, Zn and Ni as transition metal catalysts during the ozone oxidation process, Mn displayed the greatest catalytic effect with significant increase in the rate of decomposition. The rate of decomposition decreases with increase in temperature and beyond 40 degrees C, increase in decomposition rate was followed by a corresponding increase in temperature. The FT-IR spectra in the range of 1,000-1,800 cm(-1) revealed specific band variations after the ozone oxidation process, portraying structural changes traceable to cleavage of bonds in the benzene ring, the sulphite salt group, and the C-N located beside the -N = N- bond. From the (1)H-NMR spectra, the breaking down of the benzene ring showed the disappearance of the 10 H peaks at 7-8 ppm, which later emerged with a new peak at 6.16 ppm. In a parallel batch test of azo dye Acid Red 27 adsorption onto activated carbon, a low adsorption capacity was observed in the adsorption test carried out after three minutes of ozone injection while the adsorption process without ozone injection yielded a high adsorption capacity.

  13. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    PubMed

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs.

  14. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.

    PubMed

    Porkodi, K; Vasanth Kumar, K

    2007-05-08

    Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression:

  15. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials.

    PubMed

    Zhao, Xuebo; Villar-Rodil, Silvia; Fletcher, Ashleigh J; Thomas, K Mark

    2006-05-25

    Adsorption and desorption of H(2) and D(2) from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H(2) and D(2) at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D(2) adsorption and desorption kinetics were significantly faster (up to x1.9) than the corresponding H(2) kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H(2), resulting in slower adsorption/desorption kinetics compared with the heavier D(2). The results are discussed in terms of the adsorption mechanism.

  16. Kinetic and Equilibrium Analysis of Estradiol in Uterus: A Model of Binding-Site Distribution in Uterine Cells

    PubMed Central

    Williams, David; Gorski, Jack

    1972-01-01

    Kinetic and equilibrium binding studies indicate that the process by which the complex of estradiol-binding protein is transferred to the cell nuclei is very rapid and is readily reversible in intact cells; that is, the cytosol and nuclear binding sites are in a rapidly reversible equilibrium. Binding of the hormone appears to shift this equilibrium such that a large percent of the filled binding sites become associated with the nuclear fraction. A model is presented to show that the quantity of filled nuclear binding sites present at any estradiol concentration can be determined strictly by the initial binding between the hormone and the cytosol binding sites. PMID:4508334

  17. Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum.

    PubMed

    Kumar, K Vasanth; Porkodi, K

    2007-07-19

    Batch experiments were carried out for the sorption of methylene blue onto Paspalum notatum. The operating variables studied were initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherms by non-linear regression method. Six error functions was used to determine the optimum isotherm by non-linear regression method. The present study shows r2 as the best error function to determine the parameters involved in both two- and three-parameter isotherms. Langmuir isotherm was found to be the optimum isotherm for methylene blue onto P. notatum. The monolayer methylene blue sorption capacity of P. notatum was found to be 31 mg/g. The kinetics of methylene blue onto P. notatum was found to follow a pseudo second order kinetics. A Boyd plot confirms the external mass transfer as the rate-limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc0.33) and was found to vary as C(0)-5x10(-6).

  18. Kinetics and equilibrium properties of the biosorption of Cu2+ by algae.

    PubMed

    Wang, Qiong; Peckenham, John; Pinto, Jamie; Patterson, Howard

    2012-11-01

    The purpose of this study was to examine the kinetics and equilibrium properties of freshwater algae with Cu(2+). This was a model system to explore using algae as biosensors for water quality. Methods included making luminescence measurements (fluorescence) and copper ion-selective electrode (CuISE) measurements vs. time to obtain kinetic data. Results were analyzed using a pseudo-first-order model to calculate the rate constants of Cu(2+) uptake by algae: k (p(Cu-algae)) = 0.0025 ± 0.0006 s(-1) by CuISE and k (p(Cu-algae)) = 0.0034 ± 0.0011 s(-1) by luminescence. The binding constant of Cu-algae, K (Cu-algae), was 1.62 ± 0.07 × 10(7) M(-1). Fluorescence results analyzed using the Stern-Volmer relationship indicate that algae have two types of binding sites of which only one appears to affect quenching. The fluorescence-based method was found to be able to detect the reaction of algae with Cu(2+) quickly and at a detection limit of 0.1 mg L(-1).

  19. Kinetic, Equilibrium and thermodynamic studies on the biosorption of Cd(II) from aqueous solutions by the leaf biomass of Calotropis procera - 'Sodom apple'

    NASA Astrophysics Data System (ADS)

    Chukwudumebi Overah, Loretta; Babalola, Oyebamiji.; Babarinde, Adesola; Oninla, Vincent; Olatunde, Abimbola

    2013-04-01

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom' and generally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH,contact time, biomass dosage, initial metal ion concentration and temperature were determined to be 5, 60 minutes, 110 mg, 0.3 mM and 27°C respectively. The maximum biosorption capacity was found to be 8.91 mg/g. The kinetic studies indicated that the biosorption process of the metal ion followed the pseudo-second-order and intra-particle diffusion models with an R-square value of 0.998 and 0.985 respectively. Equilibrium studies showed that the biosorption of Cd (II) is well represented by both Freundlich and Langmuir isotherms but the Langmuir model gave a better fit with an R-square value of 0.979,Langmuir constant, bm of 0.0080 and monolayer adsorption capacity, μm of 123.46. The calculated thermodynamic parameters (ΔG° -4.846 kJmol-1, ΔH° 10.60 kJmol-1 and ΔS° 0.052 kJK-1mol-1) showed that the biosorption of Cd (II)is feasible, spontaneous, endothermic and highly disordered in nature under the experimental conditions. Thesefindings indicate that the leaf of Calotropis procera could be employed in the removal of Cd (II) from industrial effluents. Key words: Calotropis procera, Cadmium, Adsorption isotherm.

  20. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  1. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1

  2. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Zhuyin; Pope, Stephen B.; Vladimirsky, Alexander; Guckenheimer, John M.

    2006-03-01

    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2/O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  3. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics.

    PubMed

    Ren, Zhuyin; Pope, Stephen B; Vladimirsky, Alexander; Guckenheimer, John M

    2006-03-21

    This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism

  4. Dynamic behaviour of Cd2+ adsorption in equilibrium batch studies by CaCO3(-)-rich Corbicula fluminea shell.

    PubMed

    Ismail, Farhah Amalya; Aris, Ahmad Zaharin; Latif, Puziah Abdul

    2014-01-01

    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) < 0.97).The correlation coefficient values (p < 0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm.