Science.gov

Sample records for adsorption equilibrium time

  1. Adsorption kinetics at the solid/solution interface: statistical rate theory at initial times of adsorption and close to equilibrium.

    PubMed

    Azizian, Saeid; Bashiri, Hadis

    2008-10-21

    The kinetics of solute adsorption at the solid/solution interface has been studied by statistical rate theory (SRT) at two limiting conditions, one at initial times of adsorption and the other close to equilibrium. A new kinetic equation has been derived for initial times of adsorption on the basis of SRT. For the first time a theoretical interpretation based on SRT has been provided for the modified pseudo-first-order (MPFO) kinetic equation which was proposed empirically by Yang and Al-Duri. It has been shown that the MPFO kinetic equation can be derived from the SRT equation when the system is close to equilibrium. On the basis of numerically generated points ( t, q) by the SRT equation, it has been shown that we can apply the new equation for initial times of adsorption in a larger time range in comparison to the previous q vs radical t linear equation. Also by numerical analysis of the generated kinetic data points, it is shown that application of the MPFO equation for modeling of whole kinetic data causes a large error for the data at initial times of adsorption. The results of numerical analysis are in perfect agreement with our theoretical derivation of the MPFO kinetic equation from the SRT equation. Finally, the results of the present theoretical study were confirmed by analysis of an experimental system. PMID:18788819

  2. Development of facile property calculation model for adsorption chillers based on equilibrium adsorption cycle

    NASA Astrophysics Data System (ADS)

    Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team

    Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.

  3. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  4. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    NASA Astrophysics Data System (ADS)

    Podzus, P. E.; Debandi, M. V.; Daraio, M. E.

    2012-08-01

    A composite of Fe3O4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  5. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics.

    PubMed

    Azouaou, N; Sadaoui, Z; Djaafri, A; Mokaddem, H

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd(2+) adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g(-1). Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd(2+) removal.

  6. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    SciTech Connect

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  7. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  8. Adsorption equilibrium and dynamics of gasoline vapors onto polymeric adsorbents.

    PubMed

    Jia, Lijuan; Yu, Weihua; Long, Chao; Li, Aimin

    2014-03-01

    The emission of gasoline vapors is becoming a significant environmental problem especially for the population-dense area and also results in a significant economic loss. In this study, adsorption equilibrium and dynamics of gasoline vapors onto macroporous and hypercrosslinked polymeric resins at 308 K were investigated and compared with commercial activated carbon (NucharWV-A 1100). The results showed that the equilibrium and breakthrough adsorption capacities of virgin macroporous and hypercrosslinked polymeric resins were lower than virgin-activated carbon. Compared with origin adsorbents, however, the breakthrough adsorption capacities of the regenerated activated carbon for gasoline vapors decreased by 58.5 % and 61.3 % when the initial concentration of gasoline vapors were 700 and 1,400 mg/L, while those of macroporous and hypercrosslinked resins decreased by 17.4 % and 17.5 %, and 46.5 % and 45.5 %, respectively. Due to the specific bimodal property in the region of micropore (0.5-2.0 nm) and meso-macropore (30-70 nm), the regenerated hypercrosslinked polymeric resin exhibited the comparable breakthrough adsorption capacities with the regenerated activated carbon at the initial concentration of 700 mg/L, and even higher when the initial concentration of gasoline vapors was 1,400 mg/L. In addition, 90 % of relative humidity had ignorable effect on the adsorption of gasoline vapors on hypercrosslinked polymeric resin. Taken together, it is expected that hypercrosslinked polymeric adsorbent would be a promising adsorbent for the removal of gasoline vapors from gas streams.

  9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  10. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. PMID:23684695

  11. A chemical equilibrium model for metal adsorption onto bacterial surfaces

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.

    1997-08-01

    This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.

  12. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    PubMed

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  13. Equilibrium adsorption of hexahistidine on pH-responsive hydrogel nanofilms.

    PubMed

    Longo, Gabriel S; de la Cruz, Monica Olvera; Szleifer, Igal

    2014-12-23

    We present a molecular theory to study the adsorption of different species within pH-sensitive hydrogel nanofilms. The theoretical framework allows for a molecular-level description of all the components of the system, and it explicitly accounts for the acid-base equilibrium. We concentrate on the adsorption of hexahistidine, one of the most widely used tags in bio-related systems, particularly in chromatography of proteins. The adsorption of hexahistidine within a grafted polyacid hydrogel film shows a nonmonotonic dependence on the solution pH. Depending on the salt concentration, the density of the polymer network, and the bulk concentration of peptide, substantial adsorption is predicted in the intermediate pH range where both the network and the amino acids are charged. To enhance the electrostatic attractions, the acid-base equilibrium of adsorbed hexahistidine is shifted significantly, increasing the degree of charge of the residues as compared to the bulk solution. Such a shift depends critically on the conditions of the environment at the nanoscale. At the same time, the degree of dissociation of the network becomes that of the isolated acid group in a dilute solution, which means that the network is considerably more charged than when there is no adsorbate molecules. This work provides fundamental information on the physical chemistry behind the adsorption behavior and the response of the hydrogel film. This information can be useful in designing new materials for the purification or separation/immobilization of histidine-tagged proteins. PMID:25434993

  14. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    NASA Astrophysics Data System (ADS)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  15. Effects of resident water and non-equilibrium adsorption on the primary and enhanced coalbed methane gas recovery

    NASA Astrophysics Data System (ADS)

    Jahediesfanjani, Hossein

    The major part of the gas in coalbed methane and shale gas reservoirs is stored as the adsorbed gas in the coal and organic materials of the black shale internal surfaces. The sorption sites in both reservoirs are composed of several macropores that contain very small pore sizes. Therefore, the adsorption/desorption is very slow process and follows a non-equilibrium trend. The time-dependency of the sorption process is further affected by the reservoir resident water. Water can diffuse into the matrix and adsorption sites, plug the pores and affect the reservoir gas production. This study presents an experimental and theoretical procedure to investigate the effects of the resident water and time-dependency of the sorption process on coalbed and shale gas primary and enhanced recovery by simultaneous CO 2/N2 injection. Series of the experiments are conducted to construct both equilibrium and non-equilibrium single and multi-component isotherms with the presence of water. A novel and rapid data interpretation technique is developed based on the nonequilibrium adsorption/desorption thermodynamics, mass conservation law, and volume filling adsorption theory. The developed technique is implemented to construct both equilibrium and non-equilibrium multi-component multi-phase isotherms from the early time experimental measurements. The non-equilibrium isotherms are incorporated in the coalbed methane/shale gas reservoir simulations to account for the time-dependency of the sorption process. The experimental results indicate that the presence of water in the sorption system reduces both carbon dioxide and nitrogen adsorption rates. Reduction in the adsorption rate for carbon dioxide is more than nitrogen. The results also indicate that the resident water reduces the adsorption ability of low rank coals more than high rank ones. The results of the multi-component sorption tests indicate that increasing the initial mole fraction of the nitrogen gas in the injected CO2/N2

  16. Equilibrium and kinetics of adsorption of Freon-12 at infinite dilution

    SciTech Connect

    Golden, T.C.; Sircar, S. )

    1994-06-01

    Equilibrium and kinetic data for adsorption of trace CF[sub 2]Cl[sub 2] (Freon-12) from various carrier gased on BPL activated carbon are reported. Coadsorption of the bulk carrier gas can severely reduce the equilibrium adsorption capacity and adsorptive mass-transfer coefficient of strongly adsorbed CF[sub 2]Cl[sub 2]. The difference in size between CF[sub 2]Cl[sub 2] and the bulk carrier gas molecules plays a major role in establishing the binary or multicomponent equilibrium adsorption properties. The multisite (singe and multicomponent) Langmuir model, which accounts for differences in adsorbate sizes, provides a reasonable framework for describing the size effects. The adsorptive mass transfer of CF[sub 2]Cl[sub 2] under the experimental conditions investigated is dominated by surface diffusion into the pores of the activated carbon. The surface diffusivity is a strong function of the extent of coverage and strength of adsorption of the bulk components.

  17. Adsorption Properties of Tetracycline onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    PubMed Central

    Ghadim, Ehsan Ezzatpour; Manouchehri, Firouzeh; Soleimani, Gholamreza; Hosseini, Hadi; Kimiagar, Salimeh; Nafisi, Shohreh

    2013-01-01

    Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π–π interaction and cation–π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742–0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin–Radushkevich (D–R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet. PMID:24302989

  18. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa; Tunali, Sibel; Akar, Tamer; Kiran, Ismail

    2005-09-30

    Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.

  19. Adsorptive removal of cadmium by natural red earth: equilibrium and kinetic studies.

    PubMed

    Mahatantila, Kushani; Vithanage, Meththika; Seike, Yasushi; Okumura, Minoru

    2012-01-01

    Natural red earth (NRE), an iron-coated sand found in the north western part of Sri Lanka, was used to examine the retention behaviour of cadmium, a heavy metal postulated as a factor of chronic kidney disease in Sri Lanka. Adsorption studies were conducted as a function of pH, ionic strength, initial Cd loading and time. The Cd adsorption increased from 6% to 99% with the pH increase from 4 to 8.5. The maximum adsorption was reached at pH > 7.5. Cadmium adsorption was not changed over 100-fold variations of NaNO3, providing evidence for the dominance of an inner-sphere bonding mechanism for both 10-fold variation of initial Cd concentrations. Surface complexation modelling suggests a monodentate bonding mechanism. Isotherm data were fairly fitted to a two-site Langmuir isotherm model and sorption maximums of 9.11 x 10(-6) and 3.89 x 10(-7) mol g(-1) were obtained for two surface sites. The kinetic study reveals that Cd uptake by NRE is so fast that the equilibrium was reached within 15 min and - 1 h for 4.44 and 44.4 microM initial Cd concentrations, respectively, and the chemisorption was the dominant mechanism over intra-particle diffusion. The study indicates the potential of NRE as a material for decontaminating environmental water polluted with Cd.

  20. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  1. Equilibrium and kinetic analysis of CO2-N2 adsorption separation by concentration pulse chromatography.

    PubMed

    Li, Peiyuan; Tezel, F Handan

    2007-09-01

    CO2 and N(2) adsorption kinetics and equilibrium behaviours have been studied with silicalite, NaY and 13X by using concentration pulse chromatography for the separation of these gases in the present study. Adsorption Henry's Law constants, the heat of adsorption values, micropore diffusion coefficients and corresponding activation energies are determined experimentally and the three different mass transfer mechanisms are discussed. From the equilibrium data, the corresponding separation factors are obtained for the adsorption separation processes. The heat of adsorption values as well as the Henry's Law adsorption equilibrium constants of CO(2) are much higher than those of N(2) for all the adsorbents studied. 13X, NaY and silicalite all have good separation factors for CO(2)/N(2) system based on equilibrium processes. The order of the equilibrium separation factors is 13X (Ceca)>13X (Zeochem)>NaY (UOP)>silicalite (UOP). Equilibrium selectivity favours CO(2) over N(2). Micropore diffusion resistance is the definite dominant mass transfer mechanism for CO(2) with silicalite and NaY.

  2. Equilibrium adsorption and self-assembly of patchy colloids in microchannels

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2016-07-01

    A theory is developed to describe the equilibrium adsorption and self-assembly of patchy colloids in microchannels. The adsorption theory is developed in classical density functional theory, with the adsorbed phase and fluid phase chemical potentials modeled using thermodynamic perturbation theory. Adsorption of nonpatchy colloids in microchannels is typically achieved through nonequilibrium routes such as spin coating and evaporation. These methods are required due to the entropic penalty of adsorption. In this work we propose that the introduction of patches on the colloids greatly enhances the temperature dependent and reversible adsorption of colloids in microchannels. It is shown how bulk fluid density, temperature, patch size, and channel diameter can be manipulated to achieve the adsorption and self-assembly of patchy colloids in microchannels.

  3. Equilibrium adsorption and self-assembly of patchy colloids in microchannels.

    PubMed

    Marshall, Bennett D

    2016-07-01

    A theory is developed to describe the equilibrium adsorption and self-assembly of patchy colloids in microchannels. The adsorption theory is developed in classical density functional theory, with the adsorbed phase and fluid phase chemical potentials modeled using thermodynamic perturbation theory. Adsorption of nonpatchy colloids in microchannels is typically achieved through nonequilibrium routes such as spin coating and evaporation. These methods are required due to the entropic penalty of adsorption. In this work we propose that the introduction of patches on the colloids greatly enhances the temperature dependent and reversible adsorption of colloids in microchannels. It is shown how bulk fluid density, temperature, patch size, and channel diameter can be manipulated to achieve the adsorption and self-assembly of patchy colloids in microchannels. PMID:27575187

  4. Equilibrium studies of copper ion adsorption onto palm kernel fibre.

    PubMed

    Ofomaja, Augustine E

    2010-07-01

    The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r(2), and the non-linear Chi-square, chi(2) error analysis. The results revealed that sorption was pH dependent and increased with increasing solution pH above the pH(PZC) of the palm kernel fibre with an optimum dose of 10g/dm(3). The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 x 10(-4)mol/g at 339K. The sorption equilibrium constant, K(a), increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B(1), with increasing temperature. The Dubinin-Radushkevich (D-R) isotherm parameter, free energy, E, was in the range of 15.7-16.7kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO(3) and CH(3)COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic. PMID:20346574

  5. Equilibrium studies of copper ion adsorption onto palm kernel fibre.

    PubMed

    Ofomaja, Augustine E

    2010-07-01

    The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r(2), and the non-linear Chi-square, chi(2) error analysis. The results revealed that sorption was pH dependent and increased with increasing solution pH above the pH(PZC) of the palm kernel fibre with an optimum dose of 10g/dm(3). The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 x 10(-4)mol/g at 339K. The sorption equilibrium constant, K(a), increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B(1), with increasing temperature. The Dubinin-Radushkevich (D-R) isotherm parameter, free energy, E, was in the range of 15.7-16.7kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO(3) and CH(3)COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic.

  6. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  7. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  8. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased. PMID:18022316

  9. Adsorption equilibrium and kinetics for multiple trace impurities in various gas streams on activated carbon

    SciTech Connect

    Golden, T.C.; Kumar, R. )

    1993-01-01

    Equilibrium and kinetic adsorption data for seven trace impurities (propylene, Freon-12 (CF[sub 2]Cl[sub 2]), n-butane, methylene chloride, acetone, n-hexane, toluene, and Freon-22 (CHFCl[sub 2])) from various carrier gases (helium, nitrogen, methane, carbon dioxide, and a mixture of methane and carbon dioxide) are provided. Activated carbon at several temperatures and pressures is used as the adsorbent. Two empirical characteristic curves, one relating equilibrium isotherms of trace impurities with their physical properties and the other relating mass-transfer coefficients with equilibrium properties, are generated. These can be used to predict equilibrium capacities and mass-transfer zone lengths for multiple trace impurities from a carrier gas and design a thermal swing adsorption clean-up system.

  10. Adsorptive removal of heavy metals by magnetic nanoadsorbent: an equilibrium and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Shirsath, D. S.; Shirivastava, V. S.

    2015-11-01

    An efficient and new magnetic nanoadsorbent photocatalyst was fabricated by co-precipitation technique. This research focuses on understanding metal removal process and developing a cost-effective technology for treatment of heavy metal-contaminated industrial wastewater. In this investigation, magnetic nanoadsorbent has been employed for the removal of Zn(II) ions from aqueous solutions by a batch adsorption technique. The adsorption equilibrium data fitted very well to Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Zn(II) ions adsorption onto the magnetic nanoadsorbents indicated that the adsorption was spontaneous, endothermic and physical in nature. Surface morphology of magnetic nanoadsorbent by scanning electron microscopy (SEM) and elemental analysis by EDX technique. The structural and photocatalytic properties of magnetic nanoadsorbent were characterized using X-ray diffraction (XRD) and FTIR techniques. Also, the magnetic properties of synthesized magnetic nanoadsorbent were determined by vibrating spinning magnetometer (VSM).

  11. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite.

    PubMed

    Bulut, Emrah; Ozacar, Mahmut; Sengil, I Ayhan

    2008-06-15

    The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm. PMID:18055111

  12. Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.

    PubMed

    Noroozi, B; Sorial, G A; Bahrami, H; Arami, M

    2007-01-01

    In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).

  13. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    PubMed

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal. PMID:27504258

  14. Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: equilibrium, kinetic and adsorption mechanisms.

    PubMed

    Feng, Yanfang; Zhou, Hui; Liu, Guohua; Qiao, Jun; Wang, Jinhua; Lu, Haiying; Yang, Linzhang; Wu, Yonghong

    2012-12-01

    The aim of this study was to develop a promising and competitive bioadsorbent with the abundant of source, low price and environmentally friendly characters to remove cationic dye from wastewater. The swede rape straw (Brassica napus L.) modified by tartaric acid (SRSTA) was prepared, characterized and used to remove methylene blue (MB) from aqueous solution at varied operational conditions (including MB initial concentrations, adsorbent dose, etc.). Results demonstrated that the equilibrium data was well fitted by Langmuir isotherm model. The maximum MB adsorption capacity of SRSTA was 246.4 mg g(-1), which was comparable to the results of some previous studied activated carbons. The higher dye adsorption capacity could be attributed to the presence of more functional groups such as carboxyl group on the surface of SRSTA. The adsorption mechanism was also discussed. The results indicate that SRSTA is a promising and valuable absorbent to remove methylene blue from wastewater.

  15. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    PubMed

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  16. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  17. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    PubMed

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  18. Determination of Equilibrium and Kinetic Parameters of the Adsorption of Cr(III) and Cr(VI) from Aqueous Solutions to Agave Lechuguilla Biomass

    PubMed Central

    Romero-González, Jaime; Peralta-Videa, José R.; Rodríguez, Elena

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (KF and QL), adsorption intensity (n and RL) and saturation capacity (q s) studies. Batch experiments were conducted at 22∘C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding was at pH 2. Time profile experiments indicated that the adsorption of Cr(VI) by lechuguilla biomass was time-dependent and that of Cr(III) was not. Kinetic models demonstrated that a pseudo-second order reaction model best described the kinetic data for Cr(VI). The adsorption isotherms showed that the binding pattern for Cr(VI) followed the Freundlich isotherm model, while that for Cr(III) followed the Langmuir isotherm. PMID:18365089

  19. Equilibrium model for biodegradation and adsorption of mixtures in GAC columns

    SciTech Connect

    Erlanson, B.C.; Dvorak, B.I.; Speitel, G.E. Jr.; Lawler, D.F.

    1997-05-01

    Microbial activity in granular activated carbon (GAC) columns has received much attention over the last 15 years because biodegradation of one or more chemicals might increase the GAC service life, thereby decreasing costs. An equilibrium model for simultaneous biodegradation and adsorption was developed and verified with existing data. For simplicity the model was restricted to only two components: one biodegradable and one not. The results from modeling over 300 hypothetical situations identified conditions where biodegradation significantly extends the service life of granular activated carbon (GAC) columns. When the nonbiodegradable chemical controls the service life, the only significant gains in service life occurred when the biodegradable and nonbiodegradable chemical had similar adsorbabilities. When the biodegradable chemical controls the service life, the service life was 1.2--7 times that with adsorption alone, depending on the relative adsorbability of the two chemicals. The increase in service life can be maximized by ensuring that biodegradation begins as soon as possible after start-up. The model provides a good screening tool for initial assessments of process feasibility, preliminary economic analyses, and planning of detailed experimental and computer modeling studies. Examples are presented using benzene and TCE to illustrate how the general trends presented apply to specific cases.

  20. Equilibrium and Kinetic Adsorption of Bacteria on Alluvial Sand and Surface Thermodynamic Interpretation

    SciTech Connect

    Chen, Gang; Rockhold, Mark L.; Strevett, Keith A.

    2003-05-15

    Equilibrium and kinetic adsorption of Escherichia coli HB 101, E. coli JM 109, Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas sp. on alluvial sand from the Canadian River alluvium (Norman, OK) was investigated through column experiments. Equilibrium adsorption of these five bacterial strains followed the Freundlich expression and was a function of zero energy points, an indication of the zero energy buffer zone. Among the microorganisms studied, P. putida had the greatest equilibrium adsorption (162.4 x 108 cell/g sediment with a microbial injectate concentration of 108 cell/mL), followed by Pseudomonas sp. (127.9 x 108 cell/g sediment), E. coli HB 101 (62.8 x 108 cell/g sediment), E. coli JM 109 (58.4 x 108 cell/g sediment), and P. fluorescens (42.6 x 108 cell/g sediment). The first-order kinetic adsorption rate coefficient was an exponential function of the total interaction free energy between bacteria and sediment evaluated at the primary minimum, (PM). E. coli HB 101 had the greatest kinetic adsorption rate coefficient on the sediment (5.10 h-1), followed by E. coli JM 109 (4.52 h-1), P. fluorescens (2.12 h-1), P. putida (2.04 h-1), and Pseudomonas sp. (1.34 h-1).

  1. Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA.

    PubMed

    Yi, Honghong; Deng, Hua; Tang, Xiaolong; Yu, Qiongfen; Zhou, Xuan; Liu, Haiyan

    2012-02-15

    In order to develop a single-step process for removing SO(2), NO, CO(2) in flue gas simultaneously by co-adsorption method. Pure component adsorption equilibrium and kinetics of SO(2), NO, and CO(2) on zeolite NaY, NaX, CaA were obtained respectively. Equilibrium data were analyzed by equilibrium model and Henry's law constant. The results suggest that Adsorption affinity follows the trend SO(2)>CO(2)>NO for the same adsorbent. Zeolite with stronger polar surface is a more promising adsorbent candidate. Kinetics behavior was investigated using the breakthrough curve method. The overall mass transfer coefficient and diffusivity factor were determined by a linear driving force model. The results are indicative of micropore diffusion controlling mechanism. NaY zeolite has the minimum resistance of mass transfer duo to the wide pore distribution and large pore amount. CaA zeolite exhibits the highest spatial hindered effect. Finally, co-adsorption effect of SO(2), NO, and CO(2) were investigated by multi-components breakthrough method. SO(2) and NO may form new adsorbed species, however, CO(2) presents a fast breakthrough. Chemical adsorption causes SO(2) transforms to SO(4)(2-), however, element N and C are not detected in adsorbed zeolites.

  2. Adsorption of direct dye on palm ash: kinetic and equilibrium modeling.

    PubMed

    Ahmad, A A; Hameed, B H; Aziz, N

    2007-03-01

    Palm ash, an agriculture waste residue from palm-oil industry in Malaysia, was investigated as a replacement for the current expensive methods of removing direct blue 71 dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with Freundlich model in the range of 50-600mg/L. The equilibrium adsorption capacity of the palm ash was determined with the Langmuir equation and found to be 400.01mg dye per gram adsorbent at 30 degrees C. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The results indicate that the palm ash could be employed as a low-cost alternative to commercial activated carbon.

  3. Equilibrium and kinetic aspects of sodium cromoglycate adsorption on chitosan: mass uptake and surface charging considerations.

    PubMed

    de Lima, C R M; Pereira, M R; Fonseca, J L C

    2013-09-01

    Chitosan has more and more been suggested as a material for use as adsorbent in the treatment of effluents as well as in the synthesis of drug-loaded nanoparticles for controlled release. In both cases, a good understanding of the process of adsorption, both kinetically and in terms of equilibrium, has an importance of its own. In this manuscript we study the interaction between sodium cromoglycate, a drug used in asthma treatment, and chitosan. Equilibrium experiments showed that Sips (or Freundlich-Langmuir) isotherm described well the resultant data and adsorption possibly occurred as in multilayers. A model based on ordinary reaction-rate theory, compounded of two processes, each one with a correlated velocity constant, described the kinetics of sorption. Kinetic and equilibrium data suggested the possibility of surface rearrangement, favored by the increase of temperature.

  4. Adsorption behaviour of direct yellow 50 onto cotton fiber: Equilibrium, kinetic and thermodynamic profile

    NASA Astrophysics Data System (ADS)

    Ismail, L. F. M.; Sallam, H. B.; Abo Farha, S. A.; Gamal, A. M.; Mahmoud, G. E. A.

    2014-10-01

    This study investigated the adsorption of direct yellow 50 onto cotton fiber from aqueous solution by using parameters, such as pH, temperature, contact time, initial dye concentration and the effect of sodium sulphate, tetrasodium edate and trisodium citrate. The extent of dye adsorption increased with increasing contact time, temperature and solution concentration. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. It was found that the Langmuir equation fit better than the Freundlich equation. The results show that the presence of SE and SC significantly enhance the dye adsorption onto cotton fiber. In addition, the adsorption data obtained at different temperatures of DY50 onto cotton fiber were applied to pseudo first-order, pseudo second-order and intraparticle diffusion models. The rates of adsorption were found to conform to pseudo second-order kinetics with good correlation. Also, free energy of adsorption (ΔG#), enthalpy (ΔH#), and entropy (ΔS#) changes were determined to predict the nature of adsorption. The positive value of the enthalpy change indicated that the adsorption is endothermic process. The activation energy, Ea, is ranged between 1.9 and 3.9 kJ mol-1 indicated that the adsorption process is a physisorption. This low value of Ea generally indicates diffusion controlled process.

  5. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    PubMed

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. PMID:24461254

  6. Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: Equilibrium and kinetic studies.

    PubMed

    Cotoruelo, Luis M; Marqués, María D; Rodríguez-Mirasol, José; Rodríguez, Juan J; Cordero, Tomás

    2009-04-01

    The adsorption of sodium dodecylbenzene sulfonate (SDBS) from its aqueous solution at different temperatures has been studied using three activated carbons prepared in our laboratory. Lignin was used as raw material for the preparation of activated carbons (ACs). The results of the adsorption equilibrium were analyzed and fitted to the Langmuir model. Thermodynamic magnitudes were estimated as well, and their values indicated that the adsorption processes were spontaneous and exothermic. The kinetic study showed that the processes are of second apparent order related to the concentration of the vacant active centers on the surface of the activated carbons. The values of the effective internal diffusion coefficients have been calculated applying the equations developed by Crank and Vermeulen.

  7. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    PubMed

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements.

  8. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    PubMed

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements. PMID:26028510

  9. Equilibrium and kinetic modeling of adsorptive sulfur removal from gasoline by synthesized Ce-Y zeolite

    NASA Astrophysics Data System (ADS)

    Montazerolghaem, Maryam; Rahimi, Amir; Seyedeyn-Azad, Fakhry

    2010-11-01

    In this research, the adsorption of a model sulfur compound, thiophene, from a simulated gasoline onto Ce-Y zeolite in pellet and powder forms was investigated. For this purpose, zeolite Na-Y was synthesized, and Ce-Y zeolite was prepared via solid-state ion-exchanged (SSIE) method. Adsorptive desulfurization of model gasoline was conducted in a batch reactor at ambient conditions to evaluate the equilibrium and kinetics of thiophene adsorption onto Ce-Y zeolite. The equilibrium data were fitted to Langmuire and Toth models. Pseudo-n-order and modified n-order models, LDF-base model, and intra-particle diffusion model were evaluated to fit the kinetic of the adsorption process and to determine the mechanism of it. The corresponding parameters and/or correlation coefficients of each model were reported. The LDF-base model was used also to fit the mass transfer coefficient for both powder and pellet forms of the adsorbent. The best fit estimates for the mass transfer coefficient were obtained 4 × 10-11 m/s and k = 3.1 × 10-12[exp( - t/τ) + 1/(t + 10-4)], for powder and pellet form adsorbents, respectively.

  10. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  11. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents

    SciTech Connect

    Zhang, W.M.; Xu, Z.W.; Pan, B.C.; Hong, C.H.; Jia, K.; Jiang, P.J.; Zhang, Q.J.; Pan, B.J.

    2008-09-15

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, {pi}-{pi} stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  12. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    PubMed

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  13. Probing of Competitive Displacement Adsorption of Casein at Oil-in-Water Interface Using Equilibrium Force Distance Measurements.

    PubMed

    Mahendran, V; Sangeetha, J; Philip, John

    2015-06-01

    The equilibrium force distance measurement is employed for the first time to probe the competitive and displacement adsorption of casein at an oil-water (O/W) emulsion interface that was initially adsorbed with either a diblock polymer or an anionic surfactant. A significant change in the force-distance profile was observed under the competitive displacement adsorption of casein, which is further confirmed from the hydrodynamic diameter and zeta potential measurements. A decrease in the onset of repulsion and decay length are observed on competitive adsorption of smaller size casein molecules at O/W interface. With addition of casein in PVA-vac diblock polymer stabilized emulsion, the onset of repulsion decreases from 88 to 48 nm whereas the magnitude of force increases from 1 to 19 nN. The force decay length is reduced from 10.5 to 4.5 nm upon addition of casein. Our results suggest the complete replacement of adsorbed diblock polymers by casein molecules. The hydrodynamic diameter and zeta potential measurements corroborate the casein mediated polymer displacement and the competitive adsorption of casein at the O/W interface. In the case of anionic surfactant covered O/W interfaces, casein molecules weakly associate at the interface without displacing the smaller size surfactant molecules where no significant changes in the onset repulsion and force profiles are observed. These results suggest that the casein molecules are effective displacers for replacement of adsorbed macromolecules from formulations, which has several important practical applications.

  14. Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste.

    PubMed

    Daraei, H; Mittal, A; Noorisepehr, M; Daraei, F

    2013-07-01

    The aim of the present research is to develop economic, fast, and versatile method for the removal of toxic organic pollutant phenol from wastewater using eggshell. The batch experiments are conducted to evaluate the effect of pH, phenol concentration, dosage of adsorbent, and contact time on the removal of phenol. The paper includes in-depth kinetic studies of the ongoing adsorption process. Attempts have also been made to verify Langmuir and Freundlich adsorption isotherms. The morphology and characteristics of eggshell have also been studied using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray fluorescence analysis. At ambient temperature, the maximum adsorption of phenol onto eggshells has been achieved at pH 9 and the contact time, 90 min. The experimental data give best-fitted straight lines for pseudo-first-order as well as pseudo-second-order kinetic models. Furthermore, the adsorption process verifies Freundlich and Langmuir adsorption isotherms, and on the basis of mathematical expressions of these models, various necessary adsorption constants have been calculated. Using adsorption data, various thermodynamic parameters like change in enthalpy (∆H(0)), change in entropy (∆S(0)), and change in free energy ∆G(0) have also been evaluated. Results clearly reveal that the solid waste material eggshell acts as an effective adsorbent for the removal of phenol from aqueous solutions. PMID:23274804

  15. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling.

    PubMed

    Zoschke, Kristin; Engel, Christina; Börnick, Hilmar; Worch, Eckhard

    2011-10-01

    The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption. Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions. The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration. PMID:21752419

  16. Melanoidin Removal Mechanism in An Aqueous Adsorption System: An Equilibrium, Kinetic and Thermodynamic Study.

    PubMed

    Nunes, Diego L; Oliveira, Leandro S; Franca, Adriana S

    2015-01-01

    Melanoidins are colored products that can be found in food and drinks, formed by Maillard reactions. Sometimes these compounds are considered undesirable in certain food products, because they impart a brownish color and must be removed. An overview of recent patents related to melanoidin removal indicates that it can be performed by chemical/biological degradation or by adsorption processes. Therefore, in the present study, the adsorption mechanism for synthetic melanoidin removal from aqueous solutions was studied using different Raphanus sativus press-cake sorbents, with the precursor material being carbonized in a microwave oven, either with direct heating or after a chemical activation process with phosphoric acid, nitric acid or potassium hydroxide. Physical and chemical modifications were evaluated by FTIR, pHPZC, thermogravimetry and BET. The adsorption kinetics was better described by a pseudo-second order model for all activated carbons (ACs). Evaluation of the diffusion process showed dependence on the initial melanoidin concentration due to the wide range of sizes of the adsorbed molecules. The equilibrium data were best fitted by the Langmuir model for the acid-treated AC and by the Freundlich model for the base-treated and non-chemically treated ACs. Melanoidin adsorption was characterized as a spontaneous, favorable and endothermic process involving hydrogen bonds and π-π interactions between the adsorbents surfaces and the adsorbed molecules. PMID:26013772

  17. Adsorption kinetics and equilibrium study of nitrogen species onto radiata pine (Pinus radiata) sawdust.

    PubMed

    Harmayani, Kadek D; Faisal Anwar, A H M

    2016-01-01

    Nitrogen species (NH3-N, NO3-N, and NO2-N) are found as one of the major dissolved constituents in wastewater or stormwater runoff. In this research, laboratory experiments were conducted to remove these pollutants from the water environment using radiata pine (Pinus radiata) sawdust. A series of batch tests was conducted by varying initial concentration, dosage, particle size, pH, and contact time to check the removal performance. Test results confirmed the effectiveness of radiata pine sawdust for removing these contaminants from the aqueous phase (100% removal of NO3-N, and NO2-N; 55% removal of NH3-N). The adsorbent dosage and initial concentration showed a significantly greater effect on the removal process over pH or particle sizes. The optimum dosage for contaminant removal on a laboratory scale was found to be 12 g. Next, the adsorption kinetics were studied using intraparticle diffusion, liquid-film diffusion, and a pseudo-first order and pseudo-second order model. The adsorption of all species followed a pseudo-second order model but NO2-N adsorption followed both models. In addition, the kinetics of NO2-N adsorption showed two-step adsorption following intraparticle diffusion and liquid-film diffusion. The isotherm study showed that NO3-N and NO2-N adsorption fitted slightly better with the Freundlich model but that NH3-N adsorption followed both Freundlich and Langmuir models. PMID:27438245

  18. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface. PMID:27148721

  19. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  20. Density functional theory of equilibrium random copolymers: application to surface adsorption of aggregating peptides

    NASA Astrophysics Data System (ADS)

    Wang, Haiqiang; Forsman, Jan; Woodward, Clifford E.

    2016-06-01

    We generalize a recently developed polymer density functional theory (PDFT) for polydisperse polymer fluids to the case of equilibrium random copolymers. We show that the generalization of the PDFT to these systems allows us to obtain a remarkable simplification compared to the monodispersed polymers. The theory is used to treat a model for protein aggregation into linear filaments in the presence of surfaces. Here we show that, for attractive surfaces, there is evidence of significant enhancement of protein aggregation. This behaviour is a consequence of a surface phase transition, which has been shown to occur with ideal equilibrium polymers in the presence of sufficiently attractive surfaces. For excluding monomers, this transition is suppressed, though an echo of the underlying ideal transition is present in the sudden change in the excess adsorption.

  1. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution.

    PubMed

    Ghaneian, Mohammad Taghi; Ghanizadeh, Ghader; Alizadeh, Mohammad Tahghighi Haji; Ehrampoush, Mohammad Hasan; Said, Farhan Mohd

    2014-01-01

    Pyrolysis of fresh sheep bone led to the formation of bone charcoal (BC). The structural characteristics of BC and surface area were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). N2 gas adsorption-desorption was analysed by Brunauer-Emmett-Teller isotherm model. The prepared BC was used as an effective sorbent for the removal of phosphate from aqueous solutions. The effect of major parameters, including initial phosphorous concentration, sorbent dosage, pH and temperature, was investigated in this study. Furthermore, adsorption isotherms and kinetics were evaluated. BC was an effective sorbent in phosphate removal from aqueous solution especially in phosphate concentration between 2 and 100 mg/L. The maximum amount of sorption capacity was 30.21 mg/g, which was obtained with 100 mg/L as the initial phosphate concentration and 0.2 g as the sorbent dosage. Best reported pH in this study is 4; in higher pH, adsorption rate decreased dramatically. By increasing the temperature from 20 to 40 degrees C sorption capacity increased; this phenomenon described that adsorption is endothermic. Equilibrium data were analysed by Langmuir, Freundlich and Temkin isotherms. Pseudo first- and second-order and Elovich models were used to determine the kinetics of adsorption in this study. Collected data highly fitted with Freundlich isotherms and pseudo second-order kinetics. Achieved results have shown well the potentiality for the BC to be utilized as a natural sorbent to remove phosphorous from water and wastewater.

  3. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar.

    PubMed

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2016-02-01

    The mechanism and capacity of adsorption of cadmium (Cd) on orange peel (OP)-derived biochar at various pyrolysis temperatures (400, 500, 600, 700 and 800°C) and heating times (2 and 6 h) were investigated. Biochar was characterized using proximate analysis, point of zero charge (PZC) analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Equilibrium and kinetic experiments of Cd adsorption on biochar were performed. The results indicated that the pH value at PZC of biochar approached 9.5. Equilibrium can be reached rapidly (within 1 min) in kinetic experiments and a removal rate of 80.6-96.9% can be generated. The results fitted the pseudo-second-order model closely. The adsorption capacity was estimated using the Langmuir model. The adsorption capacity of Cd on biochar was independent of the pyrolysis temperature and heating time (p>0.01). The maximum adsorption capacity of Cd was 114.69 (mg g(-1)). The adsorption of Cd on biochar was regarded as chemisorption. The primary adsorption mechanisms were regarded as Cπ-cation interactions and surface precipitation. Cadmium can react with calcite to form the precipitation of (Ca,Cd)CO3 on the surface of biochar. The OP-derived biochar can be considered a favourable alternative and a new green adsorbent for removing Cd(2+) ions from an aqueous solution.

  4. Kinetics and equilibrium adsorption of nano-TiO 2 particles on synthetic biofilm

    NASA Astrophysics Data System (ADS)

    Sahle-Demessie, Endalkachew; Tadesse, Haregewine

    2011-07-01

    Understanding the environmental behavior of nanoparticles includes their interaction with biofilms, which is a covering on the surface of a living or nonliving substrate composed of microorganisms. This study focuses on nano-TiO2 sorption mechanism by synthetic biofilm that was prepared as superporous spherical beads from agarose, using batch stirred flasks kept at room temperature. The pH plays an important part in these phenomena, by its influence on the nanoparticles and biofilm chemistry, where the biofilm nanoTiO2 uptake at neutral pH was enhanced over acidic conditions. Hydroxylation of TiO2 nanoparticles, dependent on pH and the salinity of the solution, influences the stability of colloids, the sorption kinetics via the nature of limiting phases: diffusion through the boundary layer or intrabiofilm mass transfer and the sorption mechanism. The sorption follows pseudo first-order adsorption kinetics with estimated average rate constants of 2.2 (min- 1). Equilibrium isotherms were evaluated using Langmuir and Freundlich isotherms to obtain the maximum uptake at different solution pH and the free energy of the adsorption. The adsorption is apparently irreversible because biofilm limits diffusion of particles out of the pores and the complexation active binding sites on the surface hydrated biofilm to the hydrophilic TiO2 nanoparticles.

  5. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    PubMed

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution.

  6. Simultaneous adsorption of methyl red and methylene blue onto biochar and an equilibrium modeling at high concentration.

    PubMed

    Ding, Guanyu; Wang, Buyun; Chen, Lingyu; Zhao, Shuangjiao

    2016-11-01

    Methyl red, methylene blue and biochar were used to investigate simultaneous adsorption of dyes onto low-cost adsorbent at different concentrations combinations. Langmuir mixed model could describe the adsorption well at low concentrations. However, it could not describe the adsorption anymore when concentrations of methyl red and methylene blue were higher than 255 and 300 mg L(-1) respectively with 0.5 g L(-1) biochar loading. A new model on the interaction among adsorbed adsorbates at equilibrium was developed. It could describe the adsorption at high concentrations well. According to the experimental results, interaction among dyes molecules would replace the competition onto adsorbent to be the main factor influencing adsorption when amount of adsorbed adsorbates were higher than those required to form a monolayer on all the adsorbing sites of adsorbent. The model was further verified by adsorption with other solute such as glucose or NaCl in solution. PMID:27543677

  7. Low-pressure equilibrium binary argon-methane gas mixture adsorption on exfoliated graphite: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Albesa, Alberto; Russell, Brice; Vicente, José Luis; Rafti, Matías

    2016-04-01

    Adsorption equilibrium measurements of pure methane, pure argon, and binary mixtures over exfoliated graphite were carried for different initial compositions, temperatures, and total pressures in the range of 0.1-1.5 Torr using the volumetric static method. Diagrams for gas and adsorbed phase compositions were constructed for the conditions explored, and isosteric heats of adsorption were calculated. Experimental results were compared with predictions obtained with Monte Carlo simulations and using the Ideal Adsorbed Solution Theory (IAST).

  8. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    PubMed

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs.

  9. Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium.

    PubMed

    Soltani, Tayyebeh; Lee, Byeong-Kyu

    2016-11-01

    The deficiencies of the recently reported improved Hummers method for the synthesis of graphene oxide (GO), such as high reaction temperature (60°C) and long reaction time (10h), were successfully solved using a low-intensity ultrasonic bath for 30min at 40°C. Furthermore, compared to its conventional synthesis counterpart, a facile and fast, one-step ultrasonic method that excluded hydrazine hydrate was developed to synthesize reduced GO (rGO) from graphite (10min, 50°C) in the presence of hydrazine hydrate (rGO-C, 12h, 90°C). The adsorption characteristics of 2-chlorophenol (2-CP) from an aqueous solution were investigated using rGOs and GOs prepared by ultrasonic (rGO-Us/GO-Us) and conventional (rGO-C/GO-C) methods. Whereas 2-CP was completely removed with rGO-Us after 50min, only 40% of 2-CP was eliminated with rGO-C. The maximum adsorption capacity of 2-CP calculated by the Langmuir model onto rGO-Us (208.67mg/g) was much higher than that onto GO-Us (134.49mg/g). In addition, the ultrasonic graphene adsorption capacities were much higher than the corresponding values of rGO-C (49.9mg/g) and GO-C (32.06mg/g). The enhanced adsorption for rGO-Us and GO-Us is attributed to their greater surface areas, excellent oxygenated groups for GO-Us and superior π-electron-rich matrix for rGO-Us, compared to other adsorbents. The adsorption of 2-CP on the rGO materials increased with increasing solution pH to a maximum around its pKa (pKa=8.85), while the adsorption for the GO materials increased with decreasing solution pH. The adsorption mechanism proceeded via hydrogen bonding in neutral and acidic media, but via π-π electron donor-accepter (EDA) interactions between 2-CP and graphene materials in basic medium. The FTIR spectrum of GO-Us after adsorption indicates that the position and intensity of many peaks of GO-Us were affected due to the adsorption of different 2-CP groups at different pHs. PMID:27474817

  10. Determination of equilibrium and kinetic parameters of the adsorption of Cr(III) and Cr(VI) from aqueous solutions to Agave Lechuguilla biomass.

    PubMed

    Romero-González, Jaime; Gardea-Torresdey, Jorge L; Peralta-Videa, José R; Rodríguez, Elena

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (K(F) and Q(L)), adsorption intensity (n and R(L)) and saturation capacity (q(s)) studies. Batch experiments were conducted at 22( composite function)C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding was at pH 2. Time profile experiments indicated that the adsorption of Cr(VI) by lechuguilla biomass was time-dependent and that of Cr(III) was not. Kinetic models demonstrated that a pseudo-second order reaction model best described the kinetic data for Cr(VI). The adsorption isotherms showed that the binding pattern for Cr(VI) followed the Freundlich isotherm model, while that for Cr(III) followed the Langmuir isotherm. PMID:18365089

  11. Time-resolved evanescent wave absorption spectroscopy for real-time monitoring of heme protein adsorption to glass.

    PubMed

    Qi, Zhi-Mei; Xia, Shanhong; Matsuda, Naoki

    2008-03-01

    Evanescent wave has been recognized as a highly sensitive optical probe for surface monitoring. By use of slab optical waveguides, time-resolved evanescent wave absorption spectroscopy was developed for the investigation of the interfacial behavior of biomolecules with a chromophore. In this study, 30-microm thick glass sheets served as freestanding multimode waveguides that were combined with a simple fiber-coupling method to lead to a broadband evanescent wave absorption spectrometer. With such a homemade instrument, adsorption of heme proteins onto glass slides from static aqueous solution was monitored in situ. The experimental results reveal that the interfacial behavior of myoglobin (Mb) is different from that of hemoglobin (Hb) and cytochrome c (Cc). Formation of dynamic equilibrium for Mb adsorption at both hydrophilic and hydrophobic surfaces always is behind the occurrence of the maximum coverage. However, simultaneous formation of the dynamic equilibrium and the maximum coverage was observed for Hb and Cc adsorptions.

  12. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  13. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    NASA Astrophysics Data System (ADS)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  14. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    SciTech Connect

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-09-16

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 hours although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A non-electrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  15. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-01-01

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  16. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    PubMed

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.

  17. Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite.

    PubMed

    Majdan, Marek; Pikus, Stanisław; Kowalska-Ternes, Monika; Głdysz-Płaska, Agnieszka; Staszczuk, Piotr; Fuks, Leon; Skrzypek, Henryk

    2003-06-15

    The objective of the presented study was to investigate the adsorption of Cu, Co, Mn, Zn, Cd and Mn on A-type zeolite. The isotherms for adsorption of metals from their nitrates were registered. The following adsorption constants K of metals were found: 162,890, 124,260, 69,025, 16,035, 10,254, and 151 [M(-1)] for Cu, Co, Mn, Zn, Cd, and Ni, respectively, for the concentration range 10(-4)-10(-3) M. On the other hand, the investigation of pH influence on the distribution constants of metals showed that the adsorption of metals proceeds essentially through an ion-exchange process, surface hydrolysis, and surface complexation. The supplementary results from DRIFT, scanning electron microscopy, and X-ray diffraction methods confirmed the presumption about the possible connection between the electronic structure of divalent ions and their adsorption behavior, showing that ions with d5 and d10 configurations such as Mn2+, Zn2+, Cd2+, with much weaker hydrolytic properties than Cu2+ and Ni2+, strongly interact with the zeolite framework and therefore their affinity to the zeolite phase is much stronger when compared with that of the Ni2+ ion, but at the same time not as strong as the affinity of the Cu2+ ion, the latter forming a new phase during the interaction with zeolite framework. For Zn2+, during inspection of the correlation between the proton concentration H/Al and zinc concentration Zn/Al on the zeolite surface, the formation of the surface complex [triple bond]S-OZn(OH) was proposed. A correlation between the heterogeneity of proton concentrations H/Al on Me-zeolite surfaces and the hydrolysis constants pKh of Me2+ ions was found. PMID:16256612

  18. Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies.

    PubMed

    Senthilkumaar, S; Varadarajan, P R; Porkodi, K; Subbhuraam, C V

    2005-04-01

    Jute fiber obtained from the stem of a plant was used to prepare activated carbon using phosphoric acid. Feasibility of employing this jute fiber activated carbon (JFC) for the removal of Methylene blue (MB) from aqueous solution was investigated. The adsorption of MB on JFC has found to dependent on contact time, MB concentration and pH. Experimental result follows Langmuir isotherm model and the capacity was found to be 225.64 mg/g. The optimum pH for the MB removal was found to be 5-10. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation, intraparticle diffusion and Elovich equation. Among the kinetic models studied, the intraparticle diffusion was the best applicable model to describe the adsorption of MB onto JFC.

  19. Hydrous ferric oxide doped alginate beads for fluoride removal: Adsorption kinetics and equilibrium studies

    NASA Astrophysics Data System (ADS)

    Sujana, M. G.; Mishra, A.; Acharya, B. C.

    2013-04-01

    A new biopolymer beads, composite of hydrous ferric oxide (HFO) and alginate were synthesised, characterised and studied for its fluoride efficiency from water. The beads were characterised by chemical analysis, BET surface area, pHPZC and X-ray diffraction (XRD) analysis. The optimum conditions for fluoride removal were determined by studying operational variables viz. pH, contact time, initial F- concentration, bead dose and temperature. Presence of other anions like SO42-, PO43-, NO3-, Cl- and HCO3- effect on fluoride removal efficiency of prepared beads was also tested. The beads were 0.8-0.9 mm in size and contain 32-33% Fe (III) and showed specific surface area of 25.80 m2 g-1 and pHPZC of 5.15. Modified beads demonstrated Langmuir F- adsorption capacity of 8.90 mg g-1 at pH 7.0. The adsorption kinetics were best described by the pseudo-second order kinetic model followed by intra-particle diffusion as the rate determining step. It was found that about 80% of the adsorbed fluoride could be desorbed by using 0.05 M HCl. The FTIR, Raman and SEM-EDAX analysis were used to study the fluoride adsorption mechanisms on beads. Studies were also conducted to test the potential application of beads for F- removal from drinking water and the treated water quality.

  20. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.

    PubMed

    Conidi, Daniela; Parker, Wayne J

    2015-11-01

    The impact of solids residence time (SRT) on phosphate adsorption to hydrous ferric oxide (HFO) floc when striving for ultra-low P concentrations was characterized and an equilibrium model that describes the adsorption of P onto HFO floc of different ages was developed. The results showed that fresh HFO had a higher adsorption capacity in comparison to aged (2.8, 7.4, 10.8 and 22.8 days) HFO and contributed substantially to P removal at steady state. P adsorption onto HFO solids was determined to be best described by the Freundlich isotherm. P desorption from HFO solids was negligible supporting the hypothesis that chemisorption is the mechanism of P adsorption on HFO solids. A model that included the contribution of different classes of HFO solids (i.e. High, Low or Old, containing high concentration, low concentration or no active surface sites, respectively) to adsorption onto HFO from a sequencing batch reactor (SBR) system was found to adequately describe P adsorption onto HFO solids of different ages. From the model it was determined that the fractions of High and Low HFO decreased with SRT while the fraction of Old HFO increased with SRT. The transformation of High HFO to Low HFO did not limit the overall production of Old HFO and the fresh HFO solids contributed more to P removal at steady state than the aged solids.

  1. Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays

    NASA Astrophysics Data System (ADS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2015-06-01

    This paper aims to study price dynamics in two different continuous time cobweb models with delays close to [Hommes, 1994]. In both cases, the stationary equilibrium may be not representative of the long-term dynamics of the model, since it is possible to observe endogenous and persistent fluctuations (supercritical Hopf bifurcations) even if a deterministic context without external shocks is considered. In the model in which markets are in equilibrium every time, we show that the existence of time delays in the expectations formation mechanism may cause chaotic dynamics similar to those obtained in [Hommes, 1994] in a discrete time context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation method to study the local dynamic properties of the models. In addition, several numerical experiments are used to investigate global properties of the systems.

  2. Adsorption of cesium from aqueous solution using agricultural residue--walnut shell: equilibrium, kinetic and thermodynamic modeling studies.

    PubMed

    Ding, Dahu; Zhao, Yingxin; Yang, Shengjiong; Shi, Wansheng; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan

    2013-05-01

    A novel biosorbent derived from agricultural residue - walnut shell (WS) is reported to remove cesium from aqueous solution. Nickel hexacyanoferrate (NiHCF) was incorporated into this biosorbent, serving as a high selectivity trap agent for cesium. Field emission scanning electron microscope (FE-SEM) and thermogravimetric and differential thermal analysis (TG-DTA) were utilized for the evaluation of the developed biosorbent. Determination of kinetic parameters for adsorption was carried out using pseudo first-order, pseudo second-order kinetic models and intra-particle diffusion models. Adsorption equilibrium was examined using Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. A satisfactory correlation coefficient and relatively low chi-square analysis parameter χ(2) between the experimental and predicted values of the Freundlich isotherm demonstrate that cesium adsorption by NiHCF-WS is a multilayer chemical adsorption. Thermodynamic studies were conducted under different reaction temperatures and results indicate that cesium adsorption by NiHCF-WS is an endothermic (ΔH° > 0) and spontaneous (ΔG° < 0) process.

  3. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon

    SciTech Connect

    Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch

    2007-09-15

    The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

  4. Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach

    PubMed Central

    2013-01-01

    The adsorption potential of iron acetate coated activated alumina (IACAA) for removal of arsenic [As (III)] as arsenite by batch sorption technique is described. IACAA was characterized by XRD, FTIR, EDAX and SEM instruments. Percentage adsorption on IACAA was determined as a function of pH, contact time and adsorbent dose. The study revealed that the removal of As (III) was best achieved at pH =7.4. The initial As (III) concentration (0.45 mg/L) came down to less than 0.01 mg/L at contact time 90 min with adsorbent dose of 1 g/100 mL. The sorption was reasonably explained with Langmuir and Freundlich isotherms. The thermodynamic parameters such as ΔG 0 , ΔH 0 , ΔS 0 and E a were calculated in order to understand the nature of sorption process. The sorption process was found to be controlled by pseudo-second order and intraparticle diffusion models. PMID:24359995

  5. An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils

    PubMed Central

    Hoppe, Travis; Minton, Allen P.

    2015-01-01

    The formation of linear protein fibrils has previously been shown to be enhanced by volume exclusion or crowding in the presence of a high concentration of chemically inert protein or polymer, and by adsorption to membrane surfaces. An equilibrium mesoscopic model for the combined effect of both crowding and adsorption upon the fibrillation of a dilute tracer protein is presented. The model exhibits behavior that differs qualitatively from that observed in the presence of crowding or adsorption alone. The model predicts that in a crowded solution, at critical values of the volume fraction of crowder or intrinsic energy of the tracer-wall interaction, the tracer protein will undergo an extremely cooperative transition—approaching a step function—from existence as a slightly self-associated species in solution to existence as a highly self-associated and completely adsorbed species. Criteria for a valid experimental test of these predictions are presented. PMID:25692600

  6. Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics.

    PubMed

    Jiang, Xiangfu; Huang, Jianhan

    2016-04-01

    We employed two polar monomers, triallyl isocyanurate (TAIC) and butyl acrylate (BA), to copolymerize with divinylbenzene (DVB), and synthesized two starting copolymers labeled PDT and PDB. Then, the Friedel-Crafts alkylation reaction was performed for the two starting copolymers, and the residual pendent vinyl groups were consumed, and hence we obtained two novel polar-modified post-cross-linked resins PDTpc and PDBpc. The surface polarity greatly improved due to introduction of the polar monomers, and the Brunauer-Emmett-Teller (BET) surface area and pore volume significantly increased after the Friedel-Crafts alkylation reaction. Compared with the starting copolymers, the non-polar post-cross-linked resin PDVBpc and some other adsorbents in the references, PDTpc and PDBpc possessed a much enhanced adsorption to Rhodamine B, and the equilibrium capacity reached 578.2mg/g and 328.7mg/g, respectively, at an equilibrium concentration of 100mg/L, and the Freundlich model characterized the equilibrium data very well. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. These results confirmed that PDTpc and PDBpc had the potential superiority in adsorptive removal of Rhodamine B from aqueous solution. PMID:26803602

  7. Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.

    2013-09-01

    The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.

  8. Effect of charge regulation on steric mass-action equilibrium for the ion-exchange adsorption of proteins.

    PubMed

    Shen, Hong; Frey, Douglas D

    2005-06-24

    A thermodynamic formalism is developed for incorporating the effects of charge regulation on the ion-exchange adsorption of proteins under mass-overloaded conditions as described by the steric mass-action (SMA) isotherm. To accomplish this, the pH titration behavior of a protein and the associated adsorption equilibrium of the various charged forms of a protein are incorporated into a model which also accounts for the steric hindrance of salt counterions caused by protein adsorption. For the case where the protein is dilute, the new model reduces to the protein adsorption model described recently by the authors which accounts for charge regulation. Similarly, the new model reduces to the steric mass-action isotherm developed by Brooks and Cramer which applies to mass-overloaded conditions for the case where charge regulation is ignored so that the protein has a fixed charge. Calculations using the new model were found to agree with experimental data for the adsorption of bovine serum albumin (BSA) on an anion-exchange column packing when using reasonable physical properties. The new model was also used to develop an improved theoretical criterion for determining the conditions required for an adsorbed species to displace a protein in displacement chromatography when the pH is near the protein pI.

  9. Adsorption behavior of activated carbon derived from pyrolusite-modified sewage sludge: equilibrium modeling, kinetic and thermodynamic studies.

    PubMed

    Chen, Yao; Jiang, Wenju; Jiang, Li; Ji, Xiujuan

    2011-01-01

    Activated carbon was developed from sewage sludge using pyrolusite as an additive. It was demonstrated that the removal efficiency of two synthetic dyes (Tracid orange GS and Direct fast turquoise blue GL) by the produced adsorbent was up to 97.6%. The activated carbon with pyrolusite addition had 38.2% higher surface area, 43.8% larger micropore and 54.4% larger mesopore production than ordinary sludge-based activated carbons. Equilibrium adsorption isotherms and kinetics were also investigated based on dyes adsorption tests. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption, and the results fitted well to the Langmuir isotherm. The kinetic data have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equation. The experimental data fitted very well with pseudo-second-order kinetic model. Activation energies for the adsorption processes ranged between 8.7 and 19.1 kJ mol 1. Thermodynamic parameters such as standard free energy (deltaG0), standard enthalpy (deltaH0) and standard entropy (deltaS0) were evaluated. The adsorption of these two dyes on the activated carbon was found to be a spontaneous and endothermic process in nature.

  10. Adsorption behavior of activated carbon derived from pyrolusite-modified sewage sludge: equilibrium modeling, kinetic and thermodynamic studies.

    PubMed

    Chen, Yao; Jiang, Wenju; Jiang, Li; Ji, Xiujuan

    2011-01-01

    Activated carbon was developed from sewage sludge using pyrolusite as an additive. It was demonstrated that the removal efficiency of two synthetic dyes (Tracid orange GS and Direct fast turquoise blue GL) by the produced adsorbent was up to 97.6%. The activated carbon with pyrolusite addition had 38.2% higher surface area, 43.8% larger micropore and 54.4% larger mesopore production than ordinary sludge-based activated carbons. Equilibrium adsorption isotherms and kinetics were also investigated based on dyes adsorption tests. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption, and the results fitted well to the Langmuir isotherm. The kinetic data have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equation. The experimental data fitted very well with pseudo-second-order kinetic model. Activation energies for the adsorption processes ranged between 8.7 and 19.1 kJ mol 1. Thermodynamic parameters such as standard free energy (deltaG0), standard enthalpy (deltaH0) and standard entropy (deltaS0) were evaluated. The adsorption of these two dyes on the activated carbon was found to be a spontaneous and endothermic process in nature. PMID:22097045

  11. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 μM, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 μM, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  12. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.

    PubMed

    Xie, Ruzhen; Chen, Yao; Cheng, Ting; Lai, Yuguo; Jiang, Wenju; Yang, Zhishan

    2016-01-01

    In this work, an effective adsorbent for removing phosphate from aqueous solution was developed from modifying industrial waste--lithium silica fume (LSF). The characterization of LSF before and after modification was investigated using an N2 adsorption-desorption technique (Brunauer-Emmett-Teller, BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Studies were conducted to investigate the effect of adsorbent dose, initial solution pH, contact time, phosphate concentration, and temperature on phosphate removal using this novel adsorbent. The specific surface area for modified LSF (LLSF) is 24.4024 m(2)/g, improved 69.8% compared with unmodified LSF. XRD result suggests that the lanthanum phosphate complex was formed on the surface of LLSF. The maximum phosphate adsorption capacity was 24.096 mg P/g for LLSF, and phosphate removal was favored in the pH range of 3-8. The kinetic data fitted pseudo-second-order kinetic equation, intra-particle diffusion was not the only rate controlling step. The adsorption isotherm results illustrated that the Langmuir model provided the best fit for the equilibrium data. The change in free energy (△G(0)), enthalpy (△H(0)) and entropy (△S(0)) revealed that the adsorption of phosphate on LLSF was spontaneous and endothermic. It was concluded that by modifying with lanthanum, LSF can be turned to be a highly efficient adsorbent in phosphate removal.

  13. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.

    PubMed

    Xie, Ruzhen; Chen, Yao; Cheng, Ting; Lai, Yuguo; Jiang, Wenju; Yang, Zhishan

    2016-01-01

    In this work, an effective adsorbent for removing phosphate from aqueous solution was developed from modifying industrial waste--lithium silica fume (LSF). The characterization of LSF before and after modification was investigated using an N2 adsorption-desorption technique (Brunauer-Emmett-Teller, BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Studies were conducted to investigate the effect of adsorbent dose, initial solution pH, contact time, phosphate concentration, and temperature on phosphate removal using this novel adsorbent. The specific surface area for modified LSF (LLSF) is 24.4024 m(2)/g, improved 69.8% compared with unmodified LSF. XRD result suggests that the lanthanum phosphate complex was formed on the surface of LLSF. The maximum phosphate adsorption capacity was 24.096 mg P/g for LLSF, and phosphate removal was favored in the pH range of 3-8. The kinetic data fitted pseudo-second-order kinetic equation, intra-particle diffusion was not the only rate controlling step. The adsorption isotherm results illustrated that the Langmuir model provided the best fit for the equilibrium data. The change in free energy (△G(0)), enthalpy (△H(0)) and entropy (△S(0)) revealed that the adsorption of phosphate on LLSF was spontaneous and endothermic. It was concluded that by modifying with lanthanum, LSF can be turned to be a highly efficient adsorbent in phosphate removal. PMID:27120644

  14. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    SciTech Connect

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-02-12

    Rates of contaminant U(VI) release from individual size fractions of a composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through batch reactors to maintain quasi-constant chemical conditions. Variability in equilibrium adsorption among the various size fractions was determined in static batch reactors and analyzed using the surface complexation modeling approach. The estimated stoichiometric coefficients of U(VI) surface complexation reactions with respect to pH and carbonate concentrations varied with size fractions. This source of variability significantly increased the uncertainty in U(VI) conditional equilibrium constants over that estimated from experimental errors alone. A minimum difference between conditional equilibrium constants was established in order to evaluate statistically significant differences between sediment adsorption properties. A set of equilibrium and kinetic expressions for cation exchange, calcite dissolution, aerobic respiration, and silica dissolution were incorporated in a reaction-rate model to describe the temporal evolution of solute concentrations observed during the flow-through batch experiments. Parameters in the reaction-rate model, calibrated using experimental data for select size fractions, predicted the changes in solute concentrations for the bulk, <2 mm, sediment sample. Kinetic U(VI) desorption was well described using a multi-rate surface complexation model with an assumed lognormal distribution for the rate constants. The estimated mean and standard deviation were the same for all < 2mm size fractions, but differed in the 2-8mm size fraction. Micropore volumes in the varied size fractions were also similar as assessed using t-plots to analyze N2 desorption data. These findings provide further support for the link between microporosity and particle-scale mass transfer rates controlling kinetic U(VI) adsorption/desorption and for the utility of N2 desorption

  15. Automated Monitoring of the Establishment of the Adsorption Equilibrium: Adsorption of Polyethylene from 1,2,4-Trichlorobenzene onto a Zeolite at Temperature 140°C

    PubMed Central

    Macko, Tibor; Brüll, Robert; Brinkmann, Christoph; Pasch, Harald

    2009-01-01

    The automated procedure for the monitoring of the adsorption process in the solute-sorbent-solvent system has been elaborated. It uses commercially available instrument CRYSTAF model 200. The application of CRYSTAF enabled monitoring of adsorption of linear polyethylene with weight average molar masses of 2, 14, and 53 kg/mol from 1,2,4-trichlorobenzene onto zeolite SH-300 at temperature as high as 140°C. It is the authors' understanding that this is the first demonstration of an adsorption isotherms for polyethylene. The measurement with the CRYSTAF instrument reduces manual manipulations with dangerous solvents at high temperature and enables automated long-time monitoring of the concentration of the solute in an adsorption system. PMID:19707534

  16. Use of lipophilic ion adsorption isotherms to determine the surface area and the monolayer capacity of a chromatographic packing, as well as the thermodynamic equilibrium constant for its adsorption.

    PubMed

    Cecchi, T

    2005-04-29

    A method that champions the approaches of two independent research groups, to quantitate the chromatographic stationary phase surface available for lipophilic ion adsorption, is presented. For the first time the non-approximated expression of the electrostatically modified Langmuir adsorption isotherm was used. The non approximated Gouy-Chapman (G-C) theory equation was used to give the rigorous surface potential. The method helps model makers, interested in ionic interactions, determine whether the potential modified Langmuir isotherm can be linearized, and, accordingly, whether simplified retention equations can be properly used. The theory cultivated here allows the estimates not only of the chromatographically accessible surface area, but also of the thermodynamic equilibrium constant for the adsorption of the amphiphile, the standard free energy of its adsorption, and the monolayer capacity of the packing. In addition, it establishes the limit between a theoretical and an empirical use of the Freundlich isotherm to determine the surface area. Estimates of the parameters characterising the chromatographic system are reliable from the physical point of view, and this greatly validates the present comprehensive approach.

  17. Development, Construction, and Operation of a Multisample Volumetric Apparatus for the Study of Gas Adsorption Equilibrium

    ERIC Educational Resources Information Center

    Ribeiro, Rui P. P. L.; Silva, Ricardo J. S.; Esteves, Isabel A. A. C.; Mota, Jose´ P. B.

    2015-01-01

    The construction of a simple volumetric adsorption apparatus is highlighted. The setup is inexpensive and provides a clear demonstration of gas phase adsorption concepts. The topic is suitable for undergraduate chemistry and chemical engineering students. Moreover, this unit can also provide quantitative data that can be used by young researchers…

  18. Times of metastable droplet relaxation to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Komarov, V. N.; Zaitseva, E. S.

    2016-10-01

    Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.

  19. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    SciTech Connect

    Stout, R B

    2001-04-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  20. Equilibrium models and kinetic for the adsorption of methylene blue on Co-hectorites.

    PubMed

    Ma, Jun; Jia, Yong-Zhong; Jing, Yan; Sun, Jin-He; Yao, Ying; Wang, Xiao-Hua

    2010-03-15

    The adsorption of methylene blue (MB) onto the surface of cobalt doping hectorite (Co-hectorite) was systematically studied. The physical properties of Co-hectorites were investigated, where characterizations were carried out by X-ray diffraction (XRD) and Electron Diffraction Spectrum (EDS) techniques, and morphology was examined by nitrogen adsorption. The sample with a Co content 5% (m/m) had a higher specific surface area than other Co-hectorites. The pore diameters were distributed between 2.5 and 5.0 nm. The adsorption results revealed that Co-hectorite surfaces possessed effective interactions with MB and bases, and greatest adsorption capacity achieved with Co content 5%, where the best-fit isotherm model was the Langmuir adsorption model. Kinetic studies were fitted to the pseudo-second-order kinetic model. The intraparticle diffusion was not the rate-limiting step for the whole reaction.

  1. The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation

    NASA Astrophysics Data System (ADS)

    Fabrizio, Michele

    We review the recently proposed extension of the Gutzwiller approximation (Schirò and Fabrizio, Phys Rev Lett 105:076401, 2010), designed to describe the out-of-equilibrium time-evolution of a Gutzwiller-type variational wave function for correlated electrons. The method, which is strictly variational in the limit of infinite lattice-coordination, is quite general and flexible, and it is applicable to generic non-equilibrium conditions, even far beyond the linear response regime. As an application, we discuss the quench dynamics of a single-band Hubbard model at half-filling, where the method predicts a dynamical phase transition above a critical quench that resembles the sharp crossover observed by time-dependent dynamical mean field theory. We next show that one can actually define in some cases a multi-configurational wave function combination of a whole set of mutually orthogonal Gutzwiller wave functions. The Hamiltonian projected in that subspace can be exactly evaluated and is equivalent to a model of auxiliary spins coupled to non-interacting electrons, closely related to the slave-spin theories for correlated electron models. The Gutzwiller approximation turns out to be nothing but the mean-field approximation applied to that spin-fermion model, which displays, for any number of bands and integer fillings, a spontaneous Z 2 symmetry breaking that can be identified as the Mott insulator-to-metal transition.

  2. Continuous equilibrium scores: factoring in the time before a fall.

    PubMed

    Wood, Scott J; Reschke, Millard F; Owen Black, F

    2012-07-01

    The equilibrium (EQ) score commonly used in computerized dynamic posturography is normalized between 0 and 100, with falls assigned a score of 0. The resulting mixed discrete-continuous distribution limits certain statistical analyses and treats all trials with falls equally. We propose a simple modification of the formula in which peak-to-peak sway data from trials with falls is scaled according the percent of the trial completed to derive a continuous equilibrium (cEQ) score. The cEQ scores for trials without falls remain unchanged from the original methodology. The cEQ factors in the time before a fall and results in a continuous variable retaining the central tendencies of the original EQ distribution. A random set of 5315 Sensory Organization Test trials were pooled that included 81 falls. A comparison of the original and cEQ distributions and their rank ordering demonstrated that trials with falls continue to constitute the lower range of scores with the cEQ methodology. The area under the receiver operating characteristic curve (0.997) demonstrates that the cEQ retained near-perfect discrimination between trials with and without falls. We conclude that the cEQ score provides the ability to discriminate between ballistic falls from falls that occur later in the trial. This approach of incorporating time and sway magnitude can be easily extended to enhance other balance tests that include fall data or incomplete trials. PMID:22640866

  3. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies.

    PubMed

    Gao, Jun-Jie; Qin, Ye-Bo; Zhou, Tao; Cao, Dong-Dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-Fei

    2013-07-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1530.67 mg(2)/g and 0.7826 cm(3)/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  4. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies*

    PubMed Central

    Gao, Jun-jie; Qin, Ye-bo; Zhou, Tao; Cao, Dong-dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-fei

    2013-01-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue. PMID:23825151

  5. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study.

    PubMed

    Kul, Ali Riza; Koyuncu, Hülya

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol(-1) for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R(L) separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy (DeltaG), the enthalpy (DeltaH) and the entropy change of sorption (DeltaS) were determined as about -5.06, 10.29 and 0.017 kJ mol(-1) K(-1), respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  6. Equilibrium model constraints on baryon cycling across cosmic time

    NASA Astrophysics Data System (ADS)

    Mitra, Sourav; Davé, Romeel; Finlator, Kristian

    2015-09-01

    Galaxies strongly self-regulate their growth via energetic feedback from stars, supernovae, and black holes, but these processes are among the least understood aspects of galaxy formation theory. We present an analytic galaxy evolution model that directly constrains such feedback processes from observed galaxy scaling relations. The equilibrium model, which is broadly valid for star-forming central galaxies that dominate cosmic star formation, is based on the ansatz that galaxies live in a slowly evolving equilibrium between inflows, outflows, and star formation. Using a Bayesian Monte Carlo Markov chain approach, we constrain our model to match observed galaxy scaling relations between stellar mass and halo mass, star formation rate, and metallicity from 0 < z < 2. A good fit (χ2 ≈ 1.6) is achieved with eight free parameters. We further show that constraining our model to any two of the three data sets also produces a fit to the third that is within reasonable systematic uncertainties. The resulting best-fitting parameters that describe baryon cycling suggest galactic outflow scalings intermediate between energy and momentum-driven winds, a weak dependence of wind recycling time on mass, and a quenching mass scale that evolves modestly upwards with redshift. This model further predicts a stellar mass-star formation rate relation that is in good agreement with observations to z ˜ 6. Our results suggest that this simple analytic framework captures the basic physical processes required to model the mean evolution of stars and metals in galaxies, despite not incorporating many canonical ingredients of galaxy formation models such as merging or disc formation.

  7. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  8. Optical luminescence studies of diffusion times at the potassium ethyl xanthate adsorption layer on the surface of sphalerite minerals

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Anitas, E. M.; Szakács, Zs

    2016-08-01

    We propose reflectance measurements as a method for the evaluation of the kinetics of adsorption processes, to compute the diffusion times of the adsorption products at the thin layers formed at the sphalerite natural mineral-potassium ethyl xanthate solution interface. The method is based on the intensity measurement of the reflected monochromatic radiation obtained from the mineral-xanthate thin layer as a function of time. These determinations were made at the thin layer formed between the sphalerite or activated sphalerite natural minerals with potassium ethyl xanthate, for different solutions concentrations and pH values at constant temperature. Diffusion times of desorbed molecular species into the liquid bring important information about the global kinetics of the ions in this phase during adsorption processes at interfaces. Analysing the time dependence of this parameter one concluded on the diffusion properties of the xanthate molecule in the solution depending on its concentration and pH, knowing that at the initial time these molecules had a uniform spread. This method enabled us to determine that, in time interval of approximately 35 minutes to achieve dynamic equilibrium in the formation of the interface layer, one had three different kinetic behaviours of our systems. In the first 5-8 min one had highly adsorbent character, the state of equilibrium is followed by low adsorbent properties. Gaining information on the adsorption kinetics in the case of xanthate on mineral surface leads to the optimization of the industrial froth flotation process.

  9. Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 2: Kinetic parameters.

    PubMed

    Al Mardini, Fadi; Legube, Bernard

    2009-10-30

    The application of several monosolute equilibrium models has previously shown that Bromacil adsorption on SA-UF (Norit) powdered activated carbon (PAC) is probably effective on two types of sites. High reactivity sites were found to be 10-20 less present in a carbon surface than lower reactivity sites, according to the q(m) values calculated by isotherm models. The aims of this work were trying, primarily, to identify the kinetic-determinant stage of the sorption of Bromacil at a wide range of initial pesticide concentrations (approximately 5 to approximately 500 microg L(-1) at pH 7.8), and secondly, to specify the rate constants and other useful design parameters for the application in water treatment. It was therefore not possible to specify a priori whether the diffusion or surface reaction is the key step. It shows that many of the tested models which describe the stage of distribution or the surface reaction are correctly applied. However, the diffusivity values (D and D(0)) were found to be constant only constants for some specific experimental concentrations. The HSDM model of surface diffusion in pores was also applied but the values of the diffusion coefficient of surface (D(s)) were widely scattered and reduce significantly with the initial concentration or the equilibrium concentration in Bromacil. The model of surface reaction of pseudo-second order fitted particularly well and led to constant values which are independent of the equilibrium concentration, except for the low concentrations where the constants become significantly more important. This last observation confirms perfectly the hypothesis based on two types of sites as concluded by the equilibrium data (part 1).

  10. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of

  11. Mass transfer and adsorption equilibrium for low volatility alkanes in BPL activated carbon.

    PubMed

    Wang, Yu; Mahle, John J; Furtado, Amanda M B; Glover, T Grant; Buchanan, James H; Peterson, Gregory W; LeVan, M Douglas

    2013-03-01

    The structure of a molecule and its concentration can strongly influence diffusional properties for transport in nanoporous materials. We study mass transfer of alkanes in BPL activated carbon using the concentration-swing frequency response method, which can easily discriminate among mass transfer mechanisms. We measure concentration-dependent diffusion rates for n-hexane, n-octane, n-decane, 2,7-dimethyloctane, and cyclodecane, which have different carbon numbers and geometries: straight chain, branched chain, and cyclic. Micropore diffusion is determined to be the controlling mass transfer resistance except at low relative saturation for n-decane, where an external mass transfer resistance also becomes important, showing that the controlling mass transfer mechanism can change with system concentration. Micropore diffusion coefficients are found to be strongly concentration dependent. Adsorption isotherm slopes obtained from measured isotherms, the concentration-swing frequency response method, and a predictive method show reasonably good agreement.

  12. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    PubMed

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature.

  13. On the 2D-transition, hysteresis and thermodynamic equilibrium of Kr adsorption on a graphite surface.

    PubMed

    Diao, Rui; Fan, Chunyan; Do, D D; Nicholson, D

    2015-12-15

    The adsorption and desorption of Kr on graphite at temperatures in the range 60-88K, was systematically investigated using a combination of several simulation techniques including: Grand Canonical Monte Carlo (GCMC), Canonical kinetic-Monte Carlo (C-kMC) and the Mid-Density Scheme (MDS). Particular emphasis was placed on the gas-solid, gas-liquid and liquid-solid 2D phase transitions. For temperatures below the bulk triple point, the transition from a 2D-liquid-like monolayer to a 2D-solid-like state is manifested as a sub-step in the isotherm. A further increase in the chemical potential leads to another rearrangement of the 2D-solid-like state from a disordered structure to an ordered structure that is signalled by (1) another sub-step in the monolayer region and (2) a spike in the plot of the isosteric heat versus density at loadings close to the dense monolayer coverage concentration. Whenever a 2D transition occurs in a grand canonical isotherm it is always associated with a hysteresis, a feature that is not widely recognised in the literature. We studied in details this hysteresis with the analysis of the canonical isotherm, obtained with C-kMC, which exhibits a van der Waals (vdW) type loop with a vertical segment in the middle. We complemented the hysteresis loop and the vdW curve with the analysis of the equilibrium transition obtained with the MDS, and found that the equilibrium transition coincides exactly with the vertical segment of the C-kMC isotherm, indicating the co-existence of two phases at equilibrium. We also analysed adsorption at higher layers and found that the 2D-coexistence is also observed, provided that the temperature is well below the triple point. Finally the 2D-critical temperatures were obtained for the first three layers and they are in good agreement with the experimental data in the literature. PMID:26364074

  14. Kinetic and equilibrium studies for the adsorption process of cadmium(II) and copper(II) onto Pseudomonas aeruginosa using square wave anodic stripping voltammetry method.

    PubMed

    Kong, Bo; Tang, Biyu; Liu, Xiaoying; Zeng, Xiandong; Duan, Haiyan; Luo, Shenglian; Wei, Wanzhi

    2009-08-15

    A novel method for the simultaneous determination of cadmium(II) and copper(II) during the adsorption process onto Pseudomonas aeruginosa was developed. The concentration of the free metal ions was successfully detected by square wave anodic stripping voltammetry (SWASV) on the mercaptoethane sulfonate (MES) modified gold electrode, while the P. aeruginosa was efficiently avoided approaching to the electrode surface by the MES monolayer. And the anodic stripping peaks of Cd(2+) and Cu(2+) appear at -0.13 and 0.34V respectively, at the concentration range of 5-50 microM, the peak currents of SWASV present linear relationships with the concentrations of cadmium and copper respectively. As the determination of Cd(2+) and Cu(2+) was in real time and without pretreatment, the kinetic characteristics of the adsorption process were studied and all the corresponding regression parameters were obtained by fitting the electrochemical experimental data to the pseudo-second-order kinetic model. Moreover, Langmuir and Freundlich models well described the biosorption isotherms. And there were some differences in the amount of metal ion adsorbed at equilibrium (q(e)) and other kinetics parameters when the two ions coexisted were compared with the unaccompanied condition, which were also discussed in this paper. The proposed electrode system provides excellent platform for the simultaneous determination of trace metals in complex biosorption process.

  15. Physicochemical properties of MoO sub 3 -TiO sub 2 prepared by an equilibrium adsorption method

    SciTech Connect

    Kim, Du Soung; Kurusu, Yasuhiko; Segawa, Kohichi ); Wachs, I.E.; Hardcastle, F.D. )

    1989-12-01

    The adsorption phenomena of molybdena species onto titania surfaces and the surface properties of the catalysts have been studied by using an equilibrium adsorption method. {sup 95}Mo NMR and UV spectroscopic studies show that the aqueous molybdena species vary as a function of the pH of the impregnating solution. For acidic pH values, polymeric species, Mo{sub 7}O{sub 24}{sup 6{minus}} ions, are present, while in the basic solutions it is the monomeric MoO{sub 4}{sup 2{minus}} ions that are present. The adsorbed amounts of molybdate anion are strongly dependent on the pH of the impregnating solution and increase as an inverse function of the pH. XRD, Raman, and XPS data of the calcined samples show that monolayer coverage of molybdenum oxide is established at pH 3.98 (6.6 wt%). The Raman studies reveal that the molybdenum oxide monolayer is composed of distorted octahedra. At more acidic pH regions, pH < 3.98, crystalline MoO{sub 3} is formed above monolayer coverage. The result of catalytic oxidation of methanol show that the catalysts up to monolayer coverage of surface molybdate species possess higher turnover numbers than the catalysts possessing more than monolayer coverage (presence of crystalline MoO{sub 3}). The primary methanol oxidation product is dimethoxymethane at low conversions; methyl formate is next in abundance. The selectivity for dimethyl ether, which occurred as a side reaction on the acidic sites of catalysts, increases as the Mo loading increases.

  16. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-01

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions

  17. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-01

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions

  18. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.

    PubMed

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric

    2013-03-30

    In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process.

  19. Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: Adsorption rates and equilibrium studies

    SciTech Connect

    Periasamy, K.; Namasivayam, C. . Dept. of Environmental Sciences)

    1994-02-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Cd(II) from synthetic wastewater. The adsorption data fit better with the Freundlich adsorption isotherm. The applicability of the Lagergren kinetic model has also been investigated. An almost quantitative removal of 20 mg/L Cd(II) by 0.7 g of PHC/L of aqueous solution was observed in the pH range 3.5--9.5. A comparative study with a commercial granular activated carbon (CAC) showed that the adsorption capacity (K[sub f]) of PHC was 31 times larger than that of CAC.

  20. RESORCINOL-FORMALDEHYDE ADSORPTION OF CESIUM (Cs+) FROM HANFORD WASTE SOLUTIONS-PART I: BATCH EQUILIBRIUM STUDY

    SciTech Connect

    HASSAN, NEGUIBM

    2004-03-30

    Batch equilibrium measurements were conducted with a granular Resorcinol-Formaldehyde (RF) resin to determine the distribution coefficients (Kds) for cesium. In the tests, Hanford Site actual waste sample containing radioactive cesium and a pretreated waste sample that was spiked with non-radioactive cesium were used. Initial concentrations of non-radioactive cesium in the waste sample were varied to generate an equilibrium isotherm for cesium. Two additional tests were conducted using a liquid to solid phase ratio of 10 and a contact time of 120 hours. The measured distribution coefficient (Kd) for radioactive cesium (137Cs) was 948 mL/g; the Kd for non-radioactive cesium (133Cs) was 1039 mL/g. The Kd for non-radioactive cesium decreased from 1039 to 691 mL/g as the initial cesium concentration increased. Very little change of the Kd was observed at initial cesium concentrations above 64 mg/mL. The maximum sorption capacity for cesium on granular RF resin was 1.17 mmole/g dry resin. T his value was calculated from the fit of the equilibrium isotherm data to the Dubinin-Radushkevich equation. Previously, a total capacity of 2.84 mmole/g was calculated by Bibler and Wallace for air-dried RF resin.

  1. A novel polar-modified post-cross-linked resin and its enhanced adsorption to salicylic acid: Equilibrium, kinetics and breakthrough studies.

    PubMed

    Wang, Xiaomei; Li, Guoqiang; Guo, Deping; Zhang, Yaling; Huang, Jianhan

    2016-05-15

    Improving the surface polarity is of significance for the post-cross-linked resins to enhance their adsorption to polar aromatic compounds. In the present study, we prepared a novel polar-modified post-cross-linked PDEpc_D by the Friedel-Crafts alkylation reaction and the amination reaction, the Brunauer-Emmett-Teller (BET) surface area and pore volume increased significantly after the Friedel-Crafts alkylation reaction and the surface polarity improved greatly after the amination reaction. Batch adsorption showed that PDEpc_D possessed a much enhanced adsorption to salicylic acid as compared the precursors PDE and PDEpc as well as the non-polar post-cross-linked PDVBpc. The equilibrium data was characterized by the Freundlich model, π-π stacking, hydrogen bonding and static interaction were the possible driving forces. The adsorption was a fast process and the kinetic data obeyed the micropore diffusion model. Column adsorption-desorption experiments suggested that PDEpc_D was a potential candidate for adsorptive removal of salicylic acid from aqueous solution. PMID:26928058

  2. Role of the solvent in the adsorption-desorption equilibrium of cinchona alkaloids between solution and a platinum surface: correlations among solvent polarity, cinchona solubility, and catalytic performance.

    PubMed

    Ma, Zhen; Zaera, Francisco

    2005-01-13

    The role that the nature of the solvent plays in defining the extent of cinchona alkaloid adsorption-desorption equilibrium on platinum surfaces has been studied both by testing their solubility in 54 different solvents and by probing the stability of adsorbed cinchona in the presence of those solvents. The solubilities vary by as much as 5-6 orders of magnitude, display volcano-type correlations with solvent polarity and dielectric constant, and follow a cinchonine < cinchonidine < quinine, quinidine sequence. The adsorption-desorption equilibrium shifts toward the solution with increasing dissolving power of the solvent. The relevance of these results to the behavior of cinchona as chiral modifiers in hydrogenation catalysis is discussed.

  3. Kinetics, equilibrium and thermodynamics of adsorption of 2-biphenylamine and dibenzylamine from aqueous solutions by Fe3O4/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Vasheghani F., B.; Rajabi, F. H.; Omidi, M. H.; Shabanian, S.

    2015-05-01

    Magnetic Fe3O4/bentonite nanocomposite is synthesized by chemical co-precipitation method. Experimental data are modelled by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Freundlich and Langmuir isotherm model fitted the equilibrium data for the dibenzylamine (DBA) and 2-biphenylamine (BPA) respectively, compared to the other isotherm models. The calculated thermodynamic parameters, Δ G°, Δ H°, and Δ S° showed that the DBA and BPA adsorption on bentonite nanocomposite is spontaneous and endothermic under examined conditions. Experimental data were also modeled using the adsorption kinetic models. The results show that the adsorption processes of DBA and BPA followed well the pseudo-second-order kinetics. Results indicated that Fe3O4/bentonite nanocomposite could be an alternative for more costly adsorbents used for organic toxicants removal.

  4. Adsorption properties of biologically active derivatives of quaternary ammonium surfactants and their mixtures at aqueous/air interface. I. Equilibrium surface tension, surfactant aggregation and wettability.

    PubMed

    Rojewska, Monika; Biadasz, Andrzej; Kotkowiak, Michał; Olejnik, Anna; Rychlik, Joanna; Dudkowiak, Alina; Prochaska, Krystyna

    2013-10-01

    The adsorption properties of surfactant mixtures containing two types of quaternary derivatives of lysosomotropic substances: alkyl N,N-dimethylalaninates methobromides and alkyl N,N-dimethylglycinates methobromides were studied. Quantitative and qualitative description of the adsorption process was carried out on the basis of experimentally obtained equilibrium surface tension isotherms. The results indicated that most of the systems studied revealed synergistic effect both in adsorption and wetting properties. In vitro studies on human cancer cells were undertaken and the data obtained showed that the mixtures suppressed the cancer cells' proliferation more effectively than individual components. Results of preliminary research on the interaction of catanionic mixtures with phospholipids suggested a possibility of a strong penetration of cell membranes by the mixtures investigated.

  5. Dynamic and equilibrium performance of sensors based on short peptide ligands for affinity adsorption of human IgG using surface plasmon resonance.

    PubMed

    Islam, Nafisa; Shen, Fei; Gurgel, Patrick V; Rojas, Orlando J; Carbonell, Ruben G

    2014-08-15

    This paper characterizes the potential of novel hexameric peptide ligands for on-line IgG detection in bioprocesses. Surface Plasmon Resonance (SPR) was used to study the binding of human IgG to the hexameric peptide ligand HWRGWV, which was covalently grafted to alkanethiol self-assembled monolayers (SAM) on gold surfaces. Peptide coupling on SAMs was verified, followed by covalent grafting of peptides with a removable Fmoc or acetylated N-termini via their C-termini to produce active peptide SPR sensors that were tested for IgG binding. The dynamics and extent of peptide-IgG binding were compared with results from a conventional system using protein A attached on a gold surface via disulfide monolayers. IgG binding to protein A on disulfide monolayers yielded equilibrium dissociation constants of 1.4×10(-7)M. The corresponding dissociation constant value for the acetylated version of the peptide (Ac-HWRGWV) supported on alkanethiol SAM was 5.8×10(-7)M and that for HWRGWV on the alkanethiol SAM (after de-protection of Fmoc-HWRGWVA) was 1.2×10(-6)M. Maximum IgG binding capacities, Qm of 6.7, 3.8, and 4.1mgm(-2) were determined for the protein A and the two forms of HWRGWV-based biosensors, respectively. Real-time data for the kinetics of adsorption were used to determine the apparent rate constants for adsorption and desorption. The results were analyzed to understand the mechanism of IgG binding to the protein and peptide ligands. It was found that the peptide-IgG binding was reaction controlled, however the protein A-IgG binding mechanism was partially mass transfer (diffusion) controlled. The adsorption rate constants, ka, for the protein A ligand increased with decreasing concentration of analyte and the peptide ligand ka values was constant at different IgG concentrations and flow rates.

  6. From Non-equilibrium to Equilibrium: Micellar Kinetics seen by Time-resolved Small-angle Scattering

    NASA Astrophysics Data System (ADS)

    Lund, Reidar

    The kinetic pathways of self-assembled nanostructures are not fully understood. Time-resolved small-angle X-ray/neutron scattering (TR-SAXS/SANS) is powerful technique1 that allows kinetics processes such as nucleation processes2,3 and morphological transitions4,5 to be followed with structural resolution over time scales starting from milliseconds. Neutrons offer the additional advantage of facile contrast variation through H/D substitution schemes, which also allow equilibrium processes such as molecular exchange and diffusion to be studied1 , 6 , 7. Here we will highlight the current capabilities of TR-SAS and show results on the kinetics of polymeric micelles. We will address how the understanding of kinetic pathways can be used control the nanostructure.

  7. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  8. Enhanced adsorptive removal of Safranine T from aqueous solutions by waste sea buckthorn branch powder modified with dopamine: Kinetics, equilibrium, and thermodynamics

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Bai, Bo; Wang, Honglun; Suo, Yourui

    2015-12-01

    Polydopamine coated sea buckthorn branch powder (PDA@SBP) was facilely synthesized via a one-pot bio-inspired dip-coating approach. The as-synthesized PDA@SBP was characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The adsorption progresses of Safranine T on the surface of PDA@SBP adsorbent were systematically investigated. More specifically, the effects of solution pH, contact time, initial concentration and temperature were evaluated, respectively. The experimental results showed the adsorption capacity of PDA@SBP at 293.15 K could reach up to 54.0 mg/g; the adsorption increased by 201.7% compared to that of native SBP (17.9 mg/g). Besides, kinetics studies showed that pseudo-second-order kinetic model adequately described the adsorption behavior. The adsorption experimental data could be fitted well a Freundlich isotherm model. Thermodynamic analyses showed that the ST adsorption was a physisorption endothermic process. Regeneration of the spent PDA@SBP adsorbent was conducted with 0.1 M HCl without significant reduction in adsorption capacity. On the basis of these investigations, it is believed that the PDA@SBP adsorbent could have potential applications in sewage disposal areas because of their considerable adsorption capacities, brilliant regeneration capability, and cost-effective and eco-friendly preparation and use.

  9. Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites

    NASA Astrophysics Data System (ADS)

    Ma, Keming; Wang, Baichen; Chen, Ping; Zhou, Xia

    2011-02-01

    The effect of oxygen plasma treatment on the non-equilibrium dynamic adsorption of the carbon fabric reinforcements in RTM process was studied. 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-Cl) was attached to the curing agent to study the change of curing agent content in the epoxy resin matrix. Steady state fluorescence spectroscopy (FS) analysis was used to study this changes in the epoxy resin at the inlet and outlet of the RTM mould, and XPS was used to study the chemical changes on the carbon fiber surfaces introduced by plasma treatment. The interlaminar shear strength (ILSS) and flexural strength were also measured to study the effects of this non-equilibrium dynamic adsorption progress on the mechanical properties of the end products. FS analysis shows that the curing agent adsorbed onto the fiber surface preferentially for untreated carbon fiber, the curing agent content in the resin matrix maintain unchanged after plasma treatment for 3 min and 5 min, but after oxygen plasma treatment for 7 min, the epoxy resin adsorbed onto the fiber surface preferentially. XPS analysis indicated that the oxygen plasma treatment successfully increased some polar functional groups concentration on the carbon fiber surfaces, this changes on the carbon fiber surfaces can change the adsorption ability of carbon fiber to the resin and curing agent. The mechanical properties of the composites were correlated to this results.

  10. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  11. On the time needed to reach an equilibrium structure of the radiation belts

    DOE PAGES

    Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott; Reeves, Geoffrey D.; Shprits, Y. Y.

    2016-06-04

    In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τDiffusion/τloss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space

  12. On the time needed to reach an equilibrium structure of the radiation belts

    NASA Astrophysics Data System (ADS)

    Ripoll, J.-F.; Loridan, V.; Cunningham, G. S.; Reeves, G. D.; Shprits, Y. Y.

    2016-08-01

    In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1-D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3, and 6. We find that the equilibrium states at moderately low Kp, when plotted versus L shell (L) and energy (E), display the same interesting S shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L shell. Equilibrium electron flux profiles are governed by the Biot number (τDiffusion/τloss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can

  13. Rheology modulated non-equilibrium fluctuations in time-dependent diffusion processes

    NASA Astrophysics Data System (ADS)

    Maity, Debonil; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-11-01

    The effect of non-Newtonian rheology, manifested through a viscoelastic linearized Maxwell model, on the time-dependent non-equilibrium concentration fluctuations due to free diffusion as well as thermal diffusion of a species is analyzed theoretically. Contrary to the belief that non-equilibrium Rayleigh line is not influenced by viscoelastic effects, through rigorous calculations, we put forward the fact that viscoelastic effects do influence the non-equilibrium Rayleigh line, while the effects are absent for the equilibrium scenario. The non-equilibrium process is quantified through the concentration fluctuation auto-correlation function, also known as the structure factor. The analysis reveals that the effect of rheology is prominent for both the cases of free diffusion and thermal diffusion at long times, where the influence of rheology dictates not only the location of the peaks in concentration dynamic structure factors, but also the magnitudes; such peaks in dynamic structure factors are absent in the case of Newtonian fluid. At smaller times, for the case of free diffusion, presence of time-dependent peak(s) are observed, which are weakly dependent on the influence of rheology, a phenomenon which is absent in the case of thermal diffusion. Different regimes of the frequency dependent overall dynamic structure factor, depending on the interplay of the fluid relaxation time and momentum diffusivity, are evaluated. The static structure factor is not affected to a great extent for the case of free-diffusion and is unaffected for the case of thermal diffusion.

  14. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth.

    PubMed

    Hoda, Numan; Bayram, Edip; Ayranci, Erol

    2006-09-01

    Removal of acid dyes Acid Blue 45, Acid Blue 92, Acid Blue 120 and Acid Blue 129 from aqueous solutions by adsorption onto high area activated carbon cloth (ACC) was investigated. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the adsorption process of these dyes onto ACC follows the pseudo-second-order model. Adsorption isotherms were derived at 25 degrees C on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. The fits of experimental data to these equations were examined. PMID:16563617

  15. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  16. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment. PMID:25409587

  17. Signatures of electron-boson coupling in the time domain: beyond the equilibrium interpretation

    NASA Astrophysics Data System (ADS)

    Kemper, Alexander

    A powerful method to study the interactions between electrons and bosons in high-Tc superconductors is the measurement of the single-particle spectral function. The recent development of time-resolved ARPES (tr-ARPES) has allowed this measurement of be performed out of equilibrium, where the material is driven by an ultrafast laser pump pulse. We have developed a theoretical framework to complement to these experiments, and here we report on several aspects of electron-boson coupling out of equilibrium. First, we will illustrate how time-resolved spectroscopy can be used to study the coupling between electrons and phonons observing the decay rate of the transient signals as a function of energy, momentum, and time. A sufficiently strongly coupled phonon will exhibit a signature in the tr-ARPES spectra as both a kink in the dispersion as well as a sharp change of the decay rates, and we will discuss how these effects appear out of equilibrium.Second, we will focus on the return to equilibrium in systems with multiple interaction types, and show that there are two distinct types of scattering processes: those types of interactions that conserve the energy within a subsystem, and those that do not. While in equilibrium these two contribute equally to the linewidth, we will show that out of equilibrium they behave differently - the first type are mainly responsible for thermalization within the electronic subsystem, whereas the second type drain the energy out. As a result, the scattering rates out of equilibrium can be vastly different from the linewidth, and the features of the second type of interactions can be clearly observed.

  18. A novel memristive time-delay chaotic system without equilibrium points

    NASA Astrophysics Data System (ADS)

    Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M.

    2016-02-01

    Memristor and time-delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time-delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time-delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time-delay system has been introduced to show its feasibility.

  19. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.

    PubMed

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Gil, Laurent Frédéric

    2013-03-30

    In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process. PMID:23428463

  20. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  1. The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis.

    PubMed

    Subhan, Fazle; Yan, Zifeng; Peng, Peng; Ikram, Muhammad; Rehman, Sadia

    2014-04-15

    High performance nickel supported on mesoporous AlKIT-6 (Si/Al=15, 25, 50, 100) sorbents were prepared by incipient wetness impregnation (IWI) with ultrasonic aid for adsorptive desulfurization of commercial diesel and simulated fuels. The sorbents were characterized by N2 adsorption-desorption, XRD, NH3-TPD, Py-FT-IR, HRTEM, SEM and atomic absorption spectroscopy techniques. The analysis results confirmed that Aluminum atoms entered the framework and 20%Ni-AlKIT-6(15) can still retain three dimensional structure of AlKIT-6(15) and Ni is highly dispersed in the support. The kinetic pseudo second-order model and Langmuir isotherm are shown to exhibits the best fits of experimental data for the adsorption of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over AlKIT-6 and 5-30%Ni-AlKIT-6. Intraparticle diffusion and steric hindrance were the rate controlling step of the adsorption of T and DBT over AlKIT-6(15) and 20%Ni-AlKIT-6(15) as verified through the intraparticle diffusion model. The characterization of regenerated 20%Ni-AlKIT-6(15) revealed that three-dimensional cubic Ia3d symmetric structure was maintained in the sorbent after 6 successive desulfurization-regeneration cycles.

  2. The enhanced adsorption of sulfur compounds onto mesoporous Ni-AlKIT-6 sorbent, equilibrium and kinetic analysis.

    PubMed

    Subhan, Fazle; Yan, Zifeng; Peng, Peng; Ikram, Muhammad; Rehman, Sadia

    2014-04-15

    High performance nickel supported on mesoporous AlKIT-6 (Si/Al=15, 25, 50, 100) sorbents were prepared by incipient wetness impregnation (IWI) with ultrasonic aid for adsorptive desulfurization of commercial diesel and simulated fuels. The sorbents were characterized by N2 adsorption-desorption, XRD, NH3-TPD, Py-FT-IR, HRTEM, SEM and atomic absorption spectroscopy techniques. The analysis results confirmed that Aluminum atoms entered the framework and 20%Ni-AlKIT-6(15) can still retain three dimensional structure of AlKIT-6(15) and Ni is highly dispersed in the support. The kinetic pseudo second-order model and Langmuir isotherm are shown to exhibits the best fits of experimental data for the adsorption of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over AlKIT-6 and 5-30%Ni-AlKIT-6. Intraparticle diffusion and steric hindrance were the rate controlling step of the adsorption of T and DBT over AlKIT-6(15) and 20%Ni-AlKIT-6(15) as verified through the intraparticle diffusion model. The characterization of regenerated 20%Ni-AlKIT-6(15) revealed that three-dimensional cubic Ia3d symmetric structure was maintained in the sorbent after 6 successive desulfurization-regeneration cycles. PMID:24556462

  3. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    EPA Science Inventory

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  4. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications.

  5. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.

    PubMed

    Kearns, J P; Wellborn, L S; Summers, R S; Knappe, D R U

    2014-10-01

    Batch isotherm experiments were conducted with chars to study adsorption of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Chars generated from corncobs, bamboo and wood chips in a laboratory pyrolyzer at 400-700 °C were compared with traditional kiln charcoals collected from villages in S/SE Asia and with activated carbons (ACs). 2,4-D uptake by laboratory chars obtained from bamboo and wood chips after 14 h of pyrolysis at 700 °C, from wood chips after 96 h of pyrolysis at 600 °C, and one of the field-collected chars (basudha) was comparable to ACs. H:C and O:C ratios declined with pyrolysis temperature and duration while surface area increased to >500 m(2)/g. Increasing pyrolysis intensity by increasing temperature and/or duration of heating was found to positively influence adsorption capacity yield (mg(2,4-D/g(feedstock))) over the range of conditions studied. Economic analysis showed that high temperature chars can be a cost-effective alternative to ACs for water treatment applications. PMID:24934321

  6. Evolution of equilibrium Pickering emulsions--a matter of time scales.

    PubMed

    Kraft, Daniela J; Luigjes, Bob; de Folter, Julius W J; Philipse, Albert P; Kegel, Willem K

    2010-09-30

    A new class of equilibrium solid-stabilized oil-in-water emulsions harbors a competition of two processes on disparate time scales that affect the equilibrium droplet size in opposing ways. The aim of this work is to elucidate the molecular origins of these two time scales and demonstrate their effects on the evolution of the emulsion droplet size. First, spontaneous emulsification into particle-covered droplets occurs through in situ generation of surface-active molecules by hydrolysis of molecules of the oil phase. We show that surface tensions of the oil-water interfaces in the absence of stabilizing colloidal particles are connected to the concentration of these surface-active molecules, and hence also to the equilibrium droplet size in the presence of colloids. As a consequence, the hydrolysis process sets the time scale of formation of these solid-stabilized emulsions. A second time scale is governing the ultimate fate of the solid-stabilized equilibrium emulsions: by condensation of the in situ generated amphiphilic molecules onto the colloidal particles, their wetting properties change, leading to a gradual transfer from the aqueous to the oil phase via growth of the emulsion droplets. This migration is observed macroscopically by a color change of the water and oil phases, as well as by electron microscopy after polymerization of the oil phase in a phase separated sample. Surprisingly, the relative oil volume sets the time scale of particle transfer. Phase separation into an aqueous phase and an oil phase containing colloidal particles is influenced by sedimentation of the emulsion droplets. The two processes of formation of surface-active molecules through hydrolysis and condensation thereof on the colloidal surface have an opposite influence on the droplet size. By their interplay, a dynamic equilibrium is created where the droplet size always adjusts to the thermodynamically stable state. PMID:20809591

  7. Evolution of equilibrium Pickering emulsions--a matter of time scales.

    PubMed

    Kraft, Daniela J; Luigjes, Bob; de Folter, Julius W J; Philipse, Albert P; Kegel, Willem K

    2010-09-30

    A new class of equilibrium solid-stabilized oil-in-water emulsions harbors a competition of two processes on disparate time scales that affect the equilibrium droplet size in opposing ways. The aim of this work is to elucidate the molecular origins of these two time scales and demonstrate their effects on the evolution of the emulsion droplet size. First, spontaneous emulsification into particle-covered droplets occurs through in situ generation of surface-active molecules by hydrolysis of molecules of the oil phase. We show that surface tensions of the oil-water interfaces in the absence of stabilizing colloidal particles are connected to the concentration of these surface-active molecules, and hence also to the equilibrium droplet size in the presence of colloids. As a consequence, the hydrolysis process sets the time scale of formation of these solid-stabilized emulsions. A second time scale is governing the ultimate fate of the solid-stabilized equilibrium emulsions: by condensation of the in situ generated amphiphilic molecules onto the colloidal particles, their wetting properties change, leading to a gradual transfer from the aqueous to the oil phase via growth of the emulsion droplets. This migration is observed macroscopically by a color change of the water and oil phases, as well as by electron microscopy after polymerization of the oil phase in a phase separated sample. Surprisingly, the relative oil volume sets the time scale of particle transfer. Phase separation into an aqueous phase and an oil phase containing colloidal particles is influenced by sedimentation of the emulsion droplets. The two processes of formation of surface-active molecules through hydrolysis and condensation thereof on the colloidal surface have an opposite influence on the droplet size. By their interplay, a dynamic equilibrium is created where the droplet size always adjusts to the thermodynamically stable state.

  8. Mixing times towards demographic equilibrium in insect populations with temperature variable age structures.

    PubMed

    Damos, Petros

    2015-08-01

    In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability.

  9. Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: Adsorption equilibrium and kinetics.

    PubMed

    Liu, Zhengang; Zhang, Fang; Liu, Tingting; Peng, Nana; Gai, Chao

    2016-11-01

    A highly graphitized and heteroatom doped porous carbon was prepared from fish waste in the present study. The morphology and chemical composition of the resultant porous carbon were characterized by SEM-EDS, TEM, BET, XRD and Raman measurement. The prepared porous carbon was employed as an adsorbent for acid orange 7, a typical azo dye, removal from aqueous solution. The results showed that the porous carbon had ultrahigh surface area of 2146 m(2)/g, a high degree of graphitization structure and naturally doped with nitrogen and phosphorous. The maximum adsorption capacity of acid orange 7 reached 285.71 mg/g due to unique property of the prepared porous carbon. In addition, acid orange 7 adsorption onto the porous carbon well followed pseudo-second-order kinetics model and acid orange 7 diffusion in micropores was the potential rate controlling step. PMID:27526082

  10. Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: Adsorption equilibrium and kinetics.

    PubMed

    Liu, Zhengang; Zhang, Fang; Liu, Tingting; Peng, Nana; Gai, Chao

    2016-11-01

    A highly graphitized and heteroatom doped porous carbon was prepared from fish waste in the present study. The morphology and chemical composition of the resultant porous carbon were characterized by SEM-EDS, TEM, BET, XRD and Raman measurement. The prepared porous carbon was employed as an adsorbent for acid orange 7, a typical azo dye, removal from aqueous solution. The results showed that the porous carbon had ultrahigh surface area of 2146 m(2)/g, a high degree of graphitization structure and naturally doped with nitrogen and phosphorous. The maximum adsorption capacity of acid orange 7 reached 285.71 mg/g due to unique property of the prepared porous carbon. In addition, acid orange 7 adsorption onto the porous carbon well followed pseudo-second-order kinetics model and acid orange 7 diffusion in micropores was the potential rate controlling step.

  11. Modeling, kinetic, and equilibrium characterization of paraquat adsorption onto polyurethane foam using the ion-pairing technique.

    PubMed

    Vinhal, Jonas O; Lage, Mateus R; Carneiro, José Walkimar M; Lima, Claudio F; Cassella, Ricardo J

    2015-06-01

    We studied the adsorption of paraquat onto polyurethane foam (PUF) when it was in a medium containing sodium dodecylsulfate (SDS). The adsorption efficiency was dependent on the concentration of SDS in solution, because the formation of an ion-associate between the cationic paraquat and the dodecylsulfate anion was found to be a fundamental step in the process. A computational study was carried out to identify the possible structure of the ion-associate in aqueous medium. The obtained data demonstrated that the structure is probably formed from four units of dodecylsulfate bonded to one paraquat moiety. The results showed that 94% of the paraquat present in 45 mL of a solution containing 3.90 × 10(-5) mol L(-1) could be retained by 300 mg of PUF, resulting in the removal of 2.20 mg of paraquat. The experimental data were reasonably adjusted to the Freundlich isotherm and to the pseudo-second-order kinetic model. Also, the application of Morris-Weber and Reichenberg models indicated that both film-diffusion and intraparticle-diffusion processes were active during the control of the adsorption kinetics.

  12. Time-dependent non-equilibrium dielectric response in QM/continuum approaches.

    PubMed

    Ding, Feizhi; Lingerfelt, David B; Mennucci, Benedetta; Li, Xiaosong

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute's electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  13. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    SciTech Connect

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong E-mail: li@chem.washington.edu; Mennucci, Benedetta E-mail: li@chem.washington.edu

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  14. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks.

    PubMed

    Mélykúti, Bence; Hespanha, João P; Khammash, Mustafa

    2014-08-01

    Many biochemical reaction networks are inherently multiscale in time and in the counts of participating molecular species. A standard technique to treat different time scales in the stochastic kinetics framework is averaging or quasi-steady-state analysis: it is assumed that the fast dynamics reaches its equilibrium (stationary) distribution on a time scale where the slowly varying molecular counts are unlikely to have changed. We derive analytic equilibrium distributions for various simple biochemical systems, such as enzymatic reactions and gene regulation models. These can be directly inserted into simulations of the slow time-scale dynamics. They also provide insight into the stimulus-response of these systems. An important model for which we derive the analytic equilibrium distribution is the binding of dimer transcription factors (TFs) that first have to form from monomers. This gene regulation mechanism is compared to the cases of the binding of simple monomer TFs to one gene or to multiple copies of a gene, and to the cases of the cooperative binding of two or multiple TFs to a gene. The results apply equally to ligands binding to enzyme molecules.

  15. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks.

    PubMed

    Mélykúti, Bence; Hespanha, João P; Khammash, Mustafa

    2014-08-01

    Many biochemical reaction networks are inherently multiscale in time and in the counts of participating molecular species. A standard technique to treat different time scales in the stochastic kinetics framework is averaging or quasi-steady-state analysis: it is assumed that the fast dynamics reaches its equilibrium (stationary) distribution on a time scale where the slowly varying molecular counts are unlikely to have changed. We derive analytic equilibrium distributions for various simple biochemical systems, such as enzymatic reactions and gene regulation models. These can be directly inserted into simulations of the slow time-scale dynamics. They also provide insight into the stimulus-response of these systems. An important model for which we derive the analytic equilibrium distribution is the binding of dimer transcription factors (TFs) that first have to form from monomers. This gene regulation mechanism is compared to the cases of the binding of simple monomer TFs to one gene or to multiple copies of a gene, and to the cases of the cooperative binding of two or multiple TFs to a gene. The results apply equally to ligands binding to enzyme molecules. PMID:24920118

  16. Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks

    PubMed Central

    Mélykúti, Bence; Hespanha, João P.; Khammash, Mustafa

    2014-01-01

    Many biochemical reaction networks are inherently multiscale in time and in the counts of participating molecular species. A standard technique to treat different time scales in the stochastic kinetics framework is averaging or quasi-steady-state analysis: it is assumed that the fast dynamics reaches its equilibrium (stationary) distribution on a time scale where the slowly varying molecular counts are unlikely to have changed. We derive analytic equilibrium distributions for various simple biochemical systems, such as enzymatic reactions and gene regulation models. These can be directly inserted into simulations of the slow time-scale dynamics. They also provide insight into the stimulus–response of these systems. An important model for which we derive the analytic equilibrium distribution is the binding of dimer transcription factors (TFs) that first have to form from monomers. This gene regulation mechanism is compared to the cases of the binding of simple monomer TFs to one gene or to multiple copies of a gene, and to the cases of the cooperative binding of two or multiple TFs to a gene. The results apply equally to ligands binding to enzyme molecules. PMID:24920118

  17. Adsorption of methylene blue dye onto activated carbons based on agricultural by-products: equilibrium and kinetic studies.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-01-01

    Mixtures of novolac resin and olive stone biomass (20/80 and 40/60 w/w) were cured, pyrolyzed up to 1,000 °C and activated with CO2 under a continuous flow operation (named N20B-cCa and N40B-cCa respectively). Commercial activated charcoal was similarly re-activated with CO2 and used for comparison reasons (AC-a). The characterization of these materials was performed by Fourier transform Infrared (FTIR) analysis and their specific surface area was determined according to DIN 66132. The materials were tested for their adsorption abilities at different temperatures (298, 333 K) and initial dye concentrations (0.01-0.35 g/L) using 1 L of methylene blue (MB) solution in 10 g of activated carbon. MB adsorption kinetic was also studied. The FTIR spectra of all activated carbons show absorption peaks which correspond to -OH, -CH, -C-O-C- groups and to aromatic ring. The presence of the absorption peak at about 1,400 cm(-1) for N20B-cCa, N40B-cCa indicates more acidic groups on them compared to the commercial AC-a. The specific surface area of N20B-cCa, N40B-cCa and AC-a has values equal to 352, 342 and 760 m(2)/g respectively. From the applied kinetic models, pseudo-second-order equation could best describe MB adsorption. Consequently, such adsorbents can be used as filters to adsorb dyes from wastewaters.

  18. Chemical noise produced by equilibrium adsorption/desorption of surface pyridine at Au-Ag-Au bimetallic atom-scale junctions studied by fluctuation spectroscopy.

    PubMed

    Hwang, Tai-Wei; Branagan, Sean P; Bohn, Paul W

    2013-03-20

    The chemical noise contained in conductance fluctuations resulting from adsorption and desorption of pyridine at Au-Ag-Au bimetallic atom-scale junctions (ASJs) exhibiting ballistic electron transport is studied using fluctuation spectroscopy. ASJs are fabricated by electrochemical Ag deposition in a Au nanogap to produce a high-conductance Ag quantum wire, followed by electromigration-induced thinning in pyridine solution to create stable ASJs. The conductance behavior of the resulting ASJs is analyzed by sequential autocorrelation and Fourier transform of the current-time data to yield the power spectral density (PSD). In these experiments the PSDs from Ag ASJs in pyridine exhibit two main frequency regions: 1/f noise originating from resistance fluctuations of the junction itself at low frequencies, and a Lorentzian noise component arising from molecular adsorption/desorption fluctuations at higher frequencies. The characteristic cutoff frequency of the Lorentzian noise component determines the relaxation time of molecular fluctuations, which, in turn, is sensitive to the kinetics of the adsorption/desorption process. The kinetics are found to depend on concentration and on the adsorption binding energy. The junction size (<5G0), on the other hand, does not affect the kinetics, as the cutoff frequency remains unchanged. Concentration-dependent adsorption free energies are interpreted as arising from a distribution of binding energies, N(E(b)), on the Ag ASJ. Other observations, such as long lifetime ASJs and two-level fluctuations in conductance, provide additional evidence for the integral role of the adsorbate in determining ASJ reorganization dynamics.

  19. Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: process parametric optimization using conventional method and Taguchi's experimental design, adsorption kinetic, equilibrium and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Khare, Prateek; Kumar, Arvind

    2012-12-01

    In the present paper, the phenol removal from wastewater was investigated using agri-based adsorbent: Terminalia chebula-activated carbon (TCAC) produced by carbonization of Terminalia chebula (TC) in air-controlled atmosphere at 600 °C for 4 h. The surface area of TCAC was measured as 364 m2/g using BET method. The surface characteristic of TCAC was analyzed based on the value of point of zero charge. The effect of parameters such as TCAC dosage, pH, initial concentration of phenol, time of contact and temperature on the sorption of phenol by TCAC was investigated using conventional method and Taguchi experimental design. The total adsorption capacity of phenol was obtained as 36.77 mg/g using Langmuir model at the temperature of 30 °C at pH = 5.5. The maximum removal of phenol (294.86 mg/g) was obtained using Taguchi's method. The equilibrium study of phenol on TCAC showed that experimental data fitted well to R-P model. The results also showed that kinetic data were followed more closely the pseudo-first-order model. The results of thermodynamic study showed that the adsorption of phenol on TCAC was spontaneous and an exothermic in nature.

  20. Equilibrium and Response Properties of the Integrate-and-Fire Neuron in Discrete Time

    PubMed Central

    Helias, Moritz; Deger, Moritz; Diesmann, Markus; Rotter, Stefan

    2009-01-01

    The integrate-and-fire neuron with exponential postsynaptic potentials is a frequently employed model to study neural networks. Simulations in discrete time still have highest performance at moderate numerical errors, which makes them first choice for long-term simulations of plastic networks. Here we extend the population density approach to investigate how the equilibrium and response properties of the leaky integrate-and-fire neuron are affected by time discretization. We present a novel analytical treatment of the boundary condition at threshold, taking both discretization of time and finite synaptic weights into account. We uncover an increased membrane potential density just below threshold as the decisive property that explains the deviations found between simulations and the classical diffusion approximation. Temporal discretization and finite synaptic weights both contribute to this effect. Our treatment improves the standard formula to calculate the neuron's equilibrium firing rate. Direct solution of the Markov process describing the evolution of the membrane potential density confirms our analysis and yields a method to calculate the firing rate exactly. Knowing the shape of the membrane potential distribution near threshold enables us to devise the transient response properties of the neuron model to synaptic input. We find a pronounced non-linear fast response component that has not been described by the prevailing continuous time theory for Gaussian white noise input. PMID:20130755

  1. Time-resolved photoemission of correlated electrons driven out of equilibrium

    SciTech Connect

    Moritz, B.; Devereaux, T. P.; Freericks, J. K.

    2010-04-15

    We describe the temporal evolution of the time-resolved photoemission response of the spinless Falicov-Kimball model driven out of equilibrium by strong applied fields. The model is one of the few possessing a metal-insulator transition and admitting an exact solution in the time domain. The nonequilibrium dynamics, evaluated using an extension of dynamical mean-field theory, show how the driven system differs from two common viewpoints--a quasiequilibrium system at an elevated effective temperature (the 'hot' electron model) or a rapid interaction quench ('melting' of the Mott gap) - due to the rearrangement of electronic states and redistribution of spectral weight. The results demonstrate the inherent trade-off between energy and time resolution accompanying the finite width probe pulses, characteristic of those employed in pump-probe time-domain experiments, which can be used to focus attention on different aspects of the dynamics near the transition.

  2. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Ngai, K. L.; Paluch, M.

    2014-05-01

    Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τ _σ ^{eq} ( {T_{age} } ). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τ _σ ( {T_{age},t_{age} } ) = Aexp[ { - ( {{t_{age} }/{τ _{age ( {T_{age} } )}}} )^β } ] + τ _σ ^{eq} ( {T_{age} } ), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τ _σ ^{eq} ( {T_{age} } ) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.

  3. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium.

    PubMed

    Wojnarowska, Z; Ngai, K L; Paluch, M

    2014-05-01

    Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.

  4. Effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel.

    PubMed

    Zhang, Y F; Zheng, J; Zheng, L; Zhou, Z R

    2015-02-01

    Salivary pellicle is a biofilm that is formed by the selective adsorption of salivary proteins. Almost all the functions of the salivary pellicle (lubricating properties, anti-caries properties, etc.) are closely associated with its adhesion strength to tooth surface. The objective of this study was to investigate the effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel, aiming to understand what act as the determinant of the interfacial adhesion. In this study, human tooth enamel samples were immersed in human whole saliva in vitro to obtain a salivary pellicle on the surface of enamel. Immersion treatments lasting up to 1, 3, 10 and 60 min were conducted, respectively. Nano-scratch tests were conducted on the surface of enamel after different adsorption times. The wettability of enamel surface was measured through water contact angle. Results showed that the shear energy between salivary pellicle and enamel surface increased exponentially with the adsorption time. The adhesion force between salivary pellicle and bare enamel surface was more than twice that between salivary pellicle and salivary pellicle. It was found that both the wettability and zeta potential of enamel increased obviously after 1 min saliva-adsorption treatment, and then they almost kept stable as the adsorption time further increased. In summary, the adhesion strength between initial salivary pellicle and enamel surface was much higher than that between initial salivary pellicle and outer salivary pellicle. It seemed that electrostatic interaction contributed to the adhesion between the initial salivary pellicle and enamel surface, but not to the adhesion between the initial and outer salivary pellicle. The results would be helpful to extend the understanding of the adhesion mechanism of salivary pellicle and then to develop new artificial saliva and dental restorative materials.

  5. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  6. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  7. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    PubMed

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables. PMID:26172683

  8. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    PubMed

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  9. Complex time dependent wave packet technique for thermal equilibrium systems - Electronic spectra

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Wilson, K. R.; Heller, E. J.

    1983-01-01

    A time dependent wave packet method is presented for the rapid calculation of the properties of systems in thermal equilibrium and is applied, as an illustration, to electronic spectra. The thawed Gaussian approximation to quantum wave packet dynamics combined with evaluation of the density matrix operator by imaginary time propagation is shown to give exact electronic spectra for harmonic potentials and excellent results for both a Morse potential and for the band contours of the three transitions of the visible electronic absorption spectrum of the iodine molecule. The method, in principle, can be extended to many atoms (e.g., condensed phases) and to other properties (e.g., infrared and Raman spectra and thermodynamic variables).

  10. Indicial response approach derived from Navier-Stokes equations. Part 1: Time-invariant equilibrium state

    NASA Technical Reports Server (NTRS)

    Truong, K. V.; Tobak, M.

    1990-01-01

    The indicial response approach is recast in a form appropriate to the study of vortex induced oscillations phenomena. An appropriate form is demonstrated for the indicial response of the velocity field which may be derived directly from the Navier-Stokes equations. On the basis of the Navier-Stokes equations, it is demonstrated how a form of the velocity response to an arbitrary motion may be determined. To establish its connection with the previous work, the new approach is applied first to the simple situation wherein the indicial response has a time invariant equilibrium state. Results for the aerodynamic response to an arbitrary motion are shown to confirm to the form obtained previously.

  11. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  12. Equilibrium distributions and relaxation times in gaslike economic models: An analytical derivation

    NASA Astrophysics Data System (ADS)

    Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo

    2011-03-01

    A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.

  13. Sediment residence time and connectivity in non-equilibrium and transient geomorphic systems

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Hillebrand, Gudrun

    2016-04-01

    Growing empirical evidence shows that sediment delivery in many geomorphic systems is in transient state or out of equilibrium with respect to the external driving forces. The transient state is often related to the (dis)connectivity of the many constituent parts of geomorphic systems as a result of sediment storage along the sediment flow path from its source to the final sink. The response time of geomorphic systems to external changes is thus dependent on the residence time of sediment in various storage compartments. Here, a mathematical concept based on reservoir theory to model residence time of sediment in various depositional environments is presented. The concept allows to reinterpret millennial scale sediment budges, but can be also applied to decal sediment storage in reservoirs and aids sediment management practices in river systems. The framework sheds light on the limitation of the sediment delivery ratio, which is often used as a measure of sediment connectivity in geomorphic systems, and provides analytical information on process type, pace of sediment flux and connectivity of storage compartments along the sediment cascade. Examples will be given using Postglacial sediment budgets from the Canadian Rocky mountains on the one hand and short-term (~15 yrs.) sediment dynamics in the Iffezheim barrage in the Upper Rhine (Germany).

  14. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.

    PubMed

    Roubani-Kalantzopoulou, Fani

    2009-03-01

    The main object of this review is the study of fundamentals of adsorption and heterogeneous catalysis, a benefit for the understanding of adsorptive and catalytic properties. This work aims to define and record, with the utmost accuracy, the phenomena and the possible reactions. A new methodology for the study of the adsorption is presented, which is a version of the well-known inverse gas chromatography. This reversed-flow inverse gas chromatography (RF-IGC) is technically very simple, and it is combined with a mathematical analysis that gives the possibility for the estimation of various physicochemical parameters related to adsorbent or catalyst characterization, under conditions compatible with the operation of real adsorbents and catalysts. On this base, this methodology has been successfully applied to the study of the impact of air pollutants, volatile organic and/or inorganic, on many solids such as marbles, ceramics, oxide-pigments of works of art, building materials, authentic statues of the Greek Archaeological Museums. Moreover, this methodology proved to be a powerful tool for studying the topography of active sites of heterogeneous surfaces in the nano-scale domain. Thus, some very important local quantities for the surface chemistry have been determined experimentally for many solids including thin films. These physicochemical local quantities (among which adsorption energy and entropy, surface diffusion coefficient, probability density function) have been determined from the experimental pairs of height of extra chromatographic peaks and time by a nonlinear least-squares method, through personal computer programs written in GW BASIC and lately in FORTRAN. Through the time-resolved analysis the surface characterization of the examined materials took place. In addition, the kinetic constants responsible for adsorption/desorption and surface chemical reactions have also been calculated. Thus, important answers have been provided to the following

  15. Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy

    PubMed Central

    Sánchez, Susana A.; Brunet, Juan E.; Jameson, David M.; Lagos, Rosalba; Monasterio, Octavio

    2004-01-01

    The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5–1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems. PMID:14691224

  16. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    PubMed

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values. PMID:26574439

  17. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  18. Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth.

    PubMed

    Tsai, W T; Lai, C W; Hsien, K J

    2004-05-01

    In the present study, the activated bleaching earth was used as adsorbent for the herbicide paraquat adsorption in a batch adsorber. The rate of adsorption has been investigated under the controlled process parameters like agitation speed, initial paraquat concentration, adsorbent dosage and temperature. A batch kinetic model, based on the assumption of a pseudo-second order mechanism, has been tested to predict the rate constant of adsorption, equilibrium adsorption capacity, time of half-adsorption, and equilibrium concentration by the fittings of the experimental data. The results of the kinetic studies show that the adsorption process can be well described with the pseudo-second order equation. Based on the isotherm data obtained from the fittings of the adsorption kinetics, Freundlich model appears to fit the adsorption better than Langmuir model. In addition, the effective diffusion coefficient has also been estimated based on the restrictive diffusion model.

  19. Adsorption of 1,1,1,2-tetrafluoroethane by various adsorbents

    SciTech Connect

    Lin, S.H.; Lin, R.C.

    1999-11-01

    Experiments have been conducted to investigate gas-phase adsorption characteristics of 1,1,1,2-tetrafluoroethane (HFC-134a) by activated carbon fiber, extruded activated carbon, granular activated carbon, activated alumina, and molecular sieve. HGC-134a is currently regarded as an excellent replacement for chlorofluorocarbon-12, a refrigerating and cooling agent extensively used previously in all automobiles and many cooling systems. Performances of HFC-134a adsorption were characterized by the equilibrium adsorption capacity, time to reach equilibrium, and desorption efficiency of exhausted adsorbent. A simple thermal treatment process with proper operating temperature and treatment duration was found to be effective for the regeneration of exhausted absorbents. Adsorption isotherms of the empirical Freundlich and Hossens types were observed to adequately represent the equilibrium adsorption data. A mass transfer model based on the pseudo steady state squared driving force was adopted to describe the mass transfer process of HFC-134a adsorption.

  20. 238U-230Th equilibrium in arc magmas and implications for the time scales of mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Reubi, Olivier; Sims, Kenneth W. W.; Bourdon, Bernard

    2014-04-01

    Large excesses of 238U and 226Ra relative to 230Th characterize many arc magmas and are commonly interpreted to represent recent addition of slab-derived fluid to the mantle wedge beneath the arc. A significant proportion of arc magmas are, however, in 238U-230Th radioactive equilibrium. This is generally thought to result from “buffering” of the young slab fluid U-series signal by a sediment component in secular equilibrium. Here we present new 238U-230Th-226Ra and 235U-231Pa measurements for historic andesites from Volcán de Colima, Mexico. In all lavas (230Th/238U) are in equilibrium, whereas (231Pa/235U) and (226Ra/230Th) are significantly greater than one. These data demonstrate that arc magmas with (230Th/238U) equilibrium can have significant 231Pa and 226Ra excesses, precluding ageing of the magmas in the crust as the cause of 230Th/238U equilibrium. Quantitative modeling of metasomatic and melting processes further indicates that addition of sediment melts to a depleted mantle wedge produces significant 230Th excesses and that 238U excesses induced by recent addition of fluids derived from the altered oceanic crust are not sufficient to compensate these 230Th excesses. U-series activity ratios in Colima magmas are best explained by models in which the metasomatised mantle returns to secular equilibrium before melting, implying a time lag ⩾350 kyr, with subsequent production of 231Pa and 226Ra excesses by in-growth during melting rather than by addition of slab fluids. Investigation of a global compilation of U-series data in arc magma indicates that our model proposed for Colima applies to most arc magmas in or near (230Th-238U) equilibrium. The time lag between mantle metasomatism and melting appears to vary between hundreds years to more than 350 kyr in subduction zones. We posit that the absence of U/Th elemental fractionation during melting of arc sources in (230Th/238U) equilibrium reflects a higher fO2 compared to MORB sources that yield

  1. Time dependent wettability of graphite upon ambient exposure: the role of water adsorption.

    PubMed

    Amadei, Carlo A; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-08-28

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).

  2. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    SciTech Connect

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-08-28

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)

  3. Chlorodifluoromethane equilibrium on 13X molecular sieve

    NASA Astrophysics Data System (ADS)

    Carlile, Donna L.; Mahle, John J.; Buettner, Leonard C.; Tevault, David E.; Friday, David K.

    1994-08-01

    Adsorption phase equilibrium data are required for evaluating any adsorption-based gas separation process. The U.S. Army Edgewood Research, Development and Engineering Center is currently measuring adsorption phase equilibrium data for a variety of chemical warfare agents and their surrogates on adsorbent materials to correlate physical properties to filtration/separation efficiencies of each vapor on each adsorbent. This report details the adsorption phase equilibrium data measured for chlorodifluoromethane (R-22) on 13X Molecular Sieve. The 13X Molecular Sieve is a candidate adsorbent for future military air purification systems employing the pressure-swing adsorption separation process.

  4. The influence of hydrothermal temperature and time toward crystallinity of zeolite X supported on glass wool for CO2 adsorption

    NASA Astrophysics Data System (ADS)

    Anggita, R. K. Wardani; Yuniar, V. T. P.; Aini, W. T.; Nurul, W.

    2016-04-01

    In this study, the influence of hydrothermal temperature and time at zeolite X supported on glasswool were investigated. The results of characterization using XRD showed that a single phase zeolite X with highest crystallinity was obtained when hydrothermal temperature and time at 100°C during 24 hours (ZXF100-24H). The CO2 adsorption capacity of ZXF100-24H has reached up to 10.15 wt. %. Kinetics of CO2 adsorption onto zeolite X supported on glasswool was investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. After evaluating three kinetic models for CO2 adsorption at adsorption temperatures of 30°C, 40°C and 50°C, it was found that intra-particle diffusion kinetic model provided the best fitting for the adsorption data. Furthermore, the thermodynamic parameters of CO2 adsorption were obtained as follows, Gibbs free energy change (ΔG°) are -0.409 kJ/mol at 30°C, -0.274 kJ/mol at 40°C and -0.138 kJ/mol at 50 °C, whereas the enthalpy change (ΔH°) is -4.53 kJ/mol and the entropy change (ΔS°) is -0.0135 kJ/(mol K).

  5. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    NASA Astrophysics Data System (ADS)

    Khan, Taimur; Chaudhuri, Malay

    2013-06-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants Kf and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  6. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics.

    PubMed

    Yan, Ting-guo; Wang, Li-Juan

    2014-01-01

    A magnetic adsorbent was synthesized by γ-aminopropyltriethoxysilane (APTES) modification of Fe(3)O(4) particles using a two-step process. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometry were used to characterize the obtained magnetic adsorbent. EDS and XPS showed that APTES polymer was successfully introduced onto the as-prepared Fe(3)O(4)/APTES particle surfaces. The saturation magnetization of the magnetic adsorbent was around 65 emu g(-1), which indicated that the dye can be removed fast and efficiently from aqueous solution with an external magnetic field. The maximum adsorption capacities of Fe(3)O(4)/APTES for C.I. Reactive Red 228 (RR 228) and Congo Red (CR) were 51.4 and 118.8 mg g(-1), respectively. The adsorption of C.I. Reactive Red 228 (RR 228) and Congo Red (CR) on Fe(3)O(4)/APTES particles corresponded well to the Langmuir model and the Freundlich model, respectively. The adsorption processes for RR 228 and CR followed the pseudo-second-order model. The Boyd's film-diffusion model showed that film diffusion also played a major role in the studied adsorption processes for both dyes. Thermodynamic study indicated that both of the adsorption processes of the two dyes are spontaneous exothermic. PMID:24552735

  7. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    PubMed

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C.

  8. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents.

    PubMed

    Subhan, Fazle; Liu, B S; Zhang, Q L; Wang, W S

    2012-11-15

    High performance nickel-based micro-mesoporous silica (Ni/MMS) sorbent was prepared by incipient wetness impregnation with ultrasonic aid (IWI-u) for adsorptive desulfurization (ADS) of commercial gasoline and simulated fuels. The sorbents were characterized with BET, XRD, TPR, SEM, HRTEM and TG/DTG. These results show that 20 wt%Ni/MMS (IWI-u) can still retain the framework of MMS and nickel particles were homogeneously distributed in the MMS channels without any aggregation, which improved significantly the ADS performance of the sorbents. The studies on the ADS kinetics indicate that the adsorption behavior of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over 20 wt%Ni/MMS (IWI-u) can be described appropriately by pseudo second-order kinetic model. The intraparticle diffusion model verified that the steric hindrance and intraparticle diffusion were the rate controlling step of the adsorption process of DBT molecules. Langmuir model can be used to describe the adsorption isotherms for T, BT and DBT due to low coverage. The regeneration sorbent maintains the sulfur removal efficiency of 85.9% for 6 cycles.

  9. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents.

    PubMed

    Subhan, Fazle; Liu, B S; Zhang, Q L; Wang, W S

    2012-11-15

    High performance nickel-based micro-mesoporous silica (Ni/MMS) sorbent was prepared by incipient wetness impregnation with ultrasonic aid (IWI-u) for adsorptive desulfurization (ADS) of commercial gasoline and simulated fuels. The sorbents were characterized with BET, XRD, TPR, SEM, HRTEM and TG/DTG. These results show that 20 wt%Ni/MMS (IWI-u) can still retain the framework of MMS and nickel particles were homogeneously distributed in the MMS channels without any aggregation, which improved significantly the ADS performance of the sorbents. The studies on the ADS kinetics indicate that the adsorption behavior of thiophene (T), benzothiophene (BT) and dibenzothiophene (DBT) over 20 wt%Ni/MMS (IWI-u) can be described appropriately by pseudo second-order kinetic model. The intraparticle diffusion model verified that the steric hindrance and intraparticle diffusion were the rate controlling step of the adsorption process of DBT molecules. Langmuir model can be used to describe the adsorption isotherms for T, BT and DBT due to low coverage. The regeneration sorbent maintains the sulfur removal efficiency of 85.9% for 6 cycles. PMID:23022413

  10. Adsorption of cadmium from aqueous solutions by perlite.

    PubMed

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  11. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    PubMed

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.

  12. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    PubMed

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent. PMID:27084802

  13. Direct evaluation of the position dependent diffusion coefficient and persistence time from the equilibrium density profile in anisotropic fluids.

    PubMed

    Olivares-Rivas, Wilmer; Colmenares, Pedro J; López, Floralba

    2013-08-21

    We derive expressions for the transverse diffusion coefficient D(z) and the average persistence time τ(z; L) within a layer of width L, for particles of a non-homogeneous fluid enclosed in a planar nanopore. The method allows the direct evaluation of these position-dependent dynamical quantities from the equilibrium local particle density profile. We use results for the density and persistence time profiles from the virtual layer molecular dynamics method to numerically assess the significance of the Smoluchowski approximation. PMID:23968068

  14. Direct evaluation of the position dependent diffusion coefficient and persistence time from the equilibrium density profile in anisotropic fluids.

    PubMed

    Olivares-Rivas, Wilmer; Colmenares, Pedro J; López, Floralba

    2013-08-21

    We derive expressions for the transverse diffusion coefficient D(z) and the average persistence time τ(z; L) within a layer of width L, for particles of a non-homogeneous fluid enclosed in a planar nanopore. The method allows the direct evaluation of these position-dependent dynamical quantities from the equilibrium local particle density profile. We use results for the density and persistence time profiles from the virtual layer molecular dynamics method to numerically assess the significance of the Smoluchowski approximation.

  15. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time

    DOE PAGES

    Hu, Xiaohu; Hong, Liang; Smith, Micholas Dean; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.

    2015-11-23

    Here, internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behavior with effective relaxation times existing over many decades in time, from ps up to ~102s (refs 1-4). Here, using molecular dynamics simulations, we show that, on timescales from 10–12 to 10–5s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored.more » Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behavior persists up to timescales approaching the in vivo lifespan of individual protein molecules.« less

  16. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time

    SciTech Connect

    Hu, Xiaohu; Hong, Liang; Smith, Micholas Dean; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.

    2015-11-23

    Here, internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behavior with effective relaxation times existing over many decades in time, from ps up to ~102s (refs 1-4). Here, using molecular dynamics simulations, we show that, on timescales from 10–12 to 10–5s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behavior persists up to timescales approaching the in vivo lifespan of individual protein molecules.

  17. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    NASA Technical Reports Server (NTRS)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  18. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies.

    PubMed

    Sun, Lei; Wan, Shungang; Luo, Wensui

    2013-07-01

    Biochars prepared from anaerobic digestion residue (BC-R), palm bark (BC-PB) and eucalyptus (BC-E) were used as sorbents for removal of cationic methylene blue dye (MB). The FE-SEM images indicated that the biochars have a well-developed pore structure, and the Brunauer-Emmett-Teller surface areas of BC-R, BC-PB, and BC-E were 7.60, 2.46, and 10.35 m(2)g(-1), respectively. The efficiencies of MB removal in the samples with initial concentrations of 5 mg L(-1) at pH 7.0 and 40°C by BC-R, BC-PB, and BC-E after 2h were 99.5%, 99.3%, and 86.1%, respectively. Pseudo-second-order kinetics was the most suitable model for describing the adsorption of MB onto the biochars. The experimental data were best described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity of 9.50 mg g(-1) at 40°C for BC-R. The biochars produced from the three types of solid waste showed considerable potential for adsorption.

  19. Carbonaceous materials for adsorptive refrigerators

    NASA Astrophysics Data System (ADS)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  20. Applications and limits of theoretical adsorption models for predicting the adsorption properties of adsorbents.

    PubMed

    Park, Hyun Ju; Nguyen, Duc Canh; Na, Choon-Ki; Kim, Chung-il

    2015-01-01

    The objective of this study is to evaluate the applicability of adsorption models for predicting the properties of adsorbents. The kinetics of the adsorption of NO3- ions on a PP-g-AA-Am non-woven fabric have been investigated under equilibrium conditions in both batch and fixed bed column processes. The adsorption equilibrium experiments in the batch process were carried out under different adsorbate concentration and adsorbent dosage conditions and the results were analyzed using adsorption isotherm models, energy models, and kinetic models. The results of the analysis indicate that the adsorption occurring at a fixed adsorbate concentration with a varying adsorbent dosage occur more easily compared to those under a fixed adsorbent dosage with a varying adsorbate concentration. In the second part of the study, the experimental data obtained using fixed bed columns were fit to Bed Depth Service Time, Bohart-Adams, Clark, and Wolborska models, to predict the breakthrough curves and determine the column kinetic parameters. The adsorption properties of the NO3- ions on the PP-g-AA-Am non-woven fabric were differently described by different models for both the batch and fixed bed column process. Therefore, it appears reasonable to assume that the adsorption properties were dominated by multiple mechanisms, depending on the experimental conditions.

  1. [Adsorption characteristics of the antibiotic sulfanilamide onto rice husk ash].

    PubMed

    Ji, Ying-Xue; Wang, Feng-He; Zhang, Fan; Zhang, Yan-Hong; Wang, Guo-Xiang; Gu, Zhong-Zhu

    2013-10-01

    Under different conditions of initial rice husk ash (RHA) dosage, oscillating temperature, oscillating frequency and solution pH, the adsorption characteristics of sulfanilamide on RHA with the change of time and its adsorption kinetics were investigated. RHA was characterized by SEM and FTIR before and after sulfanilamide adsorption. The results indicated that the adsorption characteristics of sulfanilamide on RHA was influenced by RHA dosage, oscillating temperature, oscillating frequency and solution pH. Within the RHA dosing range (0. 1-2.0 g.L-1) in this experiment, the optimal temperature for the adsorption was 25C , and with the increase of RHA dosage, the removal efficiency of sulfanilamide increased, the time required to reach adsorption equilibrium was shortened and the adsorptive quantity of sulfanilamide by per unit mass of RHA decreased. A high oscillating frequency was used to ensure the adsorption effect when the RHA concentration was high. Strong acidic and strong alkaline conditions were conducive to the adsorption of sulfanilamide. The analysis of adsorption dynamics showed that for the adsorption process with high RHA dosage ( >or= 1.0 g.L-1), the pseudo-second-order model fitted the adsorption behavior well, and the process was controlled by physical and chemical adsorption. Intraparticle diffusion model showed that the adsorption process was controlled by both membrane diffusion and internal diffusion, and the influence of the former became more obvious with the increase of the adsorbent concentration. Both the SEM and FTIR spectra proved the effective adsorption of sulfanilamide by RHA. PMID:24364310

  2. The effect of mass recovery adsorption cooling cycle to optimize the collector number and time allocation

    NASA Astrophysics Data System (ADS)

    Kabir, K. M. Ariful; Alam, K. C. Amanul; Rouf, Rifat A.; Sarker, M. M. A.

    2016-07-01

    The performance of mass recovery for solar adsorption cooling system has been investigated numerically. Solar adsorption cooling appears to have a prospect in tropical region. Though it has a huge installation cost, its long term payback could be a considerable fact. Mass recovery scheme increases Average Cooling Capacity (ACC) and Coefficient of Performance (COP) values of the adsorption cooling system. In intension to reduce cost and maximize system performance, a two bed solar driven conventional cooling system run by silica gel and water along with mass recovery process has been investigated mathematically.

  3. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    PubMed

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.

  4. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    PubMed

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands. PMID:27408925

  5. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    SciTech Connect

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  6. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    NASA Astrophysics Data System (ADS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  7. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE PAGES

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  8. Measurement of surface stay times for physical adsorption of gases. Ph.D. Thesis - Va. Univ.; [using molecular beam time of flight technique

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1973-01-01

    A molecular beam time-of-flight technique is studied as a means of determining surface stay times for physical adsorption. The experimental approach consists of pulsing a molecular beam, allowing the pulse to strike an adsorbing surface and detecting the molecular pulse after it has subsequently desorbed. The technique is also found to be useful for general studies of adsorption under nonequilibrium conditions including the study of adsorbate-adsorbate interactions. The shape of the detected pulse is analyzed in detail for a first-order desorption process. For mean stay times, tau, less than the mean molecular transit times involved, the peak of the detected pulse is delayed by an amount approximately equal to tau. For tau much greater than these transit times, the detected pulse should decay as exp(-t/tau). However, for stay times of the order of the transit times, both the molecular speed distributions and the incident pulse duration time must be taken into account.

  9. Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption.

    PubMed

    Halpern, Aaron R; Wood, Jennifer B; Wang, Yong; Corn, Robert M

    2014-01-28

    A novel 814 nm near-infrared surface plasmon resonance (SPR) microscope is used for the real-time detection of the sequence-selective hybridization adsorption of single DNA-functionalized gold nanoparticles. The objective-coupled, high numerical aperture SPR microscope is capable of imaging in situ the adsorption of single polystyrene and gold particles with diameters ranging from 450 to 20 nm onto a 90 μm × 70 μm area of a gold thin film with a time resolution of approximately 1-3 s. Initial real-time SPR imaging (SPRI) measurements were performed to detect the accumulation of 40 nm gold nanoparticles for 10 min onto a gold thin film functionalized with a 100% complementary DNA surface at concentrations from 5 pM to 100 fM by counting individual particle binding events. A 100% noncomplementary DNA surface exhibited virtually no nanoparticle adsorption. In contrast, in a second set of SPRI measurements, two component complementary/noncomplementary mixed DNA monolayers that contained a very small percentage of complementary sequences ranging from 0.1 to 0.001%, showed both permanent and transient hybridization adsorption of the gold nanoparticles that could be tracked both temporally and spatially with the SPR microscope. These experiments demonstrate that SPR imaging measurements of single biofunctionalized nanoparticles can be incorporated into bioaffinity biosensing methods at subpicomolar concentrations.

  10. Label-free, real-time interaction and adsorption analysis 1: surface plasmon resonance.

    PubMed

    Fee, Conan J

    2013-01-01

    A key requirement for the development of proteins for use in nanotechnology is an understanding of how individual proteins bind to other molecules as they assemble into larger structures. The introduction of labels to enable the detection of biomolecules brings the inherent risk that the labels themselves will influence the nature of biomolecular interactions. Thus, there is a need for label-free interaction and adsorption analysis. In this and the following chapter, two biosensor techniques are reviewed: surface plasmon resonance (SPR) and the quartz crystal microbalance (QCM). Both allow real-time analysis of biomolecular interactions and both are label-free. The first of these, SPR, is an optical technique that is highly sensitive to the changes in refractive index that occur with protein (or other molecule) accumulation near an illuminated gold surface. Unlike QCM ( Chapter 18 ) SPR is not affected by the water that may be associated with the adsorbed layer nor by conformational changes in the adsorbed species. SPR thus provides unique information about the interaction of a protein with its binding partners. PMID:23504431

  11. Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds.

    PubMed

    Weber, Caroline Trevisan; Collazzo, Gabriela Carvalho; Mazutti, Marcio Antonio; Foletto, Edson Luiz; Dotto, Guilherme Luiz

    2014-01-01

    Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180-200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g(-1) for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.

  12. Effects of internal inductance on the energy confinement time by using the solution of equilibrium problem

    NASA Astrophysics Data System (ADS)

    Asif, M.

    2016-06-01

    In this work, dependence of energy confinement time on plasma internal inductance has been studied by using the solution of Grad-Shafranov equation (GSE) for circular cross-section HT-7 tokamak. For this, the Shafranov parameter (asymmetry factor) and poloidal beta were obtained from solution of GSE. Then we can find the dependence of energy confinement time, on plasma internal inductance. It is observed that the maximum energy confinement time is related to the low values of internal inductance (0.7 < li < 0.9).

  13. Spectral analysis of finite-time correlation matrices near equilibrium phase transitions

    NASA Astrophysics Data System (ADS)

    Vinayak; Prosen, T.; Buča, B.; Seligman, T. H.

    2014-10-01

    We study spectral densities for systems on lattices, which, at a phase transition display, power-law spatial correlations. Constructing the spatial correlation matrix we prove that its eigenvalue density shows a power law that can be derived from the spatial correlations. In practice time series are short in the sense that they are either not stationary over long time intervals or not available over long time intervals. Also we usually do not have time series for all variables available. We shall make numerical simulations on a two-dimensional Ising model with the usual Metropolis algorithm as time evolution. Using all spins on a grid with periodic boundary conditions we find a power law, that is, for large grids, compatible with the analytic result. We still find a power law even if we choose a fairly small subset of grid points at random. The exponents of the power laws will be smaller under such circumstances. For very short time series leading to singular correlation matrices we use a recently developed technique to lift the degeneracy at zero in the spectrum and find a significant signature of critical behavior even in this case as compared to high temperature results which tend to those of random matrix models.

  14. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-01

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  15. Time-dependent SERS spectra monitoring the dynamic adsorption behavior of bipyridine isomerides combined with bianalyte method.

    PubMed

    Yan, Xiunan; Li, Pan; Yang, Liangbao; Liu, Jinhuai

    2016-08-15

    Based on the bianalyte method, time-dependent surface-enhanced Raman spectrosopy (SERS) spectra were applied to observe and study the competitive adsorption of bipyridine isomerides 2,2'-bpy and 4,4'-bpy. These time-dependent SERS spectra offer a significant advantage for observing the continuous SERS spectra of analyte with 2 s resolution, letting one monitor real-time competitive adsorption and corresponding SERS signal intensity for mixed or pure analyte type events under different concentrations. In this study, we report experimental evidence of competitive adsorption of two bipyridine isomerides using SERS mapping and independent spectra in chronological order. On the one hand, the time-dependent SERS spectra of 2,2'-bpy were prior dominated in the early stage either in high concentration or in low concentration. On the other hand, pure type 2,2'-bpy or 4,4'-bpy events only occurred for strong intensity, whereas weak intensity events exhibited more mixed analytes in low concentration, showing a great difference from those at the higher concentration. In addition, we believe that these results and this evidence can motivate the use of time-dependent SERS spectra for distinguishing the fingerprint information of several molecules from similar isomeride molecules in chemical and biological systems. PMID:27181986

  16. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  17. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  18. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    NASA Astrophysics Data System (ADS)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  19. Correlational switching between 3{times}1 and 6{times}1 surface reconstructions on Si(111) with submonolayer Ag adsorption

    SciTech Connect

    Kempa, K.; Broido, D.A.; Weitering, H.H. |

    1996-07-01

    Electron correlations are strongly enhanced in low dimensional systems. Taking correlations as the dominant mechanism, we provide and explanation of the recently observed electrostatically enforced structural phase transition (3x1 to 6x1) on a Si(111) surface with sub-monolayer Ag adsorption.

  20. Deep arid system hydrodynamics: 1. Equilibrium states and response times in thick desert vadose zones

    USGS Publications Warehouse

    Walvoord, M.A.; Plummer, M.A.; Phillips, F.M.; Wolfsberg, A.V.

    2002-01-01

    Quantifying moisture fluxes through deep desert soils remains difficult because of the small magnitude of the fluxes and the lack of a comprehensive model to describe flow and transport through such dry material. A particular challenge for such a model is reproducing both observed matric potential and chloride profiles. We propose a conceptual model for flow in desert vadose zones that includes isothermal and nonisothermal vapor transport and the role of desert vegetation in supporting a net upward moisture flux below the root zone. Numerical simulations incorporating this conceptual model match typical matric potential and chloride profiles. The modeling approach thereby reconciles the paradox between the recognized importance of plants, upward driving forces, and vapor flow processes in desert vadose zones and the inadequacy of the downward-only liquid flow assumption of the conventional chloride mass balance approach. Our work shows that water transport in thick desert vadose zones at steady state is usually dominated by upward vapor flow and that long response times, of the order of 104-105 years, are required to equilibrate to existing arid surface conditions. Simulation results indicate that most thick desert vadose zones have been locked in slow drying transients that began in response to a climate shift and establishment of desert vegetation many thousands of years ago.

  1. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect

    Zaheer, S.; Yoon, P. H.

    2013-10-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the κ distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized κ distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvénic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index α, where f{sub e} ∼ v {sup –α} is close to the average index observed during the quiet-time solar wind condition, i.e., α ∼ O(6.5) whereas α{sub average} ∼ 6.69, according to observation.

  2. Preferential flow, connectivity and the principle of "minimum time to equilibrium": a new perspective on environmental water flow

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2008-12-01

    Preferential/rapid flow and transport is known as one key process in soil hydrology for more than 20 years. It seems to be rather the rule, than the exception. It occurs in soils, in surface rills and river networks. If connective preferential are present at any scale, they crucially control water flow and solute transport. Why? Is there an underlying principle? If energy is conserved a system follows Fermat's principle of minimum action i.e. it follows the trajectory that minimise the integral of the total energy/ La Grangian over time. Hydrological systems are, however, non-conservative as surface and subsurface water flows dissipate energy. From thermodynamics it is well known that natural processes minimize the free energy of the system. For hydrological systems we suggest, therefore, that flow in a catchment arranges in such a way that time to a minimum of free energy becomes minimal for a given rainfall input (disturbance) and under given constraints. Free energy in a soil is determined by potential energy and capillary energy. The pore size distribution of the soil, soil structures, depth to groundwater and most important vegetation make up the constraints. The pore size distribution determines whether potential energy or capillarity dominates the free energy of the soil system. The first term is minimal when the pore space is completely de-saturated the latter becomes minimal at soil saturation. Hence, the soil determines a) the amount of excess (gravity) water that has to be exported from the soil to reach a minimum state of free energy and b) whether redistribution or groundwater recharge is more efficient to reach that equilibrium. On the other hand, the pore size distribution of the soil and the connectivity of preferential pathways (root channels, worm holes and cracks) determine flow velocities and the redistribution of water within the pore space. As water flow and ground water recharge are fast in sandy soils and capillary energy is of minor

  3. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Batool, S. S.; Imran, Z.; Hassan, Safia; Rasool, Kamran; Ahmad, Mushtaq; Rafiq, M. A.

    2016-05-01

    Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.

  4. Adsorption kinetics and thermodynamics of acid Bordeaux B from aqueous solution by graphene oxide/PAMAMs.

    PubMed

    Zhang, Fan; He, Shengfu; Zhang, Chen; Peng, Zhiyuan

    2015-01-01

    Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process. PMID:26398038

  5. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Batool, S. S.; Imran, Z.; Hassan, Safia; Rasool, Kamran; Ahmad, Mushtaq; Rafiq, M. A.

    2016-05-01

    Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.

  6. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater.

  7. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika

    2016-04-01

    This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.

  8. Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study.

    PubMed

    Capdevila, Daiana A; Marmisollé, Waldemar A; Williams, Federico J; Murgida, Daniel H

    2013-04-21

    The study of proteins immobilized on biomimetic or biocompatible electrodes represents an active field of research as it pursues both fundamental and technological interests. In this context, adsorption and redox properties of cytochrome c (Cyt) on different electrode surfaces have been extensively reported, although in some cases with contradictory results. Here we report a SERR spectroelectrochemical study of the adsorption and electron transfer behaviour of the basic protein Cyt on electrodes coated with amino-terminated monolayers. The obtained results show that inorganic phosphate (Pi) and ATP anions are able to mediate high affinity binding of the protein with preservation of the native structure and rendering an average orientation that guarantees efficient pathways for direct electron transfer. These findings aid the design of Cyt-based bioelectronic devices and understanding the modulation by Pi and ATP of physiological functions of Cyt.

  9. Adsorptive removal of methylene blue by CuO-acid modified sepiolite as effective adsorbent and its regeneration with high-temperature gas stream.

    PubMed

    Su, Chengyuan; Wang, Liang; Chen, Menglin; Huang, Zhi; Lin, Xiangfeng

    2016-01-01

    In this study, the dynamic adsorption of methylene blue dye onto CuO-acid modified sepiolite was investigated. Meanwhile, the equilibrium and kinetic data of the adsorption process were studied to understand the adsorption mechanism. Furthermore, a high-temperature gas stream was applied to regenerate the adsorbent. The results showed that the Langmuir isotherm model was applied to describe the adsorption process. The positive value of enthalpy change indicated that the adsorption process was endothermic in nature. In the dynamic adsorption process, the best adsorption performance was achieved when the ratio of column height to diameter was 2.56 and the treatment capacity was 6 BV/h. The optimal scenario for regeneration experiments was the regeneration temperature of 550-650 °C, the space velocity of 100 min(-1) and the regeneration time of 10 min. The effective adsorption of CuO-acid modified sepiolite was kept for 12 cycles of adsorption and regeneration. PMID:27533859

  10. Neon and CO2 adsorption on open carbon nanohorns.

    PubMed

    Krungleviciute, Vaiva; Ziegler, Carl A; Banjara, Shree R; Yudasaka, Masako; Iijima, S; Migone, Aldo D

    2013-07-30

    We present the results of a thermodynamics and kinetics study of the adsorption of neon and carbon dioxide on aggregates of chemically opened carbon nanohorns. Both the equilibrium adsorption characteristics, as well as the dependence of the kinetic behavior on sorbent loading, are different for these two adsorbates. For neon the adsorption isotherms display two steps before reaching the saturated vapor pressure, corresponding to adsorption on strong and on weak binding sites; the isosteric heat of adsorption is a decreasing function of sorbent loading (this quantity varies by about a factor of 2 on the range of loadings studied), and the speed of the adsorption kinetics increases with increasing loading. By contrast, for carbon dioxide there are no substeps in the adsorption isotherms; the isosteric heat is a nonmonotonic function of loading, the value of the isosteric heat never differs from the bulk heat of sublimation by more than 15%, and the kinetic behavior is opposite to that of neon, with equilibration times increasing for higher sorbent loadings. We explain the difference in the equilibrium properties observed for neon and carbon dioxide in terms of differences in the relative strengths of adsorbate-adsorbate to adsorbate-sorbent interaction for these species. PMID:23802764

  11. Neon and CO2 adsorption on open carbon nanohorns.

    PubMed

    Krungleviciute, Vaiva; Ziegler, Carl A; Banjara, Shree R; Yudasaka, Masako; Iijima, S; Migone, Aldo D

    2013-07-30

    We present the results of a thermodynamics and kinetics study of the adsorption of neon and carbon dioxide on aggregates of chemically opened carbon nanohorns. Both the equilibrium adsorption characteristics, as well as the dependence of the kinetic behavior on sorbent loading, are different for these two adsorbates. For neon the adsorption isotherms display two steps before reaching the saturated vapor pressure, corresponding to adsorption on strong and on weak binding sites; the isosteric heat of adsorption is a decreasing function of sorbent loading (this quantity varies by about a factor of 2 on the range of loadings studied), and the speed of the adsorption kinetics increases with increasing loading. By contrast, for carbon dioxide there are no substeps in the adsorption isotherms; the isosteric heat is a nonmonotonic function of loading, the value of the isosteric heat never differs from the bulk heat of sublimation by more than 15%, and the kinetic behavior is opposite to that of neon, with equilibration times increasing for higher sorbent loadings. We explain the difference in the equilibrium properties observed for neon and carbon dioxide in terms of differences in the relative strengths of adsorbate-adsorbate to adsorbate-sorbent interaction for these species.

  12. Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM).

    PubMed

    Ishida, Keisuke; Kimura, Takaumi; Saito, Takumi; Tanaka, Satoru

    2009-03-15

    Time-resolved laser fluorescence microscopy (TRLFM) is a useful tool to simultaneously investigate the intensity, location, type, and surrounding chemical environment of a fluorophore. In this study, we demonstrated the applicability of TRLFM for the adsorption of Eu(III) on a natural heterogeneous surface. Different adsorption species of Eu(III) were observed on the Makabe granite surface and its constituents (biotite, plagioclase, potassium feldspar, and quartz). Eu(III) heterogeneously adsorbed on biotite, plagioclase, and quartz and homogeneously on potassium feldspar. The histograms of the fluorescence decay rates of adsorbed Eu(III) indicated efficient quenching of Eu(III) fluorescence probably due to Eu(III)-surface interaction or the formation polynuclear hydoxo Eu(III) species on the surfaces. It was also revealed that single species of Eu(III) was observed on biotite and two species on plagioclase and potassium feldspar. The adsorption of Eu(III) on the granite surface was highly heterogeneous. The TRLFM measurements of different regions of the granite surface turned into the finding of Eu(III) with different fluorescence decay rates. Comparing with the fluorescence decay histograms of the mineral constituents, Eu(III) clearly adsorbed on the feldspar family. It was also found that Eu(III) adsorbed as an outer-sphere complex and on an altered mineral of the granite.

  13. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite.

    PubMed

    Wang, Fei; Liu, Chengshuai; Shih, Kaimin

    2012-11-01

    Understanding the interaction of perfluorochemicals, persistent pollutants with known human health effects, with mineral compounds in surface water and groundwater environments is essential to determining their fate and transport. Kinetic experiments showed that adsorption equilibrium can be achieved within 48 h and the boehmite (AlOOH) surface is receptive to perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorption. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg m(-2) and 0.633 μg m(-2), respectively. Compared to the adsorption capacity on γ-alumina, the abundant hydroxyl groups on boehmite surfaces resulted in the 2-3 times higher adsorption of PFOS and PFOA. Increasing solution pH led to a moderate decrease in PFOS and PFOA adsorption, owing to an increase in ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl and CaCl(2) in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride, and the Ca(2+) bridging effect between perfluorochemicals. PMID:22897837

  14. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes

    PubMed Central

    Abdel-Ghani, Nour T.; El-Chaghaby, Ghadir A.; Helal, Farag S.

    2014-01-01

    Individual and competitive adsorption studies were carried out to investigate the removal of phenol and nickel ions by adsorption onto multiwalled carbon nanotubes (MWCNTs). The carbon nanotubes were characterized by different techniques such as X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier transformation infrared spectroscopy. The different experimental conditions affecting the adsorption process were investigated. Kinetics and equilibrium models were tested for fitting the adsorption experimental data. The characterization experimental results proved that the studied adsorbent possess different surface functional groups as well as typical morphological features. The batch experiments revealed that 300 min of contact time was enough to achieve equilibrium for the adsorption of both phenol and nickel at an initial adsorbate concentration of 25 mg/l, an adsorbent dosage of 5 g/l, and a solution pH of 7. The adsorption of phenol and nickel by MWCNTs followed the pseudo-second order kinetic model and the intraparticle diffusion model was quite good in describing the adsorption mechanism. The Langmuir equilibrium model fitted well the experimental data indicating the homogeneity of the adsorbent surface sites. The maximum Langmuir adsorption capacities were found to be 32.23 and 6.09 mg/g, for phenol and Ni ions, respectively. The removal efficiency of MWCNTs for nickel ions or phenol in real wastewater samples at the optimum conditions reached up to 60% and 70%, respectively. PMID:26257938

  15. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    PubMed

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1), in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  16. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  17. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants. PMID:25086393

  18. The special features of protein adsorption isotherms on silica adsorbents

    NASA Astrophysics Data System (ADS)

    Chukhrai, E. S.; Atyaksheva, L. F.; Pilipenko, O. S.

    2011-05-01

    The adsorption isotherms of hemoglobin, peroxidase, and β-galactosidase on silochrome and mesoporous and biporous silicas were comparatively studied. Adsorption developed in two stages, including fast "reversible" protein adsorption (equilibrium was reached in t ≤ 1-2 h) and a "slow stage" of irreversible binding in t ≫ 24 h (multipoint adsorption). The corresponding equilibrium constants were determined. The mechanism of unlimited linear association of peroxidase in the adsorption layer on the surface of silochrome was established.

  19. Adsorption thermodynamics of Methylene Blue onto bentonite.

    PubMed

    Hong, Song; Wen, Cheng; He, Jing; Gan, Fuxing; Ho, Yuh-Shan

    2009-08-15

    The effect of temperature on the equilibrium adsorption of Methylene Blue dye from aqueous solution using bentonite was investigated. The equilibrium adsorption data were analyzed using three widely applied isotherms: Langmuir, Freundlich, and Redlich-Peterson. A non-linear method was used for comparing the best fit of the isotherms. Best fit was found to be Redlich-Peterson isotherm. Thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees were calculated using adsorption equilibrium constant obtained from the Langmuir isotherm. Results suggested that the Methylene Blue adsorption on bentonite was a spontaneous and endothermic process.

  20. Adsorption study of Ammonia Nitrogen by watermelon rind

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Yusof, L.; Beddu, N. S.; Galasin, N.; Lee, P. Y.; Lee, R. N. S.; Zahrim, A. Y.

    2016-06-01

    The utilization of fruit waste for low-cost adsorbents as a replacement for costly conventional methods of removing ammonia nitrogen from wastewater has been reviewed. The adsorption studies were conducted as a function of contact time and adsorbent dosage and it were carried out on four different adsorbents; fresh watermelon rind and modified watermelon rind with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4). Adsorbents were tested for characterization by using zeta potential test and all samples shows negative values thus makes it favourable for the adsorption process. The batch experimental result showed that adsorption process is rapid and equilibrium was established within 40 minutes of contact time. The ammonia nitrogen removal rate amounted in range of 96% to 99%, and the adsorption capacities were in range of 1.21 to 1.24 mg/g for all four different types of adsorbents used.

  1. [Influence of reaction time of urea hydrolysis-based co-precipitation on the structure of ZnAl layered double hydroxides and the phosphate adsorption].

    PubMed

    Lu, Ying; Cheng, Xiang; Xing, Bo; Sun, Zhong-en; Sun, De-zhi

    2012-08-01

    A series of ZnAl layered double hydroxides (LDHs) were prepared by urea hydrolysis-based homogeneous co-precipitation for studying their structure and phosphate adsorption capacities. The results show that all the samples exhibited a typical layered structure as the reaction time extended from 12 h to 96 h, whereas Zn/Al molar ratio in the ZnAls decreased from 2.06 to 0.70 and the specific surface area markedly increased to be 7.6-fold higher than that of ZnAl-12. Phosphate adsorption capacity of the ZnAl was in general increased gradually with the reaction time extension, which can be attributed to the surface area rising as well as the increased positive charge of LDHs layer caused by a higher proportion of Al. This reveals that physicochemical adsorption on LDHs surface would have played an important role during the phosphate adsorption. With a reaction time of 24 h, a high amount of exchangeable interlayer anions was observed, giving rise to a highest phosphate uptake of 34.1 mg x g(-1) by the ZnAl-24. It indicates the ion exchange was another major pathway for the phosphate removal. For all the ZnAls with different reaction times, the phosphate adsorption isotherms fit well with Langmuir-type equations; the adsorption kinetics followed pseudo-second-order models.

  2. Influence of time to achieve substrate distribution equilibrium between brain tissue and blood on quantitation of the blood-brain barrier P-glycoprotein effect.

    PubMed

    Padowski, Jeannie M; Pollack, Gary M

    2011-12-01

    Active efflux transport processes at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp)-mediated efflux, can limit brain uptake of therapeutics. Accurate determination of the consequent impact on brain uptake is assumed to require sampling post-attainment of brain-to-blood distribution equilibrium. Because this approach is not always feasible, understanding the relationship between apparent degree of efflux (e.g., calculated BBB P-gp effect) and the fraction of time remaining until distribution equilibrium is achieved (FTDE) would be advantageous. This study employed simulation strategies to explore this relationship in the simplest relevant system (absence of protein binding, saturable uptake, or metabolism at the BBB). Concentration-time profiles were simulated with a 4-compartment system (blood, peripheral tissues, BBB endothelium and brain parenchyma). A unidirectional endothelium-to-blood rate constant, PS(e), represented P-gp-mediated efflux. A parameter space was selected to simulate an 18-fold P-gp effect, (K(p,brain) at distribution equilibrium in the absence [K(p,brain)=82] vs. presence [K(p,brain)=4.5] of P-gp-mediated flux), as observed for paclitaxel in P-gp-deficient vs. P-gp-competent mice. Hypothetical compounds with different P-gp effects, peripheral compartment distribution kinetics, or times to achieve distribution equilibrium were simulated by perturbing the values of relevant model parameters. P-gp effects calculated prior to attainment of distribution equilibrium may be substantially erroneous. However, reasonably accurate estimates can be obtained relatively early in the net distributional phase (under 20% error at FTDE>0.36 or 0.11 for bolus or infusion administration, respectively). Potential errors associated with non-equilibrium calculations are dependent on both P-gp-mediated and P-gp-independent components of flux across the BBB.

  3. Kinetics of Remazol Black B adsorption onto carbon prepared from sugar beet pulp.

    PubMed

    Dursun, Arzu Y; Tepe, Ozlem; Uslu, Gülşad; Dursun, Gülbeyi; Saatci, Yusuf

    2013-04-01

    Dried sugar beet pulp, an agricultural solid waste, was used for the production of carbon. Carbonised beet pulp was tested in the adsorption of Remazol Black B dye, and adsorption studies with real textile wastewater were also performed. Batch kinetic studies showed that an equilibrium time of 180 min was needed for the adsorption. The maximum dye adsorption capacity was obtained as 80.0 mg g(-1) at the temperature of 25 °C at pH = 1.0. The Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium, and it was reported that experimental data fitted very well to the Langmuir model. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intraparticle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo-second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.

  4. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution.

    PubMed

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-09-01

    The adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite (EP) from aqueous solution were investigated with respect to the changes in pH of solution, adsorbent dosage, contact time and temperature of solution. For the adsorption of both metal ions, the Langmuir isotherm model fitted to equilibrium data better than the Freundlich isotherm model. Using the Langmuir model equation, the monolayer adsorption capacity of EP was found to be 8.62 and 13.39 mg/g for Cu(II) and Pb(II) ions, respectively. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data and the mean free energies of adsorption were found as 10.82 kJ/mol for Cu(II) and 9.12 kJ/mol for Pb(II) indicating that the adsorption of both metal ions onto EP was taken place by chemical ion-exchange. Thermodynamic functions, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were also calculated for each metal ions. These parameters showed that the adsorption of Cu(II) and Pb(II) ions onto EP was feasible, spontaneous and exothermic at 20-50 degrees C. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for both metal ions followed well pseudo-second-order kinetics.

  5. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    PubMed

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration. PMID:23002621

  6. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    PubMed

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  7. Off-equilibrium scaling behaviors driven by time-dependent external fields in three-dimensional O(N) vector models.

    PubMed

    Pelissetto, Andrea; Vicari, Ettore

    2016-03-01

    We consider the dynamical off-equilibrium behavior of the three-dimensional O(N) vector model in the presence of a slowly varying time-dependent spatially uniform magnetic field H(t)=h(t)e, where e is an N-dimensional constant unit vector, h(t)=t/t(s), and t(s) is a time scale, at fixed temperature T≤T(c), where T(c) corresponds to the continuous order-disorder transition. The dynamic evolutions start from equilibrium configurations at h(i)<0, correspondingly t(i)<0, and end at time t(f)>0 with h(t(f))>0, or vice versa. We show that the magnetization displays an off-equilibrium scaling behavior close to the transition line H(t)=0. It arises from the interplay among the time t, the time scale t(s), and the finite size L. The scaling behavior can be parametrized in terms of the scaling variables t(s)(κ)/L and t/t(s)(κ(t)), where κ>0 and κ(t)>0 are appropriate universal exponents, which differ at the critical point and for Tequilibrium scaling behaviors at and below T(c). We also discuss hysteresis phenomena in round-trip protocols for the time dependence of the external field. We define a scaling function for the hysteresis loop area of the magnetization that can be used to quantify how far the system is from equilibrium. PMID:27078326

  8. Off-equilibrium scaling behaviors driven by time-dependent external fields in three-dimensional O(N) vector models.

    PubMed

    Pelissetto, Andrea; Vicari, Ettore

    2016-03-01

    We consider the dynamical off-equilibrium behavior of the three-dimensional O(N) vector model in the presence of a slowly varying time-dependent spatially uniform magnetic field H(t)=h(t)e, where e is an N-dimensional constant unit vector, h(t)=t/t(s), and t(s) is a time scale, at fixed temperature T≤T(c), where T(c) corresponds to the continuous order-disorder transition. The dynamic evolutions start from equilibrium configurations at h(i)<0, correspondingly t(i)<0, and end at time t(f)>0 with h(t(f))>0, or vice versa. We show that the magnetization displays an off-equilibrium scaling behavior close to the transition line H(t)=0. It arises from the interplay among the time t, the time scale t(s), and the finite size L. The scaling behavior can be parametrized in terms of the scaling variables t(s)(κ)/L and t/t(s)(κ(t)), where κ>0 and κ(t)>0 are appropriate universal exponents, which differ at the critical point and for Tequilibrium scaling behaviors at and below T(c). We also discuss hysteresis phenomena in round-trip protocols for the time dependence of the external field. We define a scaling function for the hysteresis loop area of the magnetization that can be used to quantify how far the system is from equilibrium.

  9. Preparation of titanium peroxide and its selective adsorption property on cationic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-guang; Huang, Ji-guo; Wang, Bo; Bi, Qiang; Dong, Li-li; Liu, Xing-juan

    2014-02-01

    Titanium peroxide powder was prepared with the reaction of titanium sulfate and H2O2 and showed good selective adsorption property on cationic dyes. The obtained material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric and differential scanning calorimetry (TG-DSC). The selective adsorption property was confirmed and evaluated by adsorption experiments of methyl orange (MO), phenol and three kinds of cationic dyes including methylene blue (MB), malachite green (MG) and neutral red (NR). The adsorption was very fast and adsorption equilibrium was reached in a very short time for all three cationic dyes. The adsorption kinetics of MB, MG and NR were studied then. It was found that the adsorption data fitted perfectly with the pseudo-second-order kinetics and the saturated adsorption capacities for MB, MG and NR were 224.37, 251.38 and 327.61 mg/g at 25 °C, respectively. The characterization and adsorption results indicated the controlling mechanism of adsorption processes could be electrostatic adsorption.

  10. Phosphate adsorption on granular palygorskite: batch and column studies.

    PubMed

    Fangqun, Gan; Jianmin, Zhou; Huoyan, Wang; Changwen, Du; Wenzhao, Zhang; Xiaoqin, Chen

    2011-02-01

    A method to prepare granular palygorskite (GPA) was put forward in this research, and its potential use to remove phosphate species from aqueous solution was assessed. Batch experiments were performed to study the adsorption equilibrium and influence of contact time and pH on the adsorption and desorption of phosphate onto GPA in water. The maximum phosphate adsorption capacity of GPA was 13.1 mg/g. Kinetic data revealed that more than 90% of phosphate was adsorbed onto GPA within 2 hours. Phosphate adsorption capacity was 0.10 mg/g in column experiments, and co-existing anions could decrease phosphate removal. The saturated column was regenerated by 0.2 mol/L sodium hydroxide, and the GPA could be reused in phosphate removal. The data obtained from both batch and column studies indicated that GPA could be used effectively to remove phosphate from water.

  11. Adsorptive separation in bioprocess engineering

    SciTech Connect

    Huang, E.W.Y.

    1987-01-01

    The invention and development of an energy-efficient separation technique for recovery of desired chemicals from biomass conversion would greatly enhance the economic viability of this bioprocess. Adsorptive separation of several chemicals from aqueous solution was studied in this thesis. The desired species were recovered from the dilute aqueous solution by using crosslinked polyvinylpyridine resin to effect selective sorption. The sorbed chemicals were then removed from the resin by either thermal regeneration or elution with some appropriate desorbents. The effects of temperature, pH value, and solute concentration on resin swelling were investigated. The adsorption equilibrium isotherms, resin capacities and resin selectivities of methanol, ethanol, 1-propanol, isopropanol, glycerol, acetone, 1-butanol, tert-butanol, and 2,3-butanediol were determined to study the homologies. Furthermore, acetic acid, butyric acid, hydrochloric acid, lactic acid, and sulfuric acid were recovered from very dilute aqueous solutions. The concentration of the sorbed chemical in the stationary phase can be many times higher than in the mobile phase for some acids. Finally, different types of equilibrium isotherms were used to fit the experimental data. A mathematical model was developed by using the theory of interference to predict the breakthrough curves and the process efficiency to provide information for large-scale process design and development.

  12. Adsorption behavior of alpha -cypermethrin on cork and activated carbon.

    PubMed

    Domingues, Valentina F; Priolo, Giuseppe; Alves, Arminda C; Cabral, Miguel F; Delerue-Matos, Cristina

    2007-08-01

    Studies were undertaken to determine the adsorption behavior of alpha -cypermethrin [R)-alpha -cyano-3-phenoxybenzyl(1S)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-alpha-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze alpha -cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time - 24 hours for both cork (1-2 mm and 3-4 mm) and GAC. For the studied alpha -cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1-2 mm have the maximum amount of adsorbed alpha-cypermethrin (q(m)) (303 microg/g); followed by GAC (186 microg/g) and cork 3-4 mm (136 microg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the alpha -cypermethrin adsorption phenomena on GAC, while alpha -cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing alpha -cypermethrin from water.

  13. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores. PMID:27391585

  14. Time-resolved inorganic chemical composition of fine aerosol and associated precursor gases over an urban environment in western India: Gas-aerosol equilibrium characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Rengarajan, R.

    2015-05-01

    Inorganic ionic constituents (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) of PM2.5 and associated trace gases (NH3, HNO3 and HCl) were measured simultaneously by Ambient Ion Monitor - Ion Chromatograph (AIM-IC) system with a time resolution of one hour at an urban location in semi-arid region of western India during summer and winter. The average NH3, HNO3 and HCl concentrations were 11.6 ± 5.0, 2.9 ± 0.8 and 0.15 μg m-3, respectively, during winter. During summer, NH3 and HNO3 concentrations were of similar magnitude, whereas HCl concentration was less than ∼0.03 μg m-3. NH3 concentration exhibited a distinct diurnal variation during both seasons. However, HNO3 did not show a specific diurnal trend during the observation period in both seasons. The data obtained were used to study gas-aerosol equilibrium characteristics using a thermodynamic equilibrium model, ISORROPIA II. The results suggest that NH3 exists in equilibrium between measured fine-mode particle and gas phase with a systematic bias of ∼14%, whereas HCl and HNO3 deviate significantly from the modelled data. These observations have implications on thermodynamic equilibrium assumptions used for estimating various aerosol parameters such as liquid water content, pH, etc., thus causing significant bias in chemical transport model results over the study region.

  15. Adsorption of cesium on cement mortar from aqueous solutions.

    PubMed

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  16. Selective adsorption of silver ions from aqueous solution using polystyrene-supported trimercaptotriazine resin.

    PubMed

    Wang, Shiming; Li, Hongling; Chen, Xiaoya; Yang, Min; Qi, Yanxing

    2012-01-01

    Trimercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of Ag(I) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 min and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(I), Zn(II), Ni(II), Pb(II) and Cr(III) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.

  17. AgII doped MIL-101 and its adsorption of iodine with high speed in solution

    NASA Astrophysics Data System (ADS)

    Mao, Ping; Qi, Bingbing; Liu, Ying; Zhao, Lei; Jiao, Yan; Zhang, Yi; Jiang, Zheng; Li, Qiang; Wang, Jinfeng; Chen, Shouwen; Yang, Yi

    2016-05-01

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m2/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of AgII (generally, AgII cation is not stable). However, after the adsorption of I- anions, AgII stay in the cages of MIL-101 in the form of AgI/AgI3. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions.

  18. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    NASA Astrophysics Data System (ADS)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun

    2014-09-01

    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00-10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (qmax) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.

  19. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.

    PubMed

    Machado, Daniele Longo; Moreira Neto, João; da Cruz Pradella, José Geraldo; Bonomi, Antonio; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-01-01

    Although adsorption is an essential step in the enzymatic hydrolysis of lignocellulosic materials, literature reports controversial results in relation to the adsorption of the cellulolitic enzymes on different biomasses/pretreatments, which makes difficult the description of this phenomenon in hydrolysis mathematical models. In this work, the adsorption of these enzymes on Avicel and sugarcane bagasse pretreated by the hydrothermal bagasse (HB) and organosolv bagasse (OB) methods was evaluated. The results have shown no significant adsorption of β-glucosidase on Avicel or HB. Increasing solids concentration from 5% (w/v) to 10% (w/v) had no impact on the adsorption of cellulase on the different biomasses if stirring rates were high enough (>100 rpm for Avicel and >150 rpm for HB and OB). Adsorption equilibrium time was low for Avicel (10 Min) when compared with the lignocellulosic materials (120 Min). Adsorption isotherms determined at 4 and 50 °C have shown that for Avicel there was a decrease in the maximum adsorption capacity (Emax) with the temperature increase, whereas for HB increasing temperature increased Emax . Also, Emax increased with the content of lignin in the material. Adsorption studies of cellulase on lignin left after enzymatic digestion of HB show lower but significant adsorption capacity (Emax = 11.92 ± 0.76 mg/g).

  20. Boronate affinity adsorption of RNA: possible role of conformational changes

    NASA Technical Reports Server (NTRS)

    Singh, N.; Willson, R. C.; Fox, G. E. (Principal Investigator)

    1999-01-01

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of the cation used, with barium being far more effective than the conventionally-used magnesium. This adsorption-promoting influence of barium is suggested to arise primarily from ionic influences on the structure and rigidity of the RNA molecule, as the adsorption of ribose-based small molecules is not similarly affected. The substitution of barium for the standard magnesium counterion does not greatly promote the adsorption of DNA, implying that the effect is specific to RNA and may be useful in boronate-based RNA separations. RNA adsorption isotherms exhibit sharp transitions as functions of temperature, and these transitions occur at different temperatures with Mg2+ and with Ba2+. Adsorption affinity and capacity were found to increase markedly at lower temperatures, suggestive of an enthalpically favored interaction process. The stoichiometric displacement parameter, Z, in Ba2+ buffer is three times the value in Mg2+ buffer, and is close to unity.

  1. Continuous water treatment by adsorption and electrochemical regeneration.

    PubMed

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.

  2. Adsorption and isotopic fractionation of Xe

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.

    1986-01-01

    A theoretical description of the mechanisms of isotopic fractionation arising during adsorption of noble gases in a Henry's Law pressure regime is given. Experimental data on the isotopic composition of Xe adsorbed on activated charcoal in the temperature range 220 K to 350 K are presented. Both theoretical considerations and the experimental data indicate that equilibrium adsorption does not significantly alter the isotopic structure of adsorbed structure of adsorbed noble gases. Therefore, if adsorption is responsible for the elemental noble gas pattern in meteorites and the earth, the heavy noble gas isotopic fractionation between them must have been produced prior to and by a different process than equilibrium adsorption.

  3. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction.

  4. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction. PMID:26451652

  5. Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal.

    PubMed

    Tang, Shuxiong; Chen, Yao; Xie, Ruzhen; Jiang, Wenju; Jiang, Yanxin

    2016-01-01

    Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g(-1) at 298 K. The Brunauer-Emmett-Teller and iodine adsorption value of the produced activated carbon could be 924.9 m(2) g(-1) and 1,188 mg g(-1), respectively. Under the initial Cr(VI) concentration of 10 mg L(-1) and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L(-1). The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature. PMID:27232401

  6. In vitro adsorption of aluminum by an edible biopolymer poly(γ-glutamic acid).

    PubMed

    Rajan, Yesudoss Christu; Inbaraj, Baskaran Stephen; Chen, Bing Huei

    2014-05-21

    Accumulation of aluminum in human has been reported to be associated with dementia, Parkinson's disease, and Alzheimer's disease. The objectives of this study were to evaluate an edible biopolymer poly(γ-glutamic acid) (γ-PGA) for aluminum removal efficiency under in vitro conditions as affected by pH, contact time, aluminum concentration, temperature, ionic strength, and essential metals in both aqueous aluminum solution and simulated gastrointestinal fluid (GIF). A low aluminum adsorption occurred at pH 1.5-2.5, followed by a maximum adsorption at pH 3.0-4.0 and precipitating thereafter as aluminum hydroxide at pH > 4. Adsorption was extremely fast with 81-96% of total adsorption being attained within 1 min, reaching equilibrium in 5-10 min. Kinetic data at low (10 mg/L) and high (50 mg/L) concentrations were well described by pseudo-first-order and pseudo-second-order models, respectively. Equilibrium adsorption isotherms at different temperatures were precisely fitted by both Langmuir and Redlich-Peterson models with the maximum adsorption capacities at 25, 37, and 50 °C being 35.85, 38.68, and 44.23 mg/g, respectively. Thermodynamic calculations suggested endothermic and spontaneous nature of aluminum adsorption by γ-PGA with increased randomness at the solid/solution interface. Variation in ionic strengths did not alter the adsorption capacity, however, the incorporation of essential metals significantly reduced the aluminum adsorption by following the order copper > iron > zinc > calcium > potassium. Compared to aqueous solution, the aluminum adsorption from simulated GIF was high at all studied pH (1-4) with Langmuir monolayer adsorption capacity being 49.43 mg/g at 37 °C and pH 4. The outcome of this study suggests that γ-PGA could be used as a safe detoxifying agent for aluminum. PMID:24799126

  7. In vitro adsorption of aluminum by an edible biopolymer poly(γ-glutamic acid).

    PubMed

    Rajan, Yesudoss Christu; Inbaraj, Baskaran Stephen; Chen, Bing Huei

    2014-05-21

    Accumulation of aluminum in human has been reported to be associated with dementia, Parkinson's disease, and Alzheimer's disease. The objectives of this study were to evaluate an edible biopolymer poly(γ-glutamic acid) (γ-PGA) for aluminum removal efficiency under in vitro conditions as affected by pH, contact time, aluminum concentration, temperature, ionic strength, and essential metals in both aqueous aluminum solution and simulated gastrointestinal fluid (GIF). A low aluminum adsorption occurred at pH 1.5-2.5, followed by a maximum adsorption at pH 3.0-4.0 and precipitating thereafter as aluminum hydroxide at pH > 4. Adsorption was extremely fast with 81-96% of total adsorption being attained within 1 min, reaching equilibrium in 5-10 min. Kinetic data at low (10 mg/L) and high (50 mg/L) concentrations were well described by pseudo-first-order and pseudo-second-order models, respectively. Equilibrium adsorption isotherms at different temperatures were precisely fitted by both Langmuir and Redlich-Peterson models with the maximum adsorption capacities at 25, 37, and 50 °C being 35.85, 38.68, and 44.23 mg/g, respectively. Thermodynamic calculations suggested endothermic and spontaneous nature of aluminum adsorption by γ-PGA with increased randomness at the solid/solution interface. Variation in ionic strengths did not alter the adsorption capacity, however, the incorporation of essential metals significantly reduced the aluminum adsorption by following the order copper > iron > zinc > calcium > potassium. Compared to aqueous solution, the aluminum adsorption from simulated GIF was high at all studied pH (1-4) with Langmuir monolayer adsorption capacity being 49.43 mg/g at 37 °C and pH 4. The outcome of this study suggests that γ-PGA could be used as a safe detoxifying agent for aluminum.

  8. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-03-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  9. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  10. Adsorption of phosphate from aqueous solutions onto modified wheat residue: characteristics, kinetic and column studies.

    PubMed

    Xu, Xing; Gao, Baoyu; Wang, Wenyi; Yue, Qinyan; Wang, Yu; Ni, Shouqing

    2009-04-01

    Kinetic and column adsorption of phosphate from aqueous solution using modified wheat residue (MWS) as an adsorbent were studied in a batch reactor. The respective characteristic rate constants and activation energy were presented after linear and non-linear fitting. In addition, the effects of influent concentration of phosphate and flow rates on the column adsorption were also investigated. The results showed that the adsorption process could reach equilibrium in 10-15 min, and the pseudo-second-order equation generated the best agreement with experimental data for adsorption systems. The activation energy was 3.39 kJ mol(-1) indicating that the synthesis process was a physical adsorption. In the column tests, the increase of influent concentration and flow rate both decreased the breakthrough time, and the MWS-packed column exhibited excellent phosphate removal from aqueous solution. These results provide strong evidence of the potential of MWS for the technological applications of phosphate removal from aqueous solutions.

  11. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  12. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  13. Idling time of swimming bacteria near particulate surfaces contributes to apparent adsorption coefficients at the macroscopic scale under static conditions.

    PubMed

    Liu, Jun; Ford, Roseanne M

    2009-12-01

    Static capillary assays were performed to observe the distribution of Escherichia coli and several mutant strains at the interface between an aqueous solution and a Gelrite particulate suspension, used as a model porous medium. Motile smooth-swimming mutant bacteria (E. coli HCB437) accumulated at the interface, but did not penetrate very far into the Gelrite suspension. Motile wild-type bacteria (E. coli HCB1) penetrated much further than the smooth-swimming mutant, but did not accumulate to the same extent at the interface. Nonmotile tumbly mutant bacteria (E. coli HCB359) did not accumulate or penetrate to a significant degree. Computer simulations using a Monte Carlo algorithm, with input parameters based on bacterial swimming properties in static bulk aqueous systems, appeared to underestimate the bacterial idling time associated with solid surfaces. To account for physicochemical, biological and geometrical influences, an additional component of the bacterial idling time was included. The third component of the idling time was further analyzed semiquantitatively with a 1-D population-scale transport model with first-order association (k(on)) and dissociation (k(off)) adsorption-like kinetics. Computer simulation results suggested that this additional bacterial idling time not only increased the magnitudes of k(on) and k(off), but also enhanced the ratio of k(on) to k(off). This further implies that motile bacteria may tend to accumulate at the boundaries of low-permeable regions in groundwater systems, which is beneficial for bioremediation of residual contamination that may not be accessible by conventional remediation approaches.

  14. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies

    PubMed Central

    2014-01-01

    In this study, pumice stone was used for the removal of tetracyline (TC) from aqueous solutions. It was characterized by XRD, FT-IR, SEM and BET analyses. Cation exchange capacity of pumice stone was found to be 9.9 meq/100 g. Effect of various parameters such as solution pH (2–11), adsorbent dosage (0.5-10 g/L), contact time (2.5-120 min), initial TC concentration (5–300 mg/L) and temperature (20–50°C) on TC adsorption onto pumice was investigated. Also the adsorption of TC on pumice stone was studied as a function of Na+ and Cu2+ cations changing pH from 2 to 11 using batch experiments. The best removal efficiency performance was exhibited at adsorbent dosage 10 g/L, pH 3, contact time 120 min. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models were applied to the equilibrium data. The result has shown that the adsorption was favorable, physicochemical in nature and agrees well with Langmuir and Freundlich models. The maximum Langmuir adsorption capacity was found to be 20.02 mg/g. The adsorption behavior of TC on pumices stone was fitted well in the pseudo-second order kinetics model. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was feasible, spontaneous and exothermic. PMID:24936305

  15. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies.

    PubMed

    Guler, Ulker Asli; Sarioglu, Meltem

    2014-01-01

    In this study, pumice stone was used for the removal of tetracyline (TC) from aqueous solutions. It was characterized by XRD, FT-IR, SEM and BET analyses. Cation exchange capacity of pumice stone was found to be 9.9 meq/100 g. Effect of various parameters such as solution pH (2-11), adsorbent dosage (0.5-10 g/L), contact time (2.5-120 min), initial TC concentration (5-300 mg/L) and temperature (20-50°C) on TC adsorption onto pumice was investigated. Also the adsorption of TC on pumice stone was studied as a function of Na(+) and Cu(2+) cations changing pH from 2 to 11 using batch experiments. The best removal efficiency performance was exhibited at adsorbent dosage 10 g/L, pH 3, contact time 120 min. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models were applied to the equilibrium data. The result has shown that the adsorption was favorable, physicochemical in nature and agrees well with Langmuir and Freundlich models. The maximum Langmuir adsorption capacity was found to be 20.02 mg/g. The adsorption behavior of TC on pumices stone was fitted well in the pseudo-second order kinetics model. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was feasible, spontaneous and exothermic.

  16. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies.

    PubMed

    Guler, Ulker Asli; Sarioglu, Meltem

    2014-01-01

    In this study, pumice stone was used for the removal of tetracyline (TC) from aqueous solutions. It was characterized by XRD, FT-IR, SEM and BET analyses. Cation exchange capacity of pumice stone was found to be 9.9 meq/100 g. Effect of various parameters such as solution pH (2-11), adsorbent dosage (0.5-10 g/L), contact time (2.5-120 min), initial TC concentration (5-300 mg/L) and temperature (20-50°C) on TC adsorption onto pumice was investigated. Also the adsorption of TC on pumice stone was studied as a function of Na(+) and Cu(2+) cations changing pH from 2 to 11 using batch experiments. The best removal efficiency performance was exhibited at adsorbent dosage 10 g/L, pH 3, contact time 120 min. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models were applied to the equilibrium data. The result has shown that the adsorption was favorable, physicochemical in nature and agrees well with Langmuir and Freundlich models. The maximum Langmuir adsorption capacity was found to be 20.02 mg/g. The adsorption behavior of TC on pumices stone was fitted well in the pseudo-second order kinetics model. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was feasible, spontaneous and exothermic. PMID:24936305

  17. Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies.

    PubMed

    Aly, Zaynab; Graulet, Adrien; Scales, Nicholas; Hanley, Tracey

    2014-03-01

    Economic adsorbents in bead form were fabricated and utilised for the adsorption of Al(3+) from aqueous solutions. Polyacrylonitrile (PAN) beads, PAN powder and the thermally treated PAN beads (250 °C/48 h/Ar and 600 °C/48 h/Ar-H2) were characterised using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, specific surface analysis (Brunauer-Emmett-Teller), thermogravimetric analysis as well as scanning electron microscopy. Effects of pH, contact time, kinetics and adsorption isotherms at different temperatures were investigated in batch mode experiments. Aluminium kinetic data best fit the Lagergren pseudo-second-order adsorption model indicating a one-step, surface-only, adsorption process with chemisorption being the rate limiting step. Equilibrium adsorption data followed a Langmuir adsorption model with fairly low monolayer adsorption capacities suitable for freshwater clean-up only. Various constants including thermodynamic constants were evaluated from the experimental results obtained at 20, 40 and 60 °C. Positive values of ΔH° indicated that the adsorption of Al(3+) onto all three adsorbents was endothermic with less energy input required for PAN powder compared to PAN beads and low-temperature thermally treated PAN. Negative ΔG° values indicated that the aluminium adsorption process was spontaneous for all adsorbents examined.

  18. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67.

    PubMed

    Pan, Yong; Li, Zhi; Zhang, Zhe; Tong, Xiong-Shi; Li, Hai; Jia, Chong-Zhi; Liu, Bei; Sun, Chang-Yu; Yang, Lan-Ying; Chen, Guang-Jin; Ma, De-Yun

    2016-03-15

    ZIF-67(zinc-methylimidazolate framework-67), one of the zeolitic imidazolate frameworks (ZIFs), was used for the removal of phenol from aqueous solutions via adsorption and shows high adsorption capacity for phenol. The thermodynamic and kinetic adsorption behavior of ZIF-67 for phenol in water with concentration ranging from 50 to 300 ppm were investigated in a batch reactor and a ZIF-67 packed column, respectively. The effects of pH, contact time, zeta potential of the adsorbent and temperature on the adsorption behavior were evaluated, and the results demonstrated that the adsorption is primarily brought about by a specific favorable interaction (electrostatic interaction) between phenol and ZIF-67 surface. The suitability of the Langmuir adsorption model to the equilibrium data was investigated for each phenol-adsorbent system, which the results showed that the equilibrium data for all the phenol-sorbent systems fitted the Langmuir model. Thermodynamic parameters such as Gibbs free energy are calculated from the experimental data at different temperatures. The adsorbent could be perfectly regenerated at 120 °C with little loss in the adsorption ability.

  19. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  20. Chlorodifluoromethane equilibrium on 13X molecular sieve. Final report, September 1992-March 1993

    SciTech Connect

    Carlile, D.L.; Mahle, J.J.; Buettner, L.C.; Tevault, D.E.; Friday, D.K.

    1994-08-01

    Adsorption phase equilibrium data are required for evaluating any adsorption-based gas separation process. The U.S. Army Edgewood Research, Development and Engineering Center is currently measuring adsorption phase equilibrium data for a variety of chemical warfare agents and their surrogates on adsorbent materials to correlate physical properties to filtration/separation efficiencies of each vapor on each adsorbent. This report details the adsorption phase equilibrium data measured for chlorodifluoromethane (R-22) on 13X Molecular Sieve. The 13X Molecular Sieve is a candidate adsorbent for future military air purification systems employing the pressure-swing adsorption separation process.

  1. Modeling studies: Adsorption of aniline blue by using Prosopis Juliflora carbon/Ca/alginate polymer composite beads.

    PubMed

    Kumar, M; Tamilarasan, R

    2013-02-15

    The research article describes the experimental and modeling study for the adsorptive removal of aniline blue dye (AB dye) from aqueous matrices using a Prosopis Juliflora modified carbon/Ca/alginate polymer bead as a low cost and eco-friendly adsorbent. The rate of adsorption was investigated under various experimental parameters such as contact time, adsorbent dose, dye concentration, pH and temperature. The kinetics, equilibrium and thermodynamic studies were assessed to find out the efficiency of the adsorption process. The equilibrium uptake capacity of the adsorption process was found with Freundlich and Langmuir adsorption isotherm equations and it was evaluated by dimensionless separation factor (R(L)). The dynamics of adsorption was predicted by pseudo-first order, pseudo-second order Lagergren's equation and intra particle diffusion model. Adsorption feasibility was assessed with thermodynamic parameters such as isosteric heat of adsorption (ΔH°), standard entropy (ΔS°) and Gibbs free energy (ΔG°) using VantHoff plot. The alginate bead was characterized with FTIR spectroscopy and Scanning Electron Microscopy (SEM).

  2. The adsorption of plutonium IV and V on goethite

    NASA Astrophysics Data System (ADS)

    Sanchez, Arthur L.; Murray, James W.; Sibley, Thomas H.

    1985-11-01

    The adsorption of Pu(IV) and Pu(V) on goethite (αFeOOH) from NaNO 3 solution shows distinct differences related to the different hydrolytic character of these two oxidation states. Under similar solution conditions, the adsorption edge of the more strongly hydrolyzable Pu(IV) occurs in the pH range 3 to 5 while that for Pu(V) is at pH 5 to 7. The adsorption edge for Pu(V) shifts with time to lower pH values and this appears to be due to the reduction of Pu(V) to Pu(IV) in the presence of the goethite surface. These results suggest that redox transformations may be an important aspect of Pu adsorption chemistry and the resulting scavenging of Pu from natural waters. Increasing ionic strength (from 0.1 M to 3 M NaCl or NaNO 3 and 0.03 M to 0.3 M Na 2SO 4) did not influence Pu(IV) or Pu(V) adsorption. In the presence of dissolved organic carbon (DOC), Pu(V) reduction to Pu(IV) occurred in solution. Pu(IV) adsorption on goethite decreased by 30% in the presence of 240 ppm natural DOC found in Soap Lake, Washington waters. Increasing concentrations of carbonate ligands decreased Pu(IV) and Pu(V) adsorption on goethite, with an alkalinity of 1000 meq/l totally inhibiting adsorption. The Pu-goethite adsorption system provides the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. From the model calculations we determined equilibrium constants for the adsorption of Pu(IV) hydrolysis species. The model was then applied to Pu adsorption in carbonate media to see how the presence of CO 3-2 could influence the mobility of Pu. The decrease in adsorption appears to be due to formation of a Pu-CO 3 complex. Model calculations were used to predict what the adsorption curves would look like if Pu-CO 3 complexes formed.

  3. Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers

    SciTech Connect

    Lin, S.H.; Hsu, F.M.

    1995-06-01

    Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

  4. Microwave-assisted modification on montmorillonite with ester-containing Gemini surfactant and its adsorption behavior for triclosan.

    PubMed

    Liu, Bo; Lu, Junxiang; Xie, Yu; Yang, Bin; Wang, Xiaoying; Sun, Runcang

    2014-03-15

    To obtain effective adsorbent that can remove emerging organic pollutant of triclosan (TCS) in aquatic environment, different ester-containing Gemini surfactant-modified MMT (EMMT) were prepared under microwave irradiation. The whole process was rapid, uniform, easy and energy-efficient. The structures and morphology of EMMT were characterized by XRD, TEM, FT-IR, SEM and TGA. The results revealed that the saturated intercalation amount of this surfactant was 0.8 times to cation exchange capacity (CEC) of MMT, and there was electrostatic interaction between ester-containing Gemini surfactant and MMT. In addition, they bound in the ways of intercalation, intercalation-adsorption or adsorption, which relied on the dosage of the surfactant. The surface of EMMT was hydrophobic, rough and fluffy, which contributed to its strong adsorption capacity. The adsorption equilibrium data of EMMT for TCS were fitted to Langmuir and Freundlich isothermal adsorption model. The result showed that Langmuir isothermal adsorption model could describe the adsorption behavior better, the adsorption behavior of TCS on EMMT was confirmed to a surface monolayer adsorption, and notably the theoretical maximum adsorption capacity was up to 133 mg/g. Therefore, this work lays important foundation on developing effective and safe absorbent materials for the treatment of emerging organic pollutants.

  5. Microwave-assisted modification on montmorillonite with ester-containing Gemini surfactant and its adsorption behavior for triclosan.

    PubMed

    Liu, Bo; Lu, Junxiang; Xie, Yu; Yang, Bin; Wang, Xiaoying; Sun, Runcang

    2014-03-15

    To obtain effective adsorbent that can remove emerging organic pollutant of triclosan (TCS) in aquatic environment, different ester-containing Gemini surfactant-modified MMT (EMMT) were prepared under microwave irradiation. The whole process was rapid, uniform, easy and energy-efficient. The structures and morphology of EMMT were characterized by XRD, TEM, FT-IR, SEM and TGA. The results revealed that the saturated intercalation amount of this surfactant was 0.8 times to cation exchange capacity (CEC) of MMT, and there was electrostatic interaction between ester-containing Gemini surfactant and MMT. In addition, they bound in the ways of intercalation, intercalation-adsorption or adsorption, which relied on the dosage of the surfactant. The surface of EMMT was hydrophobic, rough and fluffy, which contributed to its strong adsorption capacity. The adsorption equilibrium data of EMMT for TCS were fitted to Langmuir and Freundlich isothermal adsorption model. The result showed that Langmuir isothermal adsorption model could describe the adsorption behavior better, the adsorption behavior of TCS on EMMT was confirmed to a surface monolayer adsorption, and notably the theoretical maximum adsorption capacity was up to 133 mg/g. Therefore, this work lays important foundation on developing effective and safe absorbent materials for the treatment of emerging organic pollutants. PMID:24461850

  6. Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Feng, Jiangtao; Yan, Wei

    2013-08-01

    P25 or self-prepared TiO2 coated polypyrrole (PPy/P25 or PPy/TiO2) composites as novel adsorbents were prepared. Their adsorption-desorption characteristics for Methylene Blue (MB) were comparatively investigated. X-ray photoelectron spectroscopy (XPS) showed that PPy/TiO2 possessed higher doping level than PPy/P25. Thermogravimetric analysis (TGA) indicated that PPy/TiO2 contained more PPy than PPy/P25. The results of water vapor adsorption suggested that the PPy/TiO2 composite was more hydrophobic than PPy/P25. The adsorption results revealed that the composites pretreated in the solution with higher pH value exhibited larger adsorption capacities. The ionic concentration in MB solution slightly impacted the removal of MB by the PPy/TiO2 composite. The adsorption equilibrium results showed that the adsorption of MB was completed in a short time of 30 min. Pseudo-second-order and Langmuir isotherm models were effectively employed to describe the adsorption behavior of MB. PPy/TiO2 and PPy/P25 were found to have better removal ability for MB compared with pure PPy; especially PPy/TiO2, on which the maximum adsorption amount was about 3.6 or 5.5 times higher than that of PPy/P25 or pure PPy, respectively. The thermodynamic analysis indicated that the adsorption of MB was spontaneous and endothermic in nature. The regeneration experiments exhibited that PPy/TiO2 can be reused at least seven times without obvious loss of its original adsorption capacity. Electrostatic interaction, hydrogen bonding and hydrophobic interaction played the roles in MB adsorption performance. It is expected that the PPy/TiO2 composite can be considered as a stable adsorbent for dye removal.

  7. Interaction of removal Ethidium Bromide with Carbon Nanotube: Equilibrium and Isotherm studies

    PubMed Central

    2014-01-01

    Drinking water resources may be contaminated with Ethidium Bromide (EtBr) which is commonly used in molecular biology laboratories for DNA identification in electrophoresis. Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. In this study adsorption of Ethidium Bromide on single-walled carbon nanotubes (SWCNTs) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) surfaces have been investigated by UV–vis spectrophotometer. The effect of contact time, initial concentration and temperature were investigated. The adsorbents exhibits high efficiency for EtBr adsorption and equilibrium can be achieved in 6 and 3 min for SWCNTs and SWCNT-COOH, respectively. The effect of temperature on adsorption of EtBr by toward adsorbents shows the process in this research has been endothermic. The results showed that the equilibrium data were well described by the Langmuir isotherm model, with a maximum adsorption capacity of 0.770 and 0.830 mg/g for SWCNTs and SWCNT-COOH, respectively. The adsorption of EtBr on SWCNT-COOH is more than SWCNTs surfaces. A comparison of kinetic models was evaluated for the pseudo first-order, pseudo second-order models. Pseudo second-order was found to agree well with the experimental data. PMID:24401790

  8. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  9. Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using time-dependent or shock-capturing methods, part 1

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Mugge, P. H.

    1974-01-01

    Simplified curve fits for the thermodynamic properties of equilibrium air were devised for use in either the time-dependent or shock-capturing computational methods. For the time-dependent method, curve fits were developed for p = p(e, rho), a = a(e, rho), and T = T(e, rho). For the shock-capturing method, curve fits were developed for h = h(p, rho) and T = T(p, rho). The ranges of validity for these curves fits were for temperatures up to 25,000 K and densities from 10 to the minus 7th power to 10 to the 3d power amagats. These approximate curve fits are considered particularly useful when employed on advanced computers such as the Burroughs ILLIAC 4 or the CDC STAR.

  10. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water.

    PubMed

    Yao, Yuan; Volchek, Konstantin; Brown, Carl E; Robinson, Adam; Obal, Terry

    2014-01-01

    Perfluorinated compounds (PFCs) are emerging environmental pollutants. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are the two primary PFC contaminants that are widely found in water, particularly in groundwater. This study compared the adsorption behaviors of PFOS and PFOA on several commercially available adsorbents in water. The tested adsorbents include granular activated carbon (GAC: Filtrasorb 400), powdered activated carbon, multi-walled carbon nanotube (MCN), double-walled carbon nanotube, anion-exchange resin (AER: IRA67), non-ion-exchange polymer, alumina, and silica. The study demonstrated that adsorption is an effective technique for the removal of PFOS/PFOA from aqueous solutions. The kinetic tests showed that the adsorption onto AER reaches equilibrium rapidly (2 h), while it takes approximately 4 and 24 h to reach equilibrium for MCN and GAC, respectively. In terms of adsorption capacity, AER and GAC were identified as the most effective adsorbents to remove PFOS/PFOA from water. Furthermore, MCN, AER, and GAC proved to have high PFOS/PFOA removal efficiencies (≥98%). AER (IRA67) and GAC (Filtrasorb 400) were thus identified as the most promising adsorbents for treating PFOS/PFOA-contaminated groundwater at mg L(-1) level based on their equilibrium times, adsorption capacities, removal efficiencies, and associated costs. PMID:25521134

  11. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  12. Miscible viscous fingering with linear adsorption on the porous matrix

    NASA Astrophysics Data System (ADS)

    Mishra, M.; Martin, M.; De Wit, A.

    2007-07-01

    Viscous fingering between miscible fluids of different viscosities can affect the dispersion of finite samples in porous media. In some applications, as typically in chromatographic separations or pollutant dispersion in underground aquifers, adsorption onto the porous matrix of solutes (the concentration of which rules the viscosity of the solution) can affect the fingering dynamics. Here, we investigate theoretically the influence of such an adsorption on the stability and nonlinear properties of viscous samples displaced in a two-dimensional system by a less viscous and miscible carrying fluid. The model is based on Darcy's law for the evolution of the fluid velocity coupled to a diffusion-convection equation for the concentration of a solute in the mobile phase inside the porous medium. The adsorption-desorption dynamics of the solute onto the stationary phase is assumed to be at equilibrium, to follow a linear isotherm and is characterized by a retention parameter κ' equal to the adsorption-desorption equilibrium constant K multiplied by the phase ratio F. In practice, retention on the porous matrix renormalizes the log-mobility ratio by a factor (1+κ'). Correspondingly, a linear stability analysis and nonlinear simulations of the model show that an increase of κ' leads to a stabilization of viscous fingering with fingers appearing on a dimensional time scale multiplied by (1+κ')3 and with a dimensional wavelength multiplied by (1+κ').

  13. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment.

    PubMed

    Aroguz, Ayse Z; Gulen, J; Evers, R H

    2008-04-01

    The adsorption kinetics of methylene blue on pyrolyzed petrified sediment (PPS) has been performed using a batch-adsorption technique. The effects of various experimental parameters, such as initial dye concentration, contact time, and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The best correlation coefficient was obtained using the pseudo first-order kinetic model, which shows that the adsorption of methylene blue followed the pseudo-first-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. It was found that the data fitted well to Langmuir and Freundlich models. The activation energy of adsorption was also evaluated for the adsorption of methylene blue onto pyrolyzed sediment. It was found about 8.5 kJ mol(-1). Thermodynamics parameters DeltaG(o), DeltaH(o), DeltaS(o) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found as 14-18.5 kJ mol(-1) and 52.8-67 J mol(-1) K(-1), respectively. The results obtained from the adsorption process using PPS as adsorbent was subjected to student's t-test.

  14. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  15. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal. PMID:24292474

  16. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.

    PubMed

    Ghassabzadeh, Hamid; Mohadespour, Ahmad; Torab-Mostaedi, Meisam; Zaheri, Parisa; Maragheh, Mohammad Ghannadi; Taheri, Hossein

    2010-05-15

    The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 degrees C.

  17. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    PubMed Central

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  18. Removal of beta-blockers from aqueous media by adsorption onto graphene oxide.

    PubMed

    Kyzas, George Z; Koltsakidou, Anastasia; Nanaki, Stavroula G; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2015-12-15

    The aim of the present study is the evaluation of graphene oxide (GhO) as adsorbent material for the removal of beta-blockers (pharmaceutical compounds) in aqueous solutions. The composition and morphology of prepared materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Atenolol (ATL) and propranolol (PRO) were used as model drug molecules and their behavior were investigated in terms of GhO dosage, contact time, temperature and pH. Adsorption mechanisms were proposed and the pH-effect curves after adsorption were discussed. The kinetic behavior of GhO-drugs system was analyzed after fitting to pseudo-first and -second order equations. The adsorption equilibrium data were fitted to Langmuir, Freundlich and Langmuir-Freundlich model calculating the maximum adsorption capacity (67 and 116 mg/g for PRO and ATL (25 °C), respectively). The temperature effect on adsorption was tested carrying out the equilibrium adsorption experiments at three different temperatures (25, 45, 65 °C). Then, the thermodynamic parameters of enthalpy, free energy and entropy were calculated. Finally, the desorption of drugs from GhO was evaluated by using both aqueous eluants (pH2-10) and organic solvents. PMID:26282775

  19. [Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/ graphene oxide nanoparticles].

    PubMed

    Chang, Qing; Jiang, Guo-Dong; Hu, Meng-Xuan; Huang, Jia; Tang, He-Qing

    2014-05-01

    A simple ultrasound-assisted co-precipitation method was developed to prepare magnetic Fe3O4/graphene oxide (Fe3O4/ GO) nanoparticles. The characterization with transmission electron microscope (TEM) indicated that the products possessed small particle size. The hysteresis loop of the dried Fe3O4/GO nanoparticles demonstrated that the sample had typical features of superparamagnetic material. Batch adsorption studies were carried out to investigate the effects of the initial pH of the solution, the dosage of adsorbent, the contact time and temperature on the adsorption of methylene blue. The results indicated that the composites prepared could be used over a broad pH range (pH 6-9). The adsorption process was very fast within the first 25 min and the equilibrium was reached at 180 min. The adsorption equilibrium and kinetics data fitted well with the Langmuir isotherm model and the pseudo-second-order kinetic model. The adsorption process was a spontaneous and endothermic process in nature. The composite exhibited fairly high adsorption capacity (196.5 mg.g-1) of methylene blue at 313 K. In addition, the magnetic composite could be effectively and simply separated by using an external magnetic field, and then regenerated by hydrogen peroxide and recycled for further use. The results indicated that the adsorbent had a potential in the application of the dye wastewater treatment.

  20. Removal of beta-blockers from aqueous media by adsorption onto graphene oxide.

    PubMed

    Kyzas, George Z; Koltsakidou, Anastasia; Nanaki, Stavroula G; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2015-12-15

    The aim of the present study is the evaluation of graphene oxide (GhO) as adsorbent material for the removal of beta-blockers (pharmaceutical compounds) in aqueous solutions. The composition and morphology of prepared materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Atenolol (ATL) and propranolol (PRO) were used as model drug molecules and their behavior were investigated in terms of GhO dosage, contact time, temperature and pH. Adsorption mechanisms were proposed and the pH-effect curves after adsorption were discussed. The kinetic behavior of GhO-drugs system was analyzed after fitting to pseudo-first and -second order equations. The adsorption equilibrium data were fitted to Langmuir, Freundlich and Langmuir-Freundlich model calculating the maximum adsorption capacity (67 and 116 mg/g for PRO and ATL (25 °C), respectively). The temperature effect on adsorption was tested carrying out the equilibrium adsorption experiments at three different temperatures (25, 45, 65 °C). Then, the thermodynamic parameters of enthalpy, free energy and entropy were calculated. Finally, the desorption of drugs from GhO was evaluated by using both aqueous eluants (pH2-10) and organic solvents.

  1. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  2. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Chun-Hsin Wu; Chung-Hsuang Hung

    2006-11-15

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl{sub 2}) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150{sup o}C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer Emmett Teller (BET) surface area could adsorb more HgCl{sub 2} at room temperature. The equilibrium adsorptive capacity of HgCl{sub 2} for WPAC measured in this study was 1.49 x 10{sup -1} mg HgCl{sub 2}/g PAC at 25{sup o}C with an initial HgCl{sub 2} concentration of 25 {mu}g/m{sup 3}. With the increase of adsorption temperature {le} 150{sup o}C, the equilibrium adsorptive capacity of HgCl{sub 2} for WPAC was decreased to 1.34 x 10{sup -1} mg HgCl{sub 2}/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl{sub 2}. It was demonstrated that the mechanisms for adsorbing HgCl{sub 2} onto WPAC were physical adsorption and chemisorption at 25 and 150{sup o}C, respectively. 35 refs., 4 figs., 4 tabs.

  3. Evaluation of Penicillium digitatum sterilization using non-equilibrium atmospheric pressure plasma by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2011-10-01

    Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.

  4. Equilibrium CO bond lengths

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  5. Study on Adsorption Process of Ethanol Vapor to Activated Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Kariya, Keishi; I. I., El-Sharkawy; Suda, Keisuke; B. B., Saha; Kuwahara, Ken; Koyama, Shigeru

    Performance enhancement of adsorption cooling system has been required for commercial use. Therefore, revealing details of adsorption phenomena are important for optimizing adsorber/desorber heat exchanger which is the bottle-neck of the system. This study deals with the experimental investigation of ethanol vapor adsorption on activated carbon fiber (ACF) under equilibrium condition along with one-dimensional transient numerical simulation of heat and mass transfer in the adsorbent bed is also performed. In order to suggest optimizing method for performance improvement, the present study considered the relationships between cooling capacity and system performance inducing parameters, such as cooling water temperature, ACF height and apparent density in the simulation model. Simulation results agreed well with the experimental data and it is found that the cooling capacity can be enhanced by optimizing ACF bed thickness. Simulation results also shows that the temperatures of adsorber and evaporator do not have significant effects on the optimum adsorption cycle time.

  6. Study on the Adsorption of Sulfate Ions onto Cross-Linked Chitosan

    NASA Astrophysics Data System (ADS)

    Xue, Juanqin; Guo, Yingjuan; Bi, Qiang; Mao, Weibo; Li, Jingxian

    2013-07-01

    With chitosan as the raw material, a new type of resin material is synthesized through cross-linking with formaldehyde and benzaldehyde, and it was used as an adsorbent to adsorb sulfate ion from aqueous solution. The effect of different conditions and the kinetics of the adsorption were investigated. Under the conditions of 0.2 g of adsorbent dosage, 153.3 mg/L of sodium sulfate solution, 40°C of the temperature, 120 min of the equilibrium time and pH of 2.0, the adsorption efficiency (AE) and the adsorption capacity (AC) can both be obtained the optimal values. It shows that the applicability of the second-order model fit the experimental data well from the study of adsorption kinetics.

  7. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  8. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  9. Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions.

    PubMed

    Kong, Zhenglei; Li, Xiaochen; Tian, Jiyu; Yang, Jili; Sun, Shujuan

    2014-02-15

    The adsorption of Cu(II) onto raw litchi pericarp (LP) and modified litchi pericarp (MLP) as a function of pH, adsorbent dose and contact time, were investigated. Adsorption equilibrium isotherms, kinetics, and thermodynamics were studied to characterize the adsorption process. Leaching assays were also conducted to evaluate the potential contamination risk of LP and MLP to aqueous systems. The maximum adsorption of Cu(II) onto MLP was occurred at the pH of 6.0, adsorbent dose of 10.0 g/L, and contact time of 60 min, respectively. The adsorption process of Cu(II) onto LP and MLP were described well by both Langmuir and Freundlich isotherms, and the adsorption kinetics of Cu(II) on MLP was pseudo-second-order. Cu(II) adsorption onto LP and MLP are both exothermic, while it is spontaneous for MLP, and non-spontaneous for LP. The maximum adsorption capacity of Cu(II) onto MLP was 23.70 mg/g, which was about 2.7 times higher than that of LP. Additionally, as compared to LP, the leaching amounts of TOC, TN, and TP from MLP were significantly reduced by a percentage of 27.0%, 90.3%, and 35.3%, respectively. PMID:24473344

  10. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    SciTech Connect

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-15

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ∼18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  11. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  12. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  13. Equilibrium analysis for heavy metal cation removal using cement kiln dust.

    PubMed

    El Zayat, Mohamed; Elagroudy, Sherien; El Haggar, Salah

    2014-01-01

    Ion exchange, reverse osmosis, and chemical precipitation have been investigated extensively for heavy metal uptake. However, they are deemed too expensive to meet stringent effluent characteristics. In this study, cement kiln dust (CKD) was examined for the removal of target heavy metals. Adsorption studies in completely mixed batch reactors were used to generate equilibrium pH adsorption edges. Studies showed the ability of CKD to remove the target heavy metals in a pH range below that of precipitation after an equilibrium reaction time of 24 h. A surface titration experiment indicated negative surface charge of the CKD at pH below 10, meaning that electrostatic attraction of the divalent metals can occur below the pH required for precipitation. However, surface complexation was also important due to the substantive metal removal. Accordingly, a surface complexation model approach that utilizes an electrostatic term in the double-layer description was used to estimate equilibrium constants for the protolysis interactions of the CKD surface as well as equilibria between background ions and the sorbent surface. It was concluded that the removal strength of adsorption is in the order: Pb > Cu > Cd. The experiments were also supported by Fourier transform infrared spectroscopy (FTIR).

  14. Equilibrium analysis for heavy metal cation removal using cement kiln dust.

    PubMed

    El Zayat, Mohamed; Elagroudy, Sherien; El Haggar, Salah

    2014-01-01

    Ion exchange, reverse osmosis, and chemical precipitation have been investigated extensively for heavy metal uptake. However, they are deemed too expensive to meet stringent effluent characteristics. In this study, cement kiln dust (CKD) was examined for the removal of target heavy metals. Adsorption studies in completely mixed batch reactors were used to generate equilibrium pH adsorption edges. Studies showed the ability of CKD to remove the target heavy metals in a pH range below that of precipitation after an equilibrium reaction time of 24 h. A surface titration experiment indicated negative surface charge of the CKD at pH below 10, meaning that electrostatic attraction of the divalent metals can occur below the pH required for precipitation. However, surface complexation was also important due to the substantive metal removal. Accordingly, a surface complexation model approach that utilizes an electrostatic term in the double-layer description was used to estimate equilibrium constants for the protolysis interactions of the CKD surface as well as equilibria between background ions and the sorbent surface. It was concluded that the removal strength of adsorption is in the order: Pb > Cu > Cd. The experiments were also supported by Fourier transform infrared spectroscopy (FTIR). PMID:25259489

  15. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  16. Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis.

    PubMed

    Chen, Zhonghui; Zhang, Jianan; Fu, Jianwei; Wang, Minghuan; Wang, Xuzhe; Han, Runping; Xu, Qun

    2014-05-30

    Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) nanotubes, an excellent adsorbent, were successfully synthesized by an in situ template method and used for the removal of methylene blue (MB) from aqueous solution. The morphology and structures of as-synthesized PZS nanotubes were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy and N2 adsorption/desorption isotherms. The effects of temperature, concentration, pH and contact time on MB adsorption were studied. It was favorable for adsorption under the condition of basic and high temperature. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics were more accurately described by the pseudo-second-order model. The equilibrium isotherms were conducted using Freundlich and Langmuir models. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.9933, equilibrium absorption capacity of 69.16mg/g and the corresponding contact time of 15min. Thermodynamic analyses showed that MB adsorption onto the PZS nanotubes was endothermic and spontaneous and it was also a physisorption process.

  17. Effect of soil type and organic manure on adsorption-desorption of flubendiamide.

    PubMed

    Das, Shaon Kumar; Mukherjee, Irani; Kumar, Aman

    2015-07-01

    Laboratory study on adsorption-desorption of flubendiamide was conducted in two soil types, varying in their physical and chemical properties, by batch equilibrium method. After 4 h of equilibrium time, adsorption of flubendiamide on soil matrix exhibited moderately low rate of accumulation with 4.52 ± 0.21% in red soil and low rate with 3.55 ± 0.21% in black soil. After amending soils with organic manure, adsorption percentage increased to 6.42 ± 0.21% in red soil and (4.18 ± 0.21%) in black soil indicating that amendment significantly increased sorption. Variation in sorption affinities of the soils as indicated by distribution coefficient (K d) for sorption was in the range of 2.98-4.32, 4.91-6.64, 1.04-1.45 and 1.92-2.81 ml/g for red soil, organic manure-treated red soil, black soil and organic manure-treated black soil, respectively. Desorption was slightly slower than adsorption indicating a hysteresis effect having hysteresis coefficient ranges between 0.023 and 0.149 in two test soils. The adsorption data for the insecticide fitted well the Freundlich equation. Results revealed that adsorption-desorption was influenced by soil types and showed that the maximum sorption and minimum desorption of the insecticide was observed in soils with higher organic carbon and clay content. It can be inferred that crystal lattice of the clay soil plays a significant role in flubendiamide adsorption and desorption. Adsorption was lower at acidic pH and gradually increased towards alkaline pH. As this insecticide is poorly sorbed in the two Indian soil types, there may be a possibility of their leaching to lower soil profiles.

  18. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    PubMed

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  19. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  20. Evaluation of vermicompost as a raw natural adsorbent for adsorption of pesticide methylparathion.

    PubMed

    Mendes, Camila Bitencourt; Lima, Giovana de Fátima; Alves, Vanessa Nunes; Coelho, Nívia Maria Melo; Dragunski, Douglas Cardoso; Tarley, César Ricardo Teixeira

    2012-01-01

    The assessment of vermicompost (VC) as a low-cost and alternative adsorbent for the removal of the pesticide methylparathion (MP) from an aqueous medium has been investigated by batch and column experiments. Parameters related to MP adsorption, i.e. equilibrium time (61.5 min) and adsorption pH (6.8) were optimized by using Doehlert design. The initial and final MP concentrations after adsorption assays were determined by square-wave adsorptive cathodic stripping voltammetry using an electrode composed of a multiwalled carbon nanotube dispersed in mineral oil. Batch adsorption experimental data were fitted to the Langmuir and Freundlich isotherm adsorptions, and a very good fit to the Langmuir linear model, giving a maximum adsorption capacity (MAC) of 0.17 mg g(-1). This result was very similar to that obtained with the column experiments. In order to evaluate the MP desorption from column packed VC, 100.0 ml of nitric acid solution (pH 3.0) has been percolated through material. No leaching of MP was observed, thus confirming the strong interaction between MP and VC. The satisfactory MAC obtained and low cost makes the VC a reliable natural material for the removal of MP from aqueous effluents.

  1. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    PubMed

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents. PMID:24463242

  2. Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves.

    PubMed

    Shi, Jie; Zhao, Zhiwei; Liang, Zhijie; Sun, Tianyi

    2016-01-01

    In this study, the potential of the oriental arborvitae leaves for the adsorption of Pb(II) from aqueous solutions was evaluated. Brunauer-Emmett-Teller analysis showed that the surface area of arborvitae leaves was 29.52 m(2)/g with pore diameter ranging from 2 to 50 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed C-C or C-H, C-O, and O-C=O were the main groups on the arborvitae leaves, which were the main sites for surface complexation. Finally, effects of adsorbent dose, initial pH, contact time, and coexisting natural organic matters (humic acid (HA)) on the adsorption of Pb(II) were investigated. The results indicated that the pHZPC (adsorbents with zero point charge at this pH) was 5.3 and the adsorption reached equilibrium in 120 min. Isotherm simulations revealed that the natural arborvitae leaves exhibit effective adsorption for Pb(II) in aqueous solution, giving adsorptive affinity and capacity in an order of 'no HA' > 5 mg/L HA > 10 mg/L HA, and according to the Langmuir models, the maximum adsorptions of Pb(II) were 43.67 mg/g, 38.61 mg/g and 35.97 mg/g, respectively. The results demonstrated that the oriental arborvitae leaves showed high potentials for the adsorption of Pb(II) from aqueous solutions. PMID:27191563

  3. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    NASA Astrophysics Data System (ADS)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2016-01-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as ΔH 0, ΔS 0 and ΔG 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  4. Adsorption of Cu(2+), Cd(2+) and Ni(2+) from aqueous single metal solutions on graphene oxide membranes.

    PubMed

    Tan, Ping; Sun, Jian; Hu, Yongyou; Fang, Zheng; Bi, Qi; Chen, Yuancai; Cheng, Jianhua

    2015-10-30

    Novel, highly ordered layered graphene oxide (GO) membranes with larger interlayer spacing were prepared by induced directional flow and were used as adsorbents for the removal of Cu(2+), Cd(2+) and Ni(2+) from aqueous solutions. The effects of pH, ionic strength, contact time, metal ion concentration and cycle time on Cu(2+), Cd(2+) and Ni(2+) sorption were investigated. The results indicated that the adsorption of Cu(2+), Cd(2+) and Ni(2+) onto GO membranes was greatly influenced by the pH and weakly affected by the ionic strength. The adsorption isotherms for Cu(2+), Cd(2+) and Ni(2+) were well fitted by the Langmuir model. The maximum adsorption capacities of the GO membranes for Cu(2+), Cd(2+) and Ni(2+) were approximately 72.6, 83.8 and 62.3 mg/g, respectively. The adsorption kinetics of Cu(2+), Cd(2+) and Ni(2+) onto GO membranes followed the pseudo-second-order model. The adsorption equilibrium was reached in a shorter time. The GO membranes can be regenerated more than six times based on their adsorption/desorption cycles, with a slight loss in the adsorption capacity. The results demonstrated that the GO membranes can be used as effective adsorbents for heavy metal removal from water. PMID:25978188

  5. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  6. Efficient adsorption of waterborne short-lived radon decay products by glass fiber filters.

    PubMed

    von Philipsborn, H

    1997-02-01

    Glass fiber filters of a certain brand were found to be very efficient (retention > 95%) for adsorption of short-lived radon decay products during filtration of water. Carrier-free samples are obtained in a convenient geometry for efficient gross beta counting. Adsorption of "hot atoms" is not disturbed by the presence of "cold" lead ions. Approximate radioactive equilibrium between radon and its short-lived decay products may or may not exist in water at the source, but does exist after 3 h in PET bottles. These bottles are shown to be gas-tight for radon. Calibration of activity concentration in Bq L(-1) (radon gas concentration approximately equilibrium equivalent radon concentration) was performed by several standard procedures. Limit of detection is 2 Bq L(-1) within 10 min (total time) or 10 Bq L(-1) within 5 min for a net signal of 5 times standard deviation.

  7. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.

    PubMed

    Zhou, L; Qu, Z G; Ding, T; Miao, J Y

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems. PMID:27176384

  8. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  9. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-06-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  10. Timing and conditions of high-pressure metamorphism in the western Grenville Province: Constraints from accessory mineral composition and phase equilibrium modeling

    NASA Astrophysics Data System (ADS)

    Marsh, Jeffrey H.; Culshaw, Nicholas G.

    2014-07-01

    Previous geochronological analyses of high pressure (HP) metamorphic rocks in the western Grenville Province, Ontario, Canada have yielded precise U-Pb zircon ages; however, uncertainty has remained as to whether these ages represent the timing of HP metamorphism or the granulite/amphibolite facies overprint accompanying exhumation to a hot middle orogenic crust. Detailed study of these HP rocks, involving garnet, rutile, and zircon trace element analysis, phase equilibrium modeling, and zircon U-Pb geochronology, has yielded much improved constraints on the timing and conditions of HP metamorphism. Zircon from five of the six HP samples yield anchored discordia upper intercept and 207Pb/206Pb weighted average ages between 1097 and 1085 Ma, and typically have trace element compositions consistent with growth in a garnet-rich, plagioclase-poor eclogite-type assemblage (i.e. no negative Eu anomaly and flat HREE trends). Titanium-in-zircon and Zr-in-rutile thermometry indicates that the range of zircon crystallization temperatures for most samples (643-767 °C) is close to that of rutile inclusions in garnet (668-753 °C) and matrix rutile (690-772 °C). Phase relations in a pseudosection calculated for the sample that best preserves the HP assemblage indicate that: (1) the stability field for the inclusions observed in garnet and kyanite is between 11.5 < P < 14 kbar and 600 < T < 700 °C, and (2) zircon and rutile crystallization temperatures intersect the inferred HP assemblage field (Grt + Cpx + Ky + Rt + Hbl + Qtz) and garnet and kyanite modal isopleths at P > ~ 15 kbar, indicating that the ca. 1090 Ma zircon ages date metamorphism at eclogite facies conditions. Thus, the deep burial of mafic lower crust that resulted in HP metamorphism in the western CGB occurred just prior to the main "Ottawan" phase of continental collision in the western Grenville Province (ca. 1080-1040 Ma).

  11. Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins.

    PubMed

    Zhou, Limin; Shang, Chao; Liu, Zhirong; Huang, Guolin; Adesina, Adesoji A

    2012-01-15

    The ion-imprinted magnetic chitosan resins (IMCR) prepared using U(VI) as a template and glutaraldehyde as a cross-linker showed higher adsorption capacity and selectivity for the U(VI) ions compared with the non-imprinted magnetic chitosan resins (NIMCR) without a template. The results showed that the adsorption of U(VI) on the magnetic chitosan resins was affected by the initial pH value, the initial U(VI) concentration, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments were fitted in Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherm models to show very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The monolayer adsorption capacity values of 187.26 mg/g for IMCR and 160.77 mg/g for NIMCR were very close to the maximum capacity values obtained at pH 5.0, temperature 298 K, adsorbent dose 50 mg, and contact time 3 h. The selectivity coefficient of uranyl ions and other metal ions on IMCR indicated an overall preference for uranyl ions. Furthermore, the IMCR could be regenerated through the desorption of the U(VI) ions using 0.5 M HNO(3) solution and could be reused to adsorb again.

  12. Equilibrium, kinetic and thermodynamic studies of acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent.

    PubMed

    Deniz, Fatih; Saygideger, Saadet D

    2010-07-01

    The biosorption of Acid Orange 52 onto the leaf powder of Paulownia tomentosa Steud. was studied in a batch adsorption system to estimate the equilibrium, kinetic and thermodynamic parameters as a function of solution pH, biosorbent concentration, dye concentration, biosorbent size, temperature and contact time. The Langmuir, Freundlich and Temkin isotherm models were used for modeling the biosorption equilibrium. The experimental equilibrium data could be well interpreted by the Temkin and Langmuir isotherms with maximum adsorption capacity of 10.5 mg g(-1). In order to state the sorption kinetics, the fits of pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion kinetic models were investigated. It was obtained that the biosorption process followed the pseudo-second order rate kinetics. Thermodynamic studies indicated that this system was exothermic process. The results revealed that P. tomentosa leaf powder could be an efficient biosorbent for the treatment of wastewater containing Acid Orange 52. PMID:20194017

  13. Fractional statistical theory of adsorption applied to protein adsorption.

    PubMed

    Quiroga, E; Centres, P M; Ochoa, N A; Ramirez-Pastor, A J

    2013-01-15

    Experimental adsorption isotherms of bovine serum albumin (BSA) adsorbed on sulfonated microspheres were described by means of two analytical models: the first is the well-known Langmuir-Freundlich model (LF), and the second, called fractional statistical theory of adsorption (FSTA), is a statistical thermodynamics model developed recently by Ramirez-Pastor et al. [Phys. Rev. Lett. 93 (2004) 186101]. The experimental data, obtained by Hu et al. [Biochem. Eng. J. 23 (2005) 259] for different concentrations of sulfonate group on the surface of the microspheres, were correlated by using a fitting algorithm based on least-squares statistics. The combination of LF and FSTA models, along with the choice of an adequate fitting procedure, allowed us to obtain several conclusions: (i) as previously reported in the literature, the maximum amount adsorbed increases as the amount of sulfonate group increases; (ii) the equilibrium constant does not appear as a sensitive parameter to the amount of sulfonate group on the surface of the microspheres; and (iii) the values of the fitting parameters obtained from FSTA may be indicative of a mismatch between the equilibrium separation of the intermolecular interaction and the distance between the adsorption sites. The exhaustive study presented here has shown that FSTA model is a good one considering the complexity of the physical situation, which is intended to be described and could be more useful in interpreting experimental data of adsorption of molecules with different sizes and shapes. PMID:23084559

  14. Multilayer adsorption of Cu(II) and Cd(II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties

    NASA Astrophysics Data System (ADS)

    Jorgetto, Alexandre de O.; da Silva, Adrielli C. P.; Wondracek, Marcos H. P.; Silva, Rafael I. V.; Velini, Edivaldo D.; Saeki, Margarida J.; Pedrosa, Valber A.; Castro, Gustavo R.

    2015-08-01

    Through very simple and inexpensive processes, pata-de-vaca leaves were turned into a powder and applied as an adsorbent for the uptake of Cu(II) and Cd(II) from water. The material was characterized through SEM, EDX, FTIR and surface area measurement. The material had its point of zero charge determined (5.24), and its adsorption capacity was evaluated as a function of time, pH and metal concentration. The material presented fast adsorption kinetics, reaching adsorption equilibrium in less than 5 min and it had a good correlation with the pseudo-second order kinetic model. Optimum pH for the adsorption of Cu(II) and Cd(II) were found to be in the range from 4 to 5, approximately. In the experiment as a function of the analyte concentration, analogously to gas adsorption, the material presented a type II isotherm, indicating the formation of multilayers for both species. Such behavior was explained with basis in the alternation between cations and anions over the material's surface, and the maximum adsorption capacity, considering the formation of the multilayers were found to be 0.238 mmol L-1 for Cu(II) and 0.113 mmol L-1 for Cd(II).

  15. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater. PMID:25540826

  16. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater.

  17. A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-07-29

    A fundamental investigation of the pressure effect on individual adsorption sites was undertaken based on adsorption energy distribution and adsorption isotherm measurements. For this purpose, we measured adsorption equilibrium data at pressures ranging from 100 to 1000bar at constant flow and over a wide concentration range for three low-molecular-weight solutes, antipyrine, sodium 2-naphthalenesulfonate, and benzyltriethylammonium chloride, on an Eternity C18 stationary phase. The adsorption energy distribution was bimodal for all solutes, remaining clearly so at all pressures. The bi-Langmuir model best described the adsorption in these systems and two types of adsorption sites were identified, one with a low and another with a high energy of interaction. Evidence exists that the low-energy interactions occur at the interface between the mobile and stationary phases and that the high-energy interactions occur nearer the silica surface, deeper in the C18 layer. The contribution of each type of adsorption site to the retention factor was calculated and the change in solute molar volume from the mobile to stationary phase during the adsorption process was estimated for each type of site. The change in solute molar volume was 2-4 times larger at the high-energy site, likely because of the greater loss of solute solvation layer when penetrating deeper into the C18 layer. The association equilibrium constant increased with increasing pressure while the saturation capacity of the low-energy site remained almost unchanged. The observed increase in saturation capacity for the high-energy site did not affect the column loading capacity, which was almost identical at 50- and 950-bar pressure drops over the column.

  18. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    PubMed

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  19. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  20. In vitro study on fluoxetine adsorption onto charcoal using potentiometry.

    PubMed

    Atta-Politou, J; Skopelitis, I; Apatsidis, I; Koupparis, M

    2001-01-01

    This in vitro investigation was performed to study the adsorption rate constant as well as the adsorption characteristics of fluoxetine (F) to activated charcoal and its commercial formulation Carbomix powder in simulated gastric (pH 1.2) fluid environment. Ion-selective electrode (ISE) potentiometry, based on the selective, direct and continuous monitoring of F with an F-ISE constructed in our laboratory was used. The method used in the kinetic experiments consists of the rapid addition of a slurry containing the charcoal into the drug solution under stirring and continuous recording of the F-ISE potential until the establishment of equilibrium. The free ionized drug concentration at appropriate time intervals was calculated from the recorded adsorption curve and the apparent adsorption rate constant was estimated assuming pseudo first order kinetics. Within run R.S.D. of the estimates ranged from 0.24 to 11.5%, while between run R.S.D. (n=3-4) ranged from 0.90 to 13.8%. A linear relationship was found between the apparent adsorption rate constants and the amount of charcoal used with slopes (+/-S.D.) for activated charcoal and Carbomix equal to 1.14(+/-0.21) and 0.146(+/-0.009) s(-1)g(-1), respectively. Successive additions of microvolumes of F solution were made into a charcoal slurry with measurement of the F-ISE potential at equilibrium. The maximum adsorption capacity values (+/-S.D.) of activated charcoal and Carbomix were 254.8+/-1.8 and 405+/-41 mg/g, respectively while the affinity constant values (+/-S.D.) were 45.6+/-2.2 and 55.5+/-2.9 l/g, respectively. The adsorption of F to charcoals was rapid and for amounts of charcoal 10 times greater than the amount of the drug, 95% of F was adsorbed within the first 5 min. Relative to the toxic and lethal doses in cases of F intoxications, both types of charcoals tested adsorbed effectively F at gastric pH. Carbomix can be considered as appropriate charcoal formulation for medical treatment in cases of F

  1. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder.

    PubMed

    Li, Shun-Xing; Zheng, Feng-Ying; Yang, Huang; Ni, Jian-Cong

    2011-02-15

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L(-1) and 50.0 μg L(-1), respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L(-1)) and the permitted discharge limit of wastewater (10.0 μg L(-1)) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  2. Isotherm study of reactive Blue 19 adsorption by an alum sludge

    NASA Astrophysics Data System (ADS)

    Khim, Ong Keat; Nor, Mohd Asri Md; Mohamad, Syuriya; Nasaruddin, Nas Aulia Ahmad; Jamari, Nor Laili-Azua; Yunus, Wan Md Zin Wan

    2015-05-01

    This study investigates the adsorption of Reactive Blue 19 using dewatered alum sludge. The dewatered alum sludge was a sludge produced from drinking water treatment plant. Batch adsorption experiments were performed to investigate the mechanism of the dye adsorption. The adsorption was rapid at its initial stage but the rate decreased as it approached equilibrium. The adsorption data were evaluated by Langmuir and Freundlich isotherm models but was best described by the Langmuir isotherm model as it gave the highest correlation.

  3. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at

  4. Estimating the plasma effect-site equilibrium rate constant (Ke₀) of propofol by fitting time of loss and recovery of consciousness.

    PubMed

    Wu, Qi; Sun, Baozhu; Wang, Shuqin; Zhao, Lianying; Qi, Feng

    2013-01-01

    The present paper proposes a new approach for fitting the plasma effect-site equilibrium rate constant (Ke0) of propofol to satisfy the condition that the effect-site concentration (Ce) is equal at the time of loss of consciousness (LOC) and recovery of consciousness (ROC). Forty patients receiving intravenous anesthesia were divided into 4 groups and injected propofol 1.4, 1.6, 1.8, or 2 mg/kg at 1,200 mL/h. Durations from the start of injection to LOC and to ROC were recorded. LOC and ROC were defined as an observer's assessment of alertness and sedation scale change from 3 to 2 and from 2 to 3, respectively. Software utilizing bisection method iteration algorithms was built. Then, Ke0 satisfying the CeLOC=CeROC condition was estimated. The accuracy of the Ke0 estimated by our method was compared with the Diprifusor TCI Pump built-in Ke0 (0.26 min(-1)), and the Orchestra Workstation built-in Ke0 (1.21 min(-1)) in another group of 21 patients who were injected propofol 1.4 to 2 mg/kg. Our results show that the population Ke0 of propofol was 0.53 ± 0.18 min(-1). The regression equation for adjustment by dose (mg/kg) and age was Ke0=1.42-0.30 × dose-0.0074 × age. Only Ke0 adjusted by dose and age achieved the level of accuracy required for clinical applications. We conclude that the Ke0 estimated based on clinical signs and the two-point fitting method significantly improved the ability of CeLOC to predict CeROC. However, only the Ke0 adjusted by dose and age and not a fixed Ke0 value can meet clinical requirements of accuracy.

  5. Adsorption of Sb(III) and Sb(V) on Freshly Prepared Ferric Hydroxide (FeOxHy)

    PubMed Central

    He, Zan; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2015-01-01

    Abstract This study prepared fresh ferric hydroxide (in-situ FeOxHy) by the enhanced hydrolysis of Fe3+ ions, and investigates its adsorptive behaviors toward Sb(III) and Sb(V) through laboratory and pilot-scale studies. A contact time of 120-min was enough to achieve adsorption equilibrium for Sb(III) and Sb(V) on the in-situ FeOxHy, and the Elovich model was best to describe the adsorption kinetics of Sb(III) and Sb(V). The Freundlich model was better than Langmuir model to describe the adsorption of Sb(III) and Sb(V) on the in-situ FeOxHy, and the maximum adsorption capacity of Sb(III) and Sb(V) was determined to be 12.77 and 10.21 mmol/g the in-situ FeOxHy as Fe, respectively. Adsorption of Sb(V) decreased whereas that of Sb(III) increased with elevated pH over pH 3–10, owing to the different electrical properties of Sb(III) and Sb(V). Adsorption of Sb(III) and Sb(V) was slightly affected by ionic strength, and thus indicated the formation of inner sphere complexes between Sb and the adsorbent. Sulfate and carbonate showed little effect on the adsorption of Sb(III) and Sb(V). Phosphate significantly inhibited the adsorption of Sb(V), whereas slightly effected that of Sb(III) due to its similar chemical structure to Sb(V). Pilot-scale continuous experiment indicated the feasibility of using in-situ FeOxHy to remove Sb(V), and equilibrium adsorption capacity at the equilibrium Sb(V) concentration of 10 μg/L was determined to be 0.11, 0.07, 0.07, 0.11, and 0.12 mg/g the in-situ FeOxHy as Fe at equilibrium pH of 7.5–7.7, 6.9–7.0, 6.3–6.6, 5.9–6.4, and 5.2–5.9, respectively. PMID:25741175

  6. Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: real-time monitoring by quartz crystal microbalance with dissipation.

    PubMed

    Zhang, Xinfeng; Yang, Shihe

    2011-03-15

    Understanding how the composition and environmental conditions of membranes influence their interactions with guest species is central to cell biology and biomedicine. We herein study the nonspecific adsorption of charged quantum dots (QDs) onto a supported zwitterionic lipid bilayer by using quartz crystal microbalance with dissipation (QCM-D). It is demonstrated that (1) the adsorption of charged QDs is charge-dependent in a way similar to but much stronger than that of the capping molecules by reason of size effect; (2) the adsorption behavior of charged QDs is dominated by electrostatic interaction, which can be well described by an "adsorption window"; (3) the "adsorption window" can be broadened by exploiting the bridge role of Ca(2+) ions; and (4) by introducing a cationic lipid into the zwitterionic lipid bilayer, one can achieve preferential adsorption of anionic QDs but suppression of the cationic QD adsorption. Our QCM-D data also indicates that these different adsorption traits effect different changes in the dissipation of supported lipid bilayers (SLBs) after adsorption of the charged QDs. The different adsorption propensities of cationic and anionic QDs on SLBs have reinforced the picture of electrostatic interactions. We believe that these findings provide important information on QD-lipid membrane interactions, which will help to develop new drug molecules and efficient drug delivery systems, and to predict and unravel their potential toxicities if any.

  7. A thermodynamically consistent explicit competitive adsorption isotherm model based on second-order single component behaviour.

    PubMed

    Ilić, Milica; Flockerzi, Dietrich; Seidel-Morgenstern, Andreas

    2010-04-01

    A competitive adsorption isotherm model is derived for binary mixtures of components characterized by single component isotherms which are second-order truncations of higher order equilibrium models suggested by multi-layer theory and statistical thermodynamics. The competitive isotherms are determined using the ideal adsorbed solution (IAS) theory which, in case of complex single component isotherms, does not generate explicit expressions to calculated equilibrium loadings and causes time consuming iterations in simulations of adsorption processes. The explicit model derived in this work is based on an analysis of the roots of a cubic polynomial resulting from the set of IAS equations. The suggested thermodynamically consistent and widely applicable competitive isotherm model can be recommended as a flexible tool for efficient simulations of fixed-bed adsorber dynamics.

  8. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2016-02-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium (q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) were determined and the positive value of (ΔH) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  9. Generalized statistical model for multicomponent adsorption equilibria on zeolites

    SciTech Connect

    Rota, R.; Gamba, G.; Paludetto, R.; Carra, S.; Morbidelli, M. )

    1988-05-01

    The statistical thermodynamic approach to multicomponent adsorption equilibria on zeolites has been extended to nonideal systems, through the correction of cross coefficients characterizing the interaction between unlike molecules. Estimation of the model parameters requires experimental binary equilibrium data. Comparisons with the classical model based on adsorbed solution theory are reported for three nonideal ternary systems. The two approaches provide comparable results in the simulation of binary and ternary adsorption equilibrium data at constant temperature and pressure.

  10. [Preparation of surface molecularly imprinted polymers for penicilloic acid, and its adsorption properties].

    PubMed

    Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang

    2015-09-01

    On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin. PMID:26753284

  11. Unexpected coupling between flow and adsorption in porous media.

    PubMed

    Vanson, Jean-Mathieu; Coudert, François-Xavier; Rotenberg, Benjamin; Levesque, Maximilien; Tardivat, Caroline; Klotz, Michaela; Boutin, Anne

    2015-08-14

    We study the interplay between transport and adsorption in porous systems under a fluid flow, based on a lattice Boltzmann scheme extended to account for adsorption. We performed simulations on well-controlled geometries with slit and grooved pores, investigating the influence of adsorption and flow on dispersion coefficient and adsorbed density. In particular, we present a counterintuitive effect where fluid flow induces heterogeneity in the adsorbate, displacing the adsorption equilibrium towards downstream adsorption sites in grooves. We also present an improvement of the adsorption-extended lattice Boltzmann scheme by introducing the possibility for saturating Langmuir-like adsorption, while earlier work focused on linear adsorption phenomena. We then highlight the impact of this change in situations of high concentration of adsorbate. PMID:26139013

  12. Adsorption of xenon and krypton on shales

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  13. Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Hamza, Izzeldin A. A.; Martincigh, Bice S.; Ngila, J. Catherine; Nyamori, Vincent O.

    Adsorption of Pb2+ from aqueous solution onto a sugarcane bagasse/multi-walled carbon nanotube (MWCNT) composite was investigated by using a series of batch adsorption experiments and compared with the metal uptake ability of sugarcane bagasse. The efficiency of the adsorption processes was studied experimentally at various pH values, contact times, adsorbent masses, temperatures and initial Pb2+ concentrations. A pH of 4.5 was found to be the optimum pH to obtain a maximum adsorption percentage in 120 min of equilibration time. The composite showed a much enhanced adsorption capacity for Pb2+ of 56.6 mg g-1 compared with 23.8 mg g-1 for bagasse at 28 °C. The Langmuir adsorption isotherm provided the best fit to the equilibrium adsorption data. The pseudo first-order, pseudo second-order, intraparticle diffusion and Elovich kinetics models were used to analyse the rate of lead adsorption and the results show that the Elovich model is more suitable. The thermodynamic parameters of adsorption, namely ΔG°, ΔH° and ΔS°, were determined over the temperature range of 20-45 °C. The adsorption of Pb2+ onto both bagasse and the sugarcane bagasse/MWCNT composite was found to be spontaneous but for the former adsorbent it was enthalpy-driven whereas for the latter it was entropy-driven. Desorption of the lead-loaded adsorbents was fairly efficient with 0.1 mol dm-3 HCl. Overall this composite has the potential to be a good adsorbent for the removal of Pb2+ from wastewaters.

  14. Equilibrium Potentials of Membrane Electrodes

    PubMed Central

    Wang, Jui H.; Copeland, Eva

    1973-01-01

    A simple thermodynamic theory of the equilibrium potentials of membrane electrodes is formulated and applied to the glass electrode for measurement of pH. The new formulation assumes the selective adsorption or binding of specific ions on the surface of the membrane which may or may not be permeable to the ion, and includes the conventional derivation based on reversible ion transport across membranes as a special case. To test the theory, a platinum wire was coated with a mixture of stearic acid and methyl-tri-n-octyl-ammonium stearate. When this coated electrode was immersed in aqueous phosphate solution, its potential was found to be a linear function of pH from pH 2 to 12 with a slope equal to the theoretical value of 59.0 mV per pH unit at 24°. PMID:4516194

  15. Adsorptive removal of patulin from apple juice using Ca-alginate-activated carbon beads.

    PubMed

    Yue, Tianli; Guo, Caixia; Yuan, Yahong; Wang, Zhouli; Luo, Ying; Wang, Ling

    2013-10-01

    This study aimed to investigate the adsorption of patulin from apple juice by Ca-alginate-activated carbon (Ca-alginate-AC) beads. The capacity of patulin was determined by high-performance liquid chromatography. The results showed that Ca-alginate-AC beads have significant ability to reduce patulin from contaminated apple juice. Furthermore, the adsorption process did not affect the quality of apple juice. The effects of contact time, initial patulin concentration, adsorbent dose, and temperature were assessed. The removal percentage of patulin increased with contact time, adsorbent dose, and temperature. A reduction was also noted to bind patulin at increased levels of contamination. The equilibrium data were fitted to Langmuir, Freundlich, and Temkin isotherm models and the isotherm constants were calculated at different temperatures. The adsorption equilibrium was best described by the Freundlich isotherm (R(2) > 0.990). The pseudo 1st-order model was found to describe the kinetic data satisfactorily. Thermodynamic parameters such as standard Gibbs free energy (ΔG◦◦), standard enthalpy (ΔH◦), and standard entropy (ΔS◦) were evaluated. The results showed that the adsorption was spontaneous and endothermic nature.

  16. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  17. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    PubMed

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan.

  18. [Adsorption properties of modified graphene for methylene blue removal from wastewater].

    PubMed

    Wu, Yan; Luo, Han-Jin; Wang, Hou; Zhang, Zi-Long; Wang, Can; Wang, Yu-Wei

    2013-11-01

    In this study, cetyltrimethylammonium bromide (CTAB) was chosen to modify graphene, which was applied to remove methylene blue (MB) from aqueous solutions. The characteristics of graphene and modified graphene were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), thermal gravimetric analyzer (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The effects of factors including pH, contact time, temperature, and dosage on the adsorption properties of MB onto graphene and modified graphene were investigated. The results revealed that the addition of CTAB in preparation could obviously increase the specific surface area and improve the efficiency of removal. The adsorption processes were rapid within the first 15 min and reached equilibrium in about 120 min. The adsorption kinetics fitted well with the pseudo-second-order model. The optimal reaction temperature was 293 K, the optimal concentration of adsorbent dosage was 2 g x L(-1), and the initial pH value of the solution had little impact on the amount of adsorption. The adsorption capacity of MB on modified graphene inferred from the Langmuir model was 86.43 mg x g(-1) at 293 K, and the adsorption was an exothermic process.

  19. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  20. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology.

    PubMed

    Xu, Chao; Wang, Jingjing; Yang, Tilong; Chen, Xia; Liu, Xunyue; Ding, Xingcheng

    2015-05-01

    The amidoximated chitosan-grafted polyacrylonitrile (CTS-g-PAO) was prepared for the adsorption of uranium from water. The effects of pH, concentration of uranium and the solid-liquid ratio on the adsorption of uranium by CTS-g-PAO were optimized using Doehlert design of response surface methodology (RSM). The adsorption capacity and removal efficiency achieved 312.06 mg/g and 86.02%, respectively. The adsorption process attained equilibrium only in 120 min. More than 80% of the absorbed uranium could be desorbed by 0.1 mol/l HCl or EDTA-Na, and CTS-g-PAO could be reused at least 3 times. The CTS-g-PAO and U(VI) ions formed a chelate complex due to FTIR spectral analysis. The surface morphology of CTS-g-PAO was also investigated by SEM. The adsorption process was better described by Langmuir isotherm and pseudo second order kinetic model. Results obtained indicated that CTS-g-PAO was very promising in adsorption of uranium from water.

  1. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90. PMID:27506040

  2. Adsorption of toluene onto activated carbon fibre cloths and felts: application to indoor air treatment.

    PubMed

    Lorimier, C; Subrenat, A; Le Coq, L; Le Cloirec, P

    2005-11-01

    Due to their bad effects on human health, removing Volatile Organic Compounds from indoor air has become an issue of major interest. In this study, the potential use of six commercial activated carbon felts and cloths for indoor toluene removal was investigated. Both batch and dynamic adsorption studies were performed, at toluene concentrations ranging from 21 to 18160 mg m(-3), for an air velocity representative of indoor air treatment (0.37 m s(-1)). Batch measurements showed that felts exhibited higher adsorption capacities at equilibrium than cloths at high toluene concentrations, whereas this trend may be inverted at low concentrations. Experimental isotherms and kinetics were satisfactorily fitted by the Langmuir-Freundlich model and the Linear Driving Force model respectively. No main differences between the adsorption kinetics of felts and cloths were reported. Dynamic adsorption capacities at saturation appeared to be higher than 120 mg g(-1) for both cloths and felts, irrespective of relative humidity levels and toluene concentrations. The influence of relative humidity on the adsorption capacity of felts was not significant for the higher toluene concentration studied in dynamics (307 mg m(-3)), whereas an increase in relative humidity induced a decrease in adsorption capacity at the lower toluene concentration (38 mg m(-3)). Moreover, experimental curves of breakthrough time versus thickness of medium were satisfactorily fitted by the Adams-Bohart model, and the critical thickness determined by this model appeared to be below 1.3 mm, regardless of the medium or toluene concentration.

  3. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology.

    PubMed

    Xu, Chao; Wang, Jingjing; Yang, Tilong; Chen, Xia; Liu, Xunyue; Ding, Xingcheng

    2015-05-01

    The amidoximated chitosan-grafted polyacrylonitrile (CTS-g-PAO) was prepared for the adsorption of uranium from water. The effects of pH, concentration of uranium and the solid-liquid ratio on the adsorption of uranium by CTS-g-PAO were optimized using Doehlert design of response surface methodology (RSM). The adsorption capacity and removal efficiency achieved 312.06 mg/g and 86.02%, respectively. The adsorption process attained equilibrium only in 120 min. More than 80% of the absorbed uranium could be desorbed by 0.1 mol/l HCl or EDTA-Na, and CTS-g-PAO could be reused at least 3 times. The CTS-g-PAO and U(VI) ions formed a chelate complex due to FTIR spectral analysis. The surface morphology of CTS-g-PAO was also investigated by SEM. The adsorption process was better described by Langmuir isotherm and pseudo second order kinetic model. Results obtained indicated that CTS-g-PAO was very promising in adsorption of uranium from water. PMID:25659674

  4. Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V).

    PubMed

    Zhang, Lingfan; Liu, Xin; Xia, Wei; Zhang, Wenqing

    2014-03-01

    In this present study, an inorganic-biopolymer composite based on chitosan-zirconium(IV) was prepared and investigated as a biosorbent for the removal of vanadium(V) ions from aqueous solution. The resulting composite before and after adsorbed V(V) were characterized by using FT-IR, XRD, SEM and EDS, respectively. Various relevant parameters affecting the adsorption capacity such as pH, initial concentration, contact time, temperature and co-existing ions were evaluated. The results demonstrated that the optimum pH was found to be 4.0 and the equilibrium was achieved after 4h for V(V) adsorption. The Langmuir isotherm model could be well described the adsorption of V(V), with the maximum adsorption capacity of 208 mg g(-1) at 30 °C. The kinetics data were well fitted to pseudo-second-order equation, indicating that chemical sorption as the rate-limiting step of adsorption mechanism. The calculated thermodynamic parameters such as ΔG°, ΔH° and ΔS° indicated that the adsorption process was feasible, spontaneous and endothermic in nature. Moreover, co-existing ions including nitrate, chloride and sulfate had a certain effect on the uptake of V(V). The V(V) loaded chitosan-zirconium(IV) composite could be regenerated by 0.01 mol L(-1) sodium hydroxide, with efficiency greater than 95%.

  5. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. PMID:21724329

  6. Adsorption of Basic Violet 14 in aqueous solutions using KMnO4-modified activated carbon.

    PubMed

    Shi, Qianqian; Zhang, Jian; Zhang, Chenglu; Nie, Wei; Zhang, Bo; Zhang, Huayong

    2010-03-01

    In this paper, an activated carbon was prepared from Typha orientalis and then treated with KMnO(4) and used for the removal of Basic Violet 14 from aqueous solutions. KMnO(4) treatment influenced the physicochemical properties of the carbon and improved its adsorption capacity. Adsorption experiments were then conducted with KMnO(4)-modified activated carbon to study the effects of carbon dosage (250-1500 mg/L), pH (2-10), ion strength (0-0.5 mol/L), temperature, and contact time on the adsorption of Basic Violet 14 from aqueous solutions. The equilibrium data were analyzed by the Langmuir and Freundlich isotherms and fitted well with the Langmuir model. The pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to evaluate the kinetic data and the pseudo-second-order kinetics was the best with good correlation.

  7. Study of malachite green adsorption by organically modified clay using a batch method

    NASA Astrophysics Data System (ADS)

    Arellano-Cárdenas, Sofía; López-Cortez, Socorro; Cornejo-Mazón, Maribel; Mares-Gutiérrez, Juan Carlos

    2013-09-01

    The adsorption of toxic dye malachite green from aqueous effluents by organically modified clay was studied in a batch system. The organoclay (OC) used was prepared by the intercalation of cationic surfactant hexadecyltrimethylammonium bromide in a Mexican montmorillonite. The effects of initial dye concentration, temperature, pH, and contact time were investigated. The OC showed a high dye removal (99.6%) from an initial dye concentration of 60 mg L-1 at pH 6 and 25 °C. The adsorption capacity was independent of pH and increased with the temperature. Equilibrium data were well fitted by Langmuir adsorption model. The rate of sorption was adjusted to a pseudo second-order kinetic model.

  8. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  9. Adsorption-desorption behavior of thiram onto humic acid.

    PubMed

    Filipe, O M S; Vidal, M M; Duarte, A C; Santos, E B H

    2009-06-10

    The adsorption/desorption behavior of pure thiram (Thi-P) and formulated thiram (Thi-F) onto commercial humic acids (HA) was studied using a batch equilibration procedure. Results of adsorption kinetic experiments showed that thiram adsorption is a fast process since 85% of the equilibrium concentration is reached within two hours. Experimental K(D) values between 0.110 to 0.210 L g(-1) were obtained for the adsorption of both Thi-P and Thi-F onto HA, suggesting that thiram is strongly sorbed by humic acids. In general, for both Thi-P and Thi-F, the lower the initial thiram concentration, the stronger is its adsorption (higher K(D) and percentage adsorption values). The adsorption isotherms were found to match the BET model. The results show that thiram adsorption onto condensed humic acids cannot be explained only in terms of specific interactions, such as those identified in studies of adsorption of thiram with humic acids in solution. The comparison of sorption and desorption results allowed the observation of hysteresis phenomena. Desorption K(D) values were consistently higher than those for adsorption at the same equilibrium concentration. Hysteresis was lower for the formulated thiram suggesting that adsorption is more reversible in the presence of the formulation components turning the pesticide more susceptible to be leached.

  10. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    SciTech Connect

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-03-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested.

  11. Salt Concentration Effects on Equilibrium Melting Curves from DNA Microarrays

    PubMed Central

    Fuchs, J.; Fiche, J.-B.; Buhot, A.; Calemczuk, R.; Livache, T.

    2010-01-01

    DNA microarrays find applications in an increasing number of domains where more quantitative results are required. DNA being a charged polymer, the repulsive interactions between the surface of the microarray and the targets in solution are increasing upon hybridization. Such electrostatic penalty is generally reduced by increasing the salt concentration. In this article, we present equilibrium-melting curves obtained from dedicated physicochemical experiments on DNA microarrays in order to get a better understanding of the electrostatic penalty incurred during the hybridization reaction at the surface. Various salt concentrations have been considered and deviations from the commonly used Langmuir adsorption model are experimentally quantified for the first time in agreement with theoretical predictions. PMID:20858434

  12. Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method.

    PubMed

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2014-09-01

    In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques. Under batch equilibrium mode, a systematic study was performed to optimize the various equilibrium parameters viz., contact time, pH, dosage, initial concentration of oil, and temperature. The adsorption process reached equilibrium at 40 min of contact time and the percentage removal of oil was found to be higher (90%) in the acidic medium. The Freundlich and Langmuir models were applied to describe the equilibrium isotherms and the isotherm constants were calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to find out the nature of the sorption mechanism. The kinetic studies were investigated with reaction-based and diffusion-based models. The suitable mechanism for the removal of oil has been established.

  13. Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes.

    PubMed

    Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo

    2013-01-01

    The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH < 5, but decreased at pH ≥ 5. The presence of C60(C(COOH)2)n inhibited the adsorption of Cu(II) onto oMWCNTs at pH 4-6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well.

  14. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  15. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  16. Adsorption of oxygen onto zeolites at pressures up to 15 MPa

    NASA Astrophysics Data System (ADS)

    Helvensteijn, Bernardus P.; Wang, Yu; Levan, Douglas; Luna, Bernadette; Kashani, Ali

    2012-06-01

    For NASA applications, high-pressure oxygen is an integral part of portable life support systems (PLSSs) for Extravehicular Activities (EVAs), some fuel cell systems and potential In Situ Resource Utilization (ISRU) systems. New high-pressure oxygen generation systems will be needed on the International Space Station (to enable EVAs after the Shuttle is retired), on a Lunar Lander (to use lower pressure cryogenic tanks as a source of high pressure oxygen for EVAs) and on a planetary habitat (to generate and store high pressure oxygen for extended periods of time). One of the candidate technologies for producing high-pressure oxygen, temperature swing adsorption (TSA) compression, offers many advantages but has a low technology readiness level. Evaluation of technical feasibility and safety issues, and specification of operating parameters of the compressor require the availability of fundamental equilibrium adsorption data. A cryogenic, highpressure volumetric equilibrium adsorption apparatus has been developed at NASA Ames Research Center to facilitate collection of the needed data. The apparatus incorporates cryogenic and vacuum surrounds, and a high-pressure oxygen circuit. In this paper, lowtemperature equilibrium isotherms of oxygen on various sorbent materials are presented. The data presented will aid the development of a space qualified TSA system

  17. Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons.

    PubMed

    Calisto, Vânia; Ferreira, Catarina I A; Oliveira, João A B P; Otero, Marta; Esteves, Valdemar I

    2015-04-01

    This work describes the single adsorption of seven pharmaceuticals (carbamazepine, oxazepam, sulfamethoxazole, piroxicam, cetirizine, venlafaxine and paroxetine) from water onto a commercially available activated carbon and a non-activated carbon produced by pyrolysis of primary paper mill sludge. Kinetics and equilibrium adsorption studies were performed using a batch experimental approach. For all pharmaceuticals, both carbons presented fast kinetics (equilibrium times varying from less than 5 min to 120 min), mainly described by a pseudo-second order model. Equilibrium data were appropriately described by the Langmuir and Freundlich isotherm models, the last one giving slightly higher correlation coefficients. The fitted parameters obtained for both models were quite different for the seven pharmaceuticals under study. In order to evaluate the influence of water solubility, log Kow, pKa, polar surface area and number of hydrogen bond acceptors of pharmaceuticals on the adsorption parameters, multiple linear regression analysis was performed. The variability is mainly due to log Kow followed by water solubility, in the case of the waste-based carbon, and due to water solubility in the case of the commercial activated carbon.

  18. Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials.

    PubMed

    Agarwal, Shilpi; Sadeghi, Nima; Tyagi, Inderjeet; Gupta, Vinod Kumar; Fakhri, Ali

    2016-09-15

    Graphene quantum dots have been synthesized using the microwave-assisted hydrothermal route. The surface textural and morphological structure of synthesized adsorbent i.e. graphene quantum dots was analyzed using various analytical techniques such as X-ray diffraction, Transmission electron Microscopy, Atomic Force Microscopy and N2 adsorption-desorption instrumental techniques. The application of graphene quantum dots as an adsorbent for the removal of noxious pesticide compound i.e. oxamyl from aqueous solutions was well investigated and elucidated. The impact of several effective parameters such as effect of agitation speed, pH, adsorbent dose, contact time, temperature and initial concentration on sorption efficiency was studied and optimized using batch adsorption experiments. The optimized pH for maximum oxamyl adsorption was found to be 8.0 and for the maximum adsorption rates the adsorbent dose of 0.6g was found to be optimum to carry out the adsorption with in less than 25min of contact time. From the results obtained, it is clear that for all contact times, an increase in oxamyl concentration resulted in increase in the percent oxamyl removal. The adsorption equilibrium and kinetic data were well fitted and found to be in good agreement with the Langmuir isotherm and pseudo-second-order kinetic model. PMID:27362399

  19. Adsorptive removal of nickel(II) ions from aqueous environment: A review.

    PubMed

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-09-01

    Among various methods adsorption can be efficiently employed for the treatment of heavy metal ions contaminated wastewater. In this context the authors reviewed variety of adsorbents used by various researchers for the removal of nickel(II) ions from aqueous environment. One of the objectives of this review article is to assemble the scattered available enlightenment on a wide range of potentially effective adsorbents for nickel(II) ions removal. This work critically assessed existing knowledge and research on the uptake of nickel by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. In addition, the equilibrium adsorption isotherms, kinetics and thermodynamics data as well as various optimal experimental conditions (solution pH, equilibrium contact time and dosage of adsorbent) of different adsorbents towards Ni(II) ions were also analyzed. It is evident from a literature survey of more than 190 published articles that agricultural solid waste materials, natural materials and biosorbents have demonstrated outstanding adsorption capabilities for Ni(II) ions. PMID:27149285

  20. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  1. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  2. Shape characteristics of equilibrium and non-equilibrium fractal clusters

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.; Douglas, Jack F.

    2013-07-01

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  3. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization.

    PubMed

    Sokker, H H; El-Sawy, Naeem M; Hassan, M A; El-Anadouli, Bahgat E

    2011-06-15

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model.

  4. Preparation, Characterization and Application of Magnetic Fe3O4-CS for the Adsorption of Orange I from Aqueous Solutions

    PubMed Central

    Du, Yankai; Pei, Meishan; He, Youjun; Yu, Faqi; Guo, Wenjuan; Wang, Luyan

    2014-01-01

    Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50–150 mg L−1 at pH 2.0. The maximum adsorption amount was 183.2 mg g−1 and was obtained at an initial concentration of 400 mg L−1 at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R2 = 0.9995) and pseudo-second-order model (R2 = 0.9561) offered the better fits. PMID:25271644

  5. Optimization of an adsorption process for tetrafluoroborate removal by zirconium (IV)-loaded orange waste gel from aqueous solution.

    PubMed

    Pangeni, Bimala; Paudyal, Hari; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Harada, Hiroyuki; Biswas, Biplob Kumar; Alam, Shafiq

    2012-01-01

    This investigation provides new insights into the effective removal of tetrafluoroborate (BF4-) by means of bio-sorption on waste generated in the orange juice industry. It was undertaken to evaluate the feasibility of zirconium (IV)-loaded saponified orange waste gel for BF4- removal from an aqueous solution. Batch adsorption experiments were carried out to study the influence of various factors such as pH, presence of competing anions, contact time, initial BF4- concentration and temperature on the adsorption of BF4-. The optimum BF4- removal was observed in the equilibrium pH region 2-3. The presence of coexisting anions showed no adverse effect on BF4- removal except SO4(2-). The equilibrium data at different temperatures were reasonably interpreted by the Langmuir adsorption isotherm and the maximum adsorption capacities were evaluated as 2.65, 3.28, 3.87 and 4.77 mmol g(-1) at 293, 298, 303 and 313 K, respectively. Thermodynamic parameters such as deltaGo, deltaHo and deltaSo indicated that the nature of BF4- adsorption is spontaneous and endothermic. The results obtained from this study demonstrate the potential usability of orange waste after juicing as a good BF4- selective adsorbent. PMID:22720408

  6. Phosphate-ion-adsorption capability of granulated boehmite fabricated using organic binder (polyethylene terephthalate).

    PubMed

    Ogata, Fumihiko; Ueda, Ayaka; Kawasaki, Naohito

    2013-01-01

    We investigated a method for producing granulated boehmite (BE) by using an organic binder and measured its phosphate-ion-adsorption capacity. BE was granulated using polyethylene terephthalate (PET), and its structure was characterized by scanning electron microscopy and X-ray diffraction analyses. The properties of granulated BE such as specific surface area, mean pore diameter, pore volume, amount of hydroxyl groups, and solution pH were also investigated. Furthermore, adsorption isotherm; effects of contact time, temperature, and solution pH on phosphate-ion adsorption; and recovery of phosphate ions (using sodium hydroxide solution) were evaluated. BE granulated by PET (BE-PET30S) could be successfully used for phosphate-ion removal by adsorption. The specific surface area and amount of hydroxyl groups of BE-PET30S were found to be 119.8 m²/g and 1.4 mmol/g, respectively. Granulated BEs reached equilibrium adsorption capacities within 24 h. The phosphate-ion-adsorption rate data were fitted to the pseudo-second-order kinetic model (r=0.981-0.998). The adsorption isotherm data were fitted to both the Freundlich (0.987-0.989) and Langmuir (0.905-0.944) equations. Based on the thermodynamic study, it was found that the phosphate-ion adsorption by granulated BEs is a spontaneous and exothermic process. The phosphate ions adsorbed onto BE-PET30S could be easily recovered by using a sodium hydroxide solution (1-1000 mmol/L) and their recovery percentage was found to be between 63.3% and 94.0%. The results obtained from this study could be useful for recovering phosphate ions and preventing problems related to water pollution.

  7. Use of combined coagulation-adsorption process as pretreatment of landfill leachate

    PubMed Central

    2013-01-01

    Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of stabilized and fresh leachate were examined. Coagulation process was examined by using alum and ferric chloride. A low cost adsorbent, fly ash was used for adsorption studies. Coagulation studies were carried out for fresh and stabilized leachate. Adsorption studies have been conducted for alum pre-treated stabilized leachate. Effect of coagulant dose, adsorbent dose, pH and contact time were carried out. The effective optimum coagulant dosages were 0.6 g/L and 0.7 g/L for alum and ferric chloride respectively for stabilized leachate and incase of fresh leachate 0.8 g/L and 0.6 g/L for alum and ferric chloride respectively. For the alum pretreated stabilized leachate, the maximum COD removal is 28% using fly ash adsorbent with equilibrium time of 210 min and optimum dose of 6 g/L. Overall COD removal efficiency of 82% was obtained by coagulation using alum and adsorption using fly ash for stabilized leachate. The results obtained showed that combined coagulation and adsorption process can be used effectively for stabilized leachate treatment. PMID:23517661

  8. Preparation and characterization of a lipoid adsorption material and its atrazine removal performance.

    PubMed

    Chen, Zhiqiang; Wen, Qinxue; Lian, Jiaxiang; Ren, Nanqi

    2011-01-01

    A novel adsorbent named lipoid adsorption material (LAM), with a hydrophobic nucleolus (triolein) and a hydrophilic membrane structure (polyamide), was synthesized to remove hydrophobic organic chemicals (HOCs) from solution. Triolein, a type of lipoid, was entrapped by the polyamide membrane through an interfacial polymerization reaction. The method of preparation and the structure of the LAM were investigated and subsequent experiments were conducted to determine the characteristics of atrazine (a type of HOC) removal from wastewater using LAM as the adsorbent. The results showed that LAM had a regular structure compared with the prepolymer, where compact particles were linked with each other and openings were present in the structure of the LAM in which the fat drops formed from triolein were entrapped. In contrast to the atrazine adsorption behavior of powdered activated carbon (PAC), LAM showed a persistent adsorption capacity for atrazine when initial concentrations of 0.57, 1.12, 8.31 and 19.01 mg/L were present, and the equilibrium time was 12 hr. Using an 8 mg/L initial concentration of atrazine as an indicator of HOCs in aqueous solution, experiments on the adsorption capacity of the LAM showed 69.3% removal within 6-12 hr contact time, which was close to the 75.5% removal of atrazine by PAC. Results indicated that LAM has two atrazine removal mechanisms, namely the bioaccumulation of atrazine by the nucleous material and physical adsorption to the LAM membrane. Bioaccumulation was the main removal mechanism. PMID:22128536

  9. Arsenic removal from real-life groundwater by adsorption on laterite soil.

    PubMed

    Maji, Sanjoy Kumar; Pal, Anjali; Pal, Tarasankar

    2008-03-01

    The adsorption characteristics of arsenic on laterite soil, a low-cost natural adsorbent, were studied in the laboratory scale using real-life sample. The studies were conducted by both batch and continuous mode. Laterite soil was found to be an efficient adsorbent for arsenic removal from the groundwater collected from arsenic affected area. The initial concentration of arsenic in the sample was 0.33 ppm. Under optimized conditions the laterite soil could remove up to 98% of total arsenic. The optimum adsorbent dose was 20 g/l and the equilibrium time was 30 min. Isotherm studies showed that the process is favorable and spontaneous. The kinetics showed that the removal of arsenic by laterite soil is a pseudo-second-order reaction. In the column study the flow rate was maintained at 1.49 m3/(m2 h). Using 10 cm column depth, the breakthrough and exhaust time found were 6.75 h and 19.0 h, respectively. Height of adsorption zone was 9.85 cm, the rate at which the adsorption zone was moving through the bed was 0.80 cm/h, and the percentage of the total column saturated at breakthrough was 47.12%. The value of adsorption rate coefficient (K) and the adsorption capacity coefficient (N) were 1.21 l/(mgh) and 69.22 mg/l, respectively. Aqueous NaOH (1 M) could regenerate the adsorbent, and the regenerated adsorbent showed higher efficiency. PMID:17658682

  10. Arsenic removal from real-life groundwater by adsorption on laterite soil.

    PubMed

    Maji, Sanjoy Kumar; Pal, Anjali; Pal, Tarasankar

    2008-03-01

    The adsorption characteristics of arsenic on laterite soil, a low-cost natural adsorbent, were studied in the laboratory scale using real-life sample. The studies were conducted by both batch and continuous mode. Laterite soil was found to be an efficient adsorbent for arsenic removal from the groundwater collected from arsenic affected area. The initial concentration of arsenic in the sample was 0.33 ppm. Under optimized conditions the laterite soil could remove up to 98% of total arsenic. The optimum adsorbent dose was 20 g/l and the equilibrium time was 30 min. Isotherm studies showed that the process is favorable and spontaneous. The kinetics showed that the removal of arsenic by laterite soil is a pseudo-second-order reaction. In the column study the flow rate was maintained at 1.49 m3/(m2 h). Using 10 cm column depth, the breakthrough and exhaust time found were 6.75 h and 19.0 h, respectively. Height of adsorption zone was 9.85 cm, the rate at which the adsorption zone was moving through the bed was 0.80 cm/h, and the percentage of the total column saturated at breakthrough was 47.12%. The value of adsorption rate coefficient (K) and the adsorption capacity coefficient (N) were 1.21 l/(mgh) and 69.22 mg/l, respectively. Aqueous NaOH (1 M) could regenerate the adsorbent, and the regenerated adsorbent showed higher efficiency.

  11. Equation of state and adsorption dynamics of soft microgel particles at an air-water interface.

    PubMed

    Deshmukh, Omkar S; Maestro, Armando; Duits, Michel H G; van den Ende, Dirk; Stuart, Martien Cohen; Mugele, Frieder

    2014-09-28

    Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly (N-isopropylacrylamide) (PNIPAM) microgel particles adsorbed onto an air-water interface using a Langmuir film balance. We detect a finite surface pressure at very low surface concentration of particles, for which standard theories based on hard disk models predict negligible pressures, implying that the particles must deform strongly upon adsorption to the interface. Furthermore, we study the evolution of the surface pressure due to the adsorption of PNIPAM particles as a function of time using pendant drop tensiometry. The equation of state determined in the equilibrium measurements allows us to extract the adsorbed amount as a function of time. We find a mixed-kinetic adsorption that is initially controlled by the diffusion of particles towards the interface. At later stages, a slow exponential relaxation indicates the presence of a coverage-dependent adsorption barrier related to crowding of particles at the interface. PMID:24954112

  12. Adsorption-desorption of tricyclazole: effect of soil types and organic matter.

    PubMed

    Kumar, Naveen; Mukherjee, Irani; Varghese, Eldho

    2015-03-01

    Adsorption-desorption of tricyclazole was studied by batch equilibrium method in two soil types, varying in their physical and chemical properties. The adsorption of tricyclazole on the soil matrix exhibited low rate of accumulation with 18.24 ± 0.14 % in Ultisol and moderately high rate with 43.62 ± 0.14 % in Vertisol after 6 h of equilibrium time. For soils amended with farmyard manure (FYM), the adsorption percentage increased to 32.52 ± 0.14 % in Ultisol and 55.14 ± 0.14 % in Vertisol. The Freundlich model was used to describe the adsorption-desorption of the tricyclazole in two soils. The adsorption isotherm suggested a relatively higher affinity of tricyclazole to the adsorption sites at low equilibrium concentrations. Variation in sorption affinities of the soils as indicated by the distribution coefficient (K d) for sorption in the range of 0.78 ± 0.01-1.38 ± 0.03, 1.71 ± 0.03-2.99 ± 0.09, 2.75 ± 0.05-4.69 ± 0.01, and 4.65 ± 0.08-7.64 ± 0.01 mL/g for Ultisol, FYM-amended Ultisol, Vertisol, and FYM-amended Vertisol, respectively. Desorption was slower than adsorption, indicating a hysteresis effect. The hysteresis coefficient varied from 0.023 ± 0.15 to 0.160 ± 0.12 in two test soils. A good fit to the linear and Freundlich isotherms was observed with correlation coefficients >0.96. The results revealed that adsorption-desorption was influenced by soil properties and showed that the maximum sorption and minimum desorption of pesticide were observed in soils with higher organic carbon and clay content. Thus, groundwater contamination may be minimized, on application of tricyclazole in high-sorption soils of rice-growing regions. PMID:25647794

  13. Adsorption-desorption of tricyclazole: effect of soil types and organic matter.

    PubMed

    Kumar, Naveen; Mukherjee, Irani; Varghese, Eldho

    2015-03-01

    Adsorption-desorption of tricyclazole was studied by batch equilibrium method in two soil types, varying in their physical and chemical properties. The adsorption of tricyclazole on the soil matrix exhibited low rate of accumulation with 18.24 ± 0.14 % in Ultisol and moderately high rate with 43.62 ± 0.14 % in Vertisol after 6 h of equilibrium time. For soils amended with farmyard manure (FYM), the adsorption percentage increased to 32.52 ± 0.14 % in Ultisol and 55.14 ± 0.14 % in Vertisol. The Freundlich model was used to describe the adsorption-desorption of the tricyclazole in two soils. The adsorption isotherm suggested a relatively higher affinity of tricyclazole to the adsorption sites at low equilibrium concentrations. Variation in sorption affinities of the soils as indicated by the distribution coefficient (K d) for sorption in the range of 0.78 ± 0.01-1.38 ± 0.03, 1.71 ± 0.03-2.99 ± 0.09, 2.75 ± 0.05-4.69 ± 0.01, and 4.65 ± 0.08-7.64 ± 0.01 mL/g for Ultisol, FYM-amended Ultisol, Vertisol, and FYM-amended Vertisol, respectively. Desorption was slower than adsorption, indicating a hysteresis effect. The hysteresis coefficient varied from 0.023 ± 0.15 to 0.160 ± 0.12 in two test soils. A good fit to the linear and Freundlich isotherms was observed with correlation coefficients >0.96. The results revealed that adsorption-desorption was influenced by soil properties and showed that the maximum sorption and minimum desorption of pesticide were observed in soils with higher organic carbon and clay content. Thus, groundwater contamination may be minimized, on application of tricyclazole in high-sorption soils of rice-growing regions.

  14. Kinetic and thermodynamic investigations of Pb(II) and Cd(II) adsorption on nanoscale organo-functionalized SiO₂-Al₂O₃.

    PubMed

    Jazi, M Boroumand; Arshadi, M; Amiri, M J; Gil, A

    2014-05-15

    This paper reports the preparation of three new Schiff base ligands modified SiO2-Al2O3 mixed oxide adsorbents, and their use for removal of Pb(II) and Cd(II) from aqueous solutions. Equilibrium and kinetic models for Pb(II) and Cd(II) sorption were applied by considering the effect of the contact time, initial Pb(II) and Cd(II) concentrations, effect of temperature, and initial pH. The contact time to attain equilibrium for maximum adsorption was 120 min. These heterogeneous Schiff base ligands were found to be effective adsorbents for the removal of heavy metal ions from solution, with Si/Al-pr-NH-et-N=pyridine-2-carbaldehyde having a high adsorption capacity for Pb(II) and Cd(II) ions from aqueous solution. The adsorption of heavy metal ions has been studied in terms of pseudo-first- and -second-order kinetics, and the Freundlich, Langmuir and Langmuir-Freundlich isotherms models have also been used to the equilibrium adsorption data. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, confirming chemical sorption as the rate-limiting step of adsorption mechanisms and not involving mass transfer in solution, which were confirmed by techniques of DS UV-vis and FT-IR. The thermodynamic parameters (ΔG, ΔH and ΔS) indicated that the adsorption of Pb(II) and Cd(II) ions were feasible, spontaneous and endothermic between 25 and 80°C. PMID:24655823

  15. [Preparation, characterization and adsorption performance of mesoporous activated carbon with acidic groups].

    PubMed

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Zhang, Yu-Xuan

    2013-06-01

    Mesoporous activated carbons containing acidic groups were prepared with cotton stalk based fiber as raw materials and H3PO4 as activating agent by one step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on the yield, elemental composition, oxygen-containing acid functional groups and adsorptive capacity of activated carbon were studied. The adsorption capacity of the prepared activated carbon AC-01 for p-nitroaniline and Pb(II) was studied, and the adsorption mechanism was also suggested according to the equilibrium experimental results. The maximum yield of activated carbons prepared from cotton stalk fiber reached 35.5% when the maximum mesoporous volume and BET surface area were 1.39 cm3 x g(-1) and 1 731 m2 x g(-1), respectively. The activated carbon AC-01 prepared under a H3 PO4/precursor ratio of 3:2 and activated at 900 degrees C for 90 min had a total pore volume of 1.02 cm3 x g(-1), a micoporous ratio of 31%, and a mesoporous ratio of 65%. The pore diameter of the mesoporous activated carbon was mainly distributed in the range of 2-5 nm. The Langmuir maximum adsorption capacities of Pb(II) and p-nitroaniline on cotton stalk fiber activated carbon were 123 mg x g(-1) and 427 mg x g(-1), respectively, which were both higher than those for commercial activated carbon fiber ACF-CK. The equilibrium adsorption experimental data showed that mesopore and oxygen-containing acid functional groups played an important role in the adsorption. PMID:23947073

  16. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    NASA Astrophysics Data System (ADS)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2015-11-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square (χ 2) and normalized standard deviation (Δq). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity (Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression (R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆H° (+50.27848 kJ mol-1), standard entropy change ∆S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  17. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  18. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation. PMID:26849187

  19. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation.

  20. Non-equilibrium diffusion combustion of a fuel droplet

    NASA Astrophysics Data System (ADS)

    Tyurenkova, Veronika V.

    2012-06-01

    A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.

  1. Modelling transient heat conduction in solids at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach

    SciTech Connect

    Jolley, Kenny; Gill, Simon P.A.

    2009-10-20

    A method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics simulations is presented. The method is simple to implement into a conventional molecular dynamics code and independent of the atomistic model employed. It works by regulating the temperature in a thermostatted boundary region by feedback control to achieve the desired temperature at the edge of an inner region where the true atomistic dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilibrium molecular dynamics simulations. Three thermostats are investigated: the global deterministic Nose-Hoover thermostat and two local stochastic thermostats, Langevin and stadium damping. The latter thermostat is introduced to avoid the adverse reflection of phonons that occurs at an abrupt interface. The method is then extended to allow atomistic/continuum models to be thermally coupled concurrently for the analysis of large steady state and transient heat conduction problems. The effectiveness of the algorithm is demonstrated for the example of heat flow down a three-dimensional atomistic rod of uniform cross-section subjected to a variety of boundary conditions.

  2. Removal of mixed pesticides from aqueous solutions using organoclays: evaluation of equilibrium and kinetic model.

    PubMed

    Saha, Ajoy; Ahammed Shabeer Tp; Gajbhiye, V T; Gupta, Suman; Kumar, Rajesh

    2013-07-01

    Removal of mixed pesticides, namely alachlor, metolachlor, chlorpyriphos, fipronil, α-endosulfan, β-endosulfan, p,p'-DDT and two metabolites p,p'-DDE and endosulfan sulphate from aqueous solution by batch adsorption onto three commercial organo-modified montmorillonite clays [modified with octadecylamine (ODA-M), modified with dimethyl- dialkylamine (DMDA-M) and modified with octadecylamine and aminopropyltriethoxysilane (ODAAPS-M)] were investigated. Effect of process variables, mainly contact time and initial concentration of mixed pesticides, on adsorption phenomenon were evaluated. To understand the adsorption kinetic pseudo-first-order and pseudo-second-order models were tested. The pseudo-second-order model provided the best fit for explaining adsorption kinetics, on the basis of high correlation coefficient (r) and normalized percent deviation values. The adsorption equilibrium was explained by the Freundlich isotherm (r = 0.951-0.992). High values (0.17-0.52 mg g⁻¹) of Freundlich constant (K(f)) indicated higher affinity of pesticides towards all three organoclays, as a result of hydrophobic interaction between the adsorbent/adsorbate systems. Pesticides with high octanol-water partition coefficient (K(ow)) and low water solubility showed faster adsorption with higher K(f) values as compared to the pesticides with low K(ow) and high water solubility. The order of organoclays for removal efficiency of mixed pesticide was ODAAPS-M > DMDA-M > ODA-M. These findings may find application to decontaminate or treat mixed pesticide contaminated industrial/agricultural waste waters. PMID:23728289

  3. Removal of mixed pesticides from aqueous solutions using organoclays: evaluation of equilibrium and kinetic model.

    PubMed

    Saha, Ajoy; Ahammed Shabeer Tp; Gajbhiye, V T; Gupta, Suman; Kumar, Rajesh

    2013-07-01

    Removal of mixed pesticides, namely alachlor, metolachlor, chlorpyriphos, fipronil, α-endosulfan, β-endosulfan, p,p'-DDT and two metabolites p,p'-DDE and endosulfan sulphate from aqueous solution by batch adsorption onto three commercial organo-modified montmorillonite clays [modified with octadecylamine (ODA-M), modified with dimethyl- dialkylamine (DMDA-M) and modified with octadecylamine and aminopropyltriethoxysilane (ODAAPS-M)] were investigated. Effect of process variables, mainly contact time and initial concentration of mixed pesticides, on adsorption phenomenon were evaluated. To understand the adsorption kinetic pseudo-first-order and pseudo-second-order models were tested. The pseudo-second-order model provided the best fit for explaining adsorption kinetics, on the basis of high correlation coefficient (r) and normalized percent deviation values. The adsorption equilibrium was explained by the Freundlich isotherm (r = 0.951-0.992). High values (0.17-0.52 mg g⁻¹) of Freundlich constant (K(f)) indicated higher affinity of pesticides towards all three organoclays, as a result of hydrophobic interaction between the adsorbent/adsorbate systems. Pesticides with high octanol-water partition coefficient (K(ow)) and low water solubility showed faster adsorption with higher K(f) values as compared to the pesticides with low K(ow) and high water solubility. The order of organoclays for removal efficiency of mixed pesticide was ODAAPS-M > DMDA-M > ODA-M. These findings may find application to decontaminate or treat mixed pesticide contaminated industrial/agricultural waste waters.

  4. Adsorption and excess fission xenon

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1982-01-01

    The adsorption of Xe and Kr on lunar soil 10084 was measured by a method that employs only very low fractions of monolayer coverage. Results are presented as parameters for calculation of the Henry constant for adsorption as a function of temperature. The adsorption potentials are about 3 kcal/mole for Kr and 5 kcal/mole for Xe; heating the sample in vacuum increased the Xe potential to nearly 7 kcal/mole. Henry constants at the characteristic lunar temperature are about 0.3 cu cm STP/g-atm. These data were applied to consider whether adsorption is important in producing the excess fission Xe effect characteristic of highland breccias. Sorption equilibrium with a transient lunar atmosphere vented fission Xe produces concentrations seven orders of magnitude lower than observed concentrations. Higher concentrations result because of the resistance of the regolith to upward diffusion of Xe. A diffusion coefficient of 0.26 sq cm/sec is estimated for this process.

  5. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  6. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  7. How Far from Equilibrium Is Active Matter?

    PubMed

    Fodor, Étienne; Nardini, Cesare; Cates, Michael E; Tailleur, Julien; Visco, Paolo; van Wijland, Frédéric

    2016-07-15

    Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.

  8. How Far from Equilibrium Is Active Matter?

    NASA Astrophysics Data System (ADS)

    Fodor, Étienne; Nardini, Cesare; Cates, Michael E.; Tailleur, Julien; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.

  9. PDMS compound adsorption in context.

    PubMed

    Li, Nianzhen; Schwartz, Michael; Ionescu-Zanetti, Cristian

    2009-02-01

    Soft lithography of polydimethylsiloxane (PDMS), an elastomeric polymer, has enabled rapid and inexpensive fabrication of microfluidic devices for various biotechnology applications. However, concerns remain about adsorption of compounds on PDMS surfaces because of its porosity and hydrophobicity. Here, the adsorption of 2 small fluorescent dyes of different hydrophobicity (calcein and 5- (and 6-)carboxytetramethylrhodamine (TMR)) on PDMS surface has been systematically characterized, and PDMS adsorption has been compared with 2 traditional substrates: glass and polystyrene. To characterize adsorption in a regimen that is more relevant to microfluidic applications, the adsorption and desorption of the 2 compounds in PDMS microfluidic channels under flow conditions were also studied. Results showed that there was minimal adsorption of the hydrophilic compound calcein on PDMS, whereas the more hydrophobic TMR adsorbed on PDMS up to 4 times of that on glass or polystyrene. Under flow conditions, the desorption profiles and times needed to drop desorbed compound concentrations to negligible levels (desorption time constant, 10-42 s) were characterized. In the worst case scenario, after a 4-min exposure to TMR, 4 min of continuous wash resulted in compound concentrations in the microchannels to drop to values below 2 x 10(- 5) of the initial concentration.

  10. Metal adsorption on mosses: Toward a universal adsorption model.

    PubMed

    González, A G; Pokrovsky, O S

    2014-02-01

    This study quantifies the adsorption of heavy metals on 4 typical moss species used for environmental monitoring in the moss bag technique. The adsorption of Cu(2+), Cd(2+), Ni(2+), Pb(2+) and Zn(2+) onto Hypnum sp., Sphagnum sp., Pseudoscleropodium purum and Brachytecium rutabulum has been investigated using a batch reactor in a wide range of pH (1.3-11.0) and metal concentrations in solution (1.6μM-3.8mM). A Linear Programming Model (LPM) was applied for the experimental data to derive equilibrium constants and the number of surface binding sites. The surface acid-base titration performed for 4 mosses at a pH range of 3-10 in 0.1M NaNO3 demonstrated that Sphagnum sp. is the most efficient adsorbent as it has the maximal number of proton-binding sites on the surface (0.65mmol g(-1)). The pKa computed for all the moss species suggested the presence of 5 major functional groups: phosphodiester, carboxyl, phosphoryl, amine and polyphenols. The results of pH-edge experiments demonstrated that B. rutabulum exhibits the highest percentage of metal adsorption and has the highest number of available sites for most of the metals studied. However, according to the results of the constant pH "Langmuirian" isotherm, Sphagnum sp. can be considered as the strongest adsorbent, although the relative difference from other mosses is within 20%. The LPM was found to satisfactorily fit the experimental data in the full range of the studied solution parameters. The results of this study demonstrate a rather similar pattern of five metal adsorptions on mosses, both as a function of pH and as a metal concentration, which is further corroborated by similar values of adsorption constants. Therefore, despite the species and geographic differences between the mosses, a universal adsorption edge and constant pH adsorption isotherm can be recommended for 4 studied mosses. The quantitative comparison of metal adsorption with other common natural organic and inorganic materials demonstrates

  11. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  12. Regenerative Surface Plasmon Resonance (SPR) biosensor: real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins.

    PubMed

    Wang, Ran; Lajevardi-Khosh, Arad; Choi, Seokheun; Chae, Junseok

    2011-10-15

    Epidemiological studies suggest that elevated plasma fibrinogen levels are associated with an increased risk of cardiovascular disorders. Normal fibrinogen level is in the range of 1.5-4.5mg/mL, depending upon both genetic (intrinsic) and environmental (extrinsic) factors. An increase of 0.25mg/mL from the normal level can often be correlated with a high risk of cardiovascular disease. Thus, it is useful to monitor fibrinogen level in serum of a patient for clinical diagnosis. We report a regenerative biosensor that measures real-time fibrinogen levels in undiluted serum. The biosensor uses Surface Plasmon Resonance (SPR), highly sensitive optical technique. The biosensor does not use bio-receptors (i.e., antibodies, enzymes, DNA, etc.) unlike conventional biosensors, and deploys the nature of competitive adsorption of proteins to achieve selective detection of fibrinogen. We measured fibrinogen-spiked serum samples with a concentration of 1.5-4.5 mg/mL, and repeated six measurement trials to obtain statistical distribution of the measurements using the regeneration method of the sensing surface. The SPR biosensor has a sensitivity of 42 mDeg/(mg/mL) for a fibrinogen concentration in the range of 0.5-2.5 mg/mL, whereas it was hard to correlate the measurements to the spiked-fibrinogen samples of above 2.5 mg/mL.

  13. Detection of Nisin and Fibrinogen Adsorption on Poly(ethylene Oxide) Coated Polyurethane Surfaces by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

    PubMed Central

    Schilke, Karl F.; McGuire, Joseph

    2011-01-01

    Stable, pendant polyethylene oxide (PEO) layers were formed on medical-grade Pellethane® and Tygon® polyurethane surfaces, by adsorption and gamma-irradiation of PEO-polybutadiene-PEO triblock surfactants. Coated and uncoated polyurethanes were challenged individually or sequentially with nisin (a small polypeptide with antimicrobial activity) and/or fibrinogen, and then analyzed with time-of-flight secondary ion mass spectrometry (TOF-SIMS). Data reduction by robust principal components analysis (PCA) allowed detection of outliers, and distinguished adsorbed nisin and fibrinogen. Fibrinogen-contacted surfaces, with or without nisin, were very similar on uncoated polymer surfaces, consistent with nearly complete displacement or coverage of previously-adsorbed nisin by fibrinogen. In contrast, nisin-loaded PEO layers remained essentially unchanged upon challenge with fibrinogen, suggesting that the adsorbed nisin is stabilized within the pendant PEO layer, while the peptide-loaded PEO layer retains its ability to repel large proteins. Coatings of PEO loaded with therapeutic polypeptides on medical polymers have the potential to be used to produce anti-fouling and biofunctional surfaces for implantable or blood-contacting devices. PMID:21440897

  14. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    NASA Astrophysics Data System (ADS)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  15. Interpretation of dynamic frontal analysis data in solid/supercritical fluid adsorption systems. I: theory.

    PubMed

    Gritti, Fabrice; Tarafder, Abhijit; Guiochon, Georges

    2013-05-17

    A theory is proposed to relate the elution times of the adsorption front shocks of breakthrough curves recorded during classical dynamic frontal analysis (FA) experiments with selected compounds and their adsorption isotherms in solid/supercritical fluid adsorption systems. The actual density and viscosity of binary mixtures of CO2 and methanol were obtained from the NIST REPPROP software. Diluted solutions of S-naproxen were considered (<2% in mass) but the possible effects of the analyte concentration on the viscosity and the density of the eluent percolating through the column were neglected. This allows the determination of the excess adsorption isotherm (or Gibbs excess isotherm) of the adsorbed analyte in the whole column at constant mass and volumetric flow rate of pure CO2 and of the modifier solution. A local Langmuir adsorption isotherm and a constant saturation capacity were assumed in the calculations. The variation of the adsorption-desorption constant with the eluent density was taken from the experimental variation of the retention factor of S-naproxen on a chiral column packed with Whelk-O1 particles. The results show that the isotherm parameters obtained from the best adjustment of the Langmuir model to the SFC excess adsorption data deviates by less than 7% from the assumed saturation capacity and from the average of the equilibrium constant along the chromatographic column. In practice, this conclusion holds true provided that the precision of the measurement of elution times of front shocks of breakthrough curves is better than 1% and that the maximum surface coverage qexp,max/qS is at least equal to 20%.

  16. Adsorption studies of chromium (VI) removal from water by lanthanum diethanolamine hybrid material.

    PubMed

    Mandal, Sandip; Sahu, Manoj Kumar; Giri, Anil Kumar; Patel, Raj Kishore

    2014-01-01

    In the present research work, lanthanum diethanolamine hybrid material is synthesized by co-precipitation method and used for the removal of Cr(VI) from synthetic dichromate solution and hand pump water sample. The sorption experiments were carried out in batch mode to optimize various influencing parameters such as adsorbent dose, contact time, pH, competitive anions and temperature. The characterization of the material and mechanism of Cr(VI) adsorption on the material was studied by using scanning electron microscope, Fourier transform infrared, X-ray diffraction, Brunauer-Emmett-Teller and thermogravimetric analysis-differential thermal analysis. Adsorption kinetics studies reveal that the adsorption process followed first-order kinetics and intraparticle diffusion model with correlation coefficients (R2) of 0.96 and 0.97, respectively. The adsorption data were best fitted to linearly transformed Langmuir isotherm with correlation coefficient (R2) of 0.997. The maximum removal of Cr(VI) is found to be 99.31% at optimal condition: pH = 5.6 of the solution, adsorbent dose of 8 g L(-1) with initial concentration of 10mgL(-1) of Cr(VI) solution and an equilibrium time of 50 min. The maximum adsorption capacity of the material is 357.1 mg g(-1). Thermodynamic parameters were evaluated to study the effect of temperature on the removal process. The study shows that the adsorption process is feasible and endothermic in nature. The value of E (260.6 kJ mol(-1)) indicates the chemisorption nature of the adsorption process. The material is difficult to be regenerated. The above studies indicate that the hybrid material is capable of removing Cr(VI) from water. PMID:24645464

  17. Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Karimaian, Kamal Aldin; Amrane, Abdeltif; Kazemian, Hossein; Panahi, Reza; Zarrabi, Mansur

    2013-11-01

    Natural and Mg2+ modified pumice were used for the removal of phosphorous. The adsorbents were characterized using XRF, XRD, SEM and FTIR instrumental techniques. In the optimal conditions, namely at equilibrium time (30 min), for a phosphorus concentration of 15 mg/L and pH 6, 69 and 97% phosphorus removals were achieved using 10 g/L of natural and modified pumice adsorbents, respectively. Maximum adsorption capacities were 11.88 and 17.71 mg/g by natural and modified pumice, respectively. Pseudo-second order kinetic model was the most relevant to describe the kinetic of phosphorus adsorption. External mass transfer coefficient decreased for increasing phosphorous concentration and film diffusion was found to be the rate-controlling step. Only a very low dissolution of the adsorbent was observed, leading to a low increase in conductivity and turbidity. Removal efficiency decreased for increasing ionic strength. It also decreased in the presence of competing ions; however modified pumice remained effective, since 67% of phosphorus was removed, versus only 17% for the natural pumice. The efficiency of the modified pumice was confirmed during the regeneration tests, since 96% regeneration yield was obtained after 510 min experiment, while only 22% was observed for the raw pumice.

  18. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon

    NASA Astrophysics Data System (ADS)

    Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R.

    2014-03-01

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L-1 SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g-1). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  19. Colloidal particle adsorption at liquid interfaces: capillary driven dynamics and thermally activated kinetics.

    PubMed

    Rahmani, Amir M; Wang, Anna; Manoharan, Vinothan N; Colosqui, Carlos E

    2016-08-14

    The adsorption of single colloidal microparticles (0.5-1 μm radius) at a water-oil interface has been recently studied experimentally using digital holographic microscopy [Kaz et al., Nat. Mater., 2012, 11, 138-142]. An initially fast adsorption dynamics driven by capillary forces is followed by an unexpectedly slow relaxation to equilibrium that is logarithmic in time and can span hours or days. The slow relaxation kinetics has been attributed to the presence of surface "defects" with nanoscale dimensions (1-5 nm) that induce multiple metastable configurations of the contact line perimeter. A kinetic model considering thermally activated transitions between such metastable configurations has been proposed [Colosqui et al., Phys. Rev. Lett., 2013, 111, 028302] to predict both the relaxation rate and the crossover point to the slow logarithmic regime. However, the adsorption dynamics observed experimentally before the crossover point has remained unstudied. In this work, we propose a Langevin model that is able to describe the entire adsorption process of single colloidal particles by considering metastable states produced by surface defects and thermal motion of the particle and liquid interface. Invoking the fluctuation dissipation theorem, we introduce a drag term that considers significant dissipative forces induced by thermal fluctuations of the liquid interface. Langevin dynamics simulations based on the proposed adsorption model yield close agreement with experimental observations for different microparticles, capturing the crossover from (fast) capillary driven dynamics to (slow) thermally activated kinetics. PMID:27373956

  20. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    NASA Astrophysics Data System (ADS)

    Qi, Wenfang; Zhao, Yingxin; Zheng, Xinyi; Ji, Min; Zhang, Zhenya

    2016-01-01

    A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich-Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g-1 at pH 1.0. The presence of Cl-, SO42- and PO43- would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO43- > SO42- > Cl-. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  1. Arsenic(III) Removal from Contaminated Water using Silica Ceramic: A Batch Adsorption Study

    NASA Astrophysics Data System (ADS)

    Salim, Md.; Munekage, Yukihiro; Naing, Kyaw Min

    The silica ceramic (S-K) has been used as a potential low-cost adsorbent for the removal of As(III) from contaminated water in batch studies. Results showed that an adsorbent dose at 90 g L1 could effectively remove 96% of As(III) from initial concentration of 0.5 mg L1 within 3 h. It was also reveled that As(III) uptake increased with increasing contact time and As(III) concentration decreased with increasing adsorbent dosage. It was observed that As(III) removal is relatively dependent on pH and temperature variations. High adsorption of As(III) was found at pH 7.5 and at 25°C. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. The Freundlich isotherm provided the best correlation for the adsorption of As(III) onto the silica ceramic. The maximum capacity of adsorption was found (qm) 1.1041 mg g1 at different concentrations at 40 g L1 fixed adsorption dosage. The results suggest that silica ceramic (S-K) is a potential adsorbent for removal As(III) ions effectively from contaminated water.

  2. Enhancing atrazine biodegradation by Pseudomonas sp. strain ADP adsorption to Layered Double Hydroxide bionanocomposites.

    PubMed

    Alekseeva, Tatiana; Prevot, Vanessa; Sancelme, Martine; Forano, Claude; Besse-Hoggan, Pascale

    2011-07-15

    To mimic the role of hydroxide minerals and their humic complex derivatives on the biodegradability of pesticides in soils, synthetic Mg(R)Al Layered Double Hydroxides (LDH) and Mg(R)Al modified by Humic substances (LDH-HA) were prepared for various R values (2, 3 and 4) and fully characterized. Adsorption properties of LDH and LDH-HA toward Pseudomonas sp. strain ADP were evaluated. The adsorption kinetics were very fast (<5 min to reach equilibrium). The adsorption capacities were greater than previously reported (13.5×10(11), 41×10(11) and 45.5×10(11) cells/gLDH for Mg(2)Al, Mg(3)Al and Mg(4)Al, respectively) and varied with both surface charge and textural properties. Surface modification by HA reduced the adsorption capacities of cells by 2-6-fold. Biodegradation kinetics of atrazine by Pseudomonas sp. adsorbed on both LDHs and LDH-HA complexes were measured for various solid/liquid ratios and adsorbed cell amounts. Biodegradation activity of bacterial cells was strongly boosted after adsorption on LDHs, the effect depending on the quantity and properties of the LDH matrix. The maximum biodegradation rate was obtained in the case of a 100 mg/mL Mg(2)Al LDH suspension (26 times higher than that obtained with cells alone). PMID:21596476

  3. [Adsorption behavior of copper ion and methylene blue on citric acid- esterified wheat straw].

    PubMed

    Sun, Jin; Zhong, Ke-Ding; Feng, Min; Liu, Xing-Yan; Gong, Ren-Min

    2008-03-01

    A cationic adsorbent with carboxyl groups derived from citric acid- esterified wheat straw (EWS) was prepared by the method of solid phase preparation, and a batch experiment was conducted to study the adsorption behaviors of Cu (II) and methylene blue (MB) in aqueous solution on the EWS under conditions of different initial pH, adsorbent dosage, adsorbate concentration, and contact time. The results showed that the maximum adsorption of Cu (II) and MB was obtained when the initial solution pH was > or = 4.0. 96% of Cu (II) in 100 mg x L(-1) Cu solution and 99% of MB in 250 mg x L(-1) dye solution could be removed by > or = 2.0 g x L(-1) of EWS. The adsorption of Cu (II) and MB fitted the Langmuir sorption isothermal model. The maximum removal capacity (Qm) of EWS was 79.37 mg x g(-1) for Cu (II) and 312.50 mg x g(-1) for MB, and the adsorption equilibrium of Cu (II) and MB was reached within 75 min and 5 h, respectively. The adsorption processes of Cu (II) and MB could be described by pseudo-first order and pseudo-second order kinetic functions, respectively.

  4. Adsorption of p-chlorophenol from aqueous solutions on bentonite and perlite.

    PubMed

    Koumanova, Bogdana; Peeva-Antova, P

    2002-03-29

    The adsorption of p-chlorophenol (p-CP) from aqueous solutions on bentonite and perlite was studied. These materials are available in large quantities in Bulgaria. Model solutions of various concentrations (1-50 mgdm(-3)) were shaken with certain amounts of adsorbent to determine the adsorption capacity of p-CP on bentonite and perlite as well. The influence of several individual variables (initial adsorbate concentration, adsorbent mass) on the rate of uptake of the studied compound on the adsorbent was determined by carrying out experiments at different contact times using the batch adsorber vessel designed according to the standard tank configuration. Rapid adsorption was observed 20-30 min after the beginning for every experiment. After that, the concentration of p-CP in the liquid phase remained constant. The adsorption equilibrium of p-CP on bentonite and perlite was described by the Langmuir and the Freundlich models. A higher adsorption capacity was observed for bentonite (10.63 mgg(-1)) compared to that for perlite (5.84 mgg(-1)).

  5. Extracorporeal adsorption of endotoxin.

    PubMed

    Staubach, K H; Rosenfeldt, J A; Veit, O; Bruch, H P

    1997-02-01

    In a porcine endotoxin shock model using a continuous intravenous endotoxin infusion of 250 ng/kg body weight per hour, the cardiorespiratory and hematologic parameters were studied while applying a new on-line polymyxin B immobilized adsorption system. This preliminary report shows that the new adsorbent can remove endotoxin selectively from the circulation and confers a good amount of protection from endotoxin-induced cardiopulmonary decompensation as well as hematologic alterations. Survival time could be extended from 216 min to 313 min. Whereas cardiac output and mean arterial pressure declined critically after 3 h in the controls, the treated group remained stable for another 3 h. These data show that endotoxin adsorption by polymyxin B coupled covalently to acrylic spheres as an adjunctive on-line measure in the septic syndrome seems feasible. PMID:10225785

  6. Behaviour and adsorptive removal of siloxanes in sewage sludge biogas.

    PubMed

    Oshita, K; Ishihara, Y; Takaoka, M; Takeda, N; Matsumoto, T; Morisawa, S; Kitayama, A

    2010-01-01

    We investigated the behaviour of siloxanes, which adversely affect biogas engines, as well as their concentration levels in sewage sludge biogas in Japan. We also performed experiments on the absorptive removal of siloxanes using various adsorbents and determined the main adsorbent characteristics required for the removal of siloxanes. The results of our study on the concentration and composition of siloxanes in biogas were similar to previous reports. Moreover, we found that the concentration of siloxanes changes in relation to the outside air temperature based on real-time measurements of siloxanes using a continuous analyser. We further speculated that the continuous analyser would accurately indicate the siloxane concentration in model biogas but overestimate the siloxane concentration in actual biogas because of positive interference by VOCs and other biogas components. In the siloxane adsorption experiment, the equilibrium uptake of both cyclic siloxanes, D4 and D5, was positively related to the BET-specific surface area of the adsorbents and the fraction of the external surface area taken up by relatively large diameter pores. We attributed the adsorption results to the fact that the siloxane molecules are generally larger than micropores; therefore, they are less susceptible to adsorption to micropores. Based on these results, we concluded that adsorbents with large BET-specific surface areas, especially those with a high external specific surface area and pores of relatively large diameters, are desired for the removal of siloxanes.

  7. The Langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior.

    PubMed

    Latour, Robert A

    2015-03-01

    The Langmuir adsorption isotherm provides one of the simplest and most direct methods to quantify an adsorption process. Because isotherm data from protein adsorption studies often appear to be fit well by the Langmuir isotherm model, estimates of protein binding affinity have often been made from its use despite that fact that none of the conditions required for a Langmuir adsorption process may be satisfied for this type of application. The physical events that cause protein adsorption isotherms to often provide a Langmuir-shaped isotherm can be explained as being due to changes in adsorption-induced spreading, reorientation, clustering, and aggregation of the protein on a surface as a function of solution concentration in contrast to being due to a dynamic equilibrium adsorption process, which is required for Langmuir adsorption. Unless the requirements of the Langmuir adsorption process can be confirmed, fitting of the Langmuir model to protein adsorption isotherm data to obtain thermodynamic properties, such as the equilibrium constant for adsorption and adsorption free energy, may provide erroneous values that have little to do with the actual protein adsorption process, and should be avoided. In this article, a detailed analysis of the Langmuir isotherm model is presented along with a quantitative analysis of the level of error that can arise in derived parameters when the Langmuir isotherm is inappropriately applied to characterize a protein adsorption process.

  8. Wet oxidation of ordered mesoporous carbon FDU-15 by using (NH4)2S2O8 for fast adsorption of Sr(II): An investigation on surface chemistry and adsorption mechanism

    NASA Astrophysics Data System (ADS)

    Song, Yang; Ye, Gang; Chen, Jing; Lv, Dachao; Wang, Jianchen

    2015-12-01

    Surface modification of ordered mesoporous carbon (OMC) by wet oxidation provides an oxygen-enriched platform for complexation of metal ions. Here, we present a comprehensive study on the surface chemistry and textual property of OMC FDU-15 modified by wet oxidation using (NH4)2S2O8 as a benign oxidant. And, for the first time, the adsorption behavior and mechanism of wet-oxidized OMC FDU-15 toward Sr(II) in aqueous solutions were investigated. The mesostructural regularity of the OMC FDU-15 was well-reserved under wet oxidation. Compared to OMC CMK-type counterparts prepared via nanocasting, the OMC FDU-15 by soft template method showed much-enhanced structural stability. Due to the introduction of abundant oxygen-containing species, the oxidized OMC FDU-15 exhibited excellent hydrophilicity and dispersibility in aqueous solutions. The adsorption behavior toward Sr(II) was fully investigated, showing a super-fast adsorption kinetics (< 5 min to reach equilibrium) and a Langmuir adsorption isotherm. Moreover, an in-depth X-ray photoelectron spectroscopy analysis through deconvolution of high resolution C1s and O1s spectra was implemented to identify the chemical species of the surface functional groups, while probing the adsorption mechanism. The results suggested that oxygen donor atoms in Csbnd O single bonds mainly contribute to the adsorption of Sr(II) via formation of metal-ligand complexation.

  9. Adsorption behavior of Cu(II) onto titanate nanofibers prepared by alkali treatment.

    PubMed

    Li, Nian; Zhang, Lide; Chen, Yongzhou; Tian, Yue; Wang, Huimin

    2011-05-15

    Novel low-cost adsorbents of titanate nanofibers with formula Na(x)H(2-x)Ti(3)O(7) · nH(2)O have been prepared by alkali treatment for Cu(II) removal from aqueous solutions. The nanofibers have structures in which three edge-shared TiO(6) octahedras join at the corners to form stepped, zigzag Ti(3)O(7)(2-) layers. The sodium cations located between the layers are exchangeable. The results of batch adsorption experiments suggest that the nanofibers with high sodium content can be effective adsorbents for Cu(II) removal. Effects of several important factors such as Na amount in adsorbents, pH, temperature, contact time and initial concentration are systematically studied. Results show that the adsorption is highly pH-dependent and the removal is almost complete (99.8%) for initial concentration under 100mg/l at pH 4. Equilibrium adsorption follows Langmuir isotherms well and the maximum Cu(II) uptake calculated is 167.224 mg/g. The adsorption kinetics can be explained by pseudo-second-order model well and the time needed for equilibrium is 180 min. Thermodynamic study indicates that the adsorption is spontaneous and endothermic. Desorption of Cu(II) from adsorbents using EDTA-2Na solutions exhibits a high efficiency and the adsorbents can be used repeatedly. These results demonstrate that the titanate nanofibers are readily prepared, enabling promising applications for the removal of Cu(II) from aqueous solutions.

  10. Influence of in situ biofilm coverage on the radionuclide adsorption capacity of subsurface granite.

    PubMed

    Anderson, Craig; Jakobsson, Anna-Maria; Pedersen, Karsten

    2007-02-01

    Any migration of radionuclides from nuclear waste repositories is expected to be mitigated by adsorption to the host rocks surrounding hydraulically conductive fractures. Fluid rock interfaces are considered to be important barriers for nuclear waste disposal schemes but their adsorptive capacity can be affected by the growth of microbial biofilms. This study indicates that biofilms growing on fracture surfaces decrease the rocks adsorption capacity for migrating radionuclides except for trivalent species. Potential suppression of adsorption by biofilms should, therefore, be accounted for in performance safety assessment models. In this study, the adsorptive capacity of in situ anaerobic biofilms grown 450 m underground on either glass or granite slides was compared to the capacity of the same surfaces without biofilms. Surfaces were exposed to the radiotracers 60Co(II), 147Pm(III), 241Am(III), 234Th(IV), and 237Np(V) for a period of 660 h in a pH neutral anaerobic synthetic groundwater. Adsorption was investigated at multiple time points over the 660 h using liquid scintillation and ICP-MS. Results indicate that these surfaces adsorb between 0 and 85% of the added tracers under the conditions of the specific experiments. After 660 h, the distribution coefficients, R (ratio between what is sorbed and what is left in the aqueous phase), approached 3 x 10(4) m for 60Co, 3 x 10(5) m for 147Pm and 241Am, 1 x 10(6)m for 234Th, and 1 x 10(3) m for 237Np. The highest rate of adsorption was during the first 200 h of the adsorption experiments and started to approach equilibrium after 500 h. Adsorption to colloids and precipitates contributed to decreases of up to 20% in the available 60Co, 147Pm, 241Am, and 237Np in the adsorption systems. In the 234Th system 95% of the aqueous 234Th was removed by adsorbing to colloids. Although the range of Rvalues for each surface tested generally overlapped, the biofilms consistently demonstrated lower R values except for the trivalant

  11. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes.

    PubMed

    Sui, Kunyan; Li, Yujin; Liu, Rongzhan; Zhang, Yang; Zhao, Xin; Liang, Hongchao; Xia, Yanzhi

    2012-09-01

    A bioadsorbent of calcium alginate/multi-walled carbon nanotubes (CA/MWCNTs) composite fiber was fabricated by wet spinning and was characterized. Adsorptions of methylene blue (MB) and methyl orange (MO) ionic dyes onto CA/MWCNT composite fibers were investigated with different MWCNTs content and pH values. The results showed that introduction of MWCNTs of CA/MWCNTs composite fiber could not only sharply increase the adsorption capacity of MO onto bioadsorbent by 3 times, but enhanced the adsorption rate for MB compared to that of native CA fiber. Adsorption kinetics was determined by fitting pseudo-first, second-order and the intra-particle diffusion models to the experimental data, with the second-order model providing the best description of MB and MO adsorption onto CA/MWCNT fibers. The equilibrium adsorption data were analyzed by two widely applied isotherms: Langmuir and Freundlich. The desorption experiments showed the percentage of desorption were found to be 79.7% and 80.2% for MB and MO, respectively. PMID:24751058

  12. Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon.

    PubMed

    Tang, Lin; Zhang, Sheng; Zeng, Guang-Ming; Zhang, Yi; Yang, Gui-De; Chen, Jun; Wang, Jing-Jing; Wang, Jia-Jia; Zhou, Yao-Yu; Deng, Yao-Cheng

    2015-05-01

    The ordered mesoporous carbon composite functionalized with carboxylate groups and iron oxide nanoparticles (Fe/OMC) was successfully prepared and used to adsorb 2,4-dichlorophenoxyacetic acid (2,4-D) from wastewater. The resultant adsorbent possessed high degree of order, large specific surface area and pore volume, and good magnetic properties. The increase in initial pollutant concentration and contact time would make the adsorption capacity increase, but the pH and temperature are inversely proportional to 2,4-D uptake. The equilibrium of adsorption was reached within 120 min, and the equilibrated adsorption capacity increased from 99.38 to 310.78 mg/g with the increase of initial concentration of 2,4-D from 100 to 500 mg/L. Notablely, the adsorption capacity reached 97% of the maximum within the first 5 min. The kinetics and isotherm study showed that the pseudo-second-order kinetic and Langmuir isotherm models could well fit the adsorption data. These results indicate that Fe/OMC has a good potential for the rapid adsorption of 2,4-D and prevention of its further diffusion.

  13. Chemical Principles Revisited: Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  14. Adsorption of radon and water vapor on commercial activated carbons

    SciTech Connect

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-02-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer`s classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation.

  15. Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons

    SciTech Connect

    Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec

    2009-02-15

    A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

  16. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    NASA Astrophysics Data System (ADS)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  17. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    PubMed

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    2016-01-01

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal. PMID:27642826

  18. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    PubMed

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    2016-01-01

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal.

  19. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770

  20. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  1. Off-gas adsorption model and simulation - OSPREY

    SciTech Connect

    Rutledge, V.J.

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  2. Off-gas Adsorption Model and Simulation - OSPREY

    SciTech Connect

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  3. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  4. Mechanism of Methylene Blue adsorption on hybrid laponite-multi-walled carbon nanotube particles.

    PubMed

    Manilo, Maryna; Lebovka, Nikolai; Barany, Sandor

    2016-04-01

    The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue (MB) on hybrid laponite-multi-walled carbon nanotube (NT) particles in aqueous suspensions were determined. The laponite platelets were used in order to facilitate disaggregation of NTs in aqueous suspensions and enhance the adsorption capacity of hybrid particles for MB. Experiments were performed at room temperature (298 K), and the laponite/NT ratio (Xl) was varied in the range of 0-0.5. For elucidation of the mechanism of MB adsorption on hybrid particles, the electrical conductivity of the system as well as the electrokinetic potential of laponite-NT hybrid particles were measured. Three different stages in the kinetics of adsorption of MB on the surface of NTs or hybrid laponite-NT particles were discovered to be a fast initial stage I (adsorption time t=0-10 min), a slower intermediate stage II (up to t=120 min) and a long-lasting final stage III (up to t=24hr). The presence of these stages was explained accounting for different types of interactions between MB and adsorbent particles, as well as for the changes in the structure of aggregates of NT particles and the long-range processes of restructuring of laponite platelets on the surface of NTs. The analysis of experimental data on specific surface area versus the value of Xl evidenced in favor of the model with linear contacts between rigid laponite platelets and NTs. It was also concluded that electrostatic interactions control the first stage of adsorption at low MB concentrations.

  5. Equilibrium and Absorption Kinetics of Carbon Dioxide by solid Supported Amine Sorbent

    SciTech Connect

    Monazam, Esmail R.; Shadle, Lawrence J.; Siriwardane, Ranjani

    2011-11-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  6. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica

    SciTech Connect

    Monazam, E., Shadle, L., Pennline, H., Miller, D., Fauth, D., Hoffman, J., Gray, M.

    2012-01-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  7. A real time in situ ATR-FTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: effect of surface coverage.

    PubMed

    Waiman, Carolina V; Avena, Marcelo J; Regazzoni, Alberto E; Zanini, Graciela P

    2013-03-15

    The desorption of glyphosate from goethite as induced by the adsorption of phosphate was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in combination with adsorption isotherms. Desorption of glyphosate was very low in the absence of phosphate. Addition of phosphate promoted glyphosate desorption. At low initial surface coverages, added phosphate adsorbed on free surface sites, mainly, displacing a small amount of glyphosate. At high initial surface coverages, on the contrary, phosphate adsorption resulted in a significant glyphosate desorption. In the latter conditions, the ratio desorbed glyphosate to adsorbed phosphate was 0.60. The desorption process can be explained by assuming that phosphate adsorbs first forming a monodentate mononuclear complex, which rapidly evolves into a bidentate binuclear complex that displaces glyphosate.

  8. [Adsorption kinetics of reactive dyes on activated carbon fiber].

    PubMed

    Li, Ying; Yue, Qin-Yan; Gao, Bao-Yu; Yang, Jing; Zheng, Yan

    2007-11-01

    The adsorption capability of activated carbon fiber (ACF) to four reactive dyes (reactive brilliant red K-2BP, reactive turquoise blue KN-G, reactive golden yellow K-3RP, reactive black KN-B) in aqueous solution was studied, and adsorption mechanism was focused on from kinetics point of view. The results show that the equilibrium adsorbing capacity (q(e)) of each dye increases with the addition of initial concentration or temperature. On the same condition, the order of q(e) is: reactive brilliant red > reactive golden yellow > reactive black > reactive turquoise blue. The adsorption processes follow a pseudo second-order kinetic rate equation, and the steric structure, size and polarity of dyes are important influence factors to initial adsorption rate. The adsorption activation energy of each dye is low (16.42, 3.56, 5.21, 26.38 kJ x mol(-1) respectively), which indicates that it belongs to physics adsorption.

  9. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon.

    PubMed

    Tovar-Gómez, R; Rivera-Ramírez, D A; Hernández-Montoya, V; Bonilla-Petriciolet, A; Durán-Valle, C J; Montes-Morán, M A

    2012-01-15

    We report the simultaneous adsorption of acid blue 25 dye (AB25) and heavy metals (Zn(2+), Ni(2+) and Cd(2+)) on a low-cost activated carbon, whose adsorption properties have been improved via a surface chemistry modification using a calcium solution extracted from egg shell wastes. Specifically, we have studied the removal performance of this adsorbent using the binary aqueous systems: AB25-Cd(2+), AB25-Ni(2+) and AB25-Zn(2+). Multi-component kinetic and equilibrium experiments have been performed and used to identify and characterize the synergic adsorption in the simultaneous removal of these pollutants. Our results show that the presence of AB25 significantly favors the removal of heavy metals and may increase the adsorption capacities up to six times with respect to the results obtained using the mono-cationic metallic systems, while the adsorption capacities of AB25 are not affected by the presence of metallic ions. It appears that this anionic dye favors the electrostatic interactions with heavy metals or may create new specific sites for adsorption process. In particular, heavy metals may interact with the -SO(3)(-) group of AB25 and to the hydroxyl and phosphoric groups of this adsorbent. A response surface methodology model has been successfully used for fitting multi-component adsorption data.

  10. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.

    PubMed

    Li, Wei-Guang; Gong, Xu-Jin; Wang, Ke; Zhang, Xin-Ran; Fan, Wen-Biao

    2014-08-01

    An innovative coal-based mesoporous activated carbon (NCPAC) was prepared by re-agglomeration, oxidation and two-step activation using coal-blending as precursor. Adsorption capacities of As(III) and As(V) ions (<0.5mg/L) onto NCPAC as a function of pH, adsorbent dose, initial arsenic concentrations, contact time, and adsorption isotherms at 7°C was investigated. The innovative methods promoted total pore volume (1.087cm(3)/g), mesoporosity (64.31%), iodine numbers (1104mg/g), methylene blue (251.8mg/g) and ash contents (15.26%). The adsorption capacities of NCPAC for As(III) and As(V) were found to be strongly dependent on pH and contact time. The optimal pH value was 6. The equilibrium time was 60min for adsorption of As(III) and As(V) by NCPAC. The Langmuir model fitted the experimental data well for both As(III) (R(2)=0.9980) and As(V) (R(2)=0.9988). Maximum adsorption capacities of As(III) and As(V) (C0=0.50mg/L) by NCPAC were 1.491 and 1.760mg/g, respectively.

  11. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  12. Adsorption of proteins at the aqueous solution/alkane interface: Co-adsorption of protein and alkane.

    PubMed

    Miller, R; Aksenenko, E V; Zinkovych, I I; Fainerman, V B

    2015-08-01

    The equations of state, adsorption isotherms and functions of the distribution of protein molecules in liquid interfacial layers with respect to molar area and the equations for their viscoelastic behavior are presented. This theory was used to determine the adsorption characteristics of β-casein and β-lactoglobulin at water/oil interfaces. The experimental results are shown to be describable quite adequately by the proposed theory with consistent model parameters. The data analysis demonstrated that the β-casein molecule adsorbed at equilibrium conditions is more unfolded as compared with dynamic conditions, and this fact causes the significant increase of the adsorption equilibrium constant. The theory assumes the adsorption of protein molecules from the aqueous solution and a competitive adsorption of alkane molecules from the alkane phase. The comparison of the experimental equilibrium interfacial tension isotherms for β-lactoglobulin at the solution/hexane interface with data calculated using the proposed theoretical model demonstrates that the assumption of a competitive adsorption is essential, and the influence of the hexane molecules on the shape of the adsorption isotherm does in fact exist.

  13. A comparison of three adsorption equations and sensitivity study of parameter uncertainty effects on adsorption refrigeration thermal performance estimation

    NASA Astrophysics Data System (ADS)

    Zhao, Yongling; Hu, Eric; Blazewicz, Antoni

    2012-02-01

    This paper presents isosteric-based adsorption equilibrium tests of three activated carbon samples with methanol as an adsorbate. Experimental data was fitted into Langmuir equation, Freundlich equation and Dubinin-Astakov (D-A) equation, respectively. The fitted adsorption equations were compared in terms of agreement with experimental data. Moreover, equation format's impacts on calculation of the coefficient of performance (COP) and refrigeration capacity of an adsorption refrigeration system was analyzed. In addition, the sensitivity of each parameter in each adsorption equation format to the estimation of cycle's COP and refrigeration capacity was investigated. It was found that the D-A equation is the best form for presenting the adsorptive property of a carbon-methanol working pair. The D-A equation is recommended for estimating thermal performance of an adsorption refrigeration system because simulation results obtained using the D-A equation are less sensitive to errors of experimentally determined D-A equation's parameters.

  14. Carbon dioxide adsorption on amine-impregnated mesoporous materials prepared from spent quartz sand.

    PubMed

    Su, Yiteng; Peng, Lihong; Shiue, Angus; Hong, Gui-Bing; Qian, Zhang; Chang, Chang-Tang

    2014-07-01

    Mesoporous MCM-41 was synthesized using cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant and spent quartz sand as the silica source. Modification of the mesoporous structure to create an absorbent was then completed using 3-aminopropyltrimethoxysilane. Amine-Quartz-MCM (The A-Q-MCM) adsorbents were then characterized by N2 adsorption/desorption, elemental analysis (EA), X-ray fluorescence (XRF), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), as well as the carbon dioxide (CO2) adsorption/desorption performance. In this study, spent quartz sand was utilized to synthesize Quartz-MCM (Q-MCM) and the amine functionalized material, A-Q-MCM, which exhibited a higher uptake of CO2 at room temperature compared with the nongrafted material. The results showed that Q-MCM is similar to MCM-41 synthesized using commercial methods. The surface area, pore volume, and pore diameter were found to be as high as 1028 m2/g, 0.907 cm3/g, and 3.04 nm, respectively. Under the condition of CO2 concentration of 5000 ppm, retention time of 50 cc/min, and the dosage of 1 g/cm3, the mean adsorption capacity of CO2 onto A-Q-MCM was about 89 mg/g, and the nitrogen content of A-Q-MCM was 2.74%. The adsorption equilibrium was modeled well using a Freundlich isotherm. Implications: In this study, spent quartz sand was utilized to synthesize Q-MCM. The amine functionalized material exhibited a higher uptake of CO2 at room temperature compared with the nongrafted material. The results showed that Q-MCM is similar to MCM-41 synthesized using commercial methods. The adsorption equilibrium was modeled well using a Freundlich isotherm.

  15. CO2 and humidity removal system for extended Shuttle missions - CO2, H2O, and trace contaminant equilibrium testing

    NASA Technical Reports Server (NTRS)

    Davis, S. H.; Kissinger, L. D.

    1977-01-01

    The equilibrium relationships for the co-adsorption of CO2 and H2O on an amine coated acrylic ester are presented. The equilibrium data collection and reduction techniques are discussed. Based on the equilibrium relationship, other modes of operation of systems containing HS-C are discussed and specific space applications for HS-C are presented. Equilibrium data for 10 compounds which are found as trace contaminants in closed environments are also presented.

  16. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.

    PubMed

    Shaker, Medhat A; albishri, Hassan M

    2014-09-01

    Humic acids, HA represent a large portion of natural organic matter in soils, sediments and waters. They are environmentally important materials due to their extensive ubiquity and strong complexation ability, which can influence heavy metal removal and transportation in waters. The thermodynamics and kinetics of the adsorption of Cd(II) and Cr(VI) onto solid soil-derived HA have been investigated at optimum conditions of pH (5.5±0.1), metal concentration (10-100mmolL(-1)) and different temperatures (293-323K). The suitability of adsorption models such as Freundlich and Langmuir to equilibrium data was investigated. The adsorption was well described by Langmuir isotherm model in multi-detectable steps. Adsorption sites, i (i=A, B, C) with different capacities, νi are characterized. The stoichiometric site capacity is independent of temperature and equilibrium constant, Ki. Adsorption sites A and B are selectively occupied by Cr(VI) cations while sites A and C are selectively occupied by Cd(II) cations. The thermodynamic parameters of adsorption systems are correlated for each adsorption step. The adsorption is endothermic, spontaneous and favorable. Different kinetic models are applied and the adsorption of these heavy metals onto HA follows pseudo-second-order kinetics and equilibrium is achieved within 24h. The adsorption reaction is controlled by diffusion processes and the type of the adsorption is physical. PMID:24997970

  17. Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design

    NASA Astrophysics Data System (ADS)

    Shariati-Rad, Masoud; Irandoust, Mohsen; Amri, Somayyeh; Feyzi, Mostafa; Ja'fari, Fattaneh

    2014-10-01

    This work evaluates the efficiency of SiO2-coated Fe3O4 magnetic nanoparticles (SMNPs) for adsorption of methyl orange (MO). Adsorption of MO on the studied nanoparticle was developed for removal, preconcentration and spectrophotometric determination of trace amounts of it. To find the optimum adsorption conditions, the influence of pH, dosage of the adsorbent and contact time was explored by central composite design. In pH 2.66, with 10.0 mg of the SMNPs and time of 30.0 min, the maximum adsorption of MO was obtained. The experimental adsorption data were analyzed by the Langmuir and Freundlich adsorption isotherms. Both models were fitted to the equilibrium data and the maximum monolayer capacity q max of 53.19 mg g-1 was obtained for MO. Moreover, the sorption kinetics was fitted well to the pseudo-second-order rate equation model. The results showed that desorption efficiencies higher than 99 % can be achieved in a short contact time and in one step elution by 2.0 mL of 0.1 mol L-1 NaOH. The SMNPs were washed with deionized water and reused for two successive removal processes with removal efficiencies more than 90 %. The calibration curve was linear in the range of 10.0-120.0 ng mL-1 for MO. A preconcentration factor of about 45 % was achieved by the method.

  18. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies.

    PubMed

    Reddy, D Harikishore Kumar; Seshaiah, K; Reddy, A V R; Rao, M Madhava; Wang, M C

    2010-02-15

    Biosorption of Pb(2+) from aqueous solution by biomass prepared from Moringa oleifera bark (MOB), an agricultural solid waste has been studied. Parameters that influence the biosorption such as pH, biosorbent dose, contact time and concentration of metal ion were investigated. The experimental equilibrium adsorption data were tested by four widely used two-parameter equations, the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherms. Results indicated that the data of Pb(2+) adsorption onto MOB were best fit by the Freundlich model. The adsorption capacity (Q(m)) calculated from the Langmuir isotherm was 34.6mgPb(2+)g(-1) at an initial pH of 5.0. Adsorption kinetics data were analyzed using the pseudo-first-, pseudo-second-order equations and intraparticle diffusion models. The results indicated that the adsorption kinetic data were best described by pseudo-second-order model. Infrared (IR) spectral analysis revealed that the lead ions were chelated to hydroxyl and/or carboxyl functional groups present on the surface of MOB. Biosorbent was effective in removing lead in the presence of common metal ions like Na(+), K(+), Ca(2+) and Mg(2+) present in water. Desorption studies were carried out with dilute hydrochloric acid for quantitative recovery of the metal ion as well as to regenerate the adsorbent. Based on the results obtained such as good uptake capacity, rapid kinetics, and its low cost, M. oleifera bark appears to be a promising biosorbent material for the removal of heavy metal ions from wastewater/effluents. PMID:19853374

  19. Equilibrium games in networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan

    2014-12-01

    It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.

  20. Phonon Mapping in Flowing Equilibrium

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.

    2015-03-01

    When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.

  1. Adsorption features of flavonoids on macroporous adsorption resins functionalized with ionic liquids.

    PubMed

    Lou, Song; Di, Duolong

    2012-10-01

    A series of macroporous adsorption resins (MARs) with novel structures is synthesized via Friedel-Crafts catalyzed reaction. The adsorption kinetics of the synthetic resins with respect to the purification effect is systematically investigated by means of the response surface methodology (RSM). The kinetic data cannot be fitted to the classical model because it does not take multicompartments and desorption rates into consideration. A new multicompartment louver-tide theory is thus developed considering that adsorption is an indefinite dynamic equilibrium process, which can be divided into innumerable ingredients with different desorption rates. This theory produces much better fits to the experimental data and provides a quantitative explanation with multicompartments and adsorption/desorption rates. PMID:22811393

  2. Effects of dissolved carbonate on arsenate adsorption and surface speciation at the hematite--water interface.

    PubMed

    Arai, Yuji; Sparks, D L; Davis, J A

    2004-02-01

    Effects of dissolved carbonate on arsenate [As(V)] reactivity and surface speciation at the hematite-water interface were studied as a function of pH and two different partial pressures of carbon dioxide gas [P(CO2) = 10(-3.5) atm and approximately 0; CO2-free argon (Ar)] using adsorption kinetics, pseudo-equilibrium adsorption/titration experiments, extended X-ray absorption fine structure spectroscopic (EXAFS) analyses, and surface complexation modeling. Different adsorbed carbonate concentrations, due to the two different atmospheric systems, resulted in an enhanced and/or suppressed extent of As(V) adsorption. As(V) adsorption kinetics [4 g L(-1), [As(V)]0 = 1.5 mM and I = 0.01 M NaCl] showed carbonate-enhanced As(V) uptake in the air-equilibrated systems at pH 4 and 6 and at pH 8 after 3 h of reaction. Suppressed As(V) adsorption was observed in the air-equilibrated system in the early stages of the reaction at pH 8. In the pseudo-equilibrium adsorption experiments [1 g L(-1), [As(V)]0 = 0.5 mM and I = 0.01 M NaCI], in which each pH value was held constant by a pH-stat apparatus, effects of dissolved carbonate on As(V) uptake were almost negligible at equilibrium, but titrant (0.1 M HCl) consumption was greater in the air-equilibrated systems (P(CO2) = 10(-3.5) atm) than in the CO2-free argon system at pH 4-7.75. The EXAFS analyses indicated that As(V) tetrahedral molecules were coordinated on iron octahedral via bidentate mononuclear ( 2.8 A) and bidentate binuclear (approximately equal to 3.3 A) bonding at pH 4.5-8 and loading levels of 0.46-3.10 microM m(-2). Using the results of the pseudo-equilibrium adsorption data and the XAS analyses, the pH-dependent As(V) adsorption under the P(CO2) = 10(-3.5) atm and the CO2-free argon system was modeled using surface complexation modeling, and the results are consistent with the formation of nonprotonated bidentate surface species at the hematite surfaces. The results also suggest that the acid titrant consumption

  3. Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent.

    PubMed

    Swayampakula, Kalyani; Boddu, Veera M; Nadavala, Siva Kumar; Abburi, Krishnaiah

    2009-10-30

    A new composite chitosan-coated biosorbent was prepared and was used for the removal and recovery of heavy metals from aqueous solution. In the present investigation, equilibrium adsorption characteristics of Cu (II), Ni (II), and Co (II) from their binary and tertiary solution on newly developed biosorbent chitosan-coated perlite beads were evaluated through batch and column studies. These beads were characterized by using FTIR, EDXRF and surface area analysis techniques. The effect of various biosorption parameters like effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on extent of adsorption was investigated. The adsorption follows Lagergren first order kinetic model. The equilibrium adsorption data were fitted to Freundlich and Langmuir adsorption isotherm models and the model parameters were evaluated. Both the models represent the experimental data satisfactorily. The sorbent loaded with metal was regenerated with 0.1N NaOH solution. Furthermore the column dynamic studies indicate the re-usage of the biosorbent.

  4. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    PubMed

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  5. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    PubMed

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil. PMID:26573838

  6. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.

    PubMed

    Prakash, Nagan; Latha, Srinivasan; Sudha, Persu N; Renganathan, N Gopalan

    2013-02-01

    The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan-clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k (1), for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu(2+) ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the

  7. Moisture adsorption isotherms and glass transition temperature of pectin.

    PubMed

    Basu, Santanu; Shivhare, U S; Muley, S

    2013-06-01

    The moisture adsorption isotherms of low methoxyl pectin were determined at 30-70°C and water activity ranging from 0.11 to 0.94. The moisture adsorption isotherms revealed that the equilibrium moisture content increased with water activity. Increase in temperature, in general, resulted in decreased equilibrium moisture content. However in some cases, equilibrium moisture content values increased with temperature at higher water activities. Selected sorption models (GAB, Halsey, Henderson, Oswin, modified Oswin) were tested for describing the adsorption isotherms. Parameters of each sorption models were determined by nonlinear regression analysis. Oswin model gave the best fit for pectin sorption behaviour. Isosteric heat of sorption decreased with increase in moisture content and varied between 14.607 and 0.552 kJ/mol. Glass transition temperature decreased with increase in moisture content of pectin. PMID:24425957

  8. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies

    PubMed Central

    Girish, C. R.; Ramachandra Murty, V.

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions. PMID:27350997

  9. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    PubMed

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  10. Immunity by equilibrium.

    PubMed

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  11. Kinetics of Copper Adsorption from Effluent Stream by ZeoliteNaX

    NASA Astrophysics Data System (ADS)

    Singh, Surinder; Sambi, S. S.; Sharma, S. K.; Pandey, Pankaj Kumar

    2010-06-01

    The batch experiments were conducted to study the copper (II) removal by ZeoliteNaX at temperature of 288+1 K, adsorbent dose of 2 g/L and contact time of 24 hour. Effects of pH, temperature, contact time and Cu (II) ion concentration by the adsorbent were investigated. The data were analyzed using the Langmuir, Freundlich and Temkin isotherms. Freundlich isotherm was found to correlate the adsorption of Cu (II) better and the mono-layer adsorption capacity for Cu (II) removal was 41.6 mg/g. The adsorbed amounts of Cu (II) reached equilibrium within 150 minutes. The four adsorption kinetic models namely, the first order equation, second order equations, pseudo-first order equation and pseudo second-order equations were also tested to fit the data. The pseudo-first-order equation was found to fit best for the experimental data. Thermodynamic analysis indicated the spontaneous and endothermic nature of the adsorption of Cu (II) by ZeoliteNaX.

  12. Comparative study of adsorption of Pb(II) on native garlic peel and mercerized garlic peel.

    PubMed

    Liu, Wei; Liu, Yifeng; Tao, Yaqi; Yu, Youjie; Jiang, Hongmei; Lian, Hongzhen

    2014-02-01

    A comparative study using native garlic peel and mercerized garlic peel as adsorbents for the removal of Pb(2+) has been proposed. Under the optimized pH, contact time, and adsorbent dosage, the adsorption capacity of garlic peel after mercerization was increased 2.1 times and up to 109.05 mg g(-1). The equilibrium sorption data for both garlic peels fitted well with Langmuir adsorption isotherm, and the adsorbent-adsorbate kinetics followed pseudo-second-order model. These both garlic peels were characterized by elemental analysis, Fourier transform infrared spectrometry (FT-IR), and scanning electron microscopy, and the results indicated that mercerized garlic peel offers more little pores acted as adsorption sites than native garlic peel and has lower polymerization and crystalline and more accessible functional hydroxyl groups, which resulted in higher adsorption capacity than native garlic peel. The FT-IR and X-ray photoelectron spectroscopy analyses of both garlic peels before and after loaded with Pb(2+) further illustrated that lead was adsorbed on the through chelation between Pb(2+) and O atom existed on the surface of garlic peels. These results described above showed that garlic peel after mercerization can be a more attractive adsorbent due to its faster sorption uptake and higher capacity.

  13. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    PubMed

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate. PMID:27107386

  14. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    PubMed

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate.

  15. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  16. Evaluation of ethylenediamine-modified nanofibrillated cellulose/chitosan composites on adsorption of cationic and anionic dyes from aqueous solution.

    PubMed

    Liu, Kai; Chen, Lihui; Huang, Liulian; Lai, Yaoneng

    2016-10-20

    A multi-functional adsorbent was prepared by modifying nanofibrillated cellulose/chitosan composites with ethylenediamine (E-NFC/CS). The E-NFC/CS was characterized by FTIR and used for adsorption of cationic dye methylene blue (MB) and anionic dye new coccine (NC) from aqueous solution. The FTIR results showed that the E-NFC/CS contained more amino groups than the NFC/CS due to the modification for the NFC/CS with ethylenediamine. The results indicated that the maximum adsorption capacities occurred at pH 4.0 for MB and pH 2.0 for NC, respectively. The adsorption equilibrium time for MB and NC was 30 and 50min, respectively. In addition, the regenerated E-NFC/CS exhibited excellent adsorption performance for NC. It can keep almost 98% of the adsorption capacity after reused three times. Therefore, the E-NFC/CS can be potentially used as an effective adsorbent of cationic and anionic dyes in industrial effluents. PMID:27474662

  17. Beyond Equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  18. Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Guishen, Liang; Pan, Tonglin; He, JunZhang; Guo, Zhanchen

    2011-12-15

    Thermodynamic and kinetics studies for adsorption of Pt ions complexes from the chloride solutions obtained by leaching chlorinated spent automotive catalysts on anionic exchange resin Diaion WA21J were carried out. It was found that only Si, Pt, Rh and Pd from the solution were selectively adsorbed on the resin Diaion WA21J more strongly. The adsorption equilibrium time for Pt ions was about 20 h. The isothermal adsorption of Pt ions was found to fit Langmuir, Freundlich and DKR models. The maximum monolayer adsorption capacities Q(max) and X(m) of Pt ions on the resin based on Langmuir and DKR model were 4.85, 5.36 and 5.69 mg/g as well as 5.01, 5.63 and 5.98 mg/g for temperatures 18°C, 28°C and 40°C, respectively. The apparent adsorption energy E(ad) based on DKR model were -11.79, -11.04 and -11.04 kJ/mol for the temperatures 18°C, 28°C and 40°C, respectively. Ion exchange was the mechanism involved in the adsorption process. The adsorption of Pt ions on the resin underwent pseudo-first-order kinetic process, and the apparent adsorption activation energy E(a,1) was 12.6 kJ/mol. The intraparticle diffusion of Pt ions was a main rate-controlling step in most of time of adsorption process.

  19. Thermodynamic equilibrium at heterogeneous pressure

    NASA Astrophysics Data System (ADS)

    Vrijmoed, J. C.; Podladchikov, Y. Y.

    2015-07-01

    Recent advances in metamorphic petrology point out the importance of grain-scale pressure variations in high-temperature metamorphic rocks. Pressure derived from chemical zonation using unconventional geobarometry based on equal chemical potentials fits mechanically feasible pressure variations. Here, a thermodynamic equilibrium method is presented that predicts chemical zoning as a result of pressure variations by Gibbs energy minimization. Equilibrium thermodynamic prediction of the chemical zoning in the case of pressure heterogeneity is done by constrained Gibbs minimization using linear programming techniques. In addition to constraining the system composition, a certain proportion of the system is constrained at a specified pressure. Input pressure variations need to be discretized, and each discrete pressure defines an additional constraint for the minimization. The Gibbs minimization method provides identical results to a geobarometry approach based on chemical potentials, thus validating the inferred pressure gradient. The thermodynamic consistency of the calculation is supported by the similar result obtained from two different approaches. In addition, the method can be used for multi-component, multi-phase systems of which several applications are given. A good fit to natural observations in multi-phase, multi-component systems demonstrates the possibility to explain phase assemblages and zoning by spatial pressure variations at equilibrium as an alternative to pressure variation in time due to disequilibrium.

  20. Adsorption and Separation Modeling of Porous Networks

    NASA Astrophysics Data System (ADS)

    Malanoski, Anthony; van Swol, Frank

    2001-03-01

    With the advent of self-assembly techniques has come the potential to tailor materials for adsorption and separation applications. For example, using surfactants as templating agents it is now feasible to finely control both the three-dimensional (3D) porosity as well as the surface chemistry. With an eye on assisting the emerging materials design we have embarked on a program that focuses on modeling adsorption/desorption, reactions and permeation phenomena in such structures. What makes the modeling particularly challenging is the coupling of length scales. The role of the atomic length scale features such as surface reactions and surface structure must be captured as well as the role of the network connectivity and other larger length scales. The latter include the pore shape and length, and the presence of external surfaces. This paper reports on how we employ refineable lattice models to tackle the modeling problems. We use both equilibrium and non-equilibrium Monte Carlo (MC) and 3D density functional theory (DFT) techniques to study the equilibrium and transport behavior in nanostructured porous materials. We will present 1) results of both adsorption/desorption hysteresis in large regular and random networks and 2) the results of using reactive sites in separation membranes, and compare these with experiments.

  1. Gas separation by adsorption in carbon nanohorns

    NASA Astrophysics Data System (ADS)

    Nekhai, Anton; Gatica, Silvina

    Gas separation by adsorption can be accomplished by three basic physical mechanisms: equilibria, kinetics, and steric effects. Equilibrium mechanisms rely on the strength of attraction between gas molecules and their substrate. For example, CO2 possesses the strongest, attractive interactions with its substrate. As a result, the equilibrium mechanism presents the most plausible strategy to separate carbon dioxide from mixtures. The specification of a sound adsorbent is the key for separation by adsorption. In this paper we investigate carbon nanohrons for selectivity of carbon dioxide over methane. Carbon Nanohorns resemble short, wide, highly defected single-wall nanotubes that end in conical tips (``horns''). In contrast to regular nanotubes that assemble into parallel bundles, nanohorns form spherical aggregates with the nanohorns arranged along radial directions. Using the simulation technique Grand Canonical Monte Carlo (GCMC) we obtained the adsorption isotherms of CH4 and CO2 in a 2D array of carbon nanohorns. We estimated the selectivity based on the IAST approximation. We also study the adsorption of argon and neon and compare with experimental results. We acknowledge support from the Partnership for Reduced Dimension Materials (PRDM), NSF Grant No. DMR1205608.

  2. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  3. Adsorption of trace metals to plastic resin pellets in the marine environment.

    PubMed

    Holmes, Luke A; Turner, Andrew; Thompson, Richard C

    2012-01-01

    Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets. Adsorption isotherms conformed to both the Langmuir and Freundlich equations and adsorption capacities were greater for beached pellets than for virgin pellets. Results suggest that plastics may represent an important vehicle for the transport of metals in the marine environment. PMID:22035924

  4. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.;